DAGISelMatcherOpt.cpp revision 360784
1//===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the DAG Matcher optimizer.
10//
11//===----------------------------------------------------------------------===//
12
13#include "DAGISelMatcher.h"
14#include "CodeGenDAGPatterns.h"
15#include "llvm/ADT/StringSet.h"
16#include "llvm/Support/Debug.h"
17#include "llvm/Support/raw_ostream.h"
18using namespace llvm;
19
20#define DEBUG_TYPE "isel-opt"
21
22/// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
23/// into single compound nodes like RecordChild.
24static void ContractNodes(std::unique_ptr<Matcher> &MatcherPtr,
25                          const CodeGenDAGPatterns &CGP) {
26  // If we reached the end of the chain, we're done.
27  Matcher *N = MatcherPtr.get();
28  if (!N) return;
29
30  // If we have a scope node, walk down all of the children.
31  if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
32    for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
33      std::unique_ptr<Matcher> Child(Scope->takeChild(i));
34      ContractNodes(Child, CGP);
35      Scope->resetChild(i, Child.release());
36    }
37    return;
38  }
39
40  // If we found a movechild node with a node that comes in a 'foochild' form,
41  // transform it.
42  if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
43    Matcher *New = nullptr;
44    if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
45      if (MC->getChildNo() < 8)  // Only have RecordChild0...7
46        New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(),
47                                     RM->getResultNo());
48
49    if (CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(MC->getNext()))
50      if (MC->getChildNo() < 8 &&  // Only have CheckChildType0...7
51          CT->getResNo() == 0)     // CheckChildType checks res #0
52        New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
53
54    if (CheckSameMatcher *CS = dyn_cast<CheckSameMatcher>(MC->getNext()))
55      if (MC->getChildNo() < 4)  // Only have CheckChildSame0...3
56        New = new CheckChildSameMatcher(MC->getChildNo(), CS->getMatchNumber());
57
58    if (CheckIntegerMatcher *CI = dyn_cast<CheckIntegerMatcher>(MC->getNext()))
59      if (MC->getChildNo() < 5)  // Only have CheckChildInteger0...4
60        New = new CheckChildIntegerMatcher(MC->getChildNo(), CI->getValue());
61
62    if (auto *CCC = dyn_cast<CheckCondCodeMatcher>(MC->getNext()))
63      if (MC->getChildNo() == 2)  // Only have CheckChild2CondCode
64        New = new CheckChild2CondCodeMatcher(CCC->getCondCodeName());
65
66    if (New) {
67      // Insert the new node.
68      New->setNext(MatcherPtr.release());
69      MatcherPtr.reset(New);
70      // Remove the old one.
71      MC->setNext(MC->getNext()->takeNext());
72      return ContractNodes(MatcherPtr, CGP);
73    }
74  }
75
76  // Zap movechild -> moveparent.
77  if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
78    if (MoveParentMatcher *MP =
79          dyn_cast<MoveParentMatcher>(MC->getNext())) {
80      MatcherPtr.reset(MP->takeNext());
81      return ContractNodes(MatcherPtr, CGP);
82    }
83
84  // Turn EmitNode->CompleteMatch into MorphNodeTo if we can.
85  if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N))
86    if (CompleteMatchMatcher *CM =
87          dyn_cast<CompleteMatchMatcher>(EN->getNext())) {
88      // We can only use MorphNodeTo if the result values match up.
89      unsigned RootResultFirst = EN->getFirstResultSlot();
90      bool ResultsMatch = true;
91      for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i)
92        if (CM->getResult(i) != RootResultFirst+i)
93          ResultsMatch = false;
94
95      // If the selected node defines a subset of the glue/chain results, we
96      // can't use MorphNodeTo.  For example, we can't use MorphNodeTo if the
97      // matched pattern has a chain but the root node doesn't.
98      const PatternToMatch &Pattern = CM->getPattern();
99
100      if (!EN->hasChain() &&
101          Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP))
102        ResultsMatch = false;
103
104      // If the matched node has glue and the output root doesn't, we can't
105      // use MorphNodeTo.
106      //
107      // NOTE: Strictly speaking, we don't have to check for glue here
108      // because the code in the pattern generator doesn't handle it right.  We
109      // do it anyway for thoroughness.
110      if (!EN->hasOutFlag() &&
111          Pattern.getSrcPattern()->NodeHasProperty(SDNPOutGlue, CGP))
112        ResultsMatch = false;
113
114
115      // If the root result node defines more results than the source root node
116      // *and* has a chain or glue input, then we can't match it because it
117      // would end up replacing the extra result with the chain/glue.
118#if 0
119      if ((EN->hasGlue() || EN->hasChain()) &&
120          EN->getNumNonChainGlueVTs() > ... need to get no results reliably ...)
121        ResultMatch = false;
122#endif
123
124      if (ResultsMatch) {
125        const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList();
126        const SmallVectorImpl<unsigned> &Operands = EN->getOperandList();
127        MatcherPtr.reset(new MorphNodeToMatcher(EN->getOpcodeName(),
128                                                VTs, Operands,
129                                                EN->hasChain(), EN->hasInFlag(),
130                                                EN->hasOutFlag(),
131                                                EN->hasMemRefs(),
132                                                EN->getNumFixedArityOperands(),
133                                                Pattern));
134        return;
135      }
136
137      // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode
138      // variants.
139    }
140
141  ContractNodes(N->getNextPtr(), CGP);
142
143
144  // If we have a CheckType/CheckChildType/Record node followed by a
145  // CheckOpcode, invert the two nodes.  We prefer to do structural checks
146  // before type checks, as this opens opportunities for factoring on targets
147  // like X86 where many operations are valid on multiple types.
148  if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) ||
149       isa<RecordMatcher>(N)) &&
150      isa<CheckOpcodeMatcher>(N->getNext())) {
151    // Unlink the two nodes from the list.
152    Matcher *CheckType = MatcherPtr.release();
153    Matcher *CheckOpcode = CheckType->takeNext();
154    Matcher *Tail = CheckOpcode->takeNext();
155
156    // Relink them.
157    MatcherPtr.reset(CheckOpcode);
158    CheckOpcode->setNext(CheckType);
159    CheckType->setNext(Tail);
160    return ContractNodes(MatcherPtr, CGP);
161  }
162}
163
164/// FindNodeWithKind - Scan a series of matchers looking for a matcher with a
165/// specified kind.  Return null if we didn't find one otherwise return the
166/// matcher.
167static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) {
168  for (; M; M = M->getNext())
169    if (M->getKind() == Kind)
170      return M;
171  return nullptr;
172}
173
174
175/// FactorNodes - Turn matches like this:
176///   Scope
177///     OPC_CheckType i32
178///       ABC
179///     OPC_CheckType i32
180///       XYZ
181/// into:
182///   OPC_CheckType i32
183///     Scope
184///       ABC
185///       XYZ
186///
187static void FactorNodes(std::unique_ptr<Matcher> &InputMatcherPtr) {
188  // Look for a push node. Iterates instead of recurses to reduce stack usage.
189  ScopeMatcher *Scope = nullptr;
190  std::unique_ptr<Matcher> *RebindableMatcherPtr = &InputMatcherPtr;
191  while (!Scope) {
192    // If we reached the end of the chain, we're done.
193    Matcher *N = RebindableMatcherPtr->get();
194    if (!N) return;
195
196    // If this is not a push node, just scan for one.
197    Scope = dyn_cast<ScopeMatcher>(N);
198    if (!Scope)
199      RebindableMatcherPtr = &(N->getNextPtr());
200  }
201  std::unique_ptr<Matcher> &MatcherPtr = *RebindableMatcherPtr;
202
203  // Okay, pull together the children of the scope node into a vector so we can
204  // inspect it more easily.
205  SmallVector<Matcher*, 32> OptionsToMatch;
206
207  for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
208    // Factor the subexpression.
209    std::unique_ptr<Matcher> Child(Scope->takeChild(i));
210    FactorNodes(Child);
211
212    if (Child) {
213      // If the child is a ScopeMatcher we can just merge its contents.
214      if (auto *SM = dyn_cast<ScopeMatcher>(Child.get())) {
215        for (unsigned j = 0, e = SM->getNumChildren(); j != e; ++j)
216          OptionsToMatch.push_back(SM->takeChild(j));
217      } else {
218        OptionsToMatch.push_back(Child.release());
219      }
220    }
221  }
222
223  SmallVector<Matcher*, 32> NewOptionsToMatch;
224
225  // Loop over options to match, merging neighboring patterns with identical
226  // starting nodes into a shared matcher.
227  for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) {
228    // Find the set of matchers that start with this node.
229    Matcher *Optn = OptionsToMatch[OptionIdx++];
230
231    if (OptionIdx == e) {
232      NewOptionsToMatch.push_back(Optn);
233      continue;
234    }
235
236    // See if the next option starts with the same matcher.  If the two
237    // neighbors *do* start with the same matcher, we can factor the matcher out
238    // of at least these two patterns.  See what the maximal set we can merge
239    // together is.
240    SmallVector<Matcher*, 8> EqualMatchers;
241    EqualMatchers.push_back(Optn);
242
243    // Factor all of the known-equal matchers after this one into the same
244    // group.
245    while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn))
246      EqualMatchers.push_back(OptionsToMatch[OptionIdx++]);
247
248    // If we found a non-equal matcher, see if it is contradictory with the
249    // current node.  If so, we know that the ordering relation between the
250    // current sets of nodes and this node don't matter.  Look past it to see if
251    // we can merge anything else into this matching group.
252    unsigned Scan = OptionIdx;
253    while (1) {
254      // If we ran out of stuff to scan, we're done.
255      if (Scan == e) break;
256
257      Matcher *ScanMatcher = OptionsToMatch[Scan];
258
259      // If we found an entry that matches out matcher, merge it into the set to
260      // handle.
261      if (Optn->isEqual(ScanMatcher)) {
262        // If is equal after all, add the option to EqualMatchers and remove it
263        // from OptionsToMatch.
264        EqualMatchers.push_back(ScanMatcher);
265        OptionsToMatch.erase(OptionsToMatch.begin()+Scan);
266        --e;
267        continue;
268      }
269
270      // If the option we're checking for contradicts the start of the list,
271      // skip over it.
272      if (Optn->isContradictory(ScanMatcher)) {
273        ++Scan;
274        continue;
275      }
276
277      // If we're scanning for a simple node, see if it occurs later in the
278      // sequence.  If so, and if we can move it up, it might be contradictory
279      // or the same as what we're looking for.  If so, reorder it.
280      if (Optn->isSimplePredicateOrRecordNode()) {
281        Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind());
282        if (M2 && M2 != ScanMatcher &&
283            M2->canMoveBefore(ScanMatcher) &&
284            (M2->isEqual(Optn) || M2->isContradictory(Optn))) {
285          Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2);
286          M2->setNext(MatcherWithoutM2);
287          OptionsToMatch[Scan] = M2;
288          continue;
289        }
290      }
291
292      // Otherwise, we don't know how to handle this entry, we have to bail.
293      break;
294    }
295
296    if (Scan != e &&
297        // Don't print it's obvious nothing extra could be merged anyway.
298        Scan+1 != e) {
299      LLVM_DEBUG(errs() << "Couldn't merge this:\n"; Optn->print(errs(), 4);
300                 errs() << "into this:\n";
301                 OptionsToMatch[Scan]->print(errs(), 4);
302                 if (Scan + 1 != e) OptionsToMatch[Scan + 1]->printOne(errs());
303                 if (Scan + 2 < e) OptionsToMatch[Scan + 2]->printOne(errs());
304                 errs() << "\n");
305    }
306
307    // If we only found one option starting with this matcher, no factoring is
308    // possible.
309    if (EqualMatchers.size() == 1) {
310      NewOptionsToMatch.push_back(EqualMatchers[0]);
311      continue;
312    }
313
314    // Factor these checks by pulling the first node off each entry and
315    // discarding it.  Take the first one off the first entry to reuse.
316    Matcher *Shared = Optn;
317    Optn = Optn->takeNext();
318    EqualMatchers[0] = Optn;
319
320    // Remove and delete the first node from the other matchers we're factoring.
321    for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
322      Matcher *Tmp = EqualMatchers[i]->takeNext();
323      delete EqualMatchers[i];
324      EqualMatchers[i] = Tmp;
325    }
326
327    Shared->setNext(new ScopeMatcher(EqualMatchers));
328
329    // Recursively factor the newly created node.
330    FactorNodes(Shared->getNextPtr());
331
332    NewOptionsToMatch.push_back(Shared);
333  }
334
335  // If we're down to a single pattern to match, then we don't need this scope
336  // anymore.
337  if (NewOptionsToMatch.size() == 1) {
338    MatcherPtr.reset(NewOptionsToMatch[0]);
339    return;
340  }
341
342  if (NewOptionsToMatch.empty()) {
343    MatcherPtr.reset();
344    return;
345  }
346
347  // If our factoring failed (didn't achieve anything) see if we can simplify in
348  // other ways.
349
350  // Check to see if all of the leading entries are now opcode checks.  If so,
351  // we can convert this Scope to be a OpcodeSwitch instead.
352  bool AllOpcodeChecks = true, AllTypeChecks = true;
353  for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
354    // Check to see if this breaks a series of CheckOpcodeMatchers.
355    if (AllOpcodeChecks &&
356        !isa<CheckOpcodeMatcher>(NewOptionsToMatch[i])) {
357#if 0
358      if (i > 3) {
359        errs() << "FAILING OPC #" << i << "\n";
360        NewOptionsToMatch[i]->dump();
361      }
362#endif
363      AllOpcodeChecks = false;
364    }
365
366    // Check to see if this breaks a series of CheckTypeMatcher's.
367    if (AllTypeChecks) {
368      CheckTypeMatcher *CTM =
369        cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
370                                                        Matcher::CheckType));
371      if (!CTM ||
372          // iPTR checks could alias any other case without us knowing, don't
373          // bother with them.
374          CTM->getType() == MVT::iPTR ||
375          // SwitchType only works for result #0.
376          CTM->getResNo() != 0 ||
377          // If the CheckType isn't at the start of the list, see if we can move
378          // it there.
379          !CTM->canMoveBefore(NewOptionsToMatch[i])) {
380#if 0
381        if (i > 3 && AllTypeChecks) {
382          errs() << "FAILING TYPE #" << i << "\n";
383          NewOptionsToMatch[i]->dump();
384        }
385#endif
386        AllTypeChecks = false;
387      }
388    }
389  }
390
391  // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot.
392  if (AllOpcodeChecks) {
393    StringSet<> Opcodes;
394    SmallVector<std::pair<const SDNodeInfo*, Matcher*>, 8> Cases;
395    for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
396      CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(NewOptionsToMatch[i]);
397      assert(Opcodes.insert(COM->getOpcode().getEnumName()).second &&
398             "Duplicate opcodes not factored?");
399      Cases.push_back(std::make_pair(&COM->getOpcode(), COM->takeNext()));
400      delete COM;
401    }
402
403    MatcherPtr.reset(new SwitchOpcodeMatcher(Cases));
404    return;
405  }
406
407  // If all the options are CheckType's, we can form the SwitchType, woot.
408  if (AllTypeChecks) {
409    DenseMap<unsigned, unsigned> TypeEntry;
410    SmallVector<std::pair<MVT::SimpleValueType, Matcher*>, 8> Cases;
411    for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
412      Matcher* M = FindNodeWithKind(NewOptionsToMatch[i], Matcher::CheckType);
413      assert(M && isa<CheckTypeMatcher>(M) && "Unknown Matcher type");
414
415      auto *CTM = cast<CheckTypeMatcher>(M);
416      Matcher *MatcherWithoutCTM = NewOptionsToMatch[i]->unlinkNode(CTM);
417      MVT::SimpleValueType CTMTy = CTM->getType();
418      delete CTM;
419
420      unsigned &Entry = TypeEntry[CTMTy];
421      if (Entry != 0) {
422        // If we have unfactored duplicate types, then we should factor them.
423        Matcher *PrevMatcher = Cases[Entry-1].second;
424        if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(PrevMatcher)) {
425          SM->setNumChildren(SM->getNumChildren()+1);
426          SM->resetChild(SM->getNumChildren()-1, MatcherWithoutCTM);
427          continue;
428        }
429
430        Matcher *Entries[2] = { PrevMatcher, MatcherWithoutCTM };
431        Cases[Entry-1].second = new ScopeMatcher(Entries);
432        continue;
433      }
434
435      Entry = Cases.size()+1;
436      Cases.push_back(std::make_pair(CTMTy, MatcherWithoutCTM));
437    }
438
439    // Make sure we recursively factor any scopes we may have created.
440    for (auto &M : Cases) {
441      if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(M.second)) {
442        std::unique_ptr<Matcher> Scope(SM);
443        FactorNodes(Scope);
444        M.second = Scope.release();
445        assert(M.second && "null matcher");
446      }
447    }
448
449    if (Cases.size() != 1) {
450      MatcherPtr.reset(new SwitchTypeMatcher(Cases));
451    } else {
452      // If we factored and ended up with one case, create it now.
453      MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first, 0));
454      MatcherPtr->setNext(Cases[0].second);
455    }
456    return;
457  }
458
459
460  // Reassemble the Scope node with the adjusted children.
461  Scope->setNumChildren(NewOptionsToMatch.size());
462  for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i)
463    Scope->resetChild(i, NewOptionsToMatch[i]);
464}
465
466void
467llvm::OptimizeMatcher(std::unique_ptr<Matcher> &MatcherPtr,
468                      const CodeGenDAGPatterns &CGP) {
469  ContractNodes(MatcherPtr, CGP);
470  FactorNodes(MatcherPtr);
471}
472