1//===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines structures to encapsulate information gleaned from the
10// target register and register class definitions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenRegisters.h"
15#include "CodeGenTarget.h"
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/IntEqClasses.h"
20#include "llvm/ADT/SetVector.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/ADT/StringRef.h"
27#include "llvm/ADT/Twine.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/TableGen/Error.h"
32#include "llvm/TableGen/Record.h"
33#include <algorithm>
34#include <cassert>
35#include <cstdint>
36#include <iterator>
37#include <map>
38#include <queue>
39#include <set>
40#include <string>
41#include <tuple>
42#include <utility>
43#include <vector>
44
45using namespace llvm;
46
47#define DEBUG_TYPE "regalloc-emitter"
48
49//===----------------------------------------------------------------------===//
50//                             CodeGenSubRegIndex
51//===----------------------------------------------------------------------===//
52
53CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
54  : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) {
55  Name = R->getName();
56  if (R->getValue("Namespace"))
57    Namespace = R->getValueAsString("Namespace");
58  Size = R->getValueAsInt("Size");
59  Offset = R->getValueAsInt("Offset");
60}
61
62CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
63                                       unsigned Enum)
64  : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1),
65    EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) {
66}
67
68std::string CodeGenSubRegIndex::getQualifiedName() const {
69  std::string N = getNamespace();
70  if (!N.empty())
71    N += "::";
72  N += getName();
73  return N;
74}
75
76void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
77  if (!TheDef)
78    return;
79
80  std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
81  if (!Comps.empty()) {
82    if (Comps.size() != 2)
83      PrintFatalError(TheDef->getLoc(),
84                      "ComposedOf must have exactly two entries");
85    CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
86    CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
87    CodeGenSubRegIndex *X = A->addComposite(B, this);
88    if (X)
89      PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
90  }
91
92  std::vector<Record*> Parts =
93    TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
94  if (!Parts.empty()) {
95    if (Parts.size() < 2)
96      PrintFatalError(TheDef->getLoc(),
97                      "CoveredBySubRegs must have two or more entries");
98    SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
99    for (Record *Part : Parts)
100      IdxParts.push_back(RegBank.getSubRegIdx(Part));
101    setConcatenationOf(IdxParts);
102  }
103}
104
105LaneBitmask CodeGenSubRegIndex::computeLaneMask() const {
106  // Already computed?
107  if (LaneMask.any())
108    return LaneMask;
109
110  // Recursion guard, shouldn't be required.
111  LaneMask = LaneBitmask::getAll();
112
113  // The lane mask is simply the union of all sub-indices.
114  LaneBitmask M;
115  for (const auto &C : Composed)
116    M |= C.second->computeLaneMask();
117  assert(M.any() && "Missing lane mask, sub-register cycle?");
118  LaneMask = M;
119  return LaneMask;
120}
121
122void CodeGenSubRegIndex::setConcatenationOf(
123    ArrayRef<CodeGenSubRegIndex*> Parts) {
124  if (ConcatenationOf.empty())
125    ConcatenationOf.assign(Parts.begin(), Parts.end());
126  else
127    assert(std::equal(Parts.begin(), Parts.end(),
128                      ConcatenationOf.begin()) && "parts consistent");
129}
130
131void CodeGenSubRegIndex::computeConcatTransitiveClosure() {
132  for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator
133       I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) {
134    CodeGenSubRegIndex *SubIdx = *I;
135    SubIdx->computeConcatTransitiveClosure();
136#ifndef NDEBUG
137    for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf)
138      assert(SRI->ConcatenationOf.empty() && "No transitive closure?");
139#endif
140
141    if (SubIdx->ConcatenationOf.empty()) {
142      ++I;
143    } else {
144      I = ConcatenationOf.erase(I);
145      I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(),
146                                 SubIdx->ConcatenationOf.end());
147      I += SubIdx->ConcatenationOf.size();
148    }
149  }
150}
151
152//===----------------------------------------------------------------------===//
153//                              CodeGenRegister
154//===----------------------------------------------------------------------===//
155
156CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
157  : TheDef(R),
158    EnumValue(Enum),
159    CostPerUse(R->getValueAsInt("CostPerUse")),
160    CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
161    HasDisjunctSubRegs(false),
162    SubRegsComplete(false),
163    SuperRegsComplete(false),
164    TopoSig(~0u) {
165  Artificial = R->getValueAsBit("isArtificial");
166}
167
168void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
169  std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
170  std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
171
172  if (SRIs.size() != SRs.size())
173    PrintFatalError(TheDef->getLoc(),
174                    "SubRegs and SubRegIndices must have the same size");
175
176  for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
177    ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
178    ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
179  }
180
181  // Also compute leading super-registers. Each register has a list of
182  // covered-by-subregs super-registers where it appears as the first explicit
183  // sub-register.
184  //
185  // This is used by computeSecondarySubRegs() to find candidates.
186  if (CoveredBySubRegs && !ExplicitSubRegs.empty())
187    ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
188
189  // Add ad hoc alias links. This is a symmetric relationship between two
190  // registers, so build a symmetric graph by adding links in both ends.
191  std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
192  for (Record *Alias : Aliases) {
193    CodeGenRegister *Reg = RegBank.getReg(Alias);
194    ExplicitAliases.push_back(Reg);
195    Reg->ExplicitAliases.push_back(this);
196  }
197}
198
199const StringRef CodeGenRegister::getName() const {
200  assert(TheDef && "no def");
201  return TheDef->getName();
202}
203
204namespace {
205
206// Iterate over all register units in a set of registers.
207class RegUnitIterator {
208  CodeGenRegister::Vec::const_iterator RegI, RegE;
209  CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
210
211public:
212  RegUnitIterator(const CodeGenRegister::Vec &Regs):
213    RegI(Regs.begin()), RegE(Regs.end()) {
214
215    if (RegI != RegE) {
216      UnitI = (*RegI)->getRegUnits().begin();
217      UnitE = (*RegI)->getRegUnits().end();
218      advance();
219    }
220  }
221
222  bool isValid() const { return UnitI != UnitE; }
223
224  unsigned operator* () const { assert(isValid()); return *UnitI; }
225
226  const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
227
228  /// Preincrement.  Move to the next unit.
229  void operator++() {
230    assert(isValid() && "Cannot advance beyond the last operand");
231    ++UnitI;
232    advance();
233  }
234
235protected:
236  void advance() {
237    while (UnitI == UnitE) {
238      if (++RegI == RegE)
239        break;
240      UnitI = (*RegI)->getRegUnits().begin();
241      UnitE = (*RegI)->getRegUnits().end();
242    }
243  }
244};
245
246} // end anonymous namespace
247
248// Return true of this unit appears in RegUnits.
249static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
250  return RegUnits.test(Unit);
251}
252
253// Inherit register units from subregisters.
254// Return true if the RegUnits changed.
255bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
256  bool changed = false;
257  for (const auto &SubReg : SubRegs) {
258    CodeGenRegister *SR = SubReg.second;
259    // Merge the subregister's units into this register's RegUnits.
260    changed |= (RegUnits |= SR->RegUnits);
261  }
262
263  return changed;
264}
265
266const CodeGenRegister::SubRegMap &
267CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
268  // Only compute this map once.
269  if (SubRegsComplete)
270    return SubRegs;
271  SubRegsComplete = true;
272
273  HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
274
275  // First insert the explicit subregs and make sure they are fully indexed.
276  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
277    CodeGenRegister *SR = ExplicitSubRegs[i];
278    CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
279    if (!SR->Artificial)
280      Idx->Artificial = false;
281    if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
282      PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
283                      " appears twice in Register " + getName());
284    // Map explicit sub-registers first, so the names take precedence.
285    // The inherited sub-registers are mapped below.
286    SubReg2Idx.insert(std::make_pair(SR, Idx));
287  }
288
289  // Keep track of inherited subregs and how they can be reached.
290  SmallPtrSet<CodeGenRegister*, 8> Orphans;
291
292  // Clone inherited subregs and place duplicate entries in Orphans.
293  // Here the order is important - earlier subregs take precedence.
294  for (CodeGenRegister *ESR : ExplicitSubRegs) {
295    const SubRegMap &Map = ESR->computeSubRegs(RegBank);
296    HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs;
297
298    for (const auto &SR : Map) {
299      if (!SubRegs.insert(SR).second)
300        Orphans.insert(SR.second);
301    }
302  }
303
304  // Expand any composed subreg indices.
305  // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
306  // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
307  // expanded subreg indices recursively.
308  SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
309  for (unsigned i = 0; i != Indices.size(); ++i) {
310    CodeGenSubRegIndex *Idx = Indices[i];
311    const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
312    CodeGenRegister *SR = SubRegs[Idx];
313    const SubRegMap &Map = SR->computeSubRegs(RegBank);
314
315    // Look at the possible compositions of Idx.
316    // They may not all be supported by SR.
317    for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
318           E = Comps.end(); I != E; ++I) {
319      SubRegMap::const_iterator SRI = Map.find(I->first);
320      if (SRI == Map.end())
321        continue; // Idx + I->first doesn't exist in SR.
322      // Add I->second as a name for the subreg SRI->second, assuming it is
323      // orphaned, and the name isn't already used for something else.
324      if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
325        continue;
326      // We found a new name for the orphaned sub-register.
327      SubRegs.insert(std::make_pair(I->second, SRI->second));
328      Indices.push_back(I->second);
329    }
330  }
331
332  // Now Orphans contains the inherited subregisters without a direct index.
333  // Create inferred indexes for all missing entries.
334  // Work backwards in the Indices vector in order to compose subregs bottom-up.
335  // Consider this subreg sequence:
336  //
337  //   qsub_1 -> dsub_0 -> ssub_0
338  //
339  // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
340  // can be reached in two different ways:
341  //
342  //   qsub_1 -> ssub_0
343  //   dsub_2 -> ssub_0
344  //
345  // We pick the latter composition because another register may have [dsub_0,
346  // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
347  // dsub_2 -> ssub_0 composition can be shared.
348  while (!Indices.empty() && !Orphans.empty()) {
349    CodeGenSubRegIndex *Idx = Indices.pop_back_val();
350    CodeGenRegister *SR = SubRegs[Idx];
351    const SubRegMap &Map = SR->computeSubRegs(RegBank);
352    for (const auto &SubReg : Map)
353      if (Orphans.erase(SubReg.second))
354        SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second;
355  }
356
357  // Compute the inverse SubReg -> Idx map.
358  for (const auto &SubReg : SubRegs) {
359    if (SubReg.second == this) {
360      ArrayRef<SMLoc> Loc;
361      if (TheDef)
362        Loc = TheDef->getLoc();
363      PrintFatalError(Loc, "Register " + getName() +
364                      " has itself as a sub-register");
365    }
366
367    // Compute AllSuperRegsCovered.
368    if (!CoveredBySubRegs)
369      SubReg.first->AllSuperRegsCovered = false;
370
371    // Ensure that every sub-register has a unique name.
372    DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
373      SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first;
374    if (Ins->second == SubReg.first)
375      continue;
376    // Trouble: Two different names for SubReg.second.
377    ArrayRef<SMLoc> Loc;
378    if (TheDef)
379      Loc = TheDef->getLoc();
380    PrintFatalError(Loc, "Sub-register can't have two names: " +
381                  SubReg.second->getName() + " available as " +
382                  SubReg.first->getName() + " and " + Ins->second->getName());
383  }
384
385  // Derive possible names for sub-register concatenations from any explicit
386  // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
387  // that getConcatSubRegIndex() won't invent any concatenated indices that the
388  // user already specified.
389  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
390    CodeGenRegister *SR = ExplicitSubRegs[i];
391    if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 ||
392        SR->Artificial)
393      continue;
394
395    // SR is composed of multiple sub-regs. Find their names in this register.
396    SmallVector<CodeGenSubRegIndex*, 8> Parts;
397    for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) {
398      CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j];
399      if (!I.Artificial)
400        Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
401    }
402
403    // Offer this as an existing spelling for the concatenation of Parts.
404    CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i];
405    Idx.setConcatenationOf(Parts);
406  }
407
408  // Initialize RegUnitList. Because getSubRegs is called recursively, this
409  // processes the register hierarchy in postorder.
410  //
411  // Inherit all sub-register units. It is good enough to look at the explicit
412  // sub-registers, the other registers won't contribute any more units.
413  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
414    CodeGenRegister *SR = ExplicitSubRegs[i];
415    RegUnits |= SR->RegUnits;
416  }
417
418  // Absent any ad hoc aliasing, we create one register unit per leaf register.
419  // These units correspond to the maximal cliques in the register overlap
420  // graph which is optimal.
421  //
422  // When there is ad hoc aliasing, we simply create one unit per edge in the
423  // undirected ad hoc aliasing graph. Technically, we could do better by
424  // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
425  // are extremely rare anyway (I've never seen one), so we don't bother with
426  // the added complexity.
427  for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
428    CodeGenRegister *AR = ExplicitAliases[i];
429    // Only visit each edge once.
430    if (AR->SubRegsComplete)
431      continue;
432    // Create a RegUnit representing this alias edge, and add it to both
433    // registers.
434    unsigned Unit = RegBank.newRegUnit(this, AR);
435    RegUnits.set(Unit);
436    AR->RegUnits.set(Unit);
437  }
438
439  // Finally, create units for leaf registers without ad hoc aliases. Note that
440  // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
441  // necessary. This means the aliasing leaf registers can share a single unit.
442  if (RegUnits.empty())
443    RegUnits.set(RegBank.newRegUnit(this));
444
445  // We have now computed the native register units. More may be adopted later
446  // for balancing purposes.
447  NativeRegUnits = RegUnits;
448
449  return SubRegs;
450}
451
452// In a register that is covered by its sub-registers, try to find redundant
453// sub-registers. For example:
454//
455//   QQ0 = {Q0, Q1}
456//   Q0 = {D0, D1}
457//   Q1 = {D2, D3}
458//
459// We can infer that D1_D2 is also a sub-register, even if it wasn't named in
460// the register definition.
461//
462// The explicitly specified registers form a tree. This function discovers
463// sub-register relationships that would force a DAG.
464//
465void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
466  SmallVector<SubRegMap::value_type, 8> NewSubRegs;
467
468  std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue;
469  for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs)
470    SubRegQueue.push(P);
471
472  // Look at the leading super-registers of each sub-register. Those are the
473  // candidates for new sub-registers, assuming they are fully contained in
474  // this register.
475  while (!SubRegQueue.empty()) {
476    CodeGenSubRegIndex *SubRegIdx;
477    const CodeGenRegister *SubReg;
478    std::tie(SubRegIdx, SubReg) = SubRegQueue.front();
479    SubRegQueue.pop();
480
481    const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
482    for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
483      CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
484      // Already got this sub-register?
485      if (Cand == this || getSubRegIndex(Cand))
486        continue;
487      // Check if each component of Cand is already a sub-register.
488      assert(!Cand->ExplicitSubRegs.empty() &&
489             "Super-register has no sub-registers");
490      if (Cand->ExplicitSubRegs.size() == 1)
491        continue;
492      SmallVector<CodeGenSubRegIndex*, 8> Parts;
493      // We know that the first component is (SubRegIdx,SubReg). However we
494      // may still need to split it into smaller subregister parts.
495      assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct");
496      assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct");
497      for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) {
498        if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) {
499          if (SubRegIdx->ConcatenationOf.empty()) {
500            Parts.push_back(SubRegIdx);
501          } else
502            for (CodeGenSubRegIndex *SubIdx : SubRegIdx->ConcatenationOf)
503              Parts.push_back(SubIdx);
504        } else {
505          // Sub-register doesn't exist.
506          Parts.clear();
507          break;
508        }
509      }
510      // There is nothing to do if some Cand sub-register is not part of this
511      // register.
512      if (Parts.empty())
513        continue;
514
515      // Each part of Cand is a sub-register of this. Make the full Cand also
516      // a sub-register with a concatenated sub-register index.
517      CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts);
518      std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg =
519          std::make_pair(Concat, Cand);
520
521      if (!SubRegs.insert(NewSubReg).second)
522        continue;
523
524      // We inserted a new subregister.
525      NewSubRegs.push_back(NewSubReg);
526      SubRegQueue.push(NewSubReg);
527      SubReg2Idx.insert(std::make_pair(Cand, Concat));
528    }
529  }
530
531  // Create sub-register index composition maps for the synthesized indices.
532  for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
533    CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
534    CodeGenRegister *NewSubReg = NewSubRegs[i].second;
535    for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
536           SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
537      CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
538      if (!SubIdx)
539        PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
540                        SI->second->getName() + " in " + getName());
541      NewIdx->addComposite(SI->first, SubIdx);
542    }
543  }
544}
545
546void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
547  // Only visit each register once.
548  if (SuperRegsComplete)
549    return;
550  SuperRegsComplete = true;
551
552  // Make sure all sub-registers have been visited first, so the super-reg
553  // lists will be topologically ordered.
554  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
555       I != E; ++I)
556    I->second->computeSuperRegs(RegBank);
557
558  // Now add this as a super-register on all sub-registers.
559  // Also compute the TopoSigId in post-order.
560  TopoSigId Id;
561  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
562       I != E; ++I) {
563    // Topological signature computed from SubIdx, TopoId(SubReg).
564    // Loops and idempotent indices have TopoSig = ~0u.
565    Id.push_back(I->first->EnumValue);
566    Id.push_back(I->second->TopoSig);
567
568    // Don't add duplicate entries.
569    if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
570      continue;
571    I->second->SuperRegs.push_back(this);
572  }
573  TopoSig = RegBank.getTopoSig(Id);
574}
575
576void
577CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
578                                    CodeGenRegBank &RegBank) const {
579  assert(SubRegsComplete && "Must precompute sub-registers");
580  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
581    CodeGenRegister *SR = ExplicitSubRegs[i];
582    if (OSet.insert(SR))
583      SR->addSubRegsPreOrder(OSet, RegBank);
584  }
585  // Add any secondary sub-registers that weren't part of the explicit tree.
586  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
587       I != E; ++I)
588    OSet.insert(I->second);
589}
590
591// Get the sum of this register's unit weights.
592unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
593  unsigned Weight = 0;
594  for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end();
595       I != E; ++I) {
596    Weight += RegBank.getRegUnit(*I).Weight;
597  }
598  return Weight;
599}
600
601//===----------------------------------------------------------------------===//
602//                               RegisterTuples
603//===----------------------------------------------------------------------===//
604
605// A RegisterTuples def is used to generate pseudo-registers from lists of
606// sub-registers. We provide a SetTheory expander class that returns the new
607// registers.
608namespace {
609
610struct TupleExpander : SetTheory::Expander {
611  // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of
612  // the synthesized definitions for their lifetime.
613  std::vector<std::unique_ptr<Record>> &SynthDefs;
614
615  TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs)
616      : SynthDefs(SynthDefs) {}
617
618  void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
619    std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
620    unsigned Dim = Indices.size();
621    ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
622    if (Dim != SubRegs->size())
623      PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
624    if (Dim < 2)
625      PrintFatalError(Def->getLoc(),
626                      "Tuples must have at least 2 sub-registers");
627
628    // Evaluate the sub-register lists to be zipped.
629    unsigned Length = ~0u;
630    SmallVector<SetTheory::RecSet, 4> Lists(Dim);
631    for (unsigned i = 0; i != Dim; ++i) {
632      ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
633      Length = std::min(Length, unsigned(Lists[i].size()));
634    }
635
636    if (Length == 0)
637      return;
638
639    // Precompute some types.
640    Record *RegisterCl = Def->getRecords().getClass("Register");
641    RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
642    std::vector<StringRef> RegNames =
643      Def->getValueAsListOfStrings("RegAsmNames");
644
645    // Zip them up.
646    for (unsigned n = 0; n != Length; ++n) {
647      std::string Name;
648      Record *Proto = Lists[0][n];
649      std::vector<Init*> Tuple;
650      unsigned CostPerUse = 0;
651      for (unsigned i = 0; i != Dim; ++i) {
652        Record *Reg = Lists[i][n];
653        if (i) Name += '_';
654        Name += Reg->getName();
655        Tuple.push_back(DefInit::get(Reg));
656        CostPerUse = std::max(CostPerUse,
657                              unsigned(Reg->getValueAsInt("CostPerUse")));
658      }
659
660      StringInit *AsmName = StringInit::get("");
661      if (!RegNames.empty()) {
662        if (RegNames.size() <= n)
663          PrintFatalError(Def->getLoc(),
664                          "Register tuple definition missing name for '" +
665                            Name + "'.");
666        AsmName = StringInit::get(RegNames[n]);
667      }
668
669      // Create a new Record representing the synthesized register. This record
670      // is only for consumption by CodeGenRegister, it is not added to the
671      // RecordKeeper.
672      SynthDefs.emplace_back(
673          std::make_unique<Record>(Name, Def->getLoc(), Def->getRecords()));
674      Record *NewReg = SynthDefs.back().get();
675      Elts.insert(NewReg);
676
677      // Copy Proto super-classes.
678      ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses();
679      for (const auto &SuperPair : Supers)
680        NewReg->addSuperClass(SuperPair.first, SuperPair.second);
681
682      // Copy Proto fields.
683      for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
684        RecordVal RV = Proto->getValues()[i];
685
686        // Skip existing fields, like NAME.
687        if (NewReg->getValue(RV.getNameInit()))
688          continue;
689
690        StringRef Field = RV.getName();
691
692        // Replace the sub-register list with Tuple.
693        if (Field == "SubRegs")
694          RV.setValue(ListInit::get(Tuple, RegisterRecTy));
695
696        if (Field == "AsmName")
697          RV.setValue(AsmName);
698
699        // CostPerUse is aggregated from all Tuple members.
700        if (Field == "CostPerUse")
701          RV.setValue(IntInit::get(CostPerUse));
702
703        // Composite registers are always covered by sub-registers.
704        if (Field == "CoveredBySubRegs")
705          RV.setValue(BitInit::get(true));
706
707        // Copy fields from the RegisterTuples def.
708        if (Field == "SubRegIndices" ||
709            Field == "CompositeIndices") {
710          NewReg->addValue(*Def->getValue(Field));
711          continue;
712        }
713
714        // Some fields get their default uninitialized value.
715        if (Field == "DwarfNumbers" ||
716            Field == "DwarfAlias" ||
717            Field == "Aliases") {
718          if (const RecordVal *DefRV = RegisterCl->getValue(Field))
719            NewReg->addValue(*DefRV);
720          continue;
721        }
722
723        // Everything else is copied from Proto.
724        NewReg->addValue(RV);
725      }
726    }
727  }
728};
729
730} // end anonymous namespace
731
732//===----------------------------------------------------------------------===//
733//                            CodeGenRegisterClass
734//===----------------------------------------------------------------------===//
735
736static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
737  llvm::sort(M, deref<std::less<>>());
738  M.erase(std::unique(M.begin(), M.end(), deref<std::equal_to<>>()), M.end());
739}
740
741CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
742  : TheDef(R),
743    Name(R->getName()),
744    TopoSigs(RegBank.getNumTopoSigs()),
745    EnumValue(-1) {
746
747  std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
748  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
749    Record *Type = TypeList[i];
750    if (!Type->isSubClassOf("ValueType"))
751      PrintFatalError(R->getLoc(),
752                      "RegTypes list member '" + Type->getName() +
753                          "' does not derive from the ValueType class!");
754    VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes()));
755  }
756  assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
757
758  // Allocation order 0 is the full set. AltOrders provides others.
759  const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
760  ListInit *AltOrders = R->getValueAsListInit("AltOrders");
761  Orders.resize(1 + AltOrders->size());
762
763  // Default allocation order always contains all registers.
764  Artificial = true;
765  for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
766    Orders[0].push_back((*Elements)[i]);
767    const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
768    Members.push_back(Reg);
769    Artificial &= Reg->Artificial;
770    TopoSigs.set(Reg->getTopoSig());
771  }
772  sortAndUniqueRegisters(Members);
773
774  // Alternative allocation orders may be subsets.
775  SetTheory::RecSet Order;
776  for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
777    RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
778    Orders[1 + i].append(Order.begin(), Order.end());
779    // Verify that all altorder members are regclass members.
780    while (!Order.empty()) {
781      CodeGenRegister *Reg = RegBank.getReg(Order.back());
782      Order.pop_back();
783      if (!contains(Reg))
784        PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
785                      " is not a class member");
786    }
787  }
788
789  Namespace = R->getValueAsString("Namespace");
790
791  if (const RecordVal *RV = R->getValue("RegInfos"))
792    if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue()))
793      RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes());
794  unsigned Size = R->getValueAsInt("Size");
795  assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) &&
796         "Impossible to determine register size");
797  if (!RSI.hasDefault()) {
798    RegSizeInfo RI;
799    RI.RegSize = RI.SpillSize = Size ? Size
800                                     : VTs[0].getSimple().getSizeInBits();
801    RI.SpillAlignment = R->getValueAsInt("Alignment");
802    RSI.Map.insert({DefaultMode, RI});
803  }
804
805  CopyCost = R->getValueAsInt("CopyCost");
806  Allocatable = R->getValueAsBit("isAllocatable");
807  AltOrderSelect = R->getValueAsString("AltOrderSelect");
808  int AllocationPriority = R->getValueAsInt("AllocationPriority");
809  if (AllocationPriority < 0 || AllocationPriority > 63)
810    PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]");
811  this->AllocationPriority = AllocationPriority;
812}
813
814// Create an inferred register class that was missing from the .td files.
815// Most properties will be inherited from the closest super-class after the
816// class structure has been computed.
817CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
818                                           StringRef Name, Key Props)
819  : Members(*Props.Members),
820    TheDef(nullptr),
821    Name(Name),
822    TopoSigs(RegBank.getNumTopoSigs()),
823    EnumValue(-1),
824    RSI(Props.RSI),
825    CopyCost(0),
826    Allocatable(true),
827    AllocationPriority(0) {
828  Artificial = true;
829  for (const auto R : Members) {
830    TopoSigs.set(R->getTopoSig());
831    Artificial &= R->Artificial;
832  }
833}
834
835// Compute inherited propertied for a synthesized register class.
836void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
837  assert(!getDef() && "Only synthesized classes can inherit properties");
838  assert(!SuperClasses.empty() && "Synthesized class without super class");
839
840  // The last super-class is the smallest one.
841  CodeGenRegisterClass &Super = *SuperClasses.back();
842
843  // Most properties are copied directly.
844  // Exceptions are members, size, and alignment
845  Namespace = Super.Namespace;
846  VTs = Super.VTs;
847  CopyCost = Super.CopyCost;
848  Allocatable = Super.Allocatable;
849  AltOrderSelect = Super.AltOrderSelect;
850  AllocationPriority = Super.AllocationPriority;
851
852  // Copy all allocation orders, filter out foreign registers from the larger
853  // super-class.
854  Orders.resize(Super.Orders.size());
855  for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
856    for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
857      if (contains(RegBank.getReg(Super.Orders[i][j])))
858        Orders[i].push_back(Super.Orders[i][j]);
859}
860
861bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
862  return std::binary_search(Members.begin(), Members.end(), Reg,
863                            deref<std::less<>>());
864}
865
866namespace llvm {
867
868  raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
869    OS << "{ " << K.RSI;
870    for (const auto R : *K.Members)
871      OS << ", " << R->getName();
872    return OS << " }";
873  }
874
875} // end namespace llvm
876
877// This is a simple lexicographical order that can be used to search for sets.
878// It is not the same as the topological order provided by TopoOrderRC.
879bool CodeGenRegisterClass::Key::
880operator<(const CodeGenRegisterClass::Key &B) const {
881  assert(Members && B.Members);
882  return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI);
883}
884
885// Returns true if RC is a strict subclass.
886// RC is a sub-class of this class if it is a valid replacement for any
887// instruction operand where a register of this classis required. It must
888// satisfy these conditions:
889//
890// 1. All RC registers are also in this.
891// 2. The RC spill size must not be smaller than our spill size.
892// 3. RC spill alignment must be compatible with ours.
893//
894static bool testSubClass(const CodeGenRegisterClass *A,
895                         const CodeGenRegisterClass *B) {
896  return A->RSI.isSubClassOf(B->RSI) &&
897         std::includes(A->getMembers().begin(), A->getMembers().end(),
898                       B->getMembers().begin(), B->getMembers().end(),
899                       deref<std::less<>>());
900}
901
902/// Sorting predicate for register classes.  This provides a topological
903/// ordering that arranges all register classes before their sub-classes.
904///
905/// Register classes with the same registers, spill size, and alignment form a
906/// clique.  They will be ordered alphabetically.
907///
908static bool TopoOrderRC(const CodeGenRegisterClass &PA,
909                        const CodeGenRegisterClass &PB) {
910  auto *A = &PA;
911  auto *B = &PB;
912  if (A == B)
913    return false;
914
915  if (A->RSI < B->RSI)
916    return true;
917  if (A->RSI != B->RSI)
918    return false;
919
920  // Order by descending set size.  Note that the classes' allocation order may
921  // not have been computed yet.  The Members set is always vaild.
922  if (A->getMembers().size() > B->getMembers().size())
923    return true;
924  if (A->getMembers().size() < B->getMembers().size())
925    return false;
926
927  // Finally order by name as a tie breaker.
928  return StringRef(A->getName()) < B->getName();
929}
930
931std::string CodeGenRegisterClass::getQualifiedName() const {
932  if (Namespace.empty())
933    return getName();
934  else
935    return (Namespace + "::" + getName()).str();
936}
937
938// Compute sub-classes of all register classes.
939// Assume the classes are ordered topologically.
940void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
941  auto &RegClasses = RegBank.getRegClasses();
942
943  // Visit backwards so sub-classes are seen first.
944  for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
945    CodeGenRegisterClass &RC = *I;
946    RC.SubClasses.resize(RegClasses.size());
947    RC.SubClasses.set(RC.EnumValue);
948    if (RC.Artificial)
949      continue;
950
951    // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
952    for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
953      CodeGenRegisterClass &SubRC = *I2;
954      if (RC.SubClasses.test(SubRC.EnumValue))
955        continue;
956      if (!testSubClass(&RC, &SubRC))
957        continue;
958      // SubRC is a sub-class. Grap all its sub-classes so we won't have to
959      // check them again.
960      RC.SubClasses |= SubRC.SubClasses;
961    }
962
963    // Sweep up missed clique members.  They will be immediately preceding RC.
964    for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
965      RC.SubClasses.set(I2->EnumValue);
966  }
967
968  // Compute the SuperClasses lists from the SubClasses vectors.
969  for (auto &RC : RegClasses) {
970    const BitVector &SC = RC.getSubClasses();
971    auto I = RegClasses.begin();
972    for (int s = 0, next_s = SC.find_first(); next_s != -1;
973         next_s = SC.find_next(s)) {
974      std::advance(I, next_s - s);
975      s = next_s;
976      if (&*I == &RC)
977        continue;
978      I->SuperClasses.push_back(&RC);
979    }
980  }
981
982  // With the class hierarchy in place, let synthesized register classes inherit
983  // properties from their closest super-class. The iteration order here can
984  // propagate properties down multiple levels.
985  for (auto &RC : RegClasses)
986    if (!RC.getDef())
987      RC.inheritProperties(RegBank);
988}
989
990Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
991CodeGenRegisterClass::getMatchingSubClassWithSubRegs(
992    CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const {
993  auto SizeOrder = [](const CodeGenRegisterClass *A,
994                      const CodeGenRegisterClass *B) {
995    return A->getMembers().size() > B->getMembers().size();
996  };
997
998  auto &RegClasses = RegBank.getRegClasses();
999
1000  // Find all the subclasses of this one that fully support the sub-register
1001  // index and order them by size. BiggestSuperRC should always be first.
1002  CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx);
1003  if (!BiggestSuperRegRC)
1004    return None;
1005  BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses();
1006  std::vector<CodeGenRegisterClass *> SuperRegRCs;
1007  for (auto &RC : RegClasses)
1008    if (SuperRegRCsBV[RC.EnumValue])
1009      SuperRegRCs.emplace_back(&RC);
1010  llvm::sort(SuperRegRCs, SizeOrder);
1011  assert(SuperRegRCs.front() == BiggestSuperRegRC && "Biggest class wasn't first");
1012
1013  // Find all the subreg classes and order them by size too.
1014  std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses;
1015  for (auto &RC: RegClasses) {
1016    BitVector SuperRegClassesBV(RegClasses.size());
1017    RC.getSuperRegClasses(SubIdx, SuperRegClassesBV);
1018    if (SuperRegClassesBV.any())
1019      SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV));
1020  }
1021  llvm::sort(SuperRegClasses,
1022             [&](const std::pair<CodeGenRegisterClass *, BitVector> &A,
1023                 const std::pair<CodeGenRegisterClass *, BitVector> &B) {
1024               return SizeOrder(A.first, B.first);
1025             });
1026
1027  // Find the biggest subclass and subreg class such that R:subidx is in the
1028  // subreg class for all R in subclass.
1029  //
1030  // For example:
1031  // All registers in X86's GR64 have a sub_32bit subregister but no class
1032  // exists that contains all the 32-bit subregisters because GR64 contains RIP
1033  // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to
1034  // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then,
1035  // having excluded RIP, we are able to find a SubRegRC (GR32).
1036  CodeGenRegisterClass *ChosenSuperRegClass = nullptr;
1037  CodeGenRegisterClass *SubRegRC = nullptr;
1038  for (auto *SuperRegRC : SuperRegRCs) {
1039    for (const auto &SuperRegClassPair : SuperRegClasses) {
1040      const BitVector &SuperRegClassBV = SuperRegClassPair.second;
1041      if (SuperRegClassBV[SuperRegRC->EnumValue]) {
1042        SubRegRC = SuperRegClassPair.first;
1043        ChosenSuperRegClass = SuperRegRC;
1044
1045        // If SubRegRC is bigger than SuperRegRC then there are members of
1046        // SubRegRC that don't have super registers via SubIdx. Keep looking to
1047        // find a better fit and fall back on this one if there isn't one.
1048        //
1049        // This is intended to prevent X86 from making odd choices such as
1050        // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above.
1051        // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that
1052        // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1
1053        // mapping.
1054        if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size())
1055          return std::make_pair(ChosenSuperRegClass, SubRegRC);
1056      }
1057    }
1058
1059    // If we found a fit but it wasn't quite ideal because SubRegRC had excess
1060    // registers, then we're done.
1061    if (ChosenSuperRegClass)
1062      return std::make_pair(ChosenSuperRegClass, SubRegRC);
1063  }
1064
1065  return None;
1066}
1067
1068void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
1069                                              BitVector &Out) const {
1070  auto FindI = SuperRegClasses.find(SubIdx);
1071  if (FindI == SuperRegClasses.end())
1072    return;
1073  for (CodeGenRegisterClass *RC : FindI->second)
1074    Out.set(RC->EnumValue);
1075}
1076
1077// Populate a unique sorted list of units from a register set.
1078void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank,
1079  std::vector<unsigned> &RegUnits) const {
1080  std::vector<unsigned> TmpUnits;
1081  for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) {
1082    const RegUnit &RU = RegBank.getRegUnit(*UnitI);
1083    if (!RU.Artificial)
1084      TmpUnits.push_back(*UnitI);
1085  }
1086  llvm::sort(TmpUnits);
1087  std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
1088                   std::back_inserter(RegUnits));
1089}
1090
1091//===----------------------------------------------------------------------===//
1092//                               CodeGenRegBank
1093//===----------------------------------------------------------------------===//
1094
1095CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records,
1096                               const CodeGenHwModes &Modes) : CGH(Modes) {
1097  // Configure register Sets to understand register classes and tuples.
1098  Sets.addFieldExpander("RegisterClass", "MemberList");
1099  Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
1100  Sets.addExpander("RegisterTuples",
1101                   std::make_unique<TupleExpander>(SynthDefs));
1102
1103  // Read in the user-defined (named) sub-register indices.
1104  // More indices will be synthesized later.
1105  std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
1106  llvm::sort(SRIs, LessRecord());
1107  for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
1108    getSubRegIdx(SRIs[i]);
1109  // Build composite maps from ComposedOf fields.
1110  for (auto &Idx : SubRegIndices)
1111    Idx.updateComponents(*this);
1112
1113  // Read in the register definitions.
1114  std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
1115  llvm::sort(Regs, LessRecordRegister());
1116  // Assign the enumeration values.
1117  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1118    getReg(Regs[i]);
1119
1120  // Expand tuples and number the new registers.
1121  std::vector<Record*> Tups =
1122    Records.getAllDerivedDefinitions("RegisterTuples");
1123
1124  for (Record *R : Tups) {
1125    std::vector<Record *> TupRegs = *Sets.expand(R);
1126    llvm::sort(TupRegs, LessRecordRegister());
1127    for (Record *RC : TupRegs)
1128      getReg(RC);
1129  }
1130
1131  // Now all the registers are known. Build the object graph of explicit
1132  // register-register references.
1133  for (auto &Reg : Registers)
1134    Reg.buildObjectGraph(*this);
1135
1136  // Compute register name map.
1137  for (auto &Reg : Registers)
1138    // FIXME: This could just be RegistersByName[name] = register, except that
1139    // causes some failures in MIPS - perhaps they have duplicate register name
1140    // entries? (or maybe there's a reason for it - I don't know much about this
1141    // code, just drive-by refactoring)
1142    RegistersByName.insert(
1143        std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
1144
1145  // Precompute all sub-register maps.
1146  // This will create Composite entries for all inferred sub-register indices.
1147  for (auto &Reg : Registers)
1148    Reg.computeSubRegs(*this);
1149
1150  // Compute transitive closure of subregister index ConcatenationOf vectors
1151  // and initialize ConcatIdx map.
1152  for (CodeGenSubRegIndex &SRI : SubRegIndices) {
1153    SRI.computeConcatTransitiveClosure();
1154    if (!SRI.ConcatenationOf.empty())
1155      ConcatIdx.insert(std::make_pair(
1156          SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(),
1157                                             SRI.ConcatenationOf.end()), &SRI));
1158  }
1159
1160  // Infer even more sub-registers by combining leading super-registers.
1161  for (auto &Reg : Registers)
1162    if (Reg.CoveredBySubRegs)
1163      Reg.computeSecondarySubRegs(*this);
1164
1165  // After the sub-register graph is complete, compute the topologically
1166  // ordered SuperRegs list.
1167  for (auto &Reg : Registers)
1168    Reg.computeSuperRegs(*this);
1169
1170  // For each pair of Reg:SR, if both are non-artificial, mark the
1171  // corresponding sub-register index as non-artificial.
1172  for (auto &Reg : Registers) {
1173    if (Reg.Artificial)
1174      continue;
1175    for (auto P : Reg.getSubRegs()) {
1176      const CodeGenRegister *SR = P.second;
1177      if (!SR->Artificial)
1178        P.first->Artificial = false;
1179    }
1180  }
1181
1182  // Native register units are associated with a leaf register. They've all been
1183  // discovered now.
1184  NumNativeRegUnits = RegUnits.size();
1185
1186  // Read in register class definitions.
1187  std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
1188  if (RCs.empty())
1189    PrintFatalError("No 'RegisterClass' subclasses defined!");
1190
1191  // Allocate user-defined register classes.
1192  for (auto *R : RCs) {
1193    RegClasses.emplace_back(*this, R);
1194    CodeGenRegisterClass &RC = RegClasses.back();
1195    if (!RC.Artificial)
1196      addToMaps(&RC);
1197  }
1198
1199  // Infer missing classes to create a full algebra.
1200  computeInferredRegisterClasses();
1201
1202  // Order register classes topologically and assign enum values.
1203  RegClasses.sort(TopoOrderRC);
1204  unsigned i = 0;
1205  for (auto &RC : RegClasses)
1206    RC.EnumValue = i++;
1207  CodeGenRegisterClass::computeSubClasses(*this);
1208}
1209
1210// Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1211CodeGenSubRegIndex*
1212CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1213  SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
1214  return &SubRegIndices.back();
1215}
1216
1217CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1218  CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1219  if (Idx)
1220    return Idx;
1221  SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
1222  Idx = &SubRegIndices.back();
1223  return Idx;
1224}
1225
1226CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1227  CodeGenRegister *&Reg = Def2Reg[Def];
1228  if (Reg)
1229    return Reg;
1230  Registers.emplace_back(Def, Registers.size() + 1);
1231  Reg = &Registers.back();
1232  return Reg;
1233}
1234
1235void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1236  if (Record *Def = RC->getDef())
1237    Def2RC.insert(std::make_pair(Def, RC));
1238
1239  // Duplicate classes are rejected by insert().
1240  // That's OK, we only care about the properties handled by CGRC::Key.
1241  CodeGenRegisterClass::Key K(*RC);
1242  Key2RC.insert(std::make_pair(K, RC));
1243}
1244
1245// Create a synthetic sub-class if it is missing.
1246CodeGenRegisterClass*
1247CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1248                                    const CodeGenRegister::Vec *Members,
1249                                    StringRef Name) {
1250  // Synthetic sub-class has the same size and alignment as RC.
1251  CodeGenRegisterClass::Key K(Members, RC->RSI);
1252  RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1253  if (FoundI != Key2RC.end())
1254    return FoundI->second;
1255
1256  // Sub-class doesn't exist, create a new one.
1257  RegClasses.emplace_back(*this, Name, K);
1258  addToMaps(&RegClasses.back());
1259  return &RegClasses.back();
1260}
1261
1262CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
1263  if (CodeGenRegisterClass *RC = Def2RC[Def])
1264    return RC;
1265
1266  PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1267}
1268
1269CodeGenSubRegIndex*
1270CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1271                                        CodeGenSubRegIndex *B) {
1272  // Look for an existing entry.
1273  CodeGenSubRegIndex *Comp = A->compose(B);
1274  if (Comp)
1275    return Comp;
1276
1277  // None exists, synthesize one.
1278  std::string Name = A->getName() + "_then_" + B->getName();
1279  Comp = createSubRegIndex(Name, A->getNamespace());
1280  A->addComposite(B, Comp);
1281  return Comp;
1282}
1283
1284CodeGenSubRegIndex *CodeGenRegBank::
1285getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1286  assert(Parts.size() > 1 && "Need two parts to concatenate");
1287#ifndef NDEBUG
1288  for (CodeGenSubRegIndex *Idx : Parts) {
1289    assert(Idx->ConcatenationOf.empty() && "No transitive closure?");
1290  }
1291#endif
1292
1293  // Look for an existing entry.
1294  CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1295  if (Idx)
1296    return Idx;
1297
1298  // None exists, synthesize one.
1299  std::string Name = Parts.front()->getName();
1300  // Determine whether all parts are contiguous.
1301  bool isContinuous = true;
1302  unsigned Size = Parts.front()->Size;
1303  unsigned LastOffset = Parts.front()->Offset;
1304  unsigned LastSize = Parts.front()->Size;
1305  for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1306    Name += '_';
1307    Name += Parts[i]->getName();
1308    Size += Parts[i]->Size;
1309    if (Parts[i]->Offset != (LastOffset + LastSize))
1310      isContinuous = false;
1311    LastOffset = Parts[i]->Offset;
1312    LastSize = Parts[i]->Size;
1313  }
1314  Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1315  Idx->Size = Size;
1316  Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1317  Idx->ConcatenationOf.assign(Parts.begin(), Parts.end());
1318  return Idx;
1319}
1320
1321void CodeGenRegBank::computeComposites() {
1322  using RegMap = std::map<const CodeGenRegister*, const CodeGenRegister*>;
1323
1324  // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from
1325  // register to (sub)register associated with the action of the left-hand
1326  // side subregister.
1327  std::map<const CodeGenSubRegIndex*, RegMap> SubRegAction;
1328  for (const CodeGenRegister &R : Registers) {
1329    const CodeGenRegister::SubRegMap &SM = R.getSubRegs();
1330    for (std::pair<const CodeGenSubRegIndex*, const CodeGenRegister*> P : SM)
1331      SubRegAction[P.first].insert({&R, P.second});
1332  }
1333
1334  // Calculate the composition of two subregisters as compositions of their
1335  // associated actions.
1336  auto compose = [&SubRegAction] (const CodeGenSubRegIndex *Sub1,
1337                                  const CodeGenSubRegIndex *Sub2) {
1338    RegMap C;
1339    const RegMap &Img1 = SubRegAction.at(Sub1);
1340    const RegMap &Img2 = SubRegAction.at(Sub2);
1341    for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Img1) {
1342      auto F = Img2.find(P.second);
1343      if (F != Img2.end())
1344        C.insert({P.first, F->second});
1345    }
1346    return C;
1347  };
1348
1349  // Check if the two maps agree on the intersection of their domains.
1350  auto agree = [] (const RegMap &Map1, const RegMap &Map2) {
1351    // Technically speaking, an empty map agrees with any other map, but
1352    // this could flag false positives. We're interested in non-vacuous
1353    // agreements.
1354    if (Map1.empty() || Map2.empty())
1355      return false;
1356    for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Map1) {
1357      auto F = Map2.find(P.first);
1358      if (F == Map2.end() || P.second != F->second)
1359        return false;
1360    }
1361    return true;
1362  };
1363
1364  using CompositePair = std::pair<const CodeGenSubRegIndex*,
1365                                  const CodeGenSubRegIndex*>;
1366  SmallSet<CompositePair,4> UserDefined;
1367  for (const CodeGenSubRegIndex &Idx : SubRegIndices)
1368    for (auto P : Idx.getComposites())
1369      UserDefined.insert(std::make_pair(&Idx, P.first));
1370
1371  // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1372  // and many registers will share TopoSigs on regular architectures.
1373  BitVector TopoSigs(getNumTopoSigs());
1374
1375  for (const auto &Reg1 : Registers) {
1376    // Skip identical subreg structures already processed.
1377    if (TopoSigs.test(Reg1.getTopoSig()))
1378      continue;
1379    TopoSigs.set(Reg1.getTopoSig());
1380
1381    const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
1382    for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
1383         e1 = SRM1.end(); i1 != e1; ++i1) {
1384      CodeGenSubRegIndex *Idx1 = i1->first;
1385      CodeGenRegister *Reg2 = i1->second;
1386      // Ignore identity compositions.
1387      if (&Reg1 == Reg2)
1388        continue;
1389      const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1390      // Try composing Idx1 with another SubRegIndex.
1391      for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
1392           e2 = SRM2.end(); i2 != e2; ++i2) {
1393        CodeGenSubRegIndex *Idx2 = i2->first;
1394        CodeGenRegister *Reg3 = i2->second;
1395        // Ignore identity compositions.
1396        if (Reg2 == Reg3)
1397          continue;
1398        // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1399        CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
1400        assert(Idx3 && "Sub-register doesn't have an index");
1401
1402        // Conflicting composition? Emit a warning but allow it.
1403        if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) {
1404          // If the composition was not user-defined, always emit a warning.
1405          if (!UserDefined.count({Idx1, Idx2}) ||
1406              agree(compose(Idx1, Idx2), SubRegAction.at(Idx3)))
1407            PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1408                         " and " + Idx2->getQualifiedName() +
1409                         " compose ambiguously as " + Prev->getQualifiedName() +
1410                         " or " + Idx3->getQualifiedName());
1411        }
1412      }
1413    }
1414  }
1415}
1416
1417// Compute lane masks. This is similar to register units, but at the
1418// sub-register index level. Each bit in the lane mask is like a register unit
1419// class, and two lane masks will have a bit in common if two sub-register
1420// indices overlap in some register.
1421//
1422// Conservatively share a lane mask bit if two sub-register indices overlap in
1423// some registers, but not in others. That shouldn't happen a lot.
1424void CodeGenRegBank::computeSubRegLaneMasks() {
1425  // First assign individual bits to all the leaf indices.
1426  unsigned Bit = 0;
1427  // Determine mask of lanes that cover their registers.
1428  CoveringLanes = LaneBitmask::getAll();
1429  for (auto &Idx : SubRegIndices) {
1430    if (Idx.getComposites().empty()) {
1431      if (Bit > LaneBitmask::BitWidth) {
1432        PrintFatalError(
1433          Twine("Ran out of lanemask bits to represent subregister ")
1434          + Idx.getName());
1435      }
1436      Idx.LaneMask = LaneBitmask::getLane(Bit);
1437      ++Bit;
1438    } else {
1439      Idx.LaneMask = LaneBitmask::getNone();
1440    }
1441  }
1442
1443  // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1444  // here is that for each possible target subregister we look at the leafs
1445  // in the subregister graph that compose for this target and create
1446  // transformation sequences for the lanemasks. Each step in the sequence
1447  // consists of a bitmask and a bitrotate operation. As the rotation amounts
1448  // are usually the same for many subregisters we can easily combine the steps
1449  // by combining the masks.
1450  for (const auto &Idx : SubRegIndices) {
1451    const auto &Composites = Idx.getComposites();
1452    auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
1453
1454    if (Composites.empty()) {
1455      // Moving from a class with no subregisters we just had a single lane:
1456      // The subregister must be a leaf subregister and only occupies 1 bit.
1457      // Move the bit from the class without subregisters into that position.
1458      unsigned DstBit = Idx.LaneMask.getHighestLane();
1459      assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) &&
1460             "Must be a leaf subregister");
1461      MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit };
1462      LaneTransforms.push_back(MaskRol);
1463    } else {
1464      // Go through all leaf subregisters and find the ones that compose with
1465      // Idx. These make out all possible valid bits in the lane mask we want to
1466      // transform. Looking only at the leafs ensure that only a single bit in
1467      // the mask is set.
1468      unsigned NextBit = 0;
1469      for (auto &Idx2 : SubRegIndices) {
1470        // Skip non-leaf subregisters.
1471        if (!Idx2.getComposites().empty())
1472          continue;
1473        // Replicate the behaviour from the lane mask generation loop above.
1474        unsigned SrcBit = NextBit;
1475        LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit);
1476        if (NextBit < LaneBitmask::BitWidth-1)
1477          ++NextBit;
1478        assert(Idx2.LaneMask == SrcMask);
1479
1480        // Get the composed subregister if there is any.
1481        auto C = Composites.find(&Idx2);
1482        if (C == Composites.end())
1483          continue;
1484        const CodeGenSubRegIndex *Composite = C->second;
1485        // The Composed subreg should be a leaf subreg too
1486        assert(Composite->getComposites().empty());
1487
1488        // Create Mask+Rotate operation and merge with existing ops if possible.
1489        unsigned DstBit = Composite->LaneMask.getHighestLane();
1490        int Shift = DstBit - SrcBit;
1491        uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift
1492                                        : LaneBitmask::BitWidth + Shift;
1493        for (auto &I : LaneTransforms) {
1494          if (I.RotateLeft == RotateLeft) {
1495            I.Mask |= SrcMask;
1496            SrcMask = LaneBitmask::getNone();
1497          }
1498        }
1499        if (SrcMask.any()) {
1500          MaskRolPair MaskRol = { SrcMask, RotateLeft };
1501          LaneTransforms.push_back(MaskRol);
1502        }
1503      }
1504    }
1505
1506    // Optimize if the transformation consists of one step only: Set mask to
1507    // 0xffffffff (including some irrelevant invalid bits) so that it should
1508    // merge with more entries later while compressing the table.
1509    if (LaneTransforms.size() == 1)
1510      LaneTransforms[0].Mask = LaneBitmask::getAll();
1511
1512    // Further compression optimization: For invalid compositions resulting
1513    // in a sequence with 0 entries we can just pick any other. Choose
1514    // Mask 0xffffffff with Rotation 0.
1515    if (LaneTransforms.size() == 0) {
1516      MaskRolPair P = { LaneBitmask::getAll(), 0 };
1517      LaneTransforms.push_back(P);
1518    }
1519  }
1520
1521  // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1522  // by the sub-register graph? This doesn't occur in any known targets.
1523
1524  // Inherit lanes from composites.
1525  for (const auto &Idx : SubRegIndices) {
1526    LaneBitmask Mask = Idx.computeLaneMask();
1527    // If some super-registers without CoveredBySubRegs use this index, we can
1528    // no longer assume that the lanes are covering their registers.
1529    if (!Idx.AllSuperRegsCovered)
1530      CoveringLanes &= ~Mask;
1531  }
1532
1533  // Compute lane mask combinations for register classes.
1534  for (auto &RegClass : RegClasses) {
1535    LaneBitmask LaneMask;
1536    for (const auto &SubRegIndex : SubRegIndices) {
1537      if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
1538        continue;
1539      LaneMask |= SubRegIndex.LaneMask;
1540    }
1541
1542    // For classes without any subregisters set LaneMask to 1 instead of 0.
1543    // This makes it easier for client code to handle classes uniformly.
1544    if (LaneMask.none())
1545      LaneMask = LaneBitmask::getLane(0);
1546
1547    RegClass.LaneMask = LaneMask;
1548  }
1549}
1550
1551namespace {
1552
1553// UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1554// the transitive closure of the union of overlapping register
1555// classes. Together, the UberRegSets form a partition of the registers. If we
1556// consider overlapping register classes to be connected, then each UberRegSet
1557// is a set of connected components.
1558//
1559// An UberRegSet will likely be a horizontal slice of register names of
1560// the same width. Nontrivial subregisters should then be in a separate
1561// UberRegSet. But this property isn't required for valid computation of
1562// register unit weights.
1563//
1564// A Weight field caches the max per-register unit weight in each UberRegSet.
1565//
1566// A set of SingularDeterminants flags single units of some register in this set
1567// for which the unit weight equals the set weight. These units should not have
1568// their weight increased.
1569struct UberRegSet {
1570  CodeGenRegister::Vec Regs;
1571  unsigned Weight = 0;
1572  CodeGenRegister::RegUnitList SingularDeterminants;
1573
1574  UberRegSet() = default;
1575};
1576
1577} // end anonymous namespace
1578
1579// Partition registers into UberRegSets, where each set is the transitive
1580// closure of the union of overlapping register classes.
1581//
1582// UberRegSets[0] is a special non-allocatable set.
1583static void computeUberSets(std::vector<UberRegSet> &UberSets,
1584                            std::vector<UberRegSet*> &RegSets,
1585                            CodeGenRegBank &RegBank) {
1586  const auto &Registers = RegBank.getRegisters();
1587
1588  // The Register EnumValue is one greater than its index into Registers.
1589  assert(Registers.size() == Registers.back().EnumValue &&
1590         "register enum value mismatch");
1591
1592  // For simplicitly make the SetID the same as EnumValue.
1593  IntEqClasses UberSetIDs(Registers.size()+1);
1594  std::set<unsigned> AllocatableRegs;
1595  for (auto &RegClass : RegBank.getRegClasses()) {
1596    if (!RegClass.Allocatable)
1597      continue;
1598
1599    const CodeGenRegister::Vec &Regs = RegClass.getMembers();
1600    if (Regs.empty())
1601      continue;
1602
1603    unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1604    assert(USetID && "register number 0 is invalid");
1605
1606    AllocatableRegs.insert((*Regs.begin())->EnumValue);
1607    for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) {
1608      AllocatableRegs.insert((*I)->EnumValue);
1609      UberSetIDs.join(USetID, (*I)->EnumValue);
1610    }
1611  }
1612  // Combine non-allocatable regs.
1613  for (const auto &Reg : Registers) {
1614    unsigned RegNum = Reg.EnumValue;
1615    if (AllocatableRegs.count(RegNum))
1616      continue;
1617
1618    UberSetIDs.join(0, RegNum);
1619  }
1620  UberSetIDs.compress();
1621
1622  // Make the first UberSet a special unallocatable set.
1623  unsigned ZeroID = UberSetIDs[0];
1624
1625  // Insert Registers into the UberSets formed by union-find.
1626  // Do not resize after this.
1627  UberSets.resize(UberSetIDs.getNumClasses());
1628  unsigned i = 0;
1629  for (const CodeGenRegister &Reg : Registers) {
1630    unsigned USetID = UberSetIDs[Reg.EnumValue];
1631    if (!USetID)
1632      USetID = ZeroID;
1633    else if (USetID == ZeroID)
1634      USetID = 0;
1635
1636    UberRegSet *USet = &UberSets[USetID];
1637    USet->Regs.push_back(&Reg);
1638    sortAndUniqueRegisters(USet->Regs);
1639    RegSets[i++] = USet;
1640  }
1641}
1642
1643// Recompute each UberSet weight after changing unit weights.
1644static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1645                               CodeGenRegBank &RegBank) {
1646  // Skip the first unallocatable set.
1647  for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1648         E = UberSets.end(); I != E; ++I) {
1649
1650    // Initialize all unit weights in this set, and remember the max units/reg.
1651    const CodeGenRegister *Reg = nullptr;
1652    unsigned MaxWeight = 0, Weight = 0;
1653    for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1654      if (Reg != UnitI.getReg()) {
1655        if (Weight > MaxWeight)
1656          MaxWeight = Weight;
1657        Reg = UnitI.getReg();
1658        Weight = 0;
1659      }
1660      if (!RegBank.getRegUnit(*UnitI).Artificial) {
1661        unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1662        if (!UWeight) {
1663          UWeight = 1;
1664          RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1665        }
1666        Weight += UWeight;
1667      }
1668    }
1669    if (Weight > MaxWeight)
1670      MaxWeight = Weight;
1671    if (I->Weight != MaxWeight) {
1672      LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight "
1673                        << MaxWeight;
1674                 for (auto &Unit
1675                      : I->Regs) dbgs()
1676                 << " " << Unit->getName();
1677                 dbgs() << "\n");
1678      // Update the set weight.
1679      I->Weight = MaxWeight;
1680    }
1681
1682    // Find singular determinants.
1683    for (const auto R : I->Regs) {
1684      if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
1685        I->SingularDeterminants |= R->getRegUnits();
1686      }
1687    }
1688  }
1689}
1690
1691// normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1692// a register and its subregisters so that they have the same weight as their
1693// UberSet. Self-recursion processes the subregister tree in postorder so
1694// subregisters are normalized first.
1695//
1696// Side effects:
1697// - creates new adopted register units
1698// - causes superregisters to inherit adopted units
1699// - increases the weight of "singular" units
1700// - induces recomputation of UberWeights.
1701static bool normalizeWeight(CodeGenRegister *Reg,
1702                            std::vector<UberRegSet> &UberSets,
1703                            std::vector<UberRegSet*> &RegSets,
1704                            BitVector &NormalRegs,
1705                            CodeGenRegister::RegUnitList &NormalUnits,
1706                            CodeGenRegBank &RegBank) {
1707  NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size()));
1708  if (NormalRegs.test(Reg->EnumValue))
1709    return false;
1710  NormalRegs.set(Reg->EnumValue);
1711
1712  bool Changed = false;
1713  const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1714  for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
1715         SRE = SRM.end(); SRI != SRE; ++SRI) {
1716    if (SRI->second == Reg)
1717      continue; // self-cycles happen
1718
1719    Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
1720                               NormalRegs, NormalUnits, RegBank);
1721  }
1722  // Postorder register normalization.
1723
1724  // Inherit register units newly adopted by subregisters.
1725  if (Reg->inheritRegUnits(RegBank))
1726    computeUberWeights(UberSets, RegBank);
1727
1728  // Check if this register is too skinny for its UberRegSet.
1729  UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1730
1731  unsigned RegWeight = Reg->getWeight(RegBank);
1732  if (UberSet->Weight > RegWeight) {
1733    // A register unit's weight can be adjusted only if it is the singular unit
1734    // for this register, has not been used to normalize a subregister's set,
1735    // and has not already been used to singularly determine this UberRegSet.
1736    unsigned AdjustUnit = *Reg->getRegUnits().begin();
1737    if (Reg->getRegUnits().count() != 1
1738        || hasRegUnit(NormalUnits, AdjustUnit)
1739        || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1740      // We don't have an adjustable unit, so adopt a new one.
1741      AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1742      Reg->adoptRegUnit(AdjustUnit);
1743      // Adopting a unit does not immediately require recomputing set weights.
1744    }
1745    else {
1746      // Adjust the existing single unit.
1747      if (!RegBank.getRegUnit(AdjustUnit).Artificial)
1748        RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1749      // The unit may be shared among sets and registers within this set.
1750      computeUberWeights(UberSets, RegBank);
1751    }
1752    Changed = true;
1753  }
1754
1755  // Mark these units normalized so superregisters can't change their weights.
1756  NormalUnits |= Reg->getRegUnits();
1757
1758  return Changed;
1759}
1760
1761// Compute a weight for each register unit created during getSubRegs.
1762//
1763// The goal is that two registers in the same class will have the same weight,
1764// where each register's weight is defined as sum of its units' weights.
1765void CodeGenRegBank::computeRegUnitWeights() {
1766  std::vector<UberRegSet> UberSets;
1767  std::vector<UberRegSet*> RegSets(Registers.size());
1768  computeUberSets(UberSets, RegSets, *this);
1769  // UberSets and RegSets are now immutable.
1770
1771  computeUberWeights(UberSets, *this);
1772
1773  // Iterate over each Register, normalizing the unit weights until reaching
1774  // a fix point.
1775  unsigned NumIters = 0;
1776  for (bool Changed = true; Changed; ++NumIters) {
1777    assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1778    Changed = false;
1779    for (auto &Reg : Registers) {
1780      CodeGenRegister::RegUnitList NormalUnits;
1781      BitVector NormalRegs;
1782      Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
1783                                 NormalUnits, *this);
1784    }
1785  }
1786}
1787
1788// Find a set in UniqueSets with the same elements as Set.
1789// Return an iterator into UniqueSets.
1790static std::vector<RegUnitSet>::const_iterator
1791findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1792               const RegUnitSet &Set) {
1793  std::vector<RegUnitSet>::const_iterator
1794    I = UniqueSets.begin(), E = UniqueSets.end();
1795  for(;I != E; ++I) {
1796    if (I->Units == Set.Units)
1797      break;
1798  }
1799  return I;
1800}
1801
1802// Return true if the RUSubSet is a subset of RUSuperSet.
1803static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1804                            const std::vector<unsigned> &RUSuperSet) {
1805  return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1806                       RUSubSet.begin(), RUSubSet.end());
1807}
1808
1809/// Iteratively prune unit sets. Prune subsets that are close to the superset,
1810/// but with one or two registers removed. We occasionally have registers like
1811/// APSR and PC thrown in with the general registers. We also see many
1812/// special-purpose register subsets, such as tail-call and Thumb
1813/// encodings. Generating all possible overlapping sets is combinatorial and
1814/// overkill for modeling pressure. Ideally we could fix this statically in
1815/// tablegen by (1) having the target define register classes that only include
1816/// the allocatable registers and marking other classes as non-allocatable and
1817/// (2) having a way to mark special purpose classes as "don't-care" classes for
1818/// the purpose of pressure.  However, we make an attempt to handle targets that
1819/// are not nicely defined by merging nearly identical register unit sets
1820/// statically. This generates smaller tables. Then, dynamically, we adjust the
1821/// set limit by filtering the reserved registers.
1822///
1823/// Merge sets only if the units have the same weight. For example, on ARM,
1824/// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1825/// should not expand the S set to include D regs.
1826void CodeGenRegBank::pruneUnitSets() {
1827  assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1828
1829  // Form an equivalence class of UnitSets with no significant difference.
1830  std::vector<unsigned> SuperSetIDs;
1831  for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1832       SubIdx != EndIdx; ++SubIdx) {
1833    const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1834    unsigned SuperIdx = 0;
1835    for (; SuperIdx != EndIdx; ++SuperIdx) {
1836      if (SuperIdx == SubIdx)
1837        continue;
1838
1839      unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1840      const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1841      if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1842          && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1843          && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1844          && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1845        LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1846                          << "\n");
1847        // We can pick any of the set names for the merged set. Go for the
1848        // shortest one to avoid picking the name of one of the classes that are
1849        // artificially created by tablegen. So "FPR128_lo" instead of
1850        // "QQQQ_with_qsub3_in_FPR128_lo".
1851        if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
1852          RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
1853        break;
1854      }
1855    }
1856    if (SuperIdx == EndIdx)
1857      SuperSetIDs.push_back(SubIdx);
1858  }
1859  // Populate PrunedUnitSets with each equivalence class's superset.
1860  std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1861  for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1862    unsigned SuperIdx = SuperSetIDs[i];
1863    PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1864    PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1865  }
1866  RegUnitSets.swap(PrunedUnitSets);
1867}
1868
1869// Create a RegUnitSet for each RegClass that contains all units in the class
1870// including adopted units that are necessary to model register pressure. Then
1871// iteratively compute RegUnitSets such that the union of any two overlapping
1872// RegUnitSets is repreresented.
1873//
1874// RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1875// RegUnitSet that is a superset of that RegUnitClass.
1876void CodeGenRegBank::computeRegUnitSets() {
1877  assert(RegUnitSets.empty() && "dirty RegUnitSets");
1878
1879  // Compute a unique RegUnitSet for each RegClass.
1880  auto &RegClasses = getRegClasses();
1881  for (auto &RC : RegClasses) {
1882    if (!RC.Allocatable || RC.Artificial)
1883      continue;
1884
1885    // Speculatively grow the RegUnitSets to hold the new set.
1886    RegUnitSets.resize(RegUnitSets.size() + 1);
1887    RegUnitSets.back().Name = RC.getName();
1888
1889    // Compute a sorted list of units in this class.
1890    RC.buildRegUnitSet(*this, RegUnitSets.back().Units);
1891
1892    // Find an existing RegUnitSet.
1893    std::vector<RegUnitSet>::const_iterator SetI =
1894      findRegUnitSet(RegUnitSets, RegUnitSets.back());
1895    if (SetI != std::prev(RegUnitSets.end()))
1896      RegUnitSets.pop_back();
1897  }
1898
1899  LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0,
1900                                                   USEnd = RegUnitSets.size();
1901                                                   USIdx < USEnd; ++USIdx) {
1902    dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1903    for (auto &U : RegUnitSets[USIdx].Units)
1904      printRegUnitName(U);
1905    dbgs() << "\n";
1906  });
1907
1908  // Iteratively prune unit sets.
1909  pruneUnitSets();
1910
1911  LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0,
1912                                                 USEnd = RegUnitSets.size();
1913                                                 USIdx < USEnd; ++USIdx) {
1914    dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1915    for (auto &U : RegUnitSets[USIdx].Units)
1916      printRegUnitName(U);
1917    dbgs() << "\n";
1918  } dbgs() << "\nUnion sets:\n");
1919
1920  // Iterate over all unit sets, including new ones added by this loop.
1921  unsigned NumRegUnitSubSets = RegUnitSets.size();
1922  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1923    // In theory, this is combinatorial. In practice, it needs to be bounded
1924    // by a small number of sets for regpressure to be efficient.
1925    // If the assert is hit, we need to implement pruning.
1926    assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1927
1928    // Compare new sets with all original classes.
1929    for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1930         SearchIdx != EndIdx; ++SearchIdx) {
1931      std::set<unsigned> Intersection;
1932      std::set_intersection(RegUnitSets[Idx].Units.begin(),
1933                            RegUnitSets[Idx].Units.end(),
1934                            RegUnitSets[SearchIdx].Units.begin(),
1935                            RegUnitSets[SearchIdx].Units.end(),
1936                            std::inserter(Intersection, Intersection.begin()));
1937      if (Intersection.empty())
1938        continue;
1939
1940      // Speculatively grow the RegUnitSets to hold the new set.
1941      RegUnitSets.resize(RegUnitSets.size() + 1);
1942      RegUnitSets.back().Name =
1943        RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
1944
1945      std::set_union(RegUnitSets[Idx].Units.begin(),
1946                     RegUnitSets[Idx].Units.end(),
1947                     RegUnitSets[SearchIdx].Units.begin(),
1948                     RegUnitSets[SearchIdx].Units.end(),
1949                     std::inserter(RegUnitSets.back().Units,
1950                                   RegUnitSets.back().Units.begin()));
1951
1952      // Find an existing RegUnitSet, or add the union to the unique sets.
1953      std::vector<RegUnitSet>::const_iterator SetI =
1954        findRegUnitSet(RegUnitSets, RegUnitSets.back());
1955      if (SetI != std::prev(RegUnitSets.end()))
1956        RegUnitSets.pop_back();
1957      else {
1958        LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " "
1959                          << RegUnitSets.back().Name << ":";
1960                   for (auto &U
1961                        : RegUnitSets.back().Units) printRegUnitName(U);
1962                   dbgs() << "\n";);
1963      }
1964    }
1965  }
1966
1967  // Iteratively prune unit sets after inferring supersets.
1968  pruneUnitSets();
1969
1970  LLVM_DEBUG(
1971      dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1972                           USIdx < USEnd; ++USIdx) {
1973        dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1974        for (auto &U : RegUnitSets[USIdx].Units)
1975          printRegUnitName(U);
1976        dbgs() << "\n";
1977      });
1978
1979  // For each register class, list the UnitSets that are supersets.
1980  RegClassUnitSets.resize(RegClasses.size());
1981  int RCIdx = -1;
1982  for (auto &RC : RegClasses) {
1983    ++RCIdx;
1984    if (!RC.Allocatable)
1985      continue;
1986
1987    // Recompute the sorted list of units in this class.
1988    std::vector<unsigned> RCRegUnits;
1989    RC.buildRegUnitSet(*this, RCRegUnits);
1990
1991    // Don't increase pressure for unallocatable regclasses.
1992    if (RCRegUnits.empty())
1993      continue;
1994
1995    LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n";
1996               for (auto U
1997                    : RCRegUnits) printRegUnitName(U);
1998               dbgs() << "\n  UnitSetIDs:");
1999
2000    // Find all supersets.
2001    for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
2002         USIdx != USEnd; ++USIdx) {
2003      if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
2004        LLVM_DEBUG(dbgs() << " " << USIdx);
2005        RegClassUnitSets[RCIdx].push_back(USIdx);
2006      }
2007    }
2008    LLVM_DEBUG(dbgs() << "\n");
2009    assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
2010  }
2011
2012  // For each register unit, ensure that we have the list of UnitSets that
2013  // contain the unit. Normally, this matches an existing list of UnitSets for a
2014  // register class. If not, we create a new entry in RegClassUnitSets as a
2015  // "fake" register class.
2016  for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
2017       UnitIdx < UnitEnd; ++UnitIdx) {
2018    std::vector<unsigned> RUSets;
2019    for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
2020      RegUnitSet &RUSet = RegUnitSets[i];
2021      if (!is_contained(RUSet.Units, UnitIdx))
2022        continue;
2023      RUSets.push_back(i);
2024    }
2025    unsigned RCUnitSetsIdx = 0;
2026    for (unsigned e = RegClassUnitSets.size();
2027         RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
2028      if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
2029        break;
2030      }
2031    }
2032    RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
2033    if (RCUnitSetsIdx == RegClassUnitSets.size()) {
2034      // Create a new list of UnitSets as a "fake" register class.
2035      RegClassUnitSets.resize(RCUnitSetsIdx + 1);
2036      RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
2037    }
2038  }
2039}
2040
2041void CodeGenRegBank::computeRegUnitLaneMasks() {
2042  for (auto &Register : Registers) {
2043    // Create an initial lane mask for all register units.
2044    const auto &RegUnits = Register.getRegUnits();
2045    CodeGenRegister::RegUnitLaneMaskList
2046        RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone());
2047    // Iterate through SubRegisters.
2048    typedef CodeGenRegister::SubRegMap SubRegMap;
2049    const SubRegMap &SubRegs = Register.getSubRegs();
2050    for (SubRegMap::const_iterator S = SubRegs.begin(),
2051         SE = SubRegs.end(); S != SE; ++S) {
2052      CodeGenRegister *SubReg = S->second;
2053      // Ignore non-leaf subregisters, their lane masks are fully covered by
2054      // the leaf subregisters anyway.
2055      if (!SubReg->getSubRegs().empty())
2056        continue;
2057      CodeGenSubRegIndex *SubRegIndex = S->first;
2058      const CodeGenRegister *SubRegister = S->second;
2059      LaneBitmask LaneMask = SubRegIndex->LaneMask;
2060      // Distribute LaneMask to Register Units touched.
2061      for (unsigned SUI : SubRegister->getRegUnits()) {
2062        bool Found = false;
2063        unsigned u = 0;
2064        for (unsigned RU : RegUnits) {
2065          if (SUI == RU) {
2066            RegUnitLaneMasks[u] |= LaneMask;
2067            assert(!Found);
2068            Found = true;
2069          }
2070          ++u;
2071        }
2072        (void)Found;
2073        assert(Found);
2074      }
2075    }
2076    Register.setRegUnitLaneMasks(RegUnitLaneMasks);
2077  }
2078}
2079
2080void CodeGenRegBank::computeDerivedInfo() {
2081  computeComposites();
2082  computeSubRegLaneMasks();
2083
2084  // Compute a weight for each register unit created during getSubRegs.
2085  // This may create adopted register units (with unit # >= NumNativeRegUnits).
2086  computeRegUnitWeights();
2087
2088  // Compute a unique set of RegUnitSets. One for each RegClass and inferred
2089  // supersets for the union of overlapping sets.
2090  computeRegUnitSets();
2091
2092  computeRegUnitLaneMasks();
2093
2094  // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
2095  for (CodeGenRegisterClass &RC : RegClasses) {
2096    RC.HasDisjunctSubRegs = false;
2097    RC.CoveredBySubRegs = true;
2098    for (const CodeGenRegister *Reg : RC.getMembers()) {
2099      RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
2100      RC.CoveredBySubRegs &= Reg->CoveredBySubRegs;
2101    }
2102  }
2103
2104  // Get the weight of each set.
2105  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2106    RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
2107
2108  // Find the order of each set.
2109  RegUnitSetOrder.reserve(RegUnitSets.size());
2110  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2111    RegUnitSetOrder.push_back(Idx);
2112
2113  llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) {
2114    return getRegPressureSet(ID1).Units.size() <
2115           getRegPressureSet(ID2).Units.size();
2116  });
2117  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
2118    RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
2119  }
2120}
2121
2122//
2123// Synthesize missing register class intersections.
2124//
2125// Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
2126// returns a maximal register class for all X.
2127//
2128void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
2129  assert(!RegClasses.empty());
2130  // Stash the iterator to the last element so that this loop doesn't visit
2131  // elements added by the getOrCreateSubClass call within it.
2132  for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
2133       I != std::next(E); ++I) {
2134    CodeGenRegisterClass *RC1 = RC;
2135    CodeGenRegisterClass *RC2 = &*I;
2136    if (RC1 == RC2)
2137      continue;
2138
2139    // Compute the set intersection of RC1 and RC2.
2140    const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
2141    const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
2142    CodeGenRegister::Vec Intersection;
2143    std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(),
2144                          Memb2.end(),
2145                          std::inserter(Intersection, Intersection.begin()),
2146                          deref<std::less<>>());
2147
2148    // Skip disjoint class pairs.
2149    if (Intersection.empty())
2150      continue;
2151
2152    // If RC1 and RC2 have different spill sizes or alignments, use the
2153    // stricter one for sub-classing.  If they are equal, prefer RC1.
2154    if (RC2->RSI.hasStricterSpillThan(RC1->RSI))
2155      std::swap(RC1, RC2);
2156
2157    getOrCreateSubClass(RC1, &Intersection,
2158                        RC1->getName() + "_and_" + RC2->getName());
2159  }
2160}
2161
2162//
2163// Synthesize missing sub-classes for getSubClassWithSubReg().
2164//
2165// Make sure that the set of registers in RC with a given SubIdx sub-register
2166// form a register class.  Update RC->SubClassWithSubReg.
2167//
2168void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
2169  // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
2170  typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
2171                   deref<std::less<>>>
2172      SubReg2SetMap;
2173
2174  // Compute the set of registers supporting each SubRegIndex.
2175  SubReg2SetMap SRSets;
2176  for (const auto R : RC->getMembers()) {
2177    if (R->Artificial)
2178      continue;
2179    const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
2180    for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
2181         E = SRM.end(); I != E; ++I) {
2182      if (!I->first->Artificial)
2183        SRSets[I->first].push_back(R);
2184    }
2185  }
2186
2187  for (auto I : SRSets)
2188    sortAndUniqueRegisters(I.second);
2189
2190  // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
2191  // numerical order to visit synthetic indices last.
2192  for (const auto &SubIdx : SubRegIndices) {
2193    if (SubIdx.Artificial)
2194      continue;
2195    SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
2196    // Unsupported SubRegIndex. Skip it.
2197    if (I == SRSets.end())
2198      continue;
2199    // In most cases, all RC registers support the SubRegIndex.
2200    if (I->second.size() == RC->getMembers().size()) {
2201      RC->setSubClassWithSubReg(&SubIdx, RC);
2202      continue;
2203    }
2204    // This is a real subset.  See if we have a matching class.
2205    CodeGenRegisterClass *SubRC =
2206      getOrCreateSubClass(RC, &I->second,
2207                          RC->getName() + "_with_" + I->first->getName());
2208    RC->setSubClassWithSubReg(&SubIdx, SubRC);
2209  }
2210}
2211
2212//
2213// Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
2214//
2215// Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
2216// has a maximal result for any SubIdx and any X >= FirstSubRegRC.
2217//
2218
2219void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
2220                                                std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
2221  SmallVector<std::pair<const CodeGenRegister*,
2222                        const CodeGenRegister*>, 16> SSPairs;
2223  BitVector TopoSigs(getNumTopoSigs());
2224
2225  // Iterate in SubRegIndex numerical order to visit synthetic indices last.
2226  for (auto &SubIdx : SubRegIndices) {
2227    // Skip indexes that aren't fully supported by RC's registers. This was
2228    // computed by inferSubClassWithSubReg() above which should have been
2229    // called first.
2230    if (RC->getSubClassWithSubReg(&SubIdx) != RC)
2231      continue;
2232
2233    // Build list of (Super, Sub) pairs for this SubIdx.
2234    SSPairs.clear();
2235    TopoSigs.reset();
2236    for (const auto Super : RC->getMembers()) {
2237      const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
2238      assert(Sub && "Missing sub-register");
2239      SSPairs.push_back(std::make_pair(Super, Sub));
2240      TopoSigs.set(Sub->getTopoSig());
2241    }
2242
2243    // Iterate over sub-register class candidates.  Ignore classes created by
2244    // this loop. They will never be useful.
2245    // Store an iterator to the last element (not end) so that this loop doesn't
2246    // visit newly inserted elements.
2247    assert(!RegClasses.empty());
2248    for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
2249         I != std::next(E); ++I) {
2250      CodeGenRegisterClass &SubRC = *I;
2251      if (SubRC.Artificial)
2252        continue;
2253      // Topological shortcut: SubRC members have the wrong shape.
2254      if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
2255        continue;
2256      // Compute the subset of RC that maps into SubRC.
2257      CodeGenRegister::Vec SubSetVec;
2258      for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
2259        if (SubRC.contains(SSPairs[i].second))
2260          SubSetVec.push_back(SSPairs[i].first);
2261
2262      if (SubSetVec.empty())
2263        continue;
2264
2265      // RC injects completely into SubRC.
2266      sortAndUniqueRegisters(SubSetVec);
2267      if (SubSetVec.size() == SSPairs.size()) {
2268        SubRC.addSuperRegClass(&SubIdx, RC);
2269        continue;
2270      }
2271
2272      // Only a subset of RC maps into SubRC. Make sure it is represented by a
2273      // class.
2274      getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
2275                                          SubIdx.getName() + "_in_" +
2276                                          SubRC.getName());
2277    }
2278  }
2279}
2280
2281//
2282// Infer missing register classes.
2283//
2284void CodeGenRegBank::computeInferredRegisterClasses() {
2285  assert(!RegClasses.empty());
2286  // When this function is called, the register classes have not been sorted
2287  // and assigned EnumValues yet.  That means getSubClasses(),
2288  // getSuperClasses(), and hasSubClass() functions are defunct.
2289
2290  // Use one-before-the-end so it doesn't move forward when new elements are
2291  // added.
2292  auto FirstNewRC = std::prev(RegClasses.end());
2293
2294  // Visit all register classes, including the ones being added by the loop.
2295  // Watch out for iterator invalidation here.
2296  for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
2297    CodeGenRegisterClass *RC = &*I;
2298    if (RC->Artificial)
2299      continue;
2300
2301    // Synthesize answers for getSubClassWithSubReg().
2302    inferSubClassWithSubReg(RC);
2303
2304    // Synthesize answers for getCommonSubClass().
2305    inferCommonSubClass(RC);
2306
2307    // Synthesize answers for getMatchingSuperRegClass().
2308    inferMatchingSuperRegClass(RC);
2309
2310    // New register classes are created while this loop is running, and we need
2311    // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
2312    // to match old super-register classes with sub-register classes created
2313    // after inferMatchingSuperRegClass was called.  At this point,
2314    // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2315    // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
2316    if (I == FirstNewRC) {
2317      auto NextNewRC = std::prev(RegClasses.end());
2318      for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
2319           ++I2)
2320        inferMatchingSuperRegClass(&*I2, E2);
2321      FirstNewRC = NextNewRC;
2322    }
2323  }
2324}
2325
2326/// getRegisterClassForRegister - Find the register class that contains the
2327/// specified physical register.  If the register is not in a register class,
2328/// return null. If the register is in multiple classes, and the classes have a
2329/// superset-subset relationship and the same set of types, return the
2330/// superclass.  Otherwise return null.
2331const CodeGenRegisterClass*
2332CodeGenRegBank::getRegClassForRegister(Record *R) {
2333  const CodeGenRegister *Reg = getReg(R);
2334  const CodeGenRegisterClass *FoundRC = nullptr;
2335  for (const auto &RC : getRegClasses()) {
2336    if (!RC.contains(Reg))
2337      continue;
2338
2339    // If this is the first class that contains the register,
2340    // make a note of it and go on to the next class.
2341    if (!FoundRC) {
2342      FoundRC = &RC;
2343      continue;
2344    }
2345
2346    // If a register's classes have different types, return null.
2347    if (RC.getValueTypes() != FoundRC->getValueTypes())
2348      return nullptr;
2349
2350    // Check to see if the previously found class that contains
2351    // the register is a subclass of the current class. If so,
2352    // prefer the superclass.
2353    if (RC.hasSubClass(FoundRC)) {
2354      FoundRC = &RC;
2355      continue;
2356    }
2357
2358    // Check to see if the previously found class that contains
2359    // the register is a superclass of the current class. If so,
2360    // prefer the superclass.
2361    if (FoundRC->hasSubClass(&RC))
2362      continue;
2363
2364    // Multiple classes, and neither is a superclass of the other.
2365    // Return null.
2366    return nullptr;
2367  }
2368  return FoundRC;
2369}
2370
2371const CodeGenRegisterClass *
2372CodeGenRegBank::getMinimalPhysRegClass(Record *RegRecord,
2373                                       ValueTypeByHwMode *VT) {
2374  const CodeGenRegister *Reg = getReg(RegRecord);
2375  const CodeGenRegisterClass *BestRC = nullptr;
2376  for (const auto &RC : getRegClasses()) {
2377    if ((!VT || RC.hasType(*VT)) &&
2378        RC.contains(Reg) && (!BestRC || BestRC->hasSubClass(&RC)))
2379      BestRC = &RC;
2380  }
2381
2382  assert(BestRC && "Couldn't find the register class");
2383  return BestRC;
2384}
2385
2386BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
2387  SetVector<const CodeGenRegister*> Set;
2388
2389  // First add Regs with all sub-registers.
2390  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2391    CodeGenRegister *Reg = getReg(Regs[i]);
2392    if (Set.insert(Reg))
2393      // Reg is new, add all sub-registers.
2394      // The pre-ordering is not important here.
2395      Reg->addSubRegsPreOrder(Set, *this);
2396  }
2397
2398  // Second, find all super-registers that are completely covered by the set.
2399  for (unsigned i = 0; i != Set.size(); ++i) {
2400    const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
2401    for (unsigned j = 0, e = SR.size(); j != e; ++j) {
2402      const CodeGenRegister *Super = SR[j];
2403      if (!Super->CoveredBySubRegs || Set.count(Super))
2404        continue;
2405      // This new super-register is covered by its sub-registers.
2406      bool AllSubsInSet = true;
2407      const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
2408      for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
2409             E = SRM.end(); I != E; ++I)
2410        if (!Set.count(I->second)) {
2411          AllSubsInSet = false;
2412          break;
2413        }
2414      // All sub-registers in Set, add Super as well.
2415      // We will visit Super later to recheck its super-registers.
2416      if (AllSubsInSet)
2417        Set.insert(Super);
2418    }
2419  }
2420
2421  // Convert to BitVector.
2422  BitVector BV(Registers.size() + 1);
2423  for (unsigned i = 0, e = Set.size(); i != e; ++i)
2424    BV.set(Set[i]->EnumValue);
2425  return BV;
2426}
2427
2428void CodeGenRegBank::printRegUnitName(unsigned Unit) const {
2429  if (Unit < NumNativeRegUnits)
2430    dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName();
2431  else
2432    dbgs() << " #" << Unit;
2433}
2434