CodeGenDAGPatterns.cpp revision 218893
1//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CodeGenDAGPatterns class, which is used to read and
11// represent the patterns present in a .td file for instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CodeGenDAGPatterns.h"
16#include "Record.h"
17#include "llvm/ADT/StringExtras.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/Support/Debug.h"
20#include <set>
21#include <algorithm>
22using namespace llvm;
23
24//===----------------------------------------------------------------------===//
25//  EEVT::TypeSet Implementation
26//===----------------------------------------------------------------------===//
27
28static inline bool isInteger(MVT::SimpleValueType VT) {
29  return EVT(VT).isInteger();
30}
31static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
32  return EVT(VT).isFloatingPoint();
33}
34static inline bool isVector(MVT::SimpleValueType VT) {
35  return EVT(VT).isVector();
36}
37static inline bool isScalar(MVT::SimpleValueType VT) {
38  return !EVT(VT).isVector();
39}
40
41EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
42  if (VT == MVT::iAny)
43    EnforceInteger(TP);
44  else if (VT == MVT::fAny)
45    EnforceFloatingPoint(TP);
46  else if (VT == MVT::vAny)
47    EnforceVector(TP);
48  else {
49    assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
50            VT == MVT::iPTRAny) && "Not a concrete type!");
51    TypeVec.push_back(VT);
52  }
53}
54
55
56EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) {
57  assert(!VTList.empty() && "empty list?");
58  TypeVec.append(VTList.begin(), VTList.end());
59
60  if (!VTList.empty())
61    assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
62           VTList[0] != MVT::fAny);
63
64  // Verify no duplicates.
65  array_pod_sort(TypeVec.begin(), TypeVec.end());
66  assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
67}
68
69/// FillWithPossibleTypes - Set to all legal types and return true, only valid
70/// on completely unknown type sets.
71bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
72                                          bool (*Pred)(MVT::SimpleValueType),
73                                          const char *PredicateName) {
74  assert(isCompletelyUnknown());
75  const std::vector<MVT::SimpleValueType> &LegalTypes =
76    TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
77
78  for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i)
79    if (Pred == 0 || Pred(LegalTypes[i]))
80      TypeVec.push_back(LegalTypes[i]);
81
82  // If we have nothing that matches the predicate, bail out.
83  if (TypeVec.empty())
84    TP.error("Type inference contradiction found, no " +
85             std::string(PredicateName) + " types found");
86  // No need to sort with one element.
87  if (TypeVec.size() == 1) return true;
88
89  // Remove duplicates.
90  array_pod_sort(TypeVec.begin(), TypeVec.end());
91  TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
92
93  return true;
94}
95
96/// hasIntegerTypes - Return true if this TypeSet contains iAny or an
97/// integer value type.
98bool EEVT::TypeSet::hasIntegerTypes() const {
99  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
100    if (isInteger(TypeVec[i]))
101      return true;
102  return false;
103}
104
105/// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
106/// a floating point value type.
107bool EEVT::TypeSet::hasFloatingPointTypes() const {
108  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
109    if (isFloatingPoint(TypeVec[i]))
110      return true;
111  return false;
112}
113
114/// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
115/// value type.
116bool EEVT::TypeSet::hasVectorTypes() const {
117  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
118    if (isVector(TypeVec[i]))
119      return true;
120  return false;
121}
122
123
124std::string EEVT::TypeSet::getName() const {
125  if (TypeVec.empty()) return "<empty>";
126
127  std::string Result;
128
129  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
130    std::string VTName = llvm::getEnumName(TypeVec[i]);
131    // Strip off MVT:: prefix if present.
132    if (VTName.substr(0,5) == "MVT::")
133      VTName = VTName.substr(5);
134    if (i) Result += ':';
135    Result += VTName;
136  }
137
138  if (TypeVec.size() == 1)
139    return Result;
140  return "{" + Result + "}";
141}
142
143/// MergeInTypeInfo - This merges in type information from the specified
144/// argument.  If 'this' changes, it returns true.  If the two types are
145/// contradictory (e.g. merge f32 into i32) then this throws an exception.
146bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
147  if (InVT.isCompletelyUnknown() || *this == InVT)
148    return false;
149
150  if (isCompletelyUnknown()) {
151    *this = InVT;
152    return true;
153  }
154
155  assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns");
156
157  // Handle the abstract cases, seeing if we can resolve them better.
158  switch (TypeVec[0]) {
159  default: break;
160  case MVT::iPTR:
161  case MVT::iPTRAny:
162    if (InVT.hasIntegerTypes()) {
163      EEVT::TypeSet InCopy(InVT);
164      InCopy.EnforceInteger(TP);
165      InCopy.EnforceScalar(TP);
166
167      if (InCopy.isConcrete()) {
168        // If the RHS has one integer type, upgrade iPTR to i32.
169        TypeVec[0] = InVT.TypeVec[0];
170        return true;
171      }
172
173      // If the input has multiple scalar integers, this doesn't add any info.
174      if (!InCopy.isCompletelyUnknown())
175        return false;
176    }
177    break;
178  }
179
180  // If the input constraint is iAny/iPTR and this is an integer type list,
181  // remove non-integer types from the list.
182  if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
183      hasIntegerTypes()) {
184    bool MadeChange = EnforceInteger(TP);
185
186    // If we're merging in iPTR/iPTRAny and the node currently has a list of
187    // multiple different integer types, replace them with a single iPTR.
188    if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
189        TypeVec.size() != 1) {
190      TypeVec.resize(1);
191      TypeVec[0] = InVT.TypeVec[0];
192      MadeChange = true;
193    }
194
195    return MadeChange;
196  }
197
198  // If this is a type list and the RHS is a typelist as well, eliminate entries
199  // from this list that aren't in the other one.
200  bool MadeChange = false;
201  TypeSet InputSet(*this);
202
203  for (unsigned i = 0; i != TypeVec.size(); ++i) {
204    bool InInVT = false;
205    for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j)
206      if (TypeVec[i] == InVT.TypeVec[j]) {
207        InInVT = true;
208        break;
209      }
210
211    if (InInVT) continue;
212    TypeVec.erase(TypeVec.begin()+i--);
213    MadeChange = true;
214  }
215
216  // If we removed all of our types, we have a type contradiction.
217  if (!TypeVec.empty())
218    return MadeChange;
219
220  // FIXME: Really want an SMLoc here!
221  TP.error("Type inference contradiction found, merging '" +
222           InVT.getName() + "' into '" + InputSet.getName() + "'");
223  return true; // unreachable
224}
225
226/// EnforceInteger - Remove all non-integer types from this set.
227bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
228  // If we know nothing, then get the full set.
229  if (TypeVec.empty())
230    return FillWithPossibleTypes(TP, isInteger, "integer");
231  if (!hasFloatingPointTypes())
232    return false;
233
234  TypeSet InputSet(*this);
235
236  // Filter out all the fp types.
237  for (unsigned i = 0; i != TypeVec.size(); ++i)
238    if (!isInteger(TypeVec[i]))
239      TypeVec.erase(TypeVec.begin()+i--);
240
241  if (TypeVec.empty())
242    TP.error("Type inference contradiction found, '" +
243             InputSet.getName() + "' needs to be integer");
244  return true;
245}
246
247/// EnforceFloatingPoint - Remove all integer types from this set.
248bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
249  // If we know nothing, then get the full set.
250  if (TypeVec.empty())
251    return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
252
253  if (!hasIntegerTypes())
254    return false;
255
256  TypeSet InputSet(*this);
257
258  // Filter out all the fp types.
259  for (unsigned i = 0; i != TypeVec.size(); ++i)
260    if (!isFloatingPoint(TypeVec[i]))
261      TypeVec.erase(TypeVec.begin()+i--);
262
263  if (TypeVec.empty())
264    TP.error("Type inference contradiction found, '" +
265             InputSet.getName() + "' needs to be floating point");
266  return true;
267}
268
269/// EnforceScalar - Remove all vector types from this.
270bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
271  // If we know nothing, then get the full set.
272  if (TypeVec.empty())
273    return FillWithPossibleTypes(TP, isScalar, "scalar");
274
275  if (!hasVectorTypes())
276    return false;
277
278  TypeSet InputSet(*this);
279
280  // Filter out all the vector types.
281  for (unsigned i = 0; i != TypeVec.size(); ++i)
282    if (!isScalar(TypeVec[i]))
283      TypeVec.erase(TypeVec.begin()+i--);
284
285  if (TypeVec.empty())
286    TP.error("Type inference contradiction found, '" +
287             InputSet.getName() + "' needs to be scalar");
288  return true;
289}
290
291/// EnforceVector - Remove all vector types from this.
292bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
293  // If we know nothing, then get the full set.
294  if (TypeVec.empty())
295    return FillWithPossibleTypes(TP, isVector, "vector");
296
297  TypeSet InputSet(*this);
298  bool MadeChange = false;
299
300  // Filter out all the scalar types.
301  for (unsigned i = 0; i != TypeVec.size(); ++i)
302    if (!isVector(TypeVec[i])) {
303      TypeVec.erase(TypeVec.begin()+i--);
304      MadeChange = true;
305    }
306
307  if (TypeVec.empty())
308    TP.error("Type inference contradiction found, '" +
309             InputSet.getName() + "' needs to be a vector");
310  return MadeChange;
311}
312
313
314
315/// EnforceSmallerThan - 'this' must be a smaller VT than Other.  Update
316/// this an other based on this information.
317bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
318  // Both operands must be integer or FP, but we don't care which.
319  bool MadeChange = false;
320
321  if (isCompletelyUnknown())
322    MadeChange = FillWithPossibleTypes(TP);
323
324  if (Other.isCompletelyUnknown())
325    MadeChange = Other.FillWithPossibleTypes(TP);
326
327  // If one side is known to be integer or known to be FP but the other side has
328  // no information, get at least the type integrality info in there.
329  if (!hasFloatingPointTypes())
330    MadeChange |= Other.EnforceInteger(TP);
331  else if (!hasIntegerTypes())
332    MadeChange |= Other.EnforceFloatingPoint(TP);
333  if (!Other.hasFloatingPointTypes())
334    MadeChange |= EnforceInteger(TP);
335  else if (!Other.hasIntegerTypes())
336    MadeChange |= EnforceFloatingPoint(TP);
337
338  assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
339         "Should have a type list now");
340
341  // If one contains vectors but the other doesn't pull vectors out.
342  if (!hasVectorTypes())
343    MadeChange |= Other.EnforceScalar(TP);
344  if (!hasVectorTypes())
345    MadeChange |= EnforceScalar(TP);
346
347  if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) {
348    // If we are down to concrete types, this code does not currently
349    // handle nodes which have multiple types, where some types are
350    // integer, and some are fp.  Assert that this is not the case.
351    assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
352           !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
353           "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
354
355    // Otherwise, if these are both vector types, either this vector
356    // must have a larger bitsize than the other, or this element type
357    // must be larger than the other.
358    EVT Type(TypeVec[0]);
359    EVT OtherType(Other.TypeVec[0]);
360
361    if (hasVectorTypes() && Other.hasVectorTypes()) {
362      if (Type.getSizeInBits() >= OtherType.getSizeInBits())
363        if (Type.getVectorElementType().getSizeInBits()
364            >= OtherType.getVectorElementType().getSizeInBits())
365          TP.error("Type inference contradiction found, '" +
366                   getName() + "' element type not smaller than '" +
367                   Other.getName() +"'!");
368    }
369    else
370      // For scalar types, the bitsize of this type must be larger
371      // than that of the other.
372      if (Type.getSizeInBits() >= OtherType.getSizeInBits())
373        TP.error("Type inference contradiction found, '" +
374                 getName() + "' is not smaller than '" +
375                 Other.getName() +"'!");
376
377  }
378
379
380  // Handle int and fp as disjoint sets.  This won't work for patterns
381  // that have mixed fp/int types but those are likely rare and would
382  // not have been accepted by this code previously.
383
384  // Okay, find the smallest type from the current set and remove it from the
385  // largest set.
386  MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE;
387  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
388    if (isInteger(TypeVec[i])) {
389      SmallestInt = TypeVec[i];
390      break;
391    }
392  for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
393    if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt)
394      SmallestInt = TypeVec[i];
395
396  MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE;
397  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
398    if (isFloatingPoint(TypeVec[i])) {
399      SmallestFP = TypeVec[i];
400      break;
401    }
402  for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
403    if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP)
404      SmallestFP = TypeVec[i];
405
406  int OtherIntSize = 0;
407  int OtherFPSize = 0;
408  for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
409         Other.TypeVec.begin();
410       TVI != Other.TypeVec.end();
411       /* NULL */) {
412    if (isInteger(*TVI)) {
413      ++OtherIntSize;
414      if (*TVI == SmallestInt) {
415        TVI = Other.TypeVec.erase(TVI);
416        --OtherIntSize;
417        MadeChange = true;
418        continue;
419      }
420    }
421    else if (isFloatingPoint(*TVI)) {
422      ++OtherFPSize;
423      if (*TVI == SmallestFP) {
424        TVI = Other.TypeVec.erase(TVI);
425        --OtherFPSize;
426        MadeChange = true;
427        continue;
428      }
429    }
430    ++TVI;
431  }
432
433  // If this is the only type in the large set, the constraint can never be
434  // satisfied.
435  if ((Other.hasIntegerTypes() && OtherIntSize == 0)
436      || (Other.hasFloatingPointTypes() && OtherFPSize == 0))
437    TP.error("Type inference contradiction found, '" +
438             Other.getName() + "' has nothing larger than '" + getName() +"'!");
439
440  // Okay, find the largest type in the Other set and remove it from the
441  // current set.
442  MVT::SimpleValueType LargestInt = MVT::Other;
443  for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
444    if (isInteger(Other.TypeVec[i])) {
445      LargestInt = Other.TypeVec[i];
446      break;
447    }
448  for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
449    if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt)
450      LargestInt = Other.TypeVec[i];
451
452  MVT::SimpleValueType LargestFP = MVT::Other;
453  for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
454    if (isFloatingPoint(Other.TypeVec[i])) {
455      LargestFP = Other.TypeVec[i];
456      break;
457    }
458  for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
459    if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP)
460      LargestFP = Other.TypeVec[i];
461
462  int IntSize = 0;
463  int FPSize = 0;
464  for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
465         TypeVec.begin();
466       TVI != TypeVec.end();
467       /* NULL */) {
468    if (isInteger(*TVI)) {
469      ++IntSize;
470      if (*TVI == LargestInt) {
471        TVI = TypeVec.erase(TVI);
472        --IntSize;
473        MadeChange = true;
474        continue;
475      }
476    }
477    else if (isFloatingPoint(*TVI)) {
478      ++FPSize;
479      if (*TVI == LargestFP) {
480        TVI = TypeVec.erase(TVI);
481        --FPSize;
482        MadeChange = true;
483        continue;
484      }
485    }
486    ++TVI;
487  }
488
489  // If this is the only type in the small set, the constraint can never be
490  // satisfied.
491  if ((hasIntegerTypes() && IntSize == 0)
492      || (hasFloatingPointTypes() && FPSize == 0))
493    TP.error("Type inference contradiction found, '" +
494             getName() + "' has nothing smaller than '" + Other.getName()+"'!");
495
496  return MadeChange;
497}
498
499/// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
500/// whose element is specified by VTOperand.
501bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
502                                           TreePattern &TP) {
503  // "This" must be a vector and "VTOperand" must be a scalar.
504  bool MadeChange = false;
505  MadeChange |= EnforceVector(TP);
506  MadeChange |= VTOperand.EnforceScalar(TP);
507
508  // If we know the vector type, it forces the scalar to agree.
509  if (isConcrete()) {
510    EVT IVT = getConcrete();
511    IVT = IVT.getVectorElementType();
512    return MadeChange |
513      VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP);
514  }
515
516  // If the scalar type is known, filter out vector types whose element types
517  // disagree.
518  if (!VTOperand.isConcrete())
519    return MadeChange;
520
521  MVT::SimpleValueType VT = VTOperand.getConcrete();
522
523  TypeSet InputSet(*this);
524
525  // Filter out all the types which don't have the right element type.
526  for (unsigned i = 0; i != TypeVec.size(); ++i) {
527    assert(isVector(TypeVec[i]) && "EnforceVector didn't work");
528    if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) {
529      TypeVec.erase(TypeVec.begin()+i--);
530      MadeChange = true;
531    }
532  }
533
534  if (TypeVec.empty())  // FIXME: Really want an SMLoc here!
535    TP.error("Type inference contradiction found, forcing '" +
536             InputSet.getName() + "' to have a vector element");
537  return MadeChange;
538}
539
540/// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a
541/// vector type specified by VTOperand.
542bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
543                                                 TreePattern &TP) {
544  // "This" must be a vector and "VTOperand" must be a vector.
545  bool MadeChange = false;
546  MadeChange |= EnforceVector(TP);
547  MadeChange |= VTOperand.EnforceVector(TP);
548
549  // "This" must be larger than "VTOperand."
550  MadeChange |= VTOperand.EnforceSmallerThan(*this, TP);
551
552  // If we know the vector type, it forces the scalar types to agree.
553  if (isConcrete()) {
554    EVT IVT = getConcrete();
555    IVT = IVT.getVectorElementType();
556
557    EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
558    MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
559  } else if (VTOperand.isConcrete()) {
560    EVT IVT = VTOperand.getConcrete();
561    IVT = IVT.getVectorElementType();
562
563    EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
564    MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
565  }
566
567  return MadeChange;
568}
569
570//===----------------------------------------------------------------------===//
571// Helpers for working with extended types.
572
573bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const {
574  return LHS->getID() < RHS->getID();
575}
576
577/// Dependent variable map for CodeGenDAGPattern variant generation
578typedef std::map<std::string, int> DepVarMap;
579
580/// Const iterator shorthand for DepVarMap
581typedef DepVarMap::const_iterator DepVarMap_citer;
582
583namespace {
584void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
585  if (N->isLeaf()) {
586    if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL) {
587      DepMap[N->getName()]++;
588    }
589  } else {
590    for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
591      FindDepVarsOf(N->getChild(i), DepMap);
592  }
593}
594
595//! Find dependent variables within child patterns
596/*!
597 */
598void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
599  DepVarMap depcounts;
600  FindDepVarsOf(N, depcounts);
601  for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
602    if (i->second > 1) {            // std::pair<std::string, int>
603      DepVars.insert(i->first);
604    }
605  }
606}
607
608//! Dump the dependent variable set:
609#ifndef NDEBUG
610void DumpDepVars(MultipleUseVarSet &DepVars) {
611  if (DepVars.empty()) {
612    DEBUG(errs() << "<empty set>");
613  } else {
614    DEBUG(errs() << "[ ");
615    for (MultipleUseVarSet::const_iterator i = DepVars.begin(),
616         e = DepVars.end(); i != e; ++i) {
617      DEBUG(errs() << (*i) << " ");
618    }
619    DEBUG(errs() << "]");
620  }
621}
622#endif
623
624}
625
626//===----------------------------------------------------------------------===//
627// PatternToMatch implementation
628//
629
630
631/// getPatternSize - Return the 'size' of this pattern.  We want to match large
632/// patterns before small ones.  This is used to determine the size of a
633/// pattern.
634static unsigned getPatternSize(const TreePatternNode *P,
635                               const CodeGenDAGPatterns &CGP) {
636  unsigned Size = 3;  // The node itself.
637  // If the root node is a ConstantSDNode, increases its size.
638  // e.g. (set R32:$dst, 0).
639  if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
640    Size += 2;
641
642  // FIXME: This is a hack to statically increase the priority of patterns
643  // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
644  // Later we can allow complexity / cost for each pattern to be (optionally)
645  // specified. To get best possible pattern match we'll need to dynamically
646  // calculate the complexity of all patterns a dag can potentially map to.
647  const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
648  if (AM)
649    Size += AM->getNumOperands() * 3;
650
651  // If this node has some predicate function that must match, it adds to the
652  // complexity of this node.
653  if (!P->getPredicateFns().empty())
654    ++Size;
655
656  // Count children in the count if they are also nodes.
657  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
658    TreePatternNode *Child = P->getChild(i);
659    if (!Child->isLeaf() && Child->getNumTypes() &&
660        Child->getType(0) != MVT::Other)
661      Size += getPatternSize(Child, CGP);
662    else if (Child->isLeaf()) {
663      if (dynamic_cast<IntInit*>(Child->getLeafValue()))
664        Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
665      else if (Child->getComplexPatternInfo(CGP))
666        Size += getPatternSize(Child, CGP);
667      else if (!Child->getPredicateFns().empty())
668        ++Size;
669    }
670  }
671
672  return Size;
673}
674
675/// Compute the complexity metric for the input pattern.  This roughly
676/// corresponds to the number of nodes that are covered.
677unsigned PatternToMatch::
678getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
679  return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
680}
681
682
683/// getPredicateCheck - Return a single string containing all of this
684/// pattern's predicates concatenated with "&&" operators.
685///
686std::string PatternToMatch::getPredicateCheck() const {
687  std::string PredicateCheck;
688  for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
689    if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
690      Record *Def = Pred->getDef();
691      if (!Def->isSubClassOf("Predicate")) {
692#ifndef NDEBUG
693        Def->dump();
694#endif
695        assert(0 && "Unknown predicate type!");
696      }
697      if (!PredicateCheck.empty())
698        PredicateCheck += " && ";
699      PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
700    }
701  }
702
703  return PredicateCheck;
704}
705
706//===----------------------------------------------------------------------===//
707// SDTypeConstraint implementation
708//
709
710SDTypeConstraint::SDTypeConstraint(Record *R) {
711  OperandNo = R->getValueAsInt("OperandNum");
712
713  if (R->isSubClassOf("SDTCisVT")) {
714    ConstraintType = SDTCisVT;
715    x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
716    if (x.SDTCisVT_Info.VT == MVT::isVoid)
717      throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
718
719  } else if (R->isSubClassOf("SDTCisPtrTy")) {
720    ConstraintType = SDTCisPtrTy;
721  } else if (R->isSubClassOf("SDTCisInt")) {
722    ConstraintType = SDTCisInt;
723  } else if (R->isSubClassOf("SDTCisFP")) {
724    ConstraintType = SDTCisFP;
725  } else if (R->isSubClassOf("SDTCisVec")) {
726    ConstraintType = SDTCisVec;
727  } else if (R->isSubClassOf("SDTCisSameAs")) {
728    ConstraintType = SDTCisSameAs;
729    x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
730  } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
731    ConstraintType = SDTCisVTSmallerThanOp;
732    x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
733      R->getValueAsInt("OtherOperandNum");
734  } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
735    ConstraintType = SDTCisOpSmallerThanOp;
736    x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
737      R->getValueAsInt("BigOperandNum");
738  } else if (R->isSubClassOf("SDTCisEltOfVec")) {
739    ConstraintType = SDTCisEltOfVec;
740    x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
741  } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
742    ConstraintType = SDTCisSubVecOfVec;
743    x.SDTCisSubVecOfVec_Info.OtherOperandNum =
744      R->getValueAsInt("OtherOpNum");
745  } else {
746    errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
747    exit(1);
748  }
749}
750
751/// getOperandNum - Return the node corresponding to operand #OpNo in tree
752/// N, and the result number in ResNo.
753static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
754                                      const SDNodeInfo &NodeInfo,
755                                      unsigned &ResNo) {
756  unsigned NumResults = NodeInfo.getNumResults();
757  if (OpNo < NumResults) {
758    ResNo = OpNo;
759    return N;
760  }
761
762  OpNo -= NumResults;
763
764  if (OpNo >= N->getNumChildren()) {
765    errs() << "Invalid operand number in type constraint "
766           << (OpNo+NumResults) << " ";
767    N->dump();
768    errs() << '\n';
769    exit(1);
770  }
771
772  return N->getChild(OpNo);
773}
774
775/// ApplyTypeConstraint - Given a node in a pattern, apply this type
776/// constraint to the nodes operands.  This returns true if it makes a
777/// change, false otherwise.  If a type contradiction is found, throw an
778/// exception.
779bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
780                                           const SDNodeInfo &NodeInfo,
781                                           TreePattern &TP) const {
782  unsigned ResNo = 0; // The result number being referenced.
783  TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
784
785  switch (ConstraintType) {
786  default: assert(0 && "Unknown constraint type!");
787  case SDTCisVT:
788    // Operand must be a particular type.
789    return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
790  case SDTCisPtrTy:
791    // Operand must be same as target pointer type.
792    return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
793  case SDTCisInt:
794    // Require it to be one of the legal integer VTs.
795    return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
796  case SDTCisFP:
797    // Require it to be one of the legal fp VTs.
798    return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
799  case SDTCisVec:
800    // Require it to be one of the legal vector VTs.
801    return NodeToApply->getExtType(ResNo).EnforceVector(TP);
802  case SDTCisSameAs: {
803    unsigned OResNo = 0;
804    TreePatternNode *OtherNode =
805      getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
806    return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)|
807           OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP);
808  }
809  case SDTCisVTSmallerThanOp: {
810    // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
811    // have an integer type that is smaller than the VT.
812    if (!NodeToApply->isLeaf() ||
813        !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
814        !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
815               ->isSubClassOf("ValueType"))
816      TP.error(N->getOperator()->getName() + " expects a VT operand!");
817    MVT::SimpleValueType VT =
818     getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
819
820    EEVT::TypeSet TypeListTmp(VT, TP);
821
822    unsigned OResNo = 0;
823    TreePatternNode *OtherNode =
824      getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
825                    OResNo);
826
827    return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
828  }
829  case SDTCisOpSmallerThanOp: {
830    unsigned BResNo = 0;
831    TreePatternNode *BigOperand =
832      getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
833                    BResNo);
834    return NodeToApply->getExtType(ResNo).
835                  EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
836  }
837  case SDTCisEltOfVec: {
838    unsigned VResNo = 0;
839    TreePatternNode *VecOperand =
840      getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
841                    VResNo);
842
843    // Filter vector types out of VecOperand that don't have the right element
844    // type.
845    return VecOperand->getExtType(VResNo).
846      EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
847  }
848  case SDTCisSubVecOfVec: {
849    unsigned VResNo = 0;
850    TreePatternNode *BigVecOperand =
851      getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
852                    VResNo);
853
854    // Filter vector types out of BigVecOperand that don't have the
855    // right subvector type.
856    return BigVecOperand->getExtType(VResNo).
857      EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
858  }
859  }
860  return false;
861}
862
863//===----------------------------------------------------------------------===//
864// SDNodeInfo implementation
865//
866SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
867  EnumName    = R->getValueAsString("Opcode");
868  SDClassName = R->getValueAsString("SDClass");
869  Record *TypeProfile = R->getValueAsDef("TypeProfile");
870  NumResults = TypeProfile->getValueAsInt("NumResults");
871  NumOperands = TypeProfile->getValueAsInt("NumOperands");
872
873  // Parse the properties.
874  Properties = 0;
875  std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
876  for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
877    if (PropList[i]->getName() == "SDNPCommutative") {
878      Properties |= 1 << SDNPCommutative;
879    } else if (PropList[i]->getName() == "SDNPAssociative") {
880      Properties |= 1 << SDNPAssociative;
881    } else if (PropList[i]->getName() == "SDNPHasChain") {
882      Properties |= 1 << SDNPHasChain;
883    } else if (PropList[i]->getName() == "SDNPOutGlue") {
884      Properties |= 1 << SDNPOutGlue;
885    } else if (PropList[i]->getName() == "SDNPInGlue") {
886      Properties |= 1 << SDNPInGlue;
887    } else if (PropList[i]->getName() == "SDNPOptInGlue") {
888      Properties |= 1 << SDNPOptInGlue;
889    } else if (PropList[i]->getName() == "SDNPMayStore") {
890      Properties |= 1 << SDNPMayStore;
891    } else if (PropList[i]->getName() == "SDNPMayLoad") {
892      Properties |= 1 << SDNPMayLoad;
893    } else if (PropList[i]->getName() == "SDNPSideEffect") {
894      Properties |= 1 << SDNPSideEffect;
895    } else if (PropList[i]->getName() == "SDNPMemOperand") {
896      Properties |= 1 << SDNPMemOperand;
897    } else if (PropList[i]->getName() == "SDNPVariadic") {
898      Properties |= 1 << SDNPVariadic;
899    } else {
900      errs() << "Unknown SD Node property '" << PropList[i]->getName()
901             << "' on node '" << R->getName() << "'!\n";
902      exit(1);
903    }
904  }
905
906
907  // Parse the type constraints.
908  std::vector<Record*> ConstraintList =
909    TypeProfile->getValueAsListOfDefs("Constraints");
910  TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
911}
912
913/// getKnownType - If the type constraints on this node imply a fixed type
914/// (e.g. all stores return void, etc), then return it as an
915/// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
916MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
917  unsigned NumResults = getNumResults();
918  assert(NumResults <= 1 &&
919         "We only work with nodes with zero or one result so far!");
920  assert(ResNo == 0 && "Only handles single result nodes so far");
921
922  for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) {
923    // Make sure that this applies to the correct node result.
924    if (TypeConstraints[i].OperandNo >= NumResults)  // FIXME: need value #
925      continue;
926
927    switch (TypeConstraints[i].ConstraintType) {
928    default: break;
929    case SDTypeConstraint::SDTCisVT:
930      return TypeConstraints[i].x.SDTCisVT_Info.VT;
931    case SDTypeConstraint::SDTCisPtrTy:
932      return MVT::iPTR;
933    }
934  }
935  return MVT::Other;
936}
937
938//===----------------------------------------------------------------------===//
939// TreePatternNode implementation
940//
941
942TreePatternNode::~TreePatternNode() {
943#if 0 // FIXME: implement refcounted tree nodes!
944  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
945    delete getChild(i);
946#endif
947}
948
949static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
950  if (Operator->getName() == "set" ||
951      Operator->getName() == "implicit")
952    return 0;  // All return nothing.
953
954  if (Operator->isSubClassOf("Intrinsic"))
955    return CDP.getIntrinsic(Operator).IS.RetVTs.size();
956
957  if (Operator->isSubClassOf("SDNode"))
958    return CDP.getSDNodeInfo(Operator).getNumResults();
959
960  if (Operator->isSubClassOf("PatFrag")) {
961    // If we've already parsed this pattern fragment, get it.  Otherwise, handle
962    // the forward reference case where one pattern fragment references another
963    // before it is processed.
964    if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
965      return PFRec->getOnlyTree()->getNumTypes();
966
967    // Get the result tree.
968    DagInit *Tree = Operator->getValueAsDag("Fragment");
969    Record *Op = 0;
970    if (Tree && dynamic_cast<DefInit*>(Tree->getOperator()))
971      Op = dynamic_cast<DefInit*>(Tree->getOperator())->getDef();
972    assert(Op && "Invalid Fragment");
973    return GetNumNodeResults(Op, CDP);
974  }
975
976  if (Operator->isSubClassOf("Instruction")) {
977    CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
978
979    // FIXME: Should allow access to all the results here.
980    unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
981
982    // Add on one implicit def if it has a resolvable type.
983    if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
984      ++NumDefsToAdd;
985    return NumDefsToAdd;
986  }
987
988  if (Operator->isSubClassOf("SDNodeXForm"))
989    return 1;  // FIXME: Generalize SDNodeXForm
990
991  Operator->dump();
992  errs() << "Unhandled node in GetNumNodeResults\n";
993  exit(1);
994}
995
996void TreePatternNode::print(raw_ostream &OS) const {
997  if (isLeaf())
998    OS << *getLeafValue();
999  else
1000    OS << '(' << getOperator()->getName();
1001
1002  for (unsigned i = 0, e = Types.size(); i != e; ++i)
1003    OS << ':' << getExtType(i).getName();
1004
1005  if (!isLeaf()) {
1006    if (getNumChildren() != 0) {
1007      OS << " ";
1008      getChild(0)->print(OS);
1009      for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1010        OS << ", ";
1011        getChild(i)->print(OS);
1012      }
1013    }
1014    OS << ")";
1015  }
1016
1017  for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
1018    OS << "<<P:" << PredicateFns[i] << ">>";
1019  if (TransformFn)
1020    OS << "<<X:" << TransformFn->getName() << ">>";
1021  if (!getName().empty())
1022    OS << ":$" << getName();
1023
1024}
1025void TreePatternNode::dump() const {
1026  print(errs());
1027}
1028
1029/// isIsomorphicTo - Return true if this node is recursively
1030/// isomorphic to the specified node.  For this comparison, the node's
1031/// entire state is considered. The assigned name is ignored, since
1032/// nodes with differing names are considered isomorphic. However, if
1033/// the assigned name is present in the dependent variable set, then
1034/// the assigned name is considered significant and the node is
1035/// isomorphic if the names match.
1036bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1037                                     const MultipleUseVarSet &DepVars) const {
1038  if (N == this) return true;
1039  if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1040      getPredicateFns() != N->getPredicateFns() ||
1041      getTransformFn() != N->getTransformFn())
1042    return false;
1043
1044  if (isLeaf()) {
1045    if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
1046      if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) {
1047        return ((DI->getDef() == NDI->getDef())
1048                && (DepVars.find(getName()) == DepVars.end()
1049                    || getName() == N->getName()));
1050      }
1051    }
1052    return getLeafValue() == N->getLeafValue();
1053  }
1054
1055  if (N->getOperator() != getOperator() ||
1056      N->getNumChildren() != getNumChildren()) return false;
1057  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1058    if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1059      return false;
1060  return true;
1061}
1062
1063/// clone - Make a copy of this tree and all of its children.
1064///
1065TreePatternNode *TreePatternNode::clone() const {
1066  TreePatternNode *New;
1067  if (isLeaf()) {
1068    New = new TreePatternNode(getLeafValue(), getNumTypes());
1069  } else {
1070    std::vector<TreePatternNode*> CChildren;
1071    CChildren.reserve(Children.size());
1072    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1073      CChildren.push_back(getChild(i)->clone());
1074    New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
1075  }
1076  New->setName(getName());
1077  New->Types = Types;
1078  New->setPredicateFns(getPredicateFns());
1079  New->setTransformFn(getTransformFn());
1080  return New;
1081}
1082
1083/// RemoveAllTypes - Recursively strip all the types of this tree.
1084void TreePatternNode::RemoveAllTypes() {
1085  for (unsigned i = 0, e = Types.size(); i != e; ++i)
1086    Types[i] = EEVT::TypeSet();  // Reset to unknown type.
1087  if (isLeaf()) return;
1088  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1089    getChild(i)->RemoveAllTypes();
1090}
1091
1092
1093/// SubstituteFormalArguments - Replace the formal arguments in this tree
1094/// with actual values specified by ArgMap.
1095void TreePatternNode::
1096SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
1097  if (isLeaf()) return;
1098
1099  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1100    TreePatternNode *Child = getChild(i);
1101    if (Child->isLeaf()) {
1102      Init *Val = Child->getLeafValue();
1103      if (dynamic_cast<DefInit*>(Val) &&
1104          static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
1105        // We found a use of a formal argument, replace it with its value.
1106        TreePatternNode *NewChild = ArgMap[Child->getName()];
1107        assert(NewChild && "Couldn't find formal argument!");
1108        assert((Child->getPredicateFns().empty() ||
1109                NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1110               "Non-empty child predicate clobbered!");
1111        setChild(i, NewChild);
1112      }
1113    } else {
1114      getChild(i)->SubstituteFormalArguments(ArgMap);
1115    }
1116  }
1117}
1118
1119
1120/// InlinePatternFragments - If this pattern refers to any pattern
1121/// fragments, inline them into place, giving us a pattern without any
1122/// PatFrag references.
1123TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
1124  if (isLeaf()) return this;  // nothing to do.
1125  Record *Op = getOperator();
1126
1127  if (!Op->isSubClassOf("PatFrag")) {
1128    // Just recursively inline children nodes.
1129    for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1130      TreePatternNode *Child = getChild(i);
1131      TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
1132
1133      assert((Child->getPredicateFns().empty() ||
1134              NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1135             "Non-empty child predicate clobbered!");
1136
1137      setChild(i, NewChild);
1138    }
1139    return this;
1140  }
1141
1142  // Otherwise, we found a reference to a fragment.  First, look up its
1143  // TreePattern record.
1144  TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1145
1146  // Verify that we are passing the right number of operands.
1147  if (Frag->getNumArgs() != Children.size())
1148    TP.error("'" + Op->getName() + "' fragment requires " +
1149             utostr(Frag->getNumArgs()) + " operands!");
1150
1151  TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
1152
1153  std::string Code = Op->getValueAsCode("Predicate");
1154  if (!Code.empty())
1155    FragTree->addPredicateFn("Predicate_"+Op->getName());
1156
1157  // Resolve formal arguments to their actual value.
1158  if (Frag->getNumArgs()) {
1159    // Compute the map of formal to actual arguments.
1160    std::map<std::string, TreePatternNode*> ArgMap;
1161    for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
1162      ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
1163
1164    FragTree->SubstituteFormalArguments(ArgMap);
1165  }
1166
1167  FragTree->setName(getName());
1168  for (unsigned i = 0, e = Types.size(); i != e; ++i)
1169    FragTree->UpdateNodeType(i, getExtType(i), TP);
1170
1171  // Transfer in the old predicates.
1172  for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
1173    FragTree->addPredicateFn(getPredicateFns()[i]);
1174
1175  // Get a new copy of this fragment to stitch into here.
1176  //delete this;    // FIXME: implement refcounting!
1177
1178  // The fragment we inlined could have recursive inlining that is needed.  See
1179  // if there are any pattern fragments in it and inline them as needed.
1180  return FragTree->InlinePatternFragments(TP);
1181}
1182
1183/// getImplicitType - Check to see if the specified record has an implicit
1184/// type which should be applied to it.  This will infer the type of register
1185/// references from the register file information, for example.
1186///
1187static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
1188                                     bool NotRegisters, TreePattern &TP) {
1189  // Check to see if this is a register or a register class.
1190  if (R->isSubClassOf("RegisterClass")) {
1191    assert(ResNo == 0 && "Regclass ref only has one result!");
1192    if (NotRegisters)
1193      return EEVT::TypeSet(); // Unknown.
1194    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1195    return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
1196  }
1197
1198  if (R->isSubClassOf("PatFrag")) {
1199    assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
1200    // Pattern fragment types will be resolved when they are inlined.
1201    return EEVT::TypeSet(); // Unknown.
1202  }
1203
1204  if (R->isSubClassOf("Register")) {
1205    assert(ResNo == 0 && "Registers only produce one result!");
1206    if (NotRegisters)
1207      return EEVT::TypeSet(); // Unknown.
1208    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1209    return EEVT::TypeSet(T.getRegisterVTs(R));
1210  }
1211
1212  if (R->isSubClassOf("SubRegIndex")) {
1213    assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
1214    return EEVT::TypeSet();
1215  }
1216
1217  if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
1218    assert(ResNo == 0 && "This node only has one result!");
1219    // Using a VTSDNode or CondCodeSDNode.
1220    return EEVT::TypeSet(MVT::Other, TP);
1221  }
1222
1223  if (R->isSubClassOf("ComplexPattern")) {
1224    assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
1225    if (NotRegisters)
1226      return EEVT::TypeSet(); // Unknown.
1227   return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
1228                         TP);
1229  }
1230  if (R->isSubClassOf("PointerLikeRegClass")) {
1231    assert(ResNo == 0 && "Regclass can only have one result!");
1232    return EEVT::TypeSet(MVT::iPTR, TP);
1233  }
1234
1235  if (R->getName() == "node" || R->getName() == "srcvalue" ||
1236      R->getName() == "zero_reg") {
1237    // Placeholder.
1238    return EEVT::TypeSet(); // Unknown.
1239  }
1240
1241  TP.error("Unknown node flavor used in pattern: " + R->getName());
1242  return EEVT::TypeSet(MVT::Other, TP);
1243}
1244
1245
1246/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
1247/// CodeGenIntrinsic information for it, otherwise return a null pointer.
1248const CodeGenIntrinsic *TreePatternNode::
1249getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
1250  if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
1251      getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
1252      getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
1253    return 0;
1254
1255  unsigned IID =
1256    dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
1257  return &CDP.getIntrinsicInfo(IID);
1258}
1259
1260/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
1261/// return the ComplexPattern information, otherwise return null.
1262const ComplexPattern *
1263TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
1264  if (!isLeaf()) return 0;
1265
1266  DefInit *DI = dynamic_cast<DefInit*>(getLeafValue());
1267  if (DI && DI->getDef()->isSubClassOf("ComplexPattern"))
1268    return &CGP.getComplexPattern(DI->getDef());
1269  return 0;
1270}
1271
1272/// NodeHasProperty - Return true if this node has the specified property.
1273bool TreePatternNode::NodeHasProperty(SDNP Property,
1274                                      const CodeGenDAGPatterns &CGP) const {
1275  if (isLeaf()) {
1276    if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1277      return CP->hasProperty(Property);
1278    return false;
1279  }
1280
1281  Record *Operator = getOperator();
1282  if (!Operator->isSubClassOf("SDNode")) return false;
1283
1284  return CGP.getSDNodeInfo(Operator).hasProperty(Property);
1285}
1286
1287
1288
1289
1290/// TreeHasProperty - Return true if any node in this tree has the specified
1291/// property.
1292bool TreePatternNode::TreeHasProperty(SDNP Property,
1293                                      const CodeGenDAGPatterns &CGP) const {
1294  if (NodeHasProperty(Property, CGP))
1295    return true;
1296  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1297    if (getChild(i)->TreeHasProperty(Property, CGP))
1298      return true;
1299  return false;
1300}
1301
1302/// isCommutativeIntrinsic - Return true if the node corresponds to a
1303/// commutative intrinsic.
1304bool
1305TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
1306  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
1307    return Int->isCommutative;
1308  return false;
1309}
1310
1311
1312/// ApplyTypeConstraints - Apply all of the type constraints relevant to
1313/// this node and its children in the tree.  This returns true if it makes a
1314/// change, false otherwise.  If a type contradiction is found, throw an
1315/// exception.
1316bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
1317  CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1318  if (isLeaf()) {
1319    if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
1320      // If it's a regclass or something else known, include the type.
1321      bool MadeChange = false;
1322      for (unsigned i = 0, e = Types.size(); i != e; ++i)
1323        MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
1324                                                        NotRegisters, TP), TP);
1325      return MadeChange;
1326    }
1327
1328    if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
1329      assert(Types.size() == 1 && "Invalid IntInit");
1330
1331      // Int inits are always integers. :)
1332      bool MadeChange = Types[0].EnforceInteger(TP);
1333
1334      if (!Types[0].isConcrete())
1335        return MadeChange;
1336
1337      MVT::SimpleValueType VT = getType(0);
1338      if (VT == MVT::iPTR || VT == MVT::iPTRAny)
1339        return MadeChange;
1340
1341      unsigned Size = EVT(VT).getSizeInBits();
1342      // Make sure that the value is representable for this type.
1343      if (Size >= 32) return MadeChange;
1344
1345      int Val = (II->getValue() << (32-Size)) >> (32-Size);
1346      if (Val == II->getValue()) return MadeChange;
1347
1348      // If sign-extended doesn't fit, does it fit as unsigned?
1349      unsigned ValueMask;
1350      unsigned UnsignedVal;
1351      ValueMask = unsigned(~uint32_t(0UL) >> (32-Size));
1352      UnsignedVal = unsigned(II->getValue());
1353
1354      if ((ValueMask & UnsignedVal) == UnsignedVal)
1355        return MadeChange;
1356
1357      TP.error("Integer value '" + itostr(II->getValue())+
1358               "' is out of range for type '" + getEnumName(getType(0)) + "'!");
1359      return MadeChange;
1360    }
1361    return false;
1362  }
1363
1364  // special handling for set, which isn't really an SDNode.
1365  if (getOperator()->getName() == "set") {
1366    assert(getNumTypes() == 0 && "Set doesn't produce a value");
1367    assert(getNumChildren() >= 2 && "Missing RHS of a set?");
1368    unsigned NC = getNumChildren();
1369
1370    TreePatternNode *SetVal = getChild(NC-1);
1371    bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
1372
1373    for (unsigned i = 0; i < NC-1; ++i) {
1374      TreePatternNode *Child = getChild(i);
1375      MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1376
1377      // Types of operands must match.
1378      MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
1379      MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
1380    }
1381    return MadeChange;
1382  }
1383
1384  if (getOperator()->getName() == "implicit") {
1385    assert(getNumTypes() == 0 && "Node doesn't produce a value");
1386
1387    bool MadeChange = false;
1388    for (unsigned i = 0; i < getNumChildren(); ++i)
1389      MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1390    return MadeChange;
1391  }
1392
1393  if (getOperator()->getName() == "COPY_TO_REGCLASS") {
1394    bool MadeChange = false;
1395    MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
1396    MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
1397
1398    assert(getChild(0)->getNumTypes() == 1 &&
1399           getChild(1)->getNumTypes() == 1 && "Unhandled case");
1400
1401    // child #1 of COPY_TO_REGCLASS should be a register class.  We don't care
1402    // what type it gets, so if it didn't get a concrete type just give it the
1403    // first viable type from the reg class.
1404    if (!getChild(1)->hasTypeSet(0) &&
1405        !getChild(1)->getExtType(0).isCompletelyUnknown()) {
1406      MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0];
1407      MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP);
1408    }
1409    return MadeChange;
1410  }
1411
1412  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
1413    bool MadeChange = false;
1414
1415    // Apply the result type to the node.
1416    unsigned NumRetVTs = Int->IS.RetVTs.size();
1417    unsigned NumParamVTs = Int->IS.ParamVTs.size();
1418
1419    for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
1420      MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
1421
1422    if (getNumChildren() != NumParamVTs + 1)
1423      TP.error("Intrinsic '" + Int->Name + "' expects " +
1424               utostr(NumParamVTs) + " operands, not " +
1425               utostr(getNumChildren() - 1) + " operands!");
1426
1427    // Apply type info to the intrinsic ID.
1428    MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
1429
1430    for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
1431      MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
1432
1433      MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
1434      assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
1435      MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
1436    }
1437    return MadeChange;
1438  }
1439
1440  if (getOperator()->isSubClassOf("SDNode")) {
1441    const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
1442
1443    // Check that the number of operands is sane.  Negative operands -> varargs.
1444    if (NI.getNumOperands() >= 0 &&
1445        getNumChildren() != (unsigned)NI.getNumOperands())
1446      TP.error(getOperator()->getName() + " node requires exactly " +
1447               itostr(NI.getNumOperands()) + " operands!");
1448
1449    bool MadeChange = NI.ApplyTypeConstraints(this, TP);
1450    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1451      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1452    return MadeChange;
1453  }
1454
1455  if (getOperator()->isSubClassOf("Instruction")) {
1456    const DAGInstruction &Inst = CDP.getInstruction(getOperator());
1457    CodeGenInstruction &InstInfo =
1458      CDP.getTargetInfo().getInstruction(getOperator());
1459
1460    bool MadeChange = false;
1461
1462    // Apply the result types to the node, these come from the things in the
1463    // (outs) list of the instruction.
1464    // FIXME: Cap at one result so far.
1465    unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
1466    for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) {
1467      Record *ResultNode = Inst.getResult(ResNo);
1468
1469      if (ResultNode->isSubClassOf("PointerLikeRegClass")) {
1470        MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP);
1471      } else if (ResultNode->getName() == "unknown") {
1472        // Nothing to do.
1473      } else {
1474        assert(ResultNode->isSubClassOf("RegisterClass") &&
1475               "Operands should be register classes!");
1476        const CodeGenRegisterClass &RC =
1477          CDP.getTargetInfo().getRegisterClass(ResultNode);
1478        MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP);
1479      }
1480    }
1481
1482    // If the instruction has implicit defs, we apply the first one as a result.
1483    // FIXME: This sucks, it should apply all implicit defs.
1484    if (!InstInfo.ImplicitDefs.empty()) {
1485      unsigned ResNo = NumResultsToAdd;
1486
1487      // FIXME: Generalize to multiple possible types and multiple possible
1488      // ImplicitDefs.
1489      MVT::SimpleValueType VT =
1490        InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
1491
1492      if (VT != MVT::Other)
1493        MadeChange |= UpdateNodeType(ResNo, VT, TP);
1494    }
1495
1496    // If this is an INSERT_SUBREG, constrain the source and destination VTs to
1497    // be the same.
1498    if (getOperator()->getName() == "INSERT_SUBREG") {
1499      assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
1500      MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
1501      MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
1502    }
1503
1504    unsigned ChildNo = 0;
1505    for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
1506      Record *OperandNode = Inst.getOperand(i);
1507
1508      // If the instruction expects a predicate or optional def operand, we
1509      // codegen this by setting the operand to it's default value if it has a
1510      // non-empty DefaultOps field.
1511      if ((OperandNode->isSubClassOf("PredicateOperand") ||
1512           OperandNode->isSubClassOf("OptionalDefOperand")) &&
1513          !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1514        continue;
1515
1516      // Verify that we didn't run out of provided operands.
1517      if (ChildNo >= getNumChildren())
1518        TP.error("Instruction '" + getOperator()->getName() +
1519                 "' expects more operands than were provided.");
1520
1521      MVT::SimpleValueType VT;
1522      TreePatternNode *Child = getChild(ChildNo++);
1523      unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
1524
1525      if (OperandNode->isSubClassOf("RegisterClass")) {
1526        const CodeGenRegisterClass &RC =
1527          CDP.getTargetInfo().getRegisterClass(OperandNode);
1528        MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP);
1529      } else if (OperandNode->isSubClassOf("Operand")) {
1530        VT = getValueType(OperandNode->getValueAsDef("Type"));
1531        MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP);
1532      } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) {
1533        MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP);
1534      } else if (OperandNode->getName() == "unknown") {
1535        // Nothing to do.
1536      } else {
1537        assert(0 && "Unknown operand type!");
1538        abort();
1539      }
1540      MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1541    }
1542
1543    if (ChildNo != getNumChildren())
1544      TP.error("Instruction '" + getOperator()->getName() +
1545               "' was provided too many operands!");
1546
1547    return MadeChange;
1548  }
1549
1550  assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
1551
1552  // Node transforms always take one operand.
1553  if (getNumChildren() != 1)
1554    TP.error("Node transform '" + getOperator()->getName() +
1555             "' requires one operand!");
1556
1557  bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
1558
1559
1560  // If either the output or input of the xform does not have exact
1561  // type info. We assume they must be the same. Otherwise, it is perfectly
1562  // legal to transform from one type to a completely different type.
1563#if 0
1564  if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
1565    bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
1566    MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
1567    return MadeChange;
1568  }
1569#endif
1570  return MadeChange;
1571}
1572
1573/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
1574/// RHS of a commutative operation, not the on LHS.
1575static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
1576  if (!N->isLeaf() && N->getOperator()->getName() == "imm")
1577    return true;
1578  if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
1579    return true;
1580  return false;
1581}
1582
1583
1584/// canPatternMatch - If it is impossible for this pattern to match on this
1585/// target, fill in Reason and return false.  Otherwise, return true.  This is
1586/// used as a sanity check for .td files (to prevent people from writing stuff
1587/// that can never possibly work), and to prevent the pattern permuter from
1588/// generating stuff that is useless.
1589bool TreePatternNode::canPatternMatch(std::string &Reason,
1590                                      const CodeGenDAGPatterns &CDP) {
1591  if (isLeaf()) return true;
1592
1593  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1594    if (!getChild(i)->canPatternMatch(Reason, CDP))
1595      return false;
1596
1597  // If this is an intrinsic, handle cases that would make it not match.  For
1598  // example, if an operand is required to be an immediate.
1599  if (getOperator()->isSubClassOf("Intrinsic")) {
1600    // TODO:
1601    return true;
1602  }
1603
1604  // If this node is a commutative operator, check that the LHS isn't an
1605  // immediate.
1606  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
1607  bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
1608  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
1609    // Scan all of the operands of the node and make sure that only the last one
1610    // is a constant node, unless the RHS also is.
1611    if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
1612      bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
1613      for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
1614        if (OnlyOnRHSOfCommutative(getChild(i))) {
1615          Reason="Immediate value must be on the RHS of commutative operators!";
1616          return false;
1617        }
1618    }
1619  }
1620
1621  return true;
1622}
1623
1624//===----------------------------------------------------------------------===//
1625// TreePattern implementation
1626//
1627
1628TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
1629                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1630  isInputPattern = isInput;
1631  for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
1632    Trees.push_back(ParseTreePattern(RawPat->getElement(i), ""));
1633}
1634
1635TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
1636                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1637  isInputPattern = isInput;
1638  Trees.push_back(ParseTreePattern(Pat, ""));
1639}
1640
1641TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
1642                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1643  isInputPattern = isInput;
1644  Trees.push_back(Pat);
1645}
1646
1647void TreePattern::error(const std::string &Msg) const {
1648  dump();
1649  throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
1650}
1651
1652void TreePattern::ComputeNamedNodes() {
1653  for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1654    ComputeNamedNodes(Trees[i]);
1655}
1656
1657void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
1658  if (!N->getName().empty())
1659    NamedNodes[N->getName()].push_back(N);
1660
1661  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
1662    ComputeNamedNodes(N->getChild(i));
1663}
1664
1665
1666TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
1667  if (DefInit *DI = dynamic_cast<DefInit*>(TheInit)) {
1668    Record *R = DI->getDef();
1669
1670    // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
1671    // TreePatternNode if its own.  For example:
1672    ///   (foo GPR, imm) -> (foo GPR, (imm))
1673    if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
1674      return ParseTreePattern(new DagInit(DI, "",
1675                          std::vector<std::pair<Init*, std::string> >()),
1676                              OpName);
1677
1678    // Input argument?
1679    TreePatternNode *Res = new TreePatternNode(DI, 1);
1680    if (R->getName() == "node" && !OpName.empty()) {
1681      if (OpName.empty())
1682        error("'node' argument requires a name to match with operand list");
1683      Args.push_back(OpName);
1684    }
1685
1686    Res->setName(OpName);
1687    return Res;
1688  }
1689
1690  if (IntInit *II = dynamic_cast<IntInit*>(TheInit)) {
1691    if (!OpName.empty())
1692      error("Constant int argument should not have a name!");
1693    return new TreePatternNode(II, 1);
1694  }
1695
1696  if (BitsInit *BI = dynamic_cast<BitsInit*>(TheInit)) {
1697    // Turn this into an IntInit.
1698    Init *II = BI->convertInitializerTo(new IntRecTy());
1699    if (II == 0 || !dynamic_cast<IntInit*>(II))
1700      error("Bits value must be constants!");
1701    return ParseTreePattern(II, OpName);
1702  }
1703
1704  DagInit *Dag = dynamic_cast<DagInit*>(TheInit);
1705  if (!Dag) {
1706    TheInit->dump();
1707    error("Pattern has unexpected init kind!");
1708  }
1709  DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
1710  if (!OpDef) error("Pattern has unexpected operator type!");
1711  Record *Operator = OpDef->getDef();
1712
1713  if (Operator->isSubClassOf("ValueType")) {
1714    // If the operator is a ValueType, then this must be "type cast" of a leaf
1715    // node.
1716    if (Dag->getNumArgs() != 1)
1717      error("Type cast only takes one operand!");
1718
1719    TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));
1720
1721    // Apply the type cast.
1722    assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
1723    New->UpdateNodeType(0, getValueType(Operator), *this);
1724
1725    if (!OpName.empty())
1726      error("ValueType cast should not have a name!");
1727    return New;
1728  }
1729
1730  // Verify that this is something that makes sense for an operator.
1731  if (!Operator->isSubClassOf("PatFrag") &&
1732      !Operator->isSubClassOf("SDNode") &&
1733      !Operator->isSubClassOf("Instruction") &&
1734      !Operator->isSubClassOf("SDNodeXForm") &&
1735      !Operator->isSubClassOf("Intrinsic") &&
1736      Operator->getName() != "set" &&
1737      Operator->getName() != "implicit")
1738    error("Unrecognized node '" + Operator->getName() + "'!");
1739
1740  //  Check to see if this is something that is illegal in an input pattern.
1741  if (isInputPattern) {
1742    if (Operator->isSubClassOf("Instruction") ||
1743        Operator->isSubClassOf("SDNodeXForm"))
1744      error("Cannot use '" + Operator->getName() + "' in an input pattern!");
1745  } else {
1746    if (Operator->isSubClassOf("Intrinsic"))
1747      error("Cannot use '" + Operator->getName() + "' in an output pattern!");
1748
1749    if (Operator->isSubClassOf("SDNode") &&
1750        Operator->getName() != "imm" &&
1751        Operator->getName() != "fpimm" &&
1752        Operator->getName() != "tglobaltlsaddr" &&
1753        Operator->getName() != "tconstpool" &&
1754        Operator->getName() != "tjumptable" &&
1755        Operator->getName() != "tframeindex" &&
1756        Operator->getName() != "texternalsym" &&
1757        Operator->getName() != "tblockaddress" &&
1758        Operator->getName() != "tglobaladdr" &&
1759        Operator->getName() != "bb" &&
1760        Operator->getName() != "vt")
1761      error("Cannot use '" + Operator->getName() + "' in an output pattern!");
1762  }
1763
1764  std::vector<TreePatternNode*> Children;
1765
1766  // Parse all the operands.
1767  for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
1768    Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
1769
1770  // If the operator is an intrinsic, then this is just syntactic sugar for for
1771  // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
1772  // convert the intrinsic name to a number.
1773  if (Operator->isSubClassOf("Intrinsic")) {
1774    const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
1775    unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
1776
1777    // If this intrinsic returns void, it must have side-effects and thus a
1778    // chain.
1779    if (Int.IS.RetVTs.empty())
1780      Operator = getDAGPatterns().get_intrinsic_void_sdnode();
1781    else if (Int.ModRef != CodeGenIntrinsic::NoMem)
1782      // Has side-effects, requires chain.
1783      Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
1784    else // Otherwise, no chain.
1785      Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
1786
1787    TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID), 1);
1788    Children.insert(Children.begin(), IIDNode);
1789  }
1790
1791  unsigned NumResults = GetNumNodeResults(Operator, CDP);
1792  TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
1793  Result->setName(OpName);
1794
1795  if (!Dag->getName().empty()) {
1796    assert(Result->getName().empty());
1797    Result->setName(Dag->getName());
1798  }
1799  return Result;
1800}
1801
1802/// SimplifyTree - See if we can simplify this tree to eliminate something that
1803/// will never match in favor of something obvious that will.  This is here
1804/// strictly as a convenience to target authors because it allows them to write
1805/// more type generic things and have useless type casts fold away.
1806///
1807/// This returns true if any change is made.
1808static bool SimplifyTree(TreePatternNode *&N) {
1809  if (N->isLeaf())
1810    return false;
1811
1812  // If we have a bitconvert with a resolved type and if the source and
1813  // destination types are the same, then the bitconvert is useless, remove it.
1814  if (N->getOperator()->getName() == "bitconvert" &&
1815      N->getExtType(0).isConcrete() &&
1816      N->getExtType(0) == N->getChild(0)->getExtType(0) &&
1817      N->getName().empty()) {
1818    N = N->getChild(0);
1819    SimplifyTree(N);
1820    return true;
1821  }
1822
1823  // Walk all children.
1824  bool MadeChange = false;
1825  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
1826    TreePatternNode *Child = N->getChild(i);
1827    MadeChange |= SimplifyTree(Child);
1828    N->setChild(i, Child);
1829  }
1830  return MadeChange;
1831}
1832
1833
1834
1835/// InferAllTypes - Infer/propagate as many types throughout the expression
1836/// patterns as possible.  Return true if all types are inferred, false
1837/// otherwise.  Throw an exception if a type contradiction is found.
1838bool TreePattern::
1839InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
1840  if (NamedNodes.empty())
1841    ComputeNamedNodes();
1842
1843  bool MadeChange = true;
1844  while (MadeChange) {
1845    MadeChange = false;
1846    for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
1847      MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
1848      MadeChange |= SimplifyTree(Trees[i]);
1849    }
1850
1851    // If there are constraints on our named nodes, apply them.
1852    for (StringMap<SmallVector<TreePatternNode*,1> >::iterator
1853         I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) {
1854      SmallVectorImpl<TreePatternNode*> &Nodes = I->second;
1855
1856      // If we have input named node types, propagate their types to the named
1857      // values here.
1858      if (InNamedTypes) {
1859        // FIXME: Should be error?
1860        assert(InNamedTypes->count(I->getKey()) &&
1861               "Named node in output pattern but not input pattern?");
1862
1863        const SmallVectorImpl<TreePatternNode*> &InNodes =
1864          InNamedTypes->find(I->getKey())->second;
1865
1866        // The input types should be fully resolved by now.
1867        for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
1868          // If this node is a register class, and it is the root of the pattern
1869          // then we're mapping something onto an input register.  We allow
1870          // changing the type of the input register in this case.  This allows
1871          // us to match things like:
1872          //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
1873          if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) {
1874            DefInit *DI = dynamic_cast<DefInit*>(Nodes[i]->getLeafValue());
1875            if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
1876              continue;
1877          }
1878
1879          assert(Nodes[i]->getNumTypes() == 1 &&
1880                 InNodes[0]->getNumTypes() == 1 &&
1881                 "FIXME: cannot name multiple result nodes yet");
1882          MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0),
1883                                                 *this);
1884        }
1885      }
1886
1887      // If there are multiple nodes with the same name, they must all have the
1888      // same type.
1889      if (I->second.size() > 1) {
1890        for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
1891          TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
1892          assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
1893                 "FIXME: cannot name multiple result nodes yet");
1894
1895          MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
1896          MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
1897        }
1898      }
1899    }
1900  }
1901
1902  bool HasUnresolvedTypes = false;
1903  for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1904    HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
1905  return !HasUnresolvedTypes;
1906}
1907
1908void TreePattern::print(raw_ostream &OS) const {
1909  OS << getRecord()->getName();
1910  if (!Args.empty()) {
1911    OS << "(" << Args[0];
1912    for (unsigned i = 1, e = Args.size(); i != e; ++i)
1913      OS << ", " << Args[i];
1914    OS << ")";
1915  }
1916  OS << ": ";
1917
1918  if (Trees.size() > 1)
1919    OS << "[\n";
1920  for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
1921    OS << "\t";
1922    Trees[i]->print(OS);
1923    OS << "\n";
1924  }
1925
1926  if (Trees.size() > 1)
1927    OS << "]\n";
1928}
1929
1930void TreePattern::dump() const { print(errs()); }
1931
1932//===----------------------------------------------------------------------===//
1933// CodeGenDAGPatterns implementation
1934//
1935
1936CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
1937  Records(R), Target(R) {
1938
1939  Intrinsics = LoadIntrinsics(Records, false);
1940  TgtIntrinsics = LoadIntrinsics(Records, true);
1941  ParseNodeInfo();
1942  ParseNodeTransforms();
1943  ParseComplexPatterns();
1944  ParsePatternFragments();
1945  ParseDefaultOperands();
1946  ParseInstructions();
1947  ParsePatterns();
1948
1949  // Generate variants.  For example, commutative patterns can match
1950  // multiple ways.  Add them to PatternsToMatch as well.
1951  GenerateVariants();
1952
1953  // Infer instruction flags.  For example, we can detect loads,
1954  // stores, and side effects in many cases by examining an
1955  // instruction's pattern.
1956  InferInstructionFlags();
1957}
1958
1959CodeGenDAGPatterns::~CodeGenDAGPatterns() {
1960  for (pf_iterator I = PatternFragments.begin(),
1961       E = PatternFragments.end(); I != E; ++I)
1962    delete I->second;
1963}
1964
1965
1966Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
1967  Record *N = Records.getDef(Name);
1968  if (!N || !N->isSubClassOf("SDNode")) {
1969    errs() << "Error getting SDNode '" << Name << "'!\n";
1970    exit(1);
1971  }
1972  return N;
1973}
1974
1975// Parse all of the SDNode definitions for the target, populating SDNodes.
1976void CodeGenDAGPatterns::ParseNodeInfo() {
1977  std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
1978  while (!Nodes.empty()) {
1979    SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
1980    Nodes.pop_back();
1981  }
1982
1983  // Get the builtin intrinsic nodes.
1984  intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
1985  intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
1986  intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
1987}
1988
1989/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
1990/// map, and emit them to the file as functions.
1991void CodeGenDAGPatterns::ParseNodeTransforms() {
1992  std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
1993  while (!Xforms.empty()) {
1994    Record *XFormNode = Xforms.back();
1995    Record *SDNode = XFormNode->getValueAsDef("Opcode");
1996    std::string Code = XFormNode->getValueAsCode("XFormFunction");
1997    SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
1998
1999    Xforms.pop_back();
2000  }
2001}
2002
2003void CodeGenDAGPatterns::ParseComplexPatterns() {
2004  std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2005  while (!AMs.empty()) {
2006    ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2007    AMs.pop_back();
2008  }
2009}
2010
2011
2012/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2013/// file, building up the PatternFragments map.  After we've collected them all,
2014/// inline fragments together as necessary, so that there are no references left
2015/// inside a pattern fragment to a pattern fragment.
2016///
2017void CodeGenDAGPatterns::ParsePatternFragments() {
2018  std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
2019
2020  // First step, parse all of the fragments.
2021  for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
2022    DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
2023    TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
2024    PatternFragments[Fragments[i]] = P;
2025
2026    // Validate the argument list, converting it to set, to discard duplicates.
2027    std::vector<std::string> &Args = P->getArgList();
2028    std::set<std::string> OperandsSet(Args.begin(), Args.end());
2029
2030    if (OperandsSet.count(""))
2031      P->error("Cannot have unnamed 'node' values in pattern fragment!");
2032
2033    // Parse the operands list.
2034    DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
2035    DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
2036    // Special cases: ops == outs == ins. Different names are used to
2037    // improve readability.
2038    if (!OpsOp ||
2039        (OpsOp->getDef()->getName() != "ops" &&
2040         OpsOp->getDef()->getName() != "outs" &&
2041         OpsOp->getDef()->getName() != "ins"))
2042      P->error("Operands list should start with '(ops ... '!");
2043
2044    // Copy over the arguments.
2045    Args.clear();
2046    for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
2047      if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
2048          static_cast<DefInit*>(OpsList->getArg(j))->
2049          getDef()->getName() != "node")
2050        P->error("Operands list should all be 'node' values.");
2051      if (OpsList->getArgName(j).empty())
2052        P->error("Operands list should have names for each operand!");
2053      if (!OperandsSet.count(OpsList->getArgName(j)))
2054        P->error("'" + OpsList->getArgName(j) +
2055                 "' does not occur in pattern or was multiply specified!");
2056      OperandsSet.erase(OpsList->getArgName(j));
2057      Args.push_back(OpsList->getArgName(j));
2058    }
2059
2060    if (!OperandsSet.empty())
2061      P->error("Operands list does not contain an entry for operand '" +
2062               *OperandsSet.begin() + "'!");
2063
2064    // If there is a code init for this fragment, keep track of the fact that
2065    // this fragment uses it.
2066    std::string Code = Fragments[i]->getValueAsCode("Predicate");
2067    if (!Code.empty())
2068      P->getOnlyTree()->addPredicateFn("Predicate_"+Fragments[i]->getName());
2069
2070    // If there is a node transformation corresponding to this, keep track of
2071    // it.
2072    Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
2073    if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
2074      P->getOnlyTree()->setTransformFn(Transform);
2075  }
2076
2077  // Now that we've parsed all of the tree fragments, do a closure on them so
2078  // that there are not references to PatFrags left inside of them.
2079  for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
2080    TreePattern *ThePat = PatternFragments[Fragments[i]];
2081    ThePat->InlinePatternFragments();
2082
2083    // Infer as many types as possible.  Don't worry about it if we don't infer
2084    // all of them, some may depend on the inputs of the pattern.
2085    try {
2086      ThePat->InferAllTypes();
2087    } catch (...) {
2088      // If this pattern fragment is not supported by this target (no types can
2089      // satisfy its constraints), just ignore it.  If the bogus pattern is
2090      // actually used by instructions, the type consistency error will be
2091      // reported there.
2092    }
2093
2094    // If debugging, print out the pattern fragment result.
2095    DEBUG(ThePat->dump());
2096  }
2097}
2098
2099void CodeGenDAGPatterns::ParseDefaultOperands() {
2100  std::vector<Record*> DefaultOps[2];
2101  DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand");
2102  DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand");
2103
2104  // Find some SDNode.
2105  assert(!SDNodes.empty() && "No SDNodes parsed?");
2106  Init *SomeSDNode = new DefInit(SDNodes.begin()->first);
2107
2108  for (unsigned iter = 0; iter != 2; ++iter) {
2109    for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) {
2110      DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps");
2111
2112      // Clone the DefaultInfo dag node, changing the operator from 'ops' to
2113      // SomeSDnode so that we can parse this.
2114      std::vector<std::pair<Init*, std::string> > Ops;
2115      for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
2116        Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
2117                                     DefaultInfo->getArgName(op)));
2118      DagInit *DI = new DagInit(SomeSDNode, "", Ops);
2119
2120      // Create a TreePattern to parse this.
2121      TreePattern P(DefaultOps[iter][i], DI, false, *this);
2122      assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
2123
2124      // Copy the operands over into a DAGDefaultOperand.
2125      DAGDefaultOperand DefaultOpInfo;
2126
2127      TreePatternNode *T = P.getTree(0);
2128      for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
2129        TreePatternNode *TPN = T->getChild(op);
2130        while (TPN->ApplyTypeConstraints(P, false))
2131          /* Resolve all types */;
2132
2133        if (TPN->ContainsUnresolvedType()) {
2134          if (iter == 0)
2135            throw "Value #" + utostr(i) + " of PredicateOperand '" +
2136              DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!";
2137          else
2138            throw "Value #" + utostr(i) + " of OptionalDefOperand '" +
2139              DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!";
2140        }
2141        DefaultOpInfo.DefaultOps.push_back(TPN);
2142      }
2143
2144      // Insert it into the DefaultOperands map so we can find it later.
2145      DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo;
2146    }
2147  }
2148}
2149
2150/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
2151/// instruction input.  Return true if this is a real use.
2152static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
2153                      std::map<std::string, TreePatternNode*> &InstInputs) {
2154  // No name -> not interesting.
2155  if (Pat->getName().empty()) {
2156    if (Pat->isLeaf()) {
2157      DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
2158      if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
2159        I->error("Input " + DI->getDef()->getName() + " must be named!");
2160    }
2161    return false;
2162  }
2163
2164  Record *Rec;
2165  if (Pat->isLeaf()) {
2166    DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
2167    if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
2168    Rec = DI->getDef();
2169  } else {
2170    Rec = Pat->getOperator();
2171  }
2172
2173  // SRCVALUE nodes are ignored.
2174  if (Rec->getName() == "srcvalue")
2175    return false;
2176
2177  TreePatternNode *&Slot = InstInputs[Pat->getName()];
2178  if (!Slot) {
2179    Slot = Pat;
2180    return true;
2181  }
2182  Record *SlotRec;
2183  if (Slot->isLeaf()) {
2184    SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
2185  } else {
2186    assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
2187    SlotRec = Slot->getOperator();
2188  }
2189
2190  // Ensure that the inputs agree if we've already seen this input.
2191  if (Rec != SlotRec)
2192    I->error("All $" + Pat->getName() + " inputs must agree with each other");
2193  if (Slot->getExtTypes() != Pat->getExtTypes())
2194    I->error("All $" + Pat->getName() + " inputs must agree with each other");
2195  return true;
2196}
2197
2198/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
2199/// part of "I", the instruction), computing the set of inputs and outputs of
2200/// the pattern.  Report errors if we see anything naughty.
2201void CodeGenDAGPatterns::
2202FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
2203                            std::map<std::string, TreePatternNode*> &InstInputs,
2204                            std::map<std::string, TreePatternNode*>&InstResults,
2205                            std::vector<Record*> &InstImpResults) {
2206  if (Pat->isLeaf()) {
2207    bool isUse = HandleUse(I, Pat, InstInputs);
2208    if (!isUse && Pat->getTransformFn())
2209      I->error("Cannot specify a transform function for a non-input value!");
2210    return;
2211  }
2212
2213  if (Pat->getOperator()->getName() == "implicit") {
2214    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2215      TreePatternNode *Dest = Pat->getChild(i);
2216      if (!Dest->isLeaf())
2217        I->error("implicitly defined value should be a register!");
2218
2219      DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
2220      if (!Val || !Val->getDef()->isSubClassOf("Register"))
2221        I->error("implicitly defined value should be a register!");
2222      InstImpResults.push_back(Val->getDef());
2223    }
2224    return;
2225  }
2226
2227  if (Pat->getOperator()->getName() != "set") {
2228    // If this is not a set, verify that the children nodes are not void typed,
2229    // and recurse.
2230    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2231      if (Pat->getChild(i)->getNumTypes() == 0)
2232        I->error("Cannot have void nodes inside of patterns!");
2233      FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
2234                                  InstImpResults);
2235    }
2236
2237    // If this is a non-leaf node with no children, treat it basically as if
2238    // it were a leaf.  This handles nodes like (imm).
2239    bool isUse = HandleUse(I, Pat, InstInputs);
2240
2241    if (!isUse && Pat->getTransformFn())
2242      I->error("Cannot specify a transform function for a non-input value!");
2243    return;
2244  }
2245
2246  // Otherwise, this is a set, validate and collect instruction results.
2247  if (Pat->getNumChildren() == 0)
2248    I->error("set requires operands!");
2249
2250  if (Pat->getTransformFn())
2251    I->error("Cannot specify a transform function on a set node!");
2252
2253  // Check the set destinations.
2254  unsigned NumDests = Pat->getNumChildren()-1;
2255  for (unsigned i = 0; i != NumDests; ++i) {
2256    TreePatternNode *Dest = Pat->getChild(i);
2257    if (!Dest->isLeaf())
2258      I->error("set destination should be a register!");
2259
2260    DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
2261    if (!Val)
2262      I->error("set destination should be a register!");
2263
2264    if (Val->getDef()->isSubClassOf("RegisterClass") ||
2265        Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
2266      if (Dest->getName().empty())
2267        I->error("set destination must have a name!");
2268      if (InstResults.count(Dest->getName()))
2269        I->error("cannot set '" + Dest->getName() +"' multiple times");
2270      InstResults[Dest->getName()] = Dest;
2271    } else if (Val->getDef()->isSubClassOf("Register")) {
2272      InstImpResults.push_back(Val->getDef());
2273    } else {
2274      I->error("set destination should be a register!");
2275    }
2276  }
2277
2278  // Verify and collect info from the computation.
2279  FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
2280                              InstInputs, InstResults, InstImpResults);
2281}
2282
2283//===----------------------------------------------------------------------===//
2284// Instruction Analysis
2285//===----------------------------------------------------------------------===//
2286
2287class InstAnalyzer {
2288  const CodeGenDAGPatterns &CDP;
2289  bool &mayStore;
2290  bool &mayLoad;
2291  bool &HasSideEffects;
2292  bool &IsVariadic;
2293public:
2294  InstAnalyzer(const CodeGenDAGPatterns &cdp,
2295               bool &maystore, bool &mayload, bool &hse, bool &isv)
2296    : CDP(cdp), mayStore(maystore), mayLoad(mayload), HasSideEffects(hse),
2297      IsVariadic(isv) {
2298  }
2299
2300  /// Analyze - Analyze the specified instruction, returning true if the
2301  /// instruction had a pattern.
2302  bool Analyze(Record *InstRecord) {
2303    const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern();
2304    if (Pattern == 0) {
2305      HasSideEffects = 1;
2306      return false;  // No pattern.
2307    }
2308
2309    // FIXME: Assume only the first tree is the pattern. The others are clobber
2310    // nodes.
2311    AnalyzeNode(Pattern->getTree(0));
2312    return true;
2313  }
2314
2315private:
2316  void AnalyzeNode(const TreePatternNode *N) {
2317    if (N->isLeaf()) {
2318      if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
2319        Record *LeafRec = DI->getDef();
2320        // Handle ComplexPattern leaves.
2321        if (LeafRec->isSubClassOf("ComplexPattern")) {
2322          const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
2323          if (CP.hasProperty(SDNPMayStore)) mayStore = true;
2324          if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
2325          if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true;
2326        }
2327      }
2328      return;
2329    }
2330
2331    // Analyze children.
2332    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2333      AnalyzeNode(N->getChild(i));
2334
2335    // Ignore set nodes, which are not SDNodes.
2336    if (N->getOperator()->getName() == "set")
2337      return;
2338
2339    // Get information about the SDNode for the operator.
2340    const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
2341
2342    // Notice properties of the node.
2343    if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
2344    if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
2345    if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true;
2346    if (OpInfo.hasProperty(SDNPVariadic)) IsVariadic = true;
2347
2348    if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
2349      // If this is an intrinsic, analyze it.
2350      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
2351        mayLoad = true;// These may load memory.
2352
2353      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem)
2354        mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
2355
2356      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem)
2357        // WriteMem intrinsics can have other strange effects.
2358        HasSideEffects = true;
2359    }
2360  }
2361
2362};
2363
2364static void InferFromPattern(const CodeGenInstruction &Inst,
2365                             bool &MayStore, bool &MayLoad,
2366                             bool &HasSideEffects, bool &IsVariadic,
2367                             const CodeGenDAGPatterns &CDP) {
2368  MayStore = MayLoad = HasSideEffects = IsVariadic = false;
2369
2370  bool HadPattern =
2371    InstAnalyzer(CDP, MayStore, MayLoad, HasSideEffects, IsVariadic)
2372    .Analyze(Inst.TheDef);
2373
2374  // InstAnalyzer only correctly analyzes mayStore/mayLoad so far.
2375  if (Inst.mayStore) {  // If the .td file explicitly sets mayStore, use it.
2376    // If we decided that this is a store from the pattern, then the .td file
2377    // entry is redundant.
2378    if (MayStore)
2379      fprintf(stderr,
2380              "Warning: mayStore flag explicitly set on instruction '%s'"
2381              " but flag already inferred from pattern.\n",
2382              Inst.TheDef->getName().c_str());
2383    MayStore = true;
2384  }
2385
2386  if (Inst.mayLoad) {  // If the .td file explicitly sets mayLoad, use it.
2387    // If we decided that this is a load from the pattern, then the .td file
2388    // entry is redundant.
2389    if (MayLoad)
2390      fprintf(stderr,
2391              "Warning: mayLoad flag explicitly set on instruction '%s'"
2392              " but flag already inferred from pattern.\n",
2393              Inst.TheDef->getName().c_str());
2394    MayLoad = true;
2395  }
2396
2397  if (Inst.neverHasSideEffects) {
2398    if (HadPattern)
2399      fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' "
2400              "which already has a pattern\n", Inst.TheDef->getName().c_str());
2401    HasSideEffects = false;
2402  }
2403
2404  if (Inst.hasSideEffects) {
2405    if (HasSideEffects)
2406      fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' "
2407              "which already inferred this.\n", Inst.TheDef->getName().c_str());
2408    HasSideEffects = true;
2409  }
2410
2411  if (Inst.Operands.isVariadic)
2412    IsVariadic = true;  // Can warn if we want.
2413}
2414
2415/// ParseInstructions - Parse all of the instructions, inlining and resolving
2416/// any fragments involved.  This populates the Instructions list with fully
2417/// resolved instructions.
2418void CodeGenDAGPatterns::ParseInstructions() {
2419  std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
2420
2421  for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
2422    ListInit *LI = 0;
2423
2424    if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
2425      LI = Instrs[i]->getValueAsListInit("Pattern");
2426
2427    // If there is no pattern, only collect minimal information about the
2428    // instruction for its operand list.  We have to assume that there is one
2429    // result, as we have no detailed info.
2430    if (!LI || LI->getSize() == 0) {
2431      std::vector<Record*> Results;
2432      std::vector<Record*> Operands;
2433
2434      CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
2435
2436      if (InstInfo.Operands.size() != 0) {
2437        if (InstInfo.Operands.NumDefs == 0) {
2438          // These produce no results
2439          for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j)
2440            Operands.push_back(InstInfo.Operands[j].Rec);
2441        } else {
2442          // Assume the first operand is the result.
2443          Results.push_back(InstInfo.Operands[0].Rec);
2444
2445          // The rest are inputs.
2446          for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j)
2447            Operands.push_back(InstInfo.Operands[j].Rec);
2448        }
2449      }
2450
2451      // Create and insert the instruction.
2452      std::vector<Record*> ImpResults;
2453      Instructions.insert(std::make_pair(Instrs[i],
2454                          DAGInstruction(0, Results, Operands, ImpResults)));
2455      continue;  // no pattern.
2456    }
2457
2458    // Parse the instruction.
2459    TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
2460    // Inline pattern fragments into it.
2461    I->InlinePatternFragments();
2462
2463    // Infer as many types as possible.  If we cannot infer all of them, we can
2464    // never do anything with this instruction pattern: report it to the user.
2465    if (!I->InferAllTypes())
2466      I->error("Could not infer all types in pattern!");
2467
2468    // InstInputs - Keep track of all of the inputs of the instruction, along
2469    // with the record they are declared as.
2470    std::map<std::string, TreePatternNode*> InstInputs;
2471
2472    // InstResults - Keep track of all the virtual registers that are 'set'
2473    // in the instruction, including what reg class they are.
2474    std::map<std::string, TreePatternNode*> InstResults;
2475
2476    std::vector<Record*> InstImpResults;
2477
2478    // Verify that the top-level forms in the instruction are of void type, and
2479    // fill in the InstResults map.
2480    for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
2481      TreePatternNode *Pat = I->getTree(j);
2482      if (Pat->getNumTypes() != 0)
2483        I->error("Top-level forms in instruction pattern should have"
2484                 " void types");
2485
2486      // Find inputs and outputs, and verify the structure of the uses/defs.
2487      FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
2488                                  InstImpResults);
2489    }
2490
2491    // Now that we have inputs and outputs of the pattern, inspect the operands
2492    // list for the instruction.  This determines the order that operands are
2493    // added to the machine instruction the node corresponds to.
2494    unsigned NumResults = InstResults.size();
2495
2496    // Parse the operands list from the (ops) list, validating it.
2497    assert(I->getArgList().empty() && "Args list should still be empty here!");
2498    CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]);
2499
2500    // Check that all of the results occur first in the list.
2501    std::vector<Record*> Results;
2502    TreePatternNode *Res0Node = 0;
2503    for (unsigned i = 0; i != NumResults; ++i) {
2504      if (i == CGI.Operands.size())
2505        I->error("'" + InstResults.begin()->first +
2506                 "' set but does not appear in operand list!");
2507      const std::string &OpName = CGI.Operands[i].Name;
2508
2509      // Check that it exists in InstResults.
2510      TreePatternNode *RNode = InstResults[OpName];
2511      if (RNode == 0)
2512        I->error("Operand $" + OpName + " does not exist in operand list!");
2513
2514      if (i == 0)
2515        Res0Node = RNode;
2516      Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
2517      if (R == 0)
2518        I->error("Operand $" + OpName + " should be a set destination: all "
2519                 "outputs must occur before inputs in operand list!");
2520
2521      if (CGI.Operands[i].Rec != R)
2522        I->error("Operand $" + OpName + " class mismatch!");
2523
2524      // Remember the return type.
2525      Results.push_back(CGI.Operands[i].Rec);
2526
2527      // Okay, this one checks out.
2528      InstResults.erase(OpName);
2529    }
2530
2531    // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
2532    // the copy while we're checking the inputs.
2533    std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
2534
2535    std::vector<TreePatternNode*> ResultNodeOperands;
2536    std::vector<Record*> Operands;
2537    for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
2538      CGIOperandList::OperandInfo &Op = CGI.Operands[i];
2539      const std::string &OpName = Op.Name;
2540      if (OpName.empty())
2541        I->error("Operand #" + utostr(i) + " in operands list has no name!");
2542
2543      if (!InstInputsCheck.count(OpName)) {
2544        // If this is an predicate operand or optional def operand with an
2545        // DefaultOps set filled in, we can ignore this.  When we codegen it,
2546        // we will do so as always executed.
2547        if (Op.Rec->isSubClassOf("PredicateOperand") ||
2548            Op.Rec->isSubClassOf("OptionalDefOperand")) {
2549          // Does it have a non-empty DefaultOps field?  If so, ignore this
2550          // operand.
2551          if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
2552            continue;
2553        }
2554        I->error("Operand $" + OpName +
2555                 " does not appear in the instruction pattern");
2556      }
2557      TreePatternNode *InVal = InstInputsCheck[OpName];
2558      InstInputsCheck.erase(OpName);   // It occurred, remove from map.
2559
2560      if (InVal->isLeaf() &&
2561          dynamic_cast<DefInit*>(InVal->getLeafValue())) {
2562        Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
2563        if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
2564          I->error("Operand $" + OpName + "'s register class disagrees"
2565                   " between the operand and pattern");
2566      }
2567      Operands.push_back(Op.Rec);
2568
2569      // Construct the result for the dest-pattern operand list.
2570      TreePatternNode *OpNode = InVal->clone();
2571
2572      // No predicate is useful on the result.
2573      OpNode->clearPredicateFns();
2574
2575      // Promote the xform function to be an explicit node if set.
2576      if (Record *Xform = OpNode->getTransformFn()) {
2577        OpNode->setTransformFn(0);
2578        std::vector<TreePatternNode*> Children;
2579        Children.push_back(OpNode);
2580        OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
2581      }
2582
2583      ResultNodeOperands.push_back(OpNode);
2584    }
2585
2586    if (!InstInputsCheck.empty())
2587      I->error("Input operand $" + InstInputsCheck.begin()->first +
2588               " occurs in pattern but not in operands list!");
2589
2590    TreePatternNode *ResultPattern =
2591      new TreePatternNode(I->getRecord(), ResultNodeOperands,
2592                          GetNumNodeResults(I->getRecord(), *this));
2593    // Copy fully inferred output node type to instruction result pattern.
2594    for (unsigned i = 0; i != NumResults; ++i)
2595      ResultPattern->setType(i, Res0Node->getExtType(i));
2596
2597    // Create and insert the instruction.
2598    // FIXME: InstImpResults should not be part of DAGInstruction.
2599    DAGInstruction TheInst(I, Results, Operands, InstImpResults);
2600    Instructions.insert(std::make_pair(I->getRecord(), TheInst));
2601
2602    // Use a temporary tree pattern to infer all types and make sure that the
2603    // constructed result is correct.  This depends on the instruction already
2604    // being inserted into the Instructions map.
2605    TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
2606    Temp.InferAllTypes(&I->getNamedNodesMap());
2607
2608    DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
2609    TheInsertedInst.setResultPattern(Temp.getOnlyTree());
2610
2611    DEBUG(I->dump());
2612  }
2613
2614  // If we can, convert the instructions to be patterns that are matched!
2615  for (std::map<Record*, DAGInstruction, RecordPtrCmp>::iterator II =
2616        Instructions.begin(),
2617       E = Instructions.end(); II != E; ++II) {
2618    DAGInstruction &TheInst = II->second;
2619    const TreePattern *I = TheInst.getPattern();
2620    if (I == 0) continue;  // No pattern.
2621
2622    // FIXME: Assume only the first tree is the pattern. The others are clobber
2623    // nodes.
2624    TreePatternNode *Pattern = I->getTree(0);
2625    TreePatternNode *SrcPattern;
2626    if (Pattern->getOperator()->getName() == "set") {
2627      SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
2628    } else{
2629      // Not a set (store or something?)
2630      SrcPattern = Pattern;
2631    }
2632
2633    Record *Instr = II->first;
2634    AddPatternToMatch(I,
2635                      PatternToMatch(Instr,
2636                                     Instr->getValueAsListInit("Predicates"),
2637                                     SrcPattern,
2638                                     TheInst.getResultPattern(),
2639                                     TheInst.getImpResults(),
2640                                     Instr->getValueAsInt("AddedComplexity"),
2641                                     Instr->getID()));
2642  }
2643}
2644
2645
2646typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
2647
2648static void FindNames(const TreePatternNode *P,
2649                      std::map<std::string, NameRecord> &Names,
2650                      const TreePattern *PatternTop) {
2651  if (!P->getName().empty()) {
2652    NameRecord &Rec = Names[P->getName()];
2653    // If this is the first instance of the name, remember the node.
2654    if (Rec.second++ == 0)
2655      Rec.first = P;
2656    else if (Rec.first->getExtTypes() != P->getExtTypes())
2657      PatternTop->error("repetition of value: $" + P->getName() +
2658                        " where different uses have different types!");
2659  }
2660
2661  if (!P->isLeaf()) {
2662    for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
2663      FindNames(P->getChild(i), Names, PatternTop);
2664  }
2665}
2666
2667void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern,
2668                                           const PatternToMatch &PTM) {
2669  // Do some sanity checking on the pattern we're about to match.
2670  std::string Reason;
2671  if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this))
2672    Pattern->error("Pattern can never match: " + Reason);
2673
2674  // If the source pattern's root is a complex pattern, that complex pattern
2675  // must specify the nodes it can potentially match.
2676  if (const ComplexPattern *CP =
2677        PTM.getSrcPattern()->getComplexPatternInfo(*this))
2678    if (CP->getRootNodes().empty())
2679      Pattern->error("ComplexPattern at root must specify list of opcodes it"
2680                     " could match");
2681
2682
2683  // Find all of the named values in the input and output, ensure they have the
2684  // same type.
2685  std::map<std::string, NameRecord> SrcNames, DstNames;
2686  FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
2687  FindNames(PTM.getDstPattern(), DstNames, Pattern);
2688
2689  // Scan all of the named values in the destination pattern, rejecting them if
2690  // they don't exist in the input pattern.
2691  for (std::map<std::string, NameRecord>::iterator
2692       I = DstNames.begin(), E = DstNames.end(); I != E; ++I) {
2693    if (SrcNames[I->first].first == 0)
2694      Pattern->error("Pattern has input without matching name in output: $" +
2695                     I->first);
2696  }
2697
2698  // Scan all of the named values in the source pattern, rejecting them if the
2699  // name isn't used in the dest, and isn't used to tie two values together.
2700  for (std::map<std::string, NameRecord>::iterator
2701       I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I)
2702    if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1)
2703      Pattern->error("Pattern has dead named input: $" + I->first);
2704
2705  PatternsToMatch.push_back(PTM);
2706}
2707
2708
2709
2710void CodeGenDAGPatterns::InferInstructionFlags() {
2711  const std::vector<const CodeGenInstruction*> &Instructions =
2712    Target.getInstructionsByEnumValue();
2713  for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
2714    CodeGenInstruction &InstInfo =
2715      const_cast<CodeGenInstruction &>(*Instructions[i]);
2716    // Determine properties of the instruction from its pattern.
2717    bool MayStore, MayLoad, HasSideEffects, IsVariadic;
2718    InferFromPattern(InstInfo, MayStore, MayLoad, HasSideEffects, IsVariadic,
2719                     *this);
2720    InstInfo.mayStore = MayStore;
2721    InstInfo.mayLoad = MayLoad;
2722    InstInfo.hasSideEffects = HasSideEffects;
2723    InstInfo.Operands.isVariadic = IsVariadic;
2724  }
2725}
2726
2727/// Given a pattern result with an unresolved type, see if we can find one
2728/// instruction with an unresolved result type.  Force this result type to an
2729/// arbitrary element if it's possible types to converge results.
2730static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
2731  if (N->isLeaf())
2732    return false;
2733
2734  // Analyze children.
2735  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2736    if (ForceArbitraryInstResultType(N->getChild(i), TP))
2737      return true;
2738
2739  if (!N->getOperator()->isSubClassOf("Instruction"))
2740    return false;
2741
2742  // If this type is already concrete or completely unknown we can't do
2743  // anything.
2744  for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
2745    if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
2746      continue;
2747
2748    // Otherwise, force its type to the first possibility (an arbitrary choice).
2749    if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
2750      return true;
2751  }
2752
2753  return false;
2754}
2755
2756void CodeGenDAGPatterns::ParsePatterns() {
2757  std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
2758
2759  for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
2760    Record *CurPattern = Patterns[i];
2761    DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
2762    TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
2763
2764    // Inline pattern fragments into it.
2765    Pattern->InlinePatternFragments();
2766
2767    ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
2768    if (LI->getSize() == 0) continue;  // no pattern.
2769
2770    // Parse the instruction.
2771    TreePattern *Result = new TreePattern(CurPattern, LI, false, *this);
2772
2773    // Inline pattern fragments into it.
2774    Result->InlinePatternFragments();
2775
2776    if (Result->getNumTrees() != 1)
2777      Result->error("Cannot handle instructions producing instructions "
2778                    "with temporaries yet!");
2779
2780    bool IterateInference;
2781    bool InferredAllPatternTypes, InferredAllResultTypes;
2782    do {
2783      // Infer as many types as possible.  If we cannot infer all of them, we
2784      // can never do anything with this pattern: report it to the user.
2785      InferredAllPatternTypes =
2786        Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
2787
2788      // Infer as many types as possible.  If we cannot infer all of them, we
2789      // can never do anything with this pattern: report it to the user.
2790      InferredAllResultTypes =
2791        Result->InferAllTypes(&Pattern->getNamedNodesMap());
2792
2793      IterateInference = false;
2794
2795      // Apply the type of the result to the source pattern.  This helps us
2796      // resolve cases where the input type is known to be a pointer type (which
2797      // is considered resolved), but the result knows it needs to be 32- or
2798      // 64-bits.  Infer the other way for good measure.
2799      for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(),
2800                                        Pattern->getTree(0)->getNumTypes());
2801           i != e; ++i) {
2802        IterateInference = Pattern->getTree(0)->
2803          UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result);
2804        IterateInference |= Result->getTree(0)->
2805          UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result);
2806      }
2807
2808      // If our iteration has converged and the input pattern's types are fully
2809      // resolved but the result pattern is not fully resolved, we may have a
2810      // situation where we have two instructions in the result pattern and
2811      // the instructions require a common register class, but don't care about
2812      // what actual MVT is used.  This is actually a bug in our modelling:
2813      // output patterns should have register classes, not MVTs.
2814      //
2815      // In any case, to handle this, we just go through and disambiguate some
2816      // arbitrary types to the result pattern's nodes.
2817      if (!IterateInference && InferredAllPatternTypes &&
2818          !InferredAllResultTypes)
2819        IterateInference = ForceArbitraryInstResultType(Result->getTree(0),
2820                                                        *Result);
2821    } while (IterateInference);
2822
2823    // Verify that we inferred enough types that we can do something with the
2824    // pattern and result.  If these fire the user has to add type casts.
2825    if (!InferredAllPatternTypes)
2826      Pattern->error("Could not infer all types in pattern!");
2827    if (!InferredAllResultTypes) {
2828      Pattern->dump();
2829      Result->error("Could not infer all types in pattern result!");
2830    }
2831
2832    // Validate that the input pattern is correct.
2833    std::map<std::string, TreePatternNode*> InstInputs;
2834    std::map<std::string, TreePatternNode*> InstResults;
2835    std::vector<Record*> InstImpResults;
2836    for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
2837      FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
2838                                  InstInputs, InstResults,
2839                                  InstImpResults);
2840
2841    // Promote the xform function to be an explicit node if set.
2842    TreePatternNode *DstPattern = Result->getOnlyTree();
2843    std::vector<TreePatternNode*> ResultNodeOperands;
2844    for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
2845      TreePatternNode *OpNode = DstPattern->getChild(ii);
2846      if (Record *Xform = OpNode->getTransformFn()) {
2847        OpNode->setTransformFn(0);
2848        std::vector<TreePatternNode*> Children;
2849        Children.push_back(OpNode);
2850        OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
2851      }
2852      ResultNodeOperands.push_back(OpNode);
2853    }
2854    DstPattern = Result->getOnlyTree();
2855    if (!DstPattern->isLeaf())
2856      DstPattern = new TreePatternNode(DstPattern->getOperator(),
2857                                       ResultNodeOperands,
2858                                       DstPattern->getNumTypes());
2859
2860    for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i)
2861      DstPattern->setType(i, Result->getOnlyTree()->getExtType(i));
2862
2863    TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
2864    Temp.InferAllTypes();
2865
2866
2867    AddPatternToMatch(Pattern,
2868                    PatternToMatch(CurPattern,
2869                                   CurPattern->getValueAsListInit("Predicates"),
2870                                   Pattern->getTree(0),
2871                                   Temp.getOnlyTree(), InstImpResults,
2872                                   CurPattern->getValueAsInt("AddedComplexity"),
2873                                   CurPattern->getID()));
2874  }
2875}
2876
2877/// CombineChildVariants - Given a bunch of permutations of each child of the
2878/// 'operator' node, put them together in all possible ways.
2879static void CombineChildVariants(TreePatternNode *Orig,
2880               const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
2881                                 std::vector<TreePatternNode*> &OutVariants,
2882                                 CodeGenDAGPatterns &CDP,
2883                                 const MultipleUseVarSet &DepVars) {
2884  // Make sure that each operand has at least one variant to choose from.
2885  for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
2886    if (ChildVariants[i].empty())
2887      return;
2888
2889  // The end result is an all-pairs construction of the resultant pattern.
2890  std::vector<unsigned> Idxs;
2891  Idxs.resize(ChildVariants.size());
2892  bool NotDone;
2893  do {
2894#ifndef NDEBUG
2895    DEBUG(if (!Idxs.empty()) {
2896            errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
2897              for (unsigned i = 0; i < Idxs.size(); ++i) {
2898                errs() << Idxs[i] << " ";
2899            }
2900            errs() << "]\n";
2901          });
2902#endif
2903    // Create the variant and add it to the output list.
2904    std::vector<TreePatternNode*> NewChildren;
2905    for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
2906      NewChildren.push_back(ChildVariants[i][Idxs[i]]);
2907    TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren,
2908                                             Orig->getNumTypes());
2909
2910    // Copy over properties.
2911    R->setName(Orig->getName());
2912    R->setPredicateFns(Orig->getPredicateFns());
2913    R->setTransformFn(Orig->getTransformFn());
2914    for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
2915      R->setType(i, Orig->getExtType(i));
2916
2917    // If this pattern cannot match, do not include it as a variant.
2918    std::string ErrString;
2919    if (!R->canPatternMatch(ErrString, CDP)) {
2920      delete R;
2921    } else {
2922      bool AlreadyExists = false;
2923
2924      // Scan to see if this pattern has already been emitted.  We can get
2925      // duplication due to things like commuting:
2926      //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
2927      // which are the same pattern.  Ignore the dups.
2928      for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
2929        if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
2930          AlreadyExists = true;
2931          break;
2932        }
2933
2934      if (AlreadyExists)
2935        delete R;
2936      else
2937        OutVariants.push_back(R);
2938    }
2939
2940    // Increment indices to the next permutation by incrementing the
2941    // indicies from last index backward, e.g., generate the sequence
2942    // [0, 0], [0, 1], [1, 0], [1, 1].
2943    int IdxsIdx;
2944    for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2945      if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
2946        Idxs[IdxsIdx] = 0;
2947      else
2948        break;
2949    }
2950    NotDone = (IdxsIdx >= 0);
2951  } while (NotDone);
2952}
2953
2954/// CombineChildVariants - A helper function for binary operators.
2955///
2956static void CombineChildVariants(TreePatternNode *Orig,
2957                                 const std::vector<TreePatternNode*> &LHS,
2958                                 const std::vector<TreePatternNode*> &RHS,
2959                                 std::vector<TreePatternNode*> &OutVariants,
2960                                 CodeGenDAGPatterns &CDP,
2961                                 const MultipleUseVarSet &DepVars) {
2962  std::vector<std::vector<TreePatternNode*> > ChildVariants;
2963  ChildVariants.push_back(LHS);
2964  ChildVariants.push_back(RHS);
2965  CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
2966}
2967
2968
2969static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
2970                                     std::vector<TreePatternNode *> &Children) {
2971  assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
2972  Record *Operator = N->getOperator();
2973
2974  // Only permit raw nodes.
2975  if (!N->getName().empty() || !N->getPredicateFns().empty() ||
2976      N->getTransformFn()) {
2977    Children.push_back(N);
2978    return;
2979  }
2980
2981  if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
2982    Children.push_back(N->getChild(0));
2983  else
2984    GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
2985
2986  if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
2987    Children.push_back(N->getChild(1));
2988  else
2989    GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
2990}
2991
2992/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
2993/// the (potentially recursive) pattern by using algebraic laws.
2994///
2995static void GenerateVariantsOf(TreePatternNode *N,
2996                               std::vector<TreePatternNode*> &OutVariants,
2997                               CodeGenDAGPatterns &CDP,
2998                               const MultipleUseVarSet &DepVars) {
2999  // We cannot permute leaves.
3000  if (N->isLeaf()) {
3001    OutVariants.push_back(N);
3002    return;
3003  }
3004
3005  // Look up interesting info about the node.
3006  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
3007
3008  // If this node is associative, re-associate.
3009  if (NodeInfo.hasProperty(SDNPAssociative)) {
3010    // Re-associate by pulling together all of the linked operators
3011    std::vector<TreePatternNode*> MaximalChildren;
3012    GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
3013
3014    // Only handle child sizes of 3.  Otherwise we'll end up trying too many
3015    // permutations.
3016    if (MaximalChildren.size() == 3) {
3017      // Find the variants of all of our maximal children.
3018      std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
3019      GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
3020      GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
3021      GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
3022
3023      // There are only two ways we can permute the tree:
3024      //   (A op B) op C    and    A op (B op C)
3025      // Within these forms, we can also permute A/B/C.
3026
3027      // Generate legal pair permutations of A/B/C.
3028      std::vector<TreePatternNode*> ABVariants;
3029      std::vector<TreePatternNode*> BAVariants;
3030      std::vector<TreePatternNode*> ACVariants;
3031      std::vector<TreePatternNode*> CAVariants;
3032      std::vector<TreePatternNode*> BCVariants;
3033      std::vector<TreePatternNode*> CBVariants;
3034      CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
3035      CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
3036      CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
3037      CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
3038      CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
3039      CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
3040
3041      // Combine those into the result: (x op x) op x
3042      CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
3043      CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
3044      CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
3045      CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
3046      CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
3047      CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
3048
3049      // Combine those into the result: x op (x op x)
3050      CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
3051      CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
3052      CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
3053      CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
3054      CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
3055      CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
3056      return;
3057    }
3058  }
3059
3060  // Compute permutations of all children.
3061  std::vector<std::vector<TreePatternNode*> > ChildVariants;
3062  ChildVariants.resize(N->getNumChildren());
3063  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3064    GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
3065
3066  // Build all permutations based on how the children were formed.
3067  CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
3068
3069  // If this node is commutative, consider the commuted order.
3070  bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
3071  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
3072    assert((N->getNumChildren()==2 || isCommIntrinsic) &&
3073           "Commutative but doesn't have 2 children!");
3074    // Don't count children which are actually register references.
3075    unsigned NC = 0;
3076    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
3077      TreePatternNode *Child = N->getChild(i);
3078      if (Child->isLeaf())
3079        if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
3080          Record *RR = DI->getDef();
3081          if (RR->isSubClassOf("Register"))
3082            continue;
3083        }
3084      NC++;
3085    }
3086    // Consider the commuted order.
3087    if (isCommIntrinsic) {
3088      // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
3089      // operands are the commutative operands, and there might be more operands
3090      // after those.
3091      assert(NC >= 3 &&
3092             "Commutative intrinsic should have at least 3 childrean!");
3093      std::vector<std::vector<TreePatternNode*> > Variants;
3094      Variants.push_back(ChildVariants[0]); // Intrinsic id.
3095      Variants.push_back(ChildVariants[2]);
3096      Variants.push_back(ChildVariants[1]);
3097      for (unsigned i = 3; i != NC; ++i)
3098        Variants.push_back(ChildVariants[i]);
3099      CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
3100    } else if (NC == 2)
3101      CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
3102                           OutVariants, CDP, DepVars);
3103  }
3104}
3105
3106
3107// GenerateVariants - Generate variants.  For example, commutative patterns can
3108// match multiple ways.  Add them to PatternsToMatch as well.
3109void CodeGenDAGPatterns::GenerateVariants() {
3110  DEBUG(errs() << "Generating instruction variants.\n");
3111
3112  // Loop over all of the patterns we've collected, checking to see if we can
3113  // generate variants of the instruction, through the exploitation of
3114  // identities.  This permits the target to provide aggressive matching without
3115  // the .td file having to contain tons of variants of instructions.
3116  //
3117  // Note that this loop adds new patterns to the PatternsToMatch list, but we
3118  // intentionally do not reconsider these.  Any variants of added patterns have
3119  // already been added.
3120  //
3121  for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
3122    MultipleUseVarSet             DepVars;
3123    std::vector<TreePatternNode*> Variants;
3124    FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
3125    DEBUG(errs() << "Dependent/multiply used variables: ");
3126    DEBUG(DumpDepVars(DepVars));
3127    DEBUG(errs() << "\n");
3128    GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
3129                       DepVars);
3130
3131    assert(!Variants.empty() && "Must create at least original variant!");
3132    Variants.erase(Variants.begin());  // Remove the original pattern.
3133
3134    if (Variants.empty())  // No variants for this pattern.
3135      continue;
3136
3137    DEBUG(errs() << "FOUND VARIANTS OF: ";
3138          PatternsToMatch[i].getSrcPattern()->dump();
3139          errs() << "\n");
3140
3141    for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
3142      TreePatternNode *Variant = Variants[v];
3143
3144      DEBUG(errs() << "  VAR#" << v <<  ": ";
3145            Variant->dump();
3146            errs() << "\n");
3147
3148      // Scan to see if an instruction or explicit pattern already matches this.
3149      bool AlreadyExists = false;
3150      for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
3151        // Skip if the top level predicates do not match.
3152        if (PatternsToMatch[i].getPredicates() !=
3153            PatternsToMatch[p].getPredicates())
3154          continue;
3155        // Check to see if this variant already exists.
3156        if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
3157                                    DepVars)) {
3158          DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
3159          AlreadyExists = true;
3160          break;
3161        }
3162      }
3163      // If we already have it, ignore the variant.
3164      if (AlreadyExists) continue;
3165
3166      // Otherwise, add it to the list of patterns we have.
3167      PatternsToMatch.
3168        push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(),
3169                                 PatternsToMatch[i].getPredicates(),
3170                                 Variant, PatternsToMatch[i].getDstPattern(),
3171                                 PatternsToMatch[i].getDstRegs(),
3172                                 PatternsToMatch[i].getAddedComplexity(),
3173                                 Record::getNewUID()));
3174    }
3175
3176    DEBUG(errs() << "\n");
3177  }
3178}
3179
3180