CodeGenDAGPatterns.cpp revision 193323
1//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CodeGenDAGPatterns class, which is used to read and
11// represent the patterns present in a .td file for instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CodeGenDAGPatterns.h"
16#include "Record.h"
17#include "llvm/ADT/StringExtras.h"
18#include "llvm/Support/Debug.h"
19#include "llvm/Support/Streams.h"
20#include <set>
21#include <algorithm>
22using namespace llvm;
23
24//===----------------------------------------------------------------------===//
25// Helpers for working with extended types.
26
27/// FilterVTs - Filter a list of VT's according to a predicate.
28///
29template<typename T>
30static std::vector<MVT::SimpleValueType>
31FilterVTs(const std::vector<MVT::SimpleValueType> &InVTs, T Filter) {
32  std::vector<MVT::SimpleValueType> Result;
33  for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
34    if (Filter(InVTs[i]))
35      Result.push_back(InVTs[i]);
36  return Result;
37}
38
39template<typename T>
40static std::vector<unsigned char>
41FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) {
42  std::vector<unsigned char> Result;
43  for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
44    if (Filter((MVT::SimpleValueType)InVTs[i]))
45      Result.push_back(InVTs[i]);
46  return Result;
47}
48
49static std::vector<unsigned char>
50ConvertVTs(const std::vector<MVT::SimpleValueType> &InVTs) {
51  std::vector<unsigned char> Result;
52  for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
53    Result.push_back(InVTs[i]);
54  return Result;
55}
56
57static inline bool isInteger(MVT::SimpleValueType VT) {
58  return MVT(VT).isInteger();
59}
60
61static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
62  return MVT(VT).isFloatingPoint();
63}
64
65static inline bool isVector(MVT::SimpleValueType VT) {
66  return MVT(VT).isVector();
67}
68
69static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS,
70                             const std::vector<unsigned char> &RHS) {
71  if (LHS.size() > RHS.size()) return false;
72  for (unsigned i = 0, e = LHS.size(); i != e; ++i)
73    if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end())
74      return false;
75  return true;
76}
77
78namespace llvm {
79namespace EMVT {
80/// isExtIntegerInVTs - Return true if the specified extended value type vector
81/// contains isInt or an integer value type.
82bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) {
83  assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
84  return EVTs[0] == isInt || !(FilterEVTs(EVTs, isInteger).empty());
85}
86
87/// isExtFloatingPointInVTs - Return true if the specified extended value type
88/// vector contains isFP or a FP value type.
89bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) {
90  assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
91  return EVTs[0] == isFP || !(FilterEVTs(EVTs, isFloatingPoint).empty());
92}
93} // end namespace EMVT.
94} // end namespace llvm.
95
96
97/// Dependent variable map for CodeGenDAGPattern variant generation
98typedef std::map<std::string, int> DepVarMap;
99
100/// Const iterator shorthand for DepVarMap
101typedef DepVarMap::const_iterator DepVarMap_citer;
102
103namespace {
104void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
105  if (N->isLeaf()) {
106    if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL) {
107      DepMap[N->getName()]++;
108    }
109  } else {
110    for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
111      FindDepVarsOf(N->getChild(i), DepMap);
112  }
113}
114
115//! Find dependent variables within child patterns
116/*!
117 */
118void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
119  DepVarMap depcounts;
120  FindDepVarsOf(N, depcounts);
121  for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
122    if (i->second > 1) {            // std::pair<std::string, int>
123      DepVars.insert(i->first);
124    }
125  }
126}
127
128//! Dump the dependent variable set:
129void DumpDepVars(MultipleUseVarSet &DepVars) {
130  if (DepVars.empty()) {
131    DOUT << "<empty set>";
132  } else {
133    DOUT << "[ ";
134    for (MultipleUseVarSet::const_iterator i = DepVars.begin(), e = DepVars.end();
135         i != e; ++i) {
136      DOUT << (*i) << " ";
137    }
138    DOUT << "]";
139  }
140}
141}
142
143//===----------------------------------------------------------------------===//
144// PatternToMatch implementation
145//
146
147/// getPredicateCheck - Return a single string containing all of this
148/// pattern's predicates concatenated with "&&" operators.
149///
150std::string PatternToMatch::getPredicateCheck() const {
151  std::string PredicateCheck;
152  for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
153    if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
154      Record *Def = Pred->getDef();
155      if (!Def->isSubClassOf("Predicate")) {
156#ifndef NDEBUG
157        Def->dump();
158#endif
159        assert(0 && "Unknown predicate type!");
160      }
161      if (!PredicateCheck.empty())
162        PredicateCheck += " && ";
163      PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
164    }
165  }
166
167  return PredicateCheck;
168}
169
170//===----------------------------------------------------------------------===//
171// SDTypeConstraint implementation
172//
173
174SDTypeConstraint::SDTypeConstraint(Record *R) {
175  OperandNo = R->getValueAsInt("OperandNum");
176
177  if (R->isSubClassOf("SDTCisVT")) {
178    ConstraintType = SDTCisVT;
179    x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
180  } else if (R->isSubClassOf("SDTCisPtrTy")) {
181    ConstraintType = SDTCisPtrTy;
182  } else if (R->isSubClassOf("SDTCisInt")) {
183    ConstraintType = SDTCisInt;
184  } else if (R->isSubClassOf("SDTCisFP")) {
185    ConstraintType = SDTCisFP;
186  } else if (R->isSubClassOf("SDTCisSameAs")) {
187    ConstraintType = SDTCisSameAs;
188    x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
189  } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
190    ConstraintType = SDTCisVTSmallerThanOp;
191    x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
192      R->getValueAsInt("OtherOperandNum");
193  } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
194    ConstraintType = SDTCisOpSmallerThanOp;
195    x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
196      R->getValueAsInt("BigOperandNum");
197  } else if (R->isSubClassOf("SDTCisEltOfVec")) {
198    ConstraintType = SDTCisEltOfVec;
199    x.SDTCisEltOfVec_Info.OtherOperandNum =
200      R->getValueAsInt("OtherOpNum");
201  } else {
202    cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
203    exit(1);
204  }
205}
206
207/// getOperandNum - Return the node corresponding to operand #OpNo in tree
208/// N, which has NumResults results.
209TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo,
210                                                 TreePatternNode *N,
211                                                 unsigned NumResults) const {
212  assert(NumResults <= 1 &&
213         "We only work with nodes with zero or one result so far!");
214
215  if (OpNo >= (NumResults + N->getNumChildren())) {
216    cerr << "Invalid operand number " << OpNo << " ";
217    N->dump();
218    cerr << '\n';
219    exit(1);
220  }
221
222  if (OpNo < NumResults)
223    return N;  // FIXME: need value #
224  else
225    return N->getChild(OpNo-NumResults);
226}
227
228/// ApplyTypeConstraint - Given a node in a pattern, apply this type
229/// constraint to the nodes operands.  This returns true if it makes a
230/// change, false otherwise.  If a type contradiction is found, throw an
231/// exception.
232bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
233                                           const SDNodeInfo &NodeInfo,
234                                           TreePattern &TP) const {
235  unsigned NumResults = NodeInfo.getNumResults();
236  assert(NumResults <= 1 &&
237         "We only work with nodes with zero or one result so far!");
238
239  // Check that the number of operands is sane.  Negative operands -> varargs.
240  if (NodeInfo.getNumOperands() >= 0) {
241    if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands())
242      TP.error(N->getOperator()->getName() + " node requires exactly " +
243               itostr(NodeInfo.getNumOperands()) + " operands!");
244  }
245
246  const CodeGenTarget &CGT = TP.getDAGPatterns().getTargetInfo();
247
248  TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults);
249
250  switch (ConstraintType) {
251  default: assert(0 && "Unknown constraint type!");
252  case SDTCisVT:
253    // Operand must be a particular type.
254    return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP);
255  case SDTCisPtrTy: {
256    // Operand must be same as target pointer type.
257    return NodeToApply->UpdateNodeType(MVT::iPTR, TP);
258  }
259  case SDTCisInt: {
260    // If there is only one integer type supported, this must be it.
261    std::vector<MVT::SimpleValueType> IntVTs =
262      FilterVTs(CGT.getLegalValueTypes(), isInteger);
263
264    // If we found exactly one supported integer type, apply it.
265    if (IntVTs.size() == 1)
266      return NodeToApply->UpdateNodeType(IntVTs[0], TP);
267    return NodeToApply->UpdateNodeType(EMVT::isInt, TP);
268  }
269  case SDTCisFP: {
270    // If there is only one FP type supported, this must be it.
271    std::vector<MVT::SimpleValueType> FPVTs =
272      FilterVTs(CGT.getLegalValueTypes(), isFloatingPoint);
273
274    // If we found exactly one supported FP type, apply it.
275    if (FPVTs.size() == 1)
276      return NodeToApply->UpdateNodeType(FPVTs[0], TP);
277    return NodeToApply->UpdateNodeType(EMVT::isFP, TP);
278  }
279  case SDTCisSameAs: {
280    TreePatternNode *OtherNode =
281      getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults);
282    return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) |
283           OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP);
284  }
285  case SDTCisVTSmallerThanOp: {
286    // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
287    // have an integer type that is smaller than the VT.
288    if (!NodeToApply->isLeaf() ||
289        !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
290        !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
291               ->isSubClassOf("ValueType"))
292      TP.error(N->getOperator()->getName() + " expects a VT operand!");
293    MVT::SimpleValueType VT =
294     getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
295    if (!isInteger(VT))
296      TP.error(N->getOperator()->getName() + " VT operand must be integer!");
297
298    TreePatternNode *OtherNode =
299      getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults);
300
301    // It must be integer.
302    bool MadeChange = false;
303    MadeChange |= OtherNode->UpdateNodeType(EMVT::isInt, TP);
304
305    // This code only handles nodes that have one type set.  Assert here so
306    // that we can change this if we ever need to deal with multiple value
307    // types at this point.
308    assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!");
309    if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT)
310      OtherNode->UpdateNodeType(MVT::Other, TP);  // Throw an error.
311    return false;
312  }
313  case SDTCisOpSmallerThanOp: {
314    TreePatternNode *BigOperand =
315      getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults);
316
317    // Both operands must be integer or FP, but we don't care which.
318    bool MadeChange = false;
319
320    // This code does not currently handle nodes which have multiple types,
321    // where some types are integer, and some are fp.  Assert that this is not
322    // the case.
323    assert(!(EMVT::isExtIntegerInVTs(NodeToApply->getExtTypes()) &&
324             EMVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) &&
325           !(EMVT::isExtIntegerInVTs(BigOperand->getExtTypes()) &&
326             EMVT::isExtFloatingPointInVTs(BigOperand->getExtTypes())) &&
327           "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
328    if (EMVT::isExtIntegerInVTs(NodeToApply->getExtTypes()))
329      MadeChange |= BigOperand->UpdateNodeType(EMVT::isInt, TP);
330    else if (EMVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes()))
331      MadeChange |= BigOperand->UpdateNodeType(EMVT::isFP, TP);
332    if (EMVT::isExtIntegerInVTs(BigOperand->getExtTypes()))
333      MadeChange |= NodeToApply->UpdateNodeType(EMVT::isInt, TP);
334    else if (EMVT::isExtFloatingPointInVTs(BigOperand->getExtTypes()))
335      MadeChange |= NodeToApply->UpdateNodeType(EMVT::isFP, TP);
336
337    std::vector<MVT::SimpleValueType> VTs = CGT.getLegalValueTypes();
338
339    if (EMVT::isExtIntegerInVTs(NodeToApply->getExtTypes())) {
340      VTs = FilterVTs(VTs, isInteger);
341    } else if (EMVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) {
342      VTs = FilterVTs(VTs, isFloatingPoint);
343    } else {
344      VTs.clear();
345    }
346
347    switch (VTs.size()) {
348    default:         // Too many VT's to pick from.
349    case 0: break;   // No info yet.
350    case 1:
351      // Only one VT of this flavor.  Cannot ever satisfy the constraints.
352      return NodeToApply->UpdateNodeType(MVT::Other, TP);  // throw
353    case 2:
354      // If we have exactly two possible types, the little operand must be the
355      // small one, the big operand should be the big one.  Common with
356      // float/double for example.
357      assert(VTs[0] < VTs[1] && "Should be sorted!");
358      MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP);
359      MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP);
360      break;
361    }
362    return MadeChange;
363  }
364  case SDTCisEltOfVec: {
365    TreePatternNode *OtherOperand =
366      getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum,
367                    N, NumResults);
368    if (OtherOperand->hasTypeSet()) {
369      if (!isVector(OtherOperand->getTypeNum(0)))
370        TP.error(N->getOperator()->getName() + " VT operand must be a vector!");
371      MVT IVT = OtherOperand->getTypeNum(0);
372      IVT = IVT.getVectorElementType();
373      return NodeToApply->UpdateNodeType(IVT.getSimpleVT(), TP);
374    }
375    return false;
376  }
377  }
378  return false;
379}
380
381//===----------------------------------------------------------------------===//
382// SDNodeInfo implementation
383//
384SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
385  EnumName    = R->getValueAsString("Opcode");
386  SDClassName = R->getValueAsString("SDClass");
387  Record *TypeProfile = R->getValueAsDef("TypeProfile");
388  NumResults = TypeProfile->getValueAsInt("NumResults");
389  NumOperands = TypeProfile->getValueAsInt("NumOperands");
390
391  // Parse the properties.
392  Properties = 0;
393  std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
394  for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
395    if (PropList[i]->getName() == "SDNPCommutative") {
396      Properties |= 1 << SDNPCommutative;
397    } else if (PropList[i]->getName() == "SDNPAssociative") {
398      Properties |= 1 << SDNPAssociative;
399    } else if (PropList[i]->getName() == "SDNPHasChain") {
400      Properties |= 1 << SDNPHasChain;
401    } else if (PropList[i]->getName() == "SDNPOutFlag") {
402      Properties |= 1 << SDNPOutFlag;
403    } else if (PropList[i]->getName() == "SDNPInFlag") {
404      Properties |= 1 << SDNPInFlag;
405    } else if (PropList[i]->getName() == "SDNPOptInFlag") {
406      Properties |= 1 << SDNPOptInFlag;
407    } else if (PropList[i]->getName() == "SDNPMayStore") {
408      Properties |= 1 << SDNPMayStore;
409    } else if (PropList[i]->getName() == "SDNPMayLoad") {
410      Properties |= 1 << SDNPMayLoad;
411    } else if (PropList[i]->getName() == "SDNPSideEffect") {
412      Properties |= 1 << SDNPSideEffect;
413    } else if (PropList[i]->getName() == "SDNPMemOperand") {
414      Properties |= 1 << SDNPMemOperand;
415    } else {
416      cerr << "Unknown SD Node property '" << PropList[i]->getName()
417           << "' on node '" << R->getName() << "'!\n";
418      exit(1);
419    }
420  }
421
422
423  // Parse the type constraints.
424  std::vector<Record*> ConstraintList =
425    TypeProfile->getValueAsListOfDefs("Constraints");
426  TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
427}
428
429//===----------------------------------------------------------------------===//
430// TreePatternNode implementation
431//
432
433TreePatternNode::~TreePatternNode() {
434#if 0 // FIXME: implement refcounted tree nodes!
435  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
436    delete getChild(i);
437#endif
438}
439
440/// UpdateNodeType - Set the node type of N to VT if VT contains
441/// information.  If N already contains a conflicting type, then throw an
442/// exception.  This returns true if any information was updated.
443///
444bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs,
445                                     TreePattern &TP) {
446  assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!");
447
448  if (ExtVTs[0] == EMVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs))
449    return false;
450  if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) {
451    setTypes(ExtVTs);
452    return true;
453  }
454
455  if (getExtTypeNum(0) == MVT::iPTR || getExtTypeNum(0) == MVT::iPTRAny) {
456    if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny ||
457        ExtVTs[0] == EMVT::isInt)
458      return false;
459    if (EMVT::isExtIntegerInVTs(ExtVTs)) {
460      std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, isInteger);
461      if (FVTs.size()) {
462        setTypes(ExtVTs);
463        return true;
464      }
465    }
466  }
467
468  if ((ExtVTs[0] == EMVT::isInt || ExtVTs[0] == MVT::iAny) &&
469      EMVT::isExtIntegerInVTs(getExtTypes())) {
470    assert(hasTypeSet() && "should be handled above!");
471    std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isInteger);
472    if (getExtTypes() == FVTs)
473      return false;
474    setTypes(FVTs);
475    return true;
476  }
477  if ((ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny) &&
478      EMVT::isExtIntegerInVTs(getExtTypes())) {
479    //assert(hasTypeSet() && "should be handled above!");
480    std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isInteger);
481    if (getExtTypes() == FVTs)
482      return false;
483    if (FVTs.size()) {
484      setTypes(FVTs);
485      return true;
486    }
487  }
488  if ((ExtVTs[0] == EMVT::isFP || ExtVTs[0] == MVT::fAny) &&
489      EMVT::isExtFloatingPointInVTs(getExtTypes())) {
490    assert(hasTypeSet() && "should be handled above!");
491    std::vector<unsigned char> FVTs =
492      FilterEVTs(getExtTypes(), isFloatingPoint);
493    if (getExtTypes() == FVTs)
494      return false;
495    setTypes(FVTs);
496    return true;
497  }
498
499  // If we know this is an int or fp type, and we are told it is a specific one,
500  // take the advice.
501  //
502  // Similarly, we should probably set the type here to the intersection of
503  // {isInt|isFP} and ExtVTs
504  if (((getExtTypeNum(0) == EMVT::isInt || getExtTypeNum(0) == MVT::iAny) &&
505       EMVT::isExtIntegerInVTs(ExtVTs)) ||
506      ((getExtTypeNum(0) == EMVT::isFP || getExtTypeNum(0) == MVT::fAny) &&
507       EMVT::isExtFloatingPointInVTs(ExtVTs))) {
508    setTypes(ExtVTs);
509    return true;
510  }
511  if (getExtTypeNum(0) == EMVT::isInt &&
512      (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny)) {
513    setTypes(ExtVTs);
514    return true;
515  }
516
517  if (isLeaf()) {
518    dump();
519    cerr << " ";
520    TP.error("Type inference contradiction found in node!");
521  } else {
522    TP.error("Type inference contradiction found in node " +
523             getOperator()->getName() + "!");
524  }
525  return true; // unreachable
526}
527
528
529void TreePatternNode::print(std::ostream &OS) const {
530  if (isLeaf()) {
531    OS << *getLeafValue();
532  } else {
533    OS << "(" << getOperator()->getName();
534  }
535
536  // FIXME: At some point we should handle printing all the value types for
537  // nodes that are multiply typed.
538  switch (getExtTypeNum(0)) {
539  case MVT::Other: OS << ":Other"; break;
540  case EMVT::isInt: OS << ":isInt"; break;
541  case EMVT::isFP : OS << ":isFP"; break;
542  case EMVT::isUnknown: ; /*OS << ":?";*/ break;
543  case MVT::iPTR:  OS << ":iPTR"; break;
544  case MVT::iPTRAny:  OS << ":iPTRAny"; break;
545  default: {
546    std::string VTName = llvm::getName(getTypeNum(0));
547    // Strip off MVT:: prefix if present.
548    if (VTName.substr(0,5) == "MVT::")
549      VTName = VTName.substr(5);
550    OS << ":" << VTName;
551    break;
552  }
553  }
554
555  if (!isLeaf()) {
556    if (getNumChildren() != 0) {
557      OS << " ";
558      getChild(0)->print(OS);
559      for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
560        OS << ", ";
561        getChild(i)->print(OS);
562      }
563    }
564    OS << ")";
565  }
566
567  for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
568    OS << "<<P:" << PredicateFns[i] << ">>";
569  if (TransformFn)
570    OS << "<<X:" << TransformFn->getName() << ">>";
571  if (!getName().empty())
572    OS << ":$" << getName();
573
574}
575void TreePatternNode::dump() const {
576  print(*cerr.stream());
577}
578
579/// isIsomorphicTo - Return true if this node is recursively
580/// isomorphic to the specified node.  For this comparison, the node's
581/// entire state is considered. The assigned name is ignored, since
582/// nodes with differing names are considered isomorphic. However, if
583/// the assigned name is present in the dependent variable set, then
584/// the assigned name is considered significant and the node is
585/// isomorphic if the names match.
586bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
587                                     const MultipleUseVarSet &DepVars) const {
588  if (N == this) return true;
589  if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
590      getPredicateFns() != N->getPredicateFns() ||
591      getTransformFn() != N->getTransformFn())
592    return false;
593
594  if (isLeaf()) {
595    if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
596      if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) {
597        return ((DI->getDef() == NDI->getDef())
598                && (DepVars.find(getName()) == DepVars.end()
599                    || getName() == N->getName()));
600      }
601    }
602    return getLeafValue() == N->getLeafValue();
603  }
604
605  if (N->getOperator() != getOperator() ||
606      N->getNumChildren() != getNumChildren()) return false;
607  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
608    if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
609      return false;
610  return true;
611}
612
613/// clone - Make a copy of this tree and all of its children.
614///
615TreePatternNode *TreePatternNode::clone() const {
616  TreePatternNode *New;
617  if (isLeaf()) {
618    New = new TreePatternNode(getLeafValue());
619  } else {
620    std::vector<TreePatternNode*> CChildren;
621    CChildren.reserve(Children.size());
622    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
623      CChildren.push_back(getChild(i)->clone());
624    New = new TreePatternNode(getOperator(), CChildren);
625  }
626  New->setName(getName());
627  New->setTypes(getExtTypes());
628  New->setPredicateFns(getPredicateFns());
629  New->setTransformFn(getTransformFn());
630  return New;
631}
632
633/// SubstituteFormalArguments - Replace the formal arguments in this tree
634/// with actual values specified by ArgMap.
635void TreePatternNode::
636SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
637  if (isLeaf()) return;
638
639  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
640    TreePatternNode *Child = getChild(i);
641    if (Child->isLeaf()) {
642      Init *Val = Child->getLeafValue();
643      if (dynamic_cast<DefInit*>(Val) &&
644          static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
645        // We found a use of a formal argument, replace it with its value.
646        TreePatternNode *NewChild = ArgMap[Child->getName()];
647        assert(NewChild && "Couldn't find formal argument!");
648        assert((Child->getPredicateFns().empty() ||
649                NewChild->getPredicateFns() == Child->getPredicateFns()) &&
650               "Non-empty child predicate clobbered!");
651        setChild(i, NewChild);
652      }
653    } else {
654      getChild(i)->SubstituteFormalArguments(ArgMap);
655    }
656  }
657}
658
659
660/// InlinePatternFragments - If this pattern refers to any pattern
661/// fragments, inline them into place, giving us a pattern without any
662/// PatFrag references.
663TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
664  if (isLeaf()) return this;  // nothing to do.
665  Record *Op = getOperator();
666
667  if (!Op->isSubClassOf("PatFrag")) {
668    // Just recursively inline children nodes.
669    for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
670      TreePatternNode *Child = getChild(i);
671      TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
672
673      assert((Child->getPredicateFns().empty() ||
674              NewChild->getPredicateFns() == Child->getPredicateFns()) &&
675             "Non-empty child predicate clobbered!");
676
677      setChild(i, NewChild);
678    }
679    return this;
680  }
681
682  // Otherwise, we found a reference to a fragment.  First, look up its
683  // TreePattern record.
684  TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
685
686  // Verify that we are passing the right number of operands.
687  if (Frag->getNumArgs() != Children.size())
688    TP.error("'" + Op->getName() + "' fragment requires " +
689             utostr(Frag->getNumArgs()) + " operands!");
690
691  TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
692
693  std::string Code = Op->getValueAsCode("Predicate");
694  if (!Code.empty())
695    FragTree->addPredicateFn("Predicate_"+Op->getName());
696
697  // Resolve formal arguments to their actual value.
698  if (Frag->getNumArgs()) {
699    // Compute the map of formal to actual arguments.
700    std::map<std::string, TreePatternNode*> ArgMap;
701    for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
702      ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
703
704    FragTree->SubstituteFormalArguments(ArgMap);
705  }
706
707  FragTree->setName(getName());
708  FragTree->UpdateNodeType(getExtTypes(), TP);
709
710  // Transfer in the old predicates.
711  for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
712    FragTree->addPredicateFn(getPredicateFns()[i]);
713
714  // Get a new copy of this fragment to stitch into here.
715  //delete this;    // FIXME: implement refcounting!
716
717  // The fragment we inlined could have recursive inlining that is needed.  See
718  // if there are any pattern fragments in it and inline them as needed.
719  return FragTree->InlinePatternFragments(TP);
720}
721
722/// getImplicitType - Check to see if the specified record has an implicit
723/// type which should be applied to it.  This infer the type of register
724/// references from the register file information, for example.
725///
726static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters,
727                                      TreePattern &TP) {
728  // Some common return values
729  std::vector<unsigned char> Unknown(1, EMVT::isUnknown);
730  std::vector<unsigned char> Other(1, MVT::Other);
731
732  // Check to see if this is a register or a register class...
733  if (R->isSubClassOf("RegisterClass")) {
734    if (NotRegisters)
735      return Unknown;
736    const CodeGenRegisterClass &RC =
737      TP.getDAGPatterns().getTargetInfo().getRegisterClass(R);
738    return ConvertVTs(RC.getValueTypes());
739  } else if (R->isSubClassOf("PatFrag")) {
740    // Pattern fragment types will be resolved when they are inlined.
741    return Unknown;
742  } else if (R->isSubClassOf("Register")) {
743    if (NotRegisters)
744      return Unknown;
745    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
746    return T.getRegisterVTs(R);
747  } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
748    // Using a VTSDNode or CondCodeSDNode.
749    return Other;
750  } else if (R->isSubClassOf("ComplexPattern")) {
751    if (NotRegisters)
752      return Unknown;
753    std::vector<unsigned char>
754    ComplexPat(1, TP.getDAGPatterns().getComplexPattern(R).getValueType());
755    return ComplexPat;
756  } else if (R->getName() == "ptr_rc") {
757    Other[0] = MVT::iPTR;
758    return Other;
759  } else if (R->getName() == "node" || R->getName() == "srcvalue" ||
760             R->getName() == "zero_reg") {
761    // Placeholder.
762    return Unknown;
763  }
764
765  TP.error("Unknown node flavor used in pattern: " + R->getName());
766  return Other;
767}
768
769
770/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
771/// CodeGenIntrinsic information for it, otherwise return a null pointer.
772const CodeGenIntrinsic *TreePatternNode::
773getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
774  if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
775      getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
776      getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
777    return 0;
778
779  unsigned IID =
780    dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
781  return &CDP.getIntrinsicInfo(IID);
782}
783
784/// isCommutativeIntrinsic - Return true if the node corresponds to a
785/// commutative intrinsic.
786bool
787TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
788  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
789    return Int->isCommutative;
790  return false;
791}
792
793
794/// ApplyTypeConstraints - Apply all of the type constraints relevant to
795/// this node and its children in the tree.  This returns true if it makes a
796/// change, false otherwise.  If a type contradiction is found, throw an
797/// exception.
798bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
799  CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
800  if (isLeaf()) {
801    if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
802      // If it's a regclass or something else known, include the type.
803      return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP);
804    } else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
805      // Int inits are always integers. :)
806      bool MadeChange = UpdateNodeType(EMVT::isInt, TP);
807
808      if (hasTypeSet()) {
809        // At some point, it may make sense for this tree pattern to have
810        // multiple types.  Assert here that it does not, so we revisit this
811        // code when appropriate.
812        assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!");
813        MVT::SimpleValueType VT = getTypeNum(0);
814        for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i)
815          assert(getTypeNum(i) == VT && "TreePattern has too many types!");
816
817        VT = getTypeNum(0);
818        if (VT != MVT::iPTR && VT != MVT::iPTRAny) {
819          unsigned Size = MVT(VT).getSizeInBits();
820          // Make sure that the value is representable for this type.
821          if (Size < 32) {
822            int Val = (II->getValue() << (32-Size)) >> (32-Size);
823            if (Val != II->getValue()) {
824              // If sign-extended doesn't fit, does it fit as unsigned?
825              unsigned ValueMask;
826              unsigned UnsignedVal;
827              ValueMask = unsigned(~uint32_t(0UL) >> (32-Size));
828              UnsignedVal = unsigned(II->getValue());
829
830              if ((ValueMask & UnsignedVal) != UnsignedVal) {
831                TP.error("Integer value '" + itostr(II->getValue())+
832                         "' is out of range for type '" +
833                         getEnumName(getTypeNum(0)) + "'!");
834              }
835            }
836         }
837       }
838      }
839
840      return MadeChange;
841    }
842    return false;
843  }
844
845  // special handling for set, which isn't really an SDNode.
846  if (getOperator()->getName() == "set") {
847    assert (getNumChildren() >= 2 && "Missing RHS of a set?");
848    unsigned NC = getNumChildren();
849    bool MadeChange = false;
850    for (unsigned i = 0; i < NC-1; ++i) {
851      MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
852      MadeChange |= getChild(NC-1)->ApplyTypeConstraints(TP, NotRegisters);
853
854      // Types of operands must match.
855      MadeChange |= getChild(i)->UpdateNodeType(getChild(NC-1)->getExtTypes(),
856                                                TP);
857      MadeChange |= getChild(NC-1)->UpdateNodeType(getChild(i)->getExtTypes(),
858                                                   TP);
859      MadeChange |= UpdateNodeType(MVT::isVoid, TP);
860    }
861    return MadeChange;
862  } else if (getOperator()->getName() == "implicit" ||
863             getOperator()->getName() == "parallel") {
864    bool MadeChange = false;
865    for (unsigned i = 0; i < getNumChildren(); ++i)
866      MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
867    MadeChange |= UpdateNodeType(MVT::isVoid, TP);
868    return MadeChange;
869  } else if (getOperator()->getName() == "COPY_TO_REGCLASS") {
870    bool MadeChange = false;
871    MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
872    MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
873    MadeChange |= UpdateNodeType(getChild(1)->getTypeNum(0), TP);
874    return MadeChange;
875  } else if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
876    bool MadeChange = false;
877
878    // Apply the result type to the node.
879    unsigned NumRetVTs = Int->IS.RetVTs.size();
880    unsigned NumParamVTs = Int->IS.ParamVTs.size();
881
882    for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
883      MadeChange |= UpdateNodeType(Int->IS.RetVTs[i], TP);
884
885    if (getNumChildren() != NumParamVTs + NumRetVTs)
886      TP.error("Intrinsic '" + Int->Name + "' expects " +
887               utostr(NumParamVTs + NumRetVTs - 1) + " operands, not " +
888               utostr(getNumChildren() - 1) + " operands!");
889
890    // Apply type info to the intrinsic ID.
891    MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP);
892
893    for (unsigned i = NumRetVTs, e = getNumChildren(); i != e; ++i) {
894      MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i - NumRetVTs];
895      MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP);
896      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
897    }
898    return MadeChange;
899  } else if (getOperator()->isSubClassOf("SDNode")) {
900    const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
901
902    bool MadeChange = NI.ApplyTypeConstraints(this, TP);
903    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
904      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
905    // Branch, etc. do not produce results and top-level forms in instr pattern
906    // must have void types.
907    if (NI.getNumResults() == 0)
908      MadeChange |= UpdateNodeType(MVT::isVoid, TP);
909
910    return MadeChange;
911  } else if (getOperator()->isSubClassOf("Instruction")) {
912    const DAGInstruction &Inst = CDP.getInstruction(getOperator());
913    bool MadeChange = false;
914    unsigned NumResults = Inst.getNumResults();
915
916    assert(NumResults <= 1 &&
917           "Only supports zero or one result instrs!");
918
919    CodeGenInstruction &InstInfo =
920      CDP.getTargetInfo().getInstruction(getOperator()->getName());
921    // Apply the result type to the node
922    if (NumResults == 0 || InstInfo.NumDefs == 0) {
923      MadeChange = UpdateNodeType(MVT::isVoid, TP);
924    } else {
925      Record *ResultNode = Inst.getResult(0);
926
927      if (ResultNode->getName() == "ptr_rc") {
928        std::vector<unsigned char> VT;
929        VT.push_back(MVT::iPTR);
930        MadeChange = UpdateNodeType(VT, TP);
931      } else if (ResultNode->getName() == "unknown") {
932        std::vector<unsigned char> VT;
933        VT.push_back(EMVT::isUnknown);
934        MadeChange = UpdateNodeType(VT, TP);
935      } else {
936        assert(ResultNode->isSubClassOf("RegisterClass") &&
937               "Operands should be register classes!");
938
939        const CodeGenRegisterClass &RC =
940          CDP.getTargetInfo().getRegisterClass(ResultNode);
941        MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
942      }
943    }
944
945    unsigned ChildNo = 0;
946    for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
947      Record *OperandNode = Inst.getOperand(i);
948
949      // If the instruction expects a predicate or optional def operand, we
950      // codegen this by setting the operand to it's default value if it has a
951      // non-empty DefaultOps field.
952      if ((OperandNode->isSubClassOf("PredicateOperand") ||
953           OperandNode->isSubClassOf("OptionalDefOperand")) &&
954          !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
955        continue;
956
957      // Verify that we didn't run out of provided operands.
958      if (ChildNo >= getNumChildren())
959        TP.error("Instruction '" + getOperator()->getName() +
960                 "' expects more operands than were provided.");
961
962      MVT::SimpleValueType VT;
963      TreePatternNode *Child = getChild(ChildNo++);
964      if (OperandNode->isSubClassOf("RegisterClass")) {
965        const CodeGenRegisterClass &RC =
966          CDP.getTargetInfo().getRegisterClass(OperandNode);
967        MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
968      } else if (OperandNode->isSubClassOf("Operand")) {
969        VT = getValueType(OperandNode->getValueAsDef("Type"));
970        MadeChange |= Child->UpdateNodeType(VT, TP);
971      } else if (OperandNode->getName() == "ptr_rc") {
972        MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP);
973      } else if (OperandNode->getName() == "unknown") {
974        MadeChange |= Child->UpdateNodeType(EMVT::isUnknown, TP);
975      } else {
976        assert(0 && "Unknown operand type!");
977        abort();
978      }
979      MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
980    }
981
982    if (ChildNo != getNumChildren())
983      TP.error("Instruction '" + getOperator()->getName() +
984               "' was provided too many operands!");
985
986    return MadeChange;
987  } else {
988    assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
989
990    // Node transforms always take one operand.
991    if (getNumChildren() != 1)
992      TP.error("Node transform '" + getOperator()->getName() +
993               "' requires one operand!");
994
995    // If either the output or input of the xform does not have exact
996    // type info. We assume they must be the same. Otherwise, it is perfectly
997    // legal to transform from one type to a completely different type.
998    if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
999      bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP);
1000      MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP);
1001      return MadeChange;
1002    }
1003    return false;
1004  }
1005}
1006
1007/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
1008/// RHS of a commutative operation, not the on LHS.
1009static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
1010  if (!N->isLeaf() && N->getOperator()->getName() == "imm")
1011    return true;
1012  if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
1013    return true;
1014  return false;
1015}
1016
1017
1018/// canPatternMatch - If it is impossible for this pattern to match on this
1019/// target, fill in Reason and return false.  Otherwise, return true.  This is
1020/// used as a sanity check for .td files (to prevent people from writing stuff
1021/// that can never possibly work), and to prevent the pattern permuter from
1022/// generating stuff that is useless.
1023bool TreePatternNode::canPatternMatch(std::string &Reason,
1024                                      const CodeGenDAGPatterns &CDP) {
1025  if (isLeaf()) return true;
1026
1027  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1028    if (!getChild(i)->canPatternMatch(Reason, CDP))
1029      return false;
1030
1031  // If this is an intrinsic, handle cases that would make it not match.  For
1032  // example, if an operand is required to be an immediate.
1033  if (getOperator()->isSubClassOf("Intrinsic")) {
1034    // TODO:
1035    return true;
1036  }
1037
1038  // If this node is a commutative operator, check that the LHS isn't an
1039  // immediate.
1040  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
1041  bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
1042  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
1043    // Scan all of the operands of the node and make sure that only the last one
1044    // is a constant node, unless the RHS also is.
1045    if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
1046      bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
1047      for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
1048        if (OnlyOnRHSOfCommutative(getChild(i))) {
1049          Reason="Immediate value must be on the RHS of commutative operators!";
1050          return false;
1051        }
1052    }
1053  }
1054
1055  return true;
1056}
1057
1058//===----------------------------------------------------------------------===//
1059// TreePattern implementation
1060//
1061
1062TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
1063                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1064   isInputPattern = isInput;
1065   for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
1066     Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i)));
1067}
1068
1069TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
1070                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1071  isInputPattern = isInput;
1072  Trees.push_back(ParseTreePattern(Pat));
1073}
1074
1075TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
1076                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1077  isInputPattern = isInput;
1078  Trees.push_back(Pat);
1079}
1080
1081
1082
1083void TreePattern::error(const std::string &Msg) const {
1084  dump();
1085  throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
1086}
1087
1088TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
1089  DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
1090  if (!OpDef) error("Pattern has unexpected operator type!");
1091  Record *Operator = OpDef->getDef();
1092
1093  if (Operator->isSubClassOf("ValueType")) {
1094    // If the operator is a ValueType, then this must be "type cast" of a leaf
1095    // node.
1096    if (Dag->getNumArgs() != 1)
1097      error("Type cast only takes one operand!");
1098
1099    Init *Arg = Dag->getArg(0);
1100    TreePatternNode *New;
1101    if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
1102      Record *R = DI->getDef();
1103      if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
1104        Dag->setArg(0, new DagInit(DI, "",
1105                                std::vector<std::pair<Init*, std::string> >()));
1106        return ParseTreePattern(Dag);
1107      }
1108      New = new TreePatternNode(DI);
1109    } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
1110      New = ParseTreePattern(DI);
1111    } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
1112      New = new TreePatternNode(II);
1113      if (!Dag->getArgName(0).empty())
1114        error("Constant int argument should not have a name!");
1115    } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
1116      // Turn this into an IntInit.
1117      Init *II = BI->convertInitializerTo(new IntRecTy());
1118      if (II == 0 || !dynamic_cast<IntInit*>(II))
1119        error("Bits value must be constants!");
1120
1121      New = new TreePatternNode(dynamic_cast<IntInit*>(II));
1122      if (!Dag->getArgName(0).empty())
1123        error("Constant int argument should not have a name!");
1124    } else {
1125      Arg->dump();
1126      error("Unknown leaf value for tree pattern!");
1127      return 0;
1128    }
1129
1130    // Apply the type cast.
1131    New->UpdateNodeType(getValueType(Operator), *this);
1132    if (New->getNumChildren() == 0)
1133      New->setName(Dag->getArgName(0));
1134    return New;
1135  }
1136
1137  // Verify that this is something that makes sense for an operator.
1138  if (!Operator->isSubClassOf("PatFrag") &&
1139      !Operator->isSubClassOf("SDNode") &&
1140      !Operator->isSubClassOf("Instruction") &&
1141      !Operator->isSubClassOf("SDNodeXForm") &&
1142      !Operator->isSubClassOf("Intrinsic") &&
1143      Operator->getName() != "set" &&
1144      Operator->getName() != "implicit" &&
1145      Operator->getName() != "parallel")
1146    error("Unrecognized node '" + Operator->getName() + "'!");
1147
1148  //  Check to see if this is something that is illegal in an input pattern.
1149  if (isInputPattern && (Operator->isSubClassOf("Instruction") ||
1150                         Operator->isSubClassOf("SDNodeXForm")))
1151    error("Cannot use '" + Operator->getName() + "' in an input pattern!");
1152
1153  std::vector<TreePatternNode*> Children;
1154
1155  for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
1156    Init *Arg = Dag->getArg(i);
1157    if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
1158      Children.push_back(ParseTreePattern(DI));
1159      if (Children.back()->getName().empty())
1160        Children.back()->setName(Dag->getArgName(i));
1161    } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
1162      Record *R = DefI->getDef();
1163      // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
1164      // TreePatternNode if its own.
1165      if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
1166        Dag->setArg(i, new DagInit(DefI, "",
1167                              std::vector<std::pair<Init*, std::string> >()));
1168        --i;  // Revisit this node...
1169      } else {
1170        TreePatternNode *Node = new TreePatternNode(DefI);
1171        Node->setName(Dag->getArgName(i));
1172        Children.push_back(Node);
1173
1174        // Input argument?
1175        if (R->getName() == "node") {
1176          if (Dag->getArgName(i).empty())
1177            error("'node' argument requires a name to match with operand list");
1178          Args.push_back(Dag->getArgName(i));
1179        }
1180      }
1181    } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
1182      TreePatternNode *Node = new TreePatternNode(II);
1183      if (!Dag->getArgName(i).empty())
1184        error("Constant int argument should not have a name!");
1185      Children.push_back(Node);
1186    } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
1187      // Turn this into an IntInit.
1188      Init *II = BI->convertInitializerTo(new IntRecTy());
1189      if (II == 0 || !dynamic_cast<IntInit*>(II))
1190        error("Bits value must be constants!");
1191
1192      TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II));
1193      if (!Dag->getArgName(i).empty())
1194        error("Constant int argument should not have a name!");
1195      Children.push_back(Node);
1196    } else {
1197      cerr << '"';
1198      Arg->dump();
1199      cerr << "\": ";
1200      error("Unknown leaf value for tree pattern!");
1201    }
1202  }
1203
1204  // If the operator is an intrinsic, then this is just syntactic sugar for for
1205  // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
1206  // convert the intrinsic name to a number.
1207  if (Operator->isSubClassOf("Intrinsic")) {
1208    const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
1209    unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
1210
1211    // If this intrinsic returns void, it must have side-effects and thus a
1212    // chain.
1213    if (Int.IS.RetVTs[0] == MVT::isVoid) {
1214      Operator = getDAGPatterns().get_intrinsic_void_sdnode();
1215    } else if (Int.ModRef != CodeGenIntrinsic::NoMem) {
1216      // Has side-effects, requires chain.
1217      Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
1218    } else {
1219      // Otherwise, no chain.
1220      Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
1221    }
1222
1223    TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID));
1224    Children.insert(Children.begin(), IIDNode);
1225  }
1226
1227  TreePatternNode *Result = new TreePatternNode(Operator, Children);
1228  Result->setName(Dag->getName());
1229  return Result;
1230}
1231
1232/// InferAllTypes - Infer/propagate as many types throughout the expression
1233/// patterns as possible.  Return true if all types are inferred, false
1234/// otherwise.  Throw an exception if a type contradiction is found.
1235bool TreePattern::InferAllTypes() {
1236  bool MadeChange = true;
1237  while (MadeChange) {
1238    MadeChange = false;
1239    for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1240      MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
1241  }
1242
1243  bool HasUnresolvedTypes = false;
1244  for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1245    HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
1246  return !HasUnresolvedTypes;
1247}
1248
1249void TreePattern::print(std::ostream &OS) const {
1250  OS << getRecord()->getName();
1251  if (!Args.empty()) {
1252    OS << "(" << Args[0];
1253    for (unsigned i = 1, e = Args.size(); i != e; ++i)
1254      OS << ", " << Args[i];
1255    OS << ")";
1256  }
1257  OS << ": ";
1258
1259  if (Trees.size() > 1)
1260    OS << "[\n";
1261  for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
1262    OS << "\t";
1263    Trees[i]->print(OS);
1264    OS << "\n";
1265  }
1266
1267  if (Trees.size() > 1)
1268    OS << "]\n";
1269}
1270
1271void TreePattern::dump() const { print(*cerr.stream()); }
1272
1273//===----------------------------------------------------------------------===//
1274// CodeGenDAGPatterns implementation
1275//
1276
1277// FIXME: REMOVE OSTREAM ARGUMENT
1278CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : Records(R) {
1279  Intrinsics = LoadIntrinsics(Records, false);
1280  TgtIntrinsics = LoadIntrinsics(Records, true);
1281  ParseNodeInfo();
1282  ParseNodeTransforms();
1283  ParseComplexPatterns();
1284  ParsePatternFragments();
1285  ParseDefaultOperands();
1286  ParseInstructions();
1287  ParsePatterns();
1288
1289  // Generate variants.  For example, commutative patterns can match
1290  // multiple ways.  Add them to PatternsToMatch as well.
1291  GenerateVariants();
1292
1293  // Infer instruction flags.  For example, we can detect loads,
1294  // stores, and side effects in many cases by examining an
1295  // instruction's pattern.
1296  InferInstructionFlags();
1297}
1298
1299CodeGenDAGPatterns::~CodeGenDAGPatterns() {
1300  for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
1301       E = PatternFragments.end(); I != E; ++I)
1302    delete I->second;
1303}
1304
1305
1306Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
1307  Record *N = Records.getDef(Name);
1308  if (!N || !N->isSubClassOf("SDNode")) {
1309    cerr << "Error getting SDNode '" << Name << "'!\n";
1310    exit(1);
1311  }
1312  return N;
1313}
1314
1315// Parse all of the SDNode definitions for the target, populating SDNodes.
1316void CodeGenDAGPatterns::ParseNodeInfo() {
1317  std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
1318  while (!Nodes.empty()) {
1319    SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
1320    Nodes.pop_back();
1321  }
1322
1323  // Get the builtin intrinsic nodes.
1324  intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
1325  intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
1326  intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
1327}
1328
1329/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
1330/// map, and emit them to the file as functions.
1331void CodeGenDAGPatterns::ParseNodeTransforms() {
1332  std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
1333  while (!Xforms.empty()) {
1334    Record *XFormNode = Xforms.back();
1335    Record *SDNode = XFormNode->getValueAsDef("Opcode");
1336    std::string Code = XFormNode->getValueAsCode("XFormFunction");
1337    SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
1338
1339    Xforms.pop_back();
1340  }
1341}
1342
1343void CodeGenDAGPatterns::ParseComplexPatterns() {
1344  std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
1345  while (!AMs.empty()) {
1346    ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
1347    AMs.pop_back();
1348  }
1349}
1350
1351
1352/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
1353/// file, building up the PatternFragments map.  After we've collected them all,
1354/// inline fragments together as necessary, so that there are no references left
1355/// inside a pattern fragment to a pattern fragment.
1356///
1357void CodeGenDAGPatterns::ParsePatternFragments() {
1358  std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
1359
1360  // First step, parse all of the fragments.
1361  for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
1362    DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
1363    TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
1364    PatternFragments[Fragments[i]] = P;
1365
1366    // Validate the argument list, converting it to set, to discard duplicates.
1367    std::vector<std::string> &Args = P->getArgList();
1368    std::set<std::string> OperandsSet(Args.begin(), Args.end());
1369
1370    if (OperandsSet.count(""))
1371      P->error("Cannot have unnamed 'node' values in pattern fragment!");
1372
1373    // Parse the operands list.
1374    DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
1375    DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
1376    // Special cases: ops == outs == ins. Different names are used to
1377    // improve readability.
1378    if (!OpsOp ||
1379        (OpsOp->getDef()->getName() != "ops" &&
1380         OpsOp->getDef()->getName() != "outs" &&
1381         OpsOp->getDef()->getName() != "ins"))
1382      P->error("Operands list should start with '(ops ... '!");
1383
1384    // Copy over the arguments.
1385    Args.clear();
1386    for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
1387      if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
1388          static_cast<DefInit*>(OpsList->getArg(j))->
1389          getDef()->getName() != "node")
1390        P->error("Operands list should all be 'node' values.");
1391      if (OpsList->getArgName(j).empty())
1392        P->error("Operands list should have names for each operand!");
1393      if (!OperandsSet.count(OpsList->getArgName(j)))
1394        P->error("'" + OpsList->getArgName(j) +
1395                 "' does not occur in pattern or was multiply specified!");
1396      OperandsSet.erase(OpsList->getArgName(j));
1397      Args.push_back(OpsList->getArgName(j));
1398    }
1399
1400    if (!OperandsSet.empty())
1401      P->error("Operands list does not contain an entry for operand '" +
1402               *OperandsSet.begin() + "'!");
1403
1404    // If there is a code init for this fragment, keep track of the fact that
1405    // this fragment uses it.
1406    std::string Code = Fragments[i]->getValueAsCode("Predicate");
1407    if (!Code.empty())
1408      P->getOnlyTree()->addPredicateFn("Predicate_"+Fragments[i]->getName());
1409
1410    // If there is a node transformation corresponding to this, keep track of
1411    // it.
1412    Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
1413    if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
1414      P->getOnlyTree()->setTransformFn(Transform);
1415  }
1416
1417  // Now that we've parsed all of the tree fragments, do a closure on them so
1418  // that there are not references to PatFrags left inside of them.
1419  for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
1420    TreePattern *ThePat = PatternFragments[Fragments[i]];
1421    ThePat->InlinePatternFragments();
1422
1423    // Infer as many types as possible.  Don't worry about it if we don't infer
1424    // all of them, some may depend on the inputs of the pattern.
1425    try {
1426      ThePat->InferAllTypes();
1427    } catch (...) {
1428      // If this pattern fragment is not supported by this target (no types can
1429      // satisfy its constraints), just ignore it.  If the bogus pattern is
1430      // actually used by instructions, the type consistency error will be
1431      // reported there.
1432    }
1433
1434    // If debugging, print out the pattern fragment result.
1435    DEBUG(ThePat->dump());
1436  }
1437}
1438
1439void CodeGenDAGPatterns::ParseDefaultOperands() {
1440  std::vector<Record*> DefaultOps[2];
1441  DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand");
1442  DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand");
1443
1444  // Find some SDNode.
1445  assert(!SDNodes.empty() && "No SDNodes parsed?");
1446  Init *SomeSDNode = new DefInit(SDNodes.begin()->first);
1447
1448  for (unsigned iter = 0; iter != 2; ++iter) {
1449    for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) {
1450      DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps");
1451
1452      // Clone the DefaultInfo dag node, changing the operator from 'ops' to
1453      // SomeSDnode so that we can parse this.
1454      std::vector<std::pair<Init*, std::string> > Ops;
1455      for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
1456        Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
1457                                     DefaultInfo->getArgName(op)));
1458      DagInit *DI = new DagInit(SomeSDNode, "", Ops);
1459
1460      // Create a TreePattern to parse this.
1461      TreePattern P(DefaultOps[iter][i], DI, false, *this);
1462      assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
1463
1464      // Copy the operands over into a DAGDefaultOperand.
1465      DAGDefaultOperand DefaultOpInfo;
1466
1467      TreePatternNode *T = P.getTree(0);
1468      for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
1469        TreePatternNode *TPN = T->getChild(op);
1470        while (TPN->ApplyTypeConstraints(P, false))
1471          /* Resolve all types */;
1472
1473        if (TPN->ContainsUnresolvedType()) {
1474          if (iter == 0)
1475            throw "Value #" + utostr(i) + " of PredicateOperand '" +
1476              DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
1477          else
1478            throw "Value #" + utostr(i) + " of OptionalDefOperand '" +
1479              DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
1480        }
1481        DefaultOpInfo.DefaultOps.push_back(TPN);
1482      }
1483
1484      // Insert it into the DefaultOperands map so we can find it later.
1485      DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo;
1486    }
1487  }
1488}
1489
1490/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
1491/// instruction input.  Return true if this is a real use.
1492static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
1493                      std::map<std::string, TreePatternNode*> &InstInputs,
1494                      std::vector<Record*> &InstImpInputs) {
1495  // No name -> not interesting.
1496  if (Pat->getName().empty()) {
1497    if (Pat->isLeaf()) {
1498      DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
1499      if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
1500        I->error("Input " + DI->getDef()->getName() + " must be named!");
1501      else if (DI && DI->getDef()->isSubClassOf("Register"))
1502        InstImpInputs.push_back(DI->getDef());
1503    }
1504    return false;
1505  }
1506
1507  Record *Rec;
1508  if (Pat->isLeaf()) {
1509    DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
1510    if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
1511    Rec = DI->getDef();
1512  } else {
1513    Rec = Pat->getOperator();
1514  }
1515
1516  // SRCVALUE nodes are ignored.
1517  if (Rec->getName() == "srcvalue")
1518    return false;
1519
1520  TreePatternNode *&Slot = InstInputs[Pat->getName()];
1521  if (!Slot) {
1522    Slot = Pat;
1523  } else {
1524    Record *SlotRec;
1525    if (Slot->isLeaf()) {
1526      SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
1527    } else {
1528      assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
1529      SlotRec = Slot->getOperator();
1530    }
1531
1532    // Ensure that the inputs agree if we've already seen this input.
1533    if (Rec != SlotRec)
1534      I->error("All $" + Pat->getName() + " inputs must agree with each other");
1535    if (Slot->getExtTypes() != Pat->getExtTypes())
1536      I->error("All $" + Pat->getName() + " inputs must agree with each other");
1537  }
1538  return true;
1539}
1540
1541/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
1542/// part of "I", the instruction), computing the set of inputs and outputs of
1543/// the pattern.  Report errors if we see anything naughty.
1544void CodeGenDAGPatterns::
1545FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
1546                            std::map<std::string, TreePatternNode*> &InstInputs,
1547                            std::map<std::string, TreePatternNode*>&InstResults,
1548                            std::vector<Record*> &InstImpInputs,
1549                            std::vector<Record*> &InstImpResults) {
1550  if (Pat->isLeaf()) {
1551    bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
1552    if (!isUse && Pat->getTransformFn())
1553      I->error("Cannot specify a transform function for a non-input value!");
1554    return;
1555  } else if (Pat->getOperator()->getName() == "implicit") {
1556    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
1557      TreePatternNode *Dest = Pat->getChild(i);
1558      if (!Dest->isLeaf())
1559        I->error("implicitly defined value should be a register!");
1560
1561      DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
1562      if (!Val || !Val->getDef()->isSubClassOf("Register"))
1563        I->error("implicitly defined value should be a register!");
1564      InstImpResults.push_back(Val->getDef());
1565    }
1566    return;
1567  } else if (Pat->getOperator()->getName() != "set") {
1568    // If this is not a set, verify that the children nodes are not void typed,
1569    // and recurse.
1570    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
1571      if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid)
1572        I->error("Cannot have void nodes inside of patterns!");
1573      FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
1574                                  InstImpInputs, InstImpResults);
1575    }
1576
1577    // If this is a non-leaf node with no children, treat it basically as if
1578    // it were a leaf.  This handles nodes like (imm).
1579    bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
1580
1581    if (!isUse && Pat->getTransformFn())
1582      I->error("Cannot specify a transform function for a non-input value!");
1583    return;
1584  }
1585
1586  // Otherwise, this is a set, validate and collect instruction results.
1587  if (Pat->getNumChildren() == 0)
1588    I->error("set requires operands!");
1589
1590  if (Pat->getTransformFn())
1591    I->error("Cannot specify a transform function on a set node!");
1592
1593  // Check the set destinations.
1594  unsigned NumDests = Pat->getNumChildren()-1;
1595  for (unsigned i = 0; i != NumDests; ++i) {
1596    TreePatternNode *Dest = Pat->getChild(i);
1597    if (!Dest->isLeaf())
1598      I->error("set destination should be a register!");
1599
1600    DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
1601    if (!Val)
1602      I->error("set destination should be a register!");
1603
1604    if (Val->getDef()->isSubClassOf("RegisterClass") ||
1605        Val->getDef()->getName() == "ptr_rc") {
1606      if (Dest->getName().empty())
1607        I->error("set destination must have a name!");
1608      if (InstResults.count(Dest->getName()))
1609        I->error("cannot set '" + Dest->getName() +"' multiple times");
1610      InstResults[Dest->getName()] = Dest;
1611    } else if (Val->getDef()->isSubClassOf("Register")) {
1612      InstImpResults.push_back(Val->getDef());
1613    } else {
1614      I->error("set destination should be a register!");
1615    }
1616  }
1617
1618  // Verify and collect info from the computation.
1619  FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
1620                              InstInputs, InstResults,
1621                              InstImpInputs, InstImpResults);
1622}
1623
1624//===----------------------------------------------------------------------===//
1625// Instruction Analysis
1626//===----------------------------------------------------------------------===//
1627
1628class InstAnalyzer {
1629  const CodeGenDAGPatterns &CDP;
1630  bool &mayStore;
1631  bool &mayLoad;
1632  bool &HasSideEffects;
1633public:
1634  InstAnalyzer(const CodeGenDAGPatterns &cdp,
1635               bool &maystore, bool &mayload, bool &hse)
1636    : CDP(cdp), mayStore(maystore), mayLoad(mayload), HasSideEffects(hse){
1637  }
1638
1639  /// Analyze - Analyze the specified instruction, returning true if the
1640  /// instruction had a pattern.
1641  bool Analyze(Record *InstRecord) {
1642    const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern();
1643    if (Pattern == 0) {
1644      HasSideEffects = 1;
1645      return false;  // No pattern.
1646    }
1647
1648    // FIXME: Assume only the first tree is the pattern. The others are clobber
1649    // nodes.
1650    AnalyzeNode(Pattern->getTree(0));
1651    return true;
1652  }
1653
1654private:
1655  void AnalyzeNode(const TreePatternNode *N) {
1656    if (N->isLeaf()) {
1657      if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
1658        Record *LeafRec = DI->getDef();
1659        // Handle ComplexPattern leaves.
1660        if (LeafRec->isSubClassOf("ComplexPattern")) {
1661          const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
1662          if (CP.hasProperty(SDNPMayStore)) mayStore = true;
1663          if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
1664          if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true;
1665        }
1666      }
1667      return;
1668    }
1669
1670    // Analyze children.
1671    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
1672      AnalyzeNode(N->getChild(i));
1673
1674    // Ignore set nodes, which are not SDNodes.
1675    if (N->getOperator()->getName() == "set")
1676      return;
1677
1678    // Get information about the SDNode for the operator.
1679    const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
1680
1681    // Notice properties of the node.
1682    if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
1683    if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
1684    if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true;
1685
1686    if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
1687      // If this is an intrinsic, analyze it.
1688      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
1689        mayLoad = true;// These may load memory.
1690
1691      if (IntInfo->ModRef >= CodeGenIntrinsic::WriteArgMem)
1692        mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
1693
1694      if (IntInfo->ModRef >= CodeGenIntrinsic::WriteMem)
1695        // WriteMem intrinsics can have other strange effects.
1696        HasSideEffects = true;
1697    }
1698  }
1699
1700};
1701
1702static void InferFromPattern(const CodeGenInstruction &Inst,
1703                             bool &MayStore, bool &MayLoad,
1704                             bool &HasSideEffects,
1705                             const CodeGenDAGPatterns &CDP) {
1706  MayStore = MayLoad = HasSideEffects = false;
1707
1708  bool HadPattern =
1709    InstAnalyzer(CDP, MayStore, MayLoad, HasSideEffects).Analyze(Inst.TheDef);
1710
1711  // InstAnalyzer only correctly analyzes mayStore/mayLoad so far.
1712  if (Inst.mayStore) {  // If the .td file explicitly sets mayStore, use it.
1713    // If we decided that this is a store from the pattern, then the .td file
1714    // entry is redundant.
1715    if (MayStore)
1716      fprintf(stderr,
1717              "Warning: mayStore flag explicitly set on instruction '%s'"
1718              " but flag already inferred from pattern.\n",
1719              Inst.TheDef->getName().c_str());
1720    MayStore = true;
1721  }
1722
1723  if (Inst.mayLoad) {  // If the .td file explicitly sets mayLoad, use it.
1724    // If we decided that this is a load from the pattern, then the .td file
1725    // entry is redundant.
1726    if (MayLoad)
1727      fprintf(stderr,
1728              "Warning: mayLoad flag explicitly set on instruction '%s'"
1729              " but flag already inferred from pattern.\n",
1730              Inst.TheDef->getName().c_str());
1731    MayLoad = true;
1732  }
1733
1734  if (Inst.neverHasSideEffects) {
1735    if (HadPattern)
1736      fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' "
1737              "which already has a pattern\n", Inst.TheDef->getName().c_str());
1738    HasSideEffects = false;
1739  }
1740
1741  if (Inst.hasSideEffects) {
1742    if (HasSideEffects)
1743      fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' "
1744              "which already inferred this.\n", Inst.TheDef->getName().c_str());
1745    HasSideEffects = true;
1746  }
1747}
1748
1749/// ParseInstructions - Parse all of the instructions, inlining and resolving
1750/// any fragments involved.  This populates the Instructions list with fully
1751/// resolved instructions.
1752void CodeGenDAGPatterns::ParseInstructions() {
1753  std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
1754
1755  for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
1756    ListInit *LI = 0;
1757
1758    if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
1759      LI = Instrs[i]->getValueAsListInit("Pattern");
1760
1761    // If there is no pattern, only collect minimal information about the
1762    // instruction for its operand list.  We have to assume that there is one
1763    // result, as we have no detailed info.
1764    if (!LI || LI->getSize() == 0) {
1765      std::vector<Record*> Results;
1766      std::vector<Record*> Operands;
1767
1768      CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName());
1769
1770      if (InstInfo.OperandList.size() != 0) {
1771        if (InstInfo.NumDefs == 0) {
1772          // These produce no results
1773          for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j)
1774            Operands.push_back(InstInfo.OperandList[j].Rec);
1775        } else {
1776          // Assume the first operand is the result.
1777          Results.push_back(InstInfo.OperandList[0].Rec);
1778
1779          // The rest are inputs.
1780          for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j)
1781            Operands.push_back(InstInfo.OperandList[j].Rec);
1782        }
1783      }
1784
1785      // Create and insert the instruction.
1786      std::vector<Record*> ImpResults;
1787      std::vector<Record*> ImpOperands;
1788      Instructions.insert(std::make_pair(Instrs[i],
1789                          DAGInstruction(0, Results, Operands, ImpResults,
1790                                         ImpOperands)));
1791      continue;  // no pattern.
1792    }
1793
1794    // Parse the instruction.
1795    TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
1796    // Inline pattern fragments into it.
1797    I->InlinePatternFragments();
1798
1799    // Infer as many types as possible.  If we cannot infer all of them, we can
1800    // never do anything with this instruction pattern: report it to the user.
1801    if (!I->InferAllTypes())
1802      I->error("Could not infer all types in pattern!");
1803
1804    // InstInputs - Keep track of all of the inputs of the instruction, along
1805    // with the record they are declared as.
1806    std::map<std::string, TreePatternNode*> InstInputs;
1807
1808    // InstResults - Keep track of all the virtual registers that are 'set'
1809    // in the instruction, including what reg class they are.
1810    std::map<std::string, TreePatternNode*> InstResults;
1811
1812    std::vector<Record*> InstImpInputs;
1813    std::vector<Record*> InstImpResults;
1814
1815    // Verify that the top-level forms in the instruction are of void type, and
1816    // fill in the InstResults map.
1817    for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
1818      TreePatternNode *Pat = I->getTree(j);
1819      if (Pat->getExtTypeNum(0) != MVT::isVoid)
1820        I->error("Top-level forms in instruction pattern should have"
1821                 " void types");
1822
1823      // Find inputs and outputs, and verify the structure of the uses/defs.
1824      FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
1825                                  InstImpInputs, InstImpResults);
1826    }
1827
1828    // Now that we have inputs and outputs of the pattern, inspect the operands
1829    // list for the instruction.  This determines the order that operands are
1830    // added to the machine instruction the node corresponds to.
1831    unsigned NumResults = InstResults.size();
1832
1833    // Parse the operands list from the (ops) list, validating it.
1834    assert(I->getArgList().empty() && "Args list should still be empty here!");
1835    CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName());
1836
1837    // Check that all of the results occur first in the list.
1838    std::vector<Record*> Results;
1839    TreePatternNode *Res0Node = NULL;
1840    for (unsigned i = 0; i != NumResults; ++i) {
1841      if (i == CGI.OperandList.size())
1842        I->error("'" + InstResults.begin()->first +
1843                 "' set but does not appear in operand list!");
1844      const std::string &OpName = CGI.OperandList[i].Name;
1845
1846      // Check that it exists in InstResults.
1847      TreePatternNode *RNode = InstResults[OpName];
1848      if (RNode == 0)
1849        I->error("Operand $" + OpName + " does not exist in operand list!");
1850
1851      if (i == 0)
1852        Res0Node = RNode;
1853      Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
1854      if (R == 0)
1855        I->error("Operand $" + OpName + " should be a set destination: all "
1856                 "outputs must occur before inputs in operand list!");
1857
1858      if (CGI.OperandList[i].Rec != R)
1859        I->error("Operand $" + OpName + " class mismatch!");
1860
1861      // Remember the return type.
1862      Results.push_back(CGI.OperandList[i].Rec);
1863
1864      // Okay, this one checks out.
1865      InstResults.erase(OpName);
1866    }
1867
1868    // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
1869    // the copy while we're checking the inputs.
1870    std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
1871
1872    std::vector<TreePatternNode*> ResultNodeOperands;
1873    std::vector<Record*> Operands;
1874    for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) {
1875      CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i];
1876      const std::string &OpName = Op.Name;
1877      if (OpName.empty())
1878        I->error("Operand #" + utostr(i) + " in operands list has no name!");
1879
1880      if (!InstInputsCheck.count(OpName)) {
1881        // If this is an predicate operand or optional def operand with an
1882        // DefaultOps set filled in, we can ignore this.  When we codegen it,
1883        // we will do so as always executed.
1884        if (Op.Rec->isSubClassOf("PredicateOperand") ||
1885            Op.Rec->isSubClassOf("OptionalDefOperand")) {
1886          // Does it have a non-empty DefaultOps field?  If so, ignore this
1887          // operand.
1888          if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
1889            continue;
1890        }
1891        I->error("Operand $" + OpName +
1892                 " does not appear in the instruction pattern");
1893      }
1894      TreePatternNode *InVal = InstInputsCheck[OpName];
1895      InstInputsCheck.erase(OpName);   // It occurred, remove from map.
1896
1897      if (InVal->isLeaf() &&
1898          dynamic_cast<DefInit*>(InVal->getLeafValue())) {
1899        Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
1900        if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
1901          I->error("Operand $" + OpName + "'s register class disagrees"
1902                   " between the operand and pattern");
1903      }
1904      Operands.push_back(Op.Rec);
1905
1906      // Construct the result for the dest-pattern operand list.
1907      TreePatternNode *OpNode = InVal->clone();
1908
1909      // No predicate is useful on the result.
1910      OpNode->clearPredicateFns();
1911
1912      // Promote the xform function to be an explicit node if set.
1913      if (Record *Xform = OpNode->getTransformFn()) {
1914        OpNode->setTransformFn(0);
1915        std::vector<TreePatternNode*> Children;
1916        Children.push_back(OpNode);
1917        OpNode = new TreePatternNode(Xform, Children);
1918      }
1919
1920      ResultNodeOperands.push_back(OpNode);
1921    }
1922
1923    if (!InstInputsCheck.empty())
1924      I->error("Input operand $" + InstInputsCheck.begin()->first +
1925               " occurs in pattern but not in operands list!");
1926
1927    TreePatternNode *ResultPattern =
1928      new TreePatternNode(I->getRecord(), ResultNodeOperands);
1929    // Copy fully inferred output node type to instruction result pattern.
1930    if (NumResults > 0)
1931      ResultPattern->setTypes(Res0Node->getExtTypes());
1932
1933    // Create and insert the instruction.
1934    // FIXME: InstImpResults and InstImpInputs should not be part of
1935    // DAGInstruction.
1936    DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs);
1937    Instructions.insert(std::make_pair(I->getRecord(), TheInst));
1938
1939    // Use a temporary tree pattern to infer all types and make sure that the
1940    // constructed result is correct.  This depends on the instruction already
1941    // being inserted into the Instructions map.
1942    TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
1943    Temp.InferAllTypes();
1944
1945    DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
1946    TheInsertedInst.setResultPattern(Temp.getOnlyTree());
1947
1948    DEBUG(I->dump());
1949  }
1950
1951  // If we can, convert the instructions to be patterns that are matched!
1952  for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(),
1953       E = Instructions.end(); II != E; ++II) {
1954    DAGInstruction &TheInst = II->second;
1955    const TreePattern *I = TheInst.getPattern();
1956    if (I == 0) continue;  // No pattern.
1957
1958    // FIXME: Assume only the first tree is the pattern. The others are clobber
1959    // nodes.
1960    TreePatternNode *Pattern = I->getTree(0);
1961    TreePatternNode *SrcPattern;
1962    if (Pattern->getOperator()->getName() == "set") {
1963      SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
1964    } else{
1965      // Not a set (store or something?)
1966      SrcPattern = Pattern;
1967    }
1968
1969    std::string Reason;
1970    if (!SrcPattern->canPatternMatch(Reason, *this))
1971      I->error("Instruction can never match: " + Reason);
1972
1973    Record *Instr = II->first;
1974    TreePatternNode *DstPattern = TheInst.getResultPattern();
1975    PatternsToMatch.
1976      push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"),
1977                               SrcPattern, DstPattern, TheInst.getImpResults(),
1978                               Instr->getValueAsInt("AddedComplexity")));
1979  }
1980}
1981
1982
1983void CodeGenDAGPatterns::InferInstructionFlags() {
1984  std::map<std::string, CodeGenInstruction> &InstrDescs =
1985    Target.getInstructions();
1986  for (std::map<std::string, CodeGenInstruction>::iterator
1987         II = InstrDescs.begin(), E = InstrDescs.end(); II != E; ++II) {
1988    CodeGenInstruction &InstInfo = II->second;
1989    // Determine properties of the instruction from its pattern.
1990    bool MayStore, MayLoad, HasSideEffects;
1991    InferFromPattern(InstInfo, MayStore, MayLoad, HasSideEffects, *this);
1992    InstInfo.mayStore = MayStore;
1993    InstInfo.mayLoad = MayLoad;
1994    InstInfo.hasSideEffects = HasSideEffects;
1995  }
1996}
1997
1998void CodeGenDAGPatterns::ParsePatterns() {
1999  std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
2000
2001  for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
2002    DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch");
2003    DefInit *OpDef = dynamic_cast<DefInit*>(Tree->getOperator());
2004    Record *Operator = OpDef->getDef();
2005    TreePattern *Pattern;
2006    if (Operator->getName() != "parallel")
2007      Pattern = new TreePattern(Patterns[i], Tree, true, *this);
2008    else {
2009      std::vector<Init*> Values;
2010      for (unsigned j = 0, ee = Tree->getNumArgs(); j != ee; ++j)
2011        Values.push_back(Tree->getArg(j));
2012      ListInit *LI = new ListInit(Values);
2013      Pattern = new TreePattern(Patterns[i], LI, true, *this);
2014    }
2015
2016    // Inline pattern fragments into it.
2017    Pattern->InlinePatternFragments();
2018
2019    ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs");
2020    if (LI->getSize() == 0) continue;  // no pattern.
2021
2022    // Parse the instruction.
2023    TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this);
2024
2025    // Inline pattern fragments into it.
2026    Result->InlinePatternFragments();
2027
2028    if (Result->getNumTrees() != 1)
2029      Result->error("Cannot handle instructions producing instructions "
2030                    "with temporaries yet!");
2031
2032    bool IterateInference;
2033    bool InferredAllPatternTypes, InferredAllResultTypes;
2034    do {
2035      // Infer as many types as possible.  If we cannot infer all of them, we
2036      // can never do anything with this pattern: report it to the user.
2037      InferredAllPatternTypes = Pattern->InferAllTypes();
2038
2039      // Infer as many types as possible.  If we cannot infer all of them, we
2040      // can never do anything with this pattern: report it to the user.
2041      InferredAllResultTypes = Result->InferAllTypes();
2042
2043      // Apply the type of the result to the source pattern.  This helps us
2044      // resolve cases where the input type is known to be a pointer type (which
2045      // is considered resolved), but the result knows it needs to be 32- or
2046      // 64-bits.  Infer the other way for good measure.
2047      IterateInference = Pattern->getTree(0)->
2048        UpdateNodeType(Result->getTree(0)->getExtTypes(), *Result);
2049      IterateInference |= Result->getTree(0)->
2050        UpdateNodeType(Pattern->getTree(0)->getExtTypes(), *Result);
2051    } while (IterateInference);
2052
2053    // Verify that we inferred enough types that we can do something with the
2054    // pattern and result.  If these fire the user has to add type casts.
2055    if (!InferredAllPatternTypes)
2056      Pattern->error("Could not infer all types in pattern!");
2057    if (!InferredAllResultTypes)
2058      Result->error("Could not infer all types in pattern result!");
2059
2060    // Validate that the input pattern is correct.
2061    std::map<std::string, TreePatternNode*> InstInputs;
2062    std::map<std::string, TreePatternNode*> InstResults;
2063    std::vector<Record*> InstImpInputs;
2064    std::vector<Record*> InstImpResults;
2065    for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
2066      FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
2067                                  InstInputs, InstResults,
2068                                  InstImpInputs, InstImpResults);
2069
2070    // Promote the xform function to be an explicit node if set.
2071    TreePatternNode *DstPattern = Result->getOnlyTree();
2072    std::vector<TreePatternNode*> ResultNodeOperands;
2073    for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
2074      TreePatternNode *OpNode = DstPattern->getChild(ii);
2075      if (Record *Xform = OpNode->getTransformFn()) {
2076        OpNode->setTransformFn(0);
2077        std::vector<TreePatternNode*> Children;
2078        Children.push_back(OpNode);
2079        OpNode = new TreePatternNode(Xform, Children);
2080      }
2081      ResultNodeOperands.push_back(OpNode);
2082    }
2083    DstPattern = Result->getOnlyTree();
2084    if (!DstPattern->isLeaf())
2085      DstPattern = new TreePatternNode(DstPattern->getOperator(),
2086                                       ResultNodeOperands);
2087    DstPattern->setTypes(Result->getOnlyTree()->getExtTypes());
2088    TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
2089    Temp.InferAllTypes();
2090
2091    std::string Reason;
2092    if (!Pattern->getTree(0)->canPatternMatch(Reason, *this))
2093      Pattern->error("Pattern can never match: " + Reason);
2094
2095    PatternsToMatch.
2096      push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"),
2097                               Pattern->getTree(0),
2098                               Temp.getOnlyTree(), InstImpResults,
2099                               Patterns[i]->getValueAsInt("AddedComplexity")));
2100  }
2101}
2102
2103/// CombineChildVariants - Given a bunch of permutations of each child of the
2104/// 'operator' node, put them together in all possible ways.
2105static void CombineChildVariants(TreePatternNode *Orig,
2106               const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
2107                                 std::vector<TreePatternNode*> &OutVariants,
2108                                 CodeGenDAGPatterns &CDP,
2109                                 const MultipleUseVarSet &DepVars) {
2110  // Make sure that each operand has at least one variant to choose from.
2111  for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
2112    if (ChildVariants[i].empty())
2113      return;
2114
2115  // The end result is an all-pairs construction of the resultant pattern.
2116  std::vector<unsigned> Idxs;
2117  Idxs.resize(ChildVariants.size());
2118  bool NotDone;
2119  do {
2120#ifndef NDEBUG
2121    if (DebugFlag && !Idxs.empty()) {
2122      cerr << Orig->getOperator()->getName() << ": Idxs = [ ";
2123        for (unsigned i = 0; i < Idxs.size(); ++i) {
2124          cerr << Idxs[i] << " ";
2125      }
2126      cerr << "]\n";
2127    }
2128#endif
2129    // Create the variant and add it to the output list.
2130    std::vector<TreePatternNode*> NewChildren;
2131    for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
2132      NewChildren.push_back(ChildVariants[i][Idxs[i]]);
2133    TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren);
2134
2135    // Copy over properties.
2136    R->setName(Orig->getName());
2137    R->setPredicateFns(Orig->getPredicateFns());
2138    R->setTransformFn(Orig->getTransformFn());
2139    R->setTypes(Orig->getExtTypes());
2140
2141    // If this pattern cannot match, do not include it as a variant.
2142    std::string ErrString;
2143    if (!R->canPatternMatch(ErrString, CDP)) {
2144      delete R;
2145    } else {
2146      bool AlreadyExists = false;
2147
2148      // Scan to see if this pattern has already been emitted.  We can get
2149      // duplication due to things like commuting:
2150      //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
2151      // which are the same pattern.  Ignore the dups.
2152      for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
2153        if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
2154          AlreadyExists = true;
2155          break;
2156        }
2157
2158      if (AlreadyExists)
2159        delete R;
2160      else
2161        OutVariants.push_back(R);
2162    }
2163
2164    // Increment indices to the next permutation by incrementing the
2165    // indicies from last index backward, e.g., generate the sequence
2166    // [0, 0], [0, 1], [1, 0], [1, 1].
2167    int IdxsIdx;
2168    for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2169      if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
2170        Idxs[IdxsIdx] = 0;
2171      else
2172        break;
2173    }
2174    NotDone = (IdxsIdx >= 0);
2175  } while (NotDone);
2176}
2177
2178/// CombineChildVariants - A helper function for binary operators.
2179///
2180static void CombineChildVariants(TreePatternNode *Orig,
2181                                 const std::vector<TreePatternNode*> &LHS,
2182                                 const std::vector<TreePatternNode*> &RHS,
2183                                 std::vector<TreePatternNode*> &OutVariants,
2184                                 CodeGenDAGPatterns &CDP,
2185                                 const MultipleUseVarSet &DepVars) {
2186  std::vector<std::vector<TreePatternNode*> > ChildVariants;
2187  ChildVariants.push_back(LHS);
2188  ChildVariants.push_back(RHS);
2189  CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
2190}
2191
2192
2193static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
2194                                     std::vector<TreePatternNode *> &Children) {
2195  assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
2196  Record *Operator = N->getOperator();
2197
2198  // Only permit raw nodes.
2199  if (!N->getName().empty() || !N->getPredicateFns().empty() ||
2200      N->getTransformFn()) {
2201    Children.push_back(N);
2202    return;
2203  }
2204
2205  if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
2206    Children.push_back(N->getChild(0));
2207  else
2208    GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
2209
2210  if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
2211    Children.push_back(N->getChild(1));
2212  else
2213    GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
2214}
2215
2216/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
2217/// the (potentially recursive) pattern by using algebraic laws.
2218///
2219static void GenerateVariantsOf(TreePatternNode *N,
2220                               std::vector<TreePatternNode*> &OutVariants,
2221                               CodeGenDAGPatterns &CDP,
2222                               const MultipleUseVarSet &DepVars) {
2223  // We cannot permute leaves.
2224  if (N->isLeaf()) {
2225    OutVariants.push_back(N);
2226    return;
2227  }
2228
2229  // Look up interesting info about the node.
2230  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
2231
2232  // If this node is associative, re-associate.
2233  if (NodeInfo.hasProperty(SDNPAssociative)) {
2234    // Re-associate by pulling together all of the linked operators
2235    std::vector<TreePatternNode*> MaximalChildren;
2236    GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
2237
2238    // Only handle child sizes of 3.  Otherwise we'll end up trying too many
2239    // permutations.
2240    if (MaximalChildren.size() == 3) {
2241      // Find the variants of all of our maximal children.
2242      std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
2243      GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
2244      GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
2245      GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
2246
2247      // There are only two ways we can permute the tree:
2248      //   (A op B) op C    and    A op (B op C)
2249      // Within these forms, we can also permute A/B/C.
2250
2251      // Generate legal pair permutations of A/B/C.
2252      std::vector<TreePatternNode*> ABVariants;
2253      std::vector<TreePatternNode*> BAVariants;
2254      std::vector<TreePatternNode*> ACVariants;
2255      std::vector<TreePatternNode*> CAVariants;
2256      std::vector<TreePatternNode*> BCVariants;
2257      std::vector<TreePatternNode*> CBVariants;
2258      CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
2259      CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
2260      CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
2261      CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
2262      CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
2263      CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
2264
2265      // Combine those into the result: (x op x) op x
2266      CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
2267      CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
2268      CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
2269      CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
2270      CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
2271      CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
2272
2273      // Combine those into the result: x op (x op x)
2274      CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
2275      CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
2276      CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
2277      CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
2278      CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
2279      CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
2280      return;
2281    }
2282  }
2283
2284  // Compute permutations of all children.
2285  std::vector<std::vector<TreePatternNode*> > ChildVariants;
2286  ChildVariants.resize(N->getNumChildren());
2287  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2288    GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
2289
2290  // Build all permutations based on how the children were formed.
2291  CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
2292
2293  // If this node is commutative, consider the commuted order.
2294  bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
2295  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2296    assert((N->getNumChildren()==2 || isCommIntrinsic) &&
2297           "Commutative but doesn't have 2 children!");
2298    // Don't count children which are actually register references.
2299    unsigned NC = 0;
2300    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2301      TreePatternNode *Child = N->getChild(i);
2302      if (Child->isLeaf())
2303        if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
2304          Record *RR = DI->getDef();
2305          if (RR->isSubClassOf("Register"))
2306            continue;
2307        }
2308      NC++;
2309    }
2310    // Consider the commuted order.
2311    if (isCommIntrinsic) {
2312      // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
2313      // operands are the commutative operands, and there might be more operands
2314      // after those.
2315      assert(NC >= 3 &&
2316             "Commutative intrinsic should have at least 3 childrean!");
2317      std::vector<std::vector<TreePatternNode*> > Variants;
2318      Variants.push_back(ChildVariants[0]); // Intrinsic id.
2319      Variants.push_back(ChildVariants[2]);
2320      Variants.push_back(ChildVariants[1]);
2321      for (unsigned i = 3; i != NC; ++i)
2322        Variants.push_back(ChildVariants[i]);
2323      CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
2324    } else if (NC == 2)
2325      CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
2326                           OutVariants, CDP, DepVars);
2327  }
2328}
2329
2330
2331// GenerateVariants - Generate variants.  For example, commutative patterns can
2332// match multiple ways.  Add them to PatternsToMatch as well.
2333void CodeGenDAGPatterns::GenerateVariants() {
2334  DOUT << "Generating instruction variants.\n";
2335
2336  // Loop over all of the patterns we've collected, checking to see if we can
2337  // generate variants of the instruction, through the exploitation of
2338  // identities.  This permits the target to provide aggressive matching without
2339  // the .td file having to contain tons of variants of instructions.
2340  //
2341  // Note that this loop adds new patterns to the PatternsToMatch list, but we
2342  // intentionally do not reconsider these.  Any variants of added patterns have
2343  // already been added.
2344  //
2345  for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
2346    MultipleUseVarSet             DepVars;
2347    std::vector<TreePatternNode*> Variants;
2348    FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
2349    DOUT << "Dependent/multiply used variables: ";
2350    DEBUG(DumpDepVars(DepVars));
2351    DOUT << "\n";
2352    GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, DepVars);
2353
2354    assert(!Variants.empty() && "Must create at least original variant!");
2355    Variants.erase(Variants.begin());  // Remove the original pattern.
2356
2357    if (Variants.empty())  // No variants for this pattern.
2358      continue;
2359
2360    DOUT << "FOUND VARIANTS OF: ";
2361    DEBUG(PatternsToMatch[i].getSrcPattern()->dump());
2362    DOUT << "\n";
2363
2364    for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
2365      TreePatternNode *Variant = Variants[v];
2366
2367      DOUT << "  VAR#" << v <<  ": ";
2368      DEBUG(Variant->dump());
2369      DOUT << "\n";
2370
2371      // Scan to see if an instruction or explicit pattern already matches this.
2372      bool AlreadyExists = false;
2373      for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
2374        // Check to see if this variant already exists.
2375        if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), DepVars)) {
2376          DOUT << "  *** ALREADY EXISTS, ignoring variant.\n";
2377          AlreadyExists = true;
2378          break;
2379        }
2380      }
2381      // If we already have it, ignore the variant.
2382      if (AlreadyExists) continue;
2383
2384      // Otherwise, add it to the list of patterns we have.
2385      PatternsToMatch.
2386        push_back(PatternToMatch(PatternsToMatch[i].getPredicates(),
2387                                 Variant, PatternsToMatch[i].getDstPattern(),
2388                                 PatternsToMatch[i].getDstRegs(),
2389                                 PatternsToMatch[i].getAddedComplexity()));
2390    }
2391
2392    DOUT << "\n";
2393  }
2394}
2395
2396