TailRecursionElimination.cpp revision 360784
1114402Sru//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2114402Sru//
3114402Sru// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4114402Sru// See https://llvm.org/LICENSE.txt for license information.
5114402Sru// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6114402Sru//
7114402Sru//===----------------------------------------------------------------------===//
8114402Sru//
9114402Sru// This file transforms calls of the current function (self recursion) followed
10114402Sru// by a return instruction with a branch to the entry of the function, creating
11114402Sru// a loop.  This pass also implements the following extensions to the basic
12114402Sru// algorithm:
13114402Sru//
14114402Sru//  1. Trivial instructions between the call and return do not prevent the
15114402Sru//     transformation from taking place, though currently the analysis cannot
16114402Sru//     support moving any really useful instructions (only dead ones).
17114402Sru//  2. This pass transforms functions that are prevented from being tail
18114402Sru//     recursive by an associative and commutative expression to use an
19114402Sru//     accumulator variable, thus compiling the typical naive factorial or
20114402Sru//     'fib' implementation into efficient code.
21114402Sru//  3. TRE is performed if the function returns void, if the return
22114402Sru//     returns the result returned by the call, or if the function returns a
23114402Sru//     run-time constant on all exits from the function.  It is possible, though
24114402Sru//     unlikely, that the return returns something else (like constant 0), and
25114402Sru//     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
26114402Sru//     the function return the exact same value.
27114402Sru//  4. If it can prove that callees do not access their caller stack frame,
28114402Sru//     they are marked as eligible for tail call elimination (by the code
29114402Sru//     generator).
30114402Sru//
31114402Sru// There are several improvements that could be made:
32114402Sru//
33114402Sru//  1. If the function has any alloca instructions, these instructions will be
34114402Sru//     moved out of the entry block of the function, causing them to be
35114402Sru//     evaluated each time through the tail recursion.  Safely keeping allocas
36114402Sru//     in the entry block requires analysis to proves that the tail-called
37114402Sru//     function does not read or write the stack object.
38114402Sru//  2. Tail recursion is only performed if the call immediately precedes the
39114402Sru//     return instruction.  It's possible that there could be a jump between
40114402Sru//     the call and the return.
41114402Sru//  3. There can be intervening operations between the call and the return that
42114402Sru//     prevent the TRE from occurring.  For example, there could be GEP's and
43114402Sru//     stores to memory that will not be read or written by the call.  This
44114402Sru//     requires some substantial analysis (such as with DSA) to prove safe to
45114402Sru//     move ahead of the call, but doing so could allow many more TREs to be
46114402Sru//     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
47114402Sru//  4. The algorithm we use to detect if callees access their caller stack
48114402Sru//     frames is very primitive.
49114402Sru//
50114402Sru//===----------------------------------------------------------------------===//
51114402Sru
52114402Sru#include "llvm/Transforms/Scalar/TailRecursionElimination.h"
53114402Sru#include "llvm/ADT/STLExtras.h"
54114402Sru#include "llvm/ADT/SmallPtrSet.h"
55114402Sru#include "llvm/ADT/Statistic.h"
56114402Sru#include "llvm/Analysis/CFG.h"
57114402Sru#include "llvm/Analysis/CaptureTracking.h"
58114402Sru#include "llvm/Analysis/DomTreeUpdater.h"
59114402Sru#include "llvm/Analysis/GlobalsModRef.h"
60114402Sru#include "llvm/Analysis/InlineCost.h"
61114402Sru#include "llvm/Analysis/InstructionSimplify.h"
62114402Sru#include "llvm/Analysis/Loads.h"
63114402Sru#include "llvm/Analysis/OptimizationRemarkEmitter.h"
64114402Sru#include "llvm/Analysis/PostDominators.h"
65114402Sru#include "llvm/Analysis/TargetTransformInfo.h"
66114402Sru#include "llvm/IR/CFG.h"
67114402Sru#include "llvm/IR/CallSite.h"
68114402Sru#include "llvm/IR/Constants.h"
69114402Sru#include "llvm/IR/DataLayout.h"
70114402Sru#include "llvm/IR/DerivedTypes.h"
71114402Sru#include "llvm/IR/DiagnosticInfo.h"
72114402Sru#include "llvm/IR/Dominators.h"
73114402Sru#include "llvm/IR/Function.h"
74114402Sru#include "llvm/IR/InstIterator.h"
75114402Sru#include "llvm/IR/Instructions.h"
76114402Sru#include "llvm/IR/IntrinsicInst.h"
77114402Sru#include "llvm/IR/Module.h"
78114402Sru#include "llvm/IR/ValueHandle.h"
79114402Sru#include "llvm/InitializePasses.h"
80114402Sru#include "llvm/Pass.h"
81114402Sru#include "llvm/Support/Debug.h"
82114402Sru#include "llvm/Support/raw_ostream.h"
83114402Sru#include "llvm/Transforms/Scalar.h"
84114402Sru#include "llvm/Transforms/Utils/BasicBlockUtils.h"
85114402Sruusing namespace llvm;
86114402Sru
87114402Sru#define DEBUG_TYPE "tailcallelim"
88114402Sru
89114402SruSTATISTIC(NumEliminated, "Number of tail calls removed");
90114402SruSTATISTIC(NumRetDuped,   "Number of return duplicated");
91114402SruSTATISTIC(NumAccumAdded, "Number of accumulators introduced");
92114402Sru
93114402Sru/// Scan the specified function for alloca instructions.
94114402Sru/// If it contains any dynamic allocas, returns false.
95114402Srustatic bool canTRE(Function &F) {
96114402Sru  // Because of PR962, we don't TRE dynamic allocas.
97114402Sru  return llvm::all_of(instructions(F), [](Instruction &I) {
98114402Sru    auto *AI = dyn_cast<AllocaInst>(&I);
99114402Sru    return !AI || AI->isStaticAlloca();
100114402Sru  });
101114402Sru}
102114402Sru
103114402Srunamespace {
104114402Srustruct AllocaDerivedValueTracker {
105114402Sru  // Start at a root value and walk its use-def chain to mark calls that use the
106114402Sru  // value or a derived value in AllocaUsers, and places where it may escape in
107114402Sru  // EscapePoints.
108114402Sru  void walk(Value *Root) {
109114402Sru    SmallVector<Use *, 32> Worklist;
110114402Sru    SmallPtrSet<Use *, 32> Visited;
111114402Sru
112114402Sru    auto AddUsesToWorklist = [&](Value *V) {
113114402Sru      for (auto &U : V->uses()) {
114114402Sru        if (!Visited.insert(&U).second)
115114402Sru          continue;
116114402Sru        Worklist.push_back(&U);
117114402Sru      }
118114402Sru    };
119114402Sru
120114402Sru    AddUsesToWorklist(Root);
121114402Sru
122114402Sru    while (!Worklist.empty()) {
123114402Sru      Use *U = Worklist.pop_back_val();
124114402Sru      Instruction *I = cast<Instruction>(U->getUser());
125114402Sru
126114402Sru      switch (I->getOpcode()) {
127114402Sru      case Instruction::Call:
128114402Sru      case Instruction::Invoke: {
129114402Sru        CallSite CS(I);
130114402Sru        // If the alloca-derived argument is passed byval it is not an escape
131114402Sru        // point, or a use of an alloca. Calling with byval copies the contents
132114402Sru        // of the alloca into argument registers or stack slots, which exist
133114402Sru        // beyond the lifetime of the current frame.
134114402Sru        if (CS.isArgOperand(U) && CS.isByValArgument(CS.getArgumentNo(U)))
135114402Sru          continue;
136114402Sru        bool IsNocapture =
137114402Sru            CS.isDataOperand(U) && CS.doesNotCapture(CS.getDataOperandNo(U));
138114402Sru        callUsesLocalStack(CS, IsNocapture);
139114402Sru        if (IsNocapture) {
140114402Sru          // If the alloca-derived argument is passed in as nocapture, then it
141114402Sru          // can't propagate to the call's return. That would be capturing.
142114402Sru          continue;
143114402Sru        }
144114402Sru        break;
145114402Sru      }
146114402Sru      case Instruction::Load: {
147114402Sru        // The result of a load is not alloca-derived (unless an alloca has
148114402Sru        // otherwise escaped, but this is a local analysis).
149114402Sru        continue;
150114402Sru      }
151114402Sru      case Instruction::Store: {
152114402Sru        if (U->getOperandNo() == 0)
153114402Sru          EscapePoints.insert(I);
154114402Sru        continue;  // Stores have no users to analyze.
155114402Sru      }
156114402Sru      case Instruction::BitCast:
157114402Sru      case Instruction::GetElementPtr:
158114402Sru      case Instruction::PHI:
159114402Sru      case Instruction::Select:
160114402Sru      case Instruction::AddrSpaceCast:
161114402Sru        break;
162114402Sru      default:
163114402Sru        EscapePoints.insert(I);
164114402Sru        break;
165114402Sru      }
166114402Sru
167114402Sru      AddUsesToWorklist(I);
168114402Sru    }
169114402Sru  }
170114402Sru
171114402Sru  void callUsesLocalStack(CallSite CS, bool IsNocapture) {
172114402Sru    // Add it to the list of alloca users.
173114402Sru    AllocaUsers.insert(CS.getInstruction());
174114402Sru
175114402Sru    // If it's nocapture then it can't capture this alloca.
176114402Sru    if (IsNocapture)
177114402Sru      return;
178114402Sru
179114402Sru    // If it can write to memory, it can leak the alloca value.
180114402Sru    if (!CS.onlyReadsMemory())
181114402Sru      EscapePoints.insert(CS.getInstruction());
182114402Sru  }
183114402Sru
184114402Sru  SmallPtrSet<Instruction *, 32> AllocaUsers;
185114402Sru  SmallPtrSet<Instruction *, 32> EscapePoints;
186114402Sru};
187114402Sru}
188114402Sru
189114402Srustatic bool markTails(Function &F, bool &AllCallsAreTailCalls,
190114402Sru                      OptimizationRemarkEmitter *ORE) {
191114402Sru  if (F.callsFunctionThatReturnsTwice())
192114402Sru    return false;
193114402Sru  AllCallsAreTailCalls = true;
194114402Sru
195114402Sru  // The local stack holds all alloca instructions and all byval arguments.
196114402Sru  AllocaDerivedValueTracker Tracker;
197114402Sru  for (Argument &Arg : F.args()) {
198114402Sru    if (Arg.hasByValAttr())
199114402Sru      Tracker.walk(&Arg);
200114402Sru  }
201114402Sru  for (auto &BB : F) {
202114402Sru    for (auto &I : BB)
203114402Sru      if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
204114402Sru        Tracker.walk(AI);
205114402Sru  }
206114402Sru
207114402Sru  bool Modified = false;
208114402Sru
209114402Sru  // Track whether a block is reachable after an alloca has escaped. Blocks that
210114402Sru  // contain the escaping instruction will be marked as being visited without an
211114402Sru  // escaped alloca, since that is how the block began.
212114402Sru  enum VisitType {
213114402Sru    UNVISITED,
214114402Sru    UNESCAPED,
215114402Sru    ESCAPED
216114402Sru  };
217114402Sru  DenseMap<BasicBlock *, VisitType> Visited;
218114402Sru
219114402Sru  // We propagate the fact that an alloca has escaped from block to successor.
220114402Sru  // Visit the blocks that are propagating the escapedness first. To do this, we
221114402Sru  // maintain two worklists.
222114402Sru  SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
223114402Sru
224114402Sru  // We may enter a block and visit it thinking that no alloca has escaped yet,
225114402Sru  // then see an escape point and go back around a loop edge and come back to
226114402Sru  // the same block twice. Because of this, we defer setting tail on calls when
227114402Sru  // we first encounter them in a block. Every entry in this list does not
228114402Sru  // statically use an alloca via use-def chain analysis, but may find an alloca
229114402Sru  // through other means if the block turns out to be reachable after an escape
230114402Sru  // point.
231114402Sru  SmallVector<CallInst *, 32> DeferredTails;
232114402Sru
233114402Sru  BasicBlock *BB = &F.getEntryBlock();
234114402Sru  VisitType Escaped = UNESCAPED;
235114402Sru  do {
236114402Sru    for (auto &I : *BB) {
237114402Sru      if (Tracker.EscapePoints.count(&I))
238114402Sru        Escaped = ESCAPED;
239114402Sru
240114402Sru      CallInst *CI = dyn_cast<CallInst>(&I);
241114402Sru      if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I))
242114402Sru        continue;
243114402Sru
244114402Sru      bool IsNoTail = CI->isNoTailCall() || CI->hasOperandBundles();
245114402Sru
246114402Sru      if (!IsNoTail && CI->doesNotAccessMemory()) {
247114402Sru        // A call to a readnone function whose arguments are all things computed
248114402Sru        // outside this function can be marked tail. Even if you stored the
249114402Sru        // alloca address into a global, a readnone function can't load the
250114402Sru        // global anyhow.
251114402Sru        //
252114402Sru        // Note that this runs whether we know an alloca has escaped or not. If
253114402Sru        // it has, then we can't trust Tracker.AllocaUsers to be accurate.
254114402Sru        bool SafeToTail = true;
255114402Sru        for (auto &Arg : CI->arg_operands()) {
256114402Sru          if (isa<Constant>(Arg.getUser()))
257114402Sru            continue;
258114402Sru          if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
259114402Sru            if (!A->hasByValAttr())
260114402Sru              continue;
261114402Sru          SafeToTail = false;
262114402Sru          break;
263114402Sru        }
264114402Sru        if (SafeToTail) {
265114402Sru          using namespace ore;
266114402Sru          ORE->emit([&]() {
267114402Sru            return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI)
268114402Sru                   << "marked as tail call candidate (readnone)";
269114402Sru          });
270114402Sru          CI->setTailCall();
271114402Sru          Modified = true;
272114402Sru          continue;
273114402Sru        }
274114402Sru      }
275114402Sru
276114402Sru      if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
277114402Sru        DeferredTails.push_back(CI);
278114402Sru      } else {
279114402Sru        AllCallsAreTailCalls = false;
280114402Sru      }
281114402Sru    }
282114402Sru
283114402Sru    for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) {
284114402Sru      auto &State = Visited[SuccBB];
285114402Sru      if (State < Escaped) {
286114402Sru        State = Escaped;
287        if (State == ESCAPED)
288          WorklistEscaped.push_back(SuccBB);
289        else
290          WorklistUnescaped.push_back(SuccBB);
291      }
292    }
293
294    if (!WorklistEscaped.empty()) {
295      BB = WorklistEscaped.pop_back_val();
296      Escaped = ESCAPED;
297    } else {
298      BB = nullptr;
299      while (!WorklistUnescaped.empty()) {
300        auto *NextBB = WorklistUnescaped.pop_back_val();
301        if (Visited[NextBB] == UNESCAPED) {
302          BB = NextBB;
303          Escaped = UNESCAPED;
304          break;
305        }
306      }
307    }
308  } while (BB);
309
310  for (CallInst *CI : DeferredTails) {
311    if (Visited[CI->getParent()] != ESCAPED) {
312      // If the escape point was part way through the block, calls after the
313      // escape point wouldn't have been put into DeferredTails.
314      LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n");
315      CI->setTailCall();
316      Modified = true;
317    } else {
318      AllCallsAreTailCalls = false;
319    }
320  }
321
322  return Modified;
323}
324
325/// Return true if it is safe to move the specified
326/// instruction from after the call to before the call, assuming that all
327/// instructions between the call and this instruction are movable.
328///
329static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) {
330  // FIXME: We can move load/store/call/free instructions above the call if the
331  // call does not mod/ref the memory location being processed.
332  if (I->mayHaveSideEffects())  // This also handles volatile loads.
333    return false;
334
335  if (LoadInst *L = dyn_cast<LoadInst>(I)) {
336    // Loads may always be moved above calls without side effects.
337    if (CI->mayHaveSideEffects()) {
338      // Non-volatile loads may be moved above a call with side effects if it
339      // does not write to memory and the load provably won't trap.
340      // Writes to memory only matter if they may alias the pointer
341      // being loaded from.
342      const DataLayout &DL = L->getModule()->getDataLayout();
343      if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) ||
344          !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(),
345                                       MaybeAlign(L->getAlignment()), DL, L))
346        return false;
347    }
348  }
349
350  // Otherwise, if this is a side-effect free instruction, check to make sure
351  // that it does not use the return value of the call.  If it doesn't use the
352  // return value of the call, it must only use things that are defined before
353  // the call, or movable instructions between the call and the instruction
354  // itself.
355  return !is_contained(I->operands(), CI);
356}
357
358/// Return true if the specified value is the same when the return would exit
359/// as it was when the initial iteration of the recursive function was executed.
360///
361/// We currently handle static constants and arguments that are not modified as
362/// part of the recursion.
363static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
364  if (isa<Constant>(V)) return true; // Static constants are always dyn consts
365
366  // Check to see if this is an immutable argument, if so, the value
367  // will be available to initialize the accumulator.
368  if (Argument *Arg = dyn_cast<Argument>(V)) {
369    // Figure out which argument number this is...
370    unsigned ArgNo = 0;
371    Function *F = CI->getParent()->getParent();
372    for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
373      ++ArgNo;
374
375    // If we are passing this argument into call as the corresponding
376    // argument operand, then the argument is dynamically constant.
377    // Otherwise, we cannot transform this function safely.
378    if (CI->getArgOperand(ArgNo) == Arg)
379      return true;
380  }
381
382  // Switch cases are always constant integers. If the value is being switched
383  // on and the return is only reachable from one of its cases, it's
384  // effectively constant.
385  if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
386    if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
387      if (SI->getCondition() == V)
388        return SI->getDefaultDest() != RI->getParent();
389
390  // Not a constant or immutable argument, we can't safely transform.
391  return false;
392}
393
394/// Check to see if the function containing the specified tail call consistently
395/// returns the same runtime-constant value at all exit points except for
396/// IgnoreRI. If so, return the returned value.
397static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
398  Function *F = CI->getParent()->getParent();
399  Value *ReturnedValue = nullptr;
400
401  for (BasicBlock &BBI : *F) {
402    ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator());
403    if (RI == nullptr || RI == IgnoreRI) continue;
404
405    // We can only perform this transformation if the value returned is
406    // evaluatable at the start of the initial invocation of the function,
407    // instead of at the end of the evaluation.
408    //
409    Value *RetOp = RI->getOperand(0);
410    if (!isDynamicConstant(RetOp, CI, RI))
411      return nullptr;
412
413    if (ReturnedValue && RetOp != ReturnedValue)
414      return nullptr;     // Cannot transform if differing values are returned.
415    ReturnedValue = RetOp;
416  }
417  return ReturnedValue;
418}
419
420/// If the specified instruction can be transformed using accumulator recursion
421/// elimination, return the constant which is the start of the accumulator
422/// value.  Otherwise return null.
423static Value *canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
424  if (!I->isAssociative() || !I->isCommutative()) return nullptr;
425  assert(I->getNumOperands() == 2 &&
426         "Associative/commutative operations should have 2 args!");
427
428  // Exactly one operand should be the result of the call instruction.
429  if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
430      (I->getOperand(0) != CI && I->getOperand(1) != CI))
431    return nullptr;
432
433  // The only user of this instruction we allow is a single return instruction.
434  if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
435    return nullptr;
436
437  // Ok, now we have to check all of the other return instructions in this
438  // function.  If they return non-constants or differing values, then we cannot
439  // transform the function safely.
440  return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI);
441}
442
443static Instruction *firstNonDbg(BasicBlock::iterator I) {
444  while (isa<DbgInfoIntrinsic>(I))
445    ++I;
446  return &*I;
447}
448
449static CallInst *findTRECandidate(Instruction *TI,
450                                  bool CannotTailCallElimCallsMarkedTail,
451                                  const TargetTransformInfo *TTI) {
452  BasicBlock *BB = TI->getParent();
453  Function *F = BB->getParent();
454
455  if (&BB->front() == TI) // Make sure there is something before the terminator.
456    return nullptr;
457
458  // Scan backwards from the return, checking to see if there is a tail call in
459  // this block.  If so, set CI to it.
460  CallInst *CI = nullptr;
461  BasicBlock::iterator BBI(TI);
462  while (true) {
463    CI = dyn_cast<CallInst>(BBI);
464    if (CI && CI->getCalledFunction() == F)
465      break;
466
467    if (BBI == BB->begin())
468      return nullptr;          // Didn't find a potential tail call.
469    --BBI;
470  }
471
472  // If this call is marked as a tail call, and if there are dynamic allocas in
473  // the function, we cannot perform this optimization.
474  if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
475    return nullptr;
476
477  // As a special case, detect code like this:
478  //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
479  // and disable this xform in this case, because the code generator will
480  // lower the call to fabs into inline code.
481  if (BB == &F->getEntryBlock() &&
482      firstNonDbg(BB->front().getIterator()) == CI &&
483      firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
484      !TTI->isLoweredToCall(CI->getCalledFunction())) {
485    // A single-block function with just a call and a return. Check that
486    // the arguments match.
487    CallSite::arg_iterator I = CallSite(CI).arg_begin(),
488                           E = CallSite(CI).arg_end();
489    Function::arg_iterator FI = F->arg_begin(),
490                           FE = F->arg_end();
491    for (; I != E && FI != FE; ++I, ++FI)
492      if (*I != &*FI) break;
493    if (I == E && FI == FE)
494      return nullptr;
495  }
496
497  return CI;
498}
499
500static bool eliminateRecursiveTailCall(
501    CallInst *CI, ReturnInst *Ret, BasicBlock *&OldEntry,
502    bool &TailCallsAreMarkedTail, SmallVectorImpl<PHINode *> &ArgumentPHIs,
503    AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) {
504  // If we are introducing accumulator recursion to eliminate operations after
505  // the call instruction that are both associative and commutative, the initial
506  // value for the accumulator is placed in this variable.  If this value is set
507  // then we actually perform accumulator recursion elimination instead of
508  // simple tail recursion elimination.  If the operation is an LLVM instruction
509  // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
510  // we are handling the case when the return instruction returns a constant C
511  // which is different to the constant returned by other return instructions
512  // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
513  // special case of accumulator recursion, the operation being "return C".
514  Value *AccumulatorRecursionEliminationInitVal = nullptr;
515  Instruction *AccumulatorRecursionInstr = nullptr;
516
517  // Ok, we found a potential tail call.  We can currently only transform the
518  // tail call if all of the instructions between the call and the return are
519  // movable to above the call itself, leaving the call next to the return.
520  // Check that this is the case now.
521  BasicBlock::iterator BBI(CI);
522  for (++BBI; &*BBI != Ret; ++BBI) {
523    if (canMoveAboveCall(&*BBI, CI, AA))
524      continue;
525
526    // If we can't move the instruction above the call, it might be because it
527    // is an associative and commutative operation that could be transformed
528    // using accumulator recursion elimination.  Check to see if this is the
529    // case, and if so, remember the initial accumulator value for later.
530    if ((AccumulatorRecursionEliminationInitVal =
531             canTransformAccumulatorRecursion(&*BBI, CI))) {
532      // Yes, this is accumulator recursion.  Remember which instruction
533      // accumulates.
534      AccumulatorRecursionInstr = &*BBI;
535    } else {
536      return false;   // Otherwise, we cannot eliminate the tail recursion!
537    }
538  }
539
540  // We can only transform call/return pairs that either ignore the return value
541  // of the call and return void, ignore the value of the call and return a
542  // constant, return the value returned by the tail call, or that are being
543  // accumulator recursion variable eliminated.
544  if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
545      !isa<UndefValue>(Ret->getReturnValue()) &&
546      AccumulatorRecursionEliminationInitVal == nullptr &&
547      !getCommonReturnValue(nullptr, CI)) {
548    // One case remains that we are able to handle: the current return
549    // instruction returns a constant, and all other return instructions
550    // return a different constant.
551    if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
552      return false; // Current return instruction does not return a constant.
553    // Check that all other return instructions return a common constant.  If
554    // so, record it in AccumulatorRecursionEliminationInitVal.
555    AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
556    if (!AccumulatorRecursionEliminationInitVal)
557      return false;
558  }
559
560  BasicBlock *BB = Ret->getParent();
561  Function *F = BB->getParent();
562
563  using namespace ore;
564  ORE->emit([&]() {
565    return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI)
566           << "transforming tail recursion into loop";
567  });
568
569  // OK! We can transform this tail call.  If this is the first one found,
570  // create the new entry block, allowing us to branch back to the old entry.
571  if (!OldEntry) {
572    OldEntry = &F->getEntryBlock();
573    BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
574    NewEntry->takeName(OldEntry);
575    OldEntry->setName("tailrecurse");
576    BranchInst *BI = BranchInst::Create(OldEntry, NewEntry);
577    BI->setDebugLoc(CI->getDebugLoc());
578
579    // If this tail call is marked 'tail' and if there are any allocas in the
580    // entry block, move them up to the new entry block.
581    TailCallsAreMarkedTail = CI->isTailCall();
582    if (TailCallsAreMarkedTail)
583      // Move all fixed sized allocas from OldEntry to NewEntry.
584      for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
585             NEBI = NewEntry->begin(); OEBI != E; )
586        if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
587          if (isa<ConstantInt>(AI->getArraySize()))
588            AI->moveBefore(&*NEBI);
589
590    // Now that we have created a new block, which jumps to the entry
591    // block, insert a PHI node for each argument of the function.
592    // For now, we initialize each PHI to only have the real arguments
593    // which are passed in.
594    Instruction *InsertPos = &OldEntry->front();
595    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
596         I != E; ++I) {
597      PHINode *PN = PHINode::Create(I->getType(), 2,
598                                    I->getName() + ".tr", InsertPos);
599      I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
600      PN->addIncoming(&*I, NewEntry);
601      ArgumentPHIs.push_back(PN);
602    }
603    // The entry block was changed from OldEntry to NewEntry.
604    // The forward DominatorTree needs to be recalculated when the EntryBB is
605    // changed. In this corner-case we recalculate the entire tree.
606    DTU.recalculate(*NewEntry->getParent());
607  }
608
609  // If this function has self recursive calls in the tail position where some
610  // are marked tail and some are not, only transform one flavor or another.  We
611  // have to choose whether we move allocas in the entry block to the new entry
612  // block or not, so we can't make a good choice for both.  NOTE: We could do
613  // slightly better here in the case that the function has no entry block
614  // allocas.
615  if (TailCallsAreMarkedTail && !CI->isTailCall())
616    return false;
617
618  // Ok, now that we know we have a pseudo-entry block WITH all of the
619  // required PHI nodes, add entries into the PHI node for the actual
620  // parameters passed into the tail-recursive call.
621  for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
622    ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
623
624  // If we are introducing an accumulator variable to eliminate the recursion,
625  // do so now.  Note that we _know_ that no subsequent tail recursion
626  // eliminations will happen on this function because of the way the
627  // accumulator recursion predicate is set up.
628  //
629  if (AccumulatorRecursionEliminationInitVal) {
630    Instruction *AccRecInstr = AccumulatorRecursionInstr;
631    // Start by inserting a new PHI node for the accumulator.
632    pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
633    PHINode *AccPN = PHINode::Create(
634        AccumulatorRecursionEliminationInitVal->getType(),
635        std::distance(PB, PE) + 1, "accumulator.tr", &OldEntry->front());
636
637    // Loop over all of the predecessors of the tail recursion block.  For the
638    // real entry into the function we seed the PHI with the initial value,
639    // computed earlier.  For any other existing branches to this block (due to
640    // other tail recursions eliminated) the accumulator is not modified.
641    // Because we haven't added the branch in the current block to OldEntry yet,
642    // it will not show up as a predecessor.
643    for (pred_iterator PI = PB; PI != PE; ++PI) {
644      BasicBlock *P = *PI;
645      if (P == &F->getEntryBlock())
646        AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
647      else
648        AccPN->addIncoming(AccPN, P);
649    }
650
651    if (AccRecInstr) {
652      // Add an incoming argument for the current block, which is computed by
653      // our associative and commutative accumulator instruction.
654      AccPN->addIncoming(AccRecInstr, BB);
655
656      // Next, rewrite the accumulator recursion instruction so that it does not
657      // use the result of the call anymore, instead, use the PHI node we just
658      // inserted.
659      AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
660    } else {
661      // Add an incoming argument for the current block, which is just the
662      // constant returned by the current return instruction.
663      AccPN->addIncoming(Ret->getReturnValue(), BB);
664    }
665
666    // Finally, rewrite any return instructions in the program to return the PHI
667    // node instead of the "initval" that they do currently.  This loop will
668    // actually rewrite the return value we are destroying, but that's ok.
669    for (BasicBlock &BBI : *F)
670      if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator()))
671        RI->setOperand(0, AccPN);
672    ++NumAccumAdded;
673  }
674
675  // Now that all of the PHI nodes are in place, remove the call and
676  // ret instructions, replacing them with an unconditional branch.
677  BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
678  NewBI->setDebugLoc(CI->getDebugLoc());
679
680  BB->getInstList().erase(Ret);  // Remove return.
681  BB->getInstList().erase(CI);   // Remove call.
682  DTU.applyUpdates({{DominatorTree::Insert, BB, OldEntry}});
683  ++NumEliminated;
684  return true;
685}
686
687static bool foldReturnAndProcessPred(
688    BasicBlock *BB, ReturnInst *Ret, BasicBlock *&OldEntry,
689    bool &TailCallsAreMarkedTail, SmallVectorImpl<PHINode *> &ArgumentPHIs,
690    bool CannotTailCallElimCallsMarkedTail, const TargetTransformInfo *TTI,
691    AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) {
692  bool Change = false;
693
694  // Make sure this block is a trivial return block.
695  assert(BB->getFirstNonPHIOrDbg() == Ret &&
696         "Trying to fold non-trivial return block");
697
698  // If the return block contains nothing but the return and PHI's,
699  // there might be an opportunity to duplicate the return in its
700  // predecessors and perform TRE there. Look for predecessors that end
701  // in unconditional branch and recursive call(s).
702  SmallVector<BranchInst*, 8> UncondBranchPreds;
703  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
704    BasicBlock *Pred = *PI;
705    Instruction *PTI = Pred->getTerminator();
706    if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
707      if (BI->isUnconditional())
708        UncondBranchPreds.push_back(BI);
709  }
710
711  while (!UncondBranchPreds.empty()) {
712    BranchInst *BI = UncondBranchPreds.pop_back_val();
713    BasicBlock *Pred = BI->getParent();
714    if (CallInst *CI = findTRECandidate(BI, CannotTailCallElimCallsMarkedTail, TTI)){
715      LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
716                        << "INTO UNCOND BRANCH PRED: " << *Pred);
717      ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred, &DTU);
718
719      // Cleanup: if all predecessors of BB have been eliminated by
720      // FoldReturnIntoUncondBranch, delete it.  It is important to empty it,
721      // because the ret instruction in there is still using a value which
722      // eliminateRecursiveTailCall will attempt to remove.
723      if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
724        DTU.deleteBB(BB);
725
726      eliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail,
727                                 ArgumentPHIs, AA, ORE, DTU);
728      ++NumRetDuped;
729      Change = true;
730    }
731  }
732
733  return Change;
734}
735
736static bool processReturningBlock(
737    ReturnInst *Ret, BasicBlock *&OldEntry, bool &TailCallsAreMarkedTail,
738    SmallVectorImpl<PHINode *> &ArgumentPHIs,
739    bool CannotTailCallElimCallsMarkedTail, const TargetTransformInfo *TTI,
740    AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) {
741  CallInst *CI = findTRECandidate(Ret, CannotTailCallElimCallsMarkedTail, TTI);
742  if (!CI)
743    return false;
744
745  return eliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
746                                    ArgumentPHIs, AA, ORE, DTU);
747}
748
749static bool eliminateTailRecursion(Function &F, const TargetTransformInfo *TTI,
750                                   AliasAnalysis *AA,
751                                   OptimizationRemarkEmitter *ORE,
752                                   DomTreeUpdater &DTU) {
753  if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
754    return false;
755
756  bool MadeChange = false;
757  bool AllCallsAreTailCalls = false;
758  MadeChange |= markTails(F, AllCallsAreTailCalls, ORE);
759  if (!AllCallsAreTailCalls)
760    return MadeChange;
761
762  // If this function is a varargs function, we won't be able to PHI the args
763  // right, so don't even try to convert it...
764  if (F.getFunctionType()->isVarArg())
765    return false;
766
767  BasicBlock *OldEntry = nullptr;
768  bool TailCallsAreMarkedTail = false;
769  SmallVector<PHINode*, 8> ArgumentPHIs;
770
771  // If false, we cannot perform TRE on tail calls marked with the 'tail'
772  // attribute, because doing so would cause the stack size to increase (real
773  // TRE would deallocate variable sized allocas, TRE doesn't).
774  bool CanTRETailMarkedCall = canTRE(F);
775
776  // Change any tail recursive calls to loops.
777  //
778  // FIXME: The code generator produces really bad code when an 'escaping
779  // alloca' is changed from being a static alloca to being a dynamic alloca.
780  // Until this is resolved, disable this transformation if that would ever
781  // happen.  This bug is PR962.
782  for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) {
783    BasicBlock *BB = &*BBI++; // foldReturnAndProcessPred may delete BB.
784    if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
785      bool Change = processReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
786                                          ArgumentPHIs, !CanTRETailMarkedCall,
787                                          TTI, AA, ORE, DTU);
788      if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
789        Change = foldReturnAndProcessPred(
790            BB, Ret, OldEntry, TailCallsAreMarkedTail, ArgumentPHIs,
791            !CanTRETailMarkedCall, TTI, AA, ORE, DTU);
792      MadeChange |= Change;
793    }
794  }
795
796  // If we eliminated any tail recursions, it's possible that we inserted some
797  // silly PHI nodes which just merge an initial value (the incoming operand)
798  // with themselves.  Check to see if we did and clean up our mess if so.  This
799  // occurs when a function passes an argument straight through to its tail
800  // call.
801  for (PHINode *PN : ArgumentPHIs) {
802    // If the PHI Node is a dynamic constant, replace it with the value it is.
803    if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
804      PN->replaceAllUsesWith(PNV);
805      PN->eraseFromParent();
806    }
807  }
808
809  return MadeChange;
810}
811
812namespace {
813struct TailCallElim : public FunctionPass {
814  static char ID; // Pass identification, replacement for typeid
815  TailCallElim() : FunctionPass(ID) {
816    initializeTailCallElimPass(*PassRegistry::getPassRegistry());
817  }
818
819  void getAnalysisUsage(AnalysisUsage &AU) const override {
820    AU.addRequired<TargetTransformInfoWrapperPass>();
821    AU.addRequired<AAResultsWrapperPass>();
822    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
823    AU.addPreserved<GlobalsAAWrapperPass>();
824    AU.addPreserved<DominatorTreeWrapperPass>();
825    AU.addPreserved<PostDominatorTreeWrapperPass>();
826  }
827
828  bool runOnFunction(Function &F) override {
829    if (skipFunction(F))
830      return false;
831
832    auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
833    auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
834    auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
835    auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
836    // There is no noticable performance difference here between Lazy and Eager
837    // UpdateStrategy based on some test results. It is feasible to switch the
838    // UpdateStrategy to Lazy if we find it profitable later.
839    DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
840
841    return eliminateTailRecursion(
842        F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
843        &getAnalysis<AAResultsWrapperPass>().getAAResults(),
844        &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU);
845  }
846};
847}
848
849char TailCallElim::ID = 0;
850INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
851                      false, false)
852INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
853INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
854INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
855                    false, false)
856
857// Public interface to the TailCallElimination pass
858FunctionPass *llvm::createTailCallEliminationPass() {
859  return new TailCallElim();
860}
861
862PreservedAnalyses TailCallElimPass::run(Function &F,
863                                        FunctionAnalysisManager &AM) {
864
865  TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
866  AliasAnalysis &AA = AM.getResult<AAManager>(F);
867  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
868  auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
869  auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F);
870  // There is no noticable performance difference here between Lazy and Eager
871  // UpdateStrategy based on some test results. It is feasible to switch the
872  // UpdateStrategy to Lazy if we find it profitable later.
873  DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
874  bool Changed = eliminateTailRecursion(F, &TTI, &AA, &ORE, DTU);
875
876  if (!Changed)
877    return PreservedAnalyses::all();
878  PreservedAnalyses PA;
879  PA.preserve<GlobalsAA>();
880  PA.preserve<DominatorTreeAnalysis>();
881  PA.preserve<PostDominatorTreeAnalysis>();
882  return PA;
883}
884