CodeGenDAGPatterns.cpp revision 341825
1//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CodeGenDAGPatterns class, which is used to read and
11// represent the patterns present in a .td file for instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CodeGenDAGPatterns.h"
16#include "llvm/ADT/DenseSet.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/ADT/SmallString.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/ADT/StringMap.h"
22#include "llvm/ADT/Twine.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/TableGen/Error.h"
26#include "llvm/TableGen/Record.h"
27#include <algorithm>
28#include <cstdio>
29#include <set>
30using namespace llvm;
31
32#define DEBUG_TYPE "dag-patterns"
33
34static inline bool isIntegerOrPtr(MVT VT) {
35  return VT.isInteger() || VT == MVT::iPTR;
36}
37static inline bool isFloatingPoint(MVT VT) {
38  return VT.isFloatingPoint();
39}
40static inline bool isVector(MVT VT) {
41  return VT.isVector();
42}
43static inline bool isScalar(MVT VT) {
44  return !VT.isVector();
45}
46
47template <typename Predicate>
48static bool berase_if(MachineValueTypeSet &S, Predicate P) {
49  bool Erased = false;
50  // It is ok to iterate over MachineValueTypeSet and remove elements from it
51  // at the same time.
52  for (MVT T : S) {
53    if (!P(T))
54      continue;
55    Erased = true;
56    S.erase(T);
57  }
58  return Erased;
59}
60
61// --- TypeSetByHwMode
62
63// This is a parameterized type-set class. For each mode there is a list
64// of types that are currently possible for a given tree node. Type
65// inference will apply to each mode separately.
66
67TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
68  for (const ValueTypeByHwMode &VVT : VTList)
69    insert(VVT);
70}
71
72bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
73  for (const auto &I : *this) {
74    if (I.second.size() > 1)
75      return false;
76    if (!AllowEmpty && I.second.empty())
77      return false;
78  }
79  return true;
80}
81
82ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
83  assert(isValueTypeByHwMode(true) &&
84         "The type set has multiple types for at least one HW mode");
85  ValueTypeByHwMode VVT;
86  for (const auto &I : *this) {
87    MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
88    VVT.getOrCreateTypeForMode(I.first, T);
89  }
90  return VVT;
91}
92
93bool TypeSetByHwMode::isPossible() const {
94  for (const auto &I : *this)
95    if (!I.second.empty())
96      return true;
97  return false;
98}
99
100bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
101  bool Changed = false;
102  SmallDenseSet<unsigned, 4> Modes;
103  for (const auto &P : VVT) {
104    unsigned M = P.first;
105    Modes.insert(M);
106    // Make sure there exists a set for each specific mode from VVT.
107    Changed |= getOrCreate(M).insert(P.second).second;
108  }
109
110  // If VVT has a default mode, add the corresponding type to all
111  // modes in "this" that do not exist in VVT.
112  if (Modes.count(DefaultMode)) {
113    MVT DT = VVT.getType(DefaultMode);
114    for (auto &I : *this)
115      if (!Modes.count(I.first))
116        Changed |= I.second.insert(DT).second;
117  }
118  return Changed;
119}
120
121// Constrain the type set to be the intersection with VTS.
122bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
123  bool Changed = false;
124  if (hasDefault()) {
125    for (const auto &I : VTS) {
126      unsigned M = I.first;
127      if (M == DefaultMode || hasMode(M))
128        continue;
129      Map.insert({M, Map.at(DefaultMode)});
130      Changed = true;
131    }
132  }
133
134  for (auto &I : *this) {
135    unsigned M = I.first;
136    SetType &S = I.second;
137    if (VTS.hasMode(M) || VTS.hasDefault()) {
138      Changed |= intersect(I.second, VTS.get(M));
139    } else if (!S.empty()) {
140      S.clear();
141      Changed = true;
142    }
143  }
144  return Changed;
145}
146
147template <typename Predicate>
148bool TypeSetByHwMode::constrain(Predicate P) {
149  bool Changed = false;
150  for (auto &I : *this)
151    Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
152  return Changed;
153}
154
155template <typename Predicate>
156bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
157  assert(empty());
158  for (const auto &I : VTS) {
159    SetType &S = getOrCreate(I.first);
160    for (auto J : I.second)
161      if (P(J))
162        S.insert(J);
163  }
164  return !empty();
165}
166
167void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
168  SmallVector<unsigned, 4> Modes;
169  Modes.reserve(Map.size());
170
171  for (const auto &I : *this)
172    Modes.push_back(I.first);
173  if (Modes.empty()) {
174    OS << "{}";
175    return;
176  }
177  array_pod_sort(Modes.begin(), Modes.end());
178
179  OS << '{';
180  for (unsigned M : Modes) {
181    OS << ' ' << getModeName(M) << ':';
182    writeToStream(get(M), OS);
183  }
184  OS << " }";
185}
186
187void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
188  SmallVector<MVT, 4> Types(S.begin(), S.end());
189  array_pod_sort(Types.begin(), Types.end());
190
191  OS << '[';
192  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
193    OS << ValueTypeByHwMode::getMVTName(Types[i]);
194    if (i != e-1)
195      OS << ' ';
196  }
197  OS << ']';
198}
199
200bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
201  bool HaveDefault = hasDefault();
202  if (HaveDefault != VTS.hasDefault())
203    return false;
204
205  if (isSimple()) {
206    if (VTS.isSimple())
207      return *begin() == *VTS.begin();
208    return false;
209  }
210
211  SmallDenseSet<unsigned, 4> Modes;
212  for (auto &I : *this)
213    Modes.insert(I.first);
214  for (const auto &I : VTS)
215    Modes.insert(I.first);
216
217  if (HaveDefault) {
218    // Both sets have default mode.
219    for (unsigned M : Modes) {
220      if (get(M) != VTS.get(M))
221        return false;
222    }
223  } else {
224    // Neither set has default mode.
225    for (unsigned M : Modes) {
226      // If there is no default mode, an empty set is equivalent to not having
227      // the corresponding mode.
228      bool NoModeThis = !hasMode(M) || get(M).empty();
229      bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
230      if (NoModeThis != NoModeVTS)
231        return false;
232      if (!NoModeThis)
233        if (get(M) != VTS.get(M))
234          return false;
235    }
236  }
237
238  return true;
239}
240
241namespace llvm {
242  raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
243    T.writeToStream(OS);
244    return OS;
245  }
246}
247
248LLVM_DUMP_METHOD
249void TypeSetByHwMode::dump() const {
250  dbgs() << *this << '\n';
251}
252
253bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
254  bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
255  auto Int = [&In](MVT T) -> bool { return !In.count(T); };
256
257  if (OutP == InP)
258    return berase_if(Out, Int);
259
260  // Compute the intersection of scalars separately to account for only
261  // one set containing iPTR.
262  // The itersection of iPTR with a set of integer scalar types that does not
263  // include iPTR will result in the most specific scalar type:
264  // - iPTR is more specific than any set with two elements or more
265  // - iPTR is less specific than any single integer scalar type.
266  // For example
267  // { iPTR } * { i32 }     -> { i32 }
268  // { iPTR } * { i32 i64 } -> { iPTR }
269  // and
270  // { iPTR i32 } * { i32 }          -> { i32 }
271  // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
272  // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
273
274  // Compute the difference between the two sets in such a way that the
275  // iPTR is in the set that is being subtracted. This is to see if there
276  // are any extra scalars in the set without iPTR that are not in the
277  // set containing iPTR. Then the iPTR could be considered a "wildcard"
278  // matching these scalars. If there is only one such scalar, it would
279  // replace the iPTR, if there are more, the iPTR would be retained.
280  SetType Diff;
281  if (InP) {
282    Diff = Out;
283    berase_if(Diff, [&In](MVT T) { return In.count(T); });
284    // Pre-remove these elements and rely only on InP/OutP to determine
285    // whether a change has been made.
286    berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
287  } else {
288    Diff = In;
289    berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
290    Out.erase(MVT::iPTR);
291  }
292
293  // The actual intersection.
294  bool Changed = berase_if(Out, Int);
295  unsigned NumD = Diff.size();
296  if (NumD == 0)
297    return Changed;
298
299  if (NumD == 1) {
300    Out.insert(*Diff.begin());
301    // This is a change only if Out was the one with iPTR (which is now
302    // being replaced).
303    Changed |= OutP;
304  } else {
305    // Multiple elements from Out are now replaced with iPTR.
306    Out.insert(MVT::iPTR);
307    Changed |= !OutP;
308  }
309  return Changed;
310}
311
312bool TypeSetByHwMode::validate() const {
313#ifndef NDEBUG
314  if (empty())
315    return true;
316  bool AllEmpty = true;
317  for (const auto &I : *this)
318    AllEmpty &= I.second.empty();
319  return !AllEmpty;
320#endif
321  return true;
322}
323
324// --- TypeInfer
325
326bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
327                                const TypeSetByHwMode &In) {
328  ValidateOnExit _1(Out, *this);
329  In.validate();
330  if (In.empty() || Out == In || TP.hasError())
331    return false;
332  if (Out.empty()) {
333    Out = In;
334    return true;
335  }
336
337  bool Changed = Out.constrain(In);
338  if (Changed && Out.empty())
339    TP.error("Type contradiction");
340
341  return Changed;
342}
343
344bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
345  ValidateOnExit _1(Out, *this);
346  if (TP.hasError())
347    return false;
348  assert(!Out.empty() && "cannot pick from an empty set");
349
350  bool Changed = false;
351  for (auto &I : Out) {
352    TypeSetByHwMode::SetType &S = I.second;
353    if (S.size() <= 1)
354      continue;
355    MVT T = *S.begin(); // Pick the first element.
356    S.clear();
357    S.insert(T);
358    Changed = true;
359  }
360  return Changed;
361}
362
363bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
364  ValidateOnExit _1(Out, *this);
365  if (TP.hasError())
366    return false;
367  if (!Out.empty())
368    return Out.constrain(isIntegerOrPtr);
369
370  return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
371}
372
373bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
374  ValidateOnExit _1(Out, *this);
375  if (TP.hasError())
376    return false;
377  if (!Out.empty())
378    return Out.constrain(isFloatingPoint);
379
380  return Out.assign_if(getLegalTypes(), isFloatingPoint);
381}
382
383bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
384  ValidateOnExit _1(Out, *this);
385  if (TP.hasError())
386    return false;
387  if (!Out.empty())
388    return Out.constrain(isScalar);
389
390  return Out.assign_if(getLegalTypes(), isScalar);
391}
392
393bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
394  ValidateOnExit _1(Out, *this);
395  if (TP.hasError())
396    return false;
397  if (!Out.empty())
398    return Out.constrain(isVector);
399
400  return Out.assign_if(getLegalTypes(), isVector);
401}
402
403bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
404  ValidateOnExit _1(Out, *this);
405  if (TP.hasError() || !Out.empty())
406    return false;
407
408  Out = getLegalTypes();
409  return true;
410}
411
412template <typename Iter, typename Pred, typename Less>
413static Iter min_if(Iter B, Iter E, Pred P, Less L) {
414  if (B == E)
415    return E;
416  Iter Min = E;
417  for (Iter I = B; I != E; ++I) {
418    if (!P(*I))
419      continue;
420    if (Min == E || L(*I, *Min))
421      Min = I;
422  }
423  return Min;
424}
425
426template <typename Iter, typename Pred, typename Less>
427static Iter max_if(Iter B, Iter E, Pred P, Less L) {
428  if (B == E)
429    return E;
430  Iter Max = E;
431  for (Iter I = B; I != E; ++I) {
432    if (!P(*I))
433      continue;
434    if (Max == E || L(*Max, *I))
435      Max = I;
436  }
437  return Max;
438}
439
440/// Make sure that for each type in Small, there exists a larger type in Big.
441bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
442                                   TypeSetByHwMode &Big) {
443  ValidateOnExit _1(Small, *this), _2(Big, *this);
444  if (TP.hasError())
445    return false;
446  bool Changed = false;
447
448  if (Small.empty())
449    Changed |= EnforceAny(Small);
450  if (Big.empty())
451    Changed |= EnforceAny(Big);
452
453  assert(Small.hasDefault() && Big.hasDefault());
454
455  std::vector<unsigned> Modes = union_modes(Small, Big);
456
457  // 1. Only allow integer or floating point types and make sure that
458  //    both sides are both integer or both floating point.
459  // 2. Make sure that either both sides have vector types, or neither
460  //    of them does.
461  for (unsigned M : Modes) {
462    TypeSetByHwMode::SetType &S = Small.get(M);
463    TypeSetByHwMode::SetType &B = Big.get(M);
464
465    if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
466      auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
467      Changed |= berase_if(S, NotInt) |
468                 berase_if(B, NotInt);
469    } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
470      auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
471      Changed |= berase_if(S, NotFP) |
472                 berase_if(B, NotFP);
473    } else if (S.empty() || B.empty()) {
474      Changed = !S.empty() || !B.empty();
475      S.clear();
476      B.clear();
477    } else {
478      TP.error("Incompatible types");
479      return Changed;
480    }
481
482    if (none_of(S, isVector) || none_of(B, isVector)) {
483      Changed |= berase_if(S, isVector) |
484                 berase_if(B, isVector);
485    }
486  }
487
488  auto LT = [](MVT A, MVT B) -> bool {
489    return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
490           (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
491            A.getSizeInBits() < B.getSizeInBits());
492  };
493  auto LE = [](MVT A, MVT B) -> bool {
494    // This function is used when removing elements: when a vector is compared
495    // to a non-vector, it should return false (to avoid removal).
496    if (A.isVector() != B.isVector())
497      return false;
498
499    // Note on the < comparison below:
500    // X86 has patterns like
501    //   (set VR128X:$dst, (v16i8 (X86vtrunc (v4i32 VR128X:$src1)))),
502    // where the truncated vector is given a type v16i8, while the source
503    // vector has type v4i32. They both have the same size in bits.
504    // The minimal type in the result is obviously v16i8, and when we remove
505    // all types from the source that are smaller-or-equal than v8i16, the
506    // only source type would also be removed (since it's equal in size).
507    return A.getScalarSizeInBits() <= B.getScalarSizeInBits() ||
508           A.getSizeInBits() < B.getSizeInBits();
509  };
510
511  for (unsigned M : Modes) {
512    TypeSetByHwMode::SetType &S = Small.get(M);
513    TypeSetByHwMode::SetType &B = Big.get(M);
514    // MinS = min scalar in Small, remove all scalars from Big that are
515    // smaller-or-equal than MinS.
516    auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
517    if (MinS != S.end())
518      Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS));
519
520    // MaxS = max scalar in Big, remove all scalars from Small that are
521    // larger than MaxS.
522    auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
523    if (MaxS != B.end())
524      Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1));
525
526    // MinV = min vector in Small, remove all vectors from Big that are
527    // smaller-or-equal than MinV.
528    auto MinV = min_if(S.begin(), S.end(), isVector, LT);
529    if (MinV != S.end())
530      Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV));
531
532    // MaxV = max vector in Big, remove all vectors from Small that are
533    // larger than MaxV.
534    auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
535    if (MaxV != B.end())
536      Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1));
537  }
538
539  return Changed;
540}
541
542/// 1. Ensure that for each type T in Vec, T is a vector type, and that
543///    for each type U in Elem, U is a scalar type.
544/// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
545///    type T in Vec, such that U is the element type of T.
546bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
547                                       TypeSetByHwMode &Elem) {
548  ValidateOnExit _1(Vec, *this), _2(Elem, *this);
549  if (TP.hasError())
550    return false;
551  bool Changed = false;
552
553  if (Vec.empty())
554    Changed |= EnforceVector(Vec);
555  if (Elem.empty())
556    Changed |= EnforceScalar(Elem);
557
558  for (unsigned M : union_modes(Vec, Elem)) {
559    TypeSetByHwMode::SetType &V = Vec.get(M);
560    TypeSetByHwMode::SetType &E = Elem.get(M);
561
562    Changed |= berase_if(V, isScalar);  // Scalar = !vector
563    Changed |= berase_if(E, isVector);  // Vector = !scalar
564    assert(!V.empty() && !E.empty());
565
566    SmallSet<MVT,4> VT, ST;
567    // Collect element types from the "vector" set.
568    for (MVT T : V)
569      VT.insert(T.getVectorElementType());
570    // Collect scalar types from the "element" set.
571    for (MVT T : E)
572      ST.insert(T);
573
574    // Remove from V all (vector) types whose element type is not in S.
575    Changed |= berase_if(V, [&ST](MVT T) -> bool {
576                              return !ST.count(T.getVectorElementType());
577                            });
578    // Remove from E all (scalar) types, for which there is no corresponding
579    // type in V.
580    Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
581  }
582
583  return Changed;
584}
585
586bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
587                                       const ValueTypeByHwMode &VVT) {
588  TypeSetByHwMode Tmp(VVT);
589  ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
590  return EnforceVectorEltTypeIs(Vec, Tmp);
591}
592
593/// Ensure that for each type T in Sub, T is a vector type, and there
594/// exists a type U in Vec such that U is a vector type with the same
595/// element type as T and at least as many elements as T.
596bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
597                                             TypeSetByHwMode &Sub) {
598  ValidateOnExit _1(Vec, *this), _2(Sub, *this);
599  if (TP.hasError())
600    return false;
601
602  /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
603  auto IsSubVec = [](MVT B, MVT P) -> bool {
604    if (!B.isVector() || !P.isVector())
605      return false;
606    // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
607    // but until there are obvious use-cases for this, keep the
608    // types separate.
609    if (B.isScalableVector() != P.isScalableVector())
610      return false;
611    if (B.getVectorElementType() != P.getVectorElementType())
612      return false;
613    return B.getVectorNumElements() < P.getVectorNumElements();
614  };
615
616  /// Return true if S has no element (vector type) that T is a sub-vector of,
617  /// i.e. has the same element type as T and more elements.
618  auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
619    for (const auto &I : S)
620      if (IsSubVec(T, I))
621        return false;
622    return true;
623  };
624
625  /// Return true if S has no element (vector type) that T is a super-vector
626  /// of, i.e. has the same element type as T and fewer elements.
627  auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
628    for (const auto &I : S)
629      if (IsSubVec(I, T))
630        return false;
631    return true;
632  };
633
634  bool Changed = false;
635
636  if (Vec.empty())
637    Changed |= EnforceVector(Vec);
638  if (Sub.empty())
639    Changed |= EnforceVector(Sub);
640
641  for (unsigned M : union_modes(Vec, Sub)) {
642    TypeSetByHwMode::SetType &S = Sub.get(M);
643    TypeSetByHwMode::SetType &V = Vec.get(M);
644
645    Changed |= berase_if(S, isScalar);
646
647    // Erase all types from S that are not sub-vectors of a type in V.
648    Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
649
650    // Erase all types from V that are not super-vectors of a type in S.
651    Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
652  }
653
654  return Changed;
655}
656
657/// 1. Ensure that V has a scalar type iff W has a scalar type.
658/// 2. Ensure that for each vector type T in V, there exists a vector
659///    type U in W, such that T and U have the same number of elements.
660/// 3. Ensure that for each vector type U in W, there exists a vector
661///    type T in V, such that T and U have the same number of elements
662///    (reverse of 2).
663bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
664  ValidateOnExit _1(V, *this), _2(W, *this);
665  if (TP.hasError())
666    return false;
667
668  bool Changed = false;
669  if (V.empty())
670    Changed |= EnforceAny(V);
671  if (W.empty())
672    Changed |= EnforceAny(W);
673
674  // An actual vector type cannot have 0 elements, so we can treat scalars
675  // as zero-length vectors. This way both vectors and scalars can be
676  // processed identically.
677  auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
678    return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
679  };
680
681  for (unsigned M : union_modes(V, W)) {
682    TypeSetByHwMode::SetType &VS = V.get(M);
683    TypeSetByHwMode::SetType &WS = W.get(M);
684
685    SmallSet<unsigned,2> VN, WN;
686    for (MVT T : VS)
687      VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
688    for (MVT T : WS)
689      WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
690
691    Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
692    Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
693  }
694  return Changed;
695}
696
697/// 1. Ensure that for each type T in A, there exists a type U in B,
698///    such that T and U have equal size in bits.
699/// 2. Ensure that for each type U in B, there exists a type T in A
700///    such that T and U have equal size in bits (reverse of 1).
701bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
702  ValidateOnExit _1(A, *this), _2(B, *this);
703  if (TP.hasError())
704    return false;
705  bool Changed = false;
706  if (A.empty())
707    Changed |= EnforceAny(A);
708  if (B.empty())
709    Changed |= EnforceAny(B);
710
711  auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
712    return !Sizes.count(T.getSizeInBits());
713  };
714
715  for (unsigned M : union_modes(A, B)) {
716    TypeSetByHwMode::SetType &AS = A.get(M);
717    TypeSetByHwMode::SetType &BS = B.get(M);
718    SmallSet<unsigned,2> AN, BN;
719
720    for (MVT T : AS)
721      AN.insert(T.getSizeInBits());
722    for (MVT T : BS)
723      BN.insert(T.getSizeInBits());
724
725    Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
726    Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
727  }
728
729  return Changed;
730}
731
732void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
733  ValidateOnExit _1(VTS, *this);
734  TypeSetByHwMode Legal = getLegalTypes();
735  bool HaveLegalDef = Legal.hasDefault();
736
737  for (auto &I : VTS) {
738    unsigned M = I.first;
739    if (!Legal.hasMode(M) && !HaveLegalDef) {
740      TP.error("Invalid mode " + Twine(M));
741      return;
742    }
743    expandOverloads(I.second, Legal.get(M));
744  }
745}
746
747void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
748                                const TypeSetByHwMode::SetType &Legal) {
749  std::set<MVT> Ovs;
750  for (MVT T : Out) {
751    if (!T.isOverloaded())
752      continue;
753
754    Ovs.insert(T);
755    // MachineValueTypeSet allows iteration and erasing.
756    Out.erase(T);
757  }
758
759  for (MVT Ov : Ovs) {
760    switch (Ov.SimpleTy) {
761      case MVT::iPTRAny:
762        Out.insert(MVT::iPTR);
763        return;
764      case MVT::iAny:
765        for (MVT T : MVT::integer_valuetypes())
766          if (Legal.count(T))
767            Out.insert(T);
768        for (MVT T : MVT::integer_vector_valuetypes())
769          if (Legal.count(T))
770            Out.insert(T);
771        return;
772      case MVT::fAny:
773        for (MVT T : MVT::fp_valuetypes())
774          if (Legal.count(T))
775            Out.insert(T);
776        for (MVT T : MVT::fp_vector_valuetypes())
777          if (Legal.count(T))
778            Out.insert(T);
779        return;
780      case MVT::vAny:
781        for (MVT T : MVT::vector_valuetypes())
782          if (Legal.count(T))
783            Out.insert(T);
784        return;
785      case MVT::Any:
786        for (MVT T : MVT::all_valuetypes())
787          if (Legal.count(T))
788            Out.insert(T);
789        return;
790      default:
791        break;
792    }
793  }
794}
795
796TypeSetByHwMode TypeInfer::getLegalTypes() {
797  if (!LegalTypesCached) {
798    // Stuff all types from all modes into the default mode.
799    const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
800    for (const auto &I : LTS)
801      LegalCache.insert(I.second);
802    LegalTypesCached = true;
803  }
804  TypeSetByHwMode VTS;
805  VTS.getOrCreate(DefaultMode) = LegalCache;
806  return VTS;
807}
808
809#ifndef NDEBUG
810TypeInfer::ValidateOnExit::~ValidateOnExit() {
811  if (Infer.Validate && !VTS.validate()) {
812    dbgs() << "Type set is empty for each HW mode:\n"
813              "possible type contradiction in the pattern below "
814              "(use -print-records with llvm-tblgen to see all "
815              "expanded records).\n";
816    Infer.TP.dump();
817    llvm_unreachable(nullptr);
818  }
819}
820#endif
821
822//===----------------------------------------------------------------------===//
823// TreePredicateFn Implementation
824//===----------------------------------------------------------------------===//
825
826/// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
827TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
828  assert(
829      (!hasPredCode() || !hasImmCode()) &&
830      ".td file corrupt: can't have a node predicate *and* an imm predicate");
831}
832
833bool TreePredicateFn::hasPredCode() const {
834  return isLoad() || isStore() || isAtomic() ||
835         !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
836}
837
838std::string TreePredicateFn::getPredCode() const {
839  std::string Code = "";
840
841  if (!isLoad() && !isStore() && !isAtomic()) {
842    Record *MemoryVT = getMemoryVT();
843
844    if (MemoryVT)
845      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
846                      "MemoryVT requires IsLoad or IsStore");
847  }
848
849  if (!isLoad() && !isStore()) {
850    if (isUnindexed())
851      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
852                      "IsUnindexed requires IsLoad or IsStore");
853
854    Record *ScalarMemoryVT = getScalarMemoryVT();
855
856    if (ScalarMemoryVT)
857      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
858                      "ScalarMemoryVT requires IsLoad or IsStore");
859  }
860
861  if (isLoad() + isStore() + isAtomic() > 1)
862    PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
863                    "IsLoad, IsStore, and IsAtomic are mutually exclusive");
864
865  if (isLoad()) {
866    if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
867        !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
868        getScalarMemoryVT() == nullptr)
869      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
870                      "IsLoad cannot be used by itself");
871  } else {
872    if (isNonExtLoad())
873      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
874                      "IsNonExtLoad requires IsLoad");
875    if (isAnyExtLoad())
876      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
877                      "IsAnyExtLoad requires IsLoad");
878    if (isSignExtLoad())
879      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
880                      "IsSignExtLoad requires IsLoad");
881    if (isZeroExtLoad())
882      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
883                      "IsZeroExtLoad requires IsLoad");
884  }
885
886  if (isStore()) {
887    if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
888        getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr)
889      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
890                      "IsStore cannot be used by itself");
891  } else {
892    if (isNonTruncStore())
893      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
894                      "IsNonTruncStore requires IsStore");
895    if (isTruncStore())
896      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
897                      "IsTruncStore requires IsStore");
898  }
899
900  if (isAtomic()) {
901    if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
902        !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
903        !isAtomicOrderingAcquireRelease() &&
904        !isAtomicOrderingSequentiallyConsistent() &&
905        !isAtomicOrderingAcquireOrStronger() &&
906        !isAtomicOrderingReleaseOrStronger() &&
907        !isAtomicOrderingWeakerThanAcquire() &&
908        !isAtomicOrderingWeakerThanRelease())
909      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
910                      "IsAtomic cannot be used by itself");
911  } else {
912    if (isAtomicOrderingMonotonic())
913      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
914                      "IsAtomicOrderingMonotonic requires IsAtomic");
915    if (isAtomicOrderingAcquire())
916      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
917                      "IsAtomicOrderingAcquire requires IsAtomic");
918    if (isAtomicOrderingRelease())
919      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
920                      "IsAtomicOrderingRelease requires IsAtomic");
921    if (isAtomicOrderingAcquireRelease())
922      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
923                      "IsAtomicOrderingAcquireRelease requires IsAtomic");
924    if (isAtomicOrderingSequentiallyConsistent())
925      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
926                      "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
927    if (isAtomicOrderingAcquireOrStronger())
928      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
929                      "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
930    if (isAtomicOrderingReleaseOrStronger())
931      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
932                      "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
933    if (isAtomicOrderingWeakerThanAcquire())
934      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
935                      "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
936  }
937
938  if (isLoad() || isStore() || isAtomic()) {
939    StringRef SDNodeName =
940        isLoad() ? "LoadSDNode" : isStore() ? "StoreSDNode" : "AtomicSDNode";
941
942    Record *MemoryVT = getMemoryVT();
943
944    if (MemoryVT)
945      Code += ("if (cast<" + SDNodeName + ">(N)->getMemoryVT() != MVT::" +
946               MemoryVT->getName() + ") return false;\n")
947                  .str();
948  }
949
950  if (isAtomic() && isAtomicOrderingMonotonic())
951    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
952            "AtomicOrdering::Monotonic) return false;\n";
953  if (isAtomic() && isAtomicOrderingAcquire())
954    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
955            "AtomicOrdering::Acquire) return false;\n";
956  if (isAtomic() && isAtomicOrderingRelease())
957    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
958            "AtomicOrdering::Release) return false;\n";
959  if (isAtomic() && isAtomicOrderingAcquireRelease())
960    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
961            "AtomicOrdering::AcquireRelease) return false;\n";
962  if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
963    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
964            "AtomicOrdering::SequentiallyConsistent) return false;\n";
965
966  if (isAtomic() && isAtomicOrderingAcquireOrStronger())
967    Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
968            "return false;\n";
969  if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
970    Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
971            "return false;\n";
972
973  if (isAtomic() && isAtomicOrderingReleaseOrStronger())
974    Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
975            "return false;\n";
976  if (isAtomic() && isAtomicOrderingWeakerThanRelease())
977    Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
978            "return false;\n";
979
980  if (isLoad() || isStore()) {
981    StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
982
983    if (isUnindexed())
984      Code += ("if (cast<" + SDNodeName +
985               ">(N)->getAddressingMode() != ISD::UNINDEXED) "
986               "return false;\n")
987                  .str();
988
989    if (isLoad()) {
990      if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
991           isZeroExtLoad()) > 1)
992        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
993                        "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
994                        "IsZeroExtLoad are mutually exclusive");
995      if (isNonExtLoad())
996        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
997                "ISD::NON_EXTLOAD) return false;\n";
998      if (isAnyExtLoad())
999        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1000                "return false;\n";
1001      if (isSignExtLoad())
1002        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1003                "return false;\n";
1004      if (isZeroExtLoad())
1005        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1006                "return false;\n";
1007    } else {
1008      if ((isNonTruncStore() + isTruncStore()) > 1)
1009        PrintFatalError(
1010            getOrigPatFragRecord()->getRecord()->getLoc(),
1011            "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1012      if (isNonTruncStore())
1013        Code +=
1014            " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1015      if (isTruncStore())
1016        Code +=
1017            " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1018    }
1019
1020    Record *ScalarMemoryVT = getScalarMemoryVT();
1021
1022    if (ScalarMemoryVT)
1023      Code += ("if (cast<" + SDNodeName +
1024               ">(N)->getMemoryVT().getScalarType() != MVT::" +
1025               ScalarMemoryVT->getName() + ") return false;\n")
1026                  .str();
1027  }
1028
1029  std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode");
1030
1031  Code += PredicateCode;
1032
1033  if (PredicateCode.empty() && !Code.empty())
1034    Code += "return true;\n";
1035
1036  return Code;
1037}
1038
1039bool TreePredicateFn::hasImmCode() const {
1040  return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1041}
1042
1043std::string TreePredicateFn::getImmCode() const {
1044  return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
1045}
1046
1047bool TreePredicateFn::immCodeUsesAPInt() const {
1048  return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1049}
1050
1051bool TreePredicateFn::immCodeUsesAPFloat() const {
1052  bool Unset;
1053  // The return value will be false when IsAPFloat is unset.
1054  return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1055                                                                   Unset);
1056}
1057
1058bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1059                                                   bool Value) const {
1060  bool Unset;
1061  bool Result =
1062      getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1063  if (Unset)
1064    return false;
1065  return Result == Value;
1066}
1067bool TreePredicateFn::isLoad() const {
1068  return isPredefinedPredicateEqualTo("IsLoad", true);
1069}
1070bool TreePredicateFn::isStore() const {
1071  return isPredefinedPredicateEqualTo("IsStore", true);
1072}
1073bool TreePredicateFn::isAtomic() const {
1074  return isPredefinedPredicateEqualTo("IsAtomic", true);
1075}
1076bool TreePredicateFn::isUnindexed() const {
1077  return isPredefinedPredicateEqualTo("IsUnindexed", true);
1078}
1079bool TreePredicateFn::isNonExtLoad() const {
1080  return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1081}
1082bool TreePredicateFn::isAnyExtLoad() const {
1083  return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1084}
1085bool TreePredicateFn::isSignExtLoad() const {
1086  return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1087}
1088bool TreePredicateFn::isZeroExtLoad() const {
1089  return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1090}
1091bool TreePredicateFn::isNonTruncStore() const {
1092  return isPredefinedPredicateEqualTo("IsTruncStore", false);
1093}
1094bool TreePredicateFn::isTruncStore() const {
1095  return isPredefinedPredicateEqualTo("IsTruncStore", true);
1096}
1097bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1098  return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1099}
1100bool TreePredicateFn::isAtomicOrderingAcquire() const {
1101  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1102}
1103bool TreePredicateFn::isAtomicOrderingRelease() const {
1104  return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1105}
1106bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1107  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1108}
1109bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1110  return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1111                                      true);
1112}
1113bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1114  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1115}
1116bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1117  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1118}
1119bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1120  return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1121}
1122bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1123  return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1124}
1125Record *TreePredicateFn::getMemoryVT() const {
1126  Record *R = getOrigPatFragRecord()->getRecord();
1127  if (R->isValueUnset("MemoryVT"))
1128    return nullptr;
1129  return R->getValueAsDef("MemoryVT");
1130}
1131Record *TreePredicateFn::getScalarMemoryVT() const {
1132  Record *R = getOrigPatFragRecord()->getRecord();
1133  if (R->isValueUnset("ScalarMemoryVT"))
1134    return nullptr;
1135  return R->getValueAsDef("ScalarMemoryVT");
1136}
1137bool TreePredicateFn::hasGISelPredicateCode() const {
1138  return !PatFragRec->getRecord()
1139              ->getValueAsString("GISelPredicateCode")
1140              .empty();
1141}
1142std::string TreePredicateFn::getGISelPredicateCode() const {
1143  return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode");
1144}
1145
1146StringRef TreePredicateFn::getImmType() const {
1147  if (immCodeUsesAPInt())
1148    return "const APInt &";
1149  if (immCodeUsesAPFloat())
1150    return "const APFloat &";
1151  return "int64_t";
1152}
1153
1154StringRef TreePredicateFn::getImmTypeIdentifier() const {
1155  if (immCodeUsesAPInt())
1156    return "APInt";
1157  else if (immCodeUsesAPFloat())
1158    return "APFloat";
1159  return "I64";
1160}
1161
1162/// isAlwaysTrue - Return true if this is a noop predicate.
1163bool TreePredicateFn::isAlwaysTrue() const {
1164  return !hasPredCode() && !hasImmCode();
1165}
1166
1167/// Return the name to use in the generated code to reference this, this is
1168/// "Predicate_foo" if from a pattern fragment "foo".
1169std::string TreePredicateFn::getFnName() const {
1170  return "Predicate_" + PatFragRec->getRecord()->getName().str();
1171}
1172
1173/// getCodeToRunOnSDNode - Return the code for the function body that
1174/// evaluates this predicate.  The argument is expected to be in "Node",
1175/// not N.  This handles casting and conversion to a concrete node type as
1176/// appropriate.
1177std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1178  // Handle immediate predicates first.
1179  std::string ImmCode = getImmCode();
1180  if (!ImmCode.empty()) {
1181    if (isLoad())
1182      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1183                      "IsLoad cannot be used with ImmLeaf or its subclasses");
1184    if (isStore())
1185      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1186                      "IsStore cannot be used with ImmLeaf or its subclasses");
1187    if (isUnindexed())
1188      PrintFatalError(
1189          getOrigPatFragRecord()->getRecord()->getLoc(),
1190          "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1191    if (isNonExtLoad())
1192      PrintFatalError(
1193          getOrigPatFragRecord()->getRecord()->getLoc(),
1194          "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1195    if (isAnyExtLoad())
1196      PrintFatalError(
1197          getOrigPatFragRecord()->getRecord()->getLoc(),
1198          "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1199    if (isSignExtLoad())
1200      PrintFatalError(
1201          getOrigPatFragRecord()->getRecord()->getLoc(),
1202          "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1203    if (isZeroExtLoad())
1204      PrintFatalError(
1205          getOrigPatFragRecord()->getRecord()->getLoc(),
1206          "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1207    if (isNonTruncStore())
1208      PrintFatalError(
1209          getOrigPatFragRecord()->getRecord()->getLoc(),
1210          "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1211    if (isTruncStore())
1212      PrintFatalError(
1213          getOrigPatFragRecord()->getRecord()->getLoc(),
1214          "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1215    if (getMemoryVT())
1216      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1217                      "MemoryVT cannot be used with ImmLeaf or its subclasses");
1218    if (getScalarMemoryVT())
1219      PrintFatalError(
1220          getOrigPatFragRecord()->getRecord()->getLoc(),
1221          "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1222
1223    std::string Result = ("    " + getImmType() + " Imm = ").str();
1224    if (immCodeUsesAPFloat())
1225      Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1226    else if (immCodeUsesAPInt())
1227      Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1228    else
1229      Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1230    return Result + ImmCode;
1231  }
1232
1233  // Handle arbitrary node predicates.
1234  assert(hasPredCode() && "Don't have any predicate code!");
1235  StringRef ClassName;
1236  if (PatFragRec->getOnlyTree()->isLeaf())
1237    ClassName = "SDNode";
1238  else {
1239    Record *Op = PatFragRec->getOnlyTree()->getOperator();
1240    ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
1241  }
1242  std::string Result;
1243  if (ClassName == "SDNode")
1244    Result = "    SDNode *N = Node;\n";
1245  else
1246    Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1247
1248  return Result + getPredCode();
1249}
1250
1251//===----------------------------------------------------------------------===//
1252// PatternToMatch implementation
1253//
1254
1255/// getPatternSize - Return the 'size' of this pattern.  We want to match large
1256/// patterns before small ones.  This is used to determine the size of a
1257/// pattern.
1258static unsigned getPatternSize(const TreePatternNode *P,
1259                               const CodeGenDAGPatterns &CGP) {
1260  unsigned Size = 3;  // The node itself.
1261  // If the root node is a ConstantSDNode, increases its size.
1262  // e.g. (set R32:$dst, 0).
1263  if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1264    Size += 2;
1265
1266  if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1267    Size += AM->getComplexity();
1268    // We don't want to count any children twice, so return early.
1269    return Size;
1270  }
1271
1272  // If this node has some predicate function that must match, it adds to the
1273  // complexity of this node.
1274  if (!P->getPredicateFns().empty())
1275    ++Size;
1276
1277  // Count children in the count if they are also nodes.
1278  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1279    const TreePatternNode *Child = P->getChild(i);
1280    if (!Child->isLeaf() && Child->getNumTypes()) {
1281      const TypeSetByHwMode &T0 = Child->getType(0);
1282      // At this point, all variable type sets should be simple, i.e. only
1283      // have a default mode.
1284      if (T0.getMachineValueType() != MVT::Other) {
1285        Size += getPatternSize(Child, CGP);
1286        continue;
1287      }
1288    }
1289    if (Child->isLeaf()) {
1290      if (isa<IntInit>(Child->getLeafValue()))
1291        Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
1292      else if (Child->getComplexPatternInfo(CGP))
1293        Size += getPatternSize(Child, CGP);
1294      else if (!Child->getPredicateFns().empty())
1295        ++Size;
1296    }
1297  }
1298
1299  return Size;
1300}
1301
1302/// Compute the complexity metric for the input pattern.  This roughly
1303/// corresponds to the number of nodes that are covered.
1304int PatternToMatch::
1305getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1306  return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1307}
1308
1309/// getPredicateCheck - Return a single string containing all of this
1310/// pattern's predicates concatenated with "&&" operators.
1311///
1312std::string PatternToMatch::getPredicateCheck() const {
1313  SmallVector<const Predicate*,4> PredList;
1314  for (const Predicate &P : Predicates)
1315    PredList.push_back(&P);
1316  llvm::sort(PredList.begin(), PredList.end(), deref<llvm::less>());
1317
1318  std::string Check;
1319  for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
1320    if (i != 0)
1321      Check += " && ";
1322    Check += '(' + PredList[i]->getCondString() + ')';
1323  }
1324  return Check;
1325}
1326
1327//===----------------------------------------------------------------------===//
1328// SDTypeConstraint implementation
1329//
1330
1331SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1332  OperandNo = R->getValueAsInt("OperandNum");
1333
1334  if (R->isSubClassOf("SDTCisVT")) {
1335    ConstraintType = SDTCisVT;
1336    VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1337    for (const auto &P : VVT)
1338      if (P.second == MVT::isVoid)
1339        PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1340  } else if (R->isSubClassOf("SDTCisPtrTy")) {
1341    ConstraintType = SDTCisPtrTy;
1342  } else if (R->isSubClassOf("SDTCisInt")) {
1343    ConstraintType = SDTCisInt;
1344  } else if (R->isSubClassOf("SDTCisFP")) {
1345    ConstraintType = SDTCisFP;
1346  } else if (R->isSubClassOf("SDTCisVec")) {
1347    ConstraintType = SDTCisVec;
1348  } else if (R->isSubClassOf("SDTCisSameAs")) {
1349    ConstraintType = SDTCisSameAs;
1350    x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1351  } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1352    ConstraintType = SDTCisVTSmallerThanOp;
1353    x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1354      R->getValueAsInt("OtherOperandNum");
1355  } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1356    ConstraintType = SDTCisOpSmallerThanOp;
1357    x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1358      R->getValueAsInt("BigOperandNum");
1359  } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1360    ConstraintType = SDTCisEltOfVec;
1361    x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1362  } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1363    ConstraintType = SDTCisSubVecOfVec;
1364    x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1365      R->getValueAsInt("OtherOpNum");
1366  } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1367    ConstraintType = SDTCVecEltisVT;
1368    VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1369    for (const auto &P : VVT) {
1370      MVT T = P.second;
1371      if (T.isVector())
1372        PrintFatalError(R->getLoc(),
1373                        "Cannot use vector type as SDTCVecEltisVT");
1374      if (!T.isInteger() && !T.isFloatingPoint())
1375        PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1376                                     "as SDTCVecEltisVT");
1377    }
1378  } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1379    ConstraintType = SDTCisSameNumEltsAs;
1380    x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1381      R->getValueAsInt("OtherOperandNum");
1382  } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1383    ConstraintType = SDTCisSameSizeAs;
1384    x.SDTCisSameSizeAs_Info.OtherOperandNum =
1385      R->getValueAsInt("OtherOperandNum");
1386  } else {
1387    PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1388  }
1389}
1390
1391/// getOperandNum - Return the node corresponding to operand #OpNo in tree
1392/// N, and the result number in ResNo.
1393static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1394                                      const SDNodeInfo &NodeInfo,
1395                                      unsigned &ResNo) {
1396  unsigned NumResults = NodeInfo.getNumResults();
1397  if (OpNo < NumResults) {
1398    ResNo = OpNo;
1399    return N;
1400  }
1401
1402  OpNo -= NumResults;
1403
1404  if (OpNo >= N->getNumChildren()) {
1405    std::string S;
1406    raw_string_ostream OS(S);
1407    OS << "Invalid operand number in type constraint "
1408           << (OpNo+NumResults) << " ";
1409    N->print(OS);
1410    PrintFatalError(OS.str());
1411  }
1412
1413  return N->getChild(OpNo);
1414}
1415
1416/// ApplyTypeConstraint - Given a node in a pattern, apply this type
1417/// constraint to the nodes operands.  This returns true if it makes a
1418/// change, false otherwise.  If a type contradiction is found, flag an error.
1419bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1420                                           const SDNodeInfo &NodeInfo,
1421                                           TreePattern &TP) const {
1422  if (TP.hasError())
1423    return false;
1424
1425  unsigned ResNo = 0; // The result number being referenced.
1426  TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1427  TypeInfer &TI = TP.getInfer();
1428
1429  switch (ConstraintType) {
1430  case SDTCisVT:
1431    // Operand must be a particular type.
1432    return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1433  case SDTCisPtrTy:
1434    // Operand must be same as target pointer type.
1435    return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1436  case SDTCisInt:
1437    // Require it to be one of the legal integer VTs.
1438     return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1439  case SDTCisFP:
1440    // Require it to be one of the legal fp VTs.
1441    return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1442  case SDTCisVec:
1443    // Require it to be one of the legal vector VTs.
1444    return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1445  case SDTCisSameAs: {
1446    unsigned OResNo = 0;
1447    TreePatternNode *OtherNode =
1448      getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1449    return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1450           OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1451  }
1452  case SDTCisVTSmallerThanOp: {
1453    // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1454    // have an integer type that is smaller than the VT.
1455    if (!NodeToApply->isLeaf() ||
1456        !isa<DefInit>(NodeToApply->getLeafValue()) ||
1457        !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1458               ->isSubClassOf("ValueType")) {
1459      TP.error(N->getOperator()->getName() + " expects a VT operand!");
1460      return false;
1461    }
1462    DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1463    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1464    auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1465    TypeSetByHwMode TypeListTmp(VVT);
1466
1467    unsigned OResNo = 0;
1468    TreePatternNode *OtherNode =
1469      getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1470                    OResNo);
1471
1472    return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1473  }
1474  case SDTCisOpSmallerThanOp: {
1475    unsigned BResNo = 0;
1476    TreePatternNode *BigOperand =
1477      getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1478                    BResNo);
1479    return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1480                                 BigOperand->getExtType(BResNo));
1481  }
1482  case SDTCisEltOfVec: {
1483    unsigned VResNo = 0;
1484    TreePatternNode *VecOperand =
1485      getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1486                    VResNo);
1487    // Filter vector types out of VecOperand that don't have the right element
1488    // type.
1489    return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1490                                     NodeToApply->getExtType(ResNo));
1491  }
1492  case SDTCisSubVecOfVec: {
1493    unsigned VResNo = 0;
1494    TreePatternNode *BigVecOperand =
1495      getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1496                    VResNo);
1497
1498    // Filter vector types out of BigVecOperand that don't have the
1499    // right subvector type.
1500    return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1501                                           NodeToApply->getExtType(ResNo));
1502  }
1503  case SDTCVecEltisVT: {
1504    return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1505  }
1506  case SDTCisSameNumEltsAs: {
1507    unsigned OResNo = 0;
1508    TreePatternNode *OtherNode =
1509      getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1510                    N, NodeInfo, OResNo);
1511    return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1512                                 NodeToApply->getExtType(ResNo));
1513  }
1514  case SDTCisSameSizeAs: {
1515    unsigned OResNo = 0;
1516    TreePatternNode *OtherNode =
1517      getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1518                    N, NodeInfo, OResNo);
1519    return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1520                              NodeToApply->getExtType(ResNo));
1521  }
1522  }
1523  llvm_unreachable("Invalid ConstraintType!");
1524}
1525
1526// Update the node type to match an instruction operand or result as specified
1527// in the ins or outs lists on the instruction definition. Return true if the
1528// type was actually changed.
1529bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1530                                             Record *Operand,
1531                                             TreePattern &TP) {
1532  // The 'unknown' operand indicates that types should be inferred from the
1533  // context.
1534  if (Operand->isSubClassOf("unknown_class"))
1535    return false;
1536
1537  // The Operand class specifies a type directly.
1538  if (Operand->isSubClassOf("Operand")) {
1539    Record *R = Operand->getValueAsDef("Type");
1540    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1541    return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1542  }
1543
1544  // PointerLikeRegClass has a type that is determined at runtime.
1545  if (Operand->isSubClassOf("PointerLikeRegClass"))
1546    return UpdateNodeType(ResNo, MVT::iPTR, TP);
1547
1548  // Both RegisterClass and RegisterOperand operands derive their types from a
1549  // register class def.
1550  Record *RC = nullptr;
1551  if (Operand->isSubClassOf("RegisterClass"))
1552    RC = Operand;
1553  else if (Operand->isSubClassOf("RegisterOperand"))
1554    RC = Operand->getValueAsDef("RegClass");
1555
1556  assert(RC && "Unknown operand type");
1557  CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1558  return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1559}
1560
1561bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1562  for (unsigned i = 0, e = Types.size(); i != e; ++i)
1563    if (!TP.getInfer().isConcrete(Types[i], true))
1564      return true;
1565  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1566    if (getChild(i)->ContainsUnresolvedType(TP))
1567      return true;
1568  return false;
1569}
1570
1571bool TreePatternNode::hasProperTypeByHwMode() const {
1572  for (const TypeSetByHwMode &S : Types)
1573    if (!S.isDefaultOnly())
1574      return true;
1575  for (const TreePatternNodePtr &C : Children)
1576    if (C->hasProperTypeByHwMode())
1577      return true;
1578  return false;
1579}
1580
1581bool TreePatternNode::hasPossibleType() const {
1582  for (const TypeSetByHwMode &S : Types)
1583    if (!S.isPossible())
1584      return false;
1585  for (const TreePatternNodePtr &C : Children)
1586    if (!C->hasPossibleType())
1587      return false;
1588  return true;
1589}
1590
1591bool TreePatternNode::setDefaultMode(unsigned Mode) {
1592  for (TypeSetByHwMode &S : Types) {
1593    S.makeSimple(Mode);
1594    // Check if the selected mode had a type conflict.
1595    if (S.get(DefaultMode).empty())
1596      return false;
1597  }
1598  for (const TreePatternNodePtr &C : Children)
1599    if (!C->setDefaultMode(Mode))
1600      return false;
1601  return true;
1602}
1603
1604//===----------------------------------------------------------------------===//
1605// SDNodeInfo implementation
1606//
1607SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1608  EnumName    = R->getValueAsString("Opcode");
1609  SDClassName = R->getValueAsString("SDClass");
1610  Record *TypeProfile = R->getValueAsDef("TypeProfile");
1611  NumResults = TypeProfile->getValueAsInt("NumResults");
1612  NumOperands = TypeProfile->getValueAsInt("NumOperands");
1613
1614  // Parse the properties.
1615  Properties = parseSDPatternOperatorProperties(R);
1616
1617  // Parse the type constraints.
1618  std::vector<Record*> ConstraintList =
1619    TypeProfile->getValueAsListOfDefs("Constraints");
1620  for (Record *R : ConstraintList)
1621    TypeConstraints.emplace_back(R, CGH);
1622}
1623
1624/// getKnownType - If the type constraints on this node imply a fixed type
1625/// (e.g. all stores return void, etc), then return it as an
1626/// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1627MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1628  unsigned NumResults = getNumResults();
1629  assert(NumResults <= 1 &&
1630         "We only work with nodes with zero or one result so far!");
1631  assert(ResNo == 0 && "Only handles single result nodes so far");
1632
1633  for (const SDTypeConstraint &Constraint : TypeConstraints) {
1634    // Make sure that this applies to the correct node result.
1635    if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1636      continue;
1637
1638    switch (Constraint.ConstraintType) {
1639    default: break;
1640    case SDTypeConstraint::SDTCisVT:
1641      if (Constraint.VVT.isSimple())
1642        return Constraint.VVT.getSimple().SimpleTy;
1643      break;
1644    case SDTypeConstraint::SDTCisPtrTy:
1645      return MVT::iPTR;
1646    }
1647  }
1648  return MVT::Other;
1649}
1650
1651//===----------------------------------------------------------------------===//
1652// TreePatternNode implementation
1653//
1654
1655static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1656  if (Operator->getName() == "set" ||
1657      Operator->getName() == "implicit")
1658    return 0;  // All return nothing.
1659
1660  if (Operator->isSubClassOf("Intrinsic"))
1661    return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1662
1663  if (Operator->isSubClassOf("SDNode"))
1664    return CDP.getSDNodeInfo(Operator).getNumResults();
1665
1666  if (Operator->isSubClassOf("PatFrags")) {
1667    // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1668    // the forward reference case where one pattern fragment references another
1669    // before it is processed.
1670    if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1671      // The number of results of a fragment with alternative records is the
1672      // maximum number of results across all alternatives.
1673      unsigned NumResults = 0;
1674      for (auto T : PFRec->getTrees())
1675        NumResults = std::max(NumResults, T->getNumTypes());
1676      return NumResults;
1677    }
1678
1679    ListInit *LI = Operator->getValueAsListInit("Fragments");
1680    assert(LI && "Invalid Fragment");
1681    unsigned NumResults = 0;
1682    for (Init *I : LI->getValues()) {
1683      Record *Op = nullptr;
1684      if (DagInit *Dag = dyn_cast<DagInit>(I))
1685        if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1686          Op = DI->getDef();
1687      assert(Op && "Invalid Fragment");
1688      NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1689    }
1690    return NumResults;
1691  }
1692
1693  if (Operator->isSubClassOf("Instruction")) {
1694    CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1695
1696    unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1697
1698    // Subtract any defaulted outputs.
1699    for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1700      Record *OperandNode = InstInfo.Operands[i].Rec;
1701
1702      if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1703          !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1704        --NumDefsToAdd;
1705    }
1706
1707    // Add on one implicit def if it has a resolvable type.
1708    if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1709      ++NumDefsToAdd;
1710    return NumDefsToAdd;
1711  }
1712
1713  if (Operator->isSubClassOf("SDNodeXForm"))
1714    return 1;  // FIXME: Generalize SDNodeXForm
1715
1716  if (Operator->isSubClassOf("ValueType"))
1717    return 1;  // A type-cast of one result.
1718
1719  if (Operator->isSubClassOf("ComplexPattern"))
1720    return 1;
1721
1722  errs() << *Operator;
1723  PrintFatalError("Unhandled node in GetNumNodeResults");
1724}
1725
1726void TreePatternNode::print(raw_ostream &OS) const {
1727  if (isLeaf())
1728    OS << *getLeafValue();
1729  else
1730    OS << '(' << getOperator()->getName();
1731
1732  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1733    OS << ':';
1734    getExtType(i).writeToStream(OS);
1735  }
1736
1737  if (!isLeaf()) {
1738    if (getNumChildren() != 0) {
1739      OS << " ";
1740      getChild(0)->print(OS);
1741      for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1742        OS << ", ";
1743        getChild(i)->print(OS);
1744      }
1745    }
1746    OS << ")";
1747  }
1748
1749  for (const TreePredicateFn &Pred : PredicateFns)
1750    OS << "<<P:" << Pred.getFnName() << ">>";
1751  if (TransformFn)
1752    OS << "<<X:" << TransformFn->getName() << ">>";
1753  if (!getName().empty())
1754    OS << ":$" << getName();
1755
1756}
1757void TreePatternNode::dump() const {
1758  print(errs());
1759}
1760
1761/// isIsomorphicTo - Return true if this node is recursively
1762/// isomorphic to the specified node.  For this comparison, the node's
1763/// entire state is considered. The assigned name is ignored, since
1764/// nodes with differing names are considered isomorphic. However, if
1765/// the assigned name is present in the dependent variable set, then
1766/// the assigned name is considered significant and the node is
1767/// isomorphic if the names match.
1768bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1769                                     const MultipleUseVarSet &DepVars) const {
1770  if (N == this) return true;
1771  if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1772      getPredicateFns() != N->getPredicateFns() ||
1773      getTransformFn() != N->getTransformFn())
1774    return false;
1775
1776  if (isLeaf()) {
1777    if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1778      if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1779        return ((DI->getDef() == NDI->getDef())
1780                && (DepVars.find(getName()) == DepVars.end()
1781                    || getName() == N->getName()));
1782      }
1783    }
1784    return getLeafValue() == N->getLeafValue();
1785  }
1786
1787  if (N->getOperator() != getOperator() ||
1788      N->getNumChildren() != getNumChildren()) return false;
1789  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1790    if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1791      return false;
1792  return true;
1793}
1794
1795/// clone - Make a copy of this tree and all of its children.
1796///
1797TreePatternNodePtr TreePatternNode::clone() const {
1798  TreePatternNodePtr New;
1799  if (isLeaf()) {
1800    New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
1801  } else {
1802    std::vector<TreePatternNodePtr> CChildren;
1803    CChildren.reserve(Children.size());
1804    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1805      CChildren.push_back(getChild(i)->clone());
1806    New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
1807                                            getNumTypes());
1808  }
1809  New->setName(getName());
1810  New->Types = Types;
1811  New->setPredicateFns(getPredicateFns());
1812  New->setTransformFn(getTransformFn());
1813  return New;
1814}
1815
1816/// RemoveAllTypes - Recursively strip all the types of this tree.
1817void TreePatternNode::RemoveAllTypes() {
1818  // Reset to unknown type.
1819  std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1820  if (isLeaf()) return;
1821  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1822    getChild(i)->RemoveAllTypes();
1823}
1824
1825
1826/// SubstituteFormalArguments - Replace the formal arguments in this tree
1827/// with actual values specified by ArgMap.
1828void TreePatternNode::SubstituteFormalArguments(
1829    std::map<std::string, TreePatternNodePtr> &ArgMap) {
1830  if (isLeaf()) return;
1831
1832  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1833    TreePatternNode *Child = getChild(i);
1834    if (Child->isLeaf()) {
1835      Init *Val = Child->getLeafValue();
1836      // Note that, when substituting into an output pattern, Val might be an
1837      // UnsetInit.
1838      if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1839          cast<DefInit>(Val)->getDef()->getName() == "node")) {
1840        // We found a use of a formal argument, replace it with its value.
1841        TreePatternNodePtr NewChild = ArgMap[Child->getName()];
1842        assert(NewChild && "Couldn't find formal argument!");
1843        assert((Child->getPredicateFns().empty() ||
1844                NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1845               "Non-empty child predicate clobbered!");
1846        setChild(i, std::move(NewChild));
1847      }
1848    } else {
1849      getChild(i)->SubstituteFormalArguments(ArgMap);
1850    }
1851  }
1852}
1853
1854
1855/// InlinePatternFragments - If this pattern refers to any pattern
1856/// fragments, return the set of inlined versions (this can be more than
1857/// one if a PatFrags record has multiple alternatives).
1858void TreePatternNode::InlinePatternFragments(
1859  TreePatternNodePtr T, TreePattern &TP,
1860  std::vector<TreePatternNodePtr> &OutAlternatives) {
1861
1862  if (TP.hasError())
1863    return;
1864
1865  if (isLeaf()) {
1866    OutAlternatives.push_back(T);  // nothing to do.
1867    return;
1868  }
1869
1870  Record *Op = getOperator();
1871
1872  if (!Op->isSubClassOf("PatFrags")) {
1873    if (getNumChildren() == 0) {
1874      OutAlternatives.push_back(T);
1875      return;
1876    }
1877
1878    // Recursively inline children nodes.
1879    std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
1880    ChildAlternatives.resize(getNumChildren());
1881    for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1882      TreePatternNodePtr Child = getChildShared(i);
1883      Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
1884      // If there are no alternatives for any child, there are no
1885      // alternatives for this expression as whole.
1886      if (ChildAlternatives[i].empty())
1887        return;
1888
1889      for (auto NewChild : ChildAlternatives[i])
1890        assert((Child->getPredicateFns().empty() ||
1891                NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1892               "Non-empty child predicate clobbered!");
1893    }
1894
1895    // The end result is an all-pairs construction of the resultant pattern.
1896    std::vector<unsigned> Idxs;
1897    Idxs.resize(ChildAlternatives.size());
1898    bool NotDone;
1899    do {
1900      // Create the variant and add it to the output list.
1901      std::vector<TreePatternNodePtr> NewChildren;
1902      for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
1903        NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
1904      TreePatternNodePtr R = std::make_shared<TreePatternNode>(
1905          getOperator(), std::move(NewChildren), getNumTypes());
1906
1907      // Copy over properties.
1908      R->setName(getName());
1909      R->setPredicateFns(getPredicateFns());
1910      R->setTransformFn(getTransformFn());
1911      for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
1912        R->setType(i, getExtType(i));
1913
1914      // Register alternative.
1915      OutAlternatives.push_back(R);
1916
1917      // Increment indices to the next permutation by incrementing the
1918      // indices from last index backward, e.g., generate the sequence
1919      // [0, 0], [0, 1], [1, 0], [1, 1].
1920      int IdxsIdx;
1921      for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
1922        if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
1923          Idxs[IdxsIdx] = 0;
1924        else
1925          break;
1926      }
1927      NotDone = (IdxsIdx >= 0);
1928    } while (NotDone);
1929
1930    return;
1931  }
1932
1933  // Otherwise, we found a reference to a fragment.  First, look up its
1934  // TreePattern record.
1935  TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1936
1937  // Verify that we are passing the right number of operands.
1938  if (Frag->getNumArgs() != Children.size()) {
1939    TP.error("'" + Op->getName() + "' fragment requires " +
1940             Twine(Frag->getNumArgs()) + " operands!");
1941    return;
1942  }
1943
1944  // Compute the map of formal to actual arguments.
1945  std::map<std::string, TreePatternNodePtr> ArgMap;
1946  for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
1947    const TreePatternNodePtr &Child = getChildShared(i);
1948    ArgMap[Frag->getArgName(i)] = Child;
1949  }
1950
1951  // Loop over all fragment alternatives.
1952  for (auto Alternative : Frag->getTrees()) {
1953    TreePatternNodePtr FragTree = Alternative->clone();
1954
1955    TreePredicateFn PredFn(Frag);
1956    if (!PredFn.isAlwaysTrue())
1957      FragTree->addPredicateFn(PredFn);
1958
1959    // Resolve formal arguments to their actual value.
1960    if (Frag->getNumArgs())
1961      FragTree->SubstituteFormalArguments(ArgMap);
1962
1963    // Transfer types.  Note that the resolved alternative may have fewer
1964    // (but not more) results than the PatFrags node.
1965    FragTree->setName(getName());
1966    for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
1967      FragTree->UpdateNodeType(i, getExtType(i), TP);
1968
1969    // Transfer in the old predicates.
1970    for (const TreePredicateFn &Pred : getPredicateFns())
1971      FragTree->addPredicateFn(Pred);
1972
1973    // The fragment we inlined could have recursive inlining that is needed.  See
1974    // if there are any pattern fragments in it and inline them as needed.
1975    FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
1976  }
1977}
1978
1979/// getImplicitType - Check to see if the specified record has an implicit
1980/// type which should be applied to it.  This will infer the type of register
1981/// references from the register file information, for example.
1982///
1983/// When Unnamed is set, return the type of a DAG operand with no name, such as
1984/// the F8RC register class argument in:
1985///
1986///   (COPY_TO_REGCLASS GPR:$src, F8RC)
1987///
1988/// When Unnamed is false, return the type of a named DAG operand such as the
1989/// GPR:$src operand above.
1990///
1991static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
1992                                       bool NotRegisters,
1993                                       bool Unnamed,
1994                                       TreePattern &TP) {
1995  CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1996
1997  // Check to see if this is a register operand.
1998  if (R->isSubClassOf("RegisterOperand")) {
1999    assert(ResNo == 0 && "Regoperand ref only has one result!");
2000    if (NotRegisters)
2001      return TypeSetByHwMode(); // Unknown.
2002    Record *RegClass = R->getValueAsDef("RegClass");
2003    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2004    return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2005  }
2006
2007  // Check to see if this is a register or a register class.
2008  if (R->isSubClassOf("RegisterClass")) {
2009    assert(ResNo == 0 && "Regclass ref only has one result!");
2010    // An unnamed register class represents itself as an i32 immediate, for
2011    // example on a COPY_TO_REGCLASS instruction.
2012    if (Unnamed)
2013      return TypeSetByHwMode(MVT::i32);
2014
2015    // In a named operand, the register class provides the possible set of
2016    // types.
2017    if (NotRegisters)
2018      return TypeSetByHwMode(); // Unknown.
2019    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2020    return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2021  }
2022
2023  if (R->isSubClassOf("PatFrags")) {
2024    assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2025    // Pattern fragment types will be resolved when they are inlined.
2026    return TypeSetByHwMode(); // Unknown.
2027  }
2028
2029  if (R->isSubClassOf("Register")) {
2030    assert(ResNo == 0 && "Registers only produce one result!");
2031    if (NotRegisters)
2032      return TypeSetByHwMode(); // Unknown.
2033    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2034    return TypeSetByHwMode(T.getRegisterVTs(R));
2035  }
2036
2037  if (R->isSubClassOf("SubRegIndex")) {
2038    assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2039    return TypeSetByHwMode(MVT::i32);
2040  }
2041
2042  if (R->isSubClassOf("ValueType")) {
2043    assert(ResNo == 0 && "This node only has one result!");
2044    // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2045    //
2046    //   (sext_inreg GPR:$src, i16)
2047    //                         ~~~
2048    if (Unnamed)
2049      return TypeSetByHwMode(MVT::Other);
2050    // With a name, the ValueType simply provides the type of the named
2051    // variable.
2052    //
2053    //   (sext_inreg i32:$src, i16)
2054    //               ~~~~~~~~
2055    if (NotRegisters)
2056      return TypeSetByHwMode(); // Unknown.
2057    const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2058    return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2059  }
2060
2061  if (R->isSubClassOf("CondCode")) {
2062    assert(ResNo == 0 && "This node only has one result!");
2063    // Using a CondCodeSDNode.
2064    return TypeSetByHwMode(MVT::Other);
2065  }
2066
2067  if (R->isSubClassOf("ComplexPattern")) {
2068    assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2069    if (NotRegisters)
2070      return TypeSetByHwMode(); // Unknown.
2071    return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2072  }
2073  if (R->isSubClassOf("PointerLikeRegClass")) {
2074    assert(ResNo == 0 && "Regclass can only have one result!");
2075    TypeSetByHwMode VTS(MVT::iPTR);
2076    TP.getInfer().expandOverloads(VTS);
2077    return VTS;
2078  }
2079
2080  if (R->getName() == "node" || R->getName() == "srcvalue" ||
2081      R->getName() == "zero_reg") {
2082    // Placeholder.
2083    return TypeSetByHwMode(); // Unknown.
2084  }
2085
2086  if (R->isSubClassOf("Operand")) {
2087    const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2088    Record *T = R->getValueAsDef("Type");
2089    return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2090  }
2091
2092  TP.error("Unknown node flavor used in pattern: " + R->getName());
2093  return TypeSetByHwMode(MVT::Other);
2094}
2095
2096
2097/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2098/// CodeGenIntrinsic information for it, otherwise return a null pointer.
2099const CodeGenIntrinsic *TreePatternNode::
2100getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2101  if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2102      getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2103      getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2104    return nullptr;
2105
2106  unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2107  return &CDP.getIntrinsicInfo(IID);
2108}
2109
2110/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2111/// return the ComplexPattern information, otherwise return null.
2112const ComplexPattern *
2113TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2114  Record *Rec;
2115  if (isLeaf()) {
2116    DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2117    if (!DI)
2118      return nullptr;
2119    Rec = DI->getDef();
2120  } else
2121    Rec = getOperator();
2122
2123  if (!Rec->isSubClassOf("ComplexPattern"))
2124    return nullptr;
2125  return &CGP.getComplexPattern(Rec);
2126}
2127
2128unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2129  // A ComplexPattern specifically declares how many results it fills in.
2130  if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2131    return CP->getNumOperands();
2132
2133  // If MIOperandInfo is specified, that gives the count.
2134  if (isLeaf()) {
2135    DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2136    if (DI && DI->getDef()->isSubClassOf("Operand")) {
2137      DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2138      if (MIOps->getNumArgs())
2139        return MIOps->getNumArgs();
2140    }
2141  }
2142
2143  // Otherwise there is just one result.
2144  return 1;
2145}
2146
2147/// NodeHasProperty - Return true if this node has the specified property.
2148bool TreePatternNode::NodeHasProperty(SDNP Property,
2149                                      const CodeGenDAGPatterns &CGP) const {
2150  if (isLeaf()) {
2151    if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2152      return CP->hasProperty(Property);
2153
2154    return false;
2155  }
2156
2157  if (Property != SDNPHasChain) {
2158    // The chain proprety is already present on the different intrinsic node
2159    // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2160    // on the intrinsic. Anything else is specific to the individual intrinsic.
2161    if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2162      return Int->hasProperty(Property);
2163  }
2164
2165  if (!Operator->isSubClassOf("SDPatternOperator"))
2166    return false;
2167
2168  return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2169}
2170
2171
2172
2173
2174/// TreeHasProperty - Return true if any node in this tree has the specified
2175/// property.
2176bool TreePatternNode::TreeHasProperty(SDNP Property,
2177                                      const CodeGenDAGPatterns &CGP) const {
2178  if (NodeHasProperty(Property, CGP))
2179    return true;
2180  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2181    if (getChild(i)->TreeHasProperty(Property, CGP))
2182      return true;
2183  return false;
2184}
2185
2186/// isCommutativeIntrinsic - Return true if the node corresponds to a
2187/// commutative intrinsic.
2188bool
2189TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2190  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2191    return Int->isCommutative;
2192  return false;
2193}
2194
2195static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2196  if (!N->isLeaf())
2197    return N->getOperator()->isSubClassOf(Class);
2198
2199  DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2200  if (DI && DI->getDef()->isSubClassOf(Class))
2201    return true;
2202
2203  return false;
2204}
2205
2206static void emitTooManyOperandsError(TreePattern &TP,
2207                                     StringRef InstName,
2208                                     unsigned Expected,
2209                                     unsigned Actual) {
2210  TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2211           " operands but expected only " + Twine(Expected) + "!");
2212}
2213
2214static void emitTooFewOperandsError(TreePattern &TP,
2215                                    StringRef InstName,
2216                                    unsigned Actual) {
2217  TP.error("Instruction '" + InstName +
2218           "' expects more than the provided " + Twine(Actual) + " operands!");
2219}
2220
2221/// ApplyTypeConstraints - Apply all of the type constraints relevant to
2222/// this node and its children in the tree.  This returns true if it makes a
2223/// change, false otherwise.  If a type contradiction is found, flag an error.
2224bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2225  if (TP.hasError())
2226    return false;
2227
2228  CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2229  if (isLeaf()) {
2230    if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2231      // If it's a regclass or something else known, include the type.
2232      bool MadeChange = false;
2233      for (unsigned i = 0, e = Types.size(); i != e; ++i)
2234        MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2235                                                        NotRegisters,
2236                                                        !hasName(), TP), TP);
2237      return MadeChange;
2238    }
2239
2240    if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2241      assert(Types.size() == 1 && "Invalid IntInit");
2242
2243      // Int inits are always integers. :)
2244      bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2245
2246      if (!TP.getInfer().isConcrete(Types[0], false))
2247        return MadeChange;
2248
2249      ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2250      for (auto &P : VVT) {
2251        MVT::SimpleValueType VT = P.second.SimpleTy;
2252        if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2253          continue;
2254        unsigned Size = MVT(VT).getSizeInBits();
2255        // Make sure that the value is representable for this type.
2256        if (Size >= 32)
2257          continue;
2258        // Check that the value doesn't use more bits than we have. It must
2259        // either be a sign- or zero-extended equivalent of the original.
2260        int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2261        if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2262            SignBitAndAbove == 1)
2263          continue;
2264
2265        TP.error("Integer value '" + Twine(II->getValue()) +
2266                 "' is out of range for type '" + getEnumName(VT) + "'!");
2267        break;
2268      }
2269      return MadeChange;
2270    }
2271
2272    return false;
2273  }
2274
2275  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2276    bool MadeChange = false;
2277
2278    // Apply the result type to the node.
2279    unsigned NumRetVTs = Int->IS.RetVTs.size();
2280    unsigned NumParamVTs = Int->IS.ParamVTs.size();
2281
2282    for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2283      MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2284
2285    if (getNumChildren() != NumParamVTs + 1) {
2286      TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2287               " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2288      return false;
2289    }
2290
2291    // Apply type info to the intrinsic ID.
2292    MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2293
2294    for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2295      MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2296
2297      MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2298      assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
2299      MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2300    }
2301    return MadeChange;
2302  }
2303
2304  if (getOperator()->isSubClassOf("SDNode")) {
2305    const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2306
2307    // Check that the number of operands is sane.  Negative operands -> varargs.
2308    if (NI.getNumOperands() >= 0 &&
2309        getNumChildren() != (unsigned)NI.getNumOperands()) {
2310      TP.error(getOperator()->getName() + " node requires exactly " +
2311               Twine(NI.getNumOperands()) + " operands!");
2312      return false;
2313    }
2314
2315    bool MadeChange = false;
2316    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2317      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2318    MadeChange |= NI.ApplyTypeConstraints(this, TP);
2319    return MadeChange;
2320  }
2321
2322  if (getOperator()->isSubClassOf("Instruction")) {
2323    const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2324    CodeGenInstruction &InstInfo =
2325      CDP.getTargetInfo().getInstruction(getOperator());
2326
2327    bool MadeChange = false;
2328
2329    // Apply the result types to the node, these come from the things in the
2330    // (outs) list of the instruction.
2331    unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2332                                        Inst.getNumResults());
2333    for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2334      MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2335
2336    // If the instruction has implicit defs, we apply the first one as a result.
2337    // FIXME: This sucks, it should apply all implicit defs.
2338    if (!InstInfo.ImplicitDefs.empty()) {
2339      unsigned ResNo = NumResultsToAdd;
2340
2341      // FIXME: Generalize to multiple possible types and multiple possible
2342      // ImplicitDefs.
2343      MVT::SimpleValueType VT =
2344        InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2345
2346      if (VT != MVT::Other)
2347        MadeChange |= UpdateNodeType(ResNo, VT, TP);
2348    }
2349
2350    // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2351    // be the same.
2352    if (getOperator()->getName() == "INSERT_SUBREG") {
2353      assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2354      MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2355      MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2356    } else if (getOperator()->getName() == "REG_SEQUENCE") {
2357      // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2358      // variadic.
2359
2360      unsigned NChild = getNumChildren();
2361      if (NChild < 3) {
2362        TP.error("REG_SEQUENCE requires at least 3 operands!");
2363        return false;
2364      }
2365
2366      if (NChild % 2 == 0) {
2367        TP.error("REG_SEQUENCE requires an odd number of operands!");
2368        return false;
2369      }
2370
2371      if (!isOperandClass(getChild(0), "RegisterClass")) {
2372        TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2373        return false;
2374      }
2375
2376      for (unsigned I = 1; I < NChild; I += 2) {
2377        TreePatternNode *SubIdxChild = getChild(I + 1);
2378        if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2379          TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2380                   Twine(I + 1) + "!");
2381          return false;
2382        }
2383      }
2384    }
2385
2386    unsigned ChildNo = 0;
2387    for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
2388      Record *OperandNode = Inst.getOperand(i);
2389
2390      // If the instruction expects a predicate or optional def operand, we
2391      // codegen this by setting the operand to it's default value if it has a
2392      // non-empty DefaultOps field.
2393      if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
2394          !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
2395        continue;
2396
2397      // Verify that we didn't run out of provided operands.
2398      if (ChildNo >= getNumChildren()) {
2399        emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2400        return false;
2401      }
2402
2403      TreePatternNode *Child = getChild(ChildNo++);
2404      unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
2405
2406      // If the operand has sub-operands, they may be provided by distinct
2407      // child patterns, so attempt to match each sub-operand separately.
2408      if (OperandNode->isSubClassOf("Operand")) {
2409        DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2410        if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2411          // But don't do that if the whole operand is being provided by
2412          // a single ComplexPattern-related Operand.
2413
2414          if (Child->getNumMIResults(CDP) < NumArgs) {
2415            // Match first sub-operand against the child we already have.
2416            Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2417            MadeChange |=
2418              Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2419
2420            // And the remaining sub-operands against subsequent children.
2421            for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2422              if (ChildNo >= getNumChildren()) {
2423                emitTooFewOperandsError(TP, getOperator()->getName(),
2424                                        getNumChildren());
2425                return false;
2426              }
2427              Child = getChild(ChildNo++);
2428
2429              SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2430              MadeChange |=
2431                Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2432            }
2433            continue;
2434          }
2435        }
2436      }
2437
2438      // If we didn't match by pieces above, attempt to match the whole
2439      // operand now.
2440      MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2441    }
2442
2443    if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2444      emitTooManyOperandsError(TP, getOperator()->getName(),
2445                               ChildNo, getNumChildren());
2446      return false;
2447    }
2448
2449    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2450      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2451    return MadeChange;
2452  }
2453
2454  if (getOperator()->isSubClassOf("ComplexPattern")) {
2455    bool MadeChange = false;
2456
2457    for (unsigned i = 0; i < getNumChildren(); ++i)
2458      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2459
2460    return MadeChange;
2461  }
2462
2463  assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2464
2465  // Node transforms always take one operand.
2466  if (getNumChildren() != 1) {
2467    TP.error("Node transform '" + getOperator()->getName() +
2468             "' requires one operand!");
2469    return false;
2470  }
2471
2472  bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2473  return MadeChange;
2474}
2475
2476/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2477/// RHS of a commutative operation, not the on LHS.
2478static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2479  if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2480    return true;
2481  if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2482    return true;
2483  return false;
2484}
2485
2486
2487/// canPatternMatch - If it is impossible for this pattern to match on this
2488/// target, fill in Reason and return false.  Otherwise, return true.  This is
2489/// used as a sanity check for .td files (to prevent people from writing stuff
2490/// that can never possibly work), and to prevent the pattern permuter from
2491/// generating stuff that is useless.
2492bool TreePatternNode::canPatternMatch(std::string &Reason,
2493                                      const CodeGenDAGPatterns &CDP) {
2494  if (isLeaf()) return true;
2495
2496  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2497    if (!getChild(i)->canPatternMatch(Reason, CDP))
2498      return false;
2499
2500  // If this is an intrinsic, handle cases that would make it not match.  For
2501  // example, if an operand is required to be an immediate.
2502  if (getOperator()->isSubClassOf("Intrinsic")) {
2503    // TODO:
2504    return true;
2505  }
2506
2507  if (getOperator()->isSubClassOf("ComplexPattern"))
2508    return true;
2509
2510  // If this node is a commutative operator, check that the LHS isn't an
2511  // immediate.
2512  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2513  bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2514  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2515    // Scan all of the operands of the node and make sure that only the last one
2516    // is a constant node, unless the RHS also is.
2517    if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2518      unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2519      for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2520        if (OnlyOnRHSOfCommutative(getChild(i))) {
2521          Reason="Immediate value must be on the RHS of commutative operators!";
2522          return false;
2523        }
2524    }
2525  }
2526
2527  return true;
2528}
2529
2530//===----------------------------------------------------------------------===//
2531// TreePattern implementation
2532//
2533
2534TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2535                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2536                         isInputPattern(isInput), HasError(false),
2537                         Infer(*this) {
2538  for (Init *I : RawPat->getValues())
2539    Trees.push_back(ParseTreePattern(I, ""));
2540}
2541
2542TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2543                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2544                         isInputPattern(isInput), HasError(false),
2545                         Infer(*this) {
2546  Trees.push_back(ParseTreePattern(Pat, ""));
2547}
2548
2549TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2550                         CodeGenDAGPatterns &cdp)
2551    : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2552      Infer(*this) {
2553  Trees.push_back(Pat);
2554}
2555
2556void TreePattern::error(const Twine &Msg) {
2557  if (HasError)
2558    return;
2559  dump();
2560  PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2561  HasError = true;
2562}
2563
2564void TreePattern::ComputeNamedNodes() {
2565  for (TreePatternNodePtr &Tree : Trees)
2566    ComputeNamedNodes(Tree.get());
2567}
2568
2569void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2570  if (!N->getName().empty())
2571    NamedNodes[N->getName()].push_back(N);
2572
2573  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2574    ComputeNamedNodes(N->getChild(i));
2575}
2576
2577TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2578                                                 StringRef OpName) {
2579  if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2580    Record *R = DI->getDef();
2581
2582    // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2583    // TreePatternNode of its own.  For example:
2584    ///   (foo GPR, imm) -> (foo GPR, (imm))
2585    if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2586      return ParseTreePattern(
2587        DagInit::get(DI, nullptr,
2588                     std::vector<std::pair<Init*, StringInit*> >()),
2589        OpName);
2590
2591    // Input argument?
2592    TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2593    if (R->getName() == "node" && !OpName.empty()) {
2594      if (OpName.empty())
2595        error("'node' argument requires a name to match with operand list");
2596      Args.push_back(OpName);
2597    }
2598
2599    Res->setName(OpName);
2600    return Res;
2601  }
2602
2603  // ?:$name or just $name.
2604  if (isa<UnsetInit>(TheInit)) {
2605    if (OpName.empty())
2606      error("'?' argument requires a name to match with operand list");
2607    TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2608    Args.push_back(OpName);
2609    Res->setName(OpName);
2610    return Res;
2611  }
2612
2613  if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2614    if (!OpName.empty())
2615      error("Constant int or bit argument should not have a name!");
2616    if (isa<BitInit>(TheInit))
2617      TheInit = TheInit->convertInitializerTo(IntRecTy::get());
2618    return std::make_shared<TreePatternNode>(TheInit, 1);
2619  }
2620
2621  if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2622    // Turn this into an IntInit.
2623    Init *II = BI->convertInitializerTo(IntRecTy::get());
2624    if (!II || !isa<IntInit>(II))
2625      error("Bits value must be constants!");
2626    return ParseTreePattern(II, OpName);
2627  }
2628
2629  DagInit *Dag = dyn_cast<DagInit>(TheInit);
2630  if (!Dag) {
2631    TheInit->print(errs());
2632    error("Pattern has unexpected init kind!");
2633  }
2634  DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2635  if (!OpDef) error("Pattern has unexpected operator type!");
2636  Record *Operator = OpDef->getDef();
2637
2638  if (Operator->isSubClassOf("ValueType")) {
2639    // If the operator is a ValueType, then this must be "type cast" of a leaf
2640    // node.
2641    if (Dag->getNumArgs() != 1)
2642      error("Type cast only takes one operand!");
2643
2644    TreePatternNodePtr New =
2645        ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2646
2647    // Apply the type cast.
2648    assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2649    const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2650    New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2651
2652    if (!OpName.empty())
2653      error("ValueType cast should not have a name!");
2654    return New;
2655  }
2656
2657  // Verify that this is something that makes sense for an operator.
2658  if (!Operator->isSubClassOf("PatFrags") &&
2659      !Operator->isSubClassOf("SDNode") &&
2660      !Operator->isSubClassOf("Instruction") &&
2661      !Operator->isSubClassOf("SDNodeXForm") &&
2662      !Operator->isSubClassOf("Intrinsic") &&
2663      !Operator->isSubClassOf("ComplexPattern") &&
2664      Operator->getName() != "set" &&
2665      Operator->getName() != "implicit")
2666    error("Unrecognized node '" + Operator->getName() + "'!");
2667
2668  //  Check to see if this is something that is illegal in an input pattern.
2669  if (isInputPattern) {
2670    if (Operator->isSubClassOf("Instruction") ||
2671        Operator->isSubClassOf("SDNodeXForm"))
2672      error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2673  } else {
2674    if (Operator->isSubClassOf("Intrinsic"))
2675      error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2676
2677    if (Operator->isSubClassOf("SDNode") &&
2678        Operator->getName() != "imm" &&
2679        Operator->getName() != "fpimm" &&
2680        Operator->getName() != "tglobaltlsaddr" &&
2681        Operator->getName() != "tconstpool" &&
2682        Operator->getName() != "tjumptable" &&
2683        Operator->getName() != "tframeindex" &&
2684        Operator->getName() != "texternalsym" &&
2685        Operator->getName() != "tblockaddress" &&
2686        Operator->getName() != "tglobaladdr" &&
2687        Operator->getName() != "bb" &&
2688        Operator->getName() != "vt" &&
2689        Operator->getName() != "mcsym")
2690      error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2691  }
2692
2693  std::vector<TreePatternNodePtr> Children;
2694
2695  // Parse all the operands.
2696  for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2697    Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2698
2699  // Get the actual number of results before Operator is converted to an intrinsic
2700  // node (which is hard-coded to have either zero or one result).
2701  unsigned NumResults = GetNumNodeResults(Operator, CDP);
2702
2703  // If the operator is an intrinsic, then this is just syntactic sugar for
2704  // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2705  // convert the intrinsic name to a number.
2706  if (Operator->isSubClassOf("Intrinsic")) {
2707    const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2708    unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2709
2710    // If this intrinsic returns void, it must have side-effects and thus a
2711    // chain.
2712    if (Int.IS.RetVTs.empty())
2713      Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2714    else if (Int.ModRef != CodeGenIntrinsic::NoMem)
2715      // Has side-effects, requires chain.
2716      Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2717    else // Otherwise, no chain.
2718      Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2719
2720    Children.insert(Children.begin(),
2721                    std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
2722  }
2723
2724  if (Operator->isSubClassOf("ComplexPattern")) {
2725    for (unsigned i = 0; i < Children.size(); ++i) {
2726      TreePatternNodePtr Child = Children[i];
2727
2728      if (Child->getName().empty())
2729        error("All arguments to a ComplexPattern must be named");
2730
2731      // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2732      // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2733      // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2734      auto OperandId = std::make_pair(Operator, i);
2735      auto PrevOp = ComplexPatternOperands.find(Child->getName());
2736      if (PrevOp != ComplexPatternOperands.end()) {
2737        if (PrevOp->getValue() != OperandId)
2738          error("All ComplexPattern operands must appear consistently: "
2739                "in the same order in just one ComplexPattern instance.");
2740      } else
2741        ComplexPatternOperands[Child->getName()] = OperandId;
2742    }
2743  }
2744
2745  TreePatternNodePtr Result =
2746      std::make_shared<TreePatternNode>(Operator, std::move(Children),
2747                                        NumResults);
2748  Result->setName(OpName);
2749
2750  if (Dag->getName()) {
2751    assert(Result->getName().empty());
2752    Result->setName(Dag->getNameStr());
2753  }
2754  return Result;
2755}
2756
2757/// SimplifyTree - See if we can simplify this tree to eliminate something that
2758/// will never match in favor of something obvious that will.  This is here
2759/// strictly as a convenience to target authors because it allows them to write
2760/// more type generic things and have useless type casts fold away.
2761///
2762/// This returns true if any change is made.
2763static bool SimplifyTree(TreePatternNodePtr &N) {
2764  if (N->isLeaf())
2765    return false;
2766
2767  // If we have a bitconvert with a resolved type and if the source and
2768  // destination types are the same, then the bitconvert is useless, remove it.
2769  if (N->getOperator()->getName() == "bitconvert" &&
2770      N->getExtType(0).isValueTypeByHwMode(false) &&
2771      N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2772      N->getName().empty()) {
2773    N = N->getChildShared(0);
2774    SimplifyTree(N);
2775    return true;
2776  }
2777
2778  // Walk all children.
2779  bool MadeChange = false;
2780  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2781    TreePatternNodePtr Child = N->getChildShared(i);
2782    MadeChange |= SimplifyTree(Child);
2783    N->setChild(i, std::move(Child));
2784  }
2785  return MadeChange;
2786}
2787
2788
2789
2790/// InferAllTypes - Infer/propagate as many types throughout the expression
2791/// patterns as possible.  Return true if all types are inferred, false
2792/// otherwise.  Flags an error if a type contradiction is found.
2793bool TreePattern::
2794InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2795  if (NamedNodes.empty())
2796    ComputeNamedNodes();
2797
2798  bool MadeChange = true;
2799  while (MadeChange) {
2800    MadeChange = false;
2801    for (TreePatternNodePtr &Tree : Trees) {
2802      MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2803      MadeChange |= SimplifyTree(Tree);
2804    }
2805
2806    // If there are constraints on our named nodes, apply them.
2807    for (auto &Entry : NamedNodes) {
2808      SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2809
2810      // If we have input named node types, propagate their types to the named
2811      // values here.
2812      if (InNamedTypes) {
2813        if (!InNamedTypes->count(Entry.getKey())) {
2814          error("Node '" + std::string(Entry.getKey()) +
2815                "' in output pattern but not input pattern");
2816          return true;
2817        }
2818
2819        const SmallVectorImpl<TreePatternNode*> &InNodes =
2820          InNamedTypes->find(Entry.getKey())->second;
2821
2822        // The input types should be fully resolved by now.
2823        for (TreePatternNode *Node : Nodes) {
2824          // If this node is a register class, and it is the root of the pattern
2825          // then we're mapping something onto an input register.  We allow
2826          // changing the type of the input register in this case.  This allows
2827          // us to match things like:
2828          //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2829          if (Node == Trees[0].get() && Node->isLeaf()) {
2830            DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2831            if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2832                       DI->getDef()->isSubClassOf("RegisterOperand")))
2833              continue;
2834          }
2835
2836          assert(Node->getNumTypes() == 1 &&
2837                 InNodes[0]->getNumTypes() == 1 &&
2838                 "FIXME: cannot name multiple result nodes yet");
2839          MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2840                                             *this);
2841        }
2842      }
2843
2844      // If there are multiple nodes with the same name, they must all have the
2845      // same type.
2846      if (Entry.second.size() > 1) {
2847        for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2848          TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2849          assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2850                 "FIXME: cannot name multiple result nodes yet");
2851
2852          MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2853          MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2854        }
2855      }
2856    }
2857  }
2858
2859  bool HasUnresolvedTypes = false;
2860  for (const TreePatternNodePtr &Tree : Trees)
2861    HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
2862  return !HasUnresolvedTypes;
2863}
2864
2865void TreePattern::print(raw_ostream &OS) const {
2866  OS << getRecord()->getName();
2867  if (!Args.empty()) {
2868    OS << "(" << Args[0];
2869    for (unsigned i = 1, e = Args.size(); i != e; ++i)
2870      OS << ", " << Args[i];
2871    OS << ")";
2872  }
2873  OS << ": ";
2874
2875  if (Trees.size() > 1)
2876    OS << "[\n";
2877  for (const TreePatternNodePtr &Tree : Trees) {
2878    OS << "\t";
2879    Tree->print(OS);
2880    OS << "\n";
2881  }
2882
2883  if (Trees.size() > 1)
2884    OS << "]\n";
2885}
2886
2887void TreePattern::dump() const { print(errs()); }
2888
2889//===----------------------------------------------------------------------===//
2890// CodeGenDAGPatterns implementation
2891//
2892
2893CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
2894                                       PatternRewriterFn PatternRewriter)
2895    : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
2896      PatternRewriter(PatternRewriter) {
2897
2898  Intrinsics = CodeGenIntrinsicTable(Records, false);
2899  TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
2900  ParseNodeInfo();
2901  ParseNodeTransforms();
2902  ParseComplexPatterns();
2903  ParsePatternFragments();
2904  ParseDefaultOperands();
2905  ParseInstructions();
2906  ParsePatternFragments(/*OutFrags*/true);
2907  ParsePatterns();
2908
2909  // Break patterns with parameterized types into a series of patterns,
2910  // where each one has a fixed type and is predicated on the conditions
2911  // of the associated HW mode.
2912  ExpandHwModeBasedTypes();
2913
2914  // Generate variants.  For example, commutative patterns can match
2915  // multiple ways.  Add them to PatternsToMatch as well.
2916  GenerateVariants();
2917
2918  // Infer instruction flags.  For example, we can detect loads,
2919  // stores, and side effects in many cases by examining an
2920  // instruction's pattern.
2921  InferInstructionFlags();
2922
2923  // Verify that instruction flags match the patterns.
2924  VerifyInstructionFlags();
2925}
2926
2927Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2928  Record *N = Records.getDef(Name);
2929  if (!N || !N->isSubClassOf("SDNode"))
2930    PrintFatalError("Error getting SDNode '" + Name + "'!");
2931
2932  return N;
2933}
2934
2935// Parse all of the SDNode definitions for the target, populating SDNodes.
2936void CodeGenDAGPatterns::ParseNodeInfo() {
2937  std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2938  const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
2939
2940  while (!Nodes.empty()) {
2941    Record *R = Nodes.back();
2942    SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
2943    Nodes.pop_back();
2944  }
2945
2946  // Get the builtin intrinsic nodes.
2947  intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
2948  intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
2949  intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2950}
2951
2952/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2953/// map, and emit them to the file as functions.
2954void CodeGenDAGPatterns::ParseNodeTransforms() {
2955  std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2956  while (!Xforms.empty()) {
2957    Record *XFormNode = Xforms.back();
2958    Record *SDNode = XFormNode->getValueAsDef("Opcode");
2959    StringRef Code = XFormNode->getValueAsString("XFormFunction");
2960    SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2961
2962    Xforms.pop_back();
2963  }
2964}
2965
2966void CodeGenDAGPatterns::ParseComplexPatterns() {
2967  std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2968  while (!AMs.empty()) {
2969    ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2970    AMs.pop_back();
2971  }
2972}
2973
2974
2975/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2976/// file, building up the PatternFragments map.  After we've collected them all,
2977/// inline fragments together as necessary, so that there are no references left
2978/// inside a pattern fragment to a pattern fragment.
2979///
2980void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
2981  std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
2982
2983  // First step, parse all of the fragments.
2984  for (Record *Frag : Fragments) {
2985    if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
2986      continue;
2987
2988    ListInit *LI = Frag->getValueAsListInit("Fragments");
2989    TreePattern *P =
2990        (PatternFragments[Frag] = llvm::make_unique<TreePattern>(
2991             Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
2992             *this)).get();
2993
2994    // Validate the argument list, converting it to set, to discard duplicates.
2995    std::vector<std::string> &Args = P->getArgList();
2996    // Copy the args so we can take StringRefs to them.
2997    auto ArgsCopy = Args;
2998    SmallDenseSet<StringRef, 4> OperandsSet;
2999    OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3000
3001    if (OperandsSet.count(""))
3002      P->error("Cannot have unnamed 'node' values in pattern fragment!");
3003
3004    // Parse the operands list.
3005    DagInit *OpsList = Frag->getValueAsDag("Operands");
3006    DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3007    // Special cases: ops == outs == ins. Different names are used to
3008    // improve readability.
3009    if (!OpsOp ||
3010        (OpsOp->getDef()->getName() != "ops" &&
3011         OpsOp->getDef()->getName() != "outs" &&
3012         OpsOp->getDef()->getName() != "ins"))
3013      P->error("Operands list should start with '(ops ... '!");
3014
3015    // Copy over the arguments.
3016    Args.clear();
3017    for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3018      if (!isa<DefInit>(OpsList->getArg(j)) ||
3019          cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3020        P->error("Operands list should all be 'node' values.");
3021      if (!OpsList->getArgName(j))
3022        P->error("Operands list should have names for each operand!");
3023      StringRef ArgNameStr = OpsList->getArgNameStr(j);
3024      if (!OperandsSet.count(ArgNameStr))
3025        P->error("'" + ArgNameStr +
3026                 "' does not occur in pattern or was multiply specified!");
3027      OperandsSet.erase(ArgNameStr);
3028      Args.push_back(ArgNameStr);
3029    }
3030
3031    if (!OperandsSet.empty())
3032      P->error("Operands list does not contain an entry for operand '" +
3033               *OperandsSet.begin() + "'!");
3034
3035    // If there is a code init for this fragment, keep track of the fact that
3036    // this fragment uses it.
3037    TreePredicateFn PredFn(P);
3038    if (!PredFn.isAlwaysTrue())
3039      for (auto T : P->getTrees())
3040        T->addPredicateFn(PredFn);
3041
3042    // If there is a node transformation corresponding to this, keep track of
3043    // it.
3044    Record *Transform = Frag->getValueAsDef("OperandTransform");
3045    if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
3046      for (auto T : P->getTrees())
3047        T->setTransformFn(Transform);
3048  }
3049
3050  // Now that we've parsed all of the tree fragments, do a closure on them so
3051  // that there are not references to PatFrags left inside of them.
3052  for (Record *Frag : Fragments) {
3053    if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3054      continue;
3055
3056    TreePattern &ThePat = *PatternFragments[Frag];
3057    ThePat.InlinePatternFragments();
3058
3059    // Infer as many types as possible.  Don't worry about it if we don't infer
3060    // all of them, some may depend on the inputs of the pattern.  Also, don't
3061    // validate type sets; validation may cause spurious failures e.g. if a
3062    // fragment needs floating-point types but the current target does not have
3063    // any (this is only an error if that fragment is ever used!).
3064    {
3065      TypeInfer::SuppressValidation SV(ThePat.getInfer());
3066      ThePat.InferAllTypes();
3067      ThePat.resetError();
3068    }
3069
3070    // If debugging, print out the pattern fragment result.
3071    LLVM_DEBUG(ThePat.dump());
3072  }
3073}
3074
3075void CodeGenDAGPatterns::ParseDefaultOperands() {
3076  std::vector<Record*> DefaultOps;
3077  DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3078
3079  // Find some SDNode.
3080  assert(!SDNodes.empty() && "No SDNodes parsed?");
3081  Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3082
3083  for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3084    DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3085
3086    // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3087    // SomeSDnode so that we can parse this.
3088    std::vector<std::pair<Init*, StringInit*> > Ops;
3089    for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3090      Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3091                                   DefaultInfo->getArgName(op)));
3092    DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3093
3094    // Create a TreePattern to parse this.
3095    TreePattern P(DefaultOps[i], DI, false, *this);
3096    assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3097
3098    // Copy the operands over into a DAGDefaultOperand.
3099    DAGDefaultOperand DefaultOpInfo;
3100
3101    const TreePatternNodePtr &T = P.getTree(0);
3102    for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3103      TreePatternNodePtr TPN = T->getChildShared(op);
3104      while (TPN->ApplyTypeConstraints(P, false))
3105        /* Resolve all types */;
3106
3107      if (TPN->ContainsUnresolvedType(P)) {
3108        PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3109                        DefaultOps[i]->getName() +
3110                        "' doesn't have a concrete type!");
3111      }
3112      DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3113    }
3114
3115    // Insert it into the DefaultOperands map so we can find it later.
3116    DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3117  }
3118}
3119
3120/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3121/// instruction input.  Return true if this is a real use.
3122static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3123                      std::map<std::string, TreePatternNodePtr> &InstInputs) {
3124  // No name -> not interesting.
3125  if (Pat->getName().empty()) {
3126    if (Pat->isLeaf()) {
3127      DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3128      if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3129                 DI->getDef()->isSubClassOf("RegisterOperand")))
3130        I.error("Input " + DI->getDef()->getName() + " must be named!");
3131    }
3132    return false;
3133  }
3134
3135  Record *Rec;
3136  if (Pat->isLeaf()) {
3137    DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3138    if (!DI)
3139      I.error("Input $" + Pat->getName() + " must be an identifier!");
3140    Rec = DI->getDef();
3141  } else {
3142    Rec = Pat->getOperator();
3143  }
3144
3145  // SRCVALUE nodes are ignored.
3146  if (Rec->getName() == "srcvalue")
3147    return false;
3148
3149  TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3150  if (!Slot) {
3151    Slot = Pat;
3152    return true;
3153  }
3154  Record *SlotRec;
3155  if (Slot->isLeaf()) {
3156    SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3157  } else {
3158    assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3159    SlotRec = Slot->getOperator();
3160  }
3161
3162  // Ensure that the inputs agree if we've already seen this input.
3163  if (Rec != SlotRec)
3164    I.error("All $" + Pat->getName() + " inputs must agree with each other");
3165  // Ensure that the types can agree as well.
3166  Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3167  Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3168  if (Slot->getExtTypes() != Pat->getExtTypes())
3169    I.error("All $" + Pat->getName() + " inputs must agree with each other");
3170  return true;
3171}
3172
3173/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3174/// part of "I", the instruction), computing the set of inputs and outputs of
3175/// the pattern.  Report errors if we see anything naughty.
3176void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3177    TreePattern &I, TreePatternNodePtr Pat,
3178    std::map<std::string, TreePatternNodePtr> &InstInputs,
3179    std::map<std::string, TreePatternNodePtr> &InstResults,
3180    std::vector<Record *> &InstImpResults) {
3181
3182  // The instruction pattern still has unresolved fragments.  For *named*
3183  // nodes we must resolve those here.  This may not result in multiple
3184  // alternatives.
3185  if (!Pat->getName().empty()) {
3186    TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3187    SrcPattern.InlinePatternFragments();
3188    SrcPattern.InferAllTypes();
3189    Pat = SrcPattern.getOnlyTree();
3190  }
3191
3192  if (Pat->isLeaf()) {
3193    bool isUse = HandleUse(I, Pat, InstInputs);
3194    if (!isUse && Pat->getTransformFn())
3195      I.error("Cannot specify a transform function for a non-input value!");
3196    return;
3197  }
3198
3199  if (Pat->getOperator()->getName() == "implicit") {
3200    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3201      TreePatternNode *Dest = Pat->getChild(i);
3202      if (!Dest->isLeaf())
3203        I.error("implicitly defined value should be a register!");
3204
3205      DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3206      if (!Val || !Val->getDef()->isSubClassOf("Register"))
3207        I.error("implicitly defined value should be a register!");
3208      InstImpResults.push_back(Val->getDef());
3209    }
3210    return;
3211  }
3212
3213  if (Pat->getOperator()->getName() != "set") {
3214    // If this is not a set, verify that the children nodes are not void typed,
3215    // and recurse.
3216    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3217      if (Pat->getChild(i)->getNumTypes() == 0)
3218        I.error("Cannot have void nodes inside of patterns!");
3219      FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3220                                  InstResults, InstImpResults);
3221    }
3222
3223    // If this is a non-leaf node with no children, treat it basically as if
3224    // it were a leaf.  This handles nodes like (imm).
3225    bool isUse = HandleUse(I, Pat, InstInputs);
3226
3227    if (!isUse && Pat->getTransformFn())
3228      I.error("Cannot specify a transform function for a non-input value!");
3229    return;
3230  }
3231
3232  // Otherwise, this is a set, validate and collect instruction results.
3233  if (Pat->getNumChildren() == 0)
3234    I.error("set requires operands!");
3235
3236  if (Pat->getTransformFn())
3237    I.error("Cannot specify a transform function on a set node!");
3238
3239  // Check the set destinations.
3240  unsigned NumDests = Pat->getNumChildren()-1;
3241  for (unsigned i = 0; i != NumDests; ++i) {
3242    TreePatternNodePtr Dest = Pat->getChildShared(i);
3243    // For set destinations we also must resolve fragments here.
3244    TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3245    DestPattern.InlinePatternFragments();
3246    DestPattern.InferAllTypes();
3247    Dest = DestPattern.getOnlyTree();
3248
3249    if (!Dest->isLeaf())
3250      I.error("set destination should be a register!");
3251
3252    DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3253    if (!Val) {
3254      I.error("set destination should be a register!");
3255      continue;
3256    }
3257
3258    if (Val->getDef()->isSubClassOf("RegisterClass") ||
3259        Val->getDef()->isSubClassOf("ValueType") ||
3260        Val->getDef()->isSubClassOf("RegisterOperand") ||
3261        Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3262      if (Dest->getName().empty())
3263        I.error("set destination must have a name!");
3264      if (InstResults.count(Dest->getName()))
3265        I.error("cannot set '" + Dest->getName() + "' multiple times");
3266      InstResults[Dest->getName()] = Dest;
3267    } else if (Val->getDef()->isSubClassOf("Register")) {
3268      InstImpResults.push_back(Val->getDef());
3269    } else {
3270      I.error("set destination should be a register!");
3271    }
3272  }
3273
3274  // Verify and collect info from the computation.
3275  FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3276                              InstResults, InstImpResults);
3277}
3278
3279//===----------------------------------------------------------------------===//
3280// Instruction Analysis
3281//===----------------------------------------------------------------------===//
3282
3283class InstAnalyzer {
3284  const CodeGenDAGPatterns &CDP;
3285public:
3286  bool hasSideEffects;
3287  bool mayStore;
3288  bool mayLoad;
3289  bool isBitcast;
3290  bool isVariadic;
3291  bool hasChain;
3292
3293  InstAnalyzer(const CodeGenDAGPatterns &cdp)
3294    : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3295      isBitcast(false), isVariadic(false), hasChain(false) {}
3296
3297  void Analyze(const PatternToMatch &Pat) {
3298    const TreePatternNode *N = Pat.getSrcPattern();
3299    AnalyzeNode(N);
3300    // These properties are detected only on the root node.
3301    isBitcast = IsNodeBitcast(N);
3302  }
3303
3304private:
3305  bool IsNodeBitcast(const TreePatternNode *N) const {
3306    if (hasSideEffects || mayLoad || mayStore || isVariadic)
3307      return false;
3308
3309    if (N->isLeaf())
3310      return false;
3311    if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3312      return false;
3313
3314    const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3315    if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3316      return false;
3317    return OpInfo.getEnumName() == "ISD::BITCAST";
3318  }
3319
3320public:
3321  void AnalyzeNode(const TreePatternNode *N) {
3322    if (N->isLeaf()) {
3323      if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3324        Record *LeafRec = DI->getDef();
3325        // Handle ComplexPattern leaves.
3326        if (LeafRec->isSubClassOf("ComplexPattern")) {
3327          const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3328          if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3329          if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3330          if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3331        }
3332      }
3333      return;
3334    }
3335
3336    // Analyze children.
3337    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3338      AnalyzeNode(N->getChild(i));
3339
3340    // Notice properties of the node.
3341    if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3342    if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3343    if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3344    if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3345    if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3346
3347    if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3348      // If this is an intrinsic, analyze it.
3349      if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3350        mayLoad = true;// These may load memory.
3351
3352      if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3353        mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3354
3355      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3356          IntInfo->hasSideEffects)
3357        // ReadWriteMem intrinsics can have other strange effects.
3358        hasSideEffects = true;
3359    }
3360  }
3361
3362};
3363
3364static bool InferFromPattern(CodeGenInstruction &InstInfo,
3365                             const InstAnalyzer &PatInfo,
3366                             Record *PatDef) {
3367  bool Error = false;
3368
3369  // Remember where InstInfo got its flags.
3370  if (InstInfo.hasUndefFlags())
3371      InstInfo.InferredFrom = PatDef;
3372
3373  // Check explicitly set flags for consistency.
3374  if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3375      !InstInfo.hasSideEffects_Unset) {
3376    // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3377    // the pattern has no side effects. That could be useful for div/rem
3378    // instructions that may trap.
3379    if (!InstInfo.hasSideEffects) {
3380      Error = true;
3381      PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3382                 Twine(InstInfo.hasSideEffects));
3383    }
3384  }
3385
3386  if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3387    Error = true;
3388    PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3389               Twine(InstInfo.mayStore));
3390  }
3391
3392  if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3393    // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3394    // Some targets translate immediates to loads.
3395    if (!InstInfo.mayLoad) {
3396      Error = true;
3397      PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3398                 Twine(InstInfo.mayLoad));
3399    }
3400  }
3401
3402  // Transfer inferred flags.
3403  InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3404  InstInfo.mayStore |= PatInfo.mayStore;
3405  InstInfo.mayLoad |= PatInfo.mayLoad;
3406
3407  // These flags are silently added without any verification.
3408  // FIXME: To match historical behavior of TableGen, for now add those flags
3409  // only when we're inferring from the primary instruction pattern.
3410  if (PatDef->isSubClassOf("Instruction")) {
3411    InstInfo.isBitcast |= PatInfo.isBitcast;
3412    InstInfo.hasChain |= PatInfo.hasChain;
3413    InstInfo.hasChain_Inferred = true;
3414  }
3415
3416  // Don't infer isVariadic. This flag means something different on SDNodes and
3417  // instructions. For example, a CALL SDNode is variadic because it has the
3418  // call arguments as operands, but a CALL instruction is not variadic - it
3419  // has argument registers as implicit, not explicit uses.
3420
3421  return Error;
3422}
3423
3424/// hasNullFragReference - Return true if the DAG has any reference to the
3425/// null_frag operator.
3426static bool hasNullFragReference(DagInit *DI) {
3427  DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3428  if (!OpDef) return false;
3429  Record *Operator = OpDef->getDef();
3430
3431  // If this is the null fragment, return true.
3432  if (Operator->getName() == "null_frag") return true;
3433  // If any of the arguments reference the null fragment, return true.
3434  for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3435    DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3436    if (Arg && hasNullFragReference(Arg))
3437      return true;
3438  }
3439
3440  return false;
3441}
3442
3443/// hasNullFragReference - Return true if any DAG in the list references
3444/// the null_frag operator.
3445static bool hasNullFragReference(ListInit *LI) {
3446  for (Init *I : LI->getValues()) {
3447    DagInit *DI = dyn_cast<DagInit>(I);
3448    assert(DI && "non-dag in an instruction Pattern list?!");
3449    if (hasNullFragReference(DI))
3450      return true;
3451  }
3452  return false;
3453}
3454
3455/// Get all the instructions in a tree.
3456static void
3457getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3458  if (Tree->isLeaf())
3459    return;
3460  if (Tree->getOperator()->isSubClassOf("Instruction"))
3461    Instrs.push_back(Tree->getOperator());
3462  for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3463    getInstructionsInTree(Tree->getChild(i), Instrs);
3464}
3465
3466/// Check the class of a pattern leaf node against the instruction operand it
3467/// represents.
3468static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3469                              Record *Leaf) {
3470  if (OI.Rec == Leaf)
3471    return true;
3472
3473  // Allow direct value types to be used in instruction set patterns.
3474  // The type will be checked later.
3475  if (Leaf->isSubClassOf("ValueType"))
3476    return true;
3477
3478  // Patterns can also be ComplexPattern instances.
3479  if (Leaf->isSubClassOf("ComplexPattern"))
3480    return true;
3481
3482  return false;
3483}
3484
3485void CodeGenDAGPatterns::parseInstructionPattern(
3486    CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3487
3488  assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3489
3490  // Parse the instruction.
3491  TreePattern I(CGI.TheDef, Pat, true, *this);
3492
3493  // InstInputs - Keep track of all of the inputs of the instruction, along
3494  // with the record they are declared as.
3495  std::map<std::string, TreePatternNodePtr> InstInputs;
3496
3497  // InstResults - Keep track of all the virtual registers that are 'set'
3498  // in the instruction, including what reg class they are.
3499  std::map<std::string, TreePatternNodePtr> InstResults;
3500
3501  std::vector<Record*> InstImpResults;
3502
3503  // Verify that the top-level forms in the instruction are of void type, and
3504  // fill in the InstResults map.
3505  SmallString<32> TypesString;
3506  for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3507    TypesString.clear();
3508    TreePatternNodePtr Pat = I.getTree(j);
3509    if (Pat->getNumTypes() != 0) {
3510      raw_svector_ostream OS(TypesString);
3511      for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3512        if (k > 0)
3513          OS << ", ";
3514        Pat->getExtType(k).writeToStream(OS);
3515      }
3516      I.error("Top-level forms in instruction pattern should have"
3517               " void types, has types " +
3518               OS.str());
3519    }
3520
3521    // Find inputs and outputs, and verify the structure of the uses/defs.
3522    FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3523                                InstImpResults);
3524  }
3525
3526  // Now that we have inputs and outputs of the pattern, inspect the operands
3527  // list for the instruction.  This determines the order that operands are
3528  // added to the machine instruction the node corresponds to.
3529  unsigned NumResults = InstResults.size();
3530
3531  // Parse the operands list from the (ops) list, validating it.
3532  assert(I.getArgList().empty() && "Args list should still be empty here!");
3533
3534  // Check that all of the results occur first in the list.
3535  std::vector<Record*> Results;
3536  SmallVector<TreePatternNodePtr, 2> ResNodes;
3537  for (unsigned i = 0; i != NumResults; ++i) {
3538    if (i == CGI.Operands.size())
3539      I.error("'" + InstResults.begin()->first +
3540               "' set but does not appear in operand list!");
3541    const std::string &OpName = CGI.Operands[i].Name;
3542
3543    // Check that it exists in InstResults.
3544    TreePatternNodePtr RNode = InstResults[OpName];
3545    if (!RNode)
3546      I.error("Operand $" + OpName + " does not exist in operand list!");
3547
3548
3549    Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3550    ResNodes.push_back(std::move(RNode));
3551    if (!R)
3552      I.error("Operand $" + OpName + " should be a set destination: all "
3553               "outputs must occur before inputs in operand list!");
3554
3555    if (!checkOperandClass(CGI.Operands[i], R))
3556      I.error("Operand $" + OpName + " class mismatch!");
3557
3558    // Remember the return type.
3559    Results.push_back(CGI.Operands[i].Rec);
3560
3561    // Okay, this one checks out.
3562    InstResults.erase(OpName);
3563  }
3564
3565  // Loop over the inputs next.
3566  std::vector<TreePatternNodePtr> ResultNodeOperands;
3567  std::vector<Record*> Operands;
3568  for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3569    CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3570    const std::string &OpName = Op.Name;
3571    if (OpName.empty())
3572      I.error("Operand #" + Twine(i) + " in operands list has no name!");
3573
3574    if (!InstInputs.count(OpName)) {
3575      // If this is an operand with a DefaultOps set filled in, we can ignore
3576      // this.  When we codegen it, we will do so as always executed.
3577      if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3578        // Does it have a non-empty DefaultOps field?  If so, ignore this
3579        // operand.
3580        if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3581          continue;
3582      }
3583      I.error("Operand $" + OpName +
3584               " does not appear in the instruction pattern");
3585    }
3586    TreePatternNodePtr InVal = InstInputs[OpName];
3587    InstInputs.erase(OpName);   // It occurred, remove from map.
3588
3589    if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3590      Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3591      if (!checkOperandClass(Op, InRec))
3592        I.error("Operand $" + OpName + "'s register class disagrees"
3593                 " between the operand and pattern");
3594    }
3595    Operands.push_back(Op.Rec);
3596
3597    // Construct the result for the dest-pattern operand list.
3598    TreePatternNodePtr OpNode = InVal->clone();
3599
3600    // No predicate is useful on the result.
3601    OpNode->clearPredicateFns();
3602
3603    // Promote the xform function to be an explicit node if set.
3604    if (Record *Xform = OpNode->getTransformFn()) {
3605      OpNode->setTransformFn(nullptr);
3606      std::vector<TreePatternNodePtr> Children;
3607      Children.push_back(OpNode);
3608      OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
3609                                                 OpNode->getNumTypes());
3610    }
3611
3612    ResultNodeOperands.push_back(std::move(OpNode));
3613  }
3614
3615  if (!InstInputs.empty())
3616    I.error("Input operand $" + InstInputs.begin()->first +
3617            " occurs in pattern but not in operands list!");
3618
3619  TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3620      I.getRecord(), std::move(ResultNodeOperands),
3621      GetNumNodeResults(I.getRecord(), *this));
3622  // Copy fully inferred output node types to instruction result pattern.
3623  for (unsigned i = 0; i != NumResults; ++i) {
3624    assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3625    ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3626  }
3627
3628  // FIXME: Assume only the first tree is the pattern. The others are clobber
3629  // nodes.
3630  TreePatternNodePtr Pattern = I.getTree(0);
3631  TreePatternNodePtr SrcPattern;
3632  if (Pattern->getOperator()->getName() == "set") {
3633    SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3634  } else{
3635    // Not a set (store or something?)
3636    SrcPattern = Pattern;
3637  }
3638
3639  // Create and insert the instruction.
3640  // FIXME: InstImpResults should not be part of DAGInstruction.
3641  Record *R = I.getRecord();
3642  DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3643                   std::forward_as_tuple(Results, Operands, InstImpResults,
3644                                         SrcPattern, ResultPattern));
3645
3646  LLVM_DEBUG(I.dump());
3647}
3648
3649/// ParseInstructions - Parse all of the instructions, inlining and resolving
3650/// any fragments involved.  This populates the Instructions list with fully
3651/// resolved instructions.
3652void CodeGenDAGPatterns::ParseInstructions() {
3653  std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3654
3655  for (Record *Instr : Instrs) {
3656    ListInit *LI = nullptr;
3657
3658    if (isa<ListInit>(Instr->getValueInit("Pattern")))
3659      LI = Instr->getValueAsListInit("Pattern");
3660
3661    // If there is no pattern, only collect minimal information about the
3662    // instruction for its operand list.  We have to assume that there is one
3663    // result, as we have no detailed info. A pattern which references the
3664    // null_frag operator is as-if no pattern were specified. Normally this
3665    // is from a multiclass expansion w/ a SDPatternOperator passed in as
3666    // null_frag.
3667    if (!LI || LI->empty() || hasNullFragReference(LI)) {
3668      std::vector<Record*> Results;
3669      std::vector<Record*> Operands;
3670
3671      CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3672
3673      if (InstInfo.Operands.size() != 0) {
3674        for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3675          Results.push_back(InstInfo.Operands[j].Rec);
3676
3677        // The rest are inputs.
3678        for (unsigned j = InstInfo.Operands.NumDefs,
3679               e = InstInfo.Operands.size(); j < e; ++j)
3680          Operands.push_back(InstInfo.Operands[j].Rec);
3681      }
3682
3683      // Create and insert the instruction.
3684      std::vector<Record*> ImpResults;
3685      Instructions.insert(std::make_pair(Instr,
3686                            DAGInstruction(Results, Operands, ImpResults)));
3687      continue;  // no pattern.
3688    }
3689
3690    CodeGenInstruction &CGI = Target.getInstruction(Instr);
3691    parseInstructionPattern(CGI, LI, Instructions);
3692  }
3693
3694  // If we can, convert the instructions to be patterns that are matched!
3695  for (auto &Entry : Instructions) {
3696    Record *Instr = Entry.first;
3697    DAGInstruction &TheInst = Entry.second;
3698    TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3699    TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3700
3701    if (SrcPattern && ResultPattern) {
3702      TreePattern Pattern(Instr, SrcPattern, true, *this);
3703      TreePattern Result(Instr, ResultPattern, false, *this);
3704      ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3705    }
3706  }
3707}
3708
3709typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3710
3711static void FindNames(TreePatternNode *P,
3712                      std::map<std::string, NameRecord> &Names,
3713                      TreePattern *PatternTop) {
3714  if (!P->getName().empty()) {
3715    NameRecord &Rec = Names[P->getName()];
3716    // If this is the first instance of the name, remember the node.
3717    if (Rec.second++ == 0)
3718      Rec.first = P;
3719    else if (Rec.first->getExtTypes() != P->getExtTypes())
3720      PatternTop->error("repetition of value: $" + P->getName() +
3721                        " where different uses have different types!");
3722  }
3723
3724  if (!P->isLeaf()) {
3725    for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3726      FindNames(P->getChild(i), Names, PatternTop);
3727  }
3728}
3729
3730std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3731  std::vector<Predicate> Preds;
3732  for (Init *I : L->getValues()) {
3733    if (DefInit *Pred = dyn_cast<DefInit>(I))
3734      Preds.push_back(Pred->getDef());
3735    else
3736      llvm_unreachable("Non-def on the list");
3737  }
3738
3739  // Sort so that different orders get canonicalized to the same string.
3740  llvm::sort(Preds.begin(), Preds.end());
3741  return Preds;
3742}
3743
3744void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3745                                           PatternToMatch &&PTM) {
3746  // Do some sanity checking on the pattern we're about to match.
3747  std::string Reason;
3748  if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3749    PrintWarning(Pattern->getRecord()->getLoc(),
3750      Twine("Pattern can never match: ") + Reason);
3751    return;
3752  }
3753
3754  // If the source pattern's root is a complex pattern, that complex pattern
3755  // must specify the nodes it can potentially match.
3756  if (const ComplexPattern *CP =
3757        PTM.getSrcPattern()->getComplexPatternInfo(*this))
3758    if (CP->getRootNodes().empty())
3759      Pattern->error("ComplexPattern at root must specify list of opcodes it"
3760                     " could match");
3761
3762
3763  // Find all of the named values in the input and output, ensure they have the
3764  // same type.
3765  std::map<std::string, NameRecord> SrcNames, DstNames;
3766  FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3767  FindNames(PTM.getDstPattern(), DstNames, Pattern);
3768
3769  // Scan all of the named values in the destination pattern, rejecting them if
3770  // they don't exist in the input pattern.
3771  for (const auto &Entry : DstNames) {
3772    if (SrcNames[Entry.first].first == nullptr)
3773      Pattern->error("Pattern has input without matching name in output: $" +
3774                     Entry.first);
3775  }
3776
3777  // Scan all of the named values in the source pattern, rejecting them if the
3778  // name isn't used in the dest, and isn't used to tie two values together.
3779  for (const auto &Entry : SrcNames)
3780    if (DstNames[Entry.first].first == nullptr &&
3781        SrcNames[Entry.first].second == 1)
3782      Pattern->error("Pattern has dead named input: $" + Entry.first);
3783
3784  PatternsToMatch.push_back(PTM);
3785}
3786
3787void CodeGenDAGPatterns::InferInstructionFlags() {
3788  ArrayRef<const CodeGenInstruction*> Instructions =
3789    Target.getInstructionsByEnumValue();
3790
3791  unsigned Errors = 0;
3792
3793  // Try to infer flags from all patterns in PatternToMatch.  These include
3794  // both the primary instruction patterns (which always come first) and
3795  // patterns defined outside the instruction.
3796  for (const PatternToMatch &PTM : ptms()) {
3797    // We can only infer from single-instruction patterns, otherwise we won't
3798    // know which instruction should get the flags.
3799    SmallVector<Record*, 8> PatInstrs;
3800    getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3801    if (PatInstrs.size() != 1)
3802      continue;
3803
3804    // Get the single instruction.
3805    CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3806
3807    // Only infer properties from the first pattern. We'll verify the others.
3808    if (InstInfo.InferredFrom)
3809      continue;
3810
3811    InstAnalyzer PatInfo(*this);
3812    PatInfo.Analyze(PTM);
3813    Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3814  }
3815
3816  if (Errors)
3817    PrintFatalError("pattern conflicts");
3818
3819  // If requested by the target, guess any undefined properties.
3820  if (Target.guessInstructionProperties()) {
3821    for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3822      CodeGenInstruction *InstInfo =
3823        const_cast<CodeGenInstruction *>(Instructions[i]);
3824      if (InstInfo->InferredFrom)
3825        continue;
3826      // The mayLoad and mayStore flags default to false.
3827      // Conservatively assume hasSideEffects if it wasn't explicit.
3828      if (InstInfo->hasSideEffects_Unset)
3829        InstInfo->hasSideEffects = true;
3830    }
3831    return;
3832  }
3833
3834  // Complain about any flags that are still undefined.
3835  for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3836    CodeGenInstruction *InstInfo =
3837      const_cast<CodeGenInstruction *>(Instructions[i]);
3838    if (InstInfo->InferredFrom)
3839      continue;
3840    if (InstInfo->hasSideEffects_Unset)
3841      PrintError(InstInfo->TheDef->getLoc(),
3842                 "Can't infer hasSideEffects from patterns");
3843    if (InstInfo->mayStore_Unset)
3844      PrintError(InstInfo->TheDef->getLoc(),
3845                 "Can't infer mayStore from patterns");
3846    if (InstInfo->mayLoad_Unset)
3847      PrintError(InstInfo->TheDef->getLoc(),
3848                 "Can't infer mayLoad from patterns");
3849  }
3850}
3851
3852
3853/// Verify instruction flags against pattern node properties.
3854void CodeGenDAGPatterns::VerifyInstructionFlags() {
3855  unsigned Errors = 0;
3856  for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3857    const PatternToMatch &PTM = *I;
3858    SmallVector<Record*, 8> Instrs;
3859    getInstructionsInTree(PTM.getDstPattern(), Instrs);
3860    if (Instrs.empty())
3861      continue;
3862
3863    // Count the number of instructions with each flag set.
3864    unsigned NumSideEffects = 0;
3865    unsigned NumStores = 0;
3866    unsigned NumLoads = 0;
3867    for (const Record *Instr : Instrs) {
3868      const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3869      NumSideEffects += InstInfo.hasSideEffects;
3870      NumStores += InstInfo.mayStore;
3871      NumLoads += InstInfo.mayLoad;
3872    }
3873
3874    // Analyze the source pattern.
3875    InstAnalyzer PatInfo(*this);
3876    PatInfo.Analyze(PTM);
3877
3878    // Collect error messages.
3879    SmallVector<std::string, 4> Msgs;
3880
3881    // Check for missing flags in the output.
3882    // Permit extra flags for now at least.
3883    if (PatInfo.hasSideEffects && !NumSideEffects)
3884      Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3885
3886    // Don't verify store flags on instructions with side effects. At least for
3887    // intrinsics, side effects implies mayStore.
3888    if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3889      Msgs.push_back("pattern may store, but mayStore isn't set");
3890
3891    // Similarly, mayStore implies mayLoad on intrinsics.
3892    if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3893      Msgs.push_back("pattern may load, but mayLoad isn't set");
3894
3895    // Print error messages.
3896    if (Msgs.empty())
3897      continue;
3898    ++Errors;
3899
3900    for (const std::string &Msg : Msgs)
3901      PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
3902                 (Instrs.size() == 1 ?
3903                  "instruction" : "output instructions"));
3904    // Provide the location of the relevant instruction definitions.
3905    for (const Record *Instr : Instrs) {
3906      if (Instr != PTM.getSrcRecord())
3907        PrintError(Instr->getLoc(), "defined here");
3908      const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3909      if (InstInfo.InferredFrom &&
3910          InstInfo.InferredFrom != InstInfo.TheDef &&
3911          InstInfo.InferredFrom != PTM.getSrcRecord())
3912        PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
3913    }
3914  }
3915  if (Errors)
3916    PrintFatalError("Errors in DAG patterns");
3917}
3918
3919/// Given a pattern result with an unresolved type, see if we can find one
3920/// instruction with an unresolved result type.  Force this result type to an
3921/// arbitrary element if it's possible types to converge results.
3922static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3923  if (N->isLeaf())
3924    return false;
3925
3926  // Analyze children.
3927  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3928    if (ForceArbitraryInstResultType(N->getChild(i), TP))
3929      return true;
3930
3931  if (!N->getOperator()->isSubClassOf("Instruction"))
3932    return false;
3933
3934  // If this type is already concrete or completely unknown we can't do
3935  // anything.
3936  TypeInfer &TI = TP.getInfer();
3937  for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3938    if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
3939      continue;
3940
3941    // Otherwise, force its type to an arbitrary choice.
3942    if (TI.forceArbitrary(N->getExtType(i)))
3943      return true;
3944  }
3945
3946  return false;
3947}
3948
3949// Promote xform function to be an explicit node wherever set.
3950static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
3951  if (Record *Xform = N->getTransformFn()) {
3952      N->setTransformFn(nullptr);
3953      std::vector<TreePatternNodePtr> Children;
3954      Children.push_back(PromoteXForms(N));
3955      return std::make_shared<TreePatternNode>(Xform, std::move(Children),
3956                                               N->getNumTypes());
3957  }
3958
3959  if (!N->isLeaf())
3960    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
3961      TreePatternNodePtr Child = N->getChildShared(i);
3962      N->setChild(i, PromoteXForms(Child));
3963    }
3964  return N;
3965}
3966
3967void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
3968       TreePattern &Pattern, TreePattern &Result,
3969       const std::vector<Record *> &InstImpResults) {
3970
3971  // Inline pattern fragments and expand multiple alternatives.
3972  Pattern.InlinePatternFragments();
3973  Result.InlinePatternFragments();
3974
3975  if (Result.getNumTrees() != 1)
3976    Result.error("Cannot use multi-alternative fragments in result pattern!");
3977
3978  // Infer types.
3979  bool IterateInference;
3980  bool InferredAllPatternTypes, InferredAllResultTypes;
3981  do {
3982    // Infer as many types as possible.  If we cannot infer all of them, we
3983    // can never do anything with this pattern: report it to the user.
3984    InferredAllPatternTypes =
3985        Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
3986
3987    // Infer as many types as possible.  If we cannot infer all of them, we
3988    // can never do anything with this pattern: report it to the user.
3989    InferredAllResultTypes =
3990        Result.InferAllTypes(&Pattern.getNamedNodesMap());
3991
3992    IterateInference = false;
3993
3994    // Apply the type of the result to the source pattern.  This helps us
3995    // resolve cases where the input type is known to be a pointer type (which
3996    // is considered resolved), but the result knows it needs to be 32- or
3997    // 64-bits.  Infer the other way for good measure.
3998    for (auto T : Pattern.getTrees())
3999      for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4000                                        T->getNumTypes());
4001         i != e; ++i) {
4002        IterateInference |= T->UpdateNodeType(
4003            i, Result.getOnlyTree()->getExtType(i), Result);
4004        IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4005            i, T->getExtType(i), Result);
4006      }
4007
4008    // If our iteration has converged and the input pattern's types are fully
4009    // resolved but the result pattern is not fully resolved, we may have a
4010    // situation where we have two instructions in the result pattern and
4011    // the instructions require a common register class, but don't care about
4012    // what actual MVT is used.  This is actually a bug in our modelling:
4013    // output patterns should have register classes, not MVTs.
4014    //
4015    // In any case, to handle this, we just go through and disambiguate some
4016    // arbitrary types to the result pattern's nodes.
4017    if (!IterateInference && InferredAllPatternTypes &&
4018        !InferredAllResultTypes)
4019      IterateInference =
4020          ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4021  } while (IterateInference);
4022
4023  // Verify that we inferred enough types that we can do something with the
4024  // pattern and result.  If these fire the user has to add type casts.
4025  if (!InferredAllPatternTypes)
4026    Pattern.error("Could not infer all types in pattern!");
4027  if (!InferredAllResultTypes) {
4028    Pattern.dump();
4029    Result.error("Could not infer all types in pattern result!");
4030  }
4031
4032  // Promote xform function to be an explicit node wherever set.
4033  TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4034
4035  TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4036  Temp.InferAllTypes();
4037
4038  ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4039  int Complexity = TheDef->getValueAsInt("AddedComplexity");
4040
4041  if (PatternRewriter)
4042    PatternRewriter(&Pattern);
4043
4044  // A pattern may end up with an "impossible" type, i.e. a situation
4045  // where all types have been eliminated for some node in this pattern.
4046  // This could occur for intrinsics that only make sense for a specific
4047  // value type, and use a specific register class. If, for some mode,
4048  // that register class does not accept that type, the type inference
4049  // will lead to a contradiction, which is not an error however, but
4050  // a sign that this pattern will simply never match.
4051  if (Temp.getOnlyTree()->hasPossibleType())
4052    for (auto T : Pattern.getTrees())
4053      if (T->hasPossibleType())
4054        AddPatternToMatch(&Pattern,
4055                          PatternToMatch(TheDef, makePredList(Preds),
4056                                         T, Temp.getOnlyTree(),
4057                                         InstImpResults, Complexity,
4058                                         TheDef->getID()));
4059}
4060
4061void CodeGenDAGPatterns::ParsePatterns() {
4062  std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4063
4064  for (Record *CurPattern : Patterns) {
4065    DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4066
4067    // If the pattern references the null_frag, there's nothing to do.
4068    if (hasNullFragReference(Tree))
4069      continue;
4070
4071    TreePattern Pattern(CurPattern, Tree, true, *this);
4072
4073    ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4074    if (LI->empty()) continue;  // no pattern.
4075
4076    // Parse the instruction.
4077    TreePattern Result(CurPattern, LI, false, *this);
4078
4079    if (Result.getNumTrees() != 1)
4080      Result.error("Cannot handle instructions producing instructions "
4081                   "with temporaries yet!");
4082
4083    // Validate that the input pattern is correct.
4084    std::map<std::string, TreePatternNodePtr> InstInputs;
4085    std::map<std::string, TreePatternNodePtr> InstResults;
4086    std::vector<Record*> InstImpResults;
4087    for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4088      FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4089                                  InstResults, InstImpResults);
4090
4091    ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4092  }
4093}
4094
4095static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4096  for (const TypeSetByHwMode &VTS : N->getExtTypes())
4097    for (const auto &I : VTS)
4098      Modes.insert(I.first);
4099
4100  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4101    collectModes(Modes, N->getChild(i));
4102}
4103
4104void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4105  const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4106  std::map<unsigned,std::vector<Predicate>> ModeChecks;
4107  std::vector<PatternToMatch> Copy = PatternsToMatch;
4108  PatternsToMatch.clear();
4109
4110  auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
4111    TreePatternNodePtr NewSrc = P.SrcPattern->clone();
4112    TreePatternNodePtr NewDst = P.DstPattern->clone();
4113    if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4114      return;
4115    }
4116
4117    std::vector<Predicate> Preds = P.Predicates;
4118    const std::vector<Predicate> &MC = ModeChecks[Mode];
4119    Preds.insert(Preds.end(), MC.begin(), MC.end());
4120    PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
4121                                 std::move(NewDst), P.getDstRegs(),
4122                                 P.getAddedComplexity(), Record::getNewUID(),
4123                                 Mode);
4124  };
4125
4126  for (PatternToMatch &P : Copy) {
4127    TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4128    if (P.SrcPattern->hasProperTypeByHwMode())
4129      SrcP = P.SrcPattern;
4130    if (P.DstPattern->hasProperTypeByHwMode())
4131      DstP = P.DstPattern;
4132    if (!SrcP && !DstP) {
4133      PatternsToMatch.push_back(P);
4134      continue;
4135    }
4136
4137    std::set<unsigned> Modes;
4138    if (SrcP)
4139      collectModes(Modes, SrcP.get());
4140    if (DstP)
4141      collectModes(Modes, DstP.get());
4142
4143    // The predicate for the default mode needs to be constructed for each
4144    // pattern separately.
4145    // Since not all modes must be present in each pattern, if a mode m is
4146    // absent, then there is no point in constructing a check for m. If such
4147    // a check was created, it would be equivalent to checking the default
4148    // mode, except not all modes' predicates would be a part of the checking
4149    // code. The subsequently generated check for the default mode would then
4150    // have the exact same patterns, but a different predicate code. To avoid
4151    // duplicated patterns with different predicate checks, construct the
4152    // default check as a negation of all predicates that are actually present
4153    // in the source/destination patterns.
4154    std::vector<Predicate> DefaultPred;
4155
4156    for (unsigned M : Modes) {
4157      if (M == DefaultMode)
4158        continue;
4159      if (ModeChecks.find(M) != ModeChecks.end())
4160        continue;
4161
4162      // Fill the map entry for this mode.
4163      const HwMode &HM = CGH.getMode(M);
4164      ModeChecks[M].emplace_back(Predicate(HM.Features, true));
4165
4166      // Add negations of the HM's predicates to the default predicate.
4167      DefaultPred.emplace_back(Predicate(HM.Features, false));
4168    }
4169
4170    for (unsigned M : Modes) {
4171      if (M == DefaultMode)
4172        continue;
4173      AppendPattern(P, M);
4174    }
4175
4176    bool HasDefault = Modes.count(DefaultMode);
4177    if (HasDefault)
4178      AppendPattern(P, DefaultMode);
4179  }
4180}
4181
4182/// Dependent variable map for CodeGenDAGPattern variant generation
4183typedef StringMap<int> DepVarMap;
4184
4185static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4186  if (N->isLeaf()) {
4187    if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4188      DepMap[N->getName()]++;
4189  } else {
4190    for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4191      FindDepVarsOf(N->getChild(i), DepMap);
4192  }
4193}
4194
4195/// Find dependent variables within child patterns
4196static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4197  DepVarMap depcounts;
4198  FindDepVarsOf(N, depcounts);
4199  for (const auto &Pair : depcounts) {
4200    if (Pair.getValue() > 1)
4201      DepVars.insert(Pair.getKey());
4202  }
4203}
4204
4205#ifndef NDEBUG
4206/// Dump the dependent variable set:
4207static void DumpDepVars(MultipleUseVarSet &DepVars) {
4208  if (DepVars.empty()) {
4209    LLVM_DEBUG(errs() << "<empty set>");
4210  } else {
4211    LLVM_DEBUG(errs() << "[ ");
4212    for (const auto &DepVar : DepVars) {
4213      LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4214    }
4215    LLVM_DEBUG(errs() << "]");
4216  }
4217}
4218#endif
4219
4220
4221/// CombineChildVariants - Given a bunch of permutations of each child of the
4222/// 'operator' node, put them together in all possible ways.
4223static void CombineChildVariants(
4224    TreePatternNodePtr Orig,
4225    const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4226    std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4227    const MultipleUseVarSet &DepVars) {
4228  // Make sure that each operand has at least one variant to choose from.
4229  for (const auto &Variants : ChildVariants)
4230    if (Variants.empty())
4231      return;
4232
4233  // The end result is an all-pairs construction of the resultant pattern.
4234  std::vector<unsigned> Idxs;
4235  Idxs.resize(ChildVariants.size());
4236  bool NotDone;
4237  do {
4238#ifndef NDEBUG
4239    LLVM_DEBUG(if (!Idxs.empty()) {
4240      errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4241      for (unsigned Idx : Idxs) {
4242        errs() << Idx << " ";
4243      }
4244      errs() << "]\n";
4245    });
4246#endif
4247    // Create the variant and add it to the output list.
4248    std::vector<TreePatternNodePtr> NewChildren;
4249    for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4250      NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4251    TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4252        Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4253
4254    // Copy over properties.
4255    R->setName(Orig->getName());
4256    R->setPredicateFns(Orig->getPredicateFns());
4257    R->setTransformFn(Orig->getTransformFn());
4258    for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4259      R->setType(i, Orig->getExtType(i));
4260
4261    // If this pattern cannot match, do not include it as a variant.
4262    std::string ErrString;
4263    // Scan to see if this pattern has already been emitted.  We can get
4264    // duplication due to things like commuting:
4265    //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4266    // which are the same pattern.  Ignore the dups.
4267    if (R->canPatternMatch(ErrString, CDP) &&
4268        none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4269          return R->isIsomorphicTo(Variant.get(), DepVars);
4270        }))
4271      OutVariants.push_back(R);
4272
4273    // Increment indices to the next permutation by incrementing the
4274    // indices from last index backward, e.g., generate the sequence
4275    // [0, 0], [0, 1], [1, 0], [1, 1].
4276    int IdxsIdx;
4277    for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4278      if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4279        Idxs[IdxsIdx] = 0;
4280      else
4281        break;
4282    }
4283    NotDone = (IdxsIdx >= 0);
4284  } while (NotDone);
4285}
4286
4287/// CombineChildVariants - A helper function for binary operators.
4288///
4289static void CombineChildVariants(TreePatternNodePtr Orig,
4290                                 const std::vector<TreePatternNodePtr> &LHS,
4291                                 const std::vector<TreePatternNodePtr> &RHS,
4292                                 std::vector<TreePatternNodePtr> &OutVariants,
4293                                 CodeGenDAGPatterns &CDP,
4294                                 const MultipleUseVarSet &DepVars) {
4295  std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4296  ChildVariants.push_back(LHS);
4297  ChildVariants.push_back(RHS);
4298  CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4299}
4300
4301static void
4302GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4303                                  std::vector<TreePatternNodePtr> &Children) {
4304  assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4305  Record *Operator = N->getOperator();
4306
4307  // Only permit raw nodes.
4308  if (!N->getName().empty() || !N->getPredicateFns().empty() ||
4309      N->getTransformFn()) {
4310    Children.push_back(N);
4311    return;
4312  }
4313
4314  if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4315    Children.push_back(N->getChildShared(0));
4316  else
4317    GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4318
4319  if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4320    Children.push_back(N->getChildShared(1));
4321  else
4322    GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4323}
4324
4325/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4326/// the (potentially recursive) pattern by using algebraic laws.
4327///
4328static void GenerateVariantsOf(TreePatternNodePtr N,
4329                               std::vector<TreePatternNodePtr> &OutVariants,
4330                               CodeGenDAGPatterns &CDP,
4331                               const MultipleUseVarSet &DepVars) {
4332  // We cannot permute leaves or ComplexPattern uses.
4333  if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4334    OutVariants.push_back(N);
4335    return;
4336  }
4337
4338  // Look up interesting info about the node.
4339  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4340
4341  // If this node is associative, re-associate.
4342  if (NodeInfo.hasProperty(SDNPAssociative)) {
4343    // Re-associate by pulling together all of the linked operators
4344    std::vector<TreePatternNodePtr> MaximalChildren;
4345    GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4346
4347    // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4348    // permutations.
4349    if (MaximalChildren.size() == 3) {
4350      // Find the variants of all of our maximal children.
4351      std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4352      GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4353      GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4354      GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4355
4356      // There are only two ways we can permute the tree:
4357      //   (A op B) op C    and    A op (B op C)
4358      // Within these forms, we can also permute A/B/C.
4359
4360      // Generate legal pair permutations of A/B/C.
4361      std::vector<TreePatternNodePtr> ABVariants;
4362      std::vector<TreePatternNodePtr> BAVariants;
4363      std::vector<TreePatternNodePtr> ACVariants;
4364      std::vector<TreePatternNodePtr> CAVariants;
4365      std::vector<TreePatternNodePtr> BCVariants;
4366      std::vector<TreePatternNodePtr> CBVariants;
4367      CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4368      CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4369      CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4370      CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4371      CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4372      CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4373
4374      // Combine those into the result: (x op x) op x
4375      CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4376      CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4377      CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4378      CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4379      CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4380      CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4381
4382      // Combine those into the result: x op (x op x)
4383      CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4384      CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4385      CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4386      CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4387      CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4388      CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4389      return;
4390    }
4391  }
4392
4393  // Compute permutations of all children.
4394  std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4395  ChildVariants.resize(N->getNumChildren());
4396  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4397    GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4398
4399  // Build all permutations based on how the children were formed.
4400  CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4401
4402  // If this node is commutative, consider the commuted order.
4403  bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4404  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4405    assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
4406           "Commutative but doesn't have 2 children!");
4407    // Don't count children which are actually register references.
4408    unsigned NC = 0;
4409    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4410      TreePatternNode *Child = N->getChild(i);
4411      if (Child->isLeaf())
4412        if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4413          Record *RR = DI->getDef();
4414          if (RR->isSubClassOf("Register"))
4415            continue;
4416        }
4417      NC++;
4418    }
4419    // Consider the commuted order.
4420    if (isCommIntrinsic) {
4421      // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4422      // operands are the commutative operands, and there might be more operands
4423      // after those.
4424      assert(NC >= 3 &&
4425             "Commutative intrinsic should have at least 3 children!");
4426      std::vector<std::vector<TreePatternNodePtr>> Variants;
4427      Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
4428      Variants.push_back(std::move(ChildVariants[2]));
4429      Variants.push_back(std::move(ChildVariants[1]));
4430      for (unsigned i = 3; i != NC; ++i)
4431        Variants.push_back(std::move(ChildVariants[i]));
4432      CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4433    } else if (NC == N->getNumChildren()) {
4434      std::vector<std::vector<TreePatternNodePtr>> Variants;
4435      Variants.push_back(std::move(ChildVariants[1]));
4436      Variants.push_back(std::move(ChildVariants[0]));
4437      for (unsigned i = 2; i != NC; ++i)
4438        Variants.push_back(std::move(ChildVariants[i]));
4439      CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4440    }
4441  }
4442}
4443
4444
4445// GenerateVariants - Generate variants.  For example, commutative patterns can
4446// match multiple ways.  Add them to PatternsToMatch as well.
4447void CodeGenDAGPatterns::GenerateVariants() {
4448  LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4449
4450  // Loop over all of the patterns we've collected, checking to see if we can
4451  // generate variants of the instruction, through the exploitation of
4452  // identities.  This permits the target to provide aggressive matching without
4453  // the .td file having to contain tons of variants of instructions.
4454  //
4455  // Note that this loop adds new patterns to the PatternsToMatch list, but we
4456  // intentionally do not reconsider these.  Any variants of added patterns have
4457  // already been added.
4458  //
4459  for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
4460    MultipleUseVarSet             DepVars;
4461    std::vector<TreePatternNodePtr> Variants;
4462    FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4463    LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4464    LLVM_DEBUG(DumpDepVars(DepVars));
4465    LLVM_DEBUG(errs() << "\n");
4466    GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4467                       *this, DepVars);
4468
4469    assert(!Variants.empty() && "Must create at least original variant!");
4470    if (Variants.size() == 1)  // No additional variants for this pattern.
4471      continue;
4472
4473    LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4474               PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
4475
4476    for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4477      TreePatternNodePtr Variant = Variants[v];
4478
4479      LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
4480                 errs() << "\n");
4481
4482      // Scan to see if an instruction or explicit pattern already matches this.
4483      bool AlreadyExists = false;
4484      for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4485        // Skip if the top level predicates do not match.
4486        if (PatternsToMatch[i].getPredicates() !=
4487            PatternsToMatch[p].getPredicates())
4488          continue;
4489        // Check to see if this variant already exists.
4490        if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4491                                    DepVars)) {
4492          LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4493          AlreadyExists = true;
4494          break;
4495        }
4496      }
4497      // If we already have it, ignore the variant.
4498      if (AlreadyExists) continue;
4499
4500      // Otherwise, add it to the list of patterns we have.
4501      PatternsToMatch.push_back(PatternToMatch(
4502          PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4503          Variant, PatternsToMatch[i].getDstPatternShared(),
4504          PatternsToMatch[i].getDstRegs(),
4505          PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4506    }
4507
4508    LLVM_DEBUG(errs() << "\n");
4509  }
4510}
4511