DAGISelMatcherGen.cpp revision 276479
1//===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "DAGISelMatcher.h"
11#include "CodeGenDAGPatterns.h"
12#include "CodeGenRegisters.h"
13#include "llvm/ADT/DenseMap.h"
14#include "llvm/ADT/SmallVector.h"
15#include "llvm/ADT/StringMap.h"
16#include "llvm/TableGen/Error.h"
17#include "llvm/TableGen/Record.h"
18#include <utility>
19using namespace llvm;
20
21
22/// getRegisterValueType - Look up and return the ValueType of the specified
23/// register. If the register is a member of multiple register classes which
24/// have different associated types, return MVT::Other.
25static MVT::SimpleValueType getRegisterValueType(Record *R,
26                                                 const CodeGenTarget &T) {
27  bool FoundRC = false;
28  MVT::SimpleValueType VT = MVT::Other;
29  const CodeGenRegister *Reg = T.getRegBank().getReg(R);
30  ArrayRef<CodeGenRegisterClass*> RCs = T.getRegBank().getRegClasses();
31
32  for (unsigned rc = 0, e = RCs.size(); rc != e; ++rc) {
33    const CodeGenRegisterClass &RC = *RCs[rc];
34    if (!RC.contains(Reg))
35      continue;
36
37    if (!FoundRC) {
38      FoundRC = true;
39      VT = RC.getValueTypeNum(0);
40      continue;
41    }
42
43    // If this occurs in multiple register classes, they all have to agree.
44    assert(VT == RC.getValueTypeNum(0));
45  }
46  return VT;
47}
48
49
50namespace {
51  class MatcherGen {
52    const PatternToMatch &Pattern;
53    const CodeGenDAGPatterns &CGP;
54
55    /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
56    /// out with all of the types removed.  This allows us to insert type checks
57    /// as we scan the tree.
58    TreePatternNode *PatWithNoTypes;
59
60    /// VariableMap - A map from variable names ('$dst') to the recorded operand
61    /// number that they were captured as.  These are biased by 1 to make
62    /// insertion easier.
63    StringMap<unsigned> VariableMap;
64
65    /// This maintains the recorded operand number that OPC_CheckComplexPattern
66    /// drops each sub-operand into. We don't want to insert these into
67    /// VariableMap because that leads to identity checking if they are
68    /// encountered multiple times. Biased by 1 like VariableMap for
69    /// consistency.
70    StringMap<unsigned> NamedComplexPatternOperands;
71
72    /// NextRecordedOperandNo - As we emit opcodes to record matched values in
73    /// the RecordedNodes array, this keeps track of which slot will be next to
74    /// record into.
75    unsigned NextRecordedOperandNo;
76
77    /// MatchedChainNodes - This maintains the position in the recorded nodes
78    /// array of all of the recorded input nodes that have chains.
79    SmallVector<unsigned, 2> MatchedChainNodes;
80
81    /// MatchedGlueResultNodes - This maintains the position in the recorded
82    /// nodes array of all of the recorded input nodes that have glue results.
83    SmallVector<unsigned, 2> MatchedGlueResultNodes;
84
85    /// MatchedComplexPatterns - This maintains a list of all of the
86    /// ComplexPatterns that we need to check. The second element of each pair
87    /// is the recorded operand number of the input node.
88    SmallVector<std::pair<const TreePatternNode*,
89                          unsigned>, 2> MatchedComplexPatterns;
90
91    /// PhysRegInputs - List list has an entry for each explicitly specified
92    /// physreg input to the pattern.  The first elt is the Register node, the
93    /// second is the recorded slot number the input pattern match saved it in.
94    SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
95
96    /// Matcher - This is the top level of the generated matcher, the result.
97    Matcher *TheMatcher;
98
99    /// CurPredicate - As we emit matcher nodes, this points to the latest check
100    /// which should have future checks stuck into its Next position.
101    Matcher *CurPredicate;
102  public:
103    MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
104
105    ~MatcherGen() {
106      delete PatWithNoTypes;
107    }
108
109    bool EmitMatcherCode(unsigned Variant);
110    void EmitResultCode();
111
112    Matcher *GetMatcher() const { return TheMatcher; }
113  private:
114    void AddMatcher(Matcher *NewNode);
115    void InferPossibleTypes();
116
117    // Matcher Generation.
118    void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes);
119    void EmitLeafMatchCode(const TreePatternNode *N);
120    void EmitOperatorMatchCode(const TreePatternNode *N,
121                               TreePatternNode *NodeNoTypes);
122
123    /// If this is the first time a node with unique identifier Name has been
124    /// seen, record it. Otherwise, emit a check to make sure this is the same
125    /// node. Returns true if this is the first encounter.
126    bool recordUniqueNode(std::string Name);
127
128    // Result Code Generation.
129    unsigned getNamedArgumentSlot(StringRef Name) {
130      unsigned VarMapEntry = VariableMap[Name];
131      assert(VarMapEntry != 0 &&
132             "Variable referenced but not defined and not caught earlier!");
133      return VarMapEntry-1;
134    }
135
136    /// GetInstPatternNode - Get the pattern for an instruction.
137    const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins,
138                                              const TreePatternNode *N);
139
140    void EmitResultOperand(const TreePatternNode *N,
141                           SmallVectorImpl<unsigned> &ResultOps);
142    void EmitResultOfNamedOperand(const TreePatternNode *N,
143                                  SmallVectorImpl<unsigned> &ResultOps);
144    void EmitResultLeafAsOperand(const TreePatternNode *N,
145                                 SmallVectorImpl<unsigned> &ResultOps);
146    void EmitResultInstructionAsOperand(const TreePatternNode *N,
147                                        SmallVectorImpl<unsigned> &ResultOps);
148    void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
149                                        SmallVectorImpl<unsigned> &ResultOps);
150    };
151
152} // end anon namespace.
153
154MatcherGen::MatcherGen(const PatternToMatch &pattern,
155                       const CodeGenDAGPatterns &cgp)
156: Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
157  TheMatcher(nullptr), CurPredicate(nullptr) {
158  // We need to produce the matcher tree for the patterns source pattern.  To do
159  // this we need to match the structure as well as the types.  To do the type
160  // matching, we want to figure out the fewest number of type checks we need to
161  // emit.  For example, if there is only one integer type supported by a
162  // target, there should be no type comparisons at all for integer patterns!
163  //
164  // To figure out the fewest number of type checks needed, clone the pattern,
165  // remove the types, then perform type inference on the pattern as a whole.
166  // If there are unresolved types, emit an explicit check for those types,
167  // apply the type to the tree, then rerun type inference.  Iterate until all
168  // types are resolved.
169  //
170  PatWithNoTypes = Pattern.getSrcPattern()->clone();
171  PatWithNoTypes->RemoveAllTypes();
172
173  // If there are types that are manifestly known, infer them.
174  InferPossibleTypes();
175}
176
177/// InferPossibleTypes - As we emit the pattern, we end up generating type
178/// checks and applying them to the 'PatWithNoTypes' tree.  As we do this, we
179/// want to propagate implied types as far throughout the tree as possible so
180/// that we avoid doing redundant type checks.  This does the type propagation.
181void MatcherGen::InferPossibleTypes() {
182  // TP - Get *SOME* tree pattern, we don't care which.  It is only used for
183  // diagnostics, which we know are impossible at this point.
184  TreePattern &TP = *CGP.pf_begin()->second;
185
186  bool MadeChange = true;
187  while (MadeChange)
188    MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
189                                              true/*Ignore reg constraints*/);
190}
191
192
193/// AddMatcher - Add a matcher node to the current graph we're building.
194void MatcherGen::AddMatcher(Matcher *NewNode) {
195  if (CurPredicate)
196    CurPredicate->setNext(NewNode);
197  else
198    TheMatcher = NewNode;
199  CurPredicate = NewNode;
200}
201
202
203//===----------------------------------------------------------------------===//
204// Pattern Match Generation
205//===----------------------------------------------------------------------===//
206
207/// EmitLeafMatchCode - Generate matching code for leaf nodes.
208void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
209  assert(N->isLeaf() && "Not a leaf?");
210
211  // Direct match against an integer constant.
212  if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
213    // If this is the root of the dag we're matching, we emit a redundant opcode
214    // check to ensure that this gets folded into the normal top-level
215    // OpcodeSwitch.
216    if (N == Pattern.getSrcPattern()) {
217      const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
218      AddMatcher(new CheckOpcodeMatcher(NI));
219    }
220
221    return AddMatcher(new CheckIntegerMatcher(II->getValue()));
222  }
223
224  // An UnsetInit represents a named node without any constraints.
225  if (N->getLeafValue() == UnsetInit::get()) {
226    assert(N->hasName() && "Unnamed ? leaf");
227    return;
228  }
229
230  DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
231  if (!DI) {
232    errs() << "Unknown leaf kind: " << *N << "\n";
233    abort();
234  }
235
236  Record *LeafRec = DI->getDef();
237
238  // A ValueType leaf node can represent a register when named, or itself when
239  // unnamed.
240  if (LeafRec->isSubClassOf("ValueType")) {
241    // A named ValueType leaf always matches: (add i32:$a, i32:$b).
242    if (N->hasName())
243      return;
244    // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
245    return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
246  }
247
248  if (// Handle register references.  Nothing to do here, they always match.
249      LeafRec->isSubClassOf("RegisterClass") ||
250      LeafRec->isSubClassOf("RegisterOperand") ||
251      LeafRec->isSubClassOf("PointerLikeRegClass") ||
252      LeafRec->isSubClassOf("SubRegIndex") ||
253      // Place holder for SRCVALUE nodes. Nothing to do here.
254      LeafRec->getName() == "srcvalue")
255    return;
256
257  // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
258  // record the register
259  if (LeafRec->isSubClassOf("Register")) {
260    AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(),
261                                 NextRecordedOperandNo));
262    PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
263    return;
264  }
265
266  if (LeafRec->isSubClassOf("CondCode"))
267    return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
268
269  if (LeafRec->isSubClassOf("ComplexPattern")) {
270    // We can't model ComplexPattern uses that don't have their name taken yet.
271    // The OPC_CheckComplexPattern operation implicitly records the results.
272    if (N->getName().empty()) {
273      errs() << "We expect complex pattern uses to have names: " << *N << "\n";
274      exit(1);
275    }
276
277    // Remember this ComplexPattern so that we can emit it after all the other
278    // structural matches are done.
279    unsigned InputOperand = VariableMap[N->getName()] - 1;
280    MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand));
281    return;
282  }
283
284  errs() << "Unknown leaf kind: " << *N << "\n";
285  abort();
286}
287
288void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
289                                       TreePatternNode *NodeNoTypes) {
290  assert(!N->isLeaf() && "Not an operator?");
291
292  if (N->getOperator()->isSubClassOf("ComplexPattern")) {
293    // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
294    // "MY_PAT:op1:op2". We should already have validated that the uses are
295    // consistent.
296    std::string PatternName = N->getOperator()->getName();
297    for (unsigned i = 0; i < N->getNumChildren(); ++i) {
298      PatternName += ":";
299      PatternName += N->getChild(i)->getName();
300    }
301
302    if (recordUniqueNode(PatternName)) {
303      auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1);
304      MatchedComplexPatterns.push_back(NodeAndOpNum);
305    }
306
307    return;
308  }
309
310  const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
311
312  // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
313  // a constant without a predicate fn that has more that one bit set, handle
314  // this as a special case.  This is usually for targets that have special
315  // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
316  // handling stuff).  Using these instructions is often far more efficient
317  // than materializing the constant.  Unfortunately, both the instcombiner
318  // and the dag combiner can often infer that bits are dead, and thus drop
319  // them from the mask in the dag.  For example, it might turn 'AND X, 255'
320  // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks
321  // to handle this.
322  if ((N->getOperator()->getName() == "and" ||
323       N->getOperator()->getName() == "or") &&
324      N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() &&
325      N->getPredicateFns().empty()) {
326    if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) {
327      if (!isPowerOf2_32(II->getValue())) {  // Don't bother with single bits.
328        // If this is at the root of the pattern, we emit a redundant
329        // CheckOpcode so that the following checks get factored properly under
330        // a single opcode check.
331        if (N == Pattern.getSrcPattern())
332          AddMatcher(new CheckOpcodeMatcher(CInfo));
333
334        // Emit the CheckAndImm/CheckOrImm node.
335        if (N->getOperator()->getName() == "and")
336          AddMatcher(new CheckAndImmMatcher(II->getValue()));
337        else
338          AddMatcher(new CheckOrImmMatcher(II->getValue()));
339
340        // Match the LHS of the AND as appropriate.
341        AddMatcher(new MoveChildMatcher(0));
342        EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0));
343        AddMatcher(new MoveParentMatcher());
344        return;
345      }
346    }
347  }
348
349  // Check that the current opcode lines up.
350  AddMatcher(new CheckOpcodeMatcher(CInfo));
351
352  // If this node has memory references (i.e. is a load or store), tell the
353  // interpreter to capture them in the memref array.
354  if (N->NodeHasProperty(SDNPMemOperand, CGP))
355    AddMatcher(new RecordMemRefMatcher());
356
357  // If this node has a chain, then the chain is operand #0 is the SDNode, and
358  // the child numbers of the node are all offset by one.
359  unsigned OpNo = 0;
360  if (N->NodeHasProperty(SDNPHasChain, CGP)) {
361    // Record the node and remember it in our chained nodes list.
362    AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
363                                         "' chained node",
364                                 NextRecordedOperandNo));
365    // Remember all of the input chains our pattern will match.
366    MatchedChainNodes.push_back(NextRecordedOperandNo++);
367
368    // Don't look at the input chain when matching the tree pattern to the
369    // SDNode.
370    OpNo = 1;
371
372    // If this node is not the root and the subtree underneath it produces a
373    // chain, then the result of matching the node is also produce a chain.
374    // Beyond that, this means that we're also folding (at least) the root node
375    // into the node that produce the chain (for example, matching
376    // "(add reg, (load ptr))" as a add_with_memory on X86).  This is
377    // problematic, if the 'reg' node also uses the load (say, its chain).
378    // Graphically:
379    //
380    //         [LD]
381    //         ^  ^
382    //         |  \                              DAG's like cheese.
383    //        /    |
384    //       /    [YY]
385    //       |     ^
386    //      [XX]--/
387    //
388    // It would be invalid to fold XX and LD.  In this case, folding the two
389    // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
390    // To prevent this, we emit a dynamic check for legality before allowing
391    // this to be folded.
392    //
393    const TreePatternNode *Root = Pattern.getSrcPattern();
394    if (N != Root) {                             // Not the root of the pattern.
395      // If there is a node between the root and this node, then we definitely
396      // need to emit the check.
397      bool NeedCheck = !Root->hasChild(N);
398
399      // If it *is* an immediate child of the root, we can still need a check if
400      // the root SDNode has multiple inputs.  For us, this means that it is an
401      // intrinsic, has multiple operands, or has other inputs like chain or
402      // glue).
403      if (!NeedCheck) {
404        const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
405        NeedCheck =
406          Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
407          Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
408          Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
409          PInfo.getNumOperands() > 1 ||
410          PInfo.hasProperty(SDNPHasChain) ||
411          PInfo.hasProperty(SDNPInGlue) ||
412          PInfo.hasProperty(SDNPOptInGlue);
413      }
414
415      if (NeedCheck)
416        AddMatcher(new CheckFoldableChainNodeMatcher());
417    }
418  }
419
420  // If this node has an output glue and isn't the root, remember it.
421  if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
422      N != Pattern.getSrcPattern()) {
423    // TODO: This redundantly records nodes with both glues and chains.
424
425    // Record the node and remember it in our chained nodes list.
426    AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
427                                         "' glue output node",
428                                 NextRecordedOperandNo));
429    // Remember all of the nodes with output glue our pattern will match.
430    MatchedGlueResultNodes.push_back(NextRecordedOperandNo++);
431  }
432
433  // If this node is known to have an input glue or if it *might* have an input
434  // glue, capture it as the glue input of the pattern.
435  if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
436      N->NodeHasProperty(SDNPInGlue, CGP))
437    AddMatcher(new CaptureGlueInputMatcher());
438
439  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
440    // Get the code suitable for matching this child.  Move to the child, check
441    // it then move back to the parent.
442    AddMatcher(new MoveChildMatcher(OpNo));
443    EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i));
444    AddMatcher(new MoveParentMatcher());
445  }
446}
447
448bool MatcherGen::recordUniqueNode(std::string Name) {
449  unsigned &VarMapEntry = VariableMap[Name];
450  if (VarMapEntry == 0) {
451    // If it is a named node, we must emit a 'Record' opcode.
452    AddMatcher(new RecordMatcher("$" + Name, NextRecordedOperandNo));
453    VarMapEntry = ++NextRecordedOperandNo;
454    return true;
455  }
456
457  // If we get here, this is a second reference to a specific name.  Since
458  // we already have checked that the first reference is valid, we don't
459  // have to recursively match it, just check that it's the same as the
460  // previously named thing.
461  AddMatcher(new CheckSameMatcher(VarMapEntry-1));
462  return false;
463}
464
465void MatcherGen::EmitMatchCode(const TreePatternNode *N,
466                               TreePatternNode *NodeNoTypes) {
467  // If N and NodeNoTypes don't agree on a type, then this is a case where we
468  // need to do a type check.  Emit the check, apply the type to NodeNoTypes and
469  // reinfer any correlated types.
470  SmallVector<unsigned, 2> ResultsToTypeCheck;
471
472  for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
473    if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
474    NodeNoTypes->setType(i, N->getExtType(i));
475    InferPossibleTypes();
476    ResultsToTypeCheck.push_back(i);
477  }
478
479  // If this node has a name associated with it, capture it in VariableMap. If
480  // we already saw this in the pattern, emit code to verify dagness.
481  if (!N->getName().empty())
482    if (!recordUniqueNode(N->getName()))
483      return;
484
485  if (N->isLeaf())
486    EmitLeafMatchCode(N);
487  else
488    EmitOperatorMatchCode(N, NodeNoTypes);
489
490  // If there are node predicates for this node, generate their checks.
491  for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
492    AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i]));
493
494  for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
495    AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]),
496                                    ResultsToTypeCheck[i]));
497}
498
499/// EmitMatcherCode - Generate the code that matches the predicate of this
500/// pattern for the specified Variant.  If the variant is invalid this returns
501/// true and does not generate code, if it is valid, it returns false.
502bool MatcherGen::EmitMatcherCode(unsigned Variant) {
503  // If the root of the pattern is a ComplexPattern and if it is specified to
504  // match some number of root opcodes, these are considered to be our variants.
505  // Depending on which variant we're generating code for, emit the root opcode
506  // check.
507  if (const ComplexPattern *CP =
508                   Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
509    const std::vector<Record*> &OpNodes = CP->getRootNodes();
510    assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
511    if (Variant >= OpNodes.size()) return true;
512
513    AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
514  } else {
515    if (Variant != 0) return true;
516  }
517
518  // Emit the matcher for the pattern structure and types.
519  EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes);
520
521  // If the pattern has a predicate on it (e.g. only enabled when a subtarget
522  // feature is around, do the check).
523  if (!Pattern.getPredicateCheck().empty())
524    AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
525
526  // Now that we've completed the structural type match, emit any ComplexPattern
527  // checks (e.g. addrmode matches).  We emit this after the structural match
528  // because they are generally more expensive to evaluate and more difficult to
529  // factor.
530  for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
531    const TreePatternNode *N = MatchedComplexPatterns[i].first;
532
533    // Remember where the results of this match get stuck.
534    if (N->isLeaf()) {
535      NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1;
536    } else {
537      unsigned CurOp = NextRecordedOperandNo;
538      for (unsigned i = 0; i < N->getNumChildren(); ++i) {
539        NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1;
540        CurOp += N->getChild(i)->getNumMIResults(CGP);
541      }
542    }
543
544    // Get the slot we recorded the value in from the name on the node.
545    unsigned RecNodeEntry = MatchedComplexPatterns[i].second;
546
547    const ComplexPattern &CP = *N->getComplexPatternInfo(CGP);
548
549    // Emit a CheckComplexPat operation, which does the match (aborting if it
550    // fails) and pushes the matched operands onto the recorded nodes list.
551    AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
552                                          N->getName(), NextRecordedOperandNo));
553
554    // Record the right number of operands.
555    NextRecordedOperandNo += CP.getNumOperands();
556    if (CP.hasProperty(SDNPHasChain)) {
557      // If the complex pattern has a chain, then we need to keep track of the
558      // fact that we just recorded a chain input.  The chain input will be
559      // matched as the last operand of the predicate if it was successful.
560      ++NextRecordedOperandNo; // Chained node operand.
561
562      // It is the last operand recorded.
563      assert(NextRecordedOperandNo > 1 &&
564             "Should have recorded input/result chains at least!");
565      MatchedChainNodes.push_back(NextRecordedOperandNo-1);
566    }
567
568    // TODO: Complex patterns can't have output glues, if they did, we'd want
569    // to record them.
570  }
571
572  return false;
573}
574
575
576//===----------------------------------------------------------------------===//
577// Node Result Generation
578//===----------------------------------------------------------------------===//
579
580void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
581                                          SmallVectorImpl<unsigned> &ResultOps){
582  assert(!N->getName().empty() && "Operand not named!");
583
584  if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) {
585    // Complex operands have already been completely selected, just find the
586    // right slot ant add the arguments directly.
587    for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
588      ResultOps.push_back(SlotNo - 1 + i);
589
590    return;
591  }
592
593  unsigned SlotNo = getNamedArgumentSlot(N->getName());
594
595  // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
596  // version of the immediate so that it doesn't get selected due to some other
597  // node use.
598  if (!N->isLeaf()) {
599    StringRef OperatorName = N->getOperator()->getName();
600    if (OperatorName == "imm" || OperatorName == "fpimm") {
601      AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
602      ResultOps.push_back(NextRecordedOperandNo++);
603      return;
604    }
605  }
606
607  for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
608    ResultOps.push_back(SlotNo + i);
609}
610
611void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
612                                         SmallVectorImpl<unsigned> &ResultOps) {
613  assert(N->isLeaf() && "Must be a leaf");
614
615  if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
616    AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0)));
617    ResultOps.push_back(NextRecordedOperandNo++);
618    return;
619  }
620
621  // If this is an explicit register reference, handle it.
622  if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
623    Record *Def = DI->getDef();
624    if (Def->isSubClassOf("Register")) {
625      const CodeGenRegister *Reg =
626        CGP.getTargetInfo().getRegBank().getReg(Def);
627      AddMatcher(new EmitRegisterMatcher(Reg, N->getType(0)));
628      ResultOps.push_back(NextRecordedOperandNo++);
629      return;
630    }
631
632    if (Def->getName() == "zero_reg") {
633      AddMatcher(new EmitRegisterMatcher(nullptr, N->getType(0)));
634      ResultOps.push_back(NextRecordedOperandNo++);
635      return;
636    }
637
638    // Handle a reference to a register class. This is used
639    // in COPY_TO_SUBREG instructions.
640    if (Def->isSubClassOf("RegisterOperand"))
641      Def = Def->getValueAsDef("RegClass");
642    if (Def->isSubClassOf("RegisterClass")) {
643      std::string Value = getQualifiedName(Def) + "RegClassID";
644      AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
645      ResultOps.push_back(NextRecordedOperandNo++);
646      return;
647    }
648
649    // Handle a subregister index. This is used for INSERT_SUBREG etc.
650    if (Def->isSubClassOf("SubRegIndex")) {
651      std::string Value = getQualifiedName(Def);
652      AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
653      ResultOps.push_back(NextRecordedOperandNo++);
654      return;
655    }
656  }
657
658  errs() << "unhandled leaf node: \n";
659  N->dump();
660}
661
662/// GetInstPatternNode - Get the pattern for an instruction.
663///
664const TreePatternNode *MatcherGen::
665GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) {
666  const TreePattern *InstPat = Inst.getPattern();
667
668  // FIXME2?: Assume actual pattern comes before "implicit".
669  TreePatternNode *InstPatNode;
670  if (InstPat)
671    InstPatNode = InstPat->getTree(0);
672  else if (/*isRoot*/ N == Pattern.getDstPattern())
673    InstPatNode = Pattern.getSrcPattern();
674  else
675    return nullptr;
676
677  if (InstPatNode && !InstPatNode->isLeaf() &&
678      InstPatNode->getOperator()->getName() == "set")
679    InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
680
681  return InstPatNode;
682}
683
684static bool
685mayInstNodeLoadOrStore(const TreePatternNode *N,
686                       const CodeGenDAGPatterns &CGP) {
687  Record *Op = N->getOperator();
688  const CodeGenTarget &CGT = CGP.getTargetInfo();
689  CodeGenInstruction &II = CGT.getInstruction(Op);
690  return II.mayLoad || II.mayStore;
691}
692
693static unsigned
694numNodesThatMayLoadOrStore(const TreePatternNode *N,
695                           const CodeGenDAGPatterns &CGP) {
696  if (N->isLeaf())
697    return 0;
698
699  Record *OpRec = N->getOperator();
700  if (!OpRec->isSubClassOf("Instruction"))
701    return 0;
702
703  unsigned Count = 0;
704  if (mayInstNodeLoadOrStore(N, CGP))
705    ++Count;
706
707  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
708    Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
709
710  return Count;
711}
712
713void MatcherGen::
714EmitResultInstructionAsOperand(const TreePatternNode *N,
715                               SmallVectorImpl<unsigned> &OutputOps) {
716  Record *Op = N->getOperator();
717  const CodeGenTarget &CGT = CGP.getTargetInfo();
718  CodeGenInstruction &II = CGT.getInstruction(Op);
719  const DAGInstruction &Inst = CGP.getInstruction(Op);
720
721  // If we can, get the pattern for the instruction we're generating.  We derive
722  // a variety of information from this pattern, such as whether it has a chain.
723  //
724  // FIXME2: This is extremely dubious for several reasons, not the least of
725  // which it gives special status to instructions with patterns that Pat<>
726  // nodes can't duplicate.
727  const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N);
728
729  // NodeHasChain - Whether the instruction node we're creating takes chains.
730  bool NodeHasChain = InstPatNode &&
731                      InstPatNode->TreeHasProperty(SDNPHasChain, CGP);
732
733  // Instructions which load and store from memory should have a chain,
734  // regardless of whether they happen to have an internal pattern saying so.
735  if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)
736      && (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
737          II.hasSideEffects))
738      NodeHasChain = true;
739
740  bool isRoot = N == Pattern.getDstPattern();
741
742  // TreeHasOutGlue - True if this tree has glue.
743  bool TreeHasInGlue = false, TreeHasOutGlue = false;
744  if (isRoot) {
745    const TreePatternNode *SrcPat = Pattern.getSrcPattern();
746    TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
747                    SrcPat->TreeHasProperty(SDNPInGlue, CGP);
748
749    // FIXME2: this is checking the entire pattern, not just the node in
750    // question, doing this just for the root seems like a total hack.
751    TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
752  }
753
754  // NumResults - This is the number of results produced by the instruction in
755  // the "outs" list.
756  unsigned NumResults = Inst.getNumResults();
757
758  // Loop over all of the operands of the instruction pattern, emitting code
759  // to fill them all in.  The node 'N' usually has number children equal to
760  // the number of input operands of the instruction.  However, in cases
761  // where there are predicate operands for an instruction, we need to fill
762  // in the 'execute always' values.  Match up the node operands to the
763  // instruction operands to do this.
764  SmallVector<unsigned, 8> InstOps;
765  for (unsigned ChildNo = 0, InstOpNo = NumResults, e = II.Operands.size();
766       InstOpNo != e; ++InstOpNo) {
767
768    // Determine what to emit for this operand.
769    Record *OperandNode = II.Operands[InstOpNo].Rec;
770    if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
771        !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
772      // This is a predicate or optional def operand; emit the
773      // 'default ops' operands.
774      const DAGDefaultOperand &DefaultOp
775        = CGP.getDefaultOperand(OperandNode);
776      for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
777        EmitResultOperand(DefaultOp.DefaultOps[i], InstOps);
778      continue;
779    }
780
781    // Otherwise this is a normal operand or a predicate operand without
782    // 'execute always'; emit it.
783
784    // For operands with multiple sub-operands we may need to emit
785    // multiple child patterns to cover them all.  However, ComplexPattern
786    // children may themselves emit multiple MI operands.
787    unsigned NumSubOps = 1;
788    if (OperandNode->isSubClassOf("Operand")) {
789      DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
790      if (unsigned NumArgs = MIOpInfo->getNumArgs())
791        NumSubOps = NumArgs;
792    }
793
794    unsigned FinalNumOps = InstOps.size() + NumSubOps;
795    while (InstOps.size() < FinalNumOps) {
796      const TreePatternNode *Child = N->getChild(ChildNo);
797      unsigned BeforeAddingNumOps = InstOps.size();
798      EmitResultOperand(Child, InstOps);
799      assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
800
801      // If the operand is an instruction and it produced multiple results, just
802      // take the first one.
803      if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
804        InstOps.resize(BeforeAddingNumOps+1);
805
806      ++ChildNo;
807    }
808  }
809
810  // If this node has input glue or explicitly specified input physregs, we
811  // need to add chained and glued copyfromreg nodes and materialize the glue
812  // input.
813  if (isRoot && !PhysRegInputs.empty()) {
814    // Emit all of the CopyToReg nodes for the input physical registers.  These
815    // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
816    for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i)
817      AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
818                                          PhysRegInputs[i].first));
819    // Even if the node has no other glue inputs, the resultant node must be
820    // glued to the CopyFromReg nodes we just generated.
821    TreeHasInGlue = true;
822  }
823
824  // Result order: node results, chain, glue
825
826  // Determine the result types.
827  SmallVector<MVT::SimpleValueType, 4> ResultVTs;
828  for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
829    ResultVTs.push_back(N->getType(i));
830
831  // If this is the root instruction of a pattern that has physical registers in
832  // its result pattern, add output VTs for them.  For example, X86 has:
833  //   (set AL, (mul ...))
834  // This also handles implicit results like:
835  //   (implicit EFLAGS)
836  if (isRoot && !Pattern.getDstRegs().empty()) {
837    // If the root came from an implicit def in the instruction handling stuff,
838    // don't re-add it.
839    Record *HandledReg = nullptr;
840    if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
841      HandledReg = II.ImplicitDefs[0];
842
843    for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
844      Record *Reg = Pattern.getDstRegs()[i];
845      if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
846      ResultVTs.push_back(getRegisterValueType(Reg, CGT));
847    }
848  }
849
850  // If this is the root of the pattern and the pattern we're matching includes
851  // a node that is variadic, mark the generated node as variadic so that it
852  // gets the excess operands from the input DAG.
853  int NumFixedArityOperands = -1;
854  if (isRoot &&
855      (Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP)))
856    NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
857
858  // If this is the root node and multiple matched nodes in the input pattern
859  // have MemRefs in them, have the interpreter collect them and plop them onto
860  // this node. If there is just one node with MemRefs, leave them on that node
861  // even if it is not the root.
862  //
863  // FIXME3: This is actively incorrect for result patterns with multiple
864  // memory-referencing instructions.
865  bool PatternHasMemOperands =
866    Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
867
868  bool NodeHasMemRefs = false;
869  if (PatternHasMemOperands) {
870    unsigned NumNodesThatLoadOrStore =
871      numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
872    bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
873                                   NumNodesThatLoadOrStore == 1;
874    NodeHasMemRefs =
875      NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
876                                             NumNodesThatLoadOrStore != 1));
877  }
878
879  assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
880         "Node has no result");
881
882  AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(),
883                                 ResultVTs, InstOps,
884                                 NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
885                                 NodeHasMemRefs, NumFixedArityOperands,
886                                 NextRecordedOperandNo));
887
888  // The non-chain and non-glue results of the newly emitted node get recorded.
889  for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
890    if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
891    OutputOps.push_back(NextRecordedOperandNo++);
892  }
893}
894
895void MatcherGen::
896EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
897                               SmallVectorImpl<unsigned> &ResultOps) {
898  assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
899
900  // Emit the operand.
901  SmallVector<unsigned, 8> InputOps;
902
903  // FIXME2: Could easily generalize this to support multiple inputs and outputs
904  // to the SDNodeXForm.  For now we just support one input and one output like
905  // the old instruction selector.
906  assert(N->getNumChildren() == 1);
907  EmitResultOperand(N->getChild(0), InputOps);
908
909  // The input currently must have produced exactly one result.
910  assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
911
912  AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
913  ResultOps.push_back(NextRecordedOperandNo++);
914}
915
916void MatcherGen::EmitResultOperand(const TreePatternNode *N,
917                                   SmallVectorImpl<unsigned> &ResultOps) {
918  // This is something selected from the pattern we matched.
919  if (!N->getName().empty())
920    return EmitResultOfNamedOperand(N, ResultOps);
921
922  if (N->isLeaf())
923    return EmitResultLeafAsOperand(N, ResultOps);
924
925  Record *OpRec = N->getOperator();
926  if (OpRec->isSubClassOf("Instruction"))
927    return EmitResultInstructionAsOperand(N, ResultOps);
928  if (OpRec->isSubClassOf("SDNodeXForm"))
929    return EmitResultSDNodeXFormAsOperand(N, ResultOps);
930  errs() << "Unknown result node to emit code for: " << *N << '\n';
931  PrintFatalError("Unknown node in result pattern!");
932}
933
934void MatcherGen::EmitResultCode() {
935  // Patterns that match nodes with (potentially multiple) chain inputs have to
936  // merge them together into a token factor.  This informs the generated code
937  // what all the chained nodes are.
938  if (!MatchedChainNodes.empty())
939    AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes));
940
941  // Codegen the root of the result pattern, capturing the resulting values.
942  SmallVector<unsigned, 8> Ops;
943  EmitResultOperand(Pattern.getDstPattern(), Ops);
944
945  // At this point, we have however many values the result pattern produces.
946  // However, the input pattern might not need all of these.  If there are
947  // excess values at the end (such as implicit defs of condition codes etc)
948  // just lop them off.  This doesn't need to worry about glue or chains, just
949  // explicit results.
950  //
951  unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
952
953  // If the pattern also has (implicit) results, count them as well.
954  if (!Pattern.getDstRegs().empty()) {
955    // If the root came from an implicit def in the instruction handling stuff,
956    // don't re-add it.
957    Record *HandledReg = nullptr;
958    const TreePatternNode *DstPat = Pattern.getDstPattern();
959    if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
960      const CodeGenTarget &CGT = CGP.getTargetInfo();
961      CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
962
963      if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
964        HandledReg = II.ImplicitDefs[0];
965    }
966
967    for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
968      Record *Reg = Pattern.getDstRegs()[i];
969      if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
970      ++NumSrcResults;
971    }
972  }
973
974  assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");
975  Ops.resize(NumSrcResults);
976
977  // If the matched pattern covers nodes which define a glue result, emit a node
978  // that tells the matcher about them so that it can update their results.
979  if (!MatchedGlueResultNodes.empty())
980    AddMatcher(new MarkGlueResultsMatcher(MatchedGlueResultNodes));
981
982  AddMatcher(new CompleteMatchMatcher(Ops, Pattern));
983}
984
985
986/// ConvertPatternToMatcher - Create the matcher for the specified pattern with
987/// the specified variant.  If the variant number is invalid, this returns null.
988Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
989                                       unsigned Variant,
990                                       const CodeGenDAGPatterns &CGP) {
991  MatcherGen Gen(Pattern, CGP);
992
993  // Generate the code for the matcher.
994  if (Gen.EmitMatcherCode(Variant))
995    return nullptr;
996
997  // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
998  // FIXME2: Split result code out to another table, and make the matcher end
999  // with an "Emit <index>" command.  This allows result generation stuff to be
1000  // shared and factored?
1001
1002  // If the match succeeds, then we generate Pattern.
1003  Gen.EmitResultCode();
1004
1005  // Unconditional match.
1006  return Gen.GetMatcher();
1007}
1008