CodeGenDAGPatterns.h revision 218893
1//===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the CodeGenDAGPatterns class, which is used to read and
11// represent the patterns present in a .td file for instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef CODEGEN_DAGPATTERNS_H
16#define CODEGEN_DAGPATTERNS_H
17
18#include "CodeGenTarget.h"
19#include "CodeGenIntrinsics.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/StringMap.h"
22#include <set>
23#include <algorithm>
24#include <vector>
25#include <map>
26
27namespace llvm {
28  class Record;
29  struct Init;
30  class ListInit;
31  class DagInit;
32  class SDNodeInfo;
33  class TreePattern;
34  class TreePatternNode;
35  class CodeGenDAGPatterns;
36  class ComplexPattern;
37
38/// EEVT::DAGISelGenValueType - These are some extended forms of
39/// MVT::SimpleValueType that we use as lattice values during type inference.
40/// The existing MVT iAny, fAny and vAny types suffice to represent
41/// arbitrary integer, floating-point, and vector types, so only an unknown
42/// value is needed.
43namespace EEVT {
44  /// TypeSet - This is either empty if it's completely unknown, or holds a set
45  /// of types.  It is used during type inference because register classes can
46  /// have multiple possible types and we don't know which one they get until
47  /// type inference is complete.
48  ///
49  /// TypeSet can have three states:
50  ///    Vector is empty: The type is completely unknown, it can be any valid
51  ///       target type.
52  ///    Vector has multiple constrained types: (e.g. v4i32 + v4f32) it is one
53  ///       of those types only.
54  ///    Vector has one concrete type: The type is completely known.
55  ///
56  class TypeSet {
57    SmallVector<MVT::SimpleValueType, 4> TypeVec;
58  public:
59    TypeSet() {}
60    TypeSet(MVT::SimpleValueType VT, TreePattern &TP);
61    TypeSet(const std::vector<MVT::SimpleValueType> &VTList);
62
63    bool isCompletelyUnknown() const { return TypeVec.empty(); }
64
65    bool isConcrete() const {
66      if (TypeVec.size() != 1) return false;
67      unsigned char T = TypeVec[0]; (void)T;
68      assert(T < MVT::LAST_VALUETYPE || T == MVT::iPTR || T == MVT::iPTRAny);
69      return true;
70    }
71
72    MVT::SimpleValueType getConcrete() const {
73      assert(isConcrete() && "Type isn't concrete yet");
74      return (MVT::SimpleValueType)TypeVec[0];
75    }
76
77    bool isDynamicallyResolved() const {
78      return getConcrete() == MVT::iPTR || getConcrete() == MVT::iPTRAny;
79    }
80
81    const SmallVectorImpl<MVT::SimpleValueType> &getTypeList() const {
82      assert(!TypeVec.empty() && "Not a type list!");
83      return TypeVec;
84    }
85
86    bool isVoid() const {
87      return TypeVec.size() == 1 && TypeVec[0] == MVT::isVoid;
88    }
89
90    /// hasIntegerTypes - Return true if this TypeSet contains any integer value
91    /// types.
92    bool hasIntegerTypes() const;
93
94    /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
95    /// a floating point value type.
96    bool hasFloatingPointTypes() const;
97
98    /// hasVectorTypes - Return true if this TypeSet contains a vector value
99    /// type.
100    bool hasVectorTypes() const;
101
102    /// getName() - Return this TypeSet as a string.
103    std::string getName() const;
104
105    /// MergeInTypeInfo - This merges in type information from the specified
106    /// argument.  If 'this' changes, it returns true.  If the two types are
107    /// contradictory (e.g. merge f32 into i32) then this throws an exception.
108    bool MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP);
109
110    bool MergeInTypeInfo(MVT::SimpleValueType InVT, TreePattern &TP) {
111      return MergeInTypeInfo(EEVT::TypeSet(InVT, TP), TP);
112    }
113
114    /// Force this type list to only contain integer types.
115    bool EnforceInteger(TreePattern &TP);
116
117    /// Force this type list to only contain floating point types.
118    bool EnforceFloatingPoint(TreePattern &TP);
119
120    /// EnforceScalar - Remove all vector types from this type list.
121    bool EnforceScalar(TreePattern &TP);
122
123    /// EnforceVector - Remove all non-vector types from this type list.
124    bool EnforceVector(TreePattern &TP);
125
126    /// EnforceSmallerThan - 'this' must be a smaller VT than Other.  Update
127    /// this an other based on this information.
128    bool EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP);
129
130    /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
131    /// whose element is VT.
132    bool EnforceVectorEltTypeIs(EEVT::TypeSet &VT, TreePattern &TP);
133
134    /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to
135    /// be a vector type VT.
136    bool EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VT, TreePattern &TP);
137
138    bool operator!=(const TypeSet &RHS) const { return TypeVec != RHS.TypeVec; }
139    bool operator==(const TypeSet &RHS) const { return TypeVec == RHS.TypeVec; }
140
141  private:
142    /// FillWithPossibleTypes - Set to all legal types and return true, only
143    /// valid on completely unknown type sets.  If Pred is non-null, only MVTs
144    /// that pass the predicate are added.
145    bool FillWithPossibleTypes(TreePattern &TP,
146                               bool (*Pred)(MVT::SimpleValueType) = 0,
147                               const char *PredicateName = 0);
148  };
149}
150
151/// Set type used to track multiply used variables in patterns
152typedef std::set<std::string> MultipleUseVarSet;
153
154/// SDTypeConstraint - This is a discriminated union of constraints,
155/// corresponding to the SDTypeConstraint tablegen class in Target.td.
156struct SDTypeConstraint {
157  SDTypeConstraint(Record *R);
158
159  unsigned OperandNo;   // The operand # this constraint applies to.
160  enum {
161    SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
162    SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
163    SDTCisSubVecOfVec
164  } ConstraintType;
165
166  union {   // The discriminated union.
167    struct {
168      MVT::SimpleValueType VT;
169    } SDTCisVT_Info;
170    struct {
171      unsigned OtherOperandNum;
172    } SDTCisSameAs_Info;
173    struct {
174      unsigned OtherOperandNum;
175    } SDTCisVTSmallerThanOp_Info;
176    struct {
177      unsigned BigOperandNum;
178    } SDTCisOpSmallerThanOp_Info;
179    struct {
180      unsigned OtherOperandNum;
181    } SDTCisEltOfVec_Info;
182    struct {
183      unsigned OtherOperandNum;
184    } SDTCisSubVecOfVec_Info;
185  } x;
186
187  /// ApplyTypeConstraint - Given a node in a pattern, apply this type
188  /// constraint to the nodes operands.  This returns true if it makes a
189  /// change, false otherwise.  If a type contradiction is found, throw an
190  /// exception.
191  bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
192                           TreePattern &TP) const;
193};
194
195/// SDNodeInfo - One of these records is created for each SDNode instance in
196/// the target .td file.  This represents the various dag nodes we will be
197/// processing.
198class SDNodeInfo {
199  Record *Def;
200  std::string EnumName;
201  std::string SDClassName;
202  unsigned Properties;
203  unsigned NumResults;
204  int NumOperands;
205  std::vector<SDTypeConstraint> TypeConstraints;
206public:
207  SDNodeInfo(Record *R);  // Parse the specified record.
208
209  unsigned getNumResults() const { return NumResults; }
210
211  /// getNumOperands - This is the number of operands required or -1 if
212  /// variadic.
213  int getNumOperands() const { return NumOperands; }
214  Record *getRecord() const { return Def; }
215  const std::string &getEnumName() const { return EnumName; }
216  const std::string &getSDClassName() const { return SDClassName; }
217
218  const std::vector<SDTypeConstraint> &getTypeConstraints() const {
219    return TypeConstraints;
220  }
221
222  /// getKnownType - If the type constraints on this node imply a fixed type
223  /// (e.g. all stores return void, etc), then return it as an
224  /// MVT::SimpleValueType.  Otherwise, return MVT::Other.
225  MVT::SimpleValueType getKnownType(unsigned ResNo) const;
226
227  /// hasProperty - Return true if this node has the specified property.
228  ///
229  bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
230
231  /// ApplyTypeConstraints - Given a node in a pattern, apply the type
232  /// constraints for this node to the operands of the node.  This returns
233  /// true if it makes a change, false otherwise.  If a type contradiction is
234  /// found, throw an exception.
235  bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const {
236    bool MadeChange = false;
237    for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
238      MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
239    return MadeChange;
240  }
241};
242
243/// FIXME: TreePatternNode's can be shared in some cases (due to dag-shaped
244/// patterns), and as such should be ref counted.  We currently just leak all
245/// TreePatternNode objects!
246class TreePatternNode {
247  /// The type of each node result.  Before and during type inference, each
248  /// result may be a set of possible types.  After (successful) type inference,
249  /// each is a single concrete type.
250  SmallVector<EEVT::TypeSet, 1> Types;
251
252  /// Operator - The Record for the operator if this is an interior node (not
253  /// a leaf).
254  Record *Operator;
255
256  /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
257  ///
258  Init *Val;
259
260  /// Name - The name given to this node with the :$foo notation.
261  ///
262  std::string Name;
263
264  /// PredicateFns - The predicate functions to execute on this node to check
265  /// for a match.  If this list is empty, no predicate is involved.
266  std::vector<std::string> PredicateFns;
267
268  /// TransformFn - The transformation function to execute on this node before
269  /// it can be substituted into the resulting instruction on a pattern match.
270  Record *TransformFn;
271
272  std::vector<TreePatternNode*> Children;
273public:
274  TreePatternNode(Record *Op, const std::vector<TreePatternNode*> &Ch,
275                  unsigned NumResults)
276    : Operator(Op), Val(0), TransformFn(0), Children(Ch) {
277    Types.resize(NumResults);
278  }
279  TreePatternNode(Init *val, unsigned NumResults)    // leaf ctor
280    : Operator(0), Val(val), TransformFn(0) {
281    Types.resize(NumResults);
282  }
283  ~TreePatternNode();
284
285  const std::string &getName() const { return Name; }
286  void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
287
288  bool isLeaf() const { return Val != 0; }
289
290  // Type accessors.
291  unsigned getNumTypes() const { return Types.size(); }
292  MVT::SimpleValueType getType(unsigned ResNo) const {
293    return Types[ResNo].getConcrete();
294  }
295  const SmallVectorImpl<EEVT::TypeSet> &getExtTypes() const { return Types; }
296  const EEVT::TypeSet &getExtType(unsigned ResNo) const { return Types[ResNo]; }
297  EEVT::TypeSet &getExtType(unsigned ResNo) { return Types[ResNo]; }
298  void setType(unsigned ResNo, const EEVT::TypeSet &T) { Types[ResNo] = T; }
299
300  bool hasTypeSet(unsigned ResNo) const {
301    return Types[ResNo].isConcrete();
302  }
303  bool isTypeCompletelyUnknown(unsigned ResNo) const {
304    return Types[ResNo].isCompletelyUnknown();
305  }
306  bool isTypeDynamicallyResolved(unsigned ResNo) const {
307    return Types[ResNo].isDynamicallyResolved();
308  }
309
310  Init *getLeafValue() const { assert(isLeaf()); return Val; }
311  Record *getOperator() const { assert(!isLeaf()); return Operator; }
312
313  unsigned getNumChildren() const { return Children.size(); }
314  TreePatternNode *getChild(unsigned N) const { return Children[N]; }
315  void setChild(unsigned i, TreePatternNode *N) {
316    Children[i] = N;
317  }
318
319  /// hasChild - Return true if N is any of our children.
320  bool hasChild(const TreePatternNode *N) const {
321    for (unsigned i = 0, e = Children.size(); i != e; ++i)
322      if (Children[i] == N) return true;
323    return false;
324  }
325
326  const std::vector<std::string> &getPredicateFns() const {return PredicateFns;}
327  void clearPredicateFns() { PredicateFns.clear(); }
328  void setPredicateFns(const std::vector<std::string> &Fns) {
329    assert(PredicateFns.empty() && "Overwriting non-empty predicate list!");
330    PredicateFns = Fns;
331  }
332  void addPredicateFn(const std::string &Fn) {
333    assert(!Fn.empty() && "Empty predicate string!");
334    if (std::find(PredicateFns.begin(), PredicateFns.end(), Fn) ==
335          PredicateFns.end())
336      PredicateFns.push_back(Fn);
337  }
338
339  Record *getTransformFn() const { return TransformFn; }
340  void setTransformFn(Record *Fn) { TransformFn = Fn; }
341
342  /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
343  /// CodeGenIntrinsic information for it, otherwise return a null pointer.
344  const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
345
346  /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
347  /// return the ComplexPattern information, otherwise return null.
348  const ComplexPattern *
349  getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
350
351  /// NodeHasProperty - Return true if this node has the specified property.
352  bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
353
354  /// TreeHasProperty - Return true if any node in this tree has the specified
355  /// property.
356  bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
357
358  /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
359  /// marked isCommutative.
360  bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
361
362  void print(raw_ostream &OS) const;
363  void dump() const;
364
365public:   // Higher level manipulation routines.
366
367  /// clone - Return a new copy of this tree.
368  ///
369  TreePatternNode *clone() const;
370
371  /// RemoveAllTypes - Recursively strip all the types of this tree.
372  void RemoveAllTypes();
373
374  /// isIsomorphicTo - Return true if this node is recursively isomorphic to
375  /// the specified node.  For this comparison, all of the state of the node
376  /// is considered, except for the assigned name.  Nodes with differing names
377  /// that are otherwise identical are considered isomorphic.
378  bool isIsomorphicTo(const TreePatternNode *N,
379                      const MultipleUseVarSet &DepVars) const;
380
381  /// SubstituteFormalArguments - Replace the formal arguments in this tree
382  /// with actual values specified by ArgMap.
383  void SubstituteFormalArguments(std::map<std::string,
384                                          TreePatternNode*> &ArgMap);
385
386  /// InlinePatternFragments - If this pattern refers to any pattern
387  /// fragments, inline them into place, giving us a pattern without any
388  /// PatFrag references.
389  TreePatternNode *InlinePatternFragments(TreePattern &TP);
390
391  /// ApplyTypeConstraints - Apply all of the type constraints relevant to
392  /// this node and its children in the tree.  This returns true if it makes a
393  /// change, false otherwise.  If a type contradiction is found, throw an
394  /// exception.
395  bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
396
397  /// UpdateNodeType - Set the node type of N to VT if VT contains
398  /// information.  If N already contains a conflicting type, then throw an
399  /// exception.  This returns true if any information was updated.
400  ///
401  bool UpdateNodeType(unsigned ResNo, const EEVT::TypeSet &InTy,
402                      TreePattern &TP) {
403    return Types[ResNo].MergeInTypeInfo(InTy, TP);
404  }
405
406  bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
407                      TreePattern &TP) {
408    return Types[ResNo].MergeInTypeInfo(EEVT::TypeSet(InTy, TP), TP);
409  }
410
411  /// ContainsUnresolvedType - Return true if this tree contains any
412  /// unresolved types.
413  bool ContainsUnresolvedType() const {
414    for (unsigned i = 0, e = Types.size(); i != e; ++i)
415      if (!Types[i].isConcrete()) return true;
416
417    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
418      if (getChild(i)->ContainsUnresolvedType()) return true;
419    return false;
420  }
421
422  /// canPatternMatch - If it is impossible for this pattern to match on this
423  /// target, fill in Reason and return false.  Otherwise, return true.
424  bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
425};
426
427inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
428  TPN.print(OS);
429  return OS;
430}
431
432
433/// TreePattern - Represent a pattern, used for instructions, pattern
434/// fragments, etc.
435///
436class TreePattern {
437  /// Trees - The list of pattern trees which corresponds to this pattern.
438  /// Note that PatFrag's only have a single tree.
439  ///
440  std::vector<TreePatternNode*> Trees;
441
442  /// NamedNodes - This is all of the nodes that have names in the trees in this
443  /// pattern.
444  StringMap<SmallVector<TreePatternNode*,1> > NamedNodes;
445
446  /// TheRecord - The actual TableGen record corresponding to this pattern.
447  ///
448  Record *TheRecord;
449
450  /// Args - This is a list of all of the arguments to this pattern (for
451  /// PatFrag patterns), which are the 'node' markers in this pattern.
452  std::vector<std::string> Args;
453
454  /// CDP - the top-level object coordinating this madness.
455  ///
456  CodeGenDAGPatterns &CDP;
457
458  /// isInputPattern - True if this is an input pattern, something to match.
459  /// False if this is an output pattern, something to emit.
460  bool isInputPattern;
461public:
462
463  /// TreePattern constructor - Parse the specified DagInits into the
464  /// current record.
465  TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
466              CodeGenDAGPatterns &ise);
467  TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
468              CodeGenDAGPatterns &ise);
469  TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
470              CodeGenDAGPatterns &ise);
471
472  /// getTrees - Return the tree patterns which corresponds to this pattern.
473  ///
474  const std::vector<TreePatternNode*> &getTrees() const { return Trees; }
475  unsigned getNumTrees() const { return Trees.size(); }
476  TreePatternNode *getTree(unsigned i) const { return Trees[i]; }
477  TreePatternNode *getOnlyTree() const {
478    assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
479    return Trees[0];
480  }
481
482  const StringMap<SmallVector<TreePatternNode*,1> > &getNamedNodesMap() {
483    if (NamedNodes.empty())
484      ComputeNamedNodes();
485    return NamedNodes;
486  }
487
488  /// getRecord - Return the actual TableGen record corresponding to this
489  /// pattern.
490  ///
491  Record *getRecord() const { return TheRecord; }
492
493  unsigned getNumArgs() const { return Args.size(); }
494  const std::string &getArgName(unsigned i) const {
495    assert(i < Args.size() && "Argument reference out of range!");
496    return Args[i];
497  }
498  std::vector<std::string> &getArgList() { return Args; }
499
500  CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
501
502  /// InlinePatternFragments - If this pattern refers to any pattern
503  /// fragments, inline them into place, giving us a pattern without any
504  /// PatFrag references.
505  void InlinePatternFragments() {
506    for (unsigned i = 0, e = Trees.size(); i != e; ++i)
507      Trees[i] = Trees[i]->InlinePatternFragments(*this);
508  }
509
510  /// InferAllTypes - Infer/propagate as many types throughout the expression
511  /// patterns as possible.  Return true if all types are inferred, false
512  /// otherwise.  Throw an exception if a type contradiction is found.
513  bool InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> >
514                          *NamedTypes=0);
515
516  /// error - Throw an exception, prefixing it with information about this
517  /// pattern.
518  void error(const std::string &Msg) const;
519
520  void print(raw_ostream &OS) const;
521  void dump() const;
522
523private:
524  TreePatternNode *ParseTreePattern(Init *DI, StringRef OpName);
525  void ComputeNamedNodes();
526  void ComputeNamedNodes(TreePatternNode *N);
527};
528
529/// DAGDefaultOperand - One of these is created for each PredicateOperand
530/// or OptionalDefOperand that has a set ExecuteAlways / DefaultOps field.
531struct DAGDefaultOperand {
532  std::vector<TreePatternNode*> DefaultOps;
533};
534
535class DAGInstruction {
536  TreePattern *Pattern;
537  std::vector<Record*> Results;
538  std::vector<Record*> Operands;
539  std::vector<Record*> ImpResults;
540  TreePatternNode *ResultPattern;
541public:
542  DAGInstruction(TreePattern *TP,
543                 const std::vector<Record*> &results,
544                 const std::vector<Record*> &operands,
545                 const std::vector<Record*> &impresults)
546    : Pattern(TP), Results(results), Operands(operands),
547      ImpResults(impresults), ResultPattern(0) {}
548
549  const TreePattern *getPattern() const { return Pattern; }
550  unsigned getNumResults() const { return Results.size(); }
551  unsigned getNumOperands() const { return Operands.size(); }
552  unsigned getNumImpResults() const { return ImpResults.size(); }
553  const std::vector<Record*>& getImpResults() const { return ImpResults; }
554
555  void setResultPattern(TreePatternNode *R) { ResultPattern = R; }
556
557  Record *getResult(unsigned RN) const {
558    assert(RN < Results.size());
559    return Results[RN];
560  }
561
562  Record *getOperand(unsigned ON) const {
563    assert(ON < Operands.size());
564    return Operands[ON];
565  }
566
567  Record *getImpResult(unsigned RN) const {
568    assert(RN < ImpResults.size());
569    return ImpResults[RN];
570  }
571
572  TreePatternNode *getResultPattern() const { return ResultPattern; }
573};
574
575/// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
576/// processed to produce isel.
577class PatternToMatch {
578public:
579  PatternToMatch(Record *srcrecord, ListInit *preds,
580                 TreePatternNode *src, TreePatternNode *dst,
581                 const std::vector<Record*> &dstregs,
582                 unsigned complexity, unsigned uid)
583    : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src), DstPattern(dst),
584      Dstregs(dstregs), AddedComplexity(complexity), ID(uid) {}
585
586  Record          *SrcRecord;   // Originating Record for the pattern.
587  ListInit        *Predicates;  // Top level predicate conditions to match.
588  TreePatternNode *SrcPattern;  // Source pattern to match.
589  TreePatternNode *DstPattern;  // Resulting pattern.
590  std::vector<Record*> Dstregs; // Physical register defs being matched.
591  unsigned         AddedComplexity; // Add to matching pattern complexity.
592  unsigned         ID;          // Unique ID for the record.
593
594  Record          *getSrcRecord()  const { return SrcRecord; }
595  ListInit        *getPredicates() const { return Predicates; }
596  TreePatternNode *getSrcPattern() const { return SrcPattern; }
597  TreePatternNode *getDstPattern() const { return DstPattern; }
598  const std::vector<Record*> &getDstRegs() const { return Dstregs; }
599  unsigned         getAddedComplexity() const { return AddedComplexity; }
600
601  std::string getPredicateCheck() const;
602
603  /// Compute the complexity metric for the input pattern.  This roughly
604  /// corresponds to the number of nodes that are covered.
605  unsigned getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
606};
607
608// Deterministic comparison of Record*.
609struct RecordPtrCmp {
610  bool operator()(const Record *LHS, const Record *RHS) const;
611};
612
613class CodeGenDAGPatterns {
614  RecordKeeper &Records;
615  CodeGenTarget Target;
616  std::vector<CodeGenIntrinsic> Intrinsics;
617  std::vector<CodeGenIntrinsic> TgtIntrinsics;
618
619  std::map<Record*, SDNodeInfo, RecordPtrCmp> SDNodes;
620  std::map<Record*, std::pair<Record*, std::string>, RecordPtrCmp> SDNodeXForms;
621  std::map<Record*, ComplexPattern, RecordPtrCmp> ComplexPatterns;
622  std::map<Record*, TreePattern*, RecordPtrCmp> PatternFragments;
623  std::map<Record*, DAGDefaultOperand, RecordPtrCmp> DefaultOperands;
624  std::map<Record*, DAGInstruction, RecordPtrCmp> Instructions;
625
626  // Specific SDNode definitions:
627  Record *intrinsic_void_sdnode;
628  Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
629
630  /// PatternsToMatch - All of the things we are matching on the DAG.  The first
631  /// value is the pattern to match, the second pattern is the result to
632  /// emit.
633  std::vector<PatternToMatch> PatternsToMatch;
634public:
635  CodeGenDAGPatterns(RecordKeeper &R);
636  ~CodeGenDAGPatterns();
637
638  CodeGenTarget &getTargetInfo() { return Target; }
639  const CodeGenTarget &getTargetInfo() const { return Target; }
640
641  Record *getSDNodeNamed(const std::string &Name) const;
642
643  const SDNodeInfo &getSDNodeInfo(Record *R) const {
644    assert(SDNodes.count(R) && "Unknown node!");
645    return SDNodes.find(R)->second;
646  }
647
648  // Node transformation lookups.
649  typedef std::pair<Record*, std::string> NodeXForm;
650  const NodeXForm &getSDNodeTransform(Record *R) const {
651    assert(SDNodeXForms.count(R) && "Invalid transform!");
652    return SDNodeXForms.find(R)->second;
653  }
654
655  typedef std::map<Record*, NodeXForm, RecordPtrCmp>::const_iterator
656          nx_iterator;
657  nx_iterator nx_begin() const { return SDNodeXForms.begin(); }
658  nx_iterator nx_end() const { return SDNodeXForms.end(); }
659
660
661  const ComplexPattern &getComplexPattern(Record *R) const {
662    assert(ComplexPatterns.count(R) && "Unknown addressing mode!");
663    return ComplexPatterns.find(R)->second;
664  }
665
666  const CodeGenIntrinsic &getIntrinsic(Record *R) const {
667    for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
668      if (Intrinsics[i].TheDef == R) return Intrinsics[i];
669    for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
670      if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i];
671    assert(0 && "Unknown intrinsic!");
672    abort();
673  }
674
675  const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
676    if (IID-1 < Intrinsics.size())
677      return Intrinsics[IID-1];
678    if (IID-Intrinsics.size()-1 < TgtIntrinsics.size())
679      return TgtIntrinsics[IID-Intrinsics.size()-1];
680    assert(0 && "Bad intrinsic ID!");
681    abort();
682  }
683
684  unsigned getIntrinsicID(Record *R) const {
685    for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
686      if (Intrinsics[i].TheDef == R) return i;
687    for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
688      if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size();
689    assert(0 && "Unknown intrinsic!");
690    abort();
691  }
692
693  const DAGDefaultOperand &getDefaultOperand(Record *R) const {
694    assert(DefaultOperands.count(R) &&"Isn't an analyzed default operand!");
695    return DefaultOperands.find(R)->second;
696  }
697
698  // Pattern Fragment information.
699  TreePattern *getPatternFragment(Record *R) const {
700    assert(PatternFragments.count(R) && "Invalid pattern fragment request!");
701    return PatternFragments.find(R)->second;
702  }
703  TreePattern *getPatternFragmentIfRead(Record *R) const {
704    if (!PatternFragments.count(R)) return 0;
705    return PatternFragments.find(R)->second;
706  }
707
708  typedef std::map<Record*, TreePattern*, RecordPtrCmp>::const_iterator
709          pf_iterator;
710  pf_iterator pf_begin() const { return PatternFragments.begin(); }
711  pf_iterator pf_end() const { return PatternFragments.end(); }
712
713  // Patterns to match information.
714  typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
715  ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
716  ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
717
718
719
720  const DAGInstruction &getInstruction(Record *R) const {
721    assert(Instructions.count(R) && "Unknown instruction!");
722    return Instructions.find(R)->second;
723  }
724
725  Record *get_intrinsic_void_sdnode() const {
726    return intrinsic_void_sdnode;
727  }
728  Record *get_intrinsic_w_chain_sdnode() const {
729    return intrinsic_w_chain_sdnode;
730  }
731  Record *get_intrinsic_wo_chain_sdnode() const {
732    return intrinsic_wo_chain_sdnode;
733  }
734
735  bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); }
736
737private:
738  void ParseNodeInfo();
739  void ParseNodeTransforms();
740  void ParseComplexPatterns();
741  void ParsePatternFragments();
742  void ParseDefaultOperands();
743  void ParseInstructions();
744  void ParsePatterns();
745  void InferInstructionFlags();
746  void GenerateVariants();
747
748  void AddPatternToMatch(const TreePattern *Pattern, const PatternToMatch &PTM);
749  void FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
750                                   std::map<std::string,
751                                   TreePatternNode*> &InstInputs,
752                                   std::map<std::string,
753                                   TreePatternNode*> &InstResults,
754                                   std::vector<Record*> &InstImpResults);
755};
756} // end namespace llvm
757
758#endif
759