CodeGenDAGPatterns.cpp revision 239462
1//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CodeGenDAGPatterns class, which is used to read and
11// represent the patterns present in a .td file for instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CodeGenDAGPatterns.h"
16#include "llvm/TableGen/Error.h"
17#include "llvm/TableGen/Record.h"
18#include "llvm/ADT/StringExtras.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/Twine.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Support/ErrorHandling.h"
23#include <algorithm>
24#include <cstdio>
25#include <set>
26using namespace llvm;
27
28//===----------------------------------------------------------------------===//
29//  EEVT::TypeSet Implementation
30//===----------------------------------------------------------------------===//
31
32static inline bool isInteger(MVT::SimpleValueType VT) {
33  return EVT(VT).isInteger();
34}
35static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
36  return EVT(VT).isFloatingPoint();
37}
38static inline bool isVector(MVT::SimpleValueType VT) {
39  return EVT(VT).isVector();
40}
41static inline bool isScalar(MVT::SimpleValueType VT) {
42  return !EVT(VT).isVector();
43}
44
45EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
46  if (VT == MVT::iAny)
47    EnforceInteger(TP);
48  else if (VT == MVT::fAny)
49    EnforceFloatingPoint(TP);
50  else if (VT == MVT::vAny)
51    EnforceVector(TP);
52  else {
53    assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
54            VT == MVT::iPTRAny) && "Not a concrete type!");
55    TypeVec.push_back(VT);
56  }
57}
58
59
60EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) {
61  assert(!VTList.empty() && "empty list?");
62  TypeVec.append(VTList.begin(), VTList.end());
63
64  if (!VTList.empty())
65    assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
66           VTList[0] != MVT::fAny);
67
68  // Verify no duplicates.
69  array_pod_sort(TypeVec.begin(), TypeVec.end());
70  assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
71}
72
73/// FillWithPossibleTypes - Set to all legal types and return true, only valid
74/// on completely unknown type sets.
75bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
76                                          bool (*Pred)(MVT::SimpleValueType),
77                                          const char *PredicateName) {
78  assert(isCompletelyUnknown());
79  const std::vector<MVT::SimpleValueType> &LegalTypes =
80    TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
81
82  for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i)
83    if (Pred == 0 || Pred(LegalTypes[i]))
84      TypeVec.push_back(LegalTypes[i]);
85
86  // If we have nothing that matches the predicate, bail out.
87  if (TypeVec.empty())
88    TP.error("Type inference contradiction found, no " +
89             std::string(PredicateName) + " types found");
90  // No need to sort with one element.
91  if (TypeVec.size() == 1) return true;
92
93  // Remove duplicates.
94  array_pod_sort(TypeVec.begin(), TypeVec.end());
95  TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
96
97  return true;
98}
99
100/// hasIntegerTypes - Return true if this TypeSet contains iAny or an
101/// integer value type.
102bool EEVT::TypeSet::hasIntegerTypes() const {
103  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
104    if (isInteger(TypeVec[i]))
105      return true;
106  return false;
107}
108
109/// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
110/// a floating point value type.
111bool EEVT::TypeSet::hasFloatingPointTypes() const {
112  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
113    if (isFloatingPoint(TypeVec[i]))
114      return true;
115  return false;
116}
117
118/// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
119/// value type.
120bool EEVT::TypeSet::hasVectorTypes() const {
121  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
122    if (isVector(TypeVec[i]))
123      return true;
124  return false;
125}
126
127
128std::string EEVT::TypeSet::getName() const {
129  if (TypeVec.empty()) return "<empty>";
130
131  std::string Result;
132
133  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
134    std::string VTName = llvm::getEnumName(TypeVec[i]);
135    // Strip off MVT:: prefix if present.
136    if (VTName.substr(0,5) == "MVT::")
137      VTName = VTName.substr(5);
138    if (i) Result += ':';
139    Result += VTName;
140  }
141
142  if (TypeVec.size() == 1)
143    return Result;
144  return "{" + Result + "}";
145}
146
147/// MergeInTypeInfo - This merges in type information from the specified
148/// argument.  If 'this' changes, it returns true.  If the two types are
149/// contradictory (e.g. merge f32 into i32) then this throws an exception.
150bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
151  if (InVT.isCompletelyUnknown() || *this == InVT)
152    return false;
153
154  if (isCompletelyUnknown()) {
155    *this = InVT;
156    return true;
157  }
158
159  assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns");
160
161  // Handle the abstract cases, seeing if we can resolve them better.
162  switch (TypeVec[0]) {
163  default: break;
164  case MVT::iPTR:
165  case MVT::iPTRAny:
166    if (InVT.hasIntegerTypes()) {
167      EEVT::TypeSet InCopy(InVT);
168      InCopy.EnforceInteger(TP);
169      InCopy.EnforceScalar(TP);
170
171      if (InCopy.isConcrete()) {
172        // If the RHS has one integer type, upgrade iPTR to i32.
173        TypeVec[0] = InVT.TypeVec[0];
174        return true;
175      }
176
177      // If the input has multiple scalar integers, this doesn't add any info.
178      if (!InCopy.isCompletelyUnknown())
179        return false;
180    }
181    break;
182  }
183
184  // If the input constraint is iAny/iPTR and this is an integer type list,
185  // remove non-integer types from the list.
186  if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
187      hasIntegerTypes()) {
188    bool MadeChange = EnforceInteger(TP);
189
190    // If we're merging in iPTR/iPTRAny and the node currently has a list of
191    // multiple different integer types, replace them with a single iPTR.
192    if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
193        TypeVec.size() != 1) {
194      TypeVec.resize(1);
195      TypeVec[0] = InVT.TypeVec[0];
196      MadeChange = true;
197    }
198
199    return MadeChange;
200  }
201
202  // If this is a type list and the RHS is a typelist as well, eliminate entries
203  // from this list that aren't in the other one.
204  bool MadeChange = false;
205  TypeSet InputSet(*this);
206
207  for (unsigned i = 0; i != TypeVec.size(); ++i) {
208    bool InInVT = false;
209    for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j)
210      if (TypeVec[i] == InVT.TypeVec[j]) {
211        InInVT = true;
212        break;
213      }
214
215    if (InInVT) continue;
216    TypeVec.erase(TypeVec.begin()+i--);
217    MadeChange = true;
218  }
219
220  // If we removed all of our types, we have a type contradiction.
221  if (!TypeVec.empty())
222    return MadeChange;
223
224  // FIXME: Really want an SMLoc here!
225  TP.error("Type inference contradiction found, merging '" +
226           InVT.getName() + "' into '" + InputSet.getName() + "'");
227  return true; // unreachable
228}
229
230/// EnforceInteger - Remove all non-integer types from this set.
231bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
232  // If we know nothing, then get the full set.
233  if (TypeVec.empty())
234    return FillWithPossibleTypes(TP, isInteger, "integer");
235  if (!hasFloatingPointTypes())
236    return false;
237
238  TypeSet InputSet(*this);
239
240  // Filter out all the fp types.
241  for (unsigned i = 0; i != TypeVec.size(); ++i)
242    if (!isInteger(TypeVec[i]))
243      TypeVec.erase(TypeVec.begin()+i--);
244
245  if (TypeVec.empty())
246    TP.error("Type inference contradiction found, '" +
247             InputSet.getName() + "' needs to be integer");
248  return true;
249}
250
251/// EnforceFloatingPoint - Remove all integer types from this set.
252bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
253  // If we know nothing, then get the full set.
254  if (TypeVec.empty())
255    return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
256
257  if (!hasIntegerTypes())
258    return false;
259
260  TypeSet InputSet(*this);
261
262  // Filter out all the fp types.
263  for (unsigned i = 0; i != TypeVec.size(); ++i)
264    if (!isFloatingPoint(TypeVec[i]))
265      TypeVec.erase(TypeVec.begin()+i--);
266
267  if (TypeVec.empty())
268    TP.error("Type inference contradiction found, '" +
269             InputSet.getName() + "' needs to be floating point");
270  return true;
271}
272
273/// EnforceScalar - Remove all vector types from this.
274bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
275  // If we know nothing, then get the full set.
276  if (TypeVec.empty())
277    return FillWithPossibleTypes(TP, isScalar, "scalar");
278
279  if (!hasVectorTypes())
280    return false;
281
282  TypeSet InputSet(*this);
283
284  // Filter out all the vector types.
285  for (unsigned i = 0; i != TypeVec.size(); ++i)
286    if (!isScalar(TypeVec[i]))
287      TypeVec.erase(TypeVec.begin()+i--);
288
289  if (TypeVec.empty())
290    TP.error("Type inference contradiction found, '" +
291             InputSet.getName() + "' needs to be scalar");
292  return true;
293}
294
295/// EnforceVector - Remove all vector types from this.
296bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
297  // If we know nothing, then get the full set.
298  if (TypeVec.empty())
299    return FillWithPossibleTypes(TP, isVector, "vector");
300
301  TypeSet InputSet(*this);
302  bool MadeChange = false;
303
304  // Filter out all the scalar types.
305  for (unsigned i = 0; i != TypeVec.size(); ++i)
306    if (!isVector(TypeVec[i])) {
307      TypeVec.erase(TypeVec.begin()+i--);
308      MadeChange = true;
309    }
310
311  if (TypeVec.empty())
312    TP.error("Type inference contradiction found, '" +
313             InputSet.getName() + "' needs to be a vector");
314  return MadeChange;
315}
316
317
318
319/// EnforceSmallerThan - 'this' must be a smaller VT than Other.  Update
320/// this an other based on this information.
321bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
322  // Both operands must be integer or FP, but we don't care which.
323  bool MadeChange = false;
324
325  if (isCompletelyUnknown())
326    MadeChange = FillWithPossibleTypes(TP);
327
328  if (Other.isCompletelyUnknown())
329    MadeChange = Other.FillWithPossibleTypes(TP);
330
331  // If one side is known to be integer or known to be FP but the other side has
332  // no information, get at least the type integrality info in there.
333  if (!hasFloatingPointTypes())
334    MadeChange |= Other.EnforceInteger(TP);
335  else if (!hasIntegerTypes())
336    MadeChange |= Other.EnforceFloatingPoint(TP);
337  if (!Other.hasFloatingPointTypes())
338    MadeChange |= EnforceInteger(TP);
339  else if (!Other.hasIntegerTypes())
340    MadeChange |= EnforceFloatingPoint(TP);
341
342  assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
343         "Should have a type list now");
344
345  // If one contains vectors but the other doesn't pull vectors out.
346  if (!hasVectorTypes())
347    MadeChange |= Other.EnforceScalar(TP);
348  if (!hasVectorTypes())
349    MadeChange |= EnforceScalar(TP);
350
351  if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) {
352    // If we are down to concrete types, this code does not currently
353    // handle nodes which have multiple types, where some types are
354    // integer, and some are fp.  Assert that this is not the case.
355    assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
356           !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
357           "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
358
359    // Otherwise, if these are both vector types, either this vector
360    // must have a larger bitsize than the other, or this element type
361    // must be larger than the other.
362    EVT Type(TypeVec[0]);
363    EVT OtherType(Other.TypeVec[0]);
364
365    if (hasVectorTypes() && Other.hasVectorTypes()) {
366      if (Type.getSizeInBits() >= OtherType.getSizeInBits())
367        if (Type.getVectorElementType().getSizeInBits()
368            >= OtherType.getVectorElementType().getSizeInBits())
369          TP.error("Type inference contradiction found, '" +
370                   getName() + "' element type not smaller than '" +
371                   Other.getName() +"'!");
372    }
373    else
374      // For scalar types, the bitsize of this type must be larger
375      // than that of the other.
376      if (Type.getSizeInBits() >= OtherType.getSizeInBits())
377        TP.error("Type inference contradiction found, '" +
378                 getName() + "' is not smaller than '" +
379                 Other.getName() +"'!");
380
381  }
382
383
384  // Handle int and fp as disjoint sets.  This won't work for patterns
385  // that have mixed fp/int types but those are likely rare and would
386  // not have been accepted by this code previously.
387
388  // Okay, find the smallest type from the current set and remove it from the
389  // largest set.
390  MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE;
391  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
392    if (isInteger(TypeVec[i])) {
393      SmallestInt = TypeVec[i];
394      break;
395    }
396  for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
397    if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt)
398      SmallestInt = TypeVec[i];
399
400  MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE;
401  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
402    if (isFloatingPoint(TypeVec[i])) {
403      SmallestFP = TypeVec[i];
404      break;
405    }
406  for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
407    if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP)
408      SmallestFP = TypeVec[i];
409
410  int OtherIntSize = 0;
411  int OtherFPSize = 0;
412  for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
413         Other.TypeVec.begin();
414       TVI != Other.TypeVec.end();
415       /* NULL */) {
416    if (isInteger(*TVI)) {
417      ++OtherIntSize;
418      if (*TVI == SmallestInt) {
419        TVI = Other.TypeVec.erase(TVI);
420        --OtherIntSize;
421        MadeChange = true;
422        continue;
423      }
424    }
425    else if (isFloatingPoint(*TVI)) {
426      ++OtherFPSize;
427      if (*TVI == SmallestFP) {
428        TVI = Other.TypeVec.erase(TVI);
429        --OtherFPSize;
430        MadeChange = true;
431        continue;
432      }
433    }
434    ++TVI;
435  }
436
437  // If this is the only type in the large set, the constraint can never be
438  // satisfied.
439  if ((Other.hasIntegerTypes() && OtherIntSize == 0)
440      || (Other.hasFloatingPointTypes() && OtherFPSize == 0))
441    TP.error("Type inference contradiction found, '" +
442             Other.getName() + "' has nothing larger than '" + getName() +"'!");
443
444  // Okay, find the largest type in the Other set and remove it from the
445  // current set.
446  MVT::SimpleValueType LargestInt = MVT::Other;
447  for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
448    if (isInteger(Other.TypeVec[i])) {
449      LargestInt = Other.TypeVec[i];
450      break;
451    }
452  for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
453    if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt)
454      LargestInt = Other.TypeVec[i];
455
456  MVT::SimpleValueType LargestFP = MVT::Other;
457  for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
458    if (isFloatingPoint(Other.TypeVec[i])) {
459      LargestFP = Other.TypeVec[i];
460      break;
461    }
462  for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
463    if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP)
464      LargestFP = Other.TypeVec[i];
465
466  int IntSize = 0;
467  int FPSize = 0;
468  for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
469         TypeVec.begin();
470       TVI != TypeVec.end();
471       /* NULL */) {
472    if (isInteger(*TVI)) {
473      ++IntSize;
474      if (*TVI == LargestInt) {
475        TVI = TypeVec.erase(TVI);
476        --IntSize;
477        MadeChange = true;
478        continue;
479      }
480    }
481    else if (isFloatingPoint(*TVI)) {
482      ++FPSize;
483      if (*TVI == LargestFP) {
484        TVI = TypeVec.erase(TVI);
485        --FPSize;
486        MadeChange = true;
487        continue;
488      }
489    }
490    ++TVI;
491  }
492
493  // If this is the only type in the small set, the constraint can never be
494  // satisfied.
495  if ((hasIntegerTypes() && IntSize == 0)
496      || (hasFloatingPointTypes() && FPSize == 0))
497    TP.error("Type inference contradiction found, '" +
498             getName() + "' has nothing smaller than '" + Other.getName()+"'!");
499
500  return MadeChange;
501}
502
503/// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
504/// whose element is specified by VTOperand.
505bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
506                                           TreePattern &TP) {
507  // "This" must be a vector and "VTOperand" must be a scalar.
508  bool MadeChange = false;
509  MadeChange |= EnforceVector(TP);
510  MadeChange |= VTOperand.EnforceScalar(TP);
511
512  // If we know the vector type, it forces the scalar to agree.
513  if (isConcrete()) {
514    EVT IVT = getConcrete();
515    IVT = IVT.getVectorElementType();
516    return MadeChange |
517      VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP);
518  }
519
520  // If the scalar type is known, filter out vector types whose element types
521  // disagree.
522  if (!VTOperand.isConcrete())
523    return MadeChange;
524
525  MVT::SimpleValueType VT = VTOperand.getConcrete();
526
527  TypeSet InputSet(*this);
528
529  // Filter out all the types which don't have the right element type.
530  for (unsigned i = 0; i != TypeVec.size(); ++i) {
531    assert(isVector(TypeVec[i]) && "EnforceVector didn't work");
532    if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) {
533      TypeVec.erase(TypeVec.begin()+i--);
534      MadeChange = true;
535    }
536  }
537
538  if (TypeVec.empty())  // FIXME: Really want an SMLoc here!
539    TP.error("Type inference contradiction found, forcing '" +
540             InputSet.getName() + "' to have a vector element");
541  return MadeChange;
542}
543
544/// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a
545/// vector type specified by VTOperand.
546bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
547                                                 TreePattern &TP) {
548  // "This" must be a vector and "VTOperand" must be a vector.
549  bool MadeChange = false;
550  MadeChange |= EnforceVector(TP);
551  MadeChange |= VTOperand.EnforceVector(TP);
552
553  // "This" must be larger than "VTOperand."
554  MadeChange |= VTOperand.EnforceSmallerThan(*this, TP);
555
556  // If we know the vector type, it forces the scalar types to agree.
557  if (isConcrete()) {
558    EVT IVT = getConcrete();
559    IVT = IVT.getVectorElementType();
560
561    EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
562    MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
563  } else if (VTOperand.isConcrete()) {
564    EVT IVT = VTOperand.getConcrete();
565    IVT = IVT.getVectorElementType();
566
567    EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
568    MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
569  }
570
571  return MadeChange;
572}
573
574//===----------------------------------------------------------------------===//
575// Helpers for working with extended types.
576
577bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const {
578  return LHS->getID() < RHS->getID();
579}
580
581/// Dependent variable map for CodeGenDAGPattern variant generation
582typedef std::map<std::string, int> DepVarMap;
583
584/// Const iterator shorthand for DepVarMap
585typedef DepVarMap::const_iterator DepVarMap_citer;
586
587static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
588  if (N->isLeaf()) {
589    if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL)
590      DepMap[N->getName()]++;
591  } else {
592    for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
593      FindDepVarsOf(N->getChild(i), DepMap);
594  }
595}
596
597/// Find dependent variables within child patterns
598static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
599  DepVarMap depcounts;
600  FindDepVarsOf(N, depcounts);
601  for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
602    if (i->second > 1)            // std::pair<std::string, int>
603      DepVars.insert(i->first);
604  }
605}
606
607#ifndef NDEBUG
608/// Dump the dependent variable set:
609static void DumpDepVars(MultipleUseVarSet &DepVars) {
610  if (DepVars.empty()) {
611    DEBUG(errs() << "<empty set>");
612  } else {
613    DEBUG(errs() << "[ ");
614    for (MultipleUseVarSet::const_iterator i = DepVars.begin(),
615         e = DepVars.end(); i != e; ++i) {
616      DEBUG(errs() << (*i) << " ");
617    }
618    DEBUG(errs() << "]");
619  }
620}
621#endif
622
623
624//===----------------------------------------------------------------------===//
625// TreePredicateFn Implementation
626//===----------------------------------------------------------------------===//
627
628/// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
629TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
630  assert((getPredCode().empty() || getImmCode().empty()) &&
631        ".td file corrupt: can't have a node predicate *and* an imm predicate");
632}
633
634std::string TreePredicateFn::getPredCode() const {
635  return PatFragRec->getRecord()->getValueAsString("PredicateCode");
636}
637
638std::string TreePredicateFn::getImmCode() const {
639  return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
640}
641
642
643/// isAlwaysTrue - Return true if this is a noop predicate.
644bool TreePredicateFn::isAlwaysTrue() const {
645  return getPredCode().empty() && getImmCode().empty();
646}
647
648/// Return the name to use in the generated code to reference this, this is
649/// "Predicate_foo" if from a pattern fragment "foo".
650std::string TreePredicateFn::getFnName() const {
651  return "Predicate_" + PatFragRec->getRecord()->getName();
652}
653
654/// getCodeToRunOnSDNode - Return the code for the function body that
655/// evaluates this predicate.  The argument is expected to be in "Node",
656/// not N.  This handles casting and conversion to a concrete node type as
657/// appropriate.
658std::string TreePredicateFn::getCodeToRunOnSDNode() const {
659  // Handle immediate predicates first.
660  std::string ImmCode = getImmCode();
661  if (!ImmCode.empty()) {
662    std::string Result =
663      "    int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
664    return Result + ImmCode;
665  }
666
667  // Handle arbitrary node predicates.
668  assert(!getPredCode().empty() && "Don't have any predicate code!");
669  std::string ClassName;
670  if (PatFragRec->getOnlyTree()->isLeaf())
671    ClassName = "SDNode";
672  else {
673    Record *Op = PatFragRec->getOnlyTree()->getOperator();
674    ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
675  }
676  std::string Result;
677  if (ClassName == "SDNode")
678    Result = "    SDNode *N = Node;\n";
679  else
680    Result = "    " + ClassName + "*N = cast<" + ClassName + ">(Node);\n";
681
682  return Result + getPredCode();
683}
684
685//===----------------------------------------------------------------------===//
686// PatternToMatch implementation
687//
688
689
690/// getPatternSize - Return the 'size' of this pattern.  We want to match large
691/// patterns before small ones.  This is used to determine the size of a
692/// pattern.
693static unsigned getPatternSize(const TreePatternNode *P,
694                               const CodeGenDAGPatterns &CGP) {
695  unsigned Size = 3;  // The node itself.
696  // If the root node is a ConstantSDNode, increases its size.
697  // e.g. (set R32:$dst, 0).
698  if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
699    Size += 2;
700
701  // FIXME: This is a hack to statically increase the priority of patterns
702  // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
703  // Later we can allow complexity / cost for each pattern to be (optionally)
704  // specified. To get best possible pattern match we'll need to dynamically
705  // calculate the complexity of all patterns a dag can potentially map to.
706  const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
707  if (AM)
708    Size += AM->getNumOperands() * 3;
709
710  // If this node has some predicate function that must match, it adds to the
711  // complexity of this node.
712  if (!P->getPredicateFns().empty())
713    ++Size;
714
715  // Count children in the count if they are also nodes.
716  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
717    TreePatternNode *Child = P->getChild(i);
718    if (!Child->isLeaf() && Child->getNumTypes() &&
719        Child->getType(0) != MVT::Other)
720      Size += getPatternSize(Child, CGP);
721    else if (Child->isLeaf()) {
722      if (dynamic_cast<IntInit*>(Child->getLeafValue()))
723        Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
724      else if (Child->getComplexPatternInfo(CGP))
725        Size += getPatternSize(Child, CGP);
726      else if (!Child->getPredicateFns().empty())
727        ++Size;
728    }
729  }
730
731  return Size;
732}
733
734/// Compute the complexity metric for the input pattern.  This roughly
735/// corresponds to the number of nodes that are covered.
736unsigned PatternToMatch::
737getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
738  return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
739}
740
741
742/// getPredicateCheck - Return a single string containing all of this
743/// pattern's predicates concatenated with "&&" operators.
744///
745std::string PatternToMatch::getPredicateCheck() const {
746  std::string PredicateCheck;
747  for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
748    if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
749      Record *Def = Pred->getDef();
750      if (!Def->isSubClassOf("Predicate")) {
751#ifndef NDEBUG
752        Def->dump();
753#endif
754        llvm_unreachable("Unknown predicate type!");
755      }
756      if (!PredicateCheck.empty())
757        PredicateCheck += " && ";
758      PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
759    }
760  }
761
762  return PredicateCheck;
763}
764
765//===----------------------------------------------------------------------===//
766// SDTypeConstraint implementation
767//
768
769SDTypeConstraint::SDTypeConstraint(Record *R) {
770  OperandNo = R->getValueAsInt("OperandNum");
771
772  if (R->isSubClassOf("SDTCisVT")) {
773    ConstraintType = SDTCisVT;
774    x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
775    if (x.SDTCisVT_Info.VT == MVT::isVoid)
776      throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
777
778  } else if (R->isSubClassOf("SDTCisPtrTy")) {
779    ConstraintType = SDTCisPtrTy;
780  } else if (R->isSubClassOf("SDTCisInt")) {
781    ConstraintType = SDTCisInt;
782  } else if (R->isSubClassOf("SDTCisFP")) {
783    ConstraintType = SDTCisFP;
784  } else if (R->isSubClassOf("SDTCisVec")) {
785    ConstraintType = SDTCisVec;
786  } else if (R->isSubClassOf("SDTCisSameAs")) {
787    ConstraintType = SDTCisSameAs;
788    x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
789  } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
790    ConstraintType = SDTCisVTSmallerThanOp;
791    x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
792      R->getValueAsInt("OtherOperandNum");
793  } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
794    ConstraintType = SDTCisOpSmallerThanOp;
795    x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
796      R->getValueAsInt("BigOperandNum");
797  } else if (R->isSubClassOf("SDTCisEltOfVec")) {
798    ConstraintType = SDTCisEltOfVec;
799    x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
800  } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
801    ConstraintType = SDTCisSubVecOfVec;
802    x.SDTCisSubVecOfVec_Info.OtherOperandNum =
803      R->getValueAsInt("OtherOpNum");
804  } else {
805    errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
806    exit(1);
807  }
808}
809
810/// getOperandNum - Return the node corresponding to operand #OpNo in tree
811/// N, and the result number in ResNo.
812static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
813                                      const SDNodeInfo &NodeInfo,
814                                      unsigned &ResNo) {
815  unsigned NumResults = NodeInfo.getNumResults();
816  if (OpNo < NumResults) {
817    ResNo = OpNo;
818    return N;
819  }
820
821  OpNo -= NumResults;
822
823  if (OpNo >= N->getNumChildren()) {
824    errs() << "Invalid operand number in type constraint "
825           << (OpNo+NumResults) << " ";
826    N->dump();
827    errs() << '\n';
828    exit(1);
829  }
830
831  return N->getChild(OpNo);
832}
833
834/// ApplyTypeConstraint - Given a node in a pattern, apply this type
835/// constraint to the nodes operands.  This returns true if it makes a
836/// change, false otherwise.  If a type contradiction is found, throw an
837/// exception.
838bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
839                                           const SDNodeInfo &NodeInfo,
840                                           TreePattern &TP) const {
841  unsigned ResNo = 0; // The result number being referenced.
842  TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
843
844  switch (ConstraintType) {
845  case SDTCisVT:
846    // Operand must be a particular type.
847    return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
848  case SDTCisPtrTy:
849    // Operand must be same as target pointer type.
850    return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
851  case SDTCisInt:
852    // Require it to be one of the legal integer VTs.
853    return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
854  case SDTCisFP:
855    // Require it to be one of the legal fp VTs.
856    return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
857  case SDTCisVec:
858    // Require it to be one of the legal vector VTs.
859    return NodeToApply->getExtType(ResNo).EnforceVector(TP);
860  case SDTCisSameAs: {
861    unsigned OResNo = 0;
862    TreePatternNode *OtherNode =
863      getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
864    return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)|
865           OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP);
866  }
867  case SDTCisVTSmallerThanOp: {
868    // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
869    // have an integer type that is smaller than the VT.
870    if (!NodeToApply->isLeaf() ||
871        !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
872        !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
873               ->isSubClassOf("ValueType"))
874      TP.error(N->getOperator()->getName() + " expects a VT operand!");
875    MVT::SimpleValueType VT =
876     getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
877
878    EEVT::TypeSet TypeListTmp(VT, TP);
879
880    unsigned OResNo = 0;
881    TreePatternNode *OtherNode =
882      getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
883                    OResNo);
884
885    return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
886  }
887  case SDTCisOpSmallerThanOp: {
888    unsigned BResNo = 0;
889    TreePatternNode *BigOperand =
890      getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
891                    BResNo);
892    return NodeToApply->getExtType(ResNo).
893                  EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
894  }
895  case SDTCisEltOfVec: {
896    unsigned VResNo = 0;
897    TreePatternNode *VecOperand =
898      getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
899                    VResNo);
900
901    // Filter vector types out of VecOperand that don't have the right element
902    // type.
903    return VecOperand->getExtType(VResNo).
904      EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
905  }
906  case SDTCisSubVecOfVec: {
907    unsigned VResNo = 0;
908    TreePatternNode *BigVecOperand =
909      getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
910                    VResNo);
911
912    // Filter vector types out of BigVecOperand that don't have the
913    // right subvector type.
914    return BigVecOperand->getExtType(VResNo).
915      EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
916  }
917  }
918  llvm_unreachable("Invalid ConstraintType!");
919}
920
921//===----------------------------------------------------------------------===//
922// SDNodeInfo implementation
923//
924SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
925  EnumName    = R->getValueAsString("Opcode");
926  SDClassName = R->getValueAsString("SDClass");
927  Record *TypeProfile = R->getValueAsDef("TypeProfile");
928  NumResults = TypeProfile->getValueAsInt("NumResults");
929  NumOperands = TypeProfile->getValueAsInt("NumOperands");
930
931  // Parse the properties.
932  Properties = 0;
933  std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
934  for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
935    if (PropList[i]->getName() == "SDNPCommutative") {
936      Properties |= 1 << SDNPCommutative;
937    } else if (PropList[i]->getName() == "SDNPAssociative") {
938      Properties |= 1 << SDNPAssociative;
939    } else if (PropList[i]->getName() == "SDNPHasChain") {
940      Properties |= 1 << SDNPHasChain;
941    } else if (PropList[i]->getName() == "SDNPOutGlue") {
942      Properties |= 1 << SDNPOutGlue;
943    } else if (PropList[i]->getName() == "SDNPInGlue") {
944      Properties |= 1 << SDNPInGlue;
945    } else if (PropList[i]->getName() == "SDNPOptInGlue") {
946      Properties |= 1 << SDNPOptInGlue;
947    } else if (PropList[i]->getName() == "SDNPMayStore") {
948      Properties |= 1 << SDNPMayStore;
949    } else if (PropList[i]->getName() == "SDNPMayLoad") {
950      Properties |= 1 << SDNPMayLoad;
951    } else if (PropList[i]->getName() == "SDNPSideEffect") {
952      Properties |= 1 << SDNPSideEffect;
953    } else if (PropList[i]->getName() == "SDNPMemOperand") {
954      Properties |= 1 << SDNPMemOperand;
955    } else if (PropList[i]->getName() == "SDNPVariadic") {
956      Properties |= 1 << SDNPVariadic;
957    } else {
958      errs() << "Unknown SD Node property '" << PropList[i]->getName()
959             << "' on node '" << R->getName() << "'!\n";
960      exit(1);
961    }
962  }
963
964
965  // Parse the type constraints.
966  std::vector<Record*> ConstraintList =
967    TypeProfile->getValueAsListOfDefs("Constraints");
968  TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
969}
970
971/// getKnownType - If the type constraints on this node imply a fixed type
972/// (e.g. all stores return void, etc), then return it as an
973/// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
974MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
975  unsigned NumResults = getNumResults();
976  assert(NumResults <= 1 &&
977         "We only work with nodes with zero or one result so far!");
978  assert(ResNo == 0 && "Only handles single result nodes so far");
979
980  for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) {
981    // Make sure that this applies to the correct node result.
982    if (TypeConstraints[i].OperandNo >= NumResults)  // FIXME: need value #
983      continue;
984
985    switch (TypeConstraints[i].ConstraintType) {
986    default: break;
987    case SDTypeConstraint::SDTCisVT:
988      return TypeConstraints[i].x.SDTCisVT_Info.VT;
989    case SDTypeConstraint::SDTCisPtrTy:
990      return MVT::iPTR;
991    }
992  }
993  return MVT::Other;
994}
995
996//===----------------------------------------------------------------------===//
997// TreePatternNode implementation
998//
999
1000TreePatternNode::~TreePatternNode() {
1001#if 0 // FIXME: implement refcounted tree nodes!
1002  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1003    delete getChild(i);
1004#endif
1005}
1006
1007static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1008  if (Operator->getName() == "set" ||
1009      Operator->getName() == "implicit")
1010    return 0;  // All return nothing.
1011
1012  if (Operator->isSubClassOf("Intrinsic"))
1013    return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1014
1015  if (Operator->isSubClassOf("SDNode"))
1016    return CDP.getSDNodeInfo(Operator).getNumResults();
1017
1018  if (Operator->isSubClassOf("PatFrag")) {
1019    // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1020    // the forward reference case where one pattern fragment references another
1021    // before it is processed.
1022    if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
1023      return PFRec->getOnlyTree()->getNumTypes();
1024
1025    // Get the result tree.
1026    DagInit *Tree = Operator->getValueAsDag("Fragment");
1027    Record *Op = 0;
1028    if (Tree && dynamic_cast<DefInit*>(Tree->getOperator()))
1029      Op = dynamic_cast<DefInit*>(Tree->getOperator())->getDef();
1030    assert(Op && "Invalid Fragment");
1031    return GetNumNodeResults(Op, CDP);
1032  }
1033
1034  if (Operator->isSubClassOf("Instruction")) {
1035    CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1036
1037    // FIXME: Should allow access to all the results here.
1038    unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
1039
1040    // Add on one implicit def if it has a resolvable type.
1041    if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1042      ++NumDefsToAdd;
1043    return NumDefsToAdd;
1044  }
1045
1046  if (Operator->isSubClassOf("SDNodeXForm"))
1047    return 1;  // FIXME: Generalize SDNodeXForm
1048
1049  Operator->dump();
1050  errs() << "Unhandled node in GetNumNodeResults\n";
1051  exit(1);
1052}
1053
1054void TreePatternNode::print(raw_ostream &OS) const {
1055  if (isLeaf())
1056    OS << *getLeafValue();
1057  else
1058    OS << '(' << getOperator()->getName();
1059
1060  for (unsigned i = 0, e = Types.size(); i != e; ++i)
1061    OS << ':' << getExtType(i).getName();
1062
1063  if (!isLeaf()) {
1064    if (getNumChildren() != 0) {
1065      OS << " ";
1066      getChild(0)->print(OS);
1067      for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1068        OS << ", ";
1069        getChild(i)->print(OS);
1070      }
1071    }
1072    OS << ")";
1073  }
1074
1075  for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
1076    OS << "<<P:" << PredicateFns[i].getFnName() << ">>";
1077  if (TransformFn)
1078    OS << "<<X:" << TransformFn->getName() << ">>";
1079  if (!getName().empty())
1080    OS << ":$" << getName();
1081
1082}
1083void TreePatternNode::dump() const {
1084  print(errs());
1085}
1086
1087/// isIsomorphicTo - Return true if this node is recursively
1088/// isomorphic to the specified node.  For this comparison, the node's
1089/// entire state is considered. The assigned name is ignored, since
1090/// nodes with differing names are considered isomorphic. However, if
1091/// the assigned name is present in the dependent variable set, then
1092/// the assigned name is considered significant and the node is
1093/// isomorphic if the names match.
1094bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1095                                     const MultipleUseVarSet &DepVars) const {
1096  if (N == this) return true;
1097  if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1098      getPredicateFns() != N->getPredicateFns() ||
1099      getTransformFn() != N->getTransformFn())
1100    return false;
1101
1102  if (isLeaf()) {
1103    if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
1104      if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) {
1105        return ((DI->getDef() == NDI->getDef())
1106                && (DepVars.find(getName()) == DepVars.end()
1107                    || getName() == N->getName()));
1108      }
1109    }
1110    return getLeafValue() == N->getLeafValue();
1111  }
1112
1113  if (N->getOperator() != getOperator() ||
1114      N->getNumChildren() != getNumChildren()) return false;
1115  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1116    if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1117      return false;
1118  return true;
1119}
1120
1121/// clone - Make a copy of this tree and all of its children.
1122///
1123TreePatternNode *TreePatternNode::clone() const {
1124  TreePatternNode *New;
1125  if (isLeaf()) {
1126    New = new TreePatternNode(getLeafValue(), getNumTypes());
1127  } else {
1128    std::vector<TreePatternNode*> CChildren;
1129    CChildren.reserve(Children.size());
1130    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1131      CChildren.push_back(getChild(i)->clone());
1132    New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
1133  }
1134  New->setName(getName());
1135  New->Types = Types;
1136  New->setPredicateFns(getPredicateFns());
1137  New->setTransformFn(getTransformFn());
1138  return New;
1139}
1140
1141/// RemoveAllTypes - Recursively strip all the types of this tree.
1142void TreePatternNode::RemoveAllTypes() {
1143  for (unsigned i = 0, e = Types.size(); i != e; ++i)
1144    Types[i] = EEVT::TypeSet();  // Reset to unknown type.
1145  if (isLeaf()) return;
1146  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1147    getChild(i)->RemoveAllTypes();
1148}
1149
1150
1151/// SubstituteFormalArguments - Replace the formal arguments in this tree
1152/// with actual values specified by ArgMap.
1153void TreePatternNode::
1154SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
1155  if (isLeaf()) return;
1156
1157  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1158    TreePatternNode *Child = getChild(i);
1159    if (Child->isLeaf()) {
1160      Init *Val = Child->getLeafValue();
1161      if (dynamic_cast<DefInit*>(Val) &&
1162          static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
1163        // We found a use of a formal argument, replace it with its value.
1164        TreePatternNode *NewChild = ArgMap[Child->getName()];
1165        assert(NewChild && "Couldn't find formal argument!");
1166        assert((Child->getPredicateFns().empty() ||
1167                NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1168               "Non-empty child predicate clobbered!");
1169        setChild(i, NewChild);
1170      }
1171    } else {
1172      getChild(i)->SubstituteFormalArguments(ArgMap);
1173    }
1174  }
1175}
1176
1177
1178/// InlinePatternFragments - If this pattern refers to any pattern
1179/// fragments, inline them into place, giving us a pattern without any
1180/// PatFrag references.
1181TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
1182  if (isLeaf()) return this;  // nothing to do.
1183  Record *Op = getOperator();
1184
1185  if (!Op->isSubClassOf("PatFrag")) {
1186    // Just recursively inline children nodes.
1187    for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1188      TreePatternNode *Child = getChild(i);
1189      TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
1190
1191      assert((Child->getPredicateFns().empty() ||
1192              NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1193             "Non-empty child predicate clobbered!");
1194
1195      setChild(i, NewChild);
1196    }
1197    return this;
1198  }
1199
1200  // Otherwise, we found a reference to a fragment.  First, look up its
1201  // TreePattern record.
1202  TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1203
1204  // Verify that we are passing the right number of operands.
1205  if (Frag->getNumArgs() != Children.size())
1206    TP.error("'" + Op->getName() + "' fragment requires " +
1207             utostr(Frag->getNumArgs()) + " operands!");
1208
1209  TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
1210
1211  TreePredicateFn PredFn(Frag);
1212  if (!PredFn.isAlwaysTrue())
1213    FragTree->addPredicateFn(PredFn);
1214
1215  // Resolve formal arguments to their actual value.
1216  if (Frag->getNumArgs()) {
1217    // Compute the map of formal to actual arguments.
1218    std::map<std::string, TreePatternNode*> ArgMap;
1219    for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
1220      ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
1221
1222    FragTree->SubstituteFormalArguments(ArgMap);
1223  }
1224
1225  FragTree->setName(getName());
1226  for (unsigned i = 0, e = Types.size(); i != e; ++i)
1227    FragTree->UpdateNodeType(i, getExtType(i), TP);
1228
1229  // Transfer in the old predicates.
1230  for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
1231    FragTree->addPredicateFn(getPredicateFns()[i]);
1232
1233  // Get a new copy of this fragment to stitch into here.
1234  //delete this;    // FIXME: implement refcounting!
1235
1236  // The fragment we inlined could have recursive inlining that is needed.  See
1237  // if there are any pattern fragments in it and inline them as needed.
1238  return FragTree->InlinePatternFragments(TP);
1239}
1240
1241/// getImplicitType - Check to see if the specified record has an implicit
1242/// type which should be applied to it.  This will infer the type of register
1243/// references from the register file information, for example.
1244///
1245static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
1246                                     bool NotRegisters, TreePattern &TP) {
1247  // Check to see if this is a register operand.
1248  if (R->isSubClassOf("RegisterOperand")) {
1249    assert(ResNo == 0 && "Regoperand ref only has one result!");
1250    if (NotRegisters)
1251      return EEVT::TypeSet(); // Unknown.
1252    Record *RegClass = R->getValueAsDef("RegClass");
1253    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1254    return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes());
1255  }
1256
1257  // Check to see if this is a register or a register class.
1258  if (R->isSubClassOf("RegisterClass")) {
1259    assert(ResNo == 0 && "Regclass ref only has one result!");
1260    if (NotRegisters)
1261      return EEVT::TypeSet(); // Unknown.
1262    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1263    return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
1264  }
1265
1266  if (R->isSubClassOf("PatFrag")) {
1267    assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
1268    // Pattern fragment types will be resolved when they are inlined.
1269    return EEVT::TypeSet(); // Unknown.
1270  }
1271
1272  if (R->isSubClassOf("Register")) {
1273    assert(ResNo == 0 && "Registers only produce one result!");
1274    if (NotRegisters)
1275      return EEVT::TypeSet(); // Unknown.
1276    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1277    return EEVT::TypeSet(T.getRegisterVTs(R));
1278  }
1279
1280  if (R->isSubClassOf("SubRegIndex")) {
1281    assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
1282    return EEVT::TypeSet();
1283  }
1284
1285  if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
1286    assert(ResNo == 0 && "This node only has one result!");
1287    // Using a VTSDNode or CondCodeSDNode.
1288    return EEVT::TypeSet(MVT::Other, TP);
1289  }
1290
1291  if (R->isSubClassOf("ComplexPattern")) {
1292    assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
1293    if (NotRegisters)
1294      return EEVT::TypeSet(); // Unknown.
1295   return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
1296                         TP);
1297  }
1298  if (R->isSubClassOf("PointerLikeRegClass")) {
1299    assert(ResNo == 0 && "Regclass can only have one result!");
1300    return EEVT::TypeSet(MVT::iPTR, TP);
1301  }
1302
1303  if (R->getName() == "node" || R->getName() == "srcvalue" ||
1304      R->getName() == "zero_reg") {
1305    // Placeholder.
1306    return EEVT::TypeSet(); // Unknown.
1307  }
1308
1309  TP.error("Unknown node flavor used in pattern: " + R->getName());
1310  return EEVT::TypeSet(MVT::Other, TP);
1311}
1312
1313
1314/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
1315/// CodeGenIntrinsic information for it, otherwise return a null pointer.
1316const CodeGenIntrinsic *TreePatternNode::
1317getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
1318  if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
1319      getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
1320      getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
1321    return 0;
1322
1323  unsigned IID =
1324    dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
1325  return &CDP.getIntrinsicInfo(IID);
1326}
1327
1328/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
1329/// return the ComplexPattern information, otherwise return null.
1330const ComplexPattern *
1331TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
1332  if (!isLeaf()) return 0;
1333
1334  DefInit *DI = dynamic_cast<DefInit*>(getLeafValue());
1335  if (DI && DI->getDef()->isSubClassOf("ComplexPattern"))
1336    return &CGP.getComplexPattern(DI->getDef());
1337  return 0;
1338}
1339
1340/// NodeHasProperty - Return true if this node has the specified property.
1341bool TreePatternNode::NodeHasProperty(SDNP Property,
1342                                      const CodeGenDAGPatterns &CGP) const {
1343  if (isLeaf()) {
1344    if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1345      return CP->hasProperty(Property);
1346    return false;
1347  }
1348
1349  Record *Operator = getOperator();
1350  if (!Operator->isSubClassOf("SDNode")) return false;
1351
1352  return CGP.getSDNodeInfo(Operator).hasProperty(Property);
1353}
1354
1355
1356
1357
1358/// TreeHasProperty - Return true if any node in this tree has the specified
1359/// property.
1360bool TreePatternNode::TreeHasProperty(SDNP Property,
1361                                      const CodeGenDAGPatterns &CGP) const {
1362  if (NodeHasProperty(Property, CGP))
1363    return true;
1364  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1365    if (getChild(i)->TreeHasProperty(Property, CGP))
1366      return true;
1367  return false;
1368}
1369
1370/// isCommutativeIntrinsic - Return true if the node corresponds to a
1371/// commutative intrinsic.
1372bool
1373TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
1374  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
1375    return Int->isCommutative;
1376  return false;
1377}
1378
1379
1380/// ApplyTypeConstraints - Apply all of the type constraints relevant to
1381/// this node and its children in the tree.  This returns true if it makes a
1382/// change, false otherwise.  If a type contradiction is found, throw an
1383/// exception.
1384bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
1385  CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1386  if (isLeaf()) {
1387    if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
1388      // If it's a regclass or something else known, include the type.
1389      bool MadeChange = false;
1390      for (unsigned i = 0, e = Types.size(); i != e; ++i)
1391        MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
1392                                                        NotRegisters, TP), TP);
1393      return MadeChange;
1394    }
1395
1396    if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
1397      assert(Types.size() == 1 && "Invalid IntInit");
1398
1399      // Int inits are always integers. :)
1400      bool MadeChange = Types[0].EnforceInteger(TP);
1401
1402      if (!Types[0].isConcrete())
1403        return MadeChange;
1404
1405      MVT::SimpleValueType VT = getType(0);
1406      if (VT == MVT::iPTR || VT == MVT::iPTRAny)
1407        return MadeChange;
1408
1409      unsigned Size = EVT(VT).getSizeInBits();
1410      // Make sure that the value is representable for this type.
1411      if (Size >= 32) return MadeChange;
1412
1413      int Val = (II->getValue() << (32-Size)) >> (32-Size);
1414      if (Val == II->getValue()) return MadeChange;
1415
1416      // If sign-extended doesn't fit, does it fit as unsigned?
1417      unsigned ValueMask;
1418      unsigned UnsignedVal;
1419      ValueMask = unsigned(~uint32_t(0UL) >> (32-Size));
1420      UnsignedVal = unsigned(II->getValue());
1421
1422      if ((ValueMask & UnsignedVal) == UnsignedVal)
1423        return MadeChange;
1424
1425      TP.error("Integer value '" + itostr(II->getValue())+
1426               "' is out of range for type '" + getEnumName(getType(0)) + "'!");
1427      return MadeChange;
1428    }
1429    return false;
1430  }
1431
1432  // special handling for set, which isn't really an SDNode.
1433  if (getOperator()->getName() == "set") {
1434    assert(getNumTypes() == 0 && "Set doesn't produce a value");
1435    assert(getNumChildren() >= 2 && "Missing RHS of a set?");
1436    unsigned NC = getNumChildren();
1437
1438    TreePatternNode *SetVal = getChild(NC-1);
1439    bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
1440
1441    for (unsigned i = 0; i < NC-1; ++i) {
1442      TreePatternNode *Child = getChild(i);
1443      MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1444
1445      // Types of operands must match.
1446      MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
1447      MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
1448    }
1449    return MadeChange;
1450  }
1451
1452  if (getOperator()->getName() == "implicit") {
1453    assert(getNumTypes() == 0 && "Node doesn't produce a value");
1454
1455    bool MadeChange = false;
1456    for (unsigned i = 0; i < getNumChildren(); ++i)
1457      MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1458    return MadeChange;
1459  }
1460
1461  if (getOperator()->getName() == "COPY_TO_REGCLASS") {
1462    bool MadeChange = false;
1463    MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
1464    MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
1465
1466    assert(getChild(0)->getNumTypes() == 1 &&
1467           getChild(1)->getNumTypes() == 1 && "Unhandled case");
1468
1469    // child #1 of COPY_TO_REGCLASS should be a register class.  We don't care
1470    // what type it gets, so if it didn't get a concrete type just give it the
1471    // first viable type from the reg class.
1472    if (!getChild(1)->hasTypeSet(0) &&
1473        !getChild(1)->getExtType(0).isCompletelyUnknown()) {
1474      MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0];
1475      MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP);
1476    }
1477    return MadeChange;
1478  }
1479
1480  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
1481    bool MadeChange = false;
1482
1483    // Apply the result type to the node.
1484    unsigned NumRetVTs = Int->IS.RetVTs.size();
1485    unsigned NumParamVTs = Int->IS.ParamVTs.size();
1486
1487    for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
1488      MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
1489
1490    if (getNumChildren() != NumParamVTs + 1)
1491      TP.error("Intrinsic '" + Int->Name + "' expects " +
1492               utostr(NumParamVTs) + " operands, not " +
1493               utostr(getNumChildren() - 1) + " operands!");
1494
1495    // Apply type info to the intrinsic ID.
1496    MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
1497
1498    for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
1499      MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
1500
1501      MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
1502      assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
1503      MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
1504    }
1505    return MadeChange;
1506  }
1507
1508  if (getOperator()->isSubClassOf("SDNode")) {
1509    const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
1510
1511    // Check that the number of operands is sane.  Negative operands -> varargs.
1512    if (NI.getNumOperands() >= 0 &&
1513        getNumChildren() != (unsigned)NI.getNumOperands())
1514      TP.error(getOperator()->getName() + " node requires exactly " +
1515               itostr(NI.getNumOperands()) + " operands!");
1516
1517    bool MadeChange = NI.ApplyTypeConstraints(this, TP);
1518    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1519      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1520    return MadeChange;
1521  }
1522
1523  if (getOperator()->isSubClassOf("Instruction")) {
1524    const DAGInstruction &Inst = CDP.getInstruction(getOperator());
1525    CodeGenInstruction &InstInfo =
1526      CDP.getTargetInfo().getInstruction(getOperator());
1527
1528    bool MadeChange = false;
1529
1530    // Apply the result types to the node, these come from the things in the
1531    // (outs) list of the instruction.
1532    // FIXME: Cap at one result so far.
1533    unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
1534    for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) {
1535      Record *ResultNode = Inst.getResult(ResNo);
1536
1537      if (ResultNode->isSubClassOf("PointerLikeRegClass")) {
1538        MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP);
1539      } else if (ResultNode->isSubClassOf("RegisterOperand")) {
1540        Record *RegClass = ResultNode->getValueAsDef("RegClass");
1541        const CodeGenRegisterClass &RC =
1542          CDP.getTargetInfo().getRegisterClass(RegClass);
1543        MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP);
1544      } else if (ResultNode->getName() == "unknown") {
1545        // Nothing to do.
1546      } else {
1547        assert(ResultNode->isSubClassOf("RegisterClass") &&
1548               "Operands should be register classes!");
1549        const CodeGenRegisterClass &RC =
1550          CDP.getTargetInfo().getRegisterClass(ResultNode);
1551        MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP);
1552      }
1553    }
1554
1555    // If the instruction has implicit defs, we apply the first one as a result.
1556    // FIXME: This sucks, it should apply all implicit defs.
1557    if (!InstInfo.ImplicitDefs.empty()) {
1558      unsigned ResNo = NumResultsToAdd;
1559
1560      // FIXME: Generalize to multiple possible types and multiple possible
1561      // ImplicitDefs.
1562      MVT::SimpleValueType VT =
1563        InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
1564
1565      if (VT != MVT::Other)
1566        MadeChange |= UpdateNodeType(ResNo, VT, TP);
1567    }
1568
1569    // If this is an INSERT_SUBREG, constrain the source and destination VTs to
1570    // be the same.
1571    if (getOperator()->getName() == "INSERT_SUBREG") {
1572      assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
1573      MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
1574      MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
1575    }
1576
1577    unsigned ChildNo = 0;
1578    for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
1579      Record *OperandNode = Inst.getOperand(i);
1580
1581      // If the instruction expects a predicate or optional def operand, we
1582      // codegen this by setting the operand to it's default value if it has a
1583      // non-empty DefaultOps field.
1584      if ((OperandNode->isSubClassOf("PredicateOperand") ||
1585           OperandNode->isSubClassOf("OptionalDefOperand")) &&
1586          !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1587        continue;
1588
1589      // Verify that we didn't run out of provided operands.
1590      if (ChildNo >= getNumChildren())
1591        TP.error("Instruction '" + getOperator()->getName() +
1592                 "' expects more operands than were provided.");
1593
1594      MVT::SimpleValueType VT;
1595      TreePatternNode *Child = getChild(ChildNo++);
1596      unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
1597
1598      if (OperandNode->isSubClassOf("RegisterClass")) {
1599        const CodeGenRegisterClass &RC =
1600          CDP.getTargetInfo().getRegisterClass(OperandNode);
1601        MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP);
1602      } else if (OperandNode->isSubClassOf("RegisterOperand")) {
1603        Record *RegClass = OperandNode->getValueAsDef("RegClass");
1604        const CodeGenRegisterClass &RC =
1605          CDP.getTargetInfo().getRegisterClass(RegClass);
1606        MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP);
1607      } else if (OperandNode->isSubClassOf("Operand")) {
1608        VT = getValueType(OperandNode->getValueAsDef("Type"));
1609        MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP);
1610      } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) {
1611        MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP);
1612      } else if (OperandNode->getName() == "unknown") {
1613        // Nothing to do.
1614      } else
1615        llvm_unreachable("Unknown operand type!");
1616
1617      MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1618    }
1619
1620    if (ChildNo != getNumChildren())
1621      TP.error("Instruction '" + getOperator()->getName() +
1622               "' was provided too many operands!");
1623
1624    return MadeChange;
1625  }
1626
1627  assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
1628
1629  // Node transforms always take one operand.
1630  if (getNumChildren() != 1)
1631    TP.error("Node transform '" + getOperator()->getName() +
1632             "' requires one operand!");
1633
1634  bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
1635
1636
1637  // If either the output or input of the xform does not have exact
1638  // type info. We assume they must be the same. Otherwise, it is perfectly
1639  // legal to transform from one type to a completely different type.
1640#if 0
1641  if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
1642    bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
1643    MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
1644    return MadeChange;
1645  }
1646#endif
1647  return MadeChange;
1648}
1649
1650/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
1651/// RHS of a commutative operation, not the on LHS.
1652static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
1653  if (!N->isLeaf() && N->getOperator()->getName() == "imm")
1654    return true;
1655  if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
1656    return true;
1657  return false;
1658}
1659
1660
1661/// canPatternMatch - If it is impossible for this pattern to match on this
1662/// target, fill in Reason and return false.  Otherwise, return true.  This is
1663/// used as a sanity check for .td files (to prevent people from writing stuff
1664/// that can never possibly work), and to prevent the pattern permuter from
1665/// generating stuff that is useless.
1666bool TreePatternNode::canPatternMatch(std::string &Reason,
1667                                      const CodeGenDAGPatterns &CDP) {
1668  if (isLeaf()) return true;
1669
1670  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1671    if (!getChild(i)->canPatternMatch(Reason, CDP))
1672      return false;
1673
1674  // If this is an intrinsic, handle cases that would make it not match.  For
1675  // example, if an operand is required to be an immediate.
1676  if (getOperator()->isSubClassOf("Intrinsic")) {
1677    // TODO:
1678    return true;
1679  }
1680
1681  // If this node is a commutative operator, check that the LHS isn't an
1682  // immediate.
1683  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
1684  bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
1685  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
1686    // Scan all of the operands of the node and make sure that only the last one
1687    // is a constant node, unless the RHS also is.
1688    if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
1689      bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
1690      for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
1691        if (OnlyOnRHSOfCommutative(getChild(i))) {
1692          Reason="Immediate value must be on the RHS of commutative operators!";
1693          return false;
1694        }
1695    }
1696  }
1697
1698  return true;
1699}
1700
1701//===----------------------------------------------------------------------===//
1702// TreePattern implementation
1703//
1704
1705TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
1706                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1707  isInputPattern = isInput;
1708  for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
1709    Trees.push_back(ParseTreePattern(RawPat->getElement(i), ""));
1710}
1711
1712TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
1713                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1714  isInputPattern = isInput;
1715  Trees.push_back(ParseTreePattern(Pat, ""));
1716}
1717
1718TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
1719                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1720  isInputPattern = isInput;
1721  Trees.push_back(Pat);
1722}
1723
1724void TreePattern::error(const std::string &Msg) const {
1725  dump();
1726  throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
1727}
1728
1729void TreePattern::ComputeNamedNodes() {
1730  for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1731    ComputeNamedNodes(Trees[i]);
1732}
1733
1734void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
1735  if (!N->getName().empty())
1736    NamedNodes[N->getName()].push_back(N);
1737
1738  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
1739    ComputeNamedNodes(N->getChild(i));
1740}
1741
1742
1743TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
1744  if (DefInit *DI = dynamic_cast<DefInit*>(TheInit)) {
1745    Record *R = DI->getDef();
1746
1747    // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
1748    // TreePatternNode of its own.  For example:
1749    ///   (foo GPR, imm) -> (foo GPR, (imm))
1750    if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
1751      return ParseTreePattern(
1752        DagInit::get(DI, "",
1753                     std::vector<std::pair<Init*, std::string> >()),
1754        OpName);
1755
1756    // Input argument?
1757    TreePatternNode *Res = new TreePatternNode(DI, 1);
1758    if (R->getName() == "node" && !OpName.empty()) {
1759      if (OpName.empty())
1760        error("'node' argument requires a name to match with operand list");
1761      Args.push_back(OpName);
1762    }
1763
1764    Res->setName(OpName);
1765    return Res;
1766  }
1767
1768  if (IntInit *II = dynamic_cast<IntInit*>(TheInit)) {
1769    if (!OpName.empty())
1770      error("Constant int argument should not have a name!");
1771    return new TreePatternNode(II, 1);
1772  }
1773
1774  if (BitsInit *BI = dynamic_cast<BitsInit*>(TheInit)) {
1775    // Turn this into an IntInit.
1776    Init *II = BI->convertInitializerTo(IntRecTy::get());
1777    if (II == 0 || !dynamic_cast<IntInit*>(II))
1778      error("Bits value must be constants!");
1779    return ParseTreePattern(II, OpName);
1780  }
1781
1782  DagInit *Dag = dynamic_cast<DagInit*>(TheInit);
1783  if (!Dag) {
1784    TheInit->dump();
1785    error("Pattern has unexpected init kind!");
1786  }
1787  DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
1788  if (!OpDef) error("Pattern has unexpected operator type!");
1789  Record *Operator = OpDef->getDef();
1790
1791  if (Operator->isSubClassOf("ValueType")) {
1792    // If the operator is a ValueType, then this must be "type cast" of a leaf
1793    // node.
1794    if (Dag->getNumArgs() != 1)
1795      error("Type cast only takes one operand!");
1796
1797    TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));
1798
1799    // Apply the type cast.
1800    assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
1801    New->UpdateNodeType(0, getValueType(Operator), *this);
1802
1803    if (!OpName.empty())
1804      error("ValueType cast should not have a name!");
1805    return New;
1806  }
1807
1808  // Verify that this is something that makes sense for an operator.
1809  if (!Operator->isSubClassOf("PatFrag") &&
1810      !Operator->isSubClassOf("SDNode") &&
1811      !Operator->isSubClassOf("Instruction") &&
1812      !Operator->isSubClassOf("SDNodeXForm") &&
1813      !Operator->isSubClassOf("Intrinsic") &&
1814      Operator->getName() != "set" &&
1815      Operator->getName() != "implicit")
1816    error("Unrecognized node '" + Operator->getName() + "'!");
1817
1818  //  Check to see if this is something that is illegal in an input pattern.
1819  if (isInputPattern) {
1820    if (Operator->isSubClassOf("Instruction") ||
1821        Operator->isSubClassOf("SDNodeXForm"))
1822      error("Cannot use '" + Operator->getName() + "' in an input pattern!");
1823  } else {
1824    if (Operator->isSubClassOf("Intrinsic"))
1825      error("Cannot use '" + Operator->getName() + "' in an output pattern!");
1826
1827    if (Operator->isSubClassOf("SDNode") &&
1828        Operator->getName() != "imm" &&
1829        Operator->getName() != "fpimm" &&
1830        Operator->getName() != "tglobaltlsaddr" &&
1831        Operator->getName() != "tconstpool" &&
1832        Operator->getName() != "tjumptable" &&
1833        Operator->getName() != "tframeindex" &&
1834        Operator->getName() != "texternalsym" &&
1835        Operator->getName() != "tblockaddress" &&
1836        Operator->getName() != "tglobaladdr" &&
1837        Operator->getName() != "bb" &&
1838        Operator->getName() != "vt")
1839      error("Cannot use '" + Operator->getName() + "' in an output pattern!");
1840  }
1841
1842  std::vector<TreePatternNode*> Children;
1843
1844  // Parse all the operands.
1845  for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
1846    Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
1847
1848  // If the operator is an intrinsic, then this is just syntactic sugar for for
1849  // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
1850  // convert the intrinsic name to a number.
1851  if (Operator->isSubClassOf("Intrinsic")) {
1852    const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
1853    unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
1854
1855    // If this intrinsic returns void, it must have side-effects and thus a
1856    // chain.
1857    if (Int.IS.RetVTs.empty())
1858      Operator = getDAGPatterns().get_intrinsic_void_sdnode();
1859    else if (Int.ModRef != CodeGenIntrinsic::NoMem)
1860      // Has side-effects, requires chain.
1861      Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
1862    else // Otherwise, no chain.
1863      Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
1864
1865    TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
1866    Children.insert(Children.begin(), IIDNode);
1867  }
1868
1869  unsigned NumResults = GetNumNodeResults(Operator, CDP);
1870  TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
1871  Result->setName(OpName);
1872
1873  if (!Dag->getName().empty()) {
1874    assert(Result->getName().empty());
1875    Result->setName(Dag->getName());
1876  }
1877  return Result;
1878}
1879
1880/// SimplifyTree - See if we can simplify this tree to eliminate something that
1881/// will never match in favor of something obvious that will.  This is here
1882/// strictly as a convenience to target authors because it allows them to write
1883/// more type generic things and have useless type casts fold away.
1884///
1885/// This returns true if any change is made.
1886static bool SimplifyTree(TreePatternNode *&N) {
1887  if (N->isLeaf())
1888    return false;
1889
1890  // If we have a bitconvert with a resolved type and if the source and
1891  // destination types are the same, then the bitconvert is useless, remove it.
1892  if (N->getOperator()->getName() == "bitconvert" &&
1893      N->getExtType(0).isConcrete() &&
1894      N->getExtType(0) == N->getChild(0)->getExtType(0) &&
1895      N->getName().empty()) {
1896    N = N->getChild(0);
1897    SimplifyTree(N);
1898    return true;
1899  }
1900
1901  // Walk all children.
1902  bool MadeChange = false;
1903  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
1904    TreePatternNode *Child = N->getChild(i);
1905    MadeChange |= SimplifyTree(Child);
1906    N->setChild(i, Child);
1907  }
1908  return MadeChange;
1909}
1910
1911
1912
1913/// InferAllTypes - Infer/propagate as many types throughout the expression
1914/// patterns as possible.  Return true if all types are inferred, false
1915/// otherwise.  Throw an exception if a type contradiction is found.
1916bool TreePattern::
1917InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
1918  if (NamedNodes.empty())
1919    ComputeNamedNodes();
1920
1921  bool MadeChange = true;
1922  while (MadeChange) {
1923    MadeChange = false;
1924    for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
1925      MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
1926      MadeChange |= SimplifyTree(Trees[i]);
1927    }
1928
1929    // If there are constraints on our named nodes, apply them.
1930    for (StringMap<SmallVector<TreePatternNode*,1> >::iterator
1931         I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) {
1932      SmallVectorImpl<TreePatternNode*> &Nodes = I->second;
1933
1934      // If we have input named node types, propagate their types to the named
1935      // values here.
1936      if (InNamedTypes) {
1937        // FIXME: Should be error?
1938        assert(InNamedTypes->count(I->getKey()) &&
1939               "Named node in output pattern but not input pattern?");
1940
1941        const SmallVectorImpl<TreePatternNode*> &InNodes =
1942          InNamedTypes->find(I->getKey())->second;
1943
1944        // The input types should be fully resolved by now.
1945        for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
1946          // If this node is a register class, and it is the root of the pattern
1947          // then we're mapping something onto an input register.  We allow
1948          // changing the type of the input register in this case.  This allows
1949          // us to match things like:
1950          //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
1951          if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) {
1952            DefInit *DI = dynamic_cast<DefInit*>(Nodes[i]->getLeafValue());
1953            if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
1954                       DI->getDef()->isSubClassOf("RegisterOperand")))
1955              continue;
1956          }
1957
1958          assert(Nodes[i]->getNumTypes() == 1 &&
1959                 InNodes[0]->getNumTypes() == 1 &&
1960                 "FIXME: cannot name multiple result nodes yet");
1961          MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0),
1962                                                 *this);
1963        }
1964      }
1965
1966      // If there are multiple nodes with the same name, they must all have the
1967      // same type.
1968      if (I->second.size() > 1) {
1969        for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
1970          TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
1971          assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
1972                 "FIXME: cannot name multiple result nodes yet");
1973
1974          MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
1975          MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
1976        }
1977      }
1978    }
1979  }
1980
1981  bool HasUnresolvedTypes = false;
1982  for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1983    HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
1984  return !HasUnresolvedTypes;
1985}
1986
1987void TreePattern::print(raw_ostream &OS) const {
1988  OS << getRecord()->getName();
1989  if (!Args.empty()) {
1990    OS << "(" << Args[0];
1991    for (unsigned i = 1, e = Args.size(); i != e; ++i)
1992      OS << ", " << Args[i];
1993    OS << ")";
1994  }
1995  OS << ": ";
1996
1997  if (Trees.size() > 1)
1998    OS << "[\n";
1999  for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
2000    OS << "\t";
2001    Trees[i]->print(OS);
2002    OS << "\n";
2003  }
2004
2005  if (Trees.size() > 1)
2006    OS << "]\n";
2007}
2008
2009void TreePattern::dump() const { print(errs()); }
2010
2011//===----------------------------------------------------------------------===//
2012// CodeGenDAGPatterns implementation
2013//
2014
2015CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
2016  Records(R), Target(R) {
2017
2018  Intrinsics = LoadIntrinsics(Records, false);
2019  TgtIntrinsics = LoadIntrinsics(Records, true);
2020  ParseNodeInfo();
2021  ParseNodeTransforms();
2022  ParseComplexPatterns();
2023  ParsePatternFragments();
2024  ParseDefaultOperands();
2025  ParseInstructions();
2026  ParsePatterns();
2027
2028  // Generate variants.  For example, commutative patterns can match
2029  // multiple ways.  Add them to PatternsToMatch as well.
2030  GenerateVariants();
2031
2032  // Infer instruction flags.  For example, we can detect loads,
2033  // stores, and side effects in many cases by examining an
2034  // instruction's pattern.
2035  InferInstructionFlags();
2036}
2037
2038CodeGenDAGPatterns::~CodeGenDAGPatterns() {
2039  for (pf_iterator I = PatternFragments.begin(),
2040       E = PatternFragments.end(); I != E; ++I)
2041    delete I->second;
2042}
2043
2044
2045Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2046  Record *N = Records.getDef(Name);
2047  if (!N || !N->isSubClassOf("SDNode")) {
2048    errs() << "Error getting SDNode '" << Name << "'!\n";
2049    exit(1);
2050  }
2051  return N;
2052}
2053
2054// Parse all of the SDNode definitions for the target, populating SDNodes.
2055void CodeGenDAGPatterns::ParseNodeInfo() {
2056  std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2057  while (!Nodes.empty()) {
2058    SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
2059    Nodes.pop_back();
2060  }
2061
2062  // Get the builtin intrinsic nodes.
2063  intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
2064  intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
2065  intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2066}
2067
2068/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2069/// map, and emit them to the file as functions.
2070void CodeGenDAGPatterns::ParseNodeTransforms() {
2071  std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2072  while (!Xforms.empty()) {
2073    Record *XFormNode = Xforms.back();
2074    Record *SDNode = XFormNode->getValueAsDef("Opcode");
2075    std::string Code = XFormNode->getValueAsString("XFormFunction");
2076    SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2077
2078    Xforms.pop_back();
2079  }
2080}
2081
2082void CodeGenDAGPatterns::ParseComplexPatterns() {
2083  std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2084  while (!AMs.empty()) {
2085    ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2086    AMs.pop_back();
2087  }
2088}
2089
2090
2091/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2092/// file, building up the PatternFragments map.  After we've collected them all,
2093/// inline fragments together as necessary, so that there are no references left
2094/// inside a pattern fragment to a pattern fragment.
2095///
2096void CodeGenDAGPatterns::ParsePatternFragments() {
2097  std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
2098
2099  // First step, parse all of the fragments.
2100  for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
2101    DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
2102    TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
2103    PatternFragments[Fragments[i]] = P;
2104
2105    // Validate the argument list, converting it to set, to discard duplicates.
2106    std::vector<std::string> &Args = P->getArgList();
2107    std::set<std::string> OperandsSet(Args.begin(), Args.end());
2108
2109    if (OperandsSet.count(""))
2110      P->error("Cannot have unnamed 'node' values in pattern fragment!");
2111
2112    // Parse the operands list.
2113    DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
2114    DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
2115    // Special cases: ops == outs == ins. Different names are used to
2116    // improve readability.
2117    if (!OpsOp ||
2118        (OpsOp->getDef()->getName() != "ops" &&
2119         OpsOp->getDef()->getName() != "outs" &&
2120         OpsOp->getDef()->getName() != "ins"))
2121      P->error("Operands list should start with '(ops ... '!");
2122
2123    // Copy over the arguments.
2124    Args.clear();
2125    for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
2126      if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
2127          static_cast<DefInit*>(OpsList->getArg(j))->
2128          getDef()->getName() != "node")
2129        P->error("Operands list should all be 'node' values.");
2130      if (OpsList->getArgName(j).empty())
2131        P->error("Operands list should have names for each operand!");
2132      if (!OperandsSet.count(OpsList->getArgName(j)))
2133        P->error("'" + OpsList->getArgName(j) +
2134                 "' does not occur in pattern or was multiply specified!");
2135      OperandsSet.erase(OpsList->getArgName(j));
2136      Args.push_back(OpsList->getArgName(j));
2137    }
2138
2139    if (!OperandsSet.empty())
2140      P->error("Operands list does not contain an entry for operand '" +
2141               *OperandsSet.begin() + "'!");
2142
2143    // If there is a code init for this fragment, keep track of the fact that
2144    // this fragment uses it.
2145    TreePredicateFn PredFn(P);
2146    if (!PredFn.isAlwaysTrue())
2147      P->getOnlyTree()->addPredicateFn(PredFn);
2148
2149    // If there is a node transformation corresponding to this, keep track of
2150    // it.
2151    Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
2152    if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
2153      P->getOnlyTree()->setTransformFn(Transform);
2154  }
2155
2156  // Now that we've parsed all of the tree fragments, do a closure on them so
2157  // that there are not references to PatFrags left inside of them.
2158  for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
2159    TreePattern *ThePat = PatternFragments[Fragments[i]];
2160    ThePat->InlinePatternFragments();
2161
2162    // Infer as many types as possible.  Don't worry about it if we don't infer
2163    // all of them, some may depend on the inputs of the pattern.
2164    try {
2165      ThePat->InferAllTypes();
2166    } catch (...) {
2167      // If this pattern fragment is not supported by this target (no types can
2168      // satisfy its constraints), just ignore it.  If the bogus pattern is
2169      // actually used by instructions, the type consistency error will be
2170      // reported there.
2171    }
2172
2173    // If debugging, print out the pattern fragment result.
2174    DEBUG(ThePat->dump());
2175  }
2176}
2177
2178void CodeGenDAGPatterns::ParseDefaultOperands() {
2179  std::vector<Record*> DefaultOps[2];
2180  DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand");
2181  DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand");
2182
2183  // Find some SDNode.
2184  assert(!SDNodes.empty() && "No SDNodes parsed?");
2185  Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
2186
2187  for (unsigned iter = 0; iter != 2; ++iter) {
2188    for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) {
2189      DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps");
2190
2191      // Clone the DefaultInfo dag node, changing the operator from 'ops' to
2192      // SomeSDnode so that we can parse this.
2193      std::vector<std::pair<Init*, std::string> > Ops;
2194      for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
2195        Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
2196                                     DefaultInfo->getArgName(op)));
2197      DagInit *DI = DagInit::get(SomeSDNode, "", Ops);
2198
2199      // Create a TreePattern to parse this.
2200      TreePattern P(DefaultOps[iter][i], DI, false, *this);
2201      assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
2202
2203      // Copy the operands over into a DAGDefaultOperand.
2204      DAGDefaultOperand DefaultOpInfo;
2205
2206      TreePatternNode *T = P.getTree(0);
2207      for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
2208        TreePatternNode *TPN = T->getChild(op);
2209        while (TPN->ApplyTypeConstraints(P, false))
2210          /* Resolve all types */;
2211
2212        if (TPN->ContainsUnresolvedType()) {
2213          if (iter == 0)
2214            throw "Value #" + utostr(i) + " of PredicateOperand '" +
2215              DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!";
2216          else
2217            throw "Value #" + utostr(i) + " of OptionalDefOperand '" +
2218              DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!";
2219        }
2220        DefaultOpInfo.DefaultOps.push_back(TPN);
2221      }
2222
2223      // Insert it into the DefaultOperands map so we can find it later.
2224      DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo;
2225    }
2226  }
2227}
2228
2229/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
2230/// instruction input.  Return true if this is a real use.
2231static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
2232                      std::map<std::string, TreePatternNode*> &InstInputs) {
2233  // No name -> not interesting.
2234  if (Pat->getName().empty()) {
2235    if (Pat->isLeaf()) {
2236      DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
2237      if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2238                 DI->getDef()->isSubClassOf("RegisterOperand")))
2239        I->error("Input " + DI->getDef()->getName() + " must be named!");
2240    }
2241    return false;
2242  }
2243
2244  Record *Rec;
2245  if (Pat->isLeaf()) {
2246    DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
2247    if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
2248    Rec = DI->getDef();
2249  } else {
2250    Rec = Pat->getOperator();
2251  }
2252
2253  // SRCVALUE nodes are ignored.
2254  if (Rec->getName() == "srcvalue")
2255    return false;
2256
2257  TreePatternNode *&Slot = InstInputs[Pat->getName()];
2258  if (!Slot) {
2259    Slot = Pat;
2260    return true;
2261  }
2262  Record *SlotRec;
2263  if (Slot->isLeaf()) {
2264    SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
2265  } else {
2266    assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
2267    SlotRec = Slot->getOperator();
2268  }
2269
2270  // Ensure that the inputs agree if we've already seen this input.
2271  if (Rec != SlotRec)
2272    I->error("All $" + Pat->getName() + " inputs must agree with each other");
2273  if (Slot->getExtTypes() != Pat->getExtTypes())
2274    I->error("All $" + Pat->getName() + " inputs must agree with each other");
2275  return true;
2276}
2277
2278/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
2279/// part of "I", the instruction), computing the set of inputs and outputs of
2280/// the pattern.  Report errors if we see anything naughty.
2281void CodeGenDAGPatterns::
2282FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
2283                            std::map<std::string, TreePatternNode*> &InstInputs,
2284                            std::map<std::string, TreePatternNode*>&InstResults,
2285                            std::vector<Record*> &InstImpResults) {
2286  if (Pat->isLeaf()) {
2287    bool isUse = HandleUse(I, Pat, InstInputs);
2288    if (!isUse && Pat->getTransformFn())
2289      I->error("Cannot specify a transform function for a non-input value!");
2290    return;
2291  }
2292
2293  if (Pat->getOperator()->getName() == "implicit") {
2294    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2295      TreePatternNode *Dest = Pat->getChild(i);
2296      if (!Dest->isLeaf())
2297        I->error("implicitly defined value should be a register!");
2298
2299      DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
2300      if (!Val || !Val->getDef()->isSubClassOf("Register"))
2301        I->error("implicitly defined value should be a register!");
2302      InstImpResults.push_back(Val->getDef());
2303    }
2304    return;
2305  }
2306
2307  if (Pat->getOperator()->getName() != "set") {
2308    // If this is not a set, verify that the children nodes are not void typed,
2309    // and recurse.
2310    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2311      if (Pat->getChild(i)->getNumTypes() == 0)
2312        I->error("Cannot have void nodes inside of patterns!");
2313      FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
2314                                  InstImpResults);
2315    }
2316
2317    // If this is a non-leaf node with no children, treat it basically as if
2318    // it were a leaf.  This handles nodes like (imm).
2319    bool isUse = HandleUse(I, Pat, InstInputs);
2320
2321    if (!isUse && Pat->getTransformFn())
2322      I->error("Cannot specify a transform function for a non-input value!");
2323    return;
2324  }
2325
2326  // Otherwise, this is a set, validate and collect instruction results.
2327  if (Pat->getNumChildren() == 0)
2328    I->error("set requires operands!");
2329
2330  if (Pat->getTransformFn())
2331    I->error("Cannot specify a transform function on a set node!");
2332
2333  // Check the set destinations.
2334  unsigned NumDests = Pat->getNumChildren()-1;
2335  for (unsigned i = 0; i != NumDests; ++i) {
2336    TreePatternNode *Dest = Pat->getChild(i);
2337    if (!Dest->isLeaf())
2338      I->error("set destination should be a register!");
2339
2340    DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
2341    if (!Val)
2342      I->error("set destination should be a register!");
2343
2344    if (Val->getDef()->isSubClassOf("RegisterClass") ||
2345        Val->getDef()->isSubClassOf("RegisterOperand") ||
2346        Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
2347      if (Dest->getName().empty())
2348        I->error("set destination must have a name!");
2349      if (InstResults.count(Dest->getName()))
2350        I->error("cannot set '" + Dest->getName() +"' multiple times");
2351      InstResults[Dest->getName()] = Dest;
2352    } else if (Val->getDef()->isSubClassOf("Register")) {
2353      InstImpResults.push_back(Val->getDef());
2354    } else {
2355      I->error("set destination should be a register!");
2356    }
2357  }
2358
2359  // Verify and collect info from the computation.
2360  FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
2361                              InstInputs, InstResults, InstImpResults);
2362}
2363
2364//===----------------------------------------------------------------------===//
2365// Instruction Analysis
2366//===----------------------------------------------------------------------===//
2367
2368class InstAnalyzer {
2369  const CodeGenDAGPatterns &CDP;
2370  bool &mayStore;
2371  bool &mayLoad;
2372  bool &IsBitcast;
2373  bool &HasSideEffects;
2374  bool &IsVariadic;
2375public:
2376  InstAnalyzer(const CodeGenDAGPatterns &cdp,
2377               bool &maystore, bool &mayload, bool &isbc, bool &hse, bool &isv)
2378    : CDP(cdp), mayStore(maystore), mayLoad(mayload), IsBitcast(isbc),
2379      HasSideEffects(hse), IsVariadic(isv) {
2380  }
2381
2382  /// Analyze - Analyze the specified instruction, returning true if the
2383  /// instruction had a pattern.
2384  bool Analyze(Record *InstRecord) {
2385    const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern();
2386    if (Pattern == 0) {
2387      HasSideEffects = 1;
2388      return false;  // No pattern.
2389    }
2390
2391    // FIXME: Assume only the first tree is the pattern. The others are clobber
2392    // nodes.
2393    AnalyzeNode(Pattern->getTree(0));
2394    return true;
2395  }
2396
2397private:
2398  bool IsNodeBitcast(const TreePatternNode *N) const {
2399    if (HasSideEffects || mayLoad || mayStore || IsVariadic)
2400      return false;
2401
2402    if (N->getNumChildren() != 2)
2403      return false;
2404
2405    const TreePatternNode *N0 = N->getChild(0);
2406    if (!N0->isLeaf() || !dynamic_cast<DefInit*>(N0->getLeafValue()))
2407      return false;
2408
2409    const TreePatternNode *N1 = N->getChild(1);
2410    if (N1->isLeaf())
2411      return false;
2412    if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
2413      return false;
2414
2415    const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
2416    if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
2417      return false;
2418    return OpInfo.getEnumName() == "ISD::BITCAST";
2419  }
2420
2421  void AnalyzeNode(const TreePatternNode *N) {
2422    if (N->isLeaf()) {
2423      if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
2424        Record *LeafRec = DI->getDef();
2425        // Handle ComplexPattern leaves.
2426        if (LeafRec->isSubClassOf("ComplexPattern")) {
2427          const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
2428          if (CP.hasProperty(SDNPMayStore)) mayStore = true;
2429          if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
2430          if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true;
2431        }
2432      }
2433      return;
2434    }
2435
2436    // Analyze children.
2437    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2438      AnalyzeNode(N->getChild(i));
2439
2440    // Ignore set nodes, which are not SDNodes.
2441    if (N->getOperator()->getName() == "set") {
2442      IsBitcast = IsNodeBitcast(N);
2443      return;
2444    }
2445
2446    // Get information about the SDNode for the operator.
2447    const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
2448
2449    // Notice properties of the node.
2450    if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
2451    if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
2452    if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true;
2453    if (OpInfo.hasProperty(SDNPVariadic)) IsVariadic = true;
2454
2455    if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
2456      // If this is an intrinsic, analyze it.
2457      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
2458        mayLoad = true;// These may load memory.
2459
2460      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem)
2461        mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
2462
2463      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem)
2464        // WriteMem intrinsics can have other strange effects.
2465        HasSideEffects = true;
2466    }
2467  }
2468
2469};
2470
2471static void InferFromPattern(const CodeGenInstruction &Inst,
2472                             bool &MayStore, bool &MayLoad,
2473                             bool &IsBitcast,
2474                             bool &HasSideEffects, bool &IsVariadic,
2475                             const CodeGenDAGPatterns &CDP) {
2476  MayStore = MayLoad = IsBitcast = HasSideEffects = IsVariadic = false;
2477
2478  bool HadPattern =
2479    InstAnalyzer(CDP, MayStore, MayLoad, IsBitcast, HasSideEffects, IsVariadic)
2480    .Analyze(Inst.TheDef);
2481
2482  // InstAnalyzer only correctly analyzes mayStore/mayLoad so far.
2483  if (Inst.mayStore) {  // If the .td file explicitly sets mayStore, use it.
2484    // If we decided that this is a store from the pattern, then the .td file
2485    // entry is redundant.
2486    if (MayStore)
2487      PrintWarning(Inst.TheDef->getLoc(),
2488                   "mayStore flag explicitly set on "
2489                   "instruction, but flag already inferred from pattern.");
2490    MayStore = true;
2491  }
2492
2493  if (Inst.mayLoad) {  // If the .td file explicitly sets mayLoad, use it.
2494    // If we decided that this is a load from the pattern, then the .td file
2495    // entry is redundant.
2496    if (MayLoad)
2497      PrintWarning(Inst.TheDef->getLoc(),
2498                   "mayLoad flag explicitly set on "
2499                   "instruction, but flag already inferred from pattern.");
2500    MayLoad = true;
2501  }
2502
2503  if (Inst.neverHasSideEffects) {
2504    if (HadPattern)
2505      PrintWarning(Inst.TheDef->getLoc(),
2506                   "neverHasSideEffects flag explicitly set on "
2507                   "instruction, but flag already inferred from pattern.");
2508    HasSideEffects = false;
2509  }
2510
2511  if (Inst.hasSideEffects) {
2512    if (HasSideEffects)
2513      PrintWarning(Inst.TheDef->getLoc(),
2514                   "hasSideEffects flag explicitly set on "
2515                   "instruction, but flag already inferred from pattern.");
2516    HasSideEffects = true;
2517  }
2518
2519  if (Inst.Operands.isVariadic)
2520    IsVariadic = true;  // Can warn if we want.
2521}
2522
2523/// hasNullFragReference - Return true if the DAG has any reference to the
2524/// null_frag operator.
2525static bool hasNullFragReference(DagInit *DI) {
2526  DefInit *OpDef = dynamic_cast<DefInit*>(DI->getOperator());
2527  if (!OpDef) return false;
2528  Record *Operator = OpDef->getDef();
2529
2530  // If this is the null fragment, return true.
2531  if (Operator->getName() == "null_frag") return true;
2532  // If any of the arguments reference the null fragment, return true.
2533  for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
2534    DagInit *Arg = dynamic_cast<DagInit*>(DI->getArg(i));
2535    if (Arg && hasNullFragReference(Arg))
2536      return true;
2537  }
2538
2539  return false;
2540}
2541
2542/// hasNullFragReference - Return true if any DAG in the list references
2543/// the null_frag operator.
2544static bool hasNullFragReference(ListInit *LI) {
2545  for (unsigned i = 0, e = LI->getSize(); i != e; ++i) {
2546    DagInit *DI = dynamic_cast<DagInit*>(LI->getElement(i));
2547    assert(DI && "non-dag in an instruction Pattern list?!");
2548    if (hasNullFragReference(DI))
2549      return true;
2550  }
2551  return false;
2552}
2553
2554/// ParseInstructions - Parse all of the instructions, inlining and resolving
2555/// any fragments involved.  This populates the Instructions list with fully
2556/// resolved instructions.
2557void CodeGenDAGPatterns::ParseInstructions() {
2558  std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
2559
2560  for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
2561    ListInit *LI = 0;
2562
2563    if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
2564      LI = Instrs[i]->getValueAsListInit("Pattern");
2565
2566    // If there is no pattern, only collect minimal information about the
2567    // instruction for its operand list.  We have to assume that there is one
2568    // result, as we have no detailed info. A pattern which references the
2569    // null_frag operator is as-if no pattern were specified. Normally this
2570    // is from a multiclass expansion w/ a SDPatternOperator passed in as
2571    // null_frag.
2572    if (!LI || LI->getSize() == 0 || hasNullFragReference(LI)) {
2573      std::vector<Record*> Results;
2574      std::vector<Record*> Operands;
2575
2576      CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
2577
2578      if (InstInfo.Operands.size() != 0) {
2579        if (InstInfo.Operands.NumDefs == 0) {
2580          // These produce no results
2581          for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j)
2582            Operands.push_back(InstInfo.Operands[j].Rec);
2583        } else {
2584          // Assume the first operand is the result.
2585          Results.push_back(InstInfo.Operands[0].Rec);
2586
2587          // The rest are inputs.
2588          for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j)
2589            Operands.push_back(InstInfo.Operands[j].Rec);
2590        }
2591      }
2592
2593      // Create and insert the instruction.
2594      std::vector<Record*> ImpResults;
2595      Instructions.insert(std::make_pair(Instrs[i],
2596                          DAGInstruction(0, Results, Operands, ImpResults)));
2597      continue;  // no pattern.
2598    }
2599
2600    // Parse the instruction.
2601    TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
2602    // Inline pattern fragments into it.
2603    I->InlinePatternFragments();
2604
2605    // Infer as many types as possible.  If we cannot infer all of them, we can
2606    // never do anything with this instruction pattern: report it to the user.
2607    if (!I->InferAllTypes())
2608      I->error("Could not infer all types in pattern!");
2609
2610    // InstInputs - Keep track of all of the inputs of the instruction, along
2611    // with the record they are declared as.
2612    std::map<std::string, TreePatternNode*> InstInputs;
2613
2614    // InstResults - Keep track of all the virtual registers that are 'set'
2615    // in the instruction, including what reg class they are.
2616    std::map<std::string, TreePatternNode*> InstResults;
2617
2618    std::vector<Record*> InstImpResults;
2619
2620    // Verify that the top-level forms in the instruction are of void type, and
2621    // fill in the InstResults map.
2622    for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
2623      TreePatternNode *Pat = I->getTree(j);
2624      if (Pat->getNumTypes() != 0)
2625        I->error("Top-level forms in instruction pattern should have"
2626                 " void types");
2627
2628      // Find inputs and outputs, and verify the structure of the uses/defs.
2629      FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
2630                                  InstImpResults);
2631    }
2632
2633    // Now that we have inputs and outputs of the pattern, inspect the operands
2634    // list for the instruction.  This determines the order that operands are
2635    // added to the machine instruction the node corresponds to.
2636    unsigned NumResults = InstResults.size();
2637
2638    // Parse the operands list from the (ops) list, validating it.
2639    assert(I->getArgList().empty() && "Args list should still be empty here!");
2640    CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]);
2641
2642    // Check that all of the results occur first in the list.
2643    std::vector<Record*> Results;
2644    TreePatternNode *Res0Node = 0;
2645    for (unsigned i = 0; i != NumResults; ++i) {
2646      if (i == CGI.Operands.size())
2647        I->error("'" + InstResults.begin()->first +
2648                 "' set but does not appear in operand list!");
2649      const std::string &OpName = CGI.Operands[i].Name;
2650
2651      // Check that it exists in InstResults.
2652      TreePatternNode *RNode = InstResults[OpName];
2653      if (RNode == 0)
2654        I->error("Operand $" + OpName + " does not exist in operand list!");
2655
2656      if (i == 0)
2657        Res0Node = RNode;
2658      Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
2659      if (R == 0)
2660        I->error("Operand $" + OpName + " should be a set destination: all "
2661                 "outputs must occur before inputs in operand list!");
2662
2663      if (CGI.Operands[i].Rec != R)
2664        I->error("Operand $" + OpName + " class mismatch!");
2665
2666      // Remember the return type.
2667      Results.push_back(CGI.Operands[i].Rec);
2668
2669      // Okay, this one checks out.
2670      InstResults.erase(OpName);
2671    }
2672
2673    // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
2674    // the copy while we're checking the inputs.
2675    std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
2676
2677    std::vector<TreePatternNode*> ResultNodeOperands;
2678    std::vector<Record*> Operands;
2679    for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
2680      CGIOperandList::OperandInfo &Op = CGI.Operands[i];
2681      const std::string &OpName = Op.Name;
2682      if (OpName.empty())
2683        I->error("Operand #" + utostr(i) + " in operands list has no name!");
2684
2685      if (!InstInputsCheck.count(OpName)) {
2686        // If this is an predicate operand or optional def operand with an
2687        // DefaultOps set filled in, we can ignore this.  When we codegen it,
2688        // we will do so as always executed.
2689        if (Op.Rec->isSubClassOf("PredicateOperand") ||
2690            Op.Rec->isSubClassOf("OptionalDefOperand")) {
2691          // Does it have a non-empty DefaultOps field?  If so, ignore this
2692          // operand.
2693          if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
2694            continue;
2695        }
2696        I->error("Operand $" + OpName +
2697                 " does not appear in the instruction pattern");
2698      }
2699      TreePatternNode *InVal = InstInputsCheck[OpName];
2700      InstInputsCheck.erase(OpName);   // It occurred, remove from map.
2701
2702      if (InVal->isLeaf() &&
2703          dynamic_cast<DefInit*>(InVal->getLeafValue())) {
2704        Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
2705        if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
2706          I->error("Operand $" + OpName + "'s register class disagrees"
2707                   " between the operand and pattern");
2708      }
2709      Operands.push_back(Op.Rec);
2710
2711      // Construct the result for the dest-pattern operand list.
2712      TreePatternNode *OpNode = InVal->clone();
2713
2714      // No predicate is useful on the result.
2715      OpNode->clearPredicateFns();
2716
2717      // Promote the xform function to be an explicit node if set.
2718      if (Record *Xform = OpNode->getTransformFn()) {
2719        OpNode->setTransformFn(0);
2720        std::vector<TreePatternNode*> Children;
2721        Children.push_back(OpNode);
2722        OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
2723      }
2724
2725      ResultNodeOperands.push_back(OpNode);
2726    }
2727
2728    if (!InstInputsCheck.empty())
2729      I->error("Input operand $" + InstInputsCheck.begin()->first +
2730               " occurs in pattern but not in operands list!");
2731
2732    TreePatternNode *ResultPattern =
2733      new TreePatternNode(I->getRecord(), ResultNodeOperands,
2734                          GetNumNodeResults(I->getRecord(), *this));
2735    // Copy fully inferred output node type to instruction result pattern.
2736    for (unsigned i = 0; i != NumResults; ++i)
2737      ResultPattern->setType(i, Res0Node->getExtType(i));
2738
2739    // Create and insert the instruction.
2740    // FIXME: InstImpResults should not be part of DAGInstruction.
2741    DAGInstruction TheInst(I, Results, Operands, InstImpResults);
2742    Instructions.insert(std::make_pair(I->getRecord(), TheInst));
2743
2744    // Use a temporary tree pattern to infer all types and make sure that the
2745    // constructed result is correct.  This depends on the instruction already
2746    // being inserted into the Instructions map.
2747    TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
2748    Temp.InferAllTypes(&I->getNamedNodesMap());
2749
2750    DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
2751    TheInsertedInst.setResultPattern(Temp.getOnlyTree());
2752
2753    DEBUG(I->dump());
2754  }
2755
2756  // If we can, convert the instructions to be patterns that are matched!
2757  for (std::map<Record*, DAGInstruction, RecordPtrCmp>::iterator II =
2758        Instructions.begin(),
2759       E = Instructions.end(); II != E; ++II) {
2760    DAGInstruction &TheInst = II->second;
2761    const TreePattern *I = TheInst.getPattern();
2762    if (I == 0) continue;  // No pattern.
2763
2764    // FIXME: Assume only the first tree is the pattern. The others are clobber
2765    // nodes.
2766    TreePatternNode *Pattern = I->getTree(0);
2767    TreePatternNode *SrcPattern;
2768    if (Pattern->getOperator()->getName() == "set") {
2769      SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
2770    } else{
2771      // Not a set (store or something?)
2772      SrcPattern = Pattern;
2773    }
2774
2775    Record *Instr = II->first;
2776    AddPatternToMatch(I,
2777                      PatternToMatch(Instr,
2778                                     Instr->getValueAsListInit("Predicates"),
2779                                     SrcPattern,
2780                                     TheInst.getResultPattern(),
2781                                     TheInst.getImpResults(),
2782                                     Instr->getValueAsInt("AddedComplexity"),
2783                                     Instr->getID()));
2784  }
2785}
2786
2787
2788typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
2789
2790static void FindNames(const TreePatternNode *P,
2791                      std::map<std::string, NameRecord> &Names,
2792                      const TreePattern *PatternTop) {
2793  if (!P->getName().empty()) {
2794    NameRecord &Rec = Names[P->getName()];
2795    // If this is the first instance of the name, remember the node.
2796    if (Rec.second++ == 0)
2797      Rec.first = P;
2798    else if (Rec.first->getExtTypes() != P->getExtTypes())
2799      PatternTop->error("repetition of value: $" + P->getName() +
2800                        " where different uses have different types!");
2801  }
2802
2803  if (!P->isLeaf()) {
2804    for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
2805      FindNames(P->getChild(i), Names, PatternTop);
2806  }
2807}
2808
2809void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern,
2810                                           const PatternToMatch &PTM) {
2811  // Do some sanity checking on the pattern we're about to match.
2812  std::string Reason;
2813  if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this))
2814    Pattern->error("Pattern can never match: " + Reason);
2815
2816  // If the source pattern's root is a complex pattern, that complex pattern
2817  // must specify the nodes it can potentially match.
2818  if (const ComplexPattern *CP =
2819        PTM.getSrcPattern()->getComplexPatternInfo(*this))
2820    if (CP->getRootNodes().empty())
2821      Pattern->error("ComplexPattern at root must specify list of opcodes it"
2822                     " could match");
2823
2824
2825  // Find all of the named values in the input and output, ensure they have the
2826  // same type.
2827  std::map<std::string, NameRecord> SrcNames, DstNames;
2828  FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
2829  FindNames(PTM.getDstPattern(), DstNames, Pattern);
2830
2831  // Scan all of the named values in the destination pattern, rejecting them if
2832  // they don't exist in the input pattern.
2833  for (std::map<std::string, NameRecord>::iterator
2834       I = DstNames.begin(), E = DstNames.end(); I != E; ++I) {
2835    if (SrcNames[I->first].first == 0)
2836      Pattern->error("Pattern has input without matching name in output: $" +
2837                     I->first);
2838  }
2839
2840  // Scan all of the named values in the source pattern, rejecting them if the
2841  // name isn't used in the dest, and isn't used to tie two values together.
2842  for (std::map<std::string, NameRecord>::iterator
2843       I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I)
2844    if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1)
2845      Pattern->error("Pattern has dead named input: $" + I->first);
2846
2847  PatternsToMatch.push_back(PTM);
2848}
2849
2850
2851
2852void CodeGenDAGPatterns::InferInstructionFlags() {
2853  const std::vector<const CodeGenInstruction*> &Instructions =
2854    Target.getInstructionsByEnumValue();
2855  for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
2856    CodeGenInstruction &InstInfo =
2857      const_cast<CodeGenInstruction &>(*Instructions[i]);
2858    // Determine properties of the instruction from its pattern.
2859    bool MayStore, MayLoad, IsBitcast, HasSideEffects, IsVariadic;
2860    InferFromPattern(InstInfo, MayStore, MayLoad, IsBitcast,
2861                     HasSideEffects, IsVariadic, *this);
2862    InstInfo.mayStore = MayStore;
2863    InstInfo.mayLoad = MayLoad;
2864    InstInfo.isBitcast = IsBitcast;
2865    InstInfo.hasSideEffects = HasSideEffects;
2866    InstInfo.Operands.isVariadic = IsVariadic;
2867
2868    // Sanity checks.
2869    if (InstInfo.isReMaterializable && InstInfo.hasSideEffects)
2870      throw TGError(InstInfo.TheDef->getLoc(), "The instruction " +
2871                    InstInfo.TheDef->getName() +
2872                    " is rematerializable AND has unmodeled side effects?");
2873  }
2874}
2875
2876/// Given a pattern result with an unresolved type, see if we can find one
2877/// instruction with an unresolved result type.  Force this result type to an
2878/// arbitrary element if it's possible types to converge results.
2879static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
2880  if (N->isLeaf())
2881    return false;
2882
2883  // Analyze children.
2884  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2885    if (ForceArbitraryInstResultType(N->getChild(i), TP))
2886      return true;
2887
2888  if (!N->getOperator()->isSubClassOf("Instruction"))
2889    return false;
2890
2891  // If this type is already concrete or completely unknown we can't do
2892  // anything.
2893  for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
2894    if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
2895      continue;
2896
2897    // Otherwise, force its type to the first possibility (an arbitrary choice).
2898    if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
2899      return true;
2900  }
2901
2902  return false;
2903}
2904
2905void CodeGenDAGPatterns::ParsePatterns() {
2906  std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
2907
2908  for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
2909    Record *CurPattern = Patterns[i];
2910    DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
2911
2912    // If the pattern references the null_frag, there's nothing to do.
2913    if (hasNullFragReference(Tree))
2914      continue;
2915
2916    TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
2917
2918    // Inline pattern fragments into it.
2919    Pattern->InlinePatternFragments();
2920
2921    ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
2922    if (LI->getSize() == 0) continue;  // no pattern.
2923
2924    // Parse the instruction.
2925    TreePattern *Result = new TreePattern(CurPattern, LI, false, *this);
2926
2927    // Inline pattern fragments into it.
2928    Result->InlinePatternFragments();
2929
2930    if (Result->getNumTrees() != 1)
2931      Result->error("Cannot handle instructions producing instructions "
2932                    "with temporaries yet!");
2933
2934    bool IterateInference;
2935    bool InferredAllPatternTypes, InferredAllResultTypes;
2936    do {
2937      // Infer as many types as possible.  If we cannot infer all of them, we
2938      // can never do anything with this pattern: report it to the user.
2939      InferredAllPatternTypes =
2940        Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
2941
2942      // Infer as many types as possible.  If we cannot infer all of them, we
2943      // can never do anything with this pattern: report it to the user.
2944      InferredAllResultTypes =
2945        Result->InferAllTypes(&Pattern->getNamedNodesMap());
2946
2947      IterateInference = false;
2948
2949      // Apply the type of the result to the source pattern.  This helps us
2950      // resolve cases where the input type is known to be a pointer type (which
2951      // is considered resolved), but the result knows it needs to be 32- or
2952      // 64-bits.  Infer the other way for good measure.
2953      for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(),
2954                                        Pattern->getTree(0)->getNumTypes());
2955           i != e; ++i) {
2956        IterateInference = Pattern->getTree(0)->
2957          UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result);
2958        IterateInference |= Result->getTree(0)->
2959          UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result);
2960      }
2961
2962      // If our iteration has converged and the input pattern's types are fully
2963      // resolved but the result pattern is not fully resolved, we may have a
2964      // situation where we have two instructions in the result pattern and
2965      // the instructions require a common register class, but don't care about
2966      // what actual MVT is used.  This is actually a bug in our modelling:
2967      // output patterns should have register classes, not MVTs.
2968      //
2969      // In any case, to handle this, we just go through and disambiguate some
2970      // arbitrary types to the result pattern's nodes.
2971      if (!IterateInference && InferredAllPatternTypes &&
2972          !InferredAllResultTypes)
2973        IterateInference = ForceArbitraryInstResultType(Result->getTree(0),
2974                                                        *Result);
2975    } while (IterateInference);
2976
2977    // Verify that we inferred enough types that we can do something with the
2978    // pattern and result.  If these fire the user has to add type casts.
2979    if (!InferredAllPatternTypes)
2980      Pattern->error("Could not infer all types in pattern!");
2981    if (!InferredAllResultTypes) {
2982      Pattern->dump();
2983      Result->error("Could not infer all types in pattern result!");
2984    }
2985
2986    // Validate that the input pattern is correct.
2987    std::map<std::string, TreePatternNode*> InstInputs;
2988    std::map<std::string, TreePatternNode*> InstResults;
2989    std::vector<Record*> InstImpResults;
2990    for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
2991      FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
2992                                  InstInputs, InstResults,
2993                                  InstImpResults);
2994
2995    // Promote the xform function to be an explicit node if set.
2996    TreePatternNode *DstPattern = Result->getOnlyTree();
2997    std::vector<TreePatternNode*> ResultNodeOperands;
2998    for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
2999      TreePatternNode *OpNode = DstPattern->getChild(ii);
3000      if (Record *Xform = OpNode->getTransformFn()) {
3001        OpNode->setTransformFn(0);
3002        std::vector<TreePatternNode*> Children;
3003        Children.push_back(OpNode);
3004        OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3005      }
3006      ResultNodeOperands.push_back(OpNode);
3007    }
3008    DstPattern = Result->getOnlyTree();
3009    if (!DstPattern->isLeaf())
3010      DstPattern = new TreePatternNode(DstPattern->getOperator(),
3011                                       ResultNodeOperands,
3012                                       DstPattern->getNumTypes());
3013
3014    for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i)
3015      DstPattern->setType(i, Result->getOnlyTree()->getExtType(i));
3016
3017    TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
3018    Temp.InferAllTypes();
3019
3020
3021    AddPatternToMatch(Pattern,
3022                    PatternToMatch(CurPattern,
3023                                   CurPattern->getValueAsListInit("Predicates"),
3024                                   Pattern->getTree(0),
3025                                   Temp.getOnlyTree(), InstImpResults,
3026                                   CurPattern->getValueAsInt("AddedComplexity"),
3027                                   CurPattern->getID()));
3028  }
3029}
3030
3031/// CombineChildVariants - Given a bunch of permutations of each child of the
3032/// 'operator' node, put them together in all possible ways.
3033static void CombineChildVariants(TreePatternNode *Orig,
3034               const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
3035                                 std::vector<TreePatternNode*> &OutVariants,
3036                                 CodeGenDAGPatterns &CDP,
3037                                 const MultipleUseVarSet &DepVars) {
3038  // Make sure that each operand has at least one variant to choose from.
3039  for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3040    if (ChildVariants[i].empty())
3041      return;
3042
3043  // The end result is an all-pairs construction of the resultant pattern.
3044  std::vector<unsigned> Idxs;
3045  Idxs.resize(ChildVariants.size());
3046  bool NotDone;
3047  do {
3048#ifndef NDEBUG
3049    DEBUG(if (!Idxs.empty()) {
3050            errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
3051              for (unsigned i = 0; i < Idxs.size(); ++i) {
3052                errs() << Idxs[i] << " ";
3053            }
3054            errs() << "]\n";
3055          });
3056#endif
3057    // Create the variant and add it to the output list.
3058    std::vector<TreePatternNode*> NewChildren;
3059    for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3060      NewChildren.push_back(ChildVariants[i][Idxs[i]]);
3061    TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren,
3062                                             Orig->getNumTypes());
3063
3064    // Copy over properties.
3065    R->setName(Orig->getName());
3066    R->setPredicateFns(Orig->getPredicateFns());
3067    R->setTransformFn(Orig->getTransformFn());
3068    for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
3069      R->setType(i, Orig->getExtType(i));
3070
3071    // If this pattern cannot match, do not include it as a variant.
3072    std::string ErrString;
3073    if (!R->canPatternMatch(ErrString, CDP)) {
3074      delete R;
3075    } else {
3076      bool AlreadyExists = false;
3077
3078      // Scan to see if this pattern has already been emitted.  We can get
3079      // duplication due to things like commuting:
3080      //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
3081      // which are the same pattern.  Ignore the dups.
3082      for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
3083        if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
3084          AlreadyExists = true;
3085          break;
3086        }
3087
3088      if (AlreadyExists)
3089        delete R;
3090      else
3091        OutVariants.push_back(R);
3092    }
3093
3094    // Increment indices to the next permutation by incrementing the
3095    // indicies from last index backward, e.g., generate the sequence
3096    // [0, 0], [0, 1], [1, 0], [1, 1].
3097    int IdxsIdx;
3098    for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
3099      if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
3100        Idxs[IdxsIdx] = 0;
3101      else
3102        break;
3103    }
3104    NotDone = (IdxsIdx >= 0);
3105  } while (NotDone);
3106}
3107
3108/// CombineChildVariants - A helper function for binary operators.
3109///
3110static void CombineChildVariants(TreePatternNode *Orig,
3111                                 const std::vector<TreePatternNode*> &LHS,
3112                                 const std::vector<TreePatternNode*> &RHS,
3113                                 std::vector<TreePatternNode*> &OutVariants,
3114                                 CodeGenDAGPatterns &CDP,
3115                                 const MultipleUseVarSet &DepVars) {
3116  std::vector<std::vector<TreePatternNode*> > ChildVariants;
3117  ChildVariants.push_back(LHS);
3118  ChildVariants.push_back(RHS);
3119  CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
3120}
3121
3122
3123static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
3124                                     std::vector<TreePatternNode *> &Children) {
3125  assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
3126  Record *Operator = N->getOperator();
3127
3128  // Only permit raw nodes.
3129  if (!N->getName().empty() || !N->getPredicateFns().empty() ||
3130      N->getTransformFn()) {
3131    Children.push_back(N);
3132    return;
3133  }
3134
3135  if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
3136    Children.push_back(N->getChild(0));
3137  else
3138    GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
3139
3140  if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
3141    Children.push_back(N->getChild(1));
3142  else
3143    GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
3144}
3145
3146/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
3147/// the (potentially recursive) pattern by using algebraic laws.
3148///
3149static void GenerateVariantsOf(TreePatternNode *N,
3150                               std::vector<TreePatternNode*> &OutVariants,
3151                               CodeGenDAGPatterns &CDP,
3152                               const MultipleUseVarSet &DepVars) {
3153  // We cannot permute leaves.
3154  if (N->isLeaf()) {
3155    OutVariants.push_back(N);
3156    return;
3157  }
3158
3159  // Look up interesting info about the node.
3160  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
3161
3162  // If this node is associative, re-associate.
3163  if (NodeInfo.hasProperty(SDNPAssociative)) {
3164    // Re-associate by pulling together all of the linked operators
3165    std::vector<TreePatternNode*> MaximalChildren;
3166    GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
3167
3168    // Only handle child sizes of 3.  Otherwise we'll end up trying too many
3169    // permutations.
3170    if (MaximalChildren.size() == 3) {
3171      // Find the variants of all of our maximal children.
3172      std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
3173      GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
3174      GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
3175      GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
3176
3177      // There are only two ways we can permute the tree:
3178      //   (A op B) op C    and    A op (B op C)
3179      // Within these forms, we can also permute A/B/C.
3180
3181      // Generate legal pair permutations of A/B/C.
3182      std::vector<TreePatternNode*> ABVariants;
3183      std::vector<TreePatternNode*> BAVariants;
3184      std::vector<TreePatternNode*> ACVariants;
3185      std::vector<TreePatternNode*> CAVariants;
3186      std::vector<TreePatternNode*> BCVariants;
3187      std::vector<TreePatternNode*> CBVariants;
3188      CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
3189      CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
3190      CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
3191      CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
3192      CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
3193      CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
3194
3195      // Combine those into the result: (x op x) op x
3196      CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
3197      CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
3198      CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
3199      CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
3200      CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
3201      CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
3202
3203      // Combine those into the result: x op (x op x)
3204      CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
3205      CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
3206      CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
3207      CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
3208      CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
3209      CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
3210      return;
3211    }
3212  }
3213
3214  // Compute permutations of all children.
3215  std::vector<std::vector<TreePatternNode*> > ChildVariants;
3216  ChildVariants.resize(N->getNumChildren());
3217  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3218    GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
3219
3220  // Build all permutations based on how the children were formed.
3221  CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
3222
3223  // If this node is commutative, consider the commuted order.
3224  bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
3225  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
3226    assert((N->getNumChildren()==2 || isCommIntrinsic) &&
3227           "Commutative but doesn't have 2 children!");
3228    // Don't count children which are actually register references.
3229    unsigned NC = 0;
3230    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
3231      TreePatternNode *Child = N->getChild(i);
3232      if (Child->isLeaf())
3233        if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
3234          Record *RR = DI->getDef();
3235          if (RR->isSubClassOf("Register"))
3236            continue;
3237        }
3238      NC++;
3239    }
3240    // Consider the commuted order.
3241    if (isCommIntrinsic) {
3242      // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
3243      // operands are the commutative operands, and there might be more operands
3244      // after those.
3245      assert(NC >= 3 &&
3246             "Commutative intrinsic should have at least 3 childrean!");
3247      std::vector<std::vector<TreePatternNode*> > Variants;
3248      Variants.push_back(ChildVariants[0]); // Intrinsic id.
3249      Variants.push_back(ChildVariants[2]);
3250      Variants.push_back(ChildVariants[1]);
3251      for (unsigned i = 3; i != NC; ++i)
3252        Variants.push_back(ChildVariants[i]);
3253      CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
3254    } else if (NC == 2)
3255      CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
3256                           OutVariants, CDP, DepVars);
3257  }
3258}
3259
3260
3261// GenerateVariants - Generate variants.  For example, commutative patterns can
3262// match multiple ways.  Add them to PatternsToMatch as well.
3263void CodeGenDAGPatterns::GenerateVariants() {
3264  DEBUG(errs() << "Generating instruction variants.\n");
3265
3266  // Loop over all of the patterns we've collected, checking to see if we can
3267  // generate variants of the instruction, through the exploitation of
3268  // identities.  This permits the target to provide aggressive matching without
3269  // the .td file having to contain tons of variants of instructions.
3270  //
3271  // Note that this loop adds new patterns to the PatternsToMatch list, but we
3272  // intentionally do not reconsider these.  Any variants of added patterns have
3273  // already been added.
3274  //
3275  for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
3276    MultipleUseVarSet             DepVars;
3277    std::vector<TreePatternNode*> Variants;
3278    FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
3279    DEBUG(errs() << "Dependent/multiply used variables: ");
3280    DEBUG(DumpDepVars(DepVars));
3281    DEBUG(errs() << "\n");
3282    GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
3283                       DepVars);
3284
3285    assert(!Variants.empty() && "Must create at least original variant!");
3286    Variants.erase(Variants.begin());  // Remove the original pattern.
3287
3288    if (Variants.empty())  // No variants for this pattern.
3289      continue;
3290
3291    DEBUG(errs() << "FOUND VARIANTS OF: ";
3292          PatternsToMatch[i].getSrcPattern()->dump();
3293          errs() << "\n");
3294
3295    for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
3296      TreePatternNode *Variant = Variants[v];
3297
3298      DEBUG(errs() << "  VAR#" << v <<  ": ";
3299            Variant->dump();
3300            errs() << "\n");
3301
3302      // Scan to see if an instruction or explicit pattern already matches this.
3303      bool AlreadyExists = false;
3304      for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
3305        // Skip if the top level predicates do not match.
3306        if (PatternsToMatch[i].getPredicates() !=
3307            PatternsToMatch[p].getPredicates())
3308          continue;
3309        // Check to see if this variant already exists.
3310        if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
3311                                    DepVars)) {
3312          DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
3313          AlreadyExists = true;
3314          break;
3315        }
3316      }
3317      // If we already have it, ignore the variant.
3318      if (AlreadyExists) continue;
3319
3320      // Otherwise, add it to the list of patterns we have.
3321      PatternsToMatch.
3322        push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(),
3323                                 PatternsToMatch[i].getPredicates(),
3324                                 Variant, PatternsToMatch[i].getDstPattern(),
3325                                 PatternsToMatch[i].getDstRegs(),
3326                                 PatternsToMatch[i].getAddedComplexity(),
3327                                 Record::getNewUID()));
3328    }
3329
3330    DEBUG(errs() << "\n");
3331  }
3332}
3333
3334