DAGISelMatcherOpt.cpp revision 204642
1//===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the DAG Matcher optimizer.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel-opt"
15#include "DAGISelMatcher.h"
16#include "CodeGenDAGPatterns.h"
17#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/StringSet.h"
19#include "llvm/Support/Debug.h"
20#include "llvm/Support/raw_ostream.h"
21#include <vector>
22using namespace llvm;
23
24/// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
25/// into single compound nodes like RecordChild.
26static void ContractNodes(OwningPtr<Matcher> &MatcherPtr,
27                          const CodeGenDAGPatterns &CGP) {
28  // If we reached the end of the chain, we're done.
29  Matcher *N = MatcherPtr.get();
30  if (N == 0) return;
31
32  // If we have a scope node, walk down all of the children.
33  if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
34    for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
35      OwningPtr<Matcher> Child(Scope->takeChild(i));
36      ContractNodes(Child, CGP);
37      Scope->resetChild(i, Child.take());
38    }
39    return;
40  }
41
42  // If we found a movechild node with a node that comes in a 'foochild' form,
43  // transform it.
44  if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
45    Matcher *New = 0;
46    if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
47      New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(),
48                                   RM->getResultNo());
49
50    if (CheckTypeMatcher *CT= dyn_cast<CheckTypeMatcher>(MC->getNext()))
51      New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
52
53    if (New) {
54      // Insert the new node.
55      New->setNext(MatcherPtr.take());
56      MatcherPtr.reset(New);
57      // Remove the old one.
58      MC->setNext(MC->getNext()->takeNext());
59      return ContractNodes(MatcherPtr, CGP);
60    }
61  }
62
63  // Zap movechild -> moveparent.
64  if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
65    if (MoveParentMatcher *MP =
66          dyn_cast<MoveParentMatcher>(MC->getNext())) {
67      MatcherPtr.reset(MP->takeNext());
68      return ContractNodes(MatcherPtr, CGP);
69    }
70
71  // Turn EmitNode->MarkFlagResults->CompleteMatch into
72  // MarkFlagResults->EmitNode->CompleteMatch when we can to encourage
73  // MorphNodeTo formation.  This is safe because MarkFlagResults never refers
74  // to the root of the pattern.
75  if (isa<EmitNodeMatcher>(N) && isa<MarkFlagResultsMatcher>(N->getNext()) &&
76      isa<CompleteMatchMatcher>(N->getNext()->getNext())) {
77    // Unlink the two nodes from the list.
78    Matcher *EmitNode = MatcherPtr.take();
79    Matcher *MFR = EmitNode->takeNext();
80    Matcher *Tail = MFR->takeNext();
81
82    // Relink them.
83    MatcherPtr.reset(MFR);
84    MFR->setNext(EmitNode);
85    EmitNode->setNext(Tail);
86    return ContractNodes(MatcherPtr, CGP);
87  }
88
89  // Turn EmitNode->CompleteMatch into MorphNodeTo if we can.
90  if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N))
91    if (CompleteMatchMatcher *CM =
92          dyn_cast<CompleteMatchMatcher>(EN->getNext())) {
93      // We can only use MorphNodeTo if the result values match up.
94      unsigned RootResultFirst = EN->getFirstResultSlot();
95      bool ResultsMatch = true;
96      for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i)
97        if (CM->getResult(i) != RootResultFirst+i)
98          ResultsMatch = false;
99
100      // If the selected node defines a subset of the flag/chain results, we
101      // can't use MorphNodeTo.  For example, we can't use MorphNodeTo if the
102      // matched pattern has a chain but the root node doesn't.
103      const PatternToMatch &Pattern = CM->getPattern();
104
105      if (!EN->hasChain() &&
106          Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP))
107        ResultsMatch = false;
108
109      // If the matched node has a flag and the output root doesn't, we can't
110      // use MorphNodeTo.
111      //
112      // NOTE: Strictly speaking, we don't have to check for the flag here
113      // because the code in the pattern generator doesn't handle it right.  We
114      // do it anyway for thoroughness.
115      if (!EN->hasOutFlag() &&
116          Pattern.getSrcPattern()->NodeHasProperty(SDNPOutFlag, CGP))
117        ResultsMatch = false;
118
119
120      // If the root result node defines more results than the source root node
121      // *and* has a chain or flag input, then we can't match it because it
122      // would end up replacing the extra result with the chain/flag.
123#if 0
124      if ((EN->hasFlag() || EN->hasChain()) &&
125          EN->getNumNonChainFlagVTs() > ... need to get no results reliably ...)
126        ResultMatch = false;
127#endif
128
129      if (ResultsMatch) {
130        const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList();
131        const SmallVectorImpl<unsigned> &Operands = EN->getOperandList();
132        MatcherPtr.reset(new MorphNodeToMatcher(EN->getOpcodeName(),
133                                                VTs.data(), VTs.size(),
134                                                Operands.data(),Operands.size(),
135                                                EN->hasChain(), EN->hasInFlag(),
136                                                EN->hasOutFlag(),
137                                                EN->hasMemRefs(),
138                                                EN->getNumFixedArityOperands(),
139                                                Pattern));
140        return;
141      }
142
143      // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode
144      // variants.
145    }
146
147  ContractNodes(N->getNextPtr(), CGP);
148
149
150  // If we have a CheckType/CheckChildType/Record node followed by a
151  // CheckOpcode, invert the two nodes.  We prefer to do structural checks
152  // before type checks, as this opens opportunities for factoring on targets
153  // like X86 where many operations are valid on multiple types.
154  if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) ||
155       isa<RecordMatcher>(N)) &&
156      isa<CheckOpcodeMatcher>(N->getNext())) {
157    // Unlink the two nodes from the list.
158    Matcher *CheckType = MatcherPtr.take();
159    Matcher *CheckOpcode = CheckType->takeNext();
160    Matcher *Tail = CheckOpcode->takeNext();
161
162    // Relink them.
163    MatcherPtr.reset(CheckOpcode);
164    CheckOpcode->setNext(CheckType);
165    CheckType->setNext(Tail);
166    return ContractNodes(MatcherPtr, CGP);
167  }
168}
169
170/// SinkPatternPredicates - Pattern predicates can be checked at any level of
171/// the matching tree.  The generator dumps them at the top level of the pattern
172/// though, which prevents factoring from being able to see past them.  This
173/// optimization sinks them as far down into the pattern as possible.
174///
175/// Conceptually, we'd like to sink these predicates all the way to the last
176/// matcher predicate in the series.  However, it turns out that some
177/// ComplexPatterns have side effects on the graph, so we really don't want to
178/// run a the complex pattern if the pattern predicate will fail.  For this
179/// reason, we refuse to sink the pattern predicate past a ComplexPattern.
180///
181static void SinkPatternPredicates(OwningPtr<Matcher> &MatcherPtr) {
182  // Recursively scan for a PatternPredicate.
183  // If we reached the end of the chain, we're done.
184  Matcher *N = MatcherPtr.get();
185  if (N == 0) return;
186
187  // Walk down all members of a scope node.
188  if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
189    for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
190      OwningPtr<Matcher> Child(Scope->takeChild(i));
191      SinkPatternPredicates(Child);
192      Scope->resetChild(i, Child.take());
193    }
194    return;
195  }
196
197  // If this node isn't a CheckPatternPredicateMatcher we keep scanning until
198  // we find one.
199  CheckPatternPredicateMatcher *CPPM =dyn_cast<CheckPatternPredicateMatcher>(N);
200  if (CPPM == 0)
201    return SinkPatternPredicates(N->getNextPtr());
202
203  // Ok, we found one, lets try to sink it. Check if we can sink it past the
204  // next node in the chain.  If not, we won't be able to change anything and
205  // might as well bail.
206  if (!CPPM->getNext()->isSafeToReorderWithPatternPredicate())
207    return;
208
209  // Okay, we know we can sink it past at least one node.  Unlink it from the
210  // chain and scan for the new insertion point.
211  MatcherPtr.take();  // Don't delete CPPM.
212  MatcherPtr.reset(CPPM->takeNext());
213
214  N = MatcherPtr.get();
215  while (N->getNext()->isSafeToReorderWithPatternPredicate())
216    N = N->getNext();
217
218  // At this point, we want to insert CPPM after N.
219  CPPM->setNext(N->takeNext());
220  N->setNext(CPPM);
221}
222
223/// FactorNodes - Turn matches like this:
224///   Scope
225///     OPC_CheckType i32
226///       ABC
227///     OPC_CheckType i32
228///       XYZ
229/// into:
230///   OPC_CheckType i32
231///     Scope
232///       ABC
233///       XYZ
234///
235static void FactorNodes(OwningPtr<Matcher> &MatcherPtr) {
236  // If we reached the end of the chain, we're done.
237  Matcher *N = MatcherPtr.get();
238  if (N == 0) return;
239
240  // If this is not a push node, just scan for one.
241  ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N);
242  if (Scope == 0)
243    return FactorNodes(N->getNextPtr());
244
245  // Okay, pull together the children of the scope node into a vector so we can
246  // inspect it more easily.  While we're at it, bucket them up by the hash
247  // code of their first predicate.
248  SmallVector<Matcher*, 32> OptionsToMatch;
249
250  for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
251    // Factor the subexpression.
252    OwningPtr<Matcher> Child(Scope->takeChild(i));
253    FactorNodes(Child);
254
255    if (Matcher *N = Child.take())
256      OptionsToMatch.push_back(N);
257  }
258
259  SmallVector<Matcher*, 32> NewOptionsToMatch;
260
261  // Loop over options to match, merging neighboring patterns with identical
262  // starting nodes into a shared matcher.
263  for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) {
264    // Find the set of matchers that start with this node.
265    Matcher *Optn = OptionsToMatch[OptionIdx++];
266
267    if (OptionIdx == e) {
268      NewOptionsToMatch.push_back(Optn);
269      continue;
270    }
271
272    // See if the next option starts with the same matcher.  If the two
273    // neighbors *do* start with the same matcher, we can factor the matcher out
274    // of at least these two patterns.  See what the maximal set we can merge
275    // together is.
276    SmallVector<Matcher*, 8> EqualMatchers;
277    EqualMatchers.push_back(Optn);
278
279    // Factor all of the known-equal matchers after this one into the same
280    // group.
281    while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn))
282      EqualMatchers.push_back(OptionsToMatch[OptionIdx++]);
283
284    // If we found a non-equal matcher, see if it is contradictory with the
285    // current node.  If so, we know that the ordering relation between the
286    // current sets of nodes and this node don't matter.  Look past it to see if
287    // we can merge anything else into this matching group.
288    unsigned Scan = OptionIdx;
289    while (1) {
290      while (Scan != e && Optn->isContradictory(OptionsToMatch[Scan]))
291        ++Scan;
292
293      // Ok, we found something that isn't known to be contradictory.  If it is
294      // equal, we can merge it into the set of nodes to factor, if not, we have
295      // to cease factoring.
296      if (Scan == e || !Optn->isEqual(OptionsToMatch[Scan])) break;
297
298      // If is equal after all, add the option to EqualMatchers and remove it
299      // from OptionsToMatch.
300      EqualMatchers.push_back(OptionsToMatch[Scan]);
301      OptionsToMatch.erase(OptionsToMatch.begin()+Scan);
302      --e;
303    }
304
305    if (Scan != e &&
306        // Don't print it's obvious nothing extra could be merged anyway.
307        Scan+1 != e) {
308      DEBUG(errs() << "Couldn't merge this:\n";
309            Optn->print(errs(), 4);
310            errs() << "into this:\n";
311            OptionsToMatch[Scan]->print(errs(), 4);
312            if (Scan+1 != e)
313              OptionsToMatch[Scan+1]->printOne(errs());
314            if (Scan+2 < e)
315              OptionsToMatch[Scan+2]->printOne(errs());
316            errs() << "\n");
317    }
318
319    // If we only found one option starting with this matcher, no factoring is
320    // possible.
321    if (EqualMatchers.size() == 1) {
322      NewOptionsToMatch.push_back(EqualMatchers[0]);
323      continue;
324    }
325
326    // Factor these checks by pulling the first node off each entry and
327    // discarding it.  Take the first one off the first entry to reuse.
328    Matcher *Shared = Optn;
329    Optn = Optn->takeNext();
330    EqualMatchers[0] = Optn;
331
332    // Remove and delete the first node from the other matchers we're factoring.
333    for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
334      Matcher *Tmp = EqualMatchers[i]->takeNext();
335      delete EqualMatchers[i];
336      EqualMatchers[i] = Tmp;
337    }
338
339    Shared->setNext(new ScopeMatcher(&EqualMatchers[0], EqualMatchers.size()));
340
341    // Recursively factor the newly created node.
342    FactorNodes(Shared->getNextPtr());
343
344    NewOptionsToMatch.push_back(Shared);
345  }
346
347  // If we're down to a single pattern to match, then we don't need this scope
348  // anymore.
349  if (NewOptionsToMatch.size() == 1) {
350    MatcherPtr.reset(NewOptionsToMatch[0]);
351    return;
352  }
353
354  if (NewOptionsToMatch.empty()) {
355    MatcherPtr.reset(0);
356    return;
357  }
358
359  // If our factoring failed (didn't achieve anything) see if we can simplify in
360  // other ways.
361
362  // Check to see if all of the leading entries are now opcode checks.  If so,
363  // we can convert this Scope to be a OpcodeSwitch instead.
364  bool AllOpcodeChecks = true, AllTypeChecks = true;
365  for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
366    if (!isa<CheckOpcodeMatcher>(NewOptionsToMatch[i])) {
367#if 0
368      if (i > 3 && AllOpcodeChecks) {
369        errs() << "FAILING OPC #" << i << "\n";
370        NewOptionsToMatch[i]->dump();
371      }
372#endif
373      AllOpcodeChecks = false;
374    }
375
376    if (!isa<CheckTypeMatcher>(NewOptionsToMatch[i]) ||
377        // iPTR checks could alias any other case without us knowing, don't
378        // bother with them.
379        cast<CheckTypeMatcher>(NewOptionsToMatch[i])->getType() == MVT::iPTR) {
380#if 0
381      if (i > 3 && AllTypeChecks) {
382        errs() << "FAILING TYPE #" << i << "\n";
383        NewOptionsToMatch[i]->dump();
384      }
385#endif
386      AllTypeChecks = false;
387    }
388  }
389  // TODO: Can also do CheckChildNType.
390
391  // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot.
392  if (AllOpcodeChecks) {
393    StringSet<> Opcodes;
394    SmallVector<std::pair<const SDNodeInfo*, Matcher*>, 8> Cases;
395    for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
396      CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(NewOptionsToMatch[i]);
397      assert(Opcodes.insert(COM->getOpcode().getEnumName()) &&
398             "Duplicate opcodes not factored?");
399      Cases.push_back(std::make_pair(&COM->getOpcode(), COM->getNext()));
400    }
401
402    MatcherPtr.reset(new SwitchOpcodeMatcher(&Cases[0], Cases.size()));
403    return;
404  }
405
406  // If all the options are CheckType's, we can form the SwitchType, woot.
407  if (AllTypeChecks) {
408    DenseSet<unsigned> Types;
409    SmallVector<std::pair<MVT::SimpleValueType, Matcher*>, 8> Cases;
410    for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
411      CheckTypeMatcher *CTM = cast<CheckTypeMatcher>(NewOptionsToMatch[i]);
412      assert(Types.insert(CTM->getType()).second &&
413             "Duplicate types not factored?");
414      Cases.push_back(std::make_pair(CTM->getType(), CTM->getNext()));
415    }
416
417    MatcherPtr.reset(new SwitchTypeMatcher(&Cases[0], Cases.size()));
418    return;
419  }
420
421
422  // Reassemble the Scope node with the adjusted children.
423  Scope->setNumChildren(NewOptionsToMatch.size());
424  for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i)
425    Scope->resetChild(i, NewOptionsToMatch[i]);
426}
427
428Matcher *llvm::OptimizeMatcher(Matcher *TheMatcher,
429                               const CodeGenDAGPatterns &CGP) {
430  OwningPtr<Matcher> MatcherPtr(TheMatcher);
431  ContractNodes(MatcherPtr, CGP);
432  SinkPatternPredicates(MatcherPtr);
433  FactorNodes(MatcherPtr);
434  return MatcherPtr.take();
435}
436