DAGISelMatcherGen.cpp revision 204642
1//===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "DAGISelMatcher.h"
11#include "CodeGenDAGPatterns.h"
12#include "Record.h"
13#include "llvm/ADT/SmallVector.h"
14#include "llvm/ADT/StringMap.h"
15#include <utility>
16using namespace llvm;
17
18
19/// getRegisterValueType - Look up and return the ValueType of the specified
20/// register. If the register is a member of multiple register classes which
21/// have different associated types, return MVT::Other.
22static MVT::SimpleValueType getRegisterValueType(Record *R,
23                                                 const CodeGenTarget &T) {
24  bool FoundRC = false;
25  MVT::SimpleValueType VT = MVT::Other;
26  const std::vector<CodeGenRegisterClass> &RCs = T.getRegisterClasses();
27  std::vector<Record*>::const_iterator Element;
28
29  for (unsigned rc = 0, e = RCs.size(); rc != e; ++rc) {
30    const CodeGenRegisterClass &RC = RCs[rc];
31    if (!std::count(RC.Elements.begin(), RC.Elements.end(), R))
32      continue;
33
34    if (!FoundRC) {
35      FoundRC = true;
36      VT = RC.getValueTypeNum(0);
37      continue;
38    }
39
40    // If this occurs in multiple register classes, they all have to agree.
41    assert(VT == RC.getValueTypeNum(0));
42  }
43  return VT;
44}
45
46
47namespace {
48  class MatcherGen {
49    const PatternToMatch &Pattern;
50    const CodeGenDAGPatterns &CGP;
51
52    /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
53    /// out with all of the types removed.  This allows us to insert type checks
54    /// as we scan the tree.
55    TreePatternNode *PatWithNoTypes;
56
57    /// VariableMap - A map from variable names ('$dst') to the recorded operand
58    /// number that they were captured as.  These are biased by 1 to make
59    /// insertion easier.
60    StringMap<unsigned> VariableMap;
61
62    /// NextRecordedOperandNo - As we emit opcodes to record matched values in
63    /// the RecordedNodes array, this keeps track of which slot will be next to
64    /// record into.
65    unsigned NextRecordedOperandNo;
66
67    /// MatchedChainNodes - This maintains the position in the recorded nodes
68    /// array of all of the recorded input nodes that have chains.
69    SmallVector<unsigned, 2> MatchedChainNodes;
70
71    /// MatchedFlagResultNodes - This maintains the position in the recorded
72    /// nodes array of all of the recorded input nodes that have flag results.
73    SmallVector<unsigned, 2> MatchedFlagResultNodes;
74
75    /// PhysRegInputs - List list has an entry for each explicitly specified
76    /// physreg input to the pattern.  The first elt is the Register node, the
77    /// second is the recorded slot number the input pattern match saved it in.
78    SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
79
80    /// Matcher - This is the top level of the generated matcher, the result.
81    Matcher *TheMatcher;
82
83    /// CurPredicate - As we emit matcher nodes, this points to the latest check
84    /// which should have future checks stuck into its Next position.
85    Matcher *CurPredicate;
86  public:
87    MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
88
89    ~MatcherGen() {
90      delete PatWithNoTypes;
91    }
92
93    bool EmitMatcherCode(unsigned Variant);
94    void EmitResultCode();
95
96    Matcher *GetMatcher() const { return TheMatcher; }
97    Matcher *GetCurPredicate() const { return CurPredicate; }
98  private:
99    void AddMatcher(Matcher *NewNode);
100    void InferPossibleTypes();
101
102    // Matcher Generation.
103    void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes);
104    void EmitLeafMatchCode(const TreePatternNode *N);
105    void EmitOperatorMatchCode(const TreePatternNode *N,
106                               TreePatternNode *NodeNoTypes);
107
108    // Result Code Generation.
109    unsigned getNamedArgumentSlot(StringRef Name) {
110      unsigned VarMapEntry = VariableMap[Name];
111      assert(VarMapEntry != 0 &&
112             "Variable referenced but not defined and not caught earlier!");
113      return VarMapEntry-1;
114    }
115
116    /// GetInstPatternNode - Get the pattern for an instruction.
117    const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins,
118                                              const TreePatternNode *N);
119
120    void EmitResultOperand(const TreePatternNode *N,
121                           SmallVectorImpl<unsigned> &ResultOps);
122    void EmitResultOfNamedOperand(const TreePatternNode *N,
123                                  SmallVectorImpl<unsigned> &ResultOps);
124    void EmitResultLeafAsOperand(const TreePatternNode *N,
125                                 SmallVectorImpl<unsigned> &ResultOps);
126    void EmitResultInstructionAsOperand(const TreePatternNode *N,
127                                        SmallVectorImpl<unsigned> &ResultOps);
128    void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
129                                        SmallVectorImpl<unsigned> &ResultOps);
130    };
131
132} // end anon namespace.
133
134MatcherGen::MatcherGen(const PatternToMatch &pattern,
135                       const CodeGenDAGPatterns &cgp)
136: Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
137  TheMatcher(0), CurPredicate(0) {
138  // We need to produce the matcher tree for the patterns source pattern.  To do
139  // this we need to match the structure as well as the types.  To do the type
140  // matching, we want to figure out the fewest number of type checks we need to
141  // emit.  For example, if there is only one integer type supported by a
142  // target, there should be no type comparisons at all for integer patterns!
143  //
144  // To figure out the fewest number of type checks needed, clone the pattern,
145  // remove the types, then perform type inference on the pattern as a whole.
146  // If there are unresolved types, emit an explicit check for those types,
147  // apply the type to the tree, then rerun type inference.  Iterate until all
148  // types are resolved.
149  //
150  PatWithNoTypes = Pattern.getSrcPattern()->clone();
151  PatWithNoTypes->RemoveAllTypes();
152
153  // If there are types that are manifestly known, infer them.
154  InferPossibleTypes();
155}
156
157/// InferPossibleTypes - As we emit the pattern, we end up generating type
158/// checks and applying them to the 'PatWithNoTypes' tree.  As we do this, we
159/// want to propagate implied types as far throughout the tree as possible so
160/// that we avoid doing redundant type checks.  This does the type propagation.
161void MatcherGen::InferPossibleTypes() {
162  // TP - Get *SOME* tree pattern, we don't care which.  It is only used for
163  // diagnostics, which we know are impossible at this point.
164  TreePattern &TP = *CGP.pf_begin()->second;
165
166  try {
167    bool MadeChange = true;
168    while (MadeChange)
169      MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
170                                                true/*Ignore reg constraints*/);
171  } catch (...) {
172    errs() << "Type constraint application shouldn't fail!";
173    abort();
174  }
175}
176
177
178/// AddMatcher - Add a matcher node to the current graph we're building.
179void MatcherGen::AddMatcher(Matcher *NewNode) {
180  if (CurPredicate != 0)
181    CurPredicate->setNext(NewNode);
182  else
183    TheMatcher = NewNode;
184  CurPredicate = NewNode;
185}
186
187
188//===----------------------------------------------------------------------===//
189// Pattern Match Generation
190//===----------------------------------------------------------------------===//
191
192/// EmitLeafMatchCode - Generate matching code for leaf nodes.
193void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
194  assert(N->isLeaf() && "Not a leaf?");
195
196  // If there are node predicates for this node, generate their checks.
197  for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
198    AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i]));
199
200  // Direct match against an integer constant.
201  if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
202    // If this is the root of the dag we're matching, we emit a redundant opcode
203    // check to ensure that this gets folded into the normal top-level
204    // OpcodeSwitch.
205    if (N == Pattern.getSrcPattern()) {
206      const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
207      AddMatcher(new CheckOpcodeMatcher(NI));
208    }
209
210    return AddMatcher(new CheckIntegerMatcher(II->getValue()));
211  }
212
213  DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue());
214  if (DI == 0) {
215    errs() << "Unknown leaf kind: " << *DI << "\n";
216    abort();
217  }
218
219  Record *LeafRec = DI->getDef();
220  if (// Handle register references.  Nothing to do here, they always match.
221      LeafRec->isSubClassOf("RegisterClass") ||
222      LeafRec->isSubClassOf("PointerLikeRegClass") ||
223      // Place holder for SRCVALUE nodes. Nothing to do here.
224      LeafRec->getName() == "srcvalue")
225    return;
226
227  // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
228  // record the register
229  if (LeafRec->isSubClassOf("Register")) {
230    AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(),
231                                 NextRecordedOperandNo));
232    PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
233    return;
234  }
235
236  if (LeafRec->isSubClassOf("ValueType"))
237    return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
238
239  if (LeafRec->isSubClassOf("CondCode"))
240    return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
241
242  if (LeafRec->isSubClassOf("ComplexPattern")) {
243    // We can't model ComplexPattern uses that don't have their name taken yet.
244    // The OPC_CheckComplexPattern operation implicitly records the results.
245    if (N->getName().empty()) {
246      errs() << "We expect complex pattern uses to have names: " << *N << "\n";
247      exit(1);
248    }
249
250    // Handle complex pattern.
251    const ComplexPattern &CP = CGP.getComplexPattern(LeafRec);
252
253    // Emit a CheckComplexPat operation, which does the match (aborting if it
254    // fails) and pushes the matched operands onto the recorded nodes list.
255    AddMatcher(new CheckComplexPatMatcher(CP));
256
257    // Record the right number of operands.
258    NextRecordedOperandNo += CP.getNumOperands();
259    if (CP.hasProperty(SDNPHasChain))
260      ++NextRecordedOperandNo; // Chained node operand.
261
262    // If the complex pattern has a chain, then we need to keep track of the
263    // fact that we just recorded a chain input.  The chain input will be
264    // matched as the last operand of the predicate if it was successful.
265    if (CP.hasProperty(SDNPHasChain)) {
266      // It is the last operand recorded.
267      assert(NextRecordedOperandNo > 1 &&
268             "Should have recorded input/result chains at least!");
269      MatchedChainNodes.push_back(NextRecordedOperandNo-1);
270    }
271
272    // TODO: Complex patterns can't have output flags, if they did, we'd want
273    // to record them.
274    return;
275  }
276
277  errs() << "Unknown leaf kind: " << *N << "\n";
278  abort();
279}
280
281void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
282                                       TreePatternNode *NodeNoTypes) {
283  assert(!N->isLeaf() && "Not an operator?");
284  const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
285
286  // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
287  // a constant without a predicate fn that has more that one bit set, handle
288  // this as a special case.  This is usually for targets that have special
289  // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
290  // handling stuff).  Using these instructions is often far more efficient
291  // than materializing the constant.  Unfortunately, both the instcombiner
292  // and the dag combiner can often infer that bits are dead, and thus drop
293  // them from the mask in the dag.  For example, it might turn 'AND X, 255'
294  // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks
295  // to handle this.
296  if ((N->getOperator()->getName() == "and" ||
297       N->getOperator()->getName() == "or") &&
298      N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() &&
299      N->getPredicateFns().empty()) {
300    if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) {
301      if (!isPowerOf2_32(II->getValue())) {  // Don't bother with single bits.
302        // If this is at the root of the pattern, we emit a redundant
303        // CheckOpcode so that the following checks get factored properly under
304        // a single opcode check.
305        if (N == Pattern.getSrcPattern())
306          AddMatcher(new CheckOpcodeMatcher(CInfo));
307
308        // Emit the CheckAndImm/CheckOrImm node.
309        if (N->getOperator()->getName() == "and")
310          AddMatcher(new CheckAndImmMatcher(II->getValue()));
311        else
312          AddMatcher(new CheckOrImmMatcher(II->getValue()));
313
314        // Match the LHS of the AND as appropriate.
315        AddMatcher(new MoveChildMatcher(0));
316        EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0));
317        AddMatcher(new MoveParentMatcher());
318        return;
319      }
320    }
321  }
322
323  // Check that the current opcode lines up.
324  AddMatcher(new CheckOpcodeMatcher(CInfo));
325
326  // If there are node predicates for this node, generate their checks.
327  for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
328    AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i]));
329
330
331  // If this node has memory references (i.e. is a load or store), tell the
332  // interpreter to capture them in the memref array.
333  if (N->NodeHasProperty(SDNPMemOperand, CGP))
334    AddMatcher(new RecordMemRefMatcher());
335
336  // If this node has a chain, then the chain is operand #0 is the SDNode, and
337  // the child numbers of the node are all offset by one.
338  unsigned OpNo = 0;
339  if (N->NodeHasProperty(SDNPHasChain, CGP)) {
340    // Record the node and remember it in our chained nodes list.
341    AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
342                                         "' chained node",
343                                 NextRecordedOperandNo));
344    // Remember all of the input chains our pattern will match.
345    MatchedChainNodes.push_back(NextRecordedOperandNo++);
346
347    // Don't look at the input chain when matching the tree pattern to the
348    // SDNode.
349    OpNo = 1;
350
351    // If this node is not the root and the subtree underneath it produces a
352    // chain, then the result of matching the node is also produce a chain.
353    // Beyond that, this means that we're also folding (at least) the root node
354    // into the node that produce the chain (for example, matching
355    // "(add reg, (load ptr))" as a add_with_memory on X86).  This is
356    // problematic, if the 'reg' node also uses the load (say, its chain).
357    // Graphically:
358    //
359    //         [LD]
360    //         ^  ^
361    //         |  \                              DAG's like cheese.
362    //        /    |
363    //       /    [YY]
364    //       |     ^
365    //      [XX]--/
366    //
367    // It would be invalid to fold XX and LD.  In this case, folding the two
368    // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
369    // To prevent this, we emit a dynamic check for legality before allowing
370    // this to be folded.
371    //
372    const TreePatternNode *Root = Pattern.getSrcPattern();
373    if (N != Root) {                             // Not the root of the pattern.
374      // If there is a node between the root and this node, then we definitely
375      // need to emit the check.
376      bool NeedCheck = !Root->hasChild(N);
377
378      // If it *is* an immediate child of the root, we can still need a check if
379      // the root SDNode has multiple inputs.  For us, this means that it is an
380      // intrinsic, has multiple operands, or has other inputs like chain or
381      // flag).
382      if (!NeedCheck) {
383        const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
384        NeedCheck =
385          Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
386          Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
387          Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
388          PInfo.getNumOperands() > 1 ||
389          PInfo.hasProperty(SDNPHasChain) ||
390          PInfo.hasProperty(SDNPInFlag) ||
391          PInfo.hasProperty(SDNPOptInFlag);
392      }
393
394      if (NeedCheck)
395        AddMatcher(new CheckFoldableChainNodeMatcher());
396    }
397  }
398
399  // If this node has an output flag and isn't the root, remember it.
400  if (N->NodeHasProperty(SDNPOutFlag, CGP) &&
401      N != Pattern.getSrcPattern()) {
402    // TODO: This redundantly records nodes with both flags and chains.
403
404    // Record the node and remember it in our chained nodes list.
405    AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
406                                         "' flag output node",
407                                 NextRecordedOperandNo));
408    // Remember all of the nodes with output flags our pattern will match.
409    MatchedFlagResultNodes.push_back(NextRecordedOperandNo++);
410  }
411
412  // If this node is known to have an input flag or if it *might* have an input
413  // flag, capture it as the flag input of the pattern.
414  if (N->NodeHasProperty(SDNPOptInFlag, CGP) ||
415      N->NodeHasProperty(SDNPInFlag, CGP))
416    AddMatcher(new CaptureFlagInputMatcher());
417
418  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
419    // Get the code suitable for matching this child.  Move to the child, check
420    // it then move back to the parent.
421    AddMatcher(new MoveChildMatcher(OpNo));
422    EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i));
423    AddMatcher(new MoveParentMatcher());
424  }
425}
426
427
428void MatcherGen::EmitMatchCode(const TreePatternNode *N,
429                               TreePatternNode *NodeNoTypes) {
430  // If N and NodeNoTypes don't agree on a type, then this is a case where we
431  // need to do a type check.  Emit the check, apply the tyep to NodeNoTypes and
432  // reinfer any correlated types.
433  unsigned NodeType = EEVT::isUnknown;
434  if (NodeNoTypes->getExtTypes() != N->getExtTypes()) {
435    NodeType = N->getTypeNum(0);
436    NodeNoTypes->setTypes(N->getExtTypes());
437    InferPossibleTypes();
438  }
439
440  // If this node has a name associated with it, capture it in VariableMap. If
441  // we already saw this in the pattern, emit code to verify dagness.
442  if (!N->getName().empty()) {
443    unsigned &VarMapEntry = VariableMap[N->getName()];
444    if (VarMapEntry == 0) {
445      // If it is a named node, we must emit a 'Record' opcode.
446      AddMatcher(new RecordMatcher("$" + N->getName(), NextRecordedOperandNo));
447      VarMapEntry = ++NextRecordedOperandNo;
448    } else {
449      // If we get here, this is a second reference to a specific name.  Since
450      // we already have checked that the first reference is valid, we don't
451      // have to recursively match it, just check that it's the same as the
452      // previously named thing.
453      AddMatcher(new CheckSameMatcher(VarMapEntry-1));
454      return;
455    }
456  }
457
458  if (N->isLeaf())
459    EmitLeafMatchCode(N);
460  else
461    EmitOperatorMatchCode(N, NodeNoTypes);
462
463  if (NodeType != EEVT::isUnknown)
464    AddMatcher(new CheckTypeMatcher((MVT::SimpleValueType)NodeType));
465
466}
467
468/// EmitMatcherCode - Generate the code that matches the predicate of this
469/// pattern for the specified Variant.  If the variant is invalid this returns
470/// true and does not generate code, if it is valid, it returns false.
471bool MatcherGen::EmitMatcherCode(unsigned Variant) {
472  // If the root of the pattern is a ComplexPattern and if it is specified to
473  // match some number of root opcodes, these are considered to be our variants.
474  // Depending on which variant we're generating code for, emit the root opcode
475  // check.
476  if (const ComplexPattern *CP =
477                   Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
478    const std::vector<Record*> &OpNodes = CP->getRootNodes();
479    assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
480    if (Variant >= OpNodes.size()) return true;
481
482    AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
483  } else {
484    if (Variant != 0) return true;
485  }
486
487  // If the pattern has a predicate on it (e.g. only enabled when a subtarget
488  // feature is around, do the check).
489  // FIXME: This should get emitted after the match code below to encourage
490  // sharing.  This can't happen until we get an X86ISD::AddrMode node made by
491  // dag combine, eliminating the horrible side-effect-full stuff from
492  // X86's MatchAddress.
493  if (!Pattern.getPredicateCheck().empty())
494    AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
495
496  // Emit the matcher for the pattern structure and types.
497  EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes);
498  return false;
499}
500
501
502//===----------------------------------------------------------------------===//
503// Node Result Generation
504//===----------------------------------------------------------------------===//
505
506void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
507                                          SmallVectorImpl<unsigned> &ResultOps){
508  assert(!N->getName().empty() && "Operand not named!");
509
510  unsigned SlotNo = getNamedArgumentSlot(N->getName());
511
512  // A reference to a complex pattern gets all of the results of the complex
513  // pattern's match.
514  if (const ComplexPattern *CP = N->getComplexPatternInfo(CGP)) {
515    // The first slot entry is the node itself, the subsequent entries are the
516    // matched values.
517    for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
518      ResultOps.push_back(SlotNo+i+1);
519    return;
520  }
521
522  // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
523  // version of the immediate so that it doesn't get selected due to some other
524  // node use.
525  if (!N->isLeaf()) {
526    StringRef OperatorName = N->getOperator()->getName();
527    if (OperatorName == "imm" || OperatorName == "fpimm") {
528      AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
529      ResultOps.push_back(NextRecordedOperandNo++);
530      return;
531    }
532  }
533
534  ResultOps.push_back(SlotNo);
535}
536
537void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
538                                         SmallVectorImpl<unsigned> &ResultOps) {
539  assert(N->isLeaf() && "Must be a leaf");
540
541  if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
542    AddMatcher(new EmitIntegerMatcher(II->getValue(),N->getTypeNum(0)));
543    ResultOps.push_back(NextRecordedOperandNo++);
544    return;
545  }
546
547  // If this is an explicit register reference, handle it.
548  if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
549    if (DI->getDef()->isSubClassOf("Register")) {
550      AddMatcher(new EmitRegisterMatcher(DI->getDef(),
551                                                 N->getTypeNum(0)));
552      ResultOps.push_back(NextRecordedOperandNo++);
553      return;
554    }
555
556    if (DI->getDef()->getName() == "zero_reg") {
557      AddMatcher(new EmitRegisterMatcher(0, N->getTypeNum(0)));
558      ResultOps.push_back(NextRecordedOperandNo++);
559      return;
560    }
561
562    // Handle a reference to a register class. This is used
563    // in COPY_TO_SUBREG instructions.
564    if (DI->getDef()->isSubClassOf("RegisterClass")) {
565      std::string Value = getQualifiedName(DI->getDef()) + "RegClassID";
566      AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
567      ResultOps.push_back(NextRecordedOperandNo++);
568      return;
569    }
570  }
571
572  errs() << "unhandled leaf node: \n";
573  N->dump();
574}
575
576/// GetInstPatternNode - Get the pattern for an instruction.
577///
578const TreePatternNode *MatcherGen::
579GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) {
580  const TreePattern *InstPat = Inst.getPattern();
581
582  // FIXME2?: Assume actual pattern comes before "implicit".
583  TreePatternNode *InstPatNode;
584  if (InstPat)
585    InstPatNode = InstPat->getTree(0);
586  else if (/*isRoot*/ N == Pattern.getDstPattern())
587    InstPatNode = Pattern.getSrcPattern();
588  else
589    return 0;
590
591  if (InstPatNode && !InstPatNode->isLeaf() &&
592      InstPatNode->getOperator()->getName() == "set")
593    InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
594
595  return InstPatNode;
596}
597
598void MatcherGen::
599EmitResultInstructionAsOperand(const TreePatternNode *N,
600                               SmallVectorImpl<unsigned> &OutputOps) {
601  Record *Op = N->getOperator();
602  const CodeGenTarget &CGT = CGP.getTargetInfo();
603  CodeGenInstruction &II = CGT.getInstruction(Op->getName());
604  const DAGInstruction &Inst = CGP.getInstruction(Op);
605
606  // If we can, get the pattern for the instruction we're generating.  We derive
607  // a variety of information from this pattern, such as whether it has a chain.
608  //
609  // FIXME2: This is extremely dubious for several reasons, not the least of
610  // which it gives special status to instructions with patterns that Pat<>
611  // nodes can't duplicate.
612  const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N);
613
614  // NodeHasChain - Whether the instruction node we're creating takes chains.
615  bool NodeHasChain = InstPatNode &&
616                      InstPatNode->TreeHasProperty(SDNPHasChain, CGP);
617
618  bool isRoot = N == Pattern.getDstPattern();
619
620  // TreeHasOutFlag - True if this tree has a flag.
621  bool TreeHasInFlag = false, TreeHasOutFlag = false;
622  if (isRoot) {
623    const TreePatternNode *SrcPat = Pattern.getSrcPattern();
624    TreeHasInFlag = SrcPat->TreeHasProperty(SDNPOptInFlag, CGP) ||
625                    SrcPat->TreeHasProperty(SDNPInFlag, CGP);
626
627    // FIXME2: this is checking the entire pattern, not just the node in
628    // question, doing this just for the root seems like a total hack.
629    TreeHasOutFlag = SrcPat->TreeHasProperty(SDNPOutFlag, CGP);
630  }
631
632  // NumResults - This is the number of results produced by the instruction in
633  // the "outs" list.
634  unsigned NumResults = Inst.getNumResults();
635
636  // Loop over all of the operands of the instruction pattern, emitting code
637  // to fill them all in.  The node 'N' usually has number children equal to
638  // the number of input operands of the instruction.  However, in cases
639  // where there are predicate operands for an instruction, we need to fill
640  // in the 'execute always' values.  Match up the node operands to the
641  // instruction operands to do this.
642  SmallVector<unsigned, 8> InstOps;
643  for (unsigned ChildNo = 0, InstOpNo = NumResults, e = II.OperandList.size();
644       InstOpNo != e; ++InstOpNo) {
645
646    // Determine what to emit for this operand.
647    Record *OperandNode = II.OperandList[InstOpNo].Rec;
648    if ((OperandNode->isSubClassOf("PredicateOperand") ||
649         OperandNode->isSubClassOf("OptionalDefOperand")) &&
650        !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
651      // This is a predicate or optional def operand; emit the
652      // 'default ops' operands.
653      const DAGDefaultOperand &DefaultOp =
654        CGP.getDefaultOperand(II.OperandList[InstOpNo].Rec);
655      for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
656        EmitResultOperand(DefaultOp.DefaultOps[i], InstOps);
657      continue;
658    }
659
660    // Otherwise this is a normal operand or a predicate operand without
661    // 'execute always'; emit it.
662    EmitResultOperand(N->getChild(ChildNo), InstOps);
663    ++ChildNo;
664  }
665
666  // If this node has an input flag or explicitly specified input physregs, we
667  // need to add chained and flagged copyfromreg nodes and materialize the flag
668  // input.
669  if (isRoot && !PhysRegInputs.empty()) {
670    // Emit all of the CopyToReg nodes for the input physical registers.  These
671    // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
672    for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i)
673      AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
674                                                  PhysRegInputs[i].first));
675    // Even if the node has no other flag inputs, the resultant node must be
676    // flagged to the CopyFromReg nodes we just generated.
677    TreeHasInFlag = true;
678  }
679
680  // Result order: node results, chain, flags
681
682  // Determine the result types.
683  SmallVector<MVT::SimpleValueType, 4> ResultVTs;
684  if (NumResults != 0 && N->getTypeNum(0) != MVT::isVoid) {
685    // FIXME2: If the node has multiple results, we should add them.  For now,
686    // preserve existing behavior?!
687    ResultVTs.push_back(N->getTypeNum(0));
688  }
689
690
691  // If this is the root instruction of a pattern that has physical registers in
692  // its result pattern, add output VTs for them.  For example, X86 has:
693  //   (set AL, (mul ...))
694  // This also handles implicit results like:
695  //   (implicit EFLAGS)
696  if (isRoot && Pattern.getDstRegs().size() != 0) {
697    for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i)
698      if (Pattern.getDstRegs()[i]->isSubClassOf("Register"))
699        ResultVTs.push_back(getRegisterValueType(Pattern.getDstRegs()[i], CGT));
700  }
701
702  // FIXME2: Instead of using the isVariadic flag on the instruction, we should
703  // have an SDNP that indicates variadicism.  The TargetInstrInfo isVariadic
704  // property should be inferred from this when an instruction has a pattern.
705  int NumFixedArityOperands = -1;
706  if (isRoot && II.isVariadic)
707    NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
708
709  // If this is the root node and any of the nodes matched nodes in the input
710  // pattern have MemRefs in them, have the interpreter collect them and plop
711  // them onto this node.
712  //
713  // FIXME3: This is actively incorrect for result patterns where the root of
714  // the pattern is not the memory reference and is also incorrect when the
715  // result pattern has multiple memory-referencing instructions.  For example,
716  // in the X86 backend, this pattern causes the memrefs to get attached to the
717  // CVTSS2SDrr instead of the MOVSSrm:
718  //
719  //  def : Pat<(extloadf32 addr:$src),
720  //            (CVTSS2SDrr (MOVSSrm addr:$src))>;
721  //
722  bool NodeHasMemRefs =
723    isRoot && Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
724
725  AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(),
726                                 ResultVTs.data(), ResultVTs.size(),
727                                 InstOps.data(), InstOps.size(),
728                                 NodeHasChain, TreeHasInFlag, TreeHasOutFlag,
729                                 NodeHasMemRefs, NumFixedArityOperands,
730                                 NextRecordedOperandNo));
731
732  // The non-chain and non-flag results of the newly emitted node get recorded.
733  for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
734    if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Flag) break;
735    OutputOps.push_back(NextRecordedOperandNo++);
736  }
737}
738
739void MatcherGen::
740EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
741                               SmallVectorImpl<unsigned> &ResultOps) {
742  assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
743
744  // Emit the operand.
745  SmallVector<unsigned, 8> InputOps;
746
747  // FIXME2: Could easily generalize this to support multiple inputs and outputs
748  // to the SDNodeXForm.  For now we just support one input and one output like
749  // the old instruction selector.
750  assert(N->getNumChildren() == 1);
751  EmitResultOperand(N->getChild(0), InputOps);
752
753  // The input currently must have produced exactly one result.
754  assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
755
756  AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
757  ResultOps.push_back(NextRecordedOperandNo++);
758}
759
760void MatcherGen::EmitResultOperand(const TreePatternNode *N,
761                                   SmallVectorImpl<unsigned> &ResultOps) {
762  // This is something selected from the pattern we matched.
763  if (!N->getName().empty())
764    return EmitResultOfNamedOperand(N, ResultOps);
765
766  if (N->isLeaf())
767    return EmitResultLeafAsOperand(N, ResultOps);
768
769  Record *OpRec = N->getOperator();
770  if (OpRec->isSubClassOf("Instruction"))
771    return EmitResultInstructionAsOperand(N, ResultOps);
772  if (OpRec->isSubClassOf("SDNodeXForm"))
773    return EmitResultSDNodeXFormAsOperand(N, ResultOps);
774  errs() << "Unknown result node to emit code for: " << *N << '\n';
775  throw std::string("Unknown node in result pattern!");
776}
777
778void MatcherGen::EmitResultCode() {
779  // Patterns that match nodes with (potentially multiple) chain inputs have to
780  // merge them together into a token factor.  This informs the generated code
781  // what all the chained nodes are.
782  if (!MatchedChainNodes.empty())
783    AddMatcher(new EmitMergeInputChainsMatcher
784               (MatchedChainNodes.data(), MatchedChainNodes.size()));
785
786  // Codegen the root of the result pattern, capturing the resulting values.
787  SmallVector<unsigned, 8> Ops;
788  EmitResultOperand(Pattern.getDstPattern(), Ops);
789
790  // At this point, we have however many values the result pattern produces.
791  // However, the input pattern might not need all of these.  If there are
792  // excess values at the end (such as condition codes etc) just lop them off.
793  // This doesn't need to worry about flags or chains, just explicit results.
794  //
795  // FIXME2: This doesn't work because there is currently no way to get an
796  // accurate count of the # results the source pattern sets.  This is because
797  // of the "parallel" construct in X86 land, which looks like this:
798  //
799  //def : Pat<(parallel (X86and_flag GR8:$src1, GR8:$src2),
800  //           (implicit EFLAGS)),
801  //  (AND8rr GR8:$src1, GR8:$src2)>;
802  //
803  // This idiom means to match the two-result node X86and_flag (which is
804  // declared as returning a single result, because we can't match multi-result
805  // nodes yet).  In this case, we would have to know that the input has two
806  // results.  However, mul8r is modelled exactly the same way, but without
807  // implicit defs included.  The fix is to support multiple results directly
808  // and eliminate 'parallel'.
809  //
810  // FIXME2: When this is fixed, we should revert the terrible hack in the
811  // OPC_EmitNode code in the interpreter.
812#if 0
813  const TreePatternNode *Src = Pattern.getSrcPattern();
814  unsigned NumSrcResults = Src->getTypeNum(0) != MVT::isVoid ? 1 : 0;
815  NumSrcResults += Pattern.getDstRegs().size();
816  assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");
817  Ops.resize(NumSrcResults);
818#endif
819
820  // If the matched pattern covers nodes which define a flag result, emit a node
821  // that tells the matcher about them so that it can update their results.
822  if (!MatchedFlagResultNodes.empty())
823    AddMatcher(new MarkFlagResultsMatcher(MatchedFlagResultNodes.data(),
824                                          MatchedFlagResultNodes.size()));
825
826  AddMatcher(new CompleteMatchMatcher(Ops.data(), Ops.size(), Pattern));
827}
828
829
830/// ConvertPatternToMatcher - Create the matcher for the specified pattern with
831/// the specified variant.  If the variant number is invalid, this returns null.
832Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
833                                       unsigned Variant,
834                                       const CodeGenDAGPatterns &CGP) {
835  MatcherGen Gen(Pattern, CGP);
836
837  // Generate the code for the matcher.
838  if (Gen.EmitMatcherCode(Variant))
839    return 0;
840
841  // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
842  // FIXME2: Split result code out to another table, and make the matcher end
843  // with an "Emit <index>" command.  This allows result generation stuff to be
844  // shared and factored?
845
846  // If the match succeeds, then we generate Pattern.
847  Gen.EmitResultCode();
848
849  // Unconditional match.
850  return Gen.GetMatcher();
851}
852
853
854
855