DAGISelMatcherGen.cpp revision 206083
1//===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "DAGISelMatcher.h"
11#include "CodeGenDAGPatterns.h"
12#include "Record.h"
13#include "llvm/ADT/SmallVector.h"
14#include "llvm/ADT/StringMap.h"
15#include <utility>
16using namespace llvm;
17
18
19/// getRegisterValueType - Look up and return the ValueType of the specified
20/// register. If the register is a member of multiple register classes which
21/// have different associated types, return MVT::Other.
22static MVT::SimpleValueType getRegisterValueType(Record *R,
23                                                 const CodeGenTarget &T) {
24  bool FoundRC = false;
25  MVT::SimpleValueType VT = MVT::Other;
26  const std::vector<CodeGenRegisterClass> &RCs = T.getRegisterClasses();
27  std::vector<Record*>::const_iterator Element;
28
29  for (unsigned rc = 0, e = RCs.size(); rc != e; ++rc) {
30    const CodeGenRegisterClass &RC = RCs[rc];
31    if (!std::count(RC.Elements.begin(), RC.Elements.end(), R))
32      continue;
33
34    if (!FoundRC) {
35      FoundRC = true;
36      VT = RC.getValueTypeNum(0);
37      continue;
38    }
39
40    // If this occurs in multiple register classes, they all have to agree.
41    assert(VT == RC.getValueTypeNum(0));
42  }
43  return VT;
44}
45
46
47namespace {
48  class MatcherGen {
49    const PatternToMatch &Pattern;
50    const CodeGenDAGPatterns &CGP;
51
52    /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
53    /// out with all of the types removed.  This allows us to insert type checks
54    /// as we scan the tree.
55    TreePatternNode *PatWithNoTypes;
56
57    /// VariableMap - A map from variable names ('$dst') to the recorded operand
58    /// number that they were captured as.  These are biased by 1 to make
59    /// insertion easier.
60    StringMap<unsigned> VariableMap;
61
62    /// NextRecordedOperandNo - As we emit opcodes to record matched values in
63    /// the RecordedNodes array, this keeps track of which slot will be next to
64    /// record into.
65    unsigned NextRecordedOperandNo;
66
67    /// MatchedChainNodes - This maintains the position in the recorded nodes
68    /// array of all of the recorded input nodes that have chains.
69    SmallVector<unsigned, 2> MatchedChainNodes;
70
71    /// MatchedFlagResultNodes - This maintains the position in the recorded
72    /// nodes array of all of the recorded input nodes that have flag results.
73    SmallVector<unsigned, 2> MatchedFlagResultNodes;
74
75    /// MatchedComplexPatterns - This maintains a list of all of the
76    /// ComplexPatterns that we need to check.  The patterns are known to have
77    /// names which were recorded.  The second element of each pair is the first
78    /// slot number that the OPC_CheckComplexPat opcode drops the matched
79    /// results into.
80    SmallVector<std::pair<const TreePatternNode*,
81                          unsigned>, 2> MatchedComplexPatterns;
82
83    /// PhysRegInputs - List list has an entry for each explicitly specified
84    /// physreg input to the pattern.  The first elt is the Register node, the
85    /// second is the recorded slot number the input pattern match saved it in.
86    SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
87
88    /// Matcher - This is the top level of the generated matcher, the result.
89    Matcher *TheMatcher;
90
91    /// CurPredicate - As we emit matcher nodes, this points to the latest check
92    /// which should have future checks stuck into its Next position.
93    Matcher *CurPredicate;
94  public:
95    MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
96
97    ~MatcherGen() {
98      delete PatWithNoTypes;
99    }
100
101    bool EmitMatcherCode(unsigned Variant);
102    void EmitResultCode();
103
104    Matcher *GetMatcher() const { return TheMatcher; }
105    Matcher *GetCurPredicate() const { return CurPredicate; }
106  private:
107    void AddMatcher(Matcher *NewNode);
108    void InferPossibleTypes();
109
110    // Matcher Generation.
111    void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes);
112    void EmitLeafMatchCode(const TreePatternNode *N);
113    void EmitOperatorMatchCode(const TreePatternNode *N,
114                               TreePatternNode *NodeNoTypes);
115
116    // Result Code Generation.
117    unsigned getNamedArgumentSlot(StringRef Name) {
118      unsigned VarMapEntry = VariableMap[Name];
119      assert(VarMapEntry != 0 &&
120             "Variable referenced but not defined and not caught earlier!");
121      return VarMapEntry-1;
122    }
123
124    /// GetInstPatternNode - Get the pattern for an instruction.
125    const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins,
126                                              const TreePatternNode *N);
127
128    void EmitResultOperand(const TreePatternNode *N,
129                           SmallVectorImpl<unsigned> &ResultOps);
130    void EmitResultOfNamedOperand(const TreePatternNode *N,
131                                  SmallVectorImpl<unsigned> &ResultOps);
132    void EmitResultLeafAsOperand(const TreePatternNode *N,
133                                 SmallVectorImpl<unsigned> &ResultOps);
134    void EmitResultInstructionAsOperand(const TreePatternNode *N,
135                                        SmallVectorImpl<unsigned> &ResultOps);
136    void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
137                                        SmallVectorImpl<unsigned> &ResultOps);
138    };
139
140} // end anon namespace.
141
142MatcherGen::MatcherGen(const PatternToMatch &pattern,
143                       const CodeGenDAGPatterns &cgp)
144: Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
145  TheMatcher(0), CurPredicate(0) {
146  // We need to produce the matcher tree for the patterns source pattern.  To do
147  // this we need to match the structure as well as the types.  To do the type
148  // matching, we want to figure out the fewest number of type checks we need to
149  // emit.  For example, if there is only one integer type supported by a
150  // target, there should be no type comparisons at all for integer patterns!
151  //
152  // To figure out the fewest number of type checks needed, clone the pattern,
153  // remove the types, then perform type inference on the pattern as a whole.
154  // If there are unresolved types, emit an explicit check for those types,
155  // apply the type to the tree, then rerun type inference.  Iterate until all
156  // types are resolved.
157  //
158  PatWithNoTypes = Pattern.getSrcPattern()->clone();
159  PatWithNoTypes->RemoveAllTypes();
160
161  // If there are types that are manifestly known, infer them.
162  InferPossibleTypes();
163}
164
165/// InferPossibleTypes - As we emit the pattern, we end up generating type
166/// checks and applying them to the 'PatWithNoTypes' tree.  As we do this, we
167/// want to propagate implied types as far throughout the tree as possible so
168/// that we avoid doing redundant type checks.  This does the type propagation.
169void MatcherGen::InferPossibleTypes() {
170  // TP - Get *SOME* tree pattern, we don't care which.  It is only used for
171  // diagnostics, which we know are impossible at this point.
172  TreePattern &TP = *CGP.pf_begin()->second;
173
174  try {
175    bool MadeChange = true;
176    while (MadeChange)
177      MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
178                                                true/*Ignore reg constraints*/);
179  } catch (...) {
180    errs() << "Type constraint application shouldn't fail!";
181    abort();
182  }
183}
184
185
186/// AddMatcher - Add a matcher node to the current graph we're building.
187void MatcherGen::AddMatcher(Matcher *NewNode) {
188  if (CurPredicate != 0)
189    CurPredicate->setNext(NewNode);
190  else
191    TheMatcher = NewNode;
192  CurPredicate = NewNode;
193}
194
195
196//===----------------------------------------------------------------------===//
197// Pattern Match Generation
198//===----------------------------------------------------------------------===//
199
200/// EmitLeafMatchCode - Generate matching code for leaf nodes.
201void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
202  assert(N->isLeaf() && "Not a leaf?");
203
204  // Direct match against an integer constant.
205  if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
206    // If this is the root of the dag we're matching, we emit a redundant opcode
207    // check to ensure that this gets folded into the normal top-level
208    // OpcodeSwitch.
209    if (N == Pattern.getSrcPattern()) {
210      const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
211      AddMatcher(new CheckOpcodeMatcher(NI));
212    }
213
214    return AddMatcher(new CheckIntegerMatcher(II->getValue()));
215  }
216
217  DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue());
218  if (DI == 0) {
219    errs() << "Unknown leaf kind: " << *DI << "\n";
220    abort();
221  }
222
223  Record *LeafRec = DI->getDef();
224  if (// Handle register references.  Nothing to do here, they always match.
225      LeafRec->isSubClassOf("RegisterClass") ||
226      LeafRec->isSubClassOf("PointerLikeRegClass") ||
227      // Place holder for SRCVALUE nodes. Nothing to do here.
228      LeafRec->getName() == "srcvalue")
229    return;
230
231  // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
232  // record the register
233  if (LeafRec->isSubClassOf("Register")) {
234    AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(),
235                                 NextRecordedOperandNo));
236    PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
237    return;
238  }
239
240  if (LeafRec->isSubClassOf("ValueType"))
241    return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
242
243  if (LeafRec->isSubClassOf("CondCode"))
244    return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
245
246  if (LeafRec->isSubClassOf("ComplexPattern")) {
247    // We can't model ComplexPattern uses that don't have their name taken yet.
248    // The OPC_CheckComplexPattern operation implicitly records the results.
249    if (N->getName().empty()) {
250      errs() << "We expect complex pattern uses to have names: " << *N << "\n";
251      exit(1);
252    }
253
254    // Remember this ComplexPattern so that we can emit it after all the other
255    // structural matches are done.
256    MatchedComplexPatterns.push_back(std::make_pair(N, 0));
257    return;
258  }
259
260  errs() << "Unknown leaf kind: " << *N << "\n";
261  abort();
262}
263
264void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
265                                       TreePatternNode *NodeNoTypes) {
266  assert(!N->isLeaf() && "Not an operator?");
267  const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
268
269  // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
270  // a constant without a predicate fn that has more that one bit set, handle
271  // this as a special case.  This is usually for targets that have special
272  // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
273  // handling stuff).  Using these instructions is often far more efficient
274  // than materializing the constant.  Unfortunately, both the instcombiner
275  // and the dag combiner can often infer that bits are dead, and thus drop
276  // them from the mask in the dag.  For example, it might turn 'AND X, 255'
277  // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks
278  // to handle this.
279  if ((N->getOperator()->getName() == "and" ||
280       N->getOperator()->getName() == "or") &&
281      N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() &&
282      N->getPredicateFns().empty()) {
283    if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) {
284      if (!isPowerOf2_32(II->getValue())) {  // Don't bother with single bits.
285        // If this is at the root of the pattern, we emit a redundant
286        // CheckOpcode so that the following checks get factored properly under
287        // a single opcode check.
288        if (N == Pattern.getSrcPattern())
289          AddMatcher(new CheckOpcodeMatcher(CInfo));
290
291        // Emit the CheckAndImm/CheckOrImm node.
292        if (N->getOperator()->getName() == "and")
293          AddMatcher(new CheckAndImmMatcher(II->getValue()));
294        else
295          AddMatcher(new CheckOrImmMatcher(II->getValue()));
296
297        // Match the LHS of the AND as appropriate.
298        AddMatcher(new MoveChildMatcher(0));
299        EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0));
300        AddMatcher(new MoveParentMatcher());
301        return;
302      }
303    }
304  }
305
306  // Check that the current opcode lines up.
307  AddMatcher(new CheckOpcodeMatcher(CInfo));
308
309  // If this node has memory references (i.e. is a load or store), tell the
310  // interpreter to capture them in the memref array.
311  if (N->NodeHasProperty(SDNPMemOperand, CGP))
312    AddMatcher(new RecordMemRefMatcher());
313
314  // If this node has a chain, then the chain is operand #0 is the SDNode, and
315  // the child numbers of the node are all offset by one.
316  unsigned OpNo = 0;
317  if (N->NodeHasProperty(SDNPHasChain, CGP)) {
318    // Record the node and remember it in our chained nodes list.
319    AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
320                                         "' chained node",
321                                 NextRecordedOperandNo));
322    // Remember all of the input chains our pattern will match.
323    MatchedChainNodes.push_back(NextRecordedOperandNo++);
324
325    // Don't look at the input chain when matching the tree pattern to the
326    // SDNode.
327    OpNo = 1;
328
329    // If this node is not the root and the subtree underneath it produces a
330    // chain, then the result of matching the node is also produce a chain.
331    // Beyond that, this means that we're also folding (at least) the root node
332    // into the node that produce the chain (for example, matching
333    // "(add reg, (load ptr))" as a add_with_memory on X86).  This is
334    // problematic, if the 'reg' node also uses the load (say, its chain).
335    // Graphically:
336    //
337    //         [LD]
338    //         ^  ^
339    //         |  \                              DAG's like cheese.
340    //        /    |
341    //       /    [YY]
342    //       |     ^
343    //      [XX]--/
344    //
345    // It would be invalid to fold XX and LD.  In this case, folding the two
346    // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
347    // To prevent this, we emit a dynamic check for legality before allowing
348    // this to be folded.
349    //
350    const TreePatternNode *Root = Pattern.getSrcPattern();
351    if (N != Root) {                             // Not the root of the pattern.
352      // If there is a node between the root and this node, then we definitely
353      // need to emit the check.
354      bool NeedCheck = !Root->hasChild(N);
355
356      // If it *is* an immediate child of the root, we can still need a check if
357      // the root SDNode has multiple inputs.  For us, this means that it is an
358      // intrinsic, has multiple operands, or has other inputs like chain or
359      // flag).
360      if (!NeedCheck) {
361        const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
362        NeedCheck =
363          Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
364          Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
365          Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
366          PInfo.getNumOperands() > 1 ||
367          PInfo.hasProperty(SDNPHasChain) ||
368          PInfo.hasProperty(SDNPInFlag) ||
369          PInfo.hasProperty(SDNPOptInFlag);
370      }
371
372      if (NeedCheck)
373        AddMatcher(new CheckFoldableChainNodeMatcher());
374    }
375  }
376
377  // If this node has an output flag and isn't the root, remember it.
378  if (N->NodeHasProperty(SDNPOutFlag, CGP) &&
379      N != Pattern.getSrcPattern()) {
380    // TODO: This redundantly records nodes with both flags and chains.
381
382    // Record the node and remember it in our chained nodes list.
383    AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
384                                         "' flag output node",
385                                 NextRecordedOperandNo));
386    // Remember all of the nodes with output flags our pattern will match.
387    MatchedFlagResultNodes.push_back(NextRecordedOperandNo++);
388  }
389
390  // If this node is known to have an input flag or if it *might* have an input
391  // flag, capture it as the flag input of the pattern.
392  if (N->NodeHasProperty(SDNPOptInFlag, CGP) ||
393      N->NodeHasProperty(SDNPInFlag, CGP))
394    AddMatcher(new CaptureFlagInputMatcher());
395
396  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
397    // Get the code suitable for matching this child.  Move to the child, check
398    // it then move back to the parent.
399    AddMatcher(new MoveChildMatcher(OpNo));
400    EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i));
401    AddMatcher(new MoveParentMatcher());
402  }
403}
404
405
406void MatcherGen::EmitMatchCode(const TreePatternNode *N,
407                               TreePatternNode *NodeNoTypes) {
408  // If N and NodeNoTypes don't agree on a type, then this is a case where we
409  // need to do a type check.  Emit the check, apply the tyep to NodeNoTypes and
410  // reinfer any correlated types.
411  SmallVector<unsigned, 2> ResultsToTypeCheck;
412
413  for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
414    if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
415    NodeNoTypes->setType(i, N->getExtType(i));
416    InferPossibleTypes();
417    ResultsToTypeCheck.push_back(i);
418  }
419
420  // If this node has a name associated with it, capture it in VariableMap. If
421  // we already saw this in the pattern, emit code to verify dagness.
422  if (!N->getName().empty()) {
423    unsigned &VarMapEntry = VariableMap[N->getName()];
424    if (VarMapEntry == 0) {
425      // If it is a named node, we must emit a 'Record' opcode.
426      AddMatcher(new RecordMatcher("$" + N->getName(), NextRecordedOperandNo));
427      VarMapEntry = ++NextRecordedOperandNo;
428    } else {
429      // If we get here, this is a second reference to a specific name.  Since
430      // we already have checked that the first reference is valid, we don't
431      // have to recursively match it, just check that it's the same as the
432      // previously named thing.
433      AddMatcher(new CheckSameMatcher(VarMapEntry-1));
434      return;
435    }
436  }
437
438  if (N->isLeaf())
439    EmitLeafMatchCode(N);
440  else
441    EmitOperatorMatchCode(N, NodeNoTypes);
442
443  // If there are node predicates for this node, generate their checks.
444  for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
445    AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i]));
446
447  for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
448    AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]),
449                                    ResultsToTypeCheck[i]));
450}
451
452/// EmitMatcherCode - Generate the code that matches the predicate of this
453/// pattern for the specified Variant.  If the variant is invalid this returns
454/// true and does not generate code, if it is valid, it returns false.
455bool MatcherGen::EmitMatcherCode(unsigned Variant) {
456  // If the root of the pattern is a ComplexPattern and if it is specified to
457  // match some number of root opcodes, these are considered to be our variants.
458  // Depending on which variant we're generating code for, emit the root opcode
459  // check.
460  if (const ComplexPattern *CP =
461                   Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
462    const std::vector<Record*> &OpNodes = CP->getRootNodes();
463    assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
464    if (Variant >= OpNodes.size()) return true;
465
466    AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
467  } else {
468    if (Variant != 0) return true;
469  }
470
471  // Emit the matcher for the pattern structure and types.
472  EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes);
473
474  // If the pattern has a predicate on it (e.g. only enabled when a subtarget
475  // feature is around, do the check).
476  if (!Pattern.getPredicateCheck().empty())
477    AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
478
479  // Now that we've completed the structural type match, emit any ComplexPattern
480  // checks (e.g. addrmode matches).  We emit this after the structural match
481  // because they are generally more expensive to evaluate and more difficult to
482  // factor.
483  for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
484    const TreePatternNode *N = MatchedComplexPatterns[i].first;
485
486    // Remember where the results of this match get stuck.
487    MatchedComplexPatterns[i].second = NextRecordedOperandNo;
488
489    // Get the slot we recorded the value in from the name on the node.
490    unsigned RecNodeEntry = VariableMap[N->getName()];
491    assert(!N->getName().empty() && RecNodeEntry &&
492           "Complex pattern should have a name and slot");
493    --RecNodeEntry;  // Entries in VariableMap are biased.
494
495    const ComplexPattern &CP =
496      CGP.getComplexPattern(((DefInit*)N->getLeafValue())->getDef());
497
498    // Emit a CheckComplexPat operation, which does the match (aborting if it
499    // fails) and pushes the matched operands onto the recorded nodes list.
500    AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
501                                          N->getName(), NextRecordedOperandNo));
502
503    // Record the right number of operands.
504    NextRecordedOperandNo += CP.getNumOperands();
505    if (CP.hasProperty(SDNPHasChain)) {
506      // If the complex pattern has a chain, then we need to keep track of the
507      // fact that we just recorded a chain input.  The chain input will be
508      // matched as the last operand of the predicate if it was successful.
509      ++NextRecordedOperandNo; // Chained node operand.
510
511      // It is the last operand recorded.
512      assert(NextRecordedOperandNo > 1 &&
513             "Should have recorded input/result chains at least!");
514      MatchedChainNodes.push_back(NextRecordedOperandNo-1);
515    }
516
517    // TODO: Complex patterns can't have output flags, if they did, we'd want
518    // to record them.
519  }
520
521  return false;
522}
523
524
525//===----------------------------------------------------------------------===//
526// Node Result Generation
527//===----------------------------------------------------------------------===//
528
529void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
530                                          SmallVectorImpl<unsigned> &ResultOps){
531  assert(!N->getName().empty() && "Operand not named!");
532
533  // A reference to a complex pattern gets all of the results of the complex
534  // pattern's match.
535  if (const ComplexPattern *CP = N->getComplexPatternInfo(CGP)) {
536    unsigned SlotNo = 0;
537    for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i)
538      if (MatchedComplexPatterns[i].first->getName() == N->getName()) {
539        SlotNo = MatchedComplexPatterns[i].second;
540        break;
541      }
542    assert(SlotNo != 0 && "Didn't get a slot number assigned?");
543
544    // The first slot entry is the node itself, the subsequent entries are the
545    // matched values.
546    for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
547      ResultOps.push_back(SlotNo+i);
548    return;
549  }
550
551  unsigned SlotNo = getNamedArgumentSlot(N->getName());
552
553  // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
554  // version of the immediate so that it doesn't get selected due to some other
555  // node use.
556  if (!N->isLeaf()) {
557    StringRef OperatorName = N->getOperator()->getName();
558    if (OperatorName == "imm" || OperatorName == "fpimm") {
559      AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
560      ResultOps.push_back(NextRecordedOperandNo++);
561      return;
562    }
563  }
564
565  ResultOps.push_back(SlotNo);
566}
567
568void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
569                                         SmallVectorImpl<unsigned> &ResultOps) {
570  assert(N->isLeaf() && "Must be a leaf");
571
572  if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
573    AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0)));
574    ResultOps.push_back(NextRecordedOperandNo++);
575    return;
576  }
577
578  // If this is an explicit register reference, handle it.
579  if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
580    if (DI->getDef()->isSubClassOf("Register")) {
581      AddMatcher(new EmitRegisterMatcher(DI->getDef(), N->getType(0)));
582      ResultOps.push_back(NextRecordedOperandNo++);
583      return;
584    }
585
586    if (DI->getDef()->getName() == "zero_reg") {
587      AddMatcher(new EmitRegisterMatcher(0, N->getType(0)));
588      ResultOps.push_back(NextRecordedOperandNo++);
589      return;
590    }
591
592    // Handle a reference to a register class. This is used
593    // in COPY_TO_SUBREG instructions.
594    if (DI->getDef()->isSubClassOf("RegisterClass")) {
595      std::string Value = getQualifiedName(DI->getDef()) + "RegClassID";
596      AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
597      ResultOps.push_back(NextRecordedOperandNo++);
598      return;
599    }
600  }
601
602  errs() << "unhandled leaf node: \n";
603  N->dump();
604}
605
606/// GetInstPatternNode - Get the pattern for an instruction.
607///
608const TreePatternNode *MatcherGen::
609GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) {
610  const TreePattern *InstPat = Inst.getPattern();
611
612  // FIXME2?: Assume actual pattern comes before "implicit".
613  TreePatternNode *InstPatNode;
614  if (InstPat)
615    InstPatNode = InstPat->getTree(0);
616  else if (/*isRoot*/ N == Pattern.getDstPattern())
617    InstPatNode = Pattern.getSrcPattern();
618  else
619    return 0;
620
621  if (InstPatNode && !InstPatNode->isLeaf() &&
622      InstPatNode->getOperator()->getName() == "set")
623    InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
624
625  return InstPatNode;
626}
627
628void MatcherGen::
629EmitResultInstructionAsOperand(const TreePatternNode *N,
630                               SmallVectorImpl<unsigned> &OutputOps) {
631  Record *Op = N->getOperator();
632  const CodeGenTarget &CGT = CGP.getTargetInfo();
633  CodeGenInstruction &II = CGT.getInstruction(Op);
634  const DAGInstruction &Inst = CGP.getInstruction(Op);
635
636  // If we can, get the pattern for the instruction we're generating.  We derive
637  // a variety of information from this pattern, such as whether it has a chain.
638  //
639  // FIXME2: This is extremely dubious for several reasons, not the least of
640  // which it gives special status to instructions with patterns that Pat<>
641  // nodes can't duplicate.
642  const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N);
643
644  // NodeHasChain - Whether the instruction node we're creating takes chains.
645  bool NodeHasChain = InstPatNode &&
646                      InstPatNode->TreeHasProperty(SDNPHasChain, CGP);
647
648  bool isRoot = N == Pattern.getDstPattern();
649
650  // TreeHasOutFlag - True if this tree has a flag.
651  bool TreeHasInFlag = false, TreeHasOutFlag = false;
652  if (isRoot) {
653    const TreePatternNode *SrcPat = Pattern.getSrcPattern();
654    TreeHasInFlag = SrcPat->TreeHasProperty(SDNPOptInFlag, CGP) ||
655                    SrcPat->TreeHasProperty(SDNPInFlag, CGP);
656
657    // FIXME2: this is checking the entire pattern, not just the node in
658    // question, doing this just for the root seems like a total hack.
659    TreeHasOutFlag = SrcPat->TreeHasProperty(SDNPOutFlag, CGP);
660  }
661
662  // NumResults - This is the number of results produced by the instruction in
663  // the "outs" list.
664  unsigned NumResults = Inst.getNumResults();
665
666  // Loop over all of the operands of the instruction pattern, emitting code
667  // to fill them all in.  The node 'N' usually has number children equal to
668  // the number of input operands of the instruction.  However, in cases
669  // where there are predicate operands for an instruction, we need to fill
670  // in the 'execute always' values.  Match up the node operands to the
671  // instruction operands to do this.
672  SmallVector<unsigned, 8> InstOps;
673  for (unsigned ChildNo = 0, InstOpNo = NumResults, e = II.OperandList.size();
674       InstOpNo != e; ++InstOpNo) {
675
676    // Determine what to emit for this operand.
677    Record *OperandNode = II.OperandList[InstOpNo].Rec;
678    if ((OperandNode->isSubClassOf("PredicateOperand") ||
679         OperandNode->isSubClassOf("OptionalDefOperand")) &&
680        !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
681      // This is a predicate or optional def operand; emit the
682      // 'default ops' operands.
683      const DAGDefaultOperand &DefaultOp =
684        CGP.getDefaultOperand(II.OperandList[InstOpNo].Rec);
685      for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
686        EmitResultOperand(DefaultOp.DefaultOps[i], InstOps);
687      continue;
688    }
689
690    const TreePatternNode *Child = N->getChild(ChildNo);
691
692    // Otherwise this is a normal operand or a predicate operand without
693    // 'execute always'; emit it.
694    unsigned BeforeAddingNumOps = InstOps.size();
695    EmitResultOperand(Child, InstOps);
696    assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
697
698    // If the operand is an instruction and it produced multiple results, just
699    // take the first one.
700    if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
701      InstOps.resize(BeforeAddingNumOps+1);
702
703    ++ChildNo;
704  }
705
706  // If this node has an input flag or explicitly specified input physregs, we
707  // need to add chained and flagged copyfromreg nodes and materialize the flag
708  // input.
709  if (isRoot && !PhysRegInputs.empty()) {
710    // Emit all of the CopyToReg nodes for the input physical registers.  These
711    // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
712    for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i)
713      AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
714                                          PhysRegInputs[i].first));
715    // Even if the node has no other flag inputs, the resultant node must be
716    // flagged to the CopyFromReg nodes we just generated.
717    TreeHasInFlag = true;
718  }
719
720  // Result order: node results, chain, flags
721
722  // Determine the result types.
723  SmallVector<MVT::SimpleValueType, 4> ResultVTs;
724  for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
725    ResultVTs.push_back(N->getType(i));
726
727  // If this is the root instruction of a pattern that has physical registers in
728  // its result pattern, add output VTs for them.  For example, X86 has:
729  //   (set AL, (mul ...))
730  // This also handles implicit results like:
731  //   (implicit EFLAGS)
732  if (isRoot && !Pattern.getDstRegs().empty()) {
733    // If the root came from an implicit def in the instruction handling stuff,
734    // don't re-add it.
735    Record *HandledReg = 0;
736    if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
737      HandledReg = II.ImplicitDefs[0];
738
739    for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
740      Record *Reg = Pattern.getDstRegs()[i];
741      if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
742      ResultVTs.push_back(getRegisterValueType(Reg, CGT));
743    }
744  }
745
746  // If this is the root of the pattern and the pattern we're matching includes
747  // a node that is variadic, mark the generated node as variadic so that it
748  // gets the excess operands from the input DAG.
749  int NumFixedArityOperands = -1;
750  if (isRoot &&
751      (Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP)))
752    NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
753
754  // If this is the root node and any of the nodes matched nodes in the input
755  // pattern have MemRefs in them, have the interpreter collect them and plop
756  // them onto this node.
757  //
758  // FIXME3: This is actively incorrect for result patterns where the root of
759  // the pattern is not the memory reference and is also incorrect when the
760  // result pattern has multiple memory-referencing instructions.  For example,
761  // in the X86 backend, this pattern causes the memrefs to get attached to the
762  // CVTSS2SDrr instead of the MOVSSrm:
763  //
764  //  def : Pat<(extloadf32 addr:$src),
765  //            (CVTSS2SDrr (MOVSSrm addr:$src))>;
766  //
767  bool NodeHasMemRefs =
768    isRoot && Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
769
770  assert((!ResultVTs.empty() || TreeHasOutFlag || NodeHasChain) &&
771         "Node has no result");
772
773  AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(),
774                                 ResultVTs.data(), ResultVTs.size(),
775                                 InstOps.data(), InstOps.size(),
776                                 NodeHasChain, TreeHasInFlag, TreeHasOutFlag,
777                                 NodeHasMemRefs, NumFixedArityOperands,
778                                 NextRecordedOperandNo));
779
780  // The non-chain and non-flag results of the newly emitted node get recorded.
781  for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
782    if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Flag) break;
783    OutputOps.push_back(NextRecordedOperandNo++);
784  }
785}
786
787void MatcherGen::
788EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
789                               SmallVectorImpl<unsigned> &ResultOps) {
790  assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
791
792  // Emit the operand.
793  SmallVector<unsigned, 8> InputOps;
794
795  // FIXME2: Could easily generalize this to support multiple inputs and outputs
796  // to the SDNodeXForm.  For now we just support one input and one output like
797  // the old instruction selector.
798  assert(N->getNumChildren() == 1);
799  EmitResultOperand(N->getChild(0), InputOps);
800
801  // The input currently must have produced exactly one result.
802  assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
803
804  AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
805  ResultOps.push_back(NextRecordedOperandNo++);
806}
807
808void MatcherGen::EmitResultOperand(const TreePatternNode *N,
809                                   SmallVectorImpl<unsigned> &ResultOps) {
810  // This is something selected from the pattern we matched.
811  if (!N->getName().empty())
812    return EmitResultOfNamedOperand(N, ResultOps);
813
814  if (N->isLeaf())
815    return EmitResultLeafAsOperand(N, ResultOps);
816
817  Record *OpRec = N->getOperator();
818  if (OpRec->isSubClassOf("Instruction"))
819    return EmitResultInstructionAsOperand(N, ResultOps);
820  if (OpRec->isSubClassOf("SDNodeXForm"))
821    return EmitResultSDNodeXFormAsOperand(N, ResultOps);
822  errs() << "Unknown result node to emit code for: " << *N << '\n';
823  throw std::string("Unknown node in result pattern!");
824}
825
826void MatcherGen::EmitResultCode() {
827  // Patterns that match nodes with (potentially multiple) chain inputs have to
828  // merge them together into a token factor.  This informs the generated code
829  // what all the chained nodes are.
830  if (!MatchedChainNodes.empty())
831    AddMatcher(new EmitMergeInputChainsMatcher
832               (MatchedChainNodes.data(), MatchedChainNodes.size()));
833
834  // Codegen the root of the result pattern, capturing the resulting values.
835  SmallVector<unsigned, 8> Ops;
836  EmitResultOperand(Pattern.getDstPattern(), Ops);
837
838  // At this point, we have however many values the result pattern produces.
839  // However, the input pattern might not need all of these.  If there are
840  // excess values at the end (such as implicit defs of condition codes etc)
841  // just lop them off.  This doesn't need to worry about flags or chains, just
842  // explicit results.
843  //
844  unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
845
846  // If the pattern also has (implicit) results, count them as well.
847  if (!Pattern.getDstRegs().empty()) {
848    // If the root came from an implicit def in the instruction handling stuff,
849    // don't re-add it.
850    Record *HandledReg = 0;
851    const TreePatternNode *DstPat = Pattern.getDstPattern();
852    if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
853      const CodeGenTarget &CGT = CGP.getTargetInfo();
854      CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
855
856      if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
857        HandledReg = II.ImplicitDefs[0];
858    }
859
860    for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
861      Record *Reg = Pattern.getDstRegs()[i];
862      if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
863      ++NumSrcResults;
864    }
865  }
866
867  assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");
868  Ops.resize(NumSrcResults);
869
870  // If the matched pattern covers nodes which define a flag result, emit a node
871  // that tells the matcher about them so that it can update their results.
872  if (!MatchedFlagResultNodes.empty())
873    AddMatcher(new MarkFlagResultsMatcher(MatchedFlagResultNodes.data(),
874                                          MatchedFlagResultNodes.size()));
875
876  AddMatcher(new CompleteMatchMatcher(Ops.data(), Ops.size(), Pattern));
877}
878
879
880/// ConvertPatternToMatcher - Create the matcher for the specified pattern with
881/// the specified variant.  If the variant number is invalid, this returns null.
882Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
883                                       unsigned Variant,
884                                       const CodeGenDAGPatterns &CGP) {
885  MatcherGen Gen(Pattern, CGP);
886
887  // Generate the code for the matcher.
888  if (Gen.EmitMatcherCode(Variant))
889    return 0;
890
891  // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
892  // FIXME2: Split result code out to another table, and make the matcher end
893  // with an "Emit <index>" command.  This allows result generation stuff to be
894  // shared and factored?
895
896  // If the match succeeds, then we generate Pattern.
897  Gen.EmitResultCode();
898
899  // Unconditional match.
900  return Gen.GetMatcher();
901}
902
903
904
905