DAGISelMatcherGen.cpp revision 212904
1//===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "DAGISelMatcher.h"
11#include "CodeGenDAGPatterns.h"
12#include "Record.h"
13#include "llvm/ADT/SmallVector.h"
14#include "llvm/ADT/StringMap.h"
15#include <utility>
16using namespace llvm;
17
18
19/// getRegisterValueType - Look up and return the ValueType of the specified
20/// register. If the register is a member of multiple register classes which
21/// have different associated types, return MVT::Other.
22static MVT::SimpleValueType getRegisterValueType(Record *R,
23                                                 const CodeGenTarget &T) {
24  bool FoundRC = false;
25  MVT::SimpleValueType VT = MVT::Other;
26  const std::vector<CodeGenRegisterClass> &RCs = T.getRegisterClasses();
27  std::vector<Record*>::const_iterator Element;
28
29  for (unsigned rc = 0, e = RCs.size(); rc != e; ++rc) {
30    const CodeGenRegisterClass &RC = RCs[rc];
31    if (!std::count(RC.Elements.begin(), RC.Elements.end(), R))
32      continue;
33
34    if (!FoundRC) {
35      FoundRC = true;
36      VT = RC.getValueTypeNum(0);
37      continue;
38    }
39
40    // If this occurs in multiple register classes, they all have to agree.
41    assert(VT == RC.getValueTypeNum(0));
42  }
43  return VT;
44}
45
46
47namespace {
48  class MatcherGen {
49    const PatternToMatch &Pattern;
50    const CodeGenDAGPatterns &CGP;
51
52    /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
53    /// out with all of the types removed.  This allows us to insert type checks
54    /// as we scan the tree.
55    TreePatternNode *PatWithNoTypes;
56
57    /// VariableMap - A map from variable names ('$dst') to the recorded operand
58    /// number that they were captured as.  These are biased by 1 to make
59    /// insertion easier.
60    StringMap<unsigned> VariableMap;
61
62    /// NextRecordedOperandNo - As we emit opcodes to record matched values in
63    /// the RecordedNodes array, this keeps track of which slot will be next to
64    /// record into.
65    unsigned NextRecordedOperandNo;
66
67    /// MatchedChainNodes - This maintains the position in the recorded nodes
68    /// array of all of the recorded input nodes that have chains.
69    SmallVector<unsigned, 2> MatchedChainNodes;
70
71    /// MatchedFlagResultNodes - This maintains the position in the recorded
72    /// nodes array of all of the recorded input nodes that have flag results.
73    SmallVector<unsigned, 2> MatchedFlagResultNodes;
74
75    /// MatchedComplexPatterns - This maintains a list of all of the
76    /// ComplexPatterns that we need to check.  The patterns are known to have
77    /// names which were recorded.  The second element of each pair is the first
78    /// slot number that the OPC_CheckComplexPat opcode drops the matched
79    /// results into.
80    SmallVector<std::pair<const TreePatternNode*,
81                          unsigned>, 2> MatchedComplexPatterns;
82
83    /// PhysRegInputs - List list has an entry for each explicitly specified
84    /// physreg input to the pattern.  The first elt is the Register node, the
85    /// second is the recorded slot number the input pattern match saved it in.
86    SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
87
88    /// Matcher - This is the top level of the generated matcher, the result.
89    Matcher *TheMatcher;
90
91    /// CurPredicate - As we emit matcher nodes, this points to the latest check
92    /// which should have future checks stuck into its Next position.
93    Matcher *CurPredicate;
94  public:
95    MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
96
97    ~MatcherGen() {
98      delete PatWithNoTypes;
99    }
100
101    bool EmitMatcherCode(unsigned Variant);
102    void EmitResultCode();
103
104    Matcher *GetMatcher() const { return TheMatcher; }
105    Matcher *GetCurPredicate() const { return CurPredicate; }
106  private:
107    void AddMatcher(Matcher *NewNode);
108    void InferPossibleTypes();
109
110    // Matcher Generation.
111    void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes);
112    void EmitLeafMatchCode(const TreePatternNode *N);
113    void EmitOperatorMatchCode(const TreePatternNode *N,
114                               TreePatternNode *NodeNoTypes);
115
116    // Result Code Generation.
117    unsigned getNamedArgumentSlot(StringRef Name) {
118      unsigned VarMapEntry = VariableMap[Name];
119      assert(VarMapEntry != 0 &&
120             "Variable referenced but not defined and not caught earlier!");
121      return VarMapEntry-1;
122    }
123
124    /// GetInstPatternNode - Get the pattern for an instruction.
125    const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins,
126                                              const TreePatternNode *N);
127
128    void EmitResultOperand(const TreePatternNode *N,
129                           SmallVectorImpl<unsigned> &ResultOps);
130    void EmitResultOfNamedOperand(const TreePatternNode *N,
131                                  SmallVectorImpl<unsigned> &ResultOps);
132    void EmitResultLeafAsOperand(const TreePatternNode *N,
133                                 SmallVectorImpl<unsigned> &ResultOps);
134    void EmitResultInstructionAsOperand(const TreePatternNode *N,
135                                        SmallVectorImpl<unsigned> &ResultOps);
136    void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
137                                        SmallVectorImpl<unsigned> &ResultOps);
138    };
139
140} // end anon namespace.
141
142MatcherGen::MatcherGen(const PatternToMatch &pattern,
143                       const CodeGenDAGPatterns &cgp)
144: Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
145  TheMatcher(0), CurPredicate(0) {
146  // We need to produce the matcher tree for the patterns source pattern.  To do
147  // this we need to match the structure as well as the types.  To do the type
148  // matching, we want to figure out the fewest number of type checks we need to
149  // emit.  For example, if there is only one integer type supported by a
150  // target, there should be no type comparisons at all for integer patterns!
151  //
152  // To figure out the fewest number of type checks needed, clone the pattern,
153  // remove the types, then perform type inference on the pattern as a whole.
154  // If there are unresolved types, emit an explicit check for those types,
155  // apply the type to the tree, then rerun type inference.  Iterate until all
156  // types are resolved.
157  //
158  PatWithNoTypes = Pattern.getSrcPattern()->clone();
159  PatWithNoTypes->RemoveAllTypes();
160
161  // If there are types that are manifestly known, infer them.
162  InferPossibleTypes();
163}
164
165/// InferPossibleTypes - As we emit the pattern, we end up generating type
166/// checks and applying them to the 'PatWithNoTypes' tree.  As we do this, we
167/// want to propagate implied types as far throughout the tree as possible so
168/// that we avoid doing redundant type checks.  This does the type propagation.
169void MatcherGen::InferPossibleTypes() {
170  // TP - Get *SOME* tree pattern, we don't care which.  It is only used for
171  // diagnostics, which we know are impossible at this point.
172  TreePattern &TP = *CGP.pf_begin()->second;
173
174  try {
175    bool MadeChange = true;
176    while (MadeChange)
177      MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
178                                                true/*Ignore reg constraints*/);
179  } catch (...) {
180    errs() << "Type constraint application shouldn't fail!";
181    abort();
182  }
183}
184
185
186/// AddMatcher - Add a matcher node to the current graph we're building.
187void MatcherGen::AddMatcher(Matcher *NewNode) {
188  if (CurPredicate != 0)
189    CurPredicate->setNext(NewNode);
190  else
191    TheMatcher = NewNode;
192  CurPredicate = NewNode;
193}
194
195
196//===----------------------------------------------------------------------===//
197// Pattern Match Generation
198//===----------------------------------------------------------------------===//
199
200/// EmitLeafMatchCode - Generate matching code for leaf nodes.
201void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
202  assert(N->isLeaf() && "Not a leaf?");
203
204  // Direct match against an integer constant.
205  if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
206    // If this is the root of the dag we're matching, we emit a redundant opcode
207    // check to ensure that this gets folded into the normal top-level
208    // OpcodeSwitch.
209    if (N == Pattern.getSrcPattern()) {
210      const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
211      AddMatcher(new CheckOpcodeMatcher(NI));
212    }
213
214    return AddMatcher(new CheckIntegerMatcher(II->getValue()));
215  }
216
217  DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue());
218  if (DI == 0) {
219    errs() << "Unknown leaf kind: " << *DI << "\n";
220    abort();
221  }
222
223  Record *LeafRec = DI->getDef();
224  if (// Handle register references.  Nothing to do here, they always match.
225      LeafRec->isSubClassOf("RegisterClass") ||
226      LeafRec->isSubClassOf("PointerLikeRegClass") ||
227      LeafRec->isSubClassOf("SubRegIndex") ||
228      // Place holder for SRCVALUE nodes. Nothing to do here.
229      LeafRec->getName() == "srcvalue")
230    return;
231
232  // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
233  // record the register
234  if (LeafRec->isSubClassOf("Register")) {
235    AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(),
236                                 NextRecordedOperandNo));
237    PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
238    return;
239  }
240
241  if (LeafRec->isSubClassOf("ValueType"))
242    return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
243
244  if (LeafRec->isSubClassOf("CondCode"))
245    return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
246
247  if (LeafRec->isSubClassOf("ComplexPattern")) {
248    // We can't model ComplexPattern uses that don't have their name taken yet.
249    // The OPC_CheckComplexPattern operation implicitly records the results.
250    if (N->getName().empty()) {
251      errs() << "We expect complex pattern uses to have names: " << *N << "\n";
252      exit(1);
253    }
254
255    // Remember this ComplexPattern so that we can emit it after all the other
256    // structural matches are done.
257    MatchedComplexPatterns.push_back(std::make_pair(N, 0));
258    return;
259  }
260
261  errs() << "Unknown leaf kind: " << *N << "\n";
262  abort();
263}
264
265void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
266                                       TreePatternNode *NodeNoTypes) {
267  assert(!N->isLeaf() && "Not an operator?");
268  const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
269
270  // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
271  // a constant without a predicate fn that has more that one bit set, handle
272  // this as a special case.  This is usually for targets that have special
273  // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
274  // handling stuff).  Using these instructions is often far more efficient
275  // than materializing the constant.  Unfortunately, both the instcombiner
276  // and the dag combiner can often infer that bits are dead, and thus drop
277  // them from the mask in the dag.  For example, it might turn 'AND X, 255'
278  // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks
279  // to handle this.
280  if ((N->getOperator()->getName() == "and" ||
281       N->getOperator()->getName() == "or") &&
282      N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() &&
283      N->getPredicateFns().empty()) {
284    if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) {
285      if (!isPowerOf2_32(II->getValue())) {  // Don't bother with single bits.
286        // If this is at the root of the pattern, we emit a redundant
287        // CheckOpcode so that the following checks get factored properly under
288        // a single opcode check.
289        if (N == Pattern.getSrcPattern())
290          AddMatcher(new CheckOpcodeMatcher(CInfo));
291
292        // Emit the CheckAndImm/CheckOrImm node.
293        if (N->getOperator()->getName() == "and")
294          AddMatcher(new CheckAndImmMatcher(II->getValue()));
295        else
296          AddMatcher(new CheckOrImmMatcher(II->getValue()));
297
298        // Match the LHS of the AND as appropriate.
299        AddMatcher(new MoveChildMatcher(0));
300        EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0));
301        AddMatcher(new MoveParentMatcher());
302        return;
303      }
304    }
305  }
306
307  // Check that the current opcode lines up.
308  AddMatcher(new CheckOpcodeMatcher(CInfo));
309
310  // If this node has memory references (i.e. is a load or store), tell the
311  // interpreter to capture them in the memref array.
312  if (N->NodeHasProperty(SDNPMemOperand, CGP))
313    AddMatcher(new RecordMemRefMatcher());
314
315  // If this node has a chain, then the chain is operand #0 is the SDNode, and
316  // the child numbers of the node are all offset by one.
317  unsigned OpNo = 0;
318  if (N->NodeHasProperty(SDNPHasChain, CGP)) {
319    // Record the node and remember it in our chained nodes list.
320    AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
321                                         "' chained node",
322                                 NextRecordedOperandNo));
323    // Remember all of the input chains our pattern will match.
324    MatchedChainNodes.push_back(NextRecordedOperandNo++);
325
326    // Don't look at the input chain when matching the tree pattern to the
327    // SDNode.
328    OpNo = 1;
329
330    // If this node is not the root and the subtree underneath it produces a
331    // chain, then the result of matching the node is also produce a chain.
332    // Beyond that, this means that we're also folding (at least) the root node
333    // into the node that produce the chain (for example, matching
334    // "(add reg, (load ptr))" as a add_with_memory on X86).  This is
335    // problematic, if the 'reg' node also uses the load (say, its chain).
336    // Graphically:
337    //
338    //         [LD]
339    //         ^  ^
340    //         |  \                              DAG's like cheese.
341    //        /    |
342    //       /    [YY]
343    //       |     ^
344    //      [XX]--/
345    //
346    // It would be invalid to fold XX and LD.  In this case, folding the two
347    // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
348    // To prevent this, we emit a dynamic check for legality before allowing
349    // this to be folded.
350    //
351    const TreePatternNode *Root = Pattern.getSrcPattern();
352    if (N != Root) {                             // Not the root of the pattern.
353      // If there is a node between the root and this node, then we definitely
354      // need to emit the check.
355      bool NeedCheck = !Root->hasChild(N);
356
357      // If it *is* an immediate child of the root, we can still need a check if
358      // the root SDNode has multiple inputs.  For us, this means that it is an
359      // intrinsic, has multiple operands, or has other inputs like chain or
360      // flag).
361      if (!NeedCheck) {
362        const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
363        NeedCheck =
364          Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
365          Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
366          Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
367          PInfo.getNumOperands() > 1 ||
368          PInfo.hasProperty(SDNPHasChain) ||
369          PInfo.hasProperty(SDNPInFlag) ||
370          PInfo.hasProperty(SDNPOptInFlag);
371      }
372
373      if (NeedCheck)
374        AddMatcher(new CheckFoldableChainNodeMatcher());
375    }
376  }
377
378  // If this node has an output flag and isn't the root, remember it.
379  if (N->NodeHasProperty(SDNPOutFlag, CGP) &&
380      N != Pattern.getSrcPattern()) {
381    // TODO: This redundantly records nodes with both flags and chains.
382
383    // Record the node and remember it in our chained nodes list.
384    AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
385                                         "' flag output node",
386                                 NextRecordedOperandNo));
387    // Remember all of the nodes with output flags our pattern will match.
388    MatchedFlagResultNodes.push_back(NextRecordedOperandNo++);
389  }
390
391  // If this node is known to have an input flag or if it *might* have an input
392  // flag, capture it as the flag input of the pattern.
393  if (N->NodeHasProperty(SDNPOptInFlag, CGP) ||
394      N->NodeHasProperty(SDNPInFlag, CGP))
395    AddMatcher(new CaptureFlagInputMatcher());
396
397  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
398    // Get the code suitable for matching this child.  Move to the child, check
399    // it then move back to the parent.
400    AddMatcher(new MoveChildMatcher(OpNo));
401    EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i));
402    AddMatcher(new MoveParentMatcher());
403  }
404}
405
406
407void MatcherGen::EmitMatchCode(const TreePatternNode *N,
408                               TreePatternNode *NodeNoTypes) {
409  // If N and NodeNoTypes don't agree on a type, then this is a case where we
410  // need to do a type check.  Emit the check, apply the tyep to NodeNoTypes and
411  // reinfer any correlated types.
412  SmallVector<unsigned, 2> ResultsToTypeCheck;
413
414  for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
415    if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
416    NodeNoTypes->setType(i, N->getExtType(i));
417    InferPossibleTypes();
418    ResultsToTypeCheck.push_back(i);
419  }
420
421  // If this node has a name associated with it, capture it in VariableMap. If
422  // we already saw this in the pattern, emit code to verify dagness.
423  if (!N->getName().empty()) {
424    unsigned &VarMapEntry = VariableMap[N->getName()];
425    if (VarMapEntry == 0) {
426      // If it is a named node, we must emit a 'Record' opcode.
427      AddMatcher(new RecordMatcher("$" + N->getName(), NextRecordedOperandNo));
428      VarMapEntry = ++NextRecordedOperandNo;
429    } else {
430      // If we get here, this is a second reference to a specific name.  Since
431      // we already have checked that the first reference is valid, we don't
432      // have to recursively match it, just check that it's the same as the
433      // previously named thing.
434      AddMatcher(new CheckSameMatcher(VarMapEntry-1));
435      return;
436    }
437  }
438
439  if (N->isLeaf())
440    EmitLeafMatchCode(N);
441  else
442    EmitOperatorMatchCode(N, NodeNoTypes);
443
444  // If there are node predicates for this node, generate their checks.
445  for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
446    AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i]));
447
448  for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
449    AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]),
450                                    ResultsToTypeCheck[i]));
451}
452
453/// EmitMatcherCode - Generate the code that matches the predicate of this
454/// pattern for the specified Variant.  If the variant is invalid this returns
455/// true and does not generate code, if it is valid, it returns false.
456bool MatcherGen::EmitMatcherCode(unsigned Variant) {
457  // If the root of the pattern is a ComplexPattern and if it is specified to
458  // match some number of root opcodes, these are considered to be our variants.
459  // Depending on which variant we're generating code for, emit the root opcode
460  // check.
461  if (const ComplexPattern *CP =
462                   Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
463    const std::vector<Record*> &OpNodes = CP->getRootNodes();
464    assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
465    if (Variant >= OpNodes.size()) return true;
466
467    AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
468  } else {
469    if (Variant != 0) return true;
470  }
471
472  // Emit the matcher for the pattern structure and types.
473  EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes);
474
475  // If the pattern has a predicate on it (e.g. only enabled when a subtarget
476  // feature is around, do the check).
477  if (!Pattern.getPredicateCheck().empty())
478    AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
479
480  // Now that we've completed the structural type match, emit any ComplexPattern
481  // checks (e.g. addrmode matches).  We emit this after the structural match
482  // because they are generally more expensive to evaluate and more difficult to
483  // factor.
484  for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
485    const TreePatternNode *N = MatchedComplexPatterns[i].first;
486
487    // Remember where the results of this match get stuck.
488    MatchedComplexPatterns[i].second = NextRecordedOperandNo;
489
490    // Get the slot we recorded the value in from the name on the node.
491    unsigned RecNodeEntry = VariableMap[N->getName()];
492    assert(!N->getName().empty() && RecNodeEntry &&
493           "Complex pattern should have a name and slot");
494    --RecNodeEntry;  // Entries in VariableMap are biased.
495
496    const ComplexPattern &CP =
497      CGP.getComplexPattern(((DefInit*)N->getLeafValue())->getDef());
498
499    // Emit a CheckComplexPat operation, which does the match (aborting if it
500    // fails) and pushes the matched operands onto the recorded nodes list.
501    AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
502                                          N->getName(), NextRecordedOperandNo));
503
504    // Record the right number of operands.
505    NextRecordedOperandNo += CP.getNumOperands();
506    if (CP.hasProperty(SDNPHasChain)) {
507      // If the complex pattern has a chain, then we need to keep track of the
508      // fact that we just recorded a chain input.  The chain input will be
509      // matched as the last operand of the predicate if it was successful.
510      ++NextRecordedOperandNo; // Chained node operand.
511
512      // It is the last operand recorded.
513      assert(NextRecordedOperandNo > 1 &&
514             "Should have recorded input/result chains at least!");
515      MatchedChainNodes.push_back(NextRecordedOperandNo-1);
516    }
517
518    // TODO: Complex patterns can't have output flags, if they did, we'd want
519    // to record them.
520  }
521
522  return false;
523}
524
525
526//===----------------------------------------------------------------------===//
527// Node Result Generation
528//===----------------------------------------------------------------------===//
529
530void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
531                                          SmallVectorImpl<unsigned> &ResultOps){
532  assert(!N->getName().empty() && "Operand not named!");
533
534  // A reference to a complex pattern gets all of the results of the complex
535  // pattern's match.
536  if (const ComplexPattern *CP = N->getComplexPatternInfo(CGP)) {
537    unsigned SlotNo = 0;
538    for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i)
539      if (MatchedComplexPatterns[i].first->getName() == N->getName()) {
540        SlotNo = MatchedComplexPatterns[i].second;
541        break;
542      }
543    assert(SlotNo != 0 && "Didn't get a slot number assigned?");
544
545    // The first slot entry is the node itself, the subsequent entries are the
546    // matched values.
547    for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
548      ResultOps.push_back(SlotNo+i);
549    return;
550  }
551
552  unsigned SlotNo = getNamedArgumentSlot(N->getName());
553
554  // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
555  // version of the immediate so that it doesn't get selected due to some other
556  // node use.
557  if (!N->isLeaf()) {
558    StringRef OperatorName = N->getOperator()->getName();
559    if (OperatorName == "imm" || OperatorName == "fpimm") {
560      AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
561      ResultOps.push_back(NextRecordedOperandNo++);
562      return;
563    }
564  }
565
566  ResultOps.push_back(SlotNo);
567}
568
569void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
570                                         SmallVectorImpl<unsigned> &ResultOps) {
571  assert(N->isLeaf() && "Must be a leaf");
572
573  if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
574    AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0)));
575    ResultOps.push_back(NextRecordedOperandNo++);
576    return;
577  }
578
579  // If this is an explicit register reference, handle it.
580  if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
581    if (DI->getDef()->isSubClassOf("Register")) {
582      AddMatcher(new EmitRegisterMatcher(DI->getDef(), N->getType(0)));
583      ResultOps.push_back(NextRecordedOperandNo++);
584      return;
585    }
586
587    if (DI->getDef()->getName() == "zero_reg") {
588      AddMatcher(new EmitRegisterMatcher(0, N->getType(0)));
589      ResultOps.push_back(NextRecordedOperandNo++);
590      return;
591    }
592
593    // Handle a reference to a register class. This is used
594    // in COPY_TO_SUBREG instructions.
595    if (DI->getDef()->isSubClassOf("RegisterClass")) {
596      std::string Value = getQualifiedName(DI->getDef()) + "RegClassID";
597      AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
598      ResultOps.push_back(NextRecordedOperandNo++);
599      return;
600    }
601
602    // Handle a subregister index. This is used for INSERT_SUBREG etc.
603    if (DI->getDef()->isSubClassOf("SubRegIndex")) {
604      std::string Value = getQualifiedName(DI->getDef());
605      AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
606      ResultOps.push_back(NextRecordedOperandNo++);
607      return;
608    }
609  }
610
611  errs() << "unhandled leaf node: \n";
612  N->dump();
613}
614
615/// GetInstPatternNode - Get the pattern for an instruction.
616///
617const TreePatternNode *MatcherGen::
618GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) {
619  const TreePattern *InstPat = Inst.getPattern();
620
621  // FIXME2?: Assume actual pattern comes before "implicit".
622  TreePatternNode *InstPatNode;
623  if (InstPat)
624    InstPatNode = InstPat->getTree(0);
625  else if (/*isRoot*/ N == Pattern.getDstPattern())
626    InstPatNode = Pattern.getSrcPattern();
627  else
628    return 0;
629
630  if (InstPatNode && !InstPatNode->isLeaf() &&
631      InstPatNode->getOperator()->getName() == "set")
632    InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
633
634  return InstPatNode;
635}
636
637void MatcherGen::
638EmitResultInstructionAsOperand(const TreePatternNode *N,
639                               SmallVectorImpl<unsigned> &OutputOps) {
640  Record *Op = N->getOperator();
641  const CodeGenTarget &CGT = CGP.getTargetInfo();
642  CodeGenInstruction &II = CGT.getInstruction(Op);
643  const DAGInstruction &Inst = CGP.getInstruction(Op);
644
645  // If we can, get the pattern for the instruction we're generating.  We derive
646  // a variety of information from this pattern, such as whether it has a chain.
647  //
648  // FIXME2: This is extremely dubious for several reasons, not the least of
649  // which it gives special status to instructions with patterns that Pat<>
650  // nodes can't duplicate.
651  const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N);
652
653  // NodeHasChain - Whether the instruction node we're creating takes chains.
654  bool NodeHasChain = InstPatNode &&
655                      InstPatNode->TreeHasProperty(SDNPHasChain, CGP);
656
657  bool isRoot = N == Pattern.getDstPattern();
658
659  // TreeHasOutFlag - True if this tree has a flag.
660  bool TreeHasInFlag = false, TreeHasOutFlag = false;
661  if (isRoot) {
662    const TreePatternNode *SrcPat = Pattern.getSrcPattern();
663    TreeHasInFlag = SrcPat->TreeHasProperty(SDNPOptInFlag, CGP) ||
664                    SrcPat->TreeHasProperty(SDNPInFlag, CGP);
665
666    // FIXME2: this is checking the entire pattern, not just the node in
667    // question, doing this just for the root seems like a total hack.
668    TreeHasOutFlag = SrcPat->TreeHasProperty(SDNPOutFlag, CGP);
669  }
670
671  // NumResults - This is the number of results produced by the instruction in
672  // the "outs" list.
673  unsigned NumResults = Inst.getNumResults();
674
675  // Loop over all of the operands of the instruction pattern, emitting code
676  // to fill them all in.  The node 'N' usually has number children equal to
677  // the number of input operands of the instruction.  However, in cases
678  // where there are predicate operands for an instruction, we need to fill
679  // in the 'execute always' values.  Match up the node operands to the
680  // instruction operands to do this.
681  SmallVector<unsigned, 8> InstOps;
682  for (unsigned ChildNo = 0, InstOpNo = NumResults, e = II.OperandList.size();
683       InstOpNo != e; ++InstOpNo) {
684
685    // Determine what to emit for this operand.
686    Record *OperandNode = II.OperandList[InstOpNo].Rec;
687    if ((OperandNode->isSubClassOf("PredicateOperand") ||
688         OperandNode->isSubClassOf("OptionalDefOperand")) &&
689        !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
690      // This is a predicate or optional def operand; emit the
691      // 'default ops' operands.
692      const DAGDefaultOperand &DefaultOp
693	= CGP.getDefaultOperand(OperandNode);
694      for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
695        EmitResultOperand(DefaultOp.DefaultOps[i], InstOps);
696      continue;
697    }
698
699    const TreePatternNode *Child = N->getChild(ChildNo);
700
701    // Otherwise this is a normal operand or a predicate operand without
702    // 'execute always'; emit it.
703    unsigned BeforeAddingNumOps = InstOps.size();
704    EmitResultOperand(Child, InstOps);
705    assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
706
707    // If the operand is an instruction and it produced multiple results, just
708    // take the first one.
709    if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
710      InstOps.resize(BeforeAddingNumOps+1);
711
712    ++ChildNo;
713  }
714
715  // If this node has an input flag or explicitly specified input physregs, we
716  // need to add chained and flagged copyfromreg nodes and materialize the flag
717  // input.
718  if (isRoot && !PhysRegInputs.empty()) {
719    // Emit all of the CopyToReg nodes for the input physical registers.  These
720    // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
721    for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i)
722      AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
723                                          PhysRegInputs[i].first));
724    // Even if the node has no other flag inputs, the resultant node must be
725    // flagged to the CopyFromReg nodes we just generated.
726    TreeHasInFlag = true;
727  }
728
729  // Result order: node results, chain, flags
730
731  // Determine the result types.
732  SmallVector<MVT::SimpleValueType, 4> ResultVTs;
733  for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
734    ResultVTs.push_back(N->getType(i));
735
736  // If this is the root instruction of a pattern that has physical registers in
737  // its result pattern, add output VTs for them.  For example, X86 has:
738  //   (set AL, (mul ...))
739  // This also handles implicit results like:
740  //   (implicit EFLAGS)
741  if (isRoot && !Pattern.getDstRegs().empty()) {
742    // If the root came from an implicit def in the instruction handling stuff,
743    // don't re-add it.
744    Record *HandledReg = 0;
745    if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
746      HandledReg = II.ImplicitDefs[0];
747
748    for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
749      Record *Reg = Pattern.getDstRegs()[i];
750      if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
751      ResultVTs.push_back(getRegisterValueType(Reg, CGT));
752    }
753  }
754
755  // If this is the root of the pattern and the pattern we're matching includes
756  // a node that is variadic, mark the generated node as variadic so that it
757  // gets the excess operands from the input DAG.
758  int NumFixedArityOperands = -1;
759  if (isRoot &&
760      (Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP)))
761    NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
762
763  // If this is the root node and any of the nodes matched nodes in the input
764  // pattern have MemRefs in them, have the interpreter collect them and plop
765  // them onto this node.
766  //
767  // FIXME3: This is actively incorrect for result patterns where the root of
768  // the pattern is not the memory reference and is also incorrect when the
769  // result pattern has multiple memory-referencing instructions.  For example,
770  // in the X86 backend, this pattern causes the memrefs to get attached to the
771  // CVTSS2SDrr instead of the MOVSSrm:
772  //
773  //  def : Pat<(extloadf32 addr:$src),
774  //            (CVTSS2SDrr (MOVSSrm addr:$src))>;
775  //
776  bool NodeHasMemRefs =
777    isRoot && Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
778
779  assert((!ResultVTs.empty() || TreeHasOutFlag || NodeHasChain) &&
780         "Node has no result");
781
782  AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(),
783                                 ResultVTs.data(), ResultVTs.size(),
784                                 InstOps.data(), InstOps.size(),
785                                 NodeHasChain, TreeHasInFlag, TreeHasOutFlag,
786                                 NodeHasMemRefs, NumFixedArityOperands,
787                                 NextRecordedOperandNo));
788
789  // The non-chain and non-flag results of the newly emitted node get recorded.
790  for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
791    if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Flag) break;
792    OutputOps.push_back(NextRecordedOperandNo++);
793  }
794}
795
796void MatcherGen::
797EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
798                               SmallVectorImpl<unsigned> &ResultOps) {
799  assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
800
801  // Emit the operand.
802  SmallVector<unsigned, 8> InputOps;
803
804  // FIXME2: Could easily generalize this to support multiple inputs and outputs
805  // to the SDNodeXForm.  For now we just support one input and one output like
806  // the old instruction selector.
807  assert(N->getNumChildren() == 1);
808  EmitResultOperand(N->getChild(0), InputOps);
809
810  // The input currently must have produced exactly one result.
811  assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
812
813  AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
814  ResultOps.push_back(NextRecordedOperandNo++);
815}
816
817void MatcherGen::EmitResultOperand(const TreePatternNode *N,
818                                   SmallVectorImpl<unsigned> &ResultOps) {
819  // This is something selected from the pattern we matched.
820  if (!N->getName().empty())
821    return EmitResultOfNamedOperand(N, ResultOps);
822
823  if (N->isLeaf())
824    return EmitResultLeafAsOperand(N, ResultOps);
825
826  Record *OpRec = N->getOperator();
827  if (OpRec->isSubClassOf("Instruction"))
828    return EmitResultInstructionAsOperand(N, ResultOps);
829  if (OpRec->isSubClassOf("SDNodeXForm"))
830    return EmitResultSDNodeXFormAsOperand(N, ResultOps);
831  errs() << "Unknown result node to emit code for: " << *N << '\n';
832  throw std::string("Unknown node in result pattern!");
833}
834
835void MatcherGen::EmitResultCode() {
836  // Patterns that match nodes with (potentially multiple) chain inputs have to
837  // merge them together into a token factor.  This informs the generated code
838  // what all the chained nodes are.
839  if (!MatchedChainNodes.empty())
840    AddMatcher(new EmitMergeInputChainsMatcher
841               (MatchedChainNodes.data(), MatchedChainNodes.size()));
842
843  // Codegen the root of the result pattern, capturing the resulting values.
844  SmallVector<unsigned, 8> Ops;
845  EmitResultOperand(Pattern.getDstPattern(), Ops);
846
847  // At this point, we have however many values the result pattern produces.
848  // However, the input pattern might not need all of these.  If there are
849  // excess values at the end (such as implicit defs of condition codes etc)
850  // just lop them off.  This doesn't need to worry about flags or chains, just
851  // explicit results.
852  //
853  unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
854
855  // If the pattern also has (implicit) results, count them as well.
856  if (!Pattern.getDstRegs().empty()) {
857    // If the root came from an implicit def in the instruction handling stuff,
858    // don't re-add it.
859    Record *HandledReg = 0;
860    const TreePatternNode *DstPat = Pattern.getDstPattern();
861    if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
862      const CodeGenTarget &CGT = CGP.getTargetInfo();
863      CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
864
865      if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
866        HandledReg = II.ImplicitDefs[0];
867    }
868
869    for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
870      Record *Reg = Pattern.getDstRegs()[i];
871      if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
872      ++NumSrcResults;
873    }
874  }
875
876  assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");
877  Ops.resize(NumSrcResults);
878
879  // If the matched pattern covers nodes which define a flag result, emit a node
880  // that tells the matcher about them so that it can update their results.
881  if (!MatchedFlagResultNodes.empty())
882    AddMatcher(new MarkFlagResultsMatcher(MatchedFlagResultNodes.data(),
883                                          MatchedFlagResultNodes.size()));
884
885  AddMatcher(new CompleteMatchMatcher(Ops.data(), Ops.size(), Pattern));
886}
887
888
889/// ConvertPatternToMatcher - Create the matcher for the specified pattern with
890/// the specified variant.  If the variant number is invalid, this returns null.
891Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
892                                       unsigned Variant,
893                                       const CodeGenDAGPatterns &CGP) {
894  MatcherGen Gen(Pattern, CGP);
895
896  // Generate the code for the matcher.
897  if (Gen.EmitMatcherCode(Variant))
898    return 0;
899
900  // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
901  // FIXME2: Split result code out to another table, and make the matcher end
902  // with an "Emit <index>" command.  This allows result generation stuff to be
903  // shared and factored?
904
905  // If the match succeeds, then we generate Pattern.
906  Gen.EmitResultCode();
907
908  // Unconditional match.
909  return Gen.GetMatcher();
910}
911