CodeGenTarget.cpp revision 226633
1//===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This class wraps target description classes used by the various code
11// generation TableGen backends.  This makes it easier to access the data and
12// provides a single place that needs to check it for validity.  All of these
13// classes throw exceptions on error conditions.
14//
15//===----------------------------------------------------------------------===//
16
17#include "CodeGenTarget.h"
18#include "CodeGenIntrinsics.h"
19#include "llvm/TableGen/Record.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/Support/CommandLine.h"
23#include <algorithm>
24using namespace llvm;
25
26static cl::opt<unsigned>
27AsmParserNum("asmparsernum", cl::init(0),
28             cl::desc("Make -gen-asm-parser emit assembly parser #N"));
29
30static cl::opt<unsigned>
31AsmWriterNum("asmwriternum", cl::init(0),
32             cl::desc("Make -gen-asm-writer emit assembly writer #N"));
33
34/// getValueType - Return the MVT::SimpleValueType that the specified TableGen
35/// record corresponds to.
36MVT::SimpleValueType llvm::getValueType(Record *Rec) {
37  return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
38}
39
40std::string llvm::getName(MVT::SimpleValueType T) {
41  switch (T) {
42  case MVT::Other:   return "UNKNOWN";
43  case MVT::iPTR:    return "TLI.getPointerTy()";
44  case MVT::iPTRAny: return "TLI.getPointerTy()";
45  default: return getEnumName(T);
46  }
47}
48
49std::string llvm::getEnumName(MVT::SimpleValueType T) {
50  switch (T) {
51  case MVT::Other:    return "MVT::Other";
52  case MVT::i1:       return "MVT::i1";
53  case MVT::i8:       return "MVT::i8";
54  case MVT::i16:      return "MVT::i16";
55  case MVT::i32:      return "MVT::i32";
56  case MVT::i64:      return "MVT::i64";
57  case MVT::i128:     return "MVT::i128";
58  case MVT::iAny:     return "MVT::iAny";
59  case MVT::fAny:     return "MVT::fAny";
60  case MVT::vAny:     return "MVT::vAny";
61  case MVT::f32:      return "MVT::f32";
62  case MVT::f64:      return "MVT::f64";
63  case MVT::f80:      return "MVT::f80";
64  case MVT::f128:     return "MVT::f128";
65  case MVT::ppcf128:  return "MVT::ppcf128";
66  case MVT::x86mmx:   return "MVT::x86mmx";
67  case MVT::Glue:     return "MVT::Glue";
68  case MVT::isVoid:   return "MVT::isVoid";
69  case MVT::v2i8:     return "MVT::v2i8";
70  case MVT::v4i8:     return "MVT::v4i8";
71  case MVT::v8i8:     return "MVT::v8i8";
72  case MVT::v16i8:    return "MVT::v16i8";
73  case MVT::v32i8:    return "MVT::v32i8";
74  case MVT::v2i16:    return "MVT::v2i16";
75  case MVT::v4i16:    return "MVT::v4i16";
76  case MVT::v8i16:    return "MVT::v8i16";
77  case MVT::v16i16:   return "MVT::v16i16";
78  case MVT::v2i32:    return "MVT::v2i32";
79  case MVT::v4i32:    return "MVT::v4i32";
80  case MVT::v8i32:    return "MVT::v8i32";
81  case MVT::v1i64:    return "MVT::v1i64";
82  case MVT::v2i64:    return "MVT::v2i64";
83  case MVT::v4i64:    return "MVT::v4i64";
84  case MVT::v8i64:    return "MVT::v8i64";
85  case MVT::v2f32:    return "MVT::v2f32";
86  case MVT::v4f32:    return "MVT::v4f32";
87  case MVT::v8f32:    return "MVT::v8f32";
88  case MVT::v2f64:    return "MVT::v2f64";
89  case MVT::v4f64:    return "MVT::v4f64";
90  case MVT::Metadata: return "MVT::Metadata";
91  case MVT::iPTR:     return "MVT::iPTR";
92  case MVT::iPTRAny:  return "MVT::iPTRAny";
93  case MVT::untyped:  return "MVT::untyped";
94  default: assert(0 && "ILLEGAL VALUE TYPE!"); return "";
95  }
96}
97
98/// getQualifiedName - Return the name of the specified record, with a
99/// namespace qualifier if the record contains one.
100///
101std::string llvm::getQualifiedName(const Record *R) {
102  std::string Namespace;
103  if (R->getValue("Namespace"))
104     Namespace = R->getValueAsString("Namespace");
105  if (Namespace.empty()) return R->getName();
106  return Namespace + "::" + R->getName();
107}
108
109
110/// getTarget - Return the current instance of the Target class.
111///
112CodeGenTarget::CodeGenTarget(RecordKeeper &records)
113  : Records(records), RegBank(0) {
114  std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
115  if (Targets.size() == 0)
116    throw std::string("ERROR: No 'Target' subclasses defined!");
117  if (Targets.size() != 1)
118    throw std::string("ERROR: Multiple subclasses of Target defined!");
119  TargetRec = Targets[0];
120}
121
122
123const std::string &CodeGenTarget::getName() const {
124  return TargetRec->getName();
125}
126
127std::string CodeGenTarget::getInstNamespace() const {
128  for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) {
129    // Make sure not to pick up "TargetOpcode" by accidentally getting
130    // the namespace off the PHI instruction or something.
131    if ((*i)->Namespace != "TargetOpcode")
132      return (*i)->Namespace;
133  }
134
135  return "";
136}
137
138Record *CodeGenTarget::getInstructionSet() const {
139  return TargetRec->getValueAsDef("InstructionSet");
140}
141
142
143/// getAsmParser - Return the AssemblyParser definition for this target.
144///
145Record *CodeGenTarget::getAsmParser() const {
146  std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
147  if (AsmParserNum >= LI.size())
148    throw "Target does not have an AsmParser #" + utostr(AsmParserNum) + "!";
149  return LI[AsmParserNum];
150}
151
152/// getAsmWriter - Return the AssemblyWriter definition for this target.
153///
154Record *CodeGenTarget::getAsmWriter() const {
155  std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
156  if (AsmWriterNum >= LI.size())
157    throw "Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!";
158  return LI[AsmWriterNum];
159}
160
161CodeGenRegBank &CodeGenTarget::getRegBank() const {
162  if (!RegBank)
163    RegBank = new CodeGenRegBank(Records);
164  return *RegBank;
165}
166
167void CodeGenTarget::ReadRegAltNameIndices() const {
168  RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
169  std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord());
170}
171
172/// getRegisterByName - If there is a register with the specific AsmName,
173/// return it.
174const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
175  const std::vector<CodeGenRegister*> &Regs = getRegBank().getRegisters();
176  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
177    if (Regs[i]->TheDef->getValueAsString("AsmName") == Name)
178      return Regs[i];
179
180  return 0;
181}
182
183std::vector<MVT::SimpleValueType> CodeGenTarget::
184getRegisterVTs(Record *R) const {
185  const CodeGenRegister *Reg = getRegBank().getReg(R);
186  std::vector<MVT::SimpleValueType> Result;
187  ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses();
188  for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
189    const CodeGenRegisterClass &RC = *RCs[i];
190    if (RC.contains(Reg)) {
191      const std::vector<MVT::SimpleValueType> &InVTs = RC.getValueTypes();
192      Result.insert(Result.end(), InVTs.begin(), InVTs.end());
193    }
194  }
195
196  // Remove duplicates.
197  array_pod_sort(Result.begin(), Result.end());
198  Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
199  return Result;
200}
201
202
203void CodeGenTarget::ReadLegalValueTypes() const {
204  ArrayRef<CodeGenRegisterClass*> RCs = getRegBank().getRegClasses();
205  for (unsigned i = 0, e = RCs.size(); i != e; ++i)
206    for (unsigned ri = 0, re = RCs[i]->VTs.size(); ri != re; ++ri)
207      LegalValueTypes.push_back(RCs[i]->VTs[ri]);
208
209  // Remove duplicates.
210  std::sort(LegalValueTypes.begin(), LegalValueTypes.end());
211  LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
212                                    LegalValueTypes.end()),
213                        LegalValueTypes.end());
214}
215
216
217void CodeGenTarget::ReadInstructions() const {
218  std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
219  if (Insts.size() <= 2)
220    throw std::string("No 'Instruction' subclasses defined!");
221
222  // Parse the instructions defined in the .td file.
223  for (unsigned i = 0, e = Insts.size(); i != e; ++i)
224    Instructions[Insts[i]] = new CodeGenInstruction(Insts[i]);
225}
226
227static const CodeGenInstruction *
228GetInstByName(const char *Name,
229              const DenseMap<const Record*, CodeGenInstruction*> &Insts,
230              RecordKeeper &Records) {
231  const Record *Rec = Records.getDef(Name);
232
233  DenseMap<const Record*, CodeGenInstruction*>::const_iterator
234    I = Insts.find(Rec);
235  if (Rec == 0 || I == Insts.end())
236    throw std::string("Could not find '") + Name + "' instruction!";
237  return I->second;
238}
239
240namespace {
241/// SortInstByName - Sorting predicate to sort instructions by name.
242///
243struct SortInstByName {
244  bool operator()(const CodeGenInstruction *Rec1,
245                  const CodeGenInstruction *Rec2) const {
246    return Rec1->TheDef->getName() < Rec2->TheDef->getName();
247  }
248};
249}
250
251/// getInstructionsByEnumValue - Return all of the instructions defined by the
252/// target, ordered by their enum value.
253void CodeGenTarget::ComputeInstrsByEnum() const {
254  // The ordering here must match the ordering in TargetOpcodes.h.
255  const char *const FixedInstrs[] = {
256    "PHI",
257    "INLINEASM",
258    "PROLOG_LABEL",
259    "EH_LABEL",
260    "GC_LABEL",
261    "KILL",
262    "EXTRACT_SUBREG",
263    "INSERT_SUBREG",
264    "IMPLICIT_DEF",
265    "SUBREG_TO_REG",
266    "COPY_TO_REGCLASS",
267    "DBG_VALUE",
268    "REG_SEQUENCE",
269    "COPY",
270    0
271  };
272  const DenseMap<const Record*, CodeGenInstruction*> &Insts = getInstructions();
273  for (const char *const *p = FixedInstrs; *p; ++p) {
274    const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
275    assert(Instr && "Missing target independent instruction");
276    assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
277    InstrsByEnum.push_back(Instr);
278  }
279  unsigned EndOfPredefines = InstrsByEnum.size();
280
281  for (DenseMap<const Record*, CodeGenInstruction*>::const_iterator
282       I = Insts.begin(), E = Insts.end(); I != E; ++I) {
283    const CodeGenInstruction *CGI = I->second;
284    if (CGI->Namespace != "TargetOpcode")
285      InstrsByEnum.push_back(CGI);
286  }
287
288  assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
289
290  // All of the instructions are now in random order based on the map iteration.
291  // Sort them by name.
292  std::sort(InstrsByEnum.begin()+EndOfPredefines, InstrsByEnum.end(),
293            SortInstByName());
294}
295
296
297/// isLittleEndianEncoding - Return whether this target encodes its instruction
298/// in little-endian format, i.e. bits laid out in the order [0..n]
299///
300bool CodeGenTarget::isLittleEndianEncoding() const {
301  return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
302}
303
304//===----------------------------------------------------------------------===//
305// ComplexPattern implementation
306//
307ComplexPattern::ComplexPattern(Record *R) {
308  Ty          = ::getValueType(R->getValueAsDef("Ty"));
309  NumOperands = R->getValueAsInt("NumOperands");
310  SelectFunc  = R->getValueAsString("SelectFunc");
311  RootNodes   = R->getValueAsListOfDefs("RootNodes");
312
313  // Parse the properties.
314  Properties = 0;
315  std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
316  for (unsigned i = 0, e = PropList.size(); i != e; ++i)
317    if (PropList[i]->getName() == "SDNPHasChain") {
318      Properties |= 1 << SDNPHasChain;
319    } else if (PropList[i]->getName() == "SDNPOptInGlue") {
320      Properties |= 1 << SDNPOptInGlue;
321    } else if (PropList[i]->getName() == "SDNPMayStore") {
322      Properties |= 1 << SDNPMayStore;
323    } else if (PropList[i]->getName() == "SDNPMayLoad") {
324      Properties |= 1 << SDNPMayLoad;
325    } else if (PropList[i]->getName() == "SDNPSideEffect") {
326      Properties |= 1 << SDNPSideEffect;
327    } else if (PropList[i]->getName() == "SDNPMemOperand") {
328      Properties |= 1 << SDNPMemOperand;
329    } else if (PropList[i]->getName() == "SDNPVariadic") {
330      Properties |= 1 << SDNPVariadic;
331    } else if (PropList[i]->getName() == "SDNPWantRoot") {
332      Properties |= 1 << SDNPWantRoot;
333    } else if (PropList[i]->getName() == "SDNPWantParent") {
334      Properties |= 1 << SDNPWantParent;
335    } else {
336      errs() << "Unsupported SD Node property '" << PropList[i]->getName()
337             << "' on ComplexPattern '" << R->getName() << "'!\n";
338      exit(1);
339    }
340}
341
342//===----------------------------------------------------------------------===//
343// CodeGenIntrinsic Implementation
344//===----------------------------------------------------------------------===//
345
346std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC,
347                                                   bool TargetOnly) {
348  std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic");
349
350  std::vector<CodeGenIntrinsic> Result;
351
352  for (unsigned i = 0, e = I.size(); i != e; ++i) {
353    bool isTarget = I[i]->getValueAsBit("isTarget");
354    if (isTarget == TargetOnly)
355      Result.push_back(CodeGenIntrinsic(I[i]));
356  }
357  return Result;
358}
359
360CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
361  TheDef = R;
362  std::string DefName = R->getName();
363  ModRef = ReadWriteMem;
364  isOverloaded = false;
365  isCommutative = false;
366  canThrow = false;
367
368  if (DefName.size() <= 4 ||
369      std::string(DefName.begin(), DefName.begin() + 4) != "int_")
370    throw "Intrinsic '" + DefName + "' does not start with 'int_'!";
371
372  EnumName = std::string(DefName.begin()+4, DefName.end());
373
374  if (R->getValue("GCCBuiltinName"))  // Ignore a missing GCCBuiltinName field.
375    GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
376
377  TargetPrefix = R->getValueAsString("TargetPrefix");
378  Name = R->getValueAsString("LLVMName");
379
380  if (Name == "") {
381    // If an explicit name isn't specified, derive one from the DefName.
382    Name = "llvm.";
383
384    for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
385      Name += (EnumName[i] == '_') ? '.' : EnumName[i];
386  } else {
387    // Verify it starts with "llvm.".
388    if (Name.size() <= 5 ||
389        std::string(Name.begin(), Name.begin() + 5) != "llvm.")
390      throw "Intrinsic '" + DefName + "'s name does not start with 'llvm.'!";
391  }
392
393  // If TargetPrefix is specified, make sure that Name starts with
394  // "llvm.<targetprefix>.".
395  if (!TargetPrefix.empty()) {
396    if (Name.size() < 6+TargetPrefix.size() ||
397        std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
398        != (TargetPrefix + "."))
399      throw "Intrinsic '" + DefName + "' does not start with 'llvm." +
400        TargetPrefix + ".'!";
401  }
402
403  // Parse the list of return types.
404  std::vector<MVT::SimpleValueType> OverloadedVTs;
405  ListInit *TypeList = R->getValueAsListInit("RetTypes");
406  for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
407    Record *TyEl = TypeList->getElementAsRecord(i);
408    assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
409    MVT::SimpleValueType VT;
410    if (TyEl->isSubClassOf("LLVMMatchType")) {
411      unsigned MatchTy = TyEl->getValueAsInt("Number");
412      assert(MatchTy < OverloadedVTs.size() &&
413             "Invalid matching number!");
414      VT = OverloadedVTs[MatchTy];
415      // It only makes sense to use the extended and truncated vector element
416      // variants with iAny types; otherwise, if the intrinsic is not
417      // overloaded, all the types can be specified directly.
418      assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") &&
419               !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) ||
420              VT == MVT::iAny || VT == MVT::vAny) &&
421             "Expected iAny or vAny type");
422    } else {
423      VT = getValueType(TyEl->getValueAsDef("VT"));
424    }
425    if (EVT(VT).isOverloaded()) {
426      OverloadedVTs.push_back(VT);
427      isOverloaded = true;
428    }
429
430    // Reject invalid types.
431    if (VT == MVT::isVoid)
432      throw "Intrinsic '" + DefName + " has void in result type list!";
433
434    IS.RetVTs.push_back(VT);
435    IS.RetTypeDefs.push_back(TyEl);
436  }
437
438  // Parse the list of parameter types.
439  TypeList = R->getValueAsListInit("ParamTypes");
440  for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
441    Record *TyEl = TypeList->getElementAsRecord(i);
442    assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
443    MVT::SimpleValueType VT;
444    if (TyEl->isSubClassOf("LLVMMatchType")) {
445      unsigned MatchTy = TyEl->getValueAsInt("Number");
446      assert(MatchTy < OverloadedVTs.size() &&
447             "Invalid matching number!");
448      VT = OverloadedVTs[MatchTy];
449      // It only makes sense to use the extended and truncated vector element
450      // variants with iAny types; otherwise, if the intrinsic is not
451      // overloaded, all the types can be specified directly.
452      assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") &&
453               !TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) ||
454              VT == MVT::iAny || VT == MVT::vAny) &&
455             "Expected iAny or vAny type");
456    } else
457      VT = getValueType(TyEl->getValueAsDef("VT"));
458
459    if (EVT(VT).isOverloaded()) {
460      OverloadedVTs.push_back(VT);
461      isOverloaded = true;
462    }
463
464    // Reject invalid types.
465    if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
466      throw "Intrinsic '" + DefName + " has void in result type list!";
467
468    IS.ParamVTs.push_back(VT);
469    IS.ParamTypeDefs.push_back(TyEl);
470  }
471
472  // Parse the intrinsic properties.
473  ListInit *PropList = R->getValueAsListInit("Properties");
474  for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) {
475    Record *Property = PropList->getElementAsRecord(i);
476    assert(Property->isSubClassOf("IntrinsicProperty") &&
477           "Expected a property!");
478
479    if (Property->getName() == "IntrNoMem")
480      ModRef = NoMem;
481    else if (Property->getName() == "IntrReadArgMem")
482      ModRef = ReadArgMem;
483    else if (Property->getName() == "IntrReadMem")
484      ModRef = ReadMem;
485    else if (Property->getName() == "IntrReadWriteArgMem")
486      ModRef = ReadWriteArgMem;
487    else if (Property->getName() == "Commutative")
488      isCommutative = true;
489    else if (Property->getName() == "Throws")
490      canThrow = true;
491    else if (Property->isSubClassOf("NoCapture")) {
492      unsigned ArgNo = Property->getValueAsInt("ArgNo");
493      ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
494    } else
495      assert(0 && "Unknown property!");
496  }
497
498  // Sort the argument attributes for later benefit.
499  std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end());
500}
501