Object.cpp revision 363496
1//===- Object.cpp ---------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "Object.h"
10#include "llvm-objcopy.h"
11#include "llvm/ADT/ArrayRef.h"
12#include "llvm/ADT/STLExtras.h"
13#include "llvm/ADT/StringRef.h"
14#include "llvm/ADT/Twine.h"
15#include "llvm/ADT/iterator_range.h"
16#include "llvm/BinaryFormat/ELF.h"
17#include "llvm/MC/MCTargetOptions.h"
18#include "llvm/Object/ELFObjectFile.h"
19#include "llvm/Support/Compression.h"
20#include "llvm/Support/Endian.h"
21#include "llvm/Support/ErrorHandling.h"
22#include "llvm/Support/FileOutputBuffer.h"
23#include "llvm/Support/Path.h"
24#include <algorithm>
25#include <cstddef>
26#include <cstdint>
27#include <iterator>
28#include <unordered_set>
29#include <utility>
30#include <vector>
31
32namespace llvm {
33namespace objcopy {
34namespace elf {
35
36using namespace object;
37using namespace ELF;
38
39template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) {
40  uint8_t *B = Buf.getBufferStart() + Obj.ProgramHdrSegment.Offset +
41               Seg.Index * sizeof(Elf_Phdr);
42  Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B);
43  Phdr.p_type = Seg.Type;
44  Phdr.p_flags = Seg.Flags;
45  Phdr.p_offset = Seg.Offset;
46  Phdr.p_vaddr = Seg.VAddr;
47  Phdr.p_paddr = Seg.PAddr;
48  Phdr.p_filesz = Seg.FileSize;
49  Phdr.p_memsz = Seg.MemSize;
50  Phdr.p_align = Seg.Align;
51}
52
53Error SectionBase::removeSectionReferences(
54    bool AllowBrokenLinks,
55    function_ref<bool(const SectionBase *)> ToRemove) {
56  return Error::success();
57}
58
59Error SectionBase::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
60  return Error::success();
61}
62
63void SectionBase::initialize(SectionTableRef SecTable) {}
64void SectionBase::finalize() {}
65void SectionBase::markSymbols() {}
66void SectionBase::replaceSectionReferences(
67    const DenseMap<SectionBase *, SectionBase *> &) {}
68
69template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) {
70  uint8_t *B = Buf.getBufferStart() + Sec.HeaderOffset;
71  Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B);
72  Shdr.sh_name = Sec.NameIndex;
73  Shdr.sh_type = Sec.Type;
74  Shdr.sh_flags = Sec.Flags;
75  Shdr.sh_addr = Sec.Addr;
76  Shdr.sh_offset = Sec.Offset;
77  Shdr.sh_size = Sec.Size;
78  Shdr.sh_link = Sec.Link;
79  Shdr.sh_info = Sec.Info;
80  Shdr.sh_addralign = Sec.Align;
81  Shdr.sh_entsize = Sec.EntrySize;
82}
83
84template <class ELFT> void ELFSectionSizer<ELFT>::visit(Section &Sec) {}
85
86template <class ELFT>
87void ELFSectionSizer<ELFT>::visit(OwnedDataSection &Sec) {}
88
89template <class ELFT>
90void ELFSectionSizer<ELFT>::visit(StringTableSection &Sec) {}
91
92template <class ELFT>
93void ELFSectionSizer<ELFT>::visit(DynamicRelocationSection &Sec) {}
94
95template <class ELFT>
96void ELFSectionSizer<ELFT>::visit(SymbolTableSection &Sec) {
97  Sec.EntrySize = sizeof(Elf_Sym);
98  Sec.Size = Sec.Symbols.size() * Sec.EntrySize;
99  // Align to the largest field in Elf_Sym.
100  Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
101}
102
103template <class ELFT>
104void ELFSectionSizer<ELFT>::visit(RelocationSection &Sec) {
105  Sec.EntrySize = Sec.Type == SHT_REL ? sizeof(Elf_Rel) : sizeof(Elf_Rela);
106  Sec.Size = Sec.Relocations.size() * Sec.EntrySize;
107  // Align to the largest field in Elf_Rel(a).
108  Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
109}
110
111template <class ELFT>
112void ELFSectionSizer<ELFT>::visit(GnuDebugLinkSection &Sec) {}
113
114template <class ELFT> void ELFSectionSizer<ELFT>::visit(GroupSection &Sec) {}
115
116template <class ELFT>
117void ELFSectionSizer<ELFT>::visit(SectionIndexSection &Sec) {}
118
119template <class ELFT>
120void ELFSectionSizer<ELFT>::visit(CompressedSection &Sec) {}
121
122template <class ELFT>
123void ELFSectionSizer<ELFT>::visit(DecompressedSection &Sec) {}
124
125void BinarySectionWriter::visit(const SectionIndexSection &Sec) {
126  error("cannot write symbol section index table '" + Sec.Name + "' ");
127}
128
129void BinarySectionWriter::visit(const SymbolTableSection &Sec) {
130  error("cannot write symbol table '" + Sec.Name + "' out to binary");
131}
132
133void BinarySectionWriter::visit(const RelocationSection &Sec) {
134  error("cannot write relocation section '" + Sec.Name + "' out to binary");
135}
136
137void BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) {
138  error("cannot write '" + Sec.Name + "' out to binary");
139}
140
141void BinarySectionWriter::visit(const GroupSection &Sec) {
142  error("cannot write '" + Sec.Name + "' out to binary");
143}
144
145void SectionWriter::visit(const Section &Sec) {
146  if (Sec.Type != SHT_NOBITS)
147    llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
148}
149
150static bool addressOverflows32bit(uint64_t Addr) {
151  // Sign extended 32 bit addresses (e.g 0xFFFFFFFF80000000) are ok
152  return Addr > UINT32_MAX && Addr + 0x80000000 > UINT32_MAX;
153}
154
155template <class T> static T checkedGetHex(StringRef S) {
156  T Value;
157  bool Fail = S.getAsInteger(16, Value);
158  assert(!Fail);
159  (void)Fail;
160  return Value;
161}
162
163// Fills exactly Len bytes of buffer with hexadecimal characters
164// representing value 'X'
165template <class T, class Iterator>
166static Iterator utohexstr(T X, Iterator It, size_t Len) {
167  // Fill range with '0'
168  std::fill(It, It + Len, '0');
169
170  for (long I = Len - 1; I >= 0; --I) {
171    unsigned char Mod = static_cast<unsigned char>(X) & 15;
172    *(It + I) = hexdigit(Mod, false);
173    X >>= 4;
174  }
175  assert(X == 0);
176  return It + Len;
177}
178
179uint8_t IHexRecord::getChecksum(StringRef S) {
180  assert((S.size() & 1) == 0);
181  uint8_t Checksum = 0;
182  while (!S.empty()) {
183    Checksum += checkedGetHex<uint8_t>(S.take_front(2));
184    S = S.drop_front(2);
185  }
186  return -Checksum;
187}
188
189IHexLineData IHexRecord::getLine(uint8_t Type, uint16_t Addr,
190                                 ArrayRef<uint8_t> Data) {
191  IHexLineData Line(getLineLength(Data.size()));
192  assert(Line.size());
193  auto Iter = Line.begin();
194  *Iter++ = ':';
195  Iter = utohexstr(Data.size(), Iter, 2);
196  Iter = utohexstr(Addr, Iter, 4);
197  Iter = utohexstr(Type, Iter, 2);
198  for (uint8_t X : Data)
199    Iter = utohexstr(X, Iter, 2);
200  StringRef S(Line.data() + 1, std::distance(Line.begin() + 1, Iter));
201  Iter = utohexstr(getChecksum(S), Iter, 2);
202  *Iter++ = '\r';
203  *Iter++ = '\n';
204  assert(Iter == Line.end());
205  return Line;
206}
207
208static Error checkRecord(const IHexRecord &R) {
209  switch (R.Type) {
210  case IHexRecord::Data:
211    if (R.HexData.size() == 0)
212      return createStringError(
213          errc::invalid_argument,
214          "zero data length is not allowed for data records");
215    break;
216  case IHexRecord::EndOfFile:
217    break;
218  case IHexRecord::SegmentAddr:
219    // 20-bit segment address. Data length must be 2 bytes
220    // (4 bytes in hex)
221    if (R.HexData.size() != 4)
222      return createStringError(
223          errc::invalid_argument,
224          "segment address data should be 2 bytes in size");
225    break;
226  case IHexRecord::StartAddr80x86:
227  case IHexRecord::StartAddr:
228    if (R.HexData.size() != 8)
229      return createStringError(errc::invalid_argument,
230                               "start address data should be 4 bytes in size");
231    // According to Intel HEX specification '03' record
232    // only specifies the code address within the 20-bit
233    // segmented address space of the 8086/80186. This
234    // means 12 high order bits should be zeroes.
235    if (R.Type == IHexRecord::StartAddr80x86 &&
236        R.HexData.take_front(3) != "000")
237      return createStringError(errc::invalid_argument,
238                               "start address exceeds 20 bit for 80x86");
239    break;
240  case IHexRecord::ExtendedAddr:
241    // 16-31 bits of linear base address
242    if (R.HexData.size() != 4)
243      return createStringError(
244          errc::invalid_argument,
245          "extended address data should be 2 bytes in size");
246    break;
247  default:
248    // Unknown record type
249    return createStringError(errc::invalid_argument, "unknown record type: %u",
250                             static_cast<unsigned>(R.Type));
251  }
252  return Error::success();
253}
254
255// Checks that IHEX line contains valid characters.
256// This allows converting hexadecimal data to integers
257// without extra verification.
258static Error checkChars(StringRef Line) {
259  assert(!Line.empty());
260  if (Line[0] != ':')
261    return createStringError(errc::invalid_argument,
262                             "missing ':' in the beginning of line.");
263
264  for (size_t Pos = 1; Pos < Line.size(); ++Pos)
265    if (hexDigitValue(Line[Pos]) == -1U)
266      return createStringError(errc::invalid_argument,
267                               "invalid character at position %zu.", Pos + 1);
268  return Error::success();
269}
270
271Expected<IHexRecord> IHexRecord::parse(StringRef Line) {
272  assert(!Line.empty());
273
274  // ':' + Length + Address + Type + Checksum with empty data ':LLAAAATTCC'
275  if (Line.size() < 11)
276    return createStringError(errc::invalid_argument,
277                             "line is too short: %zu chars.", Line.size());
278
279  if (Error E = checkChars(Line))
280    return std::move(E);
281
282  IHexRecord Rec;
283  size_t DataLen = checkedGetHex<uint8_t>(Line.substr(1, 2));
284  if (Line.size() != getLength(DataLen))
285    return createStringError(errc::invalid_argument,
286                             "invalid line length %zu (should be %zu)",
287                             Line.size(), getLength(DataLen));
288
289  Rec.Addr = checkedGetHex<uint16_t>(Line.substr(3, 4));
290  Rec.Type = checkedGetHex<uint8_t>(Line.substr(7, 2));
291  Rec.HexData = Line.substr(9, DataLen * 2);
292
293  if (getChecksum(Line.drop_front(1)) != 0)
294    return createStringError(errc::invalid_argument, "incorrect checksum.");
295  if (Error E = checkRecord(Rec))
296    return std::move(E);
297  return Rec;
298}
299
300static uint64_t sectionPhysicalAddr(const SectionBase *Sec) {
301  Segment *Seg = Sec->ParentSegment;
302  if (Seg && Seg->Type != ELF::PT_LOAD)
303    Seg = nullptr;
304  return Seg ? Seg->PAddr + Sec->OriginalOffset - Seg->OriginalOffset
305             : Sec->Addr;
306}
307
308void IHexSectionWriterBase::writeSection(const SectionBase *Sec,
309                                         ArrayRef<uint8_t> Data) {
310  assert(Data.size() == Sec->Size);
311  const uint32_t ChunkSize = 16;
312  uint32_t Addr = sectionPhysicalAddr(Sec) & 0xFFFFFFFFU;
313  while (!Data.empty()) {
314    uint64_t DataSize = std::min<uint64_t>(Data.size(), ChunkSize);
315    if (Addr > SegmentAddr + BaseAddr + 0xFFFFU) {
316      if (Addr > 0xFFFFFU) {
317        // Write extended address record, zeroing segment address
318        // if needed.
319        if (SegmentAddr != 0)
320          SegmentAddr = writeSegmentAddr(0U);
321        BaseAddr = writeBaseAddr(Addr);
322      } else {
323        // We can still remain 16-bit
324        SegmentAddr = writeSegmentAddr(Addr);
325      }
326    }
327    uint64_t SegOffset = Addr - BaseAddr - SegmentAddr;
328    assert(SegOffset <= 0xFFFFU);
329    DataSize = std::min(DataSize, 0x10000U - SegOffset);
330    writeData(0, SegOffset, Data.take_front(DataSize));
331    Addr += DataSize;
332    Data = Data.drop_front(DataSize);
333  }
334}
335
336uint64_t IHexSectionWriterBase::writeSegmentAddr(uint64_t Addr) {
337  assert(Addr <= 0xFFFFFU);
338  uint8_t Data[] = {static_cast<uint8_t>((Addr & 0xF0000U) >> 12), 0};
339  writeData(2, 0, Data);
340  return Addr & 0xF0000U;
341}
342
343uint64_t IHexSectionWriterBase::writeBaseAddr(uint64_t Addr) {
344  assert(Addr <= 0xFFFFFFFFU);
345  uint64_t Base = Addr & 0xFFFF0000U;
346  uint8_t Data[] = {static_cast<uint8_t>(Base >> 24),
347                    static_cast<uint8_t>((Base >> 16) & 0xFF)};
348  writeData(4, 0, Data);
349  return Base;
350}
351
352void IHexSectionWriterBase::writeData(uint8_t Type, uint16_t Addr,
353                                      ArrayRef<uint8_t> Data) {
354  Offset += IHexRecord::getLineLength(Data.size());
355}
356
357void IHexSectionWriterBase::visit(const Section &Sec) {
358  writeSection(&Sec, Sec.Contents);
359}
360
361void IHexSectionWriterBase::visit(const OwnedDataSection &Sec) {
362  writeSection(&Sec, Sec.Data);
363}
364
365void IHexSectionWriterBase::visit(const StringTableSection &Sec) {
366  // Check that sizer has already done its work
367  assert(Sec.Size == Sec.StrTabBuilder.getSize());
368  // We are free to pass an invalid pointer to writeSection as long
369  // as we don't actually write any data. The real writer class has
370  // to override this method .
371  writeSection(&Sec, {nullptr, static_cast<size_t>(Sec.Size)});
372}
373
374void IHexSectionWriterBase::visit(const DynamicRelocationSection &Sec) {
375  writeSection(&Sec, Sec.Contents);
376}
377
378void IHexSectionWriter::writeData(uint8_t Type, uint16_t Addr,
379                                  ArrayRef<uint8_t> Data) {
380  IHexLineData HexData = IHexRecord::getLine(Type, Addr, Data);
381  memcpy(Out.getBufferStart() + Offset, HexData.data(), HexData.size());
382  Offset += HexData.size();
383}
384
385void IHexSectionWriter::visit(const StringTableSection &Sec) {
386  assert(Sec.Size == Sec.StrTabBuilder.getSize());
387  std::vector<uint8_t> Data(Sec.Size);
388  Sec.StrTabBuilder.write(Data.data());
389  writeSection(&Sec, Data);
390}
391
392void Section::accept(SectionVisitor &Visitor) const { Visitor.visit(*this); }
393
394void Section::accept(MutableSectionVisitor &Visitor) { Visitor.visit(*this); }
395
396void SectionWriter::visit(const OwnedDataSection &Sec) {
397  llvm::copy(Sec.Data, Out.getBufferStart() + Sec.Offset);
398}
399
400static constexpr std::array<uint8_t, 4> ZlibGnuMagic = {{'Z', 'L', 'I', 'B'}};
401
402static bool isDataGnuCompressed(ArrayRef<uint8_t> Data) {
403  return Data.size() > ZlibGnuMagic.size() &&
404         std::equal(ZlibGnuMagic.begin(), ZlibGnuMagic.end(), Data.data());
405}
406
407template <class ELFT>
408static std::tuple<uint64_t, uint64_t>
409getDecompressedSizeAndAlignment(ArrayRef<uint8_t> Data) {
410  const bool IsGnuDebug = isDataGnuCompressed(Data);
411  const uint64_t DecompressedSize =
412      IsGnuDebug
413          ? support::endian::read64be(Data.data() + ZlibGnuMagic.size())
414          : reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data())->ch_size;
415  const uint64_t DecompressedAlign =
416      IsGnuDebug ? 1
417                 : reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data())
418                       ->ch_addralign;
419
420  return std::make_tuple(DecompressedSize, DecompressedAlign);
421}
422
423template <class ELFT>
424void ELFSectionWriter<ELFT>::visit(const DecompressedSection &Sec) {
425  const size_t DataOffset = isDataGnuCompressed(Sec.OriginalData)
426                                ? (ZlibGnuMagic.size() + sizeof(Sec.Size))
427                                : sizeof(Elf_Chdr_Impl<ELFT>);
428
429  StringRef CompressedContent(
430      reinterpret_cast<const char *>(Sec.OriginalData.data()) + DataOffset,
431      Sec.OriginalData.size() - DataOffset);
432
433  SmallVector<char, 128> DecompressedContent;
434  if (Error E = zlib::uncompress(CompressedContent, DecompressedContent,
435                                 static_cast<size_t>(Sec.Size)))
436    reportError(Sec.Name, std::move(E));
437
438  uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
439  std::copy(DecompressedContent.begin(), DecompressedContent.end(), Buf);
440}
441
442void BinarySectionWriter::visit(const DecompressedSection &Sec) {
443  error("cannot write compressed section '" + Sec.Name + "' ");
444}
445
446void DecompressedSection::accept(SectionVisitor &Visitor) const {
447  Visitor.visit(*this);
448}
449
450void DecompressedSection::accept(MutableSectionVisitor &Visitor) {
451  Visitor.visit(*this);
452}
453
454void OwnedDataSection::accept(SectionVisitor &Visitor) const {
455  Visitor.visit(*this);
456}
457
458void OwnedDataSection::accept(MutableSectionVisitor &Visitor) {
459  Visitor.visit(*this);
460}
461
462void OwnedDataSection::appendHexData(StringRef HexData) {
463  assert((HexData.size() & 1) == 0);
464  while (!HexData.empty()) {
465    Data.push_back(checkedGetHex<uint8_t>(HexData.take_front(2)));
466    HexData = HexData.drop_front(2);
467  }
468  Size = Data.size();
469}
470
471void BinarySectionWriter::visit(const CompressedSection &Sec) {
472  error("cannot write compressed section '" + Sec.Name + "' ");
473}
474
475template <class ELFT>
476void ELFSectionWriter<ELFT>::visit(const CompressedSection &Sec) {
477  uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
478  if (Sec.CompressionType == DebugCompressionType::None) {
479    std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf);
480    return;
481  }
482
483  if (Sec.CompressionType == DebugCompressionType::GNU) {
484    const char *Magic = "ZLIB";
485    memcpy(Buf, Magic, strlen(Magic));
486    Buf += strlen(Magic);
487    const uint64_t DecompressedSize =
488        support::endian::read64be(&Sec.DecompressedSize);
489    memcpy(Buf, &DecompressedSize, sizeof(DecompressedSize));
490    Buf += sizeof(DecompressedSize);
491  } else {
492    Elf_Chdr_Impl<ELFT> Chdr;
493    Chdr.ch_type = ELF::ELFCOMPRESS_ZLIB;
494    Chdr.ch_size = Sec.DecompressedSize;
495    Chdr.ch_addralign = Sec.DecompressedAlign;
496    memcpy(Buf, &Chdr, sizeof(Chdr));
497    Buf += sizeof(Chdr);
498  }
499
500  std::copy(Sec.CompressedData.begin(), Sec.CompressedData.end(), Buf);
501}
502
503CompressedSection::CompressedSection(const SectionBase &Sec,
504                                     DebugCompressionType CompressionType)
505    : SectionBase(Sec), CompressionType(CompressionType),
506      DecompressedSize(Sec.OriginalData.size()), DecompressedAlign(Sec.Align) {
507  if (Error E = zlib::compress(
508          StringRef(reinterpret_cast<const char *>(OriginalData.data()),
509                    OriginalData.size()),
510          CompressedData))
511    reportError(Name, std::move(E));
512
513  size_t ChdrSize;
514  if (CompressionType == DebugCompressionType::GNU) {
515    Name = ".z" + Sec.Name.substr(1);
516    ChdrSize = sizeof("ZLIB") - 1 + sizeof(uint64_t);
517  } else {
518    Flags |= ELF::SHF_COMPRESSED;
519    ChdrSize =
520        std::max(std::max(sizeof(object::Elf_Chdr_Impl<object::ELF64LE>),
521                          sizeof(object::Elf_Chdr_Impl<object::ELF64BE>)),
522                 std::max(sizeof(object::Elf_Chdr_Impl<object::ELF32LE>),
523                          sizeof(object::Elf_Chdr_Impl<object::ELF32BE>)));
524  }
525  Size = ChdrSize + CompressedData.size();
526  Align = 8;
527}
528
529CompressedSection::CompressedSection(ArrayRef<uint8_t> CompressedData,
530                                     uint64_t DecompressedSize,
531                                     uint64_t DecompressedAlign)
532    : CompressionType(DebugCompressionType::None),
533      DecompressedSize(DecompressedSize), DecompressedAlign(DecompressedAlign) {
534  OriginalData = CompressedData;
535}
536
537void CompressedSection::accept(SectionVisitor &Visitor) const {
538  Visitor.visit(*this);
539}
540
541void CompressedSection::accept(MutableSectionVisitor &Visitor) {
542  Visitor.visit(*this);
543}
544
545void StringTableSection::addString(StringRef Name) { StrTabBuilder.add(Name); }
546
547uint32_t StringTableSection::findIndex(StringRef Name) const {
548  return StrTabBuilder.getOffset(Name);
549}
550
551void StringTableSection::prepareForLayout() {
552  StrTabBuilder.finalize();
553  Size = StrTabBuilder.getSize();
554}
555
556void SectionWriter::visit(const StringTableSection &Sec) {
557  Sec.StrTabBuilder.write(Out.getBufferStart() + Sec.Offset);
558}
559
560void StringTableSection::accept(SectionVisitor &Visitor) const {
561  Visitor.visit(*this);
562}
563
564void StringTableSection::accept(MutableSectionVisitor &Visitor) {
565  Visitor.visit(*this);
566}
567
568template <class ELFT>
569void ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) {
570  uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
571  llvm::copy(Sec.Indexes, reinterpret_cast<Elf_Word *>(Buf));
572}
573
574void SectionIndexSection::initialize(SectionTableRef SecTable) {
575  Size = 0;
576  setSymTab(SecTable.getSectionOfType<SymbolTableSection>(
577      Link,
578      "Link field value " + Twine(Link) + " in section " + Name + " is invalid",
579      "Link field value " + Twine(Link) + " in section " + Name +
580          " is not a symbol table"));
581  Symbols->setShndxTable(this);
582}
583
584void SectionIndexSection::finalize() { Link = Symbols->Index; }
585
586void SectionIndexSection::accept(SectionVisitor &Visitor) const {
587  Visitor.visit(*this);
588}
589
590void SectionIndexSection::accept(MutableSectionVisitor &Visitor) {
591  Visitor.visit(*this);
592}
593
594static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) {
595  switch (Index) {
596  case SHN_ABS:
597  case SHN_COMMON:
598    return true;
599  }
600
601  if (Machine == EM_AMDGPU) {
602    return Index == SHN_AMDGPU_LDS;
603  }
604
605  if (Machine == EM_HEXAGON) {
606    switch (Index) {
607    case SHN_HEXAGON_SCOMMON:
608    case SHN_HEXAGON_SCOMMON_2:
609    case SHN_HEXAGON_SCOMMON_4:
610    case SHN_HEXAGON_SCOMMON_8:
611      return true;
612    }
613  }
614  return false;
615}
616
617// Large indexes force us to clarify exactly what this function should do. This
618// function should return the value that will appear in st_shndx when written
619// out.
620uint16_t Symbol::getShndx() const {
621  if (DefinedIn != nullptr) {
622    if (DefinedIn->Index >= SHN_LORESERVE)
623      return SHN_XINDEX;
624    return DefinedIn->Index;
625  }
626
627  if (ShndxType == SYMBOL_SIMPLE_INDEX) {
628    // This means that we don't have a defined section but we do need to
629    // output a legitimate section index.
630    return SHN_UNDEF;
631  }
632
633  assert(ShndxType == SYMBOL_ABS || ShndxType == SYMBOL_COMMON ||
634         (ShndxType >= SYMBOL_LOPROC && ShndxType <= SYMBOL_HIPROC) ||
635         (ShndxType >= SYMBOL_LOOS && ShndxType <= SYMBOL_HIOS));
636  return static_cast<uint16_t>(ShndxType);
637}
638
639bool Symbol::isCommon() const { return getShndx() == SHN_COMMON; }
640
641void SymbolTableSection::assignIndices() {
642  uint32_t Index = 0;
643  for (auto &Sym : Symbols)
644    Sym->Index = Index++;
645}
646
647void SymbolTableSection::addSymbol(Twine Name, uint8_t Bind, uint8_t Type,
648                                   SectionBase *DefinedIn, uint64_t Value,
649                                   uint8_t Visibility, uint16_t Shndx,
650                                   uint64_t SymbolSize) {
651  Symbol Sym;
652  Sym.Name = Name.str();
653  Sym.Binding = Bind;
654  Sym.Type = Type;
655  Sym.DefinedIn = DefinedIn;
656  if (DefinedIn != nullptr)
657    DefinedIn->HasSymbol = true;
658  if (DefinedIn == nullptr) {
659    if (Shndx >= SHN_LORESERVE)
660      Sym.ShndxType = static_cast<SymbolShndxType>(Shndx);
661    else
662      Sym.ShndxType = SYMBOL_SIMPLE_INDEX;
663  }
664  Sym.Value = Value;
665  Sym.Visibility = Visibility;
666  Sym.Size = SymbolSize;
667  Sym.Index = Symbols.size();
668  Symbols.emplace_back(std::make_unique<Symbol>(Sym));
669  Size += this->EntrySize;
670}
671
672Error SymbolTableSection::removeSectionReferences(
673    bool AllowBrokenLinks,
674    function_ref<bool(const SectionBase *)> ToRemove) {
675  if (ToRemove(SectionIndexTable))
676    SectionIndexTable = nullptr;
677  if (ToRemove(SymbolNames)) {
678    if (!AllowBrokenLinks)
679      return createStringError(
680          llvm::errc::invalid_argument,
681          "string table '%s' cannot be removed because it is "
682          "referenced by the symbol table '%s'",
683          SymbolNames->Name.data(), this->Name.data());
684    SymbolNames = nullptr;
685  }
686  return removeSymbols(
687      [ToRemove](const Symbol &Sym) { return ToRemove(Sym.DefinedIn); });
688}
689
690void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) {
691  std::for_each(std::begin(Symbols) + 1, std::end(Symbols),
692                [Callable](SymPtr &Sym) { Callable(*Sym); });
693  std::stable_partition(
694      std::begin(Symbols), std::end(Symbols),
695      [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; });
696  assignIndices();
697}
698
699Error SymbolTableSection::removeSymbols(
700    function_ref<bool(const Symbol &)> ToRemove) {
701  Symbols.erase(
702      std::remove_if(std::begin(Symbols) + 1, std::end(Symbols),
703                     [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }),
704      std::end(Symbols));
705  Size = Symbols.size() * EntrySize;
706  assignIndices();
707  return Error::success();
708}
709
710void SymbolTableSection::replaceSectionReferences(
711    const DenseMap<SectionBase *, SectionBase *> &FromTo) {
712  for (std::unique_ptr<Symbol> &Sym : Symbols)
713    if (SectionBase *To = FromTo.lookup(Sym->DefinedIn))
714      Sym->DefinedIn = To;
715}
716
717void SymbolTableSection::initialize(SectionTableRef SecTable) {
718  Size = 0;
719  setStrTab(SecTable.getSectionOfType<StringTableSection>(
720      Link,
721      "Symbol table has link index of " + Twine(Link) +
722          " which is not a valid index",
723      "Symbol table has link index of " + Twine(Link) +
724          " which is not a string table"));
725}
726
727void SymbolTableSection::finalize() {
728  uint32_t MaxLocalIndex = 0;
729  for (std::unique_ptr<Symbol> &Sym : Symbols) {
730    Sym->NameIndex =
731        SymbolNames == nullptr ? 0 : SymbolNames->findIndex(Sym->Name);
732    if (Sym->Binding == STB_LOCAL)
733      MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index);
734  }
735  // Now we need to set the Link and Info fields.
736  Link = SymbolNames == nullptr ? 0 : SymbolNames->Index;
737  Info = MaxLocalIndex + 1;
738}
739
740void SymbolTableSection::prepareForLayout() {
741  // Reserve proper amount of space in section index table, so we can
742  // layout sections correctly. We will fill the table with correct
743  // indexes later in fillShdnxTable.
744  if (SectionIndexTable)
745    SectionIndexTable->reserve(Symbols.size());
746
747  // Add all of our strings to SymbolNames so that SymbolNames has the right
748  // size before layout is decided.
749  // If the symbol names section has been removed, don't try to add strings to
750  // the table.
751  if (SymbolNames != nullptr)
752    for (std::unique_ptr<Symbol> &Sym : Symbols)
753      SymbolNames->addString(Sym->Name);
754}
755
756void SymbolTableSection::fillShndxTable() {
757  if (SectionIndexTable == nullptr)
758    return;
759  // Fill section index table with real section indexes. This function must
760  // be called after assignOffsets.
761  for (const std::unique_ptr<Symbol> &Sym : Symbols) {
762    if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE)
763      SectionIndexTable->addIndex(Sym->DefinedIn->Index);
764    else
765      SectionIndexTable->addIndex(SHN_UNDEF);
766  }
767}
768
769const Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) const {
770  if (Symbols.size() <= Index)
771    error("invalid symbol index: " + Twine(Index));
772  return Symbols[Index].get();
773}
774
775Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) {
776  return const_cast<Symbol *>(
777      static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index));
778}
779
780template <class ELFT>
781void ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) {
782  Elf_Sym *Sym = reinterpret_cast<Elf_Sym *>(Out.getBufferStart() + Sec.Offset);
783  // Loop though symbols setting each entry of the symbol table.
784  for (const std::unique_ptr<Symbol> &Symbol : Sec.Symbols) {
785    Sym->st_name = Symbol->NameIndex;
786    Sym->st_value = Symbol->Value;
787    Sym->st_size = Symbol->Size;
788    Sym->st_other = Symbol->Visibility;
789    Sym->setBinding(Symbol->Binding);
790    Sym->setType(Symbol->Type);
791    Sym->st_shndx = Symbol->getShndx();
792    ++Sym;
793  }
794}
795
796void SymbolTableSection::accept(SectionVisitor &Visitor) const {
797  Visitor.visit(*this);
798}
799
800void SymbolTableSection::accept(MutableSectionVisitor &Visitor) {
801  Visitor.visit(*this);
802}
803
804Error RelocationSection::removeSectionReferences(
805    bool AllowBrokenLinks,
806    function_ref<bool(const SectionBase *)> ToRemove) {
807  if (ToRemove(Symbols)) {
808    if (!AllowBrokenLinks)
809      return createStringError(
810          llvm::errc::invalid_argument,
811          "symbol table '%s' cannot be removed because it is "
812          "referenced by the relocation section '%s'",
813          Symbols->Name.data(), this->Name.data());
814    Symbols = nullptr;
815  }
816
817  for (const Relocation &R : Relocations) {
818    if (!R.RelocSymbol || !R.RelocSymbol->DefinedIn ||
819        !ToRemove(R.RelocSymbol->DefinedIn))
820      continue;
821    return createStringError(llvm::errc::invalid_argument,
822                             "section '%s' cannot be removed: (%s+0x%" PRIx64
823                             ") has relocation against symbol '%s'",
824                             R.RelocSymbol->DefinedIn->Name.data(),
825                             SecToApplyRel->Name.data(), R.Offset,
826                             R.RelocSymbol->Name.c_str());
827  }
828
829  return Error::success();
830}
831
832template <class SymTabType>
833void RelocSectionWithSymtabBase<SymTabType>::initialize(
834    SectionTableRef SecTable) {
835  if (Link != SHN_UNDEF)
836    setSymTab(SecTable.getSectionOfType<SymTabType>(
837        Link,
838        "Link field value " + Twine(Link) + " in section " + Name +
839            " is invalid",
840        "Link field value " + Twine(Link) + " in section " + Name +
841            " is not a symbol table"));
842
843  if (Info != SHN_UNDEF)
844    setSection(SecTable.getSection(Info, "Info field value " + Twine(Info) +
845                                             " in section " + Name +
846                                             " is invalid"));
847  else
848    setSection(nullptr);
849}
850
851template <class SymTabType>
852void RelocSectionWithSymtabBase<SymTabType>::finalize() {
853  this->Link = Symbols ? Symbols->Index : 0;
854
855  if (SecToApplyRel != nullptr)
856    this->Info = SecToApplyRel->Index;
857}
858
859template <class ELFT>
860static void setAddend(Elf_Rel_Impl<ELFT, false> &Rel, uint64_t Addend) {}
861
862template <class ELFT>
863static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) {
864  Rela.r_addend = Addend;
865}
866
867template <class RelRange, class T>
868static void writeRel(const RelRange &Relocations, T *Buf) {
869  for (const auto &Reloc : Relocations) {
870    Buf->r_offset = Reloc.Offset;
871    setAddend(*Buf, Reloc.Addend);
872    Buf->setSymbolAndType(Reloc.RelocSymbol ? Reloc.RelocSymbol->Index : 0,
873                          Reloc.Type, false);
874    ++Buf;
875  }
876}
877
878template <class ELFT>
879void ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) {
880  uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
881  if (Sec.Type == SHT_REL)
882    writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf));
883  else
884    writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf));
885}
886
887void RelocationSection::accept(SectionVisitor &Visitor) const {
888  Visitor.visit(*this);
889}
890
891void RelocationSection::accept(MutableSectionVisitor &Visitor) {
892  Visitor.visit(*this);
893}
894
895Error RelocationSection::removeSymbols(
896    function_ref<bool(const Symbol &)> ToRemove) {
897  for (const Relocation &Reloc : Relocations)
898    if (Reloc.RelocSymbol && ToRemove(*Reloc.RelocSymbol))
899      return createStringError(
900          llvm::errc::invalid_argument,
901          "not stripping symbol '%s' because it is named in a relocation",
902          Reloc.RelocSymbol->Name.data());
903  return Error::success();
904}
905
906void RelocationSection::markSymbols() {
907  for (const Relocation &Reloc : Relocations)
908    if (Reloc.RelocSymbol)
909      Reloc.RelocSymbol->Referenced = true;
910}
911
912void RelocationSection::replaceSectionReferences(
913    const DenseMap<SectionBase *, SectionBase *> &FromTo) {
914  // Update the target section if it was replaced.
915  if (SectionBase *To = FromTo.lookup(SecToApplyRel))
916    SecToApplyRel = To;
917}
918
919void SectionWriter::visit(const DynamicRelocationSection &Sec) {
920  llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
921}
922
923void DynamicRelocationSection::accept(SectionVisitor &Visitor) const {
924  Visitor.visit(*this);
925}
926
927void DynamicRelocationSection::accept(MutableSectionVisitor &Visitor) {
928  Visitor.visit(*this);
929}
930
931Error DynamicRelocationSection::removeSectionReferences(
932    bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
933  if (ToRemove(Symbols)) {
934    if (!AllowBrokenLinks)
935      return createStringError(
936          llvm::errc::invalid_argument,
937          "symbol table '%s' cannot be removed because it is "
938          "referenced by the relocation section '%s'",
939          Symbols->Name.data(), this->Name.data());
940    Symbols = nullptr;
941  }
942
943  // SecToApplyRel contains a section referenced by sh_info field. It keeps
944  // a section to which the relocation section applies. When we remove any
945  // sections we also remove their relocation sections. Since we do that much
946  // earlier, this assert should never be triggered.
947  assert(!SecToApplyRel || !ToRemove(SecToApplyRel));
948  return Error::success();
949}
950
951Error Section::removeSectionReferences(
952    bool AllowBrokenDependency,
953    function_ref<bool(const SectionBase *)> ToRemove) {
954  if (ToRemove(LinkSection)) {
955    if (!AllowBrokenDependency)
956      return createStringError(llvm::errc::invalid_argument,
957                               "section '%s' cannot be removed because it is "
958                               "referenced by the section '%s'",
959                               LinkSection->Name.data(), this->Name.data());
960    LinkSection = nullptr;
961  }
962  return Error::success();
963}
964
965void GroupSection::finalize() {
966  this->Info = Sym->Index;
967  this->Link = SymTab->Index;
968}
969
970Error GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
971  if (ToRemove(*Sym))
972    return createStringError(llvm::errc::invalid_argument,
973                             "symbol '%s' cannot be removed because it is "
974                             "referenced by the section '%s[%d]'",
975                             Sym->Name.data(), this->Name.data(), this->Index);
976  return Error::success();
977}
978
979void GroupSection::markSymbols() {
980  if (Sym)
981    Sym->Referenced = true;
982}
983
984void GroupSection::replaceSectionReferences(
985    const DenseMap<SectionBase *, SectionBase *> &FromTo) {
986  for (SectionBase *&Sec : GroupMembers)
987    if (SectionBase *To = FromTo.lookup(Sec))
988      Sec = To;
989}
990
991void Section::initialize(SectionTableRef SecTable) {
992  if (Link == ELF::SHN_UNDEF)
993    return;
994  LinkSection =
995      SecTable.getSection(Link, "Link field value " + Twine(Link) +
996                                    " in section " + Name + " is invalid");
997  if (LinkSection->Type == ELF::SHT_SYMTAB)
998    LinkSection = nullptr;
999}
1000
1001void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; }
1002
1003void GnuDebugLinkSection::init(StringRef File) {
1004  FileName = sys::path::filename(File);
1005  // The format for the .gnu_debuglink starts with the file name and is
1006  // followed by a null terminator and then the CRC32 of the file. The CRC32
1007  // should be 4 byte aligned. So we add the FileName size, a 1 for the null
1008  // byte, and then finally push the size to alignment and add 4.
1009  Size = alignTo(FileName.size() + 1, 4) + 4;
1010  // The CRC32 will only be aligned if we align the whole section.
1011  Align = 4;
1012  Type = OriginalType = ELF::SHT_PROGBITS;
1013  Name = ".gnu_debuglink";
1014  // For sections not found in segments, OriginalOffset is only used to
1015  // establish the order that sections should go in. By using the maximum
1016  // possible offset we cause this section to wind up at the end.
1017  OriginalOffset = std::numeric_limits<uint64_t>::max();
1018}
1019
1020GnuDebugLinkSection::GnuDebugLinkSection(StringRef File,
1021                                         uint32_t PrecomputedCRC)
1022    : FileName(File), CRC32(PrecomputedCRC) {
1023  init(File);
1024}
1025
1026template <class ELFT>
1027void ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) {
1028  unsigned char *Buf = Out.getBufferStart() + Sec.Offset;
1029  Elf_Word *CRC =
1030      reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word));
1031  *CRC = Sec.CRC32;
1032  llvm::copy(Sec.FileName, Buf);
1033}
1034
1035void GnuDebugLinkSection::accept(SectionVisitor &Visitor) const {
1036  Visitor.visit(*this);
1037}
1038
1039void GnuDebugLinkSection::accept(MutableSectionVisitor &Visitor) {
1040  Visitor.visit(*this);
1041}
1042
1043template <class ELFT>
1044void ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) {
1045  ELF::Elf32_Word *Buf =
1046      reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset);
1047  *Buf++ = Sec.FlagWord;
1048  for (SectionBase *S : Sec.GroupMembers)
1049    support::endian::write32<ELFT::TargetEndianness>(Buf++, S->Index);
1050}
1051
1052void GroupSection::accept(SectionVisitor &Visitor) const {
1053  Visitor.visit(*this);
1054}
1055
1056void GroupSection::accept(MutableSectionVisitor &Visitor) {
1057  Visitor.visit(*this);
1058}
1059
1060// Returns true IFF a section is wholly inside the range of a segment
1061static bool sectionWithinSegment(const SectionBase &Sec, const Segment &Seg) {
1062  // If a section is empty it should be treated like it has a size of 1. This is
1063  // to clarify the case when an empty section lies on a boundary between two
1064  // segments and ensures that the section "belongs" to the second segment and
1065  // not the first.
1066  uint64_t SecSize = Sec.Size ? Sec.Size : 1;
1067
1068  if (Sec.Type == SHT_NOBITS) {
1069    if (!(Sec.Flags & SHF_ALLOC))
1070      return false;
1071
1072    bool SectionIsTLS = Sec.Flags & SHF_TLS;
1073    bool SegmentIsTLS = Seg.Type == PT_TLS;
1074    if (SectionIsTLS != SegmentIsTLS)
1075      return false;
1076
1077    return Seg.VAddr <= Sec.Addr &&
1078           Seg.VAddr + Seg.MemSize >= Sec.Addr + SecSize;
1079  }
1080
1081  return Seg.Offset <= Sec.OriginalOffset &&
1082         Seg.Offset + Seg.FileSize >= Sec.OriginalOffset + SecSize;
1083}
1084
1085// Returns true IFF a segment's original offset is inside of another segment's
1086// range.
1087static bool segmentOverlapsSegment(const Segment &Child,
1088                                   const Segment &Parent) {
1089
1090  return Parent.OriginalOffset <= Child.OriginalOffset &&
1091         Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset;
1092}
1093
1094static bool compareSegmentsByOffset(const Segment *A, const Segment *B) {
1095  // Any segment without a parent segment should come before a segment
1096  // that has a parent segment.
1097  if (A->OriginalOffset < B->OriginalOffset)
1098    return true;
1099  if (A->OriginalOffset > B->OriginalOffset)
1100    return false;
1101  return A->Index < B->Index;
1102}
1103
1104static bool compareSegmentsByPAddr(const Segment *A, const Segment *B) {
1105  if (A->PAddr < B->PAddr)
1106    return true;
1107  if (A->PAddr > B->PAddr)
1108    return false;
1109  return A->Index < B->Index;
1110}
1111
1112void BasicELFBuilder::initFileHeader() {
1113  Obj->Flags = 0x0;
1114  Obj->Type = ET_REL;
1115  Obj->OSABI = ELFOSABI_NONE;
1116  Obj->ABIVersion = 0;
1117  Obj->Entry = 0x0;
1118  Obj->Machine = EM_NONE;
1119  Obj->Version = 1;
1120}
1121
1122void BasicELFBuilder::initHeaderSegment() { Obj->ElfHdrSegment.Index = 0; }
1123
1124StringTableSection *BasicELFBuilder::addStrTab() {
1125  auto &StrTab = Obj->addSection<StringTableSection>();
1126  StrTab.Name = ".strtab";
1127
1128  Obj->SectionNames = &StrTab;
1129  return &StrTab;
1130}
1131
1132SymbolTableSection *BasicELFBuilder::addSymTab(StringTableSection *StrTab) {
1133  auto &SymTab = Obj->addSection<SymbolTableSection>();
1134
1135  SymTab.Name = ".symtab";
1136  SymTab.Link = StrTab->Index;
1137
1138  // The symbol table always needs a null symbol
1139  SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
1140
1141  Obj->SymbolTable = &SymTab;
1142  return &SymTab;
1143}
1144
1145void BasicELFBuilder::initSections() {
1146  for (SectionBase &Sec : Obj->sections())
1147    Sec.initialize(Obj->sections());
1148}
1149
1150void BinaryELFBuilder::addData(SymbolTableSection *SymTab) {
1151  auto Data = ArrayRef<uint8_t>(
1152      reinterpret_cast<const uint8_t *>(MemBuf->getBufferStart()),
1153      MemBuf->getBufferSize());
1154  auto &DataSection = Obj->addSection<Section>(Data);
1155  DataSection.Name = ".data";
1156  DataSection.Type = ELF::SHT_PROGBITS;
1157  DataSection.Size = Data.size();
1158  DataSection.Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
1159
1160  std::string SanitizedFilename = MemBuf->getBufferIdentifier().str();
1161  std::replace_if(std::begin(SanitizedFilename), std::end(SanitizedFilename),
1162                  [](char C) { return !isalnum(C); }, '_');
1163  Twine Prefix = Twine("_binary_") + SanitizedFilename;
1164
1165  SymTab->addSymbol(Prefix + "_start", STB_GLOBAL, STT_NOTYPE, &DataSection,
1166                    /*Value=*/0, NewSymbolVisibility, 0, 0);
1167  SymTab->addSymbol(Prefix + "_end", STB_GLOBAL, STT_NOTYPE, &DataSection,
1168                    /*Value=*/DataSection.Size, NewSymbolVisibility, 0, 0);
1169  SymTab->addSymbol(Prefix + "_size", STB_GLOBAL, STT_NOTYPE, nullptr,
1170                    /*Value=*/DataSection.Size, NewSymbolVisibility, SHN_ABS,
1171                    0);
1172}
1173
1174std::unique_ptr<Object> BinaryELFBuilder::build() {
1175  initFileHeader();
1176  initHeaderSegment();
1177
1178  SymbolTableSection *SymTab = addSymTab(addStrTab());
1179  initSections();
1180  addData(SymTab);
1181
1182  return std::move(Obj);
1183}
1184
1185// Adds sections from IHEX data file. Data should have been
1186// fully validated by this time.
1187void IHexELFBuilder::addDataSections() {
1188  OwnedDataSection *Section = nullptr;
1189  uint64_t SegmentAddr = 0, BaseAddr = 0;
1190  uint32_t SecNo = 1;
1191
1192  for (const IHexRecord &R : Records) {
1193    uint64_t RecAddr;
1194    switch (R.Type) {
1195    case IHexRecord::Data:
1196      // Ignore empty data records
1197      if (R.HexData.empty())
1198        continue;
1199      RecAddr = R.Addr + SegmentAddr + BaseAddr;
1200      if (!Section || Section->Addr + Section->Size != RecAddr)
1201        // OriginalOffset field is only used to sort section properly, so
1202        // instead of keeping track of real offset in IHEX file, we use
1203        // section number.
1204        Section = &Obj->addSection<OwnedDataSection>(
1205            ".sec" + std::to_string(SecNo++), RecAddr,
1206            ELF::SHF_ALLOC | ELF::SHF_WRITE, SecNo);
1207      Section->appendHexData(R.HexData);
1208      break;
1209    case IHexRecord::EndOfFile:
1210      break;
1211    case IHexRecord::SegmentAddr:
1212      // 20-bit segment address.
1213      SegmentAddr = checkedGetHex<uint16_t>(R.HexData) << 4;
1214      break;
1215    case IHexRecord::StartAddr80x86:
1216    case IHexRecord::StartAddr:
1217      Obj->Entry = checkedGetHex<uint32_t>(R.HexData);
1218      assert(Obj->Entry <= 0xFFFFFU);
1219      break;
1220    case IHexRecord::ExtendedAddr:
1221      // 16-31 bits of linear base address
1222      BaseAddr = checkedGetHex<uint16_t>(R.HexData) << 16;
1223      break;
1224    default:
1225      llvm_unreachable("unknown record type");
1226    }
1227  }
1228}
1229
1230std::unique_ptr<Object> IHexELFBuilder::build() {
1231  initFileHeader();
1232  initHeaderSegment();
1233  StringTableSection *StrTab = addStrTab();
1234  addSymTab(StrTab);
1235  initSections();
1236  addDataSections();
1237
1238  return std::move(Obj);
1239}
1240
1241template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) {
1242  for (Segment &Parent : Obj.segments()) {
1243    // Every segment will overlap with itself but we don't want a segment to
1244    // be it's own parent so we avoid that situation.
1245    if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) {
1246      // We want a canonical "most parental" segment but this requires
1247      // inspecting the ParentSegment.
1248      if (compareSegmentsByOffset(&Parent, &Child))
1249        if (Child.ParentSegment == nullptr ||
1250            compareSegmentsByOffset(&Parent, Child.ParentSegment)) {
1251          Child.ParentSegment = &Parent;
1252        }
1253    }
1254  }
1255}
1256
1257template <class ELFT> void ELFBuilder<ELFT>::findEhdrOffset() {
1258  if (!ExtractPartition)
1259    return;
1260
1261  for (const SectionBase &Sec : Obj.sections()) {
1262    if (Sec.Type == SHT_LLVM_PART_EHDR && Sec.Name == *ExtractPartition) {
1263      EhdrOffset = Sec.Offset;
1264      return;
1265    }
1266  }
1267  error("could not find partition named '" + *ExtractPartition + "'");
1268}
1269
1270template <class ELFT>
1271void ELFBuilder<ELFT>::readProgramHeaders(const ELFFile<ELFT> &HeadersFile) {
1272  uint32_t Index = 0;
1273  for (const auto &Phdr : unwrapOrError(HeadersFile.program_headers())) {
1274    if (Phdr.p_offset + Phdr.p_filesz > HeadersFile.getBufSize())
1275      error("program header with offset 0x" + Twine::utohexstr(Phdr.p_offset) +
1276            " and file size 0x" + Twine::utohexstr(Phdr.p_filesz) +
1277            " goes past the end of the file");
1278
1279    ArrayRef<uint8_t> Data{HeadersFile.base() + Phdr.p_offset,
1280                           (size_t)Phdr.p_filesz};
1281    Segment &Seg = Obj.addSegment(Data);
1282    Seg.Type = Phdr.p_type;
1283    Seg.Flags = Phdr.p_flags;
1284    Seg.OriginalOffset = Phdr.p_offset + EhdrOffset;
1285    Seg.Offset = Phdr.p_offset + EhdrOffset;
1286    Seg.VAddr = Phdr.p_vaddr;
1287    Seg.PAddr = Phdr.p_paddr;
1288    Seg.FileSize = Phdr.p_filesz;
1289    Seg.MemSize = Phdr.p_memsz;
1290    Seg.Align = Phdr.p_align;
1291    Seg.Index = Index++;
1292    for (SectionBase &Sec : Obj.sections())
1293      if (sectionWithinSegment(Sec, Seg)) {
1294        Seg.addSection(&Sec);
1295        if (!Sec.ParentSegment || Sec.ParentSegment->Offset > Seg.Offset)
1296          Sec.ParentSegment = &Seg;
1297      }
1298  }
1299
1300  auto &ElfHdr = Obj.ElfHdrSegment;
1301  ElfHdr.Index = Index++;
1302  ElfHdr.OriginalOffset = ElfHdr.Offset = EhdrOffset;
1303
1304  const auto &Ehdr = *HeadersFile.getHeader();
1305  auto &PrHdr = Obj.ProgramHdrSegment;
1306  PrHdr.Type = PT_PHDR;
1307  PrHdr.Flags = 0;
1308  // The spec requires us to have p_vaddr % p_align == p_offset % p_align.
1309  // Whereas this works automatically for ElfHdr, here OriginalOffset is
1310  // always non-zero and to ensure the equation we assign the same value to
1311  // VAddr as well.
1312  PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = EhdrOffset + Ehdr.e_phoff;
1313  PrHdr.PAddr = 0;
1314  PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum;
1315  // The spec requires us to naturally align all the fields.
1316  PrHdr.Align = sizeof(Elf_Addr);
1317  PrHdr.Index = Index++;
1318
1319  // Now we do an O(n^2) loop through the segments in order to match up
1320  // segments.
1321  for (Segment &Child : Obj.segments())
1322    setParentSegment(Child);
1323  setParentSegment(ElfHdr);
1324  setParentSegment(PrHdr);
1325}
1326
1327template <class ELFT>
1328void ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) {
1329  if (GroupSec->Align % sizeof(ELF::Elf32_Word) != 0)
1330    error("invalid alignment " + Twine(GroupSec->Align) + " of group section '" +
1331          GroupSec->Name + "'");
1332  SectionTableRef SecTable = Obj.sections();
1333  auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>(
1334      GroupSec->Link,
1335      "link field value '" + Twine(GroupSec->Link) + "' in section '" +
1336          GroupSec->Name + "' is invalid",
1337      "link field value '" + Twine(GroupSec->Link) + "' in section '" +
1338          GroupSec->Name + "' is not a symbol table");
1339  Symbol *Sym = SymTab->getSymbolByIndex(GroupSec->Info);
1340  if (!Sym)
1341    error("info field value '" + Twine(GroupSec->Info) + "' in section '" +
1342          GroupSec->Name + "' is not a valid symbol index");
1343  GroupSec->setSymTab(SymTab);
1344  GroupSec->setSymbol(Sym);
1345  if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) ||
1346      GroupSec->Contents.empty())
1347    error("the content of the section " + GroupSec->Name + " is malformed");
1348  const ELF::Elf32_Word *Word =
1349      reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data());
1350  const ELF::Elf32_Word *End =
1351      Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word);
1352  GroupSec->setFlagWord(*Word++);
1353  for (; Word != End; ++Word) {
1354    uint32_t Index = support::endian::read32<ELFT::TargetEndianness>(Word);
1355    GroupSec->addMember(SecTable.getSection(
1356        Index, "group member index " + Twine(Index) + " in section '" +
1357                   GroupSec->Name + "' is invalid"));
1358  }
1359}
1360
1361template <class ELFT>
1362void ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) {
1363  const Elf_Shdr &Shdr = *unwrapOrError(ElfFile.getSection(SymTab->Index));
1364  StringRef StrTabData = unwrapOrError(ElfFile.getStringTableForSymtab(Shdr));
1365  ArrayRef<Elf_Word> ShndxData;
1366
1367  auto Symbols = unwrapOrError(ElfFile.symbols(&Shdr));
1368  for (const auto &Sym : Symbols) {
1369    SectionBase *DefSection = nullptr;
1370    StringRef Name = unwrapOrError(Sym.getName(StrTabData));
1371
1372    if (Sym.st_shndx == SHN_XINDEX) {
1373      if (SymTab->getShndxTable() == nullptr)
1374        error("symbol '" + Name +
1375              "' has index SHN_XINDEX but no SHT_SYMTAB_SHNDX section exists");
1376      if (ShndxData.data() == nullptr) {
1377        const Elf_Shdr &ShndxSec =
1378            *unwrapOrError(ElfFile.getSection(SymTab->getShndxTable()->Index));
1379        ShndxData = unwrapOrError(
1380            ElfFile.template getSectionContentsAsArray<Elf_Word>(&ShndxSec));
1381        if (ShndxData.size() != Symbols.size())
1382          error("symbol section index table does not have the same number of "
1383                "entries as the symbol table");
1384      }
1385      Elf_Word Index = ShndxData[&Sym - Symbols.begin()];
1386      DefSection = Obj.sections().getSection(
1387          Index,
1388          "symbol '" + Name + "' has invalid section index " + Twine(Index));
1389    } else if (Sym.st_shndx >= SHN_LORESERVE) {
1390      if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) {
1391        error(
1392            "symbol '" + Name +
1393            "' has unsupported value greater than or equal to SHN_LORESERVE: " +
1394            Twine(Sym.st_shndx));
1395      }
1396    } else if (Sym.st_shndx != SHN_UNDEF) {
1397      DefSection = Obj.sections().getSection(
1398          Sym.st_shndx, "symbol '" + Name +
1399                            "' is defined has invalid section index " +
1400                            Twine(Sym.st_shndx));
1401    }
1402
1403    SymTab->addSymbol(Name, Sym.getBinding(), Sym.getType(), DefSection,
1404                      Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size);
1405  }
1406}
1407
1408template <class ELFT>
1409static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, false> &Rel) {}
1410
1411template <class ELFT>
1412static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) {
1413  ToSet = Rela.r_addend;
1414}
1415
1416template <class T>
1417static void initRelocations(RelocationSection *Relocs,
1418                            SymbolTableSection *SymbolTable, T RelRange) {
1419  for (const auto &Rel : RelRange) {
1420    Relocation ToAdd;
1421    ToAdd.Offset = Rel.r_offset;
1422    getAddend(ToAdd.Addend, Rel);
1423    ToAdd.Type = Rel.getType(false);
1424
1425    if (uint32_t Sym = Rel.getSymbol(false)) {
1426      if (!SymbolTable)
1427        error("'" + Relocs->Name +
1428              "': relocation references symbol with index " + Twine(Sym) +
1429              ", but there is no symbol table");
1430      ToAdd.RelocSymbol = SymbolTable->getSymbolByIndex(Sym);
1431    }
1432
1433    Relocs->addRelocation(ToAdd);
1434  }
1435}
1436
1437SectionBase *SectionTableRef::getSection(uint32_t Index, Twine ErrMsg) {
1438  if (Index == SHN_UNDEF || Index > Sections.size())
1439    error(ErrMsg);
1440  return Sections[Index - 1].get();
1441}
1442
1443template <class T>
1444T *SectionTableRef::getSectionOfType(uint32_t Index, Twine IndexErrMsg,
1445                                     Twine TypeErrMsg) {
1446  if (T *Sec = dyn_cast<T>(getSection(Index, IndexErrMsg)))
1447    return Sec;
1448  error(TypeErrMsg);
1449}
1450
1451template <class ELFT>
1452SectionBase &ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) {
1453  ArrayRef<uint8_t> Data;
1454  switch (Shdr.sh_type) {
1455  case SHT_REL:
1456  case SHT_RELA:
1457    if (Shdr.sh_flags & SHF_ALLOC) {
1458      Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
1459      return Obj.addSection<DynamicRelocationSection>(Data);
1460    }
1461    return Obj.addSection<RelocationSection>();
1462  case SHT_STRTAB:
1463    // If a string table is allocated we don't want to mess with it. That would
1464    // mean altering the memory image. There are no special link types or
1465    // anything so we can just use a Section.
1466    if (Shdr.sh_flags & SHF_ALLOC) {
1467      Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
1468      return Obj.addSection<Section>(Data);
1469    }
1470    return Obj.addSection<StringTableSection>();
1471  case SHT_HASH:
1472  case SHT_GNU_HASH:
1473    // Hash tables should refer to SHT_DYNSYM which we're not going to change.
1474    // Because of this we don't need to mess with the hash tables either.
1475    Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
1476    return Obj.addSection<Section>(Data);
1477  case SHT_GROUP:
1478    Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
1479    return Obj.addSection<GroupSection>(Data);
1480  case SHT_DYNSYM:
1481    Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
1482    return Obj.addSection<DynamicSymbolTableSection>(Data);
1483  case SHT_DYNAMIC:
1484    Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
1485    return Obj.addSection<DynamicSection>(Data);
1486  case SHT_SYMTAB: {
1487    auto &SymTab = Obj.addSection<SymbolTableSection>();
1488    Obj.SymbolTable = &SymTab;
1489    return SymTab;
1490  }
1491  case SHT_SYMTAB_SHNDX: {
1492    auto &ShndxSection = Obj.addSection<SectionIndexSection>();
1493    Obj.SectionIndexTable = &ShndxSection;
1494    return ShndxSection;
1495  }
1496  case SHT_NOBITS:
1497    return Obj.addSection<Section>(Data);
1498  default: {
1499    Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
1500
1501    StringRef Name = unwrapOrError(ElfFile.getSectionName(&Shdr));
1502    if (Name.startswith(".zdebug") || (Shdr.sh_flags & ELF::SHF_COMPRESSED)) {
1503      uint64_t DecompressedSize, DecompressedAlign;
1504      std::tie(DecompressedSize, DecompressedAlign) =
1505          getDecompressedSizeAndAlignment<ELFT>(Data);
1506      return Obj.addSection<CompressedSection>(Data, DecompressedSize,
1507                                               DecompressedAlign);
1508    }
1509
1510    return Obj.addSection<Section>(Data);
1511  }
1512  }
1513}
1514
1515template <class ELFT> void ELFBuilder<ELFT>::readSectionHeaders() {
1516  uint32_t Index = 0;
1517  for (const auto &Shdr : unwrapOrError(ElfFile.sections())) {
1518    if (Index == 0) {
1519      ++Index;
1520      continue;
1521    }
1522    auto &Sec = makeSection(Shdr);
1523    Sec.Name = unwrapOrError(ElfFile.getSectionName(&Shdr));
1524    Sec.Type = Sec.OriginalType = Shdr.sh_type;
1525    Sec.Flags = Sec.OriginalFlags = Shdr.sh_flags;
1526    Sec.Addr = Shdr.sh_addr;
1527    Sec.Offset = Shdr.sh_offset;
1528    Sec.OriginalOffset = Shdr.sh_offset;
1529    Sec.Size = Shdr.sh_size;
1530    Sec.Link = Shdr.sh_link;
1531    Sec.Info = Shdr.sh_info;
1532    Sec.Align = Shdr.sh_addralign;
1533    Sec.EntrySize = Shdr.sh_entsize;
1534    Sec.Index = Index++;
1535    Sec.OriginalData =
1536        ArrayRef<uint8_t>(ElfFile.base() + Shdr.sh_offset,
1537                          (Shdr.sh_type == SHT_NOBITS) ? 0 : Shdr.sh_size);
1538  }
1539}
1540
1541template <class ELFT> void ELFBuilder<ELFT>::readSections(bool EnsureSymtab) {
1542  uint32_t ShstrIndex = ElfFile.getHeader()->e_shstrndx;
1543  if (ShstrIndex == SHN_XINDEX)
1544    ShstrIndex = unwrapOrError(ElfFile.getSection(0))->sh_link;
1545
1546  if (ShstrIndex == SHN_UNDEF)
1547    Obj.HadShdrs = false;
1548  else
1549    Obj.SectionNames =
1550        Obj.sections().template getSectionOfType<StringTableSection>(
1551            ShstrIndex,
1552            "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
1553                " is invalid",
1554            "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
1555                " does not reference a string table");
1556
1557  // If a section index table exists we'll need to initialize it before we
1558  // initialize the symbol table because the symbol table might need to
1559  // reference it.
1560  if (Obj.SectionIndexTable)
1561    Obj.SectionIndexTable->initialize(Obj.sections());
1562
1563  // Now that all of the sections have been added we can fill out some extra
1564  // details about symbol tables. We need the symbol table filled out before
1565  // any relocations.
1566  if (Obj.SymbolTable) {
1567    Obj.SymbolTable->initialize(Obj.sections());
1568    initSymbolTable(Obj.SymbolTable);
1569  } else if (EnsureSymtab) {
1570    // Reuse an existing SHT_STRTAB section if it exists.
1571    StringTableSection *StrTab = nullptr;
1572    for (auto &Sec : Obj.sections()) {
1573      if (Sec.Type == ELF::SHT_STRTAB && !(Sec.Flags & SHF_ALLOC)) {
1574        StrTab = static_cast<StringTableSection *>(&Sec);
1575
1576        // Prefer a string table that is not the section header string table, if
1577        // such a table exists.
1578        if (Obj.SectionNames != &Sec)
1579          break;
1580      }
1581    }
1582    if (!StrTab)
1583      StrTab = &Obj.addSection<StringTableSection>();
1584
1585    SymbolTableSection &SymTab = Obj.addSection<SymbolTableSection>();
1586    SymTab.Name = ".symtab";
1587    SymTab.Link = StrTab->Index;
1588    SymTab.initialize(Obj.sections());
1589    SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
1590    Obj.SymbolTable = &SymTab;
1591  }
1592
1593  // Now that all sections and symbols have been added we can add
1594  // relocations that reference symbols and set the link and info fields for
1595  // relocation sections.
1596  for (auto &Sec : Obj.sections()) {
1597    if (&Sec == Obj.SymbolTable)
1598      continue;
1599    Sec.initialize(Obj.sections());
1600    if (auto RelSec = dyn_cast<RelocationSection>(&Sec)) {
1601      auto Shdr = unwrapOrError(ElfFile.sections()).begin() + RelSec->Index;
1602      if (RelSec->Type == SHT_REL)
1603        initRelocations(RelSec, Obj.SymbolTable,
1604                        unwrapOrError(ElfFile.rels(Shdr)));
1605      else
1606        initRelocations(RelSec, Obj.SymbolTable,
1607                        unwrapOrError(ElfFile.relas(Shdr)));
1608    } else if (auto GroupSec = dyn_cast<GroupSection>(&Sec)) {
1609      initGroupSection(GroupSec);
1610    }
1611  }
1612}
1613
1614template <class ELFT> void ELFBuilder<ELFT>::build(bool EnsureSymtab) {
1615  readSectionHeaders();
1616  findEhdrOffset();
1617
1618  // The ELFFile whose ELF headers and program headers are copied into the
1619  // output file. Normally the same as ElfFile, but if we're extracting a
1620  // loadable partition it will point to the partition's headers.
1621  ELFFile<ELFT> HeadersFile = unwrapOrError(ELFFile<ELFT>::create(toStringRef(
1622      {ElfFile.base() + EhdrOffset, ElfFile.getBufSize() - EhdrOffset})));
1623
1624  auto &Ehdr = *HeadersFile.getHeader();
1625  Obj.OSABI = Ehdr.e_ident[EI_OSABI];
1626  Obj.ABIVersion = Ehdr.e_ident[EI_ABIVERSION];
1627  Obj.Type = Ehdr.e_type;
1628  Obj.Machine = Ehdr.e_machine;
1629  Obj.Version = Ehdr.e_version;
1630  Obj.Entry = Ehdr.e_entry;
1631  Obj.Flags = Ehdr.e_flags;
1632
1633  readSections(EnsureSymtab);
1634  readProgramHeaders(HeadersFile);
1635}
1636
1637Writer::~Writer() {}
1638
1639Reader::~Reader() {}
1640
1641std::unique_ptr<Object> BinaryReader::create(bool /*EnsureSymtab*/) const {
1642  return BinaryELFBuilder(MemBuf, NewSymbolVisibility).build();
1643}
1644
1645Expected<std::vector<IHexRecord>> IHexReader::parse() const {
1646  SmallVector<StringRef, 16> Lines;
1647  std::vector<IHexRecord> Records;
1648  bool HasSections = false;
1649
1650  MemBuf->getBuffer().split(Lines, '\n');
1651  Records.reserve(Lines.size());
1652  for (size_t LineNo = 1; LineNo <= Lines.size(); ++LineNo) {
1653    StringRef Line = Lines[LineNo - 1].trim();
1654    if (Line.empty())
1655      continue;
1656
1657    Expected<IHexRecord> R = IHexRecord::parse(Line);
1658    if (!R)
1659      return parseError(LineNo, R.takeError());
1660    if (R->Type == IHexRecord::EndOfFile)
1661      break;
1662    HasSections |= (R->Type == IHexRecord::Data);
1663    Records.push_back(*R);
1664  }
1665  if (!HasSections)
1666    return parseError(-1U, "no sections");
1667
1668  return std::move(Records);
1669}
1670
1671std::unique_ptr<Object> IHexReader::create(bool /*EnsureSymtab*/) const {
1672  std::vector<IHexRecord> Records = unwrapOrError(parse());
1673  return IHexELFBuilder(Records).build();
1674}
1675
1676std::unique_ptr<Object> ELFReader::create(bool EnsureSymtab) const {
1677  auto Obj = std::make_unique<Object>();
1678  if (auto *O = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) {
1679    ELFBuilder<ELF32LE> Builder(*O, *Obj, ExtractPartition);
1680    Builder.build(EnsureSymtab);
1681    return Obj;
1682  } else if (auto *O = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) {
1683    ELFBuilder<ELF64LE> Builder(*O, *Obj, ExtractPartition);
1684    Builder.build(EnsureSymtab);
1685    return Obj;
1686  } else if (auto *O = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) {
1687    ELFBuilder<ELF32BE> Builder(*O, *Obj, ExtractPartition);
1688    Builder.build(EnsureSymtab);
1689    return Obj;
1690  } else if (auto *O = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) {
1691    ELFBuilder<ELF64BE> Builder(*O, *Obj, ExtractPartition);
1692    Builder.build(EnsureSymtab);
1693    return Obj;
1694  }
1695  error("invalid file type");
1696}
1697
1698template <class ELFT> void ELFWriter<ELFT>::writeEhdr() {
1699  Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf.getBufferStart());
1700  std::fill(Ehdr.e_ident, Ehdr.e_ident + 16, 0);
1701  Ehdr.e_ident[EI_MAG0] = 0x7f;
1702  Ehdr.e_ident[EI_MAG1] = 'E';
1703  Ehdr.e_ident[EI_MAG2] = 'L';
1704  Ehdr.e_ident[EI_MAG3] = 'F';
1705  Ehdr.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
1706  Ehdr.e_ident[EI_DATA] =
1707      ELFT::TargetEndianness == support::big ? ELFDATA2MSB : ELFDATA2LSB;
1708  Ehdr.e_ident[EI_VERSION] = EV_CURRENT;
1709  Ehdr.e_ident[EI_OSABI] = Obj.OSABI;
1710  Ehdr.e_ident[EI_ABIVERSION] = Obj.ABIVersion;
1711
1712  Ehdr.e_type = Obj.Type;
1713  Ehdr.e_machine = Obj.Machine;
1714  Ehdr.e_version = Obj.Version;
1715  Ehdr.e_entry = Obj.Entry;
1716  // We have to use the fully-qualified name llvm::size
1717  // since some compilers complain on ambiguous resolution.
1718  Ehdr.e_phnum = llvm::size(Obj.segments());
1719  Ehdr.e_phoff = (Ehdr.e_phnum != 0) ? Obj.ProgramHdrSegment.Offset : 0;
1720  Ehdr.e_phentsize = (Ehdr.e_phnum != 0) ? sizeof(Elf_Phdr) : 0;
1721  Ehdr.e_flags = Obj.Flags;
1722  Ehdr.e_ehsize = sizeof(Elf_Ehdr);
1723  if (WriteSectionHeaders && Obj.sections().size() != 0) {
1724    Ehdr.e_shentsize = sizeof(Elf_Shdr);
1725    Ehdr.e_shoff = Obj.SHOff;
1726    // """
1727    // If the number of sections is greater than or equal to
1728    // SHN_LORESERVE (0xff00), this member has the value zero and the actual
1729    // number of section header table entries is contained in the sh_size field
1730    // of the section header at index 0.
1731    // """
1732    auto Shnum = Obj.sections().size() + 1;
1733    if (Shnum >= SHN_LORESERVE)
1734      Ehdr.e_shnum = 0;
1735    else
1736      Ehdr.e_shnum = Shnum;
1737    // """
1738    // If the section name string table section index is greater than or equal
1739    // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff)
1740    // and the actual index of the section name string table section is
1741    // contained in the sh_link field of the section header at index 0.
1742    // """
1743    if (Obj.SectionNames->Index >= SHN_LORESERVE)
1744      Ehdr.e_shstrndx = SHN_XINDEX;
1745    else
1746      Ehdr.e_shstrndx = Obj.SectionNames->Index;
1747  } else {
1748    Ehdr.e_shentsize = 0;
1749    Ehdr.e_shoff = 0;
1750    Ehdr.e_shnum = 0;
1751    Ehdr.e_shstrndx = 0;
1752  }
1753}
1754
1755template <class ELFT> void ELFWriter<ELFT>::writePhdrs() {
1756  for (auto &Seg : Obj.segments())
1757    writePhdr(Seg);
1758}
1759
1760template <class ELFT> void ELFWriter<ELFT>::writeShdrs() {
1761  // This reference serves to write the dummy section header at the begining
1762  // of the file. It is not used for anything else
1763  Elf_Shdr &Shdr =
1764      *reinterpret_cast<Elf_Shdr *>(Buf.getBufferStart() + Obj.SHOff);
1765  Shdr.sh_name = 0;
1766  Shdr.sh_type = SHT_NULL;
1767  Shdr.sh_flags = 0;
1768  Shdr.sh_addr = 0;
1769  Shdr.sh_offset = 0;
1770  // See writeEhdr for why we do this.
1771  uint64_t Shnum = Obj.sections().size() + 1;
1772  if (Shnum >= SHN_LORESERVE)
1773    Shdr.sh_size = Shnum;
1774  else
1775    Shdr.sh_size = 0;
1776  // See writeEhdr for why we do this.
1777  if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE)
1778    Shdr.sh_link = Obj.SectionNames->Index;
1779  else
1780    Shdr.sh_link = 0;
1781  Shdr.sh_info = 0;
1782  Shdr.sh_addralign = 0;
1783  Shdr.sh_entsize = 0;
1784
1785  for (SectionBase &Sec : Obj.sections())
1786    writeShdr(Sec);
1787}
1788
1789template <class ELFT> void ELFWriter<ELFT>::writeSectionData() {
1790  for (SectionBase &Sec : Obj.sections())
1791    // Segments are responsible for writing their contents, so only write the
1792    // section data if the section is not in a segment. Note that this renders
1793    // sections in segments effectively immutable.
1794    if (Sec.ParentSegment == nullptr)
1795      Sec.accept(*SecWriter);
1796}
1797
1798template <class ELFT> void ELFWriter<ELFT>::writeSegmentData() {
1799  for (Segment &Seg : Obj.segments()) {
1800    size_t Size = std::min<size_t>(Seg.FileSize, Seg.getContents().size());
1801    std::memcpy(Buf.getBufferStart() + Seg.Offset, Seg.getContents().data(),
1802                Size);
1803  }
1804
1805  // Iterate over removed sections and overwrite their old data with zeroes.
1806  for (auto &Sec : Obj.removedSections()) {
1807    Segment *Parent = Sec.ParentSegment;
1808    if (Parent == nullptr || Sec.Type == SHT_NOBITS || Sec.Size == 0)
1809      continue;
1810    uint64_t Offset =
1811        Sec.OriginalOffset - Parent->OriginalOffset + Parent->Offset;
1812    std::memset(Buf.getBufferStart() + Offset, 0, Sec.Size);
1813  }
1814}
1815
1816template <class ELFT>
1817ELFWriter<ELFT>::ELFWriter(Object &Obj, Buffer &Buf, bool WSH,
1818                           bool OnlyKeepDebug)
1819    : Writer(Obj, Buf), WriteSectionHeaders(WSH && Obj.HadShdrs),
1820      OnlyKeepDebug(OnlyKeepDebug) {}
1821
1822Error Object::removeSections(bool AllowBrokenLinks,
1823    std::function<bool(const SectionBase &)> ToRemove) {
1824
1825  auto Iter = std::stable_partition(
1826      std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
1827        if (ToRemove(*Sec))
1828          return false;
1829        if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) {
1830          if (auto ToRelSec = RelSec->getSection())
1831            return !ToRemove(*ToRelSec);
1832        }
1833        return true;
1834      });
1835  if (SymbolTable != nullptr && ToRemove(*SymbolTable))
1836    SymbolTable = nullptr;
1837  if (SectionNames != nullptr && ToRemove(*SectionNames))
1838    SectionNames = nullptr;
1839  if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable))
1840    SectionIndexTable = nullptr;
1841  // Now make sure there are no remaining references to the sections that will
1842  // be removed. Sometimes it is impossible to remove a reference so we emit
1843  // an error here instead.
1844  std::unordered_set<const SectionBase *> RemoveSections;
1845  RemoveSections.reserve(std::distance(Iter, std::end(Sections)));
1846  for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
1847    for (auto &Segment : Segments)
1848      Segment->removeSection(RemoveSec.get());
1849    RemoveSections.insert(RemoveSec.get());
1850  }
1851
1852  // For each section that remains alive, we want to remove the dead references.
1853  // This either might update the content of the section (e.g. remove symbols
1854  // from symbol table that belongs to removed section) or trigger an error if
1855  // a live section critically depends on a section being removed somehow
1856  // (e.g. the removed section is referenced by a relocation).
1857  for (auto &KeepSec : make_range(std::begin(Sections), Iter)) {
1858    if (Error E = KeepSec->removeSectionReferences(AllowBrokenLinks,
1859            [&RemoveSections](const SectionBase *Sec) {
1860              return RemoveSections.find(Sec) != RemoveSections.end();
1861            }))
1862      return E;
1863  }
1864
1865  // Transfer removed sections into the Object RemovedSections container for use
1866  // later.
1867  std::move(Iter, Sections.end(), std::back_inserter(RemovedSections));
1868  // Now finally get rid of them all together.
1869  Sections.erase(Iter, std::end(Sections));
1870  return Error::success();
1871}
1872
1873Error Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
1874  if (SymbolTable)
1875    for (const SecPtr &Sec : Sections)
1876      if (Error E = Sec->removeSymbols(ToRemove))
1877        return E;
1878  return Error::success();
1879}
1880
1881void Object::sortSections() {
1882  // Use stable_sort to maintain the original ordering as closely as possible.
1883  llvm::stable_sort(Sections, [](const SecPtr &A, const SecPtr &B) {
1884    // Put SHT_GROUP sections first, since group section headers must come
1885    // before the sections they contain. This also matches what GNU objcopy
1886    // does.
1887    if (A->Type != B->Type &&
1888        (A->Type == ELF::SHT_GROUP || B->Type == ELF::SHT_GROUP))
1889      return A->Type == ELF::SHT_GROUP;
1890    // For all other sections, sort by offset order.
1891    return A->OriginalOffset < B->OriginalOffset;
1892  });
1893}
1894
1895// Orders segments such that if x = y->ParentSegment then y comes before x.
1896static void orderSegments(std::vector<Segment *> &Segments) {
1897  llvm::stable_sort(Segments, compareSegmentsByOffset);
1898}
1899
1900// This function finds a consistent layout for a list of segments starting from
1901// an Offset. It assumes that Segments have been sorted by orderSegments and
1902// returns an Offset one past the end of the last segment.
1903static uint64_t layoutSegments(std::vector<Segment *> &Segments,
1904                               uint64_t Offset) {
1905  assert(std::is_sorted(std::begin(Segments), std::end(Segments),
1906                        compareSegmentsByOffset));
1907  // The only way a segment should move is if a section was between two
1908  // segments and that section was removed. If that section isn't in a segment
1909  // then it's acceptable, but not ideal, to simply move it to after the
1910  // segments. So we can simply layout segments one after the other accounting
1911  // for alignment.
1912  for (Segment *Seg : Segments) {
1913    // We assume that segments have been ordered by OriginalOffset and Index
1914    // such that a parent segment will always come before a child segment in
1915    // OrderedSegments. This means that the Offset of the ParentSegment should
1916    // already be set and we can set our offset relative to it.
1917    if (Seg->ParentSegment != nullptr) {
1918      Segment *Parent = Seg->ParentSegment;
1919      Seg->Offset =
1920          Parent->Offset + Seg->OriginalOffset - Parent->OriginalOffset;
1921    } else {
1922      Seg->Offset =
1923          alignTo(Offset, std::max<uint64_t>(Seg->Align, 1), Seg->VAddr);
1924    }
1925    Offset = std::max(Offset, Seg->Offset + Seg->FileSize);
1926  }
1927  return Offset;
1928}
1929
1930// This function finds a consistent layout for a list of sections. It assumes
1931// that the ->ParentSegment of each section has already been laid out. The
1932// supplied starting Offset is used for the starting offset of any section that
1933// does not have a ParentSegment. It returns either the offset given if all
1934// sections had a ParentSegment or an offset one past the last section if there
1935// was a section that didn't have a ParentSegment.
1936template <class Range>
1937static uint64_t layoutSections(Range Sections, uint64_t Offset) {
1938  // Now the offset of every segment has been set we can assign the offsets
1939  // of each section. For sections that are covered by a segment we should use
1940  // the segment's original offset and the section's original offset to compute
1941  // the offset from the start of the segment. Using the offset from the start
1942  // of the segment we can assign a new offset to the section. For sections not
1943  // covered by segments we can just bump Offset to the next valid location.
1944  uint32_t Index = 1;
1945  for (auto &Sec : Sections) {
1946    Sec.Index = Index++;
1947    if (Sec.ParentSegment != nullptr) {
1948      auto Segment = *Sec.ParentSegment;
1949      Sec.Offset =
1950          Segment.Offset + (Sec.OriginalOffset - Segment.OriginalOffset);
1951    } else {
1952      Offset = alignTo(Offset, Sec.Align == 0 ? 1 : Sec.Align);
1953      Sec.Offset = Offset;
1954      if (Sec.Type != SHT_NOBITS)
1955        Offset += Sec.Size;
1956    }
1957  }
1958  return Offset;
1959}
1960
1961// Rewrite sh_offset after some sections are changed to SHT_NOBITS and thus
1962// occupy no space in the file.
1963static uint64_t layoutSectionsForOnlyKeepDebug(Object &Obj, uint64_t Off) {
1964  uint32_t Index = 1;
1965  for (auto &Sec : Obj.sections()) {
1966    Sec.Index = Index++;
1967
1968    auto *FirstSec = Sec.ParentSegment && Sec.ParentSegment->Type == PT_LOAD
1969                         ? Sec.ParentSegment->firstSection()
1970                         : nullptr;
1971
1972    // The first section in a PT_LOAD has to have congruent offset and address
1973    // modulo the alignment, which usually equals the maximum page size.
1974    if (FirstSec && FirstSec == &Sec)
1975      Off = alignTo(Off, Sec.ParentSegment->Align, Sec.Addr);
1976
1977    // sh_offset is not significant for SHT_NOBITS sections, but the congruence
1978    // rule must be followed if it is the first section in a PT_LOAD. Do not
1979    // advance Off.
1980    if (Sec.Type == SHT_NOBITS) {
1981      Sec.Offset = Off;
1982      continue;
1983    }
1984
1985    if (!FirstSec) {
1986      // FirstSec being nullptr generally means that Sec does not have the
1987      // SHF_ALLOC flag.
1988      Off = Sec.Align ? alignTo(Off, Sec.Align) : Off;
1989    } else if (FirstSec != &Sec) {
1990      // The offset is relative to the first section in the PT_LOAD segment. Use
1991      // sh_offset for non-SHF_ALLOC sections.
1992      Off = Sec.OriginalOffset - FirstSec->OriginalOffset + FirstSec->Offset;
1993    }
1994    Sec.Offset = Off;
1995    Off += Sec.Size;
1996  }
1997  return Off;
1998}
1999
2000// Rewrite p_offset and p_filesz of non-empty non-PT_PHDR segments after
2001// sh_offset values have been updated.
2002static uint64_t layoutSegmentsForOnlyKeepDebug(std::vector<Segment *> &Segments,
2003                                               uint64_t HdrEnd) {
2004  uint64_t MaxOffset = 0;
2005  for (Segment *Seg : Segments) {
2006    const SectionBase *FirstSec = Seg->firstSection();
2007    if (Seg->Type == PT_PHDR || !FirstSec)
2008      continue;
2009
2010    uint64_t Offset = FirstSec->Offset;
2011    uint64_t FileSize = 0;
2012    for (const SectionBase *Sec : Seg->Sections) {
2013      uint64_t Size = Sec->Type == SHT_NOBITS ? 0 : Sec->Size;
2014      if (Sec->Offset + Size > Offset)
2015        FileSize = std::max(FileSize, Sec->Offset + Size - Offset);
2016    }
2017
2018    // If the segment includes EHDR and program headers, don't make it smaller
2019    // than the headers.
2020    if (Seg->Offset < HdrEnd && HdrEnd <= Seg->Offset + Seg->FileSize) {
2021      FileSize += Offset - Seg->Offset;
2022      Offset = Seg->Offset;
2023      FileSize = std::max(FileSize, HdrEnd - Offset);
2024    }
2025
2026    Seg->Offset = Offset;
2027    Seg->FileSize = FileSize;
2028    MaxOffset = std::max(MaxOffset, Offset + FileSize);
2029  }
2030  return MaxOffset;
2031}
2032
2033template <class ELFT> void ELFWriter<ELFT>::initEhdrSegment() {
2034  Segment &ElfHdr = Obj.ElfHdrSegment;
2035  ElfHdr.Type = PT_PHDR;
2036  ElfHdr.Flags = 0;
2037  ElfHdr.VAddr = 0;
2038  ElfHdr.PAddr = 0;
2039  ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr);
2040  ElfHdr.Align = 0;
2041}
2042
2043template <class ELFT> void ELFWriter<ELFT>::assignOffsets() {
2044  // We need a temporary list of segments that has a special order to it
2045  // so that we know that anytime ->ParentSegment is set that segment has
2046  // already had its offset properly set.
2047  std::vector<Segment *> OrderedSegments;
2048  for (Segment &Segment : Obj.segments())
2049    OrderedSegments.push_back(&Segment);
2050  OrderedSegments.push_back(&Obj.ElfHdrSegment);
2051  OrderedSegments.push_back(&Obj.ProgramHdrSegment);
2052  orderSegments(OrderedSegments);
2053
2054  uint64_t Offset;
2055  if (OnlyKeepDebug) {
2056    // For --only-keep-debug, the sections that did not preserve contents were
2057    // changed to SHT_NOBITS. We now rewrite sh_offset fields of sections, and
2058    // then rewrite p_offset/p_filesz of program headers.
2059    uint64_t HdrEnd =
2060        sizeof(Elf_Ehdr) + llvm::size(Obj.segments()) * sizeof(Elf_Phdr);
2061    Offset = layoutSectionsForOnlyKeepDebug(Obj, HdrEnd);
2062    Offset = std::max(Offset,
2063                      layoutSegmentsForOnlyKeepDebug(OrderedSegments, HdrEnd));
2064  } else {
2065    // Offset is used as the start offset of the first segment to be laid out.
2066    // Since the ELF Header (ElfHdrSegment) must be at the start of the file,
2067    // we start at offset 0.
2068    Offset = layoutSegments(OrderedSegments, 0);
2069    Offset = layoutSections(Obj.sections(), Offset);
2070  }
2071  // If we need to write the section header table out then we need to align the
2072  // Offset so that SHOffset is valid.
2073  if (WriteSectionHeaders)
2074    Offset = alignTo(Offset, sizeof(Elf_Addr));
2075  Obj.SHOff = Offset;
2076}
2077
2078template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const {
2079  // We already have the section header offset so we can calculate the total
2080  // size by just adding up the size of each section header.
2081  if (!WriteSectionHeaders)
2082    return Obj.SHOff;
2083  size_t ShdrCount = Obj.sections().size() + 1; // Includes null shdr.
2084  return Obj.SHOff + ShdrCount * sizeof(Elf_Shdr);
2085}
2086
2087template <class ELFT> Error ELFWriter<ELFT>::write() {
2088  // Segment data must be written first, so that the ELF header and program
2089  // header tables can overwrite it, if covered by a segment.
2090  writeSegmentData();
2091  writeEhdr();
2092  writePhdrs();
2093  writeSectionData();
2094  if (WriteSectionHeaders)
2095    writeShdrs();
2096  return Buf.commit();
2097}
2098
2099static Error removeUnneededSections(Object &Obj) {
2100  // We can remove an empty symbol table from non-relocatable objects.
2101  // Relocatable objects typically have relocation sections whose
2102  // sh_link field points to .symtab, so we can't remove .symtab
2103  // even if it is empty.
2104  if (Obj.isRelocatable() || Obj.SymbolTable == nullptr ||
2105      !Obj.SymbolTable->empty())
2106    return Error::success();
2107
2108  // .strtab can be used for section names. In such a case we shouldn't
2109  // remove it.
2110  auto *StrTab = Obj.SymbolTable->getStrTab() == Obj.SectionNames
2111                     ? nullptr
2112                     : Obj.SymbolTable->getStrTab();
2113  return Obj.removeSections(false, [&](const SectionBase &Sec) {
2114    return &Sec == Obj.SymbolTable || &Sec == StrTab;
2115  });
2116}
2117
2118template <class ELFT> Error ELFWriter<ELFT>::finalize() {
2119  // It could happen that SectionNames has been removed and yet the user wants
2120  // a section header table output. We need to throw an error if a user tries
2121  // to do that.
2122  if (Obj.SectionNames == nullptr && WriteSectionHeaders)
2123    return createStringError(llvm::errc::invalid_argument,
2124                             "cannot write section header table because "
2125                             "section header string table was removed");
2126
2127  if (Error E = removeUnneededSections(Obj))
2128    return E;
2129  Obj.sortSections();
2130
2131  // We need to assign indexes before we perform layout because we need to know
2132  // if we need large indexes or not. We can assign indexes first and check as
2133  // we go to see if we will actully need large indexes.
2134  bool NeedsLargeIndexes = false;
2135  if (Obj.sections().size() >= SHN_LORESERVE) {
2136    SectionTableRef Sections = Obj.sections();
2137    NeedsLargeIndexes =
2138        std::any_of(Sections.begin() + SHN_LORESERVE, Sections.end(),
2139                    [](const SectionBase &Sec) { return Sec.HasSymbol; });
2140    // TODO: handle case where only one section needs the large index table but
2141    // only needs it because the large index table hasn't been removed yet.
2142  }
2143
2144  if (NeedsLargeIndexes) {
2145    // This means we definitely need to have a section index table but if we
2146    // already have one then we should use it instead of making a new one.
2147    if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) {
2148      // Addition of a section to the end does not invalidate the indexes of
2149      // other sections and assigns the correct index to the new section.
2150      auto &Shndx = Obj.addSection<SectionIndexSection>();
2151      Obj.SymbolTable->setShndxTable(&Shndx);
2152      Shndx.setSymTab(Obj.SymbolTable);
2153    }
2154  } else {
2155    // Since we don't need SectionIndexTable we should remove it and all
2156    // references to it.
2157    if (Obj.SectionIndexTable != nullptr) {
2158      // We do not support sections referring to the section index table.
2159      if (Error E = Obj.removeSections(false /*AllowBrokenLinks*/,
2160                                       [this](const SectionBase &Sec) {
2161                                         return &Sec == Obj.SectionIndexTable;
2162                                       }))
2163        return E;
2164    }
2165  }
2166
2167  // Make sure we add the names of all the sections. Importantly this must be
2168  // done after we decide to add or remove SectionIndexes.
2169  if (Obj.SectionNames != nullptr)
2170    for (const SectionBase &Sec : Obj.sections())
2171      Obj.SectionNames->addString(Sec.Name);
2172
2173  initEhdrSegment();
2174
2175  // Before we can prepare for layout the indexes need to be finalized.
2176  // Also, the output arch may not be the same as the input arch, so fix up
2177  // size-related fields before doing layout calculations.
2178  uint64_t Index = 0;
2179  auto SecSizer = std::make_unique<ELFSectionSizer<ELFT>>();
2180  for (SectionBase &Sec : Obj.sections()) {
2181    Sec.Index = Index++;
2182    Sec.accept(*SecSizer);
2183  }
2184
2185  // The symbol table does not update all other sections on update. For
2186  // instance, symbol names are not added as new symbols are added. This means
2187  // that some sections, like .strtab, don't yet have their final size.
2188  if (Obj.SymbolTable != nullptr)
2189    Obj.SymbolTable->prepareForLayout();
2190
2191  // Now that all strings are added we want to finalize string table builders,
2192  // because that affects section sizes which in turn affects section offsets.
2193  for (SectionBase &Sec : Obj.sections())
2194    if (auto StrTab = dyn_cast<StringTableSection>(&Sec))
2195      StrTab->prepareForLayout();
2196
2197  assignOffsets();
2198
2199  // layoutSections could have modified section indexes, so we need
2200  // to fill the index table after assignOffsets.
2201  if (Obj.SymbolTable != nullptr)
2202    Obj.SymbolTable->fillShndxTable();
2203
2204  // Finally now that all offsets and indexes have been set we can finalize any
2205  // remaining issues.
2206  uint64_t Offset = Obj.SHOff + sizeof(Elf_Shdr);
2207  for (SectionBase &Sec : Obj.sections()) {
2208    Sec.HeaderOffset = Offset;
2209    Offset += sizeof(Elf_Shdr);
2210    if (WriteSectionHeaders)
2211      Sec.NameIndex = Obj.SectionNames->findIndex(Sec.Name);
2212    Sec.finalize();
2213  }
2214
2215  if (Error E = Buf.allocate(totalSize()))
2216    return E;
2217  SecWriter = std::make_unique<ELFSectionWriter<ELFT>>(Buf);
2218  return Error::success();
2219}
2220
2221Error BinaryWriter::write() {
2222  for (const SectionBase &Sec : Obj.allocSections())
2223    Sec.accept(*SecWriter);
2224  return Buf.commit();
2225}
2226
2227Error BinaryWriter::finalize() {
2228  // We need a temporary list of segments that has a special order to it
2229  // so that we know that anytime ->ParentSegment is set that segment has
2230  // already had it's offset properly set. We only want to consider the segments
2231  // that will affect layout of allocated sections so we only add those.
2232  std::vector<Segment *> OrderedSegments;
2233  for (const SectionBase &Sec : Obj.allocSections())
2234    if (Sec.ParentSegment != nullptr)
2235      OrderedSegments.push_back(Sec.ParentSegment);
2236
2237  // For binary output, we're going to use physical addresses instead of
2238  // virtual addresses, since a binary output is used for cases like ROM
2239  // loading and physical addresses are intended for ROM loading.
2240  // However, if no segment has a physical address, we'll fallback to using
2241  // virtual addresses for all.
2242  if (all_of(OrderedSegments,
2243             [](const Segment *Seg) { return Seg->PAddr == 0; }))
2244    for (Segment *Seg : OrderedSegments)
2245      Seg->PAddr = Seg->VAddr;
2246
2247  llvm::stable_sort(OrderedSegments, compareSegmentsByPAddr);
2248
2249  // Because we add a ParentSegment for each section we might have duplicate
2250  // segments in OrderedSegments. If there were duplicates then layoutSegments
2251  // would do very strange things.
2252  auto End =
2253      std::unique(std::begin(OrderedSegments), std::end(OrderedSegments));
2254  OrderedSegments.erase(End, std::end(OrderedSegments));
2255
2256  // Compute the section LMA based on its sh_offset and the containing segment's
2257  // p_offset and p_paddr. Also compute the minimum LMA of all non-empty
2258  // sections as MinAddr. In the output, the contents between address 0 and
2259  // MinAddr will be skipped.
2260  uint64_t MinAddr = UINT64_MAX;
2261  for (SectionBase &Sec : Obj.allocSections()) {
2262    if (Sec.ParentSegment != nullptr)
2263      Sec.Addr =
2264          Sec.Offset - Sec.ParentSegment->Offset + Sec.ParentSegment->PAddr;
2265    if (Sec.Size > 0)
2266      MinAddr = std::min(MinAddr, Sec.Addr);
2267  }
2268
2269  // Now that every section has been laid out we just need to compute the total
2270  // file size. This might not be the same as the offset returned by
2271  // layoutSections, because we want to truncate the last segment to the end of
2272  // its last non-empty section, to match GNU objcopy's behaviour.
2273  TotalSize = 0;
2274  for (SectionBase &Sec : Obj.allocSections())
2275    if (Sec.Type != SHT_NOBITS && Sec.Size > 0) {
2276      Sec.Offset = Sec.Addr - MinAddr;
2277      TotalSize = std::max(TotalSize, Sec.Offset + Sec.Size);
2278    }
2279
2280  if (Error E = Buf.allocate(TotalSize))
2281    return E;
2282  SecWriter = std::make_unique<BinarySectionWriter>(Buf);
2283  return Error::success();
2284}
2285
2286bool IHexWriter::SectionCompare::operator()(const SectionBase *Lhs,
2287                                            const SectionBase *Rhs) const {
2288  return (sectionPhysicalAddr(Lhs) & 0xFFFFFFFFU) <
2289         (sectionPhysicalAddr(Rhs) & 0xFFFFFFFFU);
2290}
2291
2292uint64_t IHexWriter::writeEntryPointRecord(uint8_t *Buf) {
2293  IHexLineData HexData;
2294  uint8_t Data[4] = {};
2295  // We don't write entry point record if entry is zero.
2296  if (Obj.Entry == 0)
2297    return 0;
2298
2299  if (Obj.Entry <= 0xFFFFFU) {
2300    Data[0] = ((Obj.Entry & 0xF0000U) >> 12) & 0xFF;
2301    support::endian::write(&Data[2], static_cast<uint16_t>(Obj.Entry),
2302                           support::big);
2303    HexData = IHexRecord::getLine(IHexRecord::StartAddr80x86, 0, Data);
2304  } else {
2305    support::endian::write(Data, static_cast<uint32_t>(Obj.Entry),
2306                           support::big);
2307    HexData = IHexRecord::getLine(IHexRecord::StartAddr, 0, Data);
2308  }
2309  memcpy(Buf, HexData.data(), HexData.size());
2310  return HexData.size();
2311}
2312
2313uint64_t IHexWriter::writeEndOfFileRecord(uint8_t *Buf) {
2314  IHexLineData HexData = IHexRecord::getLine(IHexRecord::EndOfFile, 0, {});
2315  memcpy(Buf, HexData.data(), HexData.size());
2316  return HexData.size();
2317}
2318
2319Error IHexWriter::write() {
2320  IHexSectionWriter Writer(Buf);
2321  // Write sections.
2322  for (const SectionBase *Sec : Sections)
2323    Sec->accept(Writer);
2324
2325  uint64_t Offset = Writer.getBufferOffset();
2326  // Write entry point address.
2327  Offset += writeEntryPointRecord(Buf.getBufferStart() + Offset);
2328  // Write EOF.
2329  Offset += writeEndOfFileRecord(Buf.getBufferStart() + Offset);
2330  assert(Offset == TotalSize);
2331  return Buf.commit();
2332}
2333
2334Error IHexWriter::checkSection(const SectionBase &Sec) {
2335  uint64_t Addr = sectionPhysicalAddr(&Sec);
2336  if (addressOverflows32bit(Addr) || addressOverflows32bit(Addr + Sec.Size - 1))
2337    return createStringError(
2338        errc::invalid_argument,
2339        "Section '%s' address range [0x%llx, 0x%llx] is not 32 bit", Sec.Name.c_str(),
2340        Addr, Addr + Sec.Size - 1);
2341  return Error::success();
2342}
2343
2344Error IHexWriter::finalize() {
2345  bool UseSegments = false;
2346  auto ShouldWrite = [](const SectionBase &Sec) {
2347    return (Sec.Flags & ELF::SHF_ALLOC) && (Sec.Type != ELF::SHT_NOBITS);
2348  };
2349  auto IsInPtLoad = [](const SectionBase &Sec) {
2350    return Sec.ParentSegment && Sec.ParentSegment->Type == ELF::PT_LOAD;
2351  };
2352
2353  // We can't write 64-bit addresses.
2354  if (addressOverflows32bit(Obj.Entry))
2355    return createStringError(errc::invalid_argument,
2356                             "Entry point address 0x%llx overflows 32 bits.",
2357                             Obj.Entry);
2358
2359  // If any section we're to write has segment then we
2360  // switch to using physical addresses. Otherwise we
2361  // use section virtual address.
2362  for (const SectionBase &Sec : Obj.sections())
2363    if (ShouldWrite(Sec) && IsInPtLoad(Sec)) {
2364      UseSegments = true;
2365      break;
2366    }
2367
2368  for (const SectionBase &Sec : Obj.sections())
2369    if (ShouldWrite(Sec) && (!UseSegments || IsInPtLoad(Sec))) {
2370      if (Error E = checkSection(Sec))
2371        return E;
2372      Sections.insert(&Sec);
2373    }
2374
2375  IHexSectionWriterBase LengthCalc(Buf);
2376  for (const SectionBase *Sec : Sections)
2377    Sec->accept(LengthCalc);
2378
2379  // We need space to write section records + StartAddress record
2380  // (if start adress is not zero) + EndOfFile record.
2381  TotalSize = LengthCalc.getBufferOffset() +
2382              (Obj.Entry ? IHexRecord::getLineLength(4) : 0) +
2383              IHexRecord::getLineLength(0);
2384  if (Error E = Buf.allocate(TotalSize))
2385    return E;
2386  return Error::success();
2387}
2388
2389template class ELFBuilder<ELF64LE>;
2390template class ELFBuilder<ELF64BE>;
2391template class ELFBuilder<ELF32LE>;
2392template class ELFBuilder<ELF32BE>;
2393
2394template class ELFWriter<ELF64LE>;
2395template class ELFWriter<ELF64BE>;
2396template class ELFWriter<ELF32LE>;
2397template class ELFWriter<ELF32BE>;
2398
2399} // end namespace elf
2400} // end namespace objcopy
2401} // end namespace llvm
2402