SROA.cpp revision 360661
1//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This transformation implements the well known scalar replacement of
10/// aggregates transformation. It tries to identify promotable elements of an
11/// aggregate alloca, and promote them to registers. It will also try to
12/// convert uses of an element (or set of elements) of an alloca into a vector
13/// or bitfield-style integer scalar if appropriate.
14///
15/// It works to do this with minimal slicing of the alloca so that regions
16/// which are merely transferred in and out of external memory remain unchanged
17/// and are not decomposed to scalar code.
18///
19/// Because this also performs alloca promotion, it can be thought of as also
20/// serving the purpose of SSA formation. The algorithm iterates on the
21/// function until all opportunities for promotion have been realized.
22///
23//===----------------------------------------------------------------------===//
24
25#include "llvm/Transforms/Scalar/SROA.h"
26#include "llvm/ADT/APInt.h"
27#include "llvm/ADT/ArrayRef.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/PointerIntPair.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SetVector.h"
32#include "llvm/ADT/SmallBitVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/Statistic.h"
36#include "llvm/ADT/StringRef.h"
37#include "llvm/ADT/Twine.h"
38#include "llvm/ADT/iterator.h"
39#include "llvm/ADT/iterator_range.h"
40#include "llvm/Analysis/AssumptionCache.h"
41#include "llvm/Analysis/GlobalsModRef.h"
42#include "llvm/Analysis/Loads.h"
43#include "llvm/Analysis/PtrUseVisitor.h"
44#include "llvm/Transforms/Utils/Local.h"
45#include "llvm/Config/llvm-config.h"
46#include "llvm/IR/BasicBlock.h"
47#include "llvm/IR/Constant.h"
48#include "llvm/IR/ConstantFolder.h"
49#include "llvm/IR/Constants.h"
50#include "llvm/IR/DIBuilder.h"
51#include "llvm/IR/DataLayout.h"
52#include "llvm/IR/DebugInfoMetadata.h"
53#include "llvm/IR/DerivedTypes.h"
54#include "llvm/IR/Dominators.h"
55#include "llvm/IR/Function.h"
56#include "llvm/IR/GetElementPtrTypeIterator.h"
57#include "llvm/IR/GlobalAlias.h"
58#include "llvm/IR/IRBuilder.h"
59#include "llvm/IR/InstVisitor.h"
60#include "llvm/IR/InstrTypes.h"
61#include "llvm/IR/Instruction.h"
62#include "llvm/IR/Instructions.h"
63#include "llvm/IR/IntrinsicInst.h"
64#include "llvm/IR/Intrinsics.h"
65#include "llvm/IR/LLVMContext.h"
66#include "llvm/IR/Metadata.h"
67#include "llvm/IR/Module.h"
68#include "llvm/IR/Operator.h"
69#include "llvm/IR/PassManager.h"
70#include "llvm/IR/Type.h"
71#include "llvm/IR/Use.h"
72#include "llvm/IR/User.h"
73#include "llvm/IR/Value.h"
74#include "llvm/Pass.h"
75#include "llvm/Support/Casting.h"
76#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/Compiler.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Support/ErrorHandling.h"
80#include "llvm/Support/MathExtras.h"
81#include "llvm/Support/raw_ostream.h"
82#include "llvm/Transforms/Scalar.h"
83#include "llvm/Transforms/Utils/PromoteMemToReg.h"
84#include <algorithm>
85#include <cassert>
86#include <chrono>
87#include <cstddef>
88#include <cstdint>
89#include <cstring>
90#include <iterator>
91#include <string>
92#include <tuple>
93#include <utility>
94#include <vector>
95
96#ifndef NDEBUG
97// We only use this for a debug check.
98#include <random>
99#endif
100
101using namespace llvm;
102using namespace llvm::sroa;
103
104#define DEBUG_TYPE "sroa"
105
106STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
107STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
108STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
109STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
110STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
111STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
112STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
113STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
114STATISTIC(NumDeleted, "Number of instructions deleted");
115STATISTIC(NumVectorized, "Number of vectorized aggregates");
116
117/// Hidden option to enable randomly shuffling the slices to help uncover
118/// instability in their order.
119static cl::opt<bool> SROARandomShuffleSlices("sroa-random-shuffle-slices",
120                                             cl::init(false), cl::Hidden);
121
122/// Hidden option to experiment with completely strict handling of inbounds
123/// GEPs.
124static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false),
125                                        cl::Hidden);
126
127namespace {
128
129/// A custom IRBuilder inserter which prefixes all names, but only in
130/// Assert builds.
131class IRBuilderPrefixedInserter : public IRBuilderDefaultInserter {
132  std::string Prefix;
133
134  const Twine getNameWithPrefix(const Twine &Name) const {
135    return Name.isTriviallyEmpty() ? Name : Prefix + Name;
136  }
137
138public:
139  void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
140
141protected:
142  void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
143                    BasicBlock::iterator InsertPt) const {
144    IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB,
145                                           InsertPt);
146  }
147};
148
149/// Provide a type for IRBuilder that drops names in release builds.
150using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>;
151
152/// A used slice of an alloca.
153///
154/// This structure represents a slice of an alloca used by some instruction. It
155/// stores both the begin and end offsets of this use, a pointer to the use
156/// itself, and a flag indicating whether we can classify the use as splittable
157/// or not when forming partitions of the alloca.
158class Slice {
159  /// The beginning offset of the range.
160  uint64_t BeginOffset = 0;
161
162  /// The ending offset, not included in the range.
163  uint64_t EndOffset = 0;
164
165  /// Storage for both the use of this slice and whether it can be
166  /// split.
167  PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
168
169public:
170  Slice() = default;
171
172  Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
173      : BeginOffset(BeginOffset), EndOffset(EndOffset),
174        UseAndIsSplittable(U, IsSplittable) {}
175
176  uint64_t beginOffset() const { return BeginOffset; }
177  uint64_t endOffset() const { return EndOffset; }
178
179  bool isSplittable() const { return UseAndIsSplittable.getInt(); }
180  void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
181
182  Use *getUse() const { return UseAndIsSplittable.getPointer(); }
183
184  bool isDead() const { return getUse() == nullptr; }
185  void kill() { UseAndIsSplittable.setPointer(nullptr); }
186
187  /// Support for ordering ranges.
188  ///
189  /// This provides an ordering over ranges such that start offsets are
190  /// always increasing, and within equal start offsets, the end offsets are
191  /// decreasing. Thus the spanning range comes first in a cluster with the
192  /// same start position.
193  bool operator<(const Slice &RHS) const {
194    if (beginOffset() < RHS.beginOffset())
195      return true;
196    if (beginOffset() > RHS.beginOffset())
197      return false;
198    if (isSplittable() != RHS.isSplittable())
199      return !isSplittable();
200    if (endOffset() > RHS.endOffset())
201      return true;
202    return false;
203  }
204
205  /// Support comparison with a single offset to allow binary searches.
206  friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
207                                              uint64_t RHSOffset) {
208    return LHS.beginOffset() < RHSOffset;
209  }
210  friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
211                                              const Slice &RHS) {
212    return LHSOffset < RHS.beginOffset();
213  }
214
215  bool operator==(const Slice &RHS) const {
216    return isSplittable() == RHS.isSplittable() &&
217           beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
218  }
219  bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
220};
221
222} // end anonymous namespace
223
224/// Representation of the alloca slices.
225///
226/// This class represents the slices of an alloca which are formed by its
227/// various uses. If a pointer escapes, we can't fully build a representation
228/// for the slices used and we reflect that in this structure. The uses are
229/// stored, sorted by increasing beginning offset and with unsplittable slices
230/// starting at a particular offset before splittable slices.
231class llvm::sroa::AllocaSlices {
232public:
233  /// Construct the slices of a particular alloca.
234  AllocaSlices(const DataLayout &DL, AllocaInst &AI);
235
236  /// Test whether a pointer to the allocation escapes our analysis.
237  ///
238  /// If this is true, the slices are never fully built and should be
239  /// ignored.
240  bool isEscaped() const { return PointerEscapingInstr; }
241
242  /// Support for iterating over the slices.
243  /// @{
244  using iterator = SmallVectorImpl<Slice>::iterator;
245  using range = iterator_range<iterator>;
246
247  iterator begin() { return Slices.begin(); }
248  iterator end() { return Slices.end(); }
249
250  using const_iterator = SmallVectorImpl<Slice>::const_iterator;
251  using const_range = iterator_range<const_iterator>;
252
253  const_iterator begin() const { return Slices.begin(); }
254  const_iterator end() const { return Slices.end(); }
255  /// @}
256
257  /// Erase a range of slices.
258  void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); }
259
260  /// Insert new slices for this alloca.
261  ///
262  /// This moves the slices into the alloca's slices collection, and re-sorts
263  /// everything so that the usual ordering properties of the alloca's slices
264  /// hold.
265  void insert(ArrayRef<Slice> NewSlices) {
266    int OldSize = Slices.size();
267    Slices.append(NewSlices.begin(), NewSlices.end());
268    auto SliceI = Slices.begin() + OldSize;
269    llvm::sort(SliceI, Slices.end());
270    std::inplace_merge(Slices.begin(), SliceI, Slices.end());
271  }
272
273  // Forward declare the iterator and range accessor for walking the
274  // partitions.
275  class partition_iterator;
276  iterator_range<partition_iterator> partitions();
277
278  /// Access the dead users for this alloca.
279  ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; }
280
281  /// Access the dead operands referring to this alloca.
282  ///
283  /// These are operands which have cannot actually be used to refer to the
284  /// alloca as they are outside its range and the user doesn't correct for
285  /// that. These mostly consist of PHI node inputs and the like which we just
286  /// need to replace with undef.
287  ArrayRef<Use *> getDeadOperands() const { return DeadOperands; }
288
289#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
290  void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
291  void printSlice(raw_ostream &OS, const_iterator I,
292                  StringRef Indent = "  ") const;
293  void printUse(raw_ostream &OS, const_iterator I,
294                StringRef Indent = "  ") const;
295  void print(raw_ostream &OS) const;
296  void dump(const_iterator I) const;
297  void dump() const;
298#endif
299
300private:
301  template <typename DerivedT, typename RetT = void> class BuilderBase;
302  class SliceBuilder;
303
304  friend class AllocaSlices::SliceBuilder;
305
306#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
307  /// Handle to alloca instruction to simplify method interfaces.
308  AllocaInst &AI;
309#endif
310
311  /// The instruction responsible for this alloca not having a known set
312  /// of slices.
313  ///
314  /// When an instruction (potentially) escapes the pointer to the alloca, we
315  /// store a pointer to that here and abort trying to form slices of the
316  /// alloca. This will be null if the alloca slices are analyzed successfully.
317  Instruction *PointerEscapingInstr;
318
319  /// The slices of the alloca.
320  ///
321  /// We store a vector of the slices formed by uses of the alloca here. This
322  /// vector is sorted by increasing begin offset, and then the unsplittable
323  /// slices before the splittable ones. See the Slice inner class for more
324  /// details.
325  SmallVector<Slice, 8> Slices;
326
327  /// Instructions which will become dead if we rewrite the alloca.
328  ///
329  /// Note that these are not separated by slice. This is because we expect an
330  /// alloca to be completely rewritten or not rewritten at all. If rewritten,
331  /// all these instructions can simply be removed and replaced with undef as
332  /// they come from outside of the allocated space.
333  SmallVector<Instruction *, 8> DeadUsers;
334
335  /// Operands which will become dead if we rewrite the alloca.
336  ///
337  /// These are operands that in their particular use can be replaced with
338  /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
339  /// to PHI nodes and the like. They aren't entirely dead (there might be
340  /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
341  /// want to swap this particular input for undef to simplify the use lists of
342  /// the alloca.
343  SmallVector<Use *, 8> DeadOperands;
344};
345
346/// A partition of the slices.
347///
348/// An ephemeral representation for a range of slices which can be viewed as
349/// a partition of the alloca. This range represents a span of the alloca's
350/// memory which cannot be split, and provides access to all of the slices
351/// overlapping some part of the partition.
352///
353/// Objects of this type are produced by traversing the alloca's slices, but
354/// are only ephemeral and not persistent.
355class llvm::sroa::Partition {
356private:
357  friend class AllocaSlices;
358  friend class AllocaSlices::partition_iterator;
359
360  using iterator = AllocaSlices::iterator;
361
362  /// The beginning and ending offsets of the alloca for this
363  /// partition.
364  uint64_t BeginOffset, EndOffset;
365
366  /// The start and end iterators of this partition.
367  iterator SI, SJ;
368
369  /// A collection of split slice tails overlapping the partition.
370  SmallVector<Slice *, 4> SplitTails;
371
372  /// Raw constructor builds an empty partition starting and ending at
373  /// the given iterator.
374  Partition(iterator SI) : SI(SI), SJ(SI) {}
375
376public:
377  /// The start offset of this partition.
378  ///
379  /// All of the contained slices start at or after this offset.
380  uint64_t beginOffset() const { return BeginOffset; }
381
382  /// The end offset of this partition.
383  ///
384  /// All of the contained slices end at or before this offset.
385  uint64_t endOffset() const { return EndOffset; }
386
387  /// The size of the partition.
388  ///
389  /// Note that this can never be zero.
390  uint64_t size() const {
391    assert(BeginOffset < EndOffset && "Partitions must span some bytes!");
392    return EndOffset - BeginOffset;
393  }
394
395  /// Test whether this partition contains no slices, and merely spans
396  /// a region occupied by split slices.
397  bool empty() const { return SI == SJ; }
398
399  /// \name Iterate slices that start within the partition.
400  /// These may be splittable or unsplittable. They have a begin offset >= the
401  /// partition begin offset.
402  /// @{
403  // FIXME: We should probably define a "concat_iterator" helper and use that
404  // to stitch together pointee_iterators over the split tails and the
405  // contiguous iterators of the partition. That would give a much nicer
406  // interface here. We could then additionally expose filtered iterators for
407  // split, unsplit, and unsplittable splices based on the usage patterns.
408  iterator begin() const { return SI; }
409  iterator end() const { return SJ; }
410  /// @}
411
412  /// Get the sequence of split slice tails.
413  ///
414  /// These tails are of slices which start before this partition but are
415  /// split and overlap into the partition. We accumulate these while forming
416  /// partitions.
417  ArrayRef<Slice *> splitSliceTails() const { return SplitTails; }
418};
419
420/// An iterator over partitions of the alloca's slices.
421///
422/// This iterator implements the core algorithm for partitioning the alloca's
423/// slices. It is a forward iterator as we don't support backtracking for
424/// efficiency reasons, and re-use a single storage area to maintain the
425/// current set of split slices.
426///
427/// It is templated on the slice iterator type to use so that it can operate
428/// with either const or non-const slice iterators.
429class AllocaSlices::partition_iterator
430    : public iterator_facade_base<partition_iterator, std::forward_iterator_tag,
431                                  Partition> {
432  friend class AllocaSlices;
433
434  /// Most of the state for walking the partitions is held in a class
435  /// with a nice interface for examining them.
436  Partition P;
437
438  /// We need to keep the end of the slices to know when to stop.
439  AllocaSlices::iterator SE;
440
441  /// We also need to keep track of the maximum split end offset seen.
442  /// FIXME: Do we really?
443  uint64_t MaxSplitSliceEndOffset = 0;
444
445  /// Sets the partition to be empty at given iterator, and sets the
446  /// end iterator.
447  partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE)
448      : P(SI), SE(SE) {
449    // If not already at the end, advance our state to form the initial
450    // partition.
451    if (SI != SE)
452      advance();
453  }
454
455  /// Advance the iterator to the next partition.
456  ///
457  /// Requires that the iterator not be at the end of the slices.
458  void advance() {
459    assert((P.SI != SE || !P.SplitTails.empty()) &&
460           "Cannot advance past the end of the slices!");
461
462    // Clear out any split uses which have ended.
463    if (!P.SplitTails.empty()) {
464      if (P.EndOffset >= MaxSplitSliceEndOffset) {
465        // If we've finished all splits, this is easy.
466        P.SplitTails.clear();
467        MaxSplitSliceEndOffset = 0;
468      } else {
469        // Remove the uses which have ended in the prior partition. This
470        // cannot change the max split slice end because we just checked that
471        // the prior partition ended prior to that max.
472        P.SplitTails.erase(llvm::remove_if(P.SplitTails,
473                                           [&](Slice *S) {
474                                             return S->endOffset() <=
475                                                    P.EndOffset;
476                                           }),
477                           P.SplitTails.end());
478        assert(llvm::any_of(P.SplitTails,
479                            [&](Slice *S) {
480                              return S->endOffset() == MaxSplitSliceEndOffset;
481                            }) &&
482               "Could not find the current max split slice offset!");
483        assert(llvm::all_of(P.SplitTails,
484                            [&](Slice *S) {
485                              return S->endOffset() <= MaxSplitSliceEndOffset;
486                            }) &&
487               "Max split slice end offset is not actually the max!");
488      }
489    }
490
491    // If P.SI is already at the end, then we've cleared the split tail and
492    // now have an end iterator.
493    if (P.SI == SE) {
494      assert(P.SplitTails.empty() && "Failed to clear the split slices!");
495      return;
496    }
497
498    // If we had a non-empty partition previously, set up the state for
499    // subsequent partitions.
500    if (P.SI != P.SJ) {
501      // Accumulate all the splittable slices which started in the old
502      // partition into the split list.
503      for (Slice &S : P)
504        if (S.isSplittable() && S.endOffset() > P.EndOffset) {
505          P.SplitTails.push_back(&S);
506          MaxSplitSliceEndOffset =
507              std::max(S.endOffset(), MaxSplitSliceEndOffset);
508        }
509
510      // Start from the end of the previous partition.
511      P.SI = P.SJ;
512
513      // If P.SI is now at the end, we at most have a tail of split slices.
514      if (P.SI == SE) {
515        P.BeginOffset = P.EndOffset;
516        P.EndOffset = MaxSplitSliceEndOffset;
517        return;
518      }
519
520      // If the we have split slices and the next slice is after a gap and is
521      // not splittable immediately form an empty partition for the split
522      // slices up until the next slice begins.
523      if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset &&
524          !P.SI->isSplittable()) {
525        P.BeginOffset = P.EndOffset;
526        P.EndOffset = P.SI->beginOffset();
527        return;
528      }
529    }
530
531    // OK, we need to consume new slices. Set the end offset based on the
532    // current slice, and step SJ past it. The beginning offset of the
533    // partition is the beginning offset of the next slice unless we have
534    // pre-existing split slices that are continuing, in which case we begin
535    // at the prior end offset.
536    P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset;
537    P.EndOffset = P.SI->endOffset();
538    ++P.SJ;
539
540    // There are two strategies to form a partition based on whether the
541    // partition starts with an unsplittable slice or a splittable slice.
542    if (!P.SI->isSplittable()) {
543      // When we're forming an unsplittable region, it must always start at
544      // the first slice and will extend through its end.
545      assert(P.BeginOffset == P.SI->beginOffset());
546
547      // Form a partition including all of the overlapping slices with this
548      // unsplittable slice.
549      while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
550        if (!P.SJ->isSplittable())
551          P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
552        ++P.SJ;
553      }
554
555      // We have a partition across a set of overlapping unsplittable
556      // partitions.
557      return;
558    }
559
560    // If we're starting with a splittable slice, then we need to form
561    // a synthetic partition spanning it and any other overlapping splittable
562    // splices.
563    assert(P.SI->isSplittable() && "Forming a splittable partition!");
564
565    // Collect all of the overlapping splittable slices.
566    while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset &&
567           P.SJ->isSplittable()) {
568      P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
569      ++P.SJ;
570    }
571
572    // Back upiP.EndOffset if we ended the span early when encountering an
573    // unsplittable slice. This synthesizes the early end offset of
574    // a partition spanning only splittable slices.
575    if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
576      assert(!P.SJ->isSplittable());
577      P.EndOffset = P.SJ->beginOffset();
578    }
579  }
580
581public:
582  bool operator==(const partition_iterator &RHS) const {
583    assert(SE == RHS.SE &&
584           "End iterators don't match between compared partition iterators!");
585
586    // The observed positions of partitions is marked by the P.SI iterator and
587    // the emptiness of the split slices. The latter is only relevant when
588    // P.SI == SE, as the end iterator will additionally have an empty split
589    // slices list, but the prior may have the same P.SI and a tail of split
590    // slices.
591    if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) {
592      assert(P.SJ == RHS.P.SJ &&
593             "Same set of slices formed two different sized partitions!");
594      assert(P.SplitTails.size() == RHS.P.SplitTails.size() &&
595             "Same slice position with differently sized non-empty split "
596             "slice tails!");
597      return true;
598    }
599    return false;
600  }
601
602  partition_iterator &operator++() {
603    advance();
604    return *this;
605  }
606
607  Partition &operator*() { return P; }
608};
609
610/// A forward range over the partitions of the alloca's slices.
611///
612/// This accesses an iterator range over the partitions of the alloca's
613/// slices. It computes these partitions on the fly based on the overlapping
614/// offsets of the slices and the ability to split them. It will visit "empty"
615/// partitions to cover regions of the alloca only accessed via split
616/// slices.
617iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() {
618  return make_range(partition_iterator(begin(), end()),
619                    partition_iterator(end(), end()));
620}
621
622static Value *foldSelectInst(SelectInst &SI) {
623  // If the condition being selected on is a constant or the same value is
624  // being selected between, fold the select. Yes this does (rarely) happen
625  // early on.
626  if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
627    return SI.getOperand(1 + CI->isZero());
628  if (SI.getOperand(1) == SI.getOperand(2))
629    return SI.getOperand(1);
630
631  return nullptr;
632}
633
634/// A helper that folds a PHI node or a select.
635static Value *foldPHINodeOrSelectInst(Instruction &I) {
636  if (PHINode *PN = dyn_cast<PHINode>(&I)) {
637    // If PN merges together the same value, return that value.
638    return PN->hasConstantValue();
639  }
640  return foldSelectInst(cast<SelectInst>(I));
641}
642
643/// Builder for the alloca slices.
644///
645/// This class builds a set of alloca slices by recursively visiting the uses
646/// of an alloca and making a slice for each load and store at each offset.
647class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
648  friend class PtrUseVisitor<SliceBuilder>;
649  friend class InstVisitor<SliceBuilder>;
650
651  using Base = PtrUseVisitor<SliceBuilder>;
652
653  const uint64_t AllocSize;
654  AllocaSlices &AS;
655
656  SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
657  SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
658
659  /// Set to de-duplicate dead instructions found in the use walk.
660  SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
661
662public:
663  SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS)
664      : PtrUseVisitor<SliceBuilder>(DL),
665        AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), AS(AS) {}
666
667private:
668  void markAsDead(Instruction &I) {
669    if (VisitedDeadInsts.insert(&I).second)
670      AS.DeadUsers.push_back(&I);
671  }
672
673  void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
674                 bool IsSplittable = false) {
675    // Completely skip uses which have a zero size or start either before or
676    // past the end of the allocation.
677    if (Size == 0 || Offset.uge(AllocSize)) {
678      LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @"
679                        << Offset
680                        << " which has zero size or starts outside of the "
681                        << AllocSize << " byte alloca:\n"
682                        << "    alloca: " << AS.AI << "\n"
683                        << "       use: " << I << "\n");
684      return markAsDead(I);
685    }
686
687    uint64_t BeginOffset = Offset.getZExtValue();
688    uint64_t EndOffset = BeginOffset + Size;
689
690    // Clamp the end offset to the end of the allocation. Note that this is
691    // formulated to handle even the case where "BeginOffset + Size" overflows.
692    // This may appear superficially to be something we could ignore entirely,
693    // but that is not so! There may be widened loads or PHI-node uses where
694    // some instructions are dead but not others. We can't completely ignore
695    // them, and so have to record at least the information here.
696    assert(AllocSize >= BeginOffset); // Established above.
697    if (Size > AllocSize - BeginOffset) {
698      LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @"
699                        << Offset << " to remain within the " << AllocSize
700                        << " byte alloca:\n"
701                        << "    alloca: " << AS.AI << "\n"
702                        << "       use: " << I << "\n");
703      EndOffset = AllocSize;
704    }
705
706    AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
707  }
708
709  void visitBitCastInst(BitCastInst &BC) {
710    if (BC.use_empty())
711      return markAsDead(BC);
712
713    return Base::visitBitCastInst(BC);
714  }
715
716  void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
717    if (ASC.use_empty())
718      return markAsDead(ASC);
719
720    return Base::visitAddrSpaceCastInst(ASC);
721  }
722
723  void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
724    if (GEPI.use_empty())
725      return markAsDead(GEPI);
726
727    if (SROAStrictInbounds && GEPI.isInBounds()) {
728      // FIXME: This is a manually un-factored variant of the basic code inside
729      // of GEPs with checking of the inbounds invariant specified in the
730      // langref in a very strict sense. If we ever want to enable
731      // SROAStrictInbounds, this code should be factored cleanly into
732      // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
733      // by writing out the code here where we have the underlying allocation
734      // size readily available.
735      APInt GEPOffset = Offset;
736      const DataLayout &DL = GEPI.getModule()->getDataLayout();
737      for (gep_type_iterator GTI = gep_type_begin(GEPI),
738                             GTE = gep_type_end(GEPI);
739           GTI != GTE; ++GTI) {
740        ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
741        if (!OpC)
742          break;
743
744        // Handle a struct index, which adds its field offset to the pointer.
745        if (StructType *STy = GTI.getStructTypeOrNull()) {
746          unsigned ElementIdx = OpC->getZExtValue();
747          const StructLayout *SL = DL.getStructLayout(STy);
748          GEPOffset +=
749              APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx));
750        } else {
751          // For array or vector indices, scale the index by the size of the
752          // type.
753          APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
754          GEPOffset += Index * APInt(Offset.getBitWidth(),
755                                     DL.getTypeAllocSize(GTI.getIndexedType()));
756        }
757
758        // If this index has computed an intermediate pointer which is not
759        // inbounds, then the result of the GEP is a poison value and we can
760        // delete it and all uses.
761        if (GEPOffset.ugt(AllocSize))
762          return markAsDead(GEPI);
763      }
764    }
765
766    return Base::visitGetElementPtrInst(GEPI);
767  }
768
769  void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
770                         uint64_t Size, bool IsVolatile) {
771    // We allow splitting of non-volatile loads and stores where the type is an
772    // integer type. These may be used to implement 'memcpy' or other "transfer
773    // of bits" patterns.
774    bool IsSplittable = Ty->isIntegerTy() && !IsVolatile;
775
776    insertUse(I, Offset, Size, IsSplittable);
777  }
778
779  void visitLoadInst(LoadInst &LI) {
780    assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
781           "All simple FCA loads should have been pre-split");
782
783    if (!IsOffsetKnown)
784      return PI.setAborted(&LI);
785
786    if (LI.isVolatile() &&
787        LI.getPointerAddressSpace() != DL.getAllocaAddrSpace())
788      return PI.setAborted(&LI);
789
790    uint64_t Size = DL.getTypeStoreSize(LI.getType());
791    return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
792  }
793
794  void visitStoreInst(StoreInst &SI) {
795    Value *ValOp = SI.getValueOperand();
796    if (ValOp == *U)
797      return PI.setEscapedAndAborted(&SI);
798    if (!IsOffsetKnown)
799      return PI.setAborted(&SI);
800
801    if (SI.isVolatile() &&
802        SI.getPointerAddressSpace() != DL.getAllocaAddrSpace())
803      return PI.setAborted(&SI);
804
805    uint64_t Size = DL.getTypeStoreSize(ValOp->getType());
806
807    // If this memory access can be shown to *statically* extend outside the
808    // bounds of the allocation, it's behavior is undefined, so simply
809    // ignore it. Note that this is more strict than the generic clamping
810    // behavior of insertUse. We also try to handle cases which might run the
811    // risk of overflow.
812    // FIXME: We should instead consider the pointer to have escaped if this
813    // function is being instrumented for addressing bugs or race conditions.
814    if (Size > AllocSize || Offset.ugt(AllocSize - Size)) {
815      LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @"
816                        << Offset << " which extends past the end of the "
817                        << AllocSize << " byte alloca:\n"
818                        << "    alloca: " << AS.AI << "\n"
819                        << "       use: " << SI << "\n");
820      return markAsDead(SI);
821    }
822
823    assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
824           "All simple FCA stores should have been pre-split");
825    handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
826  }
827
828  void visitMemSetInst(MemSetInst &II) {
829    assert(II.getRawDest() == *U && "Pointer use is not the destination?");
830    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
831    if ((Length && Length->getValue() == 0) ||
832        (IsOffsetKnown && Offset.uge(AllocSize)))
833      // Zero-length mem transfer intrinsics can be ignored entirely.
834      return markAsDead(II);
835
836    if (!IsOffsetKnown)
837      return PI.setAborted(&II);
838
839    // Don't replace this with a store with a different address space.  TODO:
840    // Use a store with the casted new alloca?
841    if (II.isVolatile() && II.getDestAddressSpace() != DL.getAllocaAddrSpace())
842      return PI.setAborted(&II);
843
844    insertUse(II, Offset, Length ? Length->getLimitedValue()
845                                 : AllocSize - Offset.getLimitedValue(),
846              (bool)Length);
847  }
848
849  void visitMemTransferInst(MemTransferInst &II) {
850    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
851    if (Length && Length->getValue() == 0)
852      // Zero-length mem transfer intrinsics can be ignored entirely.
853      return markAsDead(II);
854
855    // Because we can visit these intrinsics twice, also check to see if the
856    // first time marked this instruction as dead. If so, skip it.
857    if (VisitedDeadInsts.count(&II))
858      return;
859
860    if (!IsOffsetKnown)
861      return PI.setAborted(&II);
862
863    // Don't replace this with a load/store with a different address space.
864    // TODO: Use a store with the casted new alloca?
865    if (II.isVolatile() &&
866        (II.getDestAddressSpace() != DL.getAllocaAddrSpace() ||
867         II.getSourceAddressSpace() != DL.getAllocaAddrSpace()))
868      return PI.setAborted(&II);
869
870    // This side of the transfer is completely out-of-bounds, and so we can
871    // nuke the entire transfer. However, we also need to nuke the other side
872    // if already added to our partitions.
873    // FIXME: Yet another place we really should bypass this when
874    // instrumenting for ASan.
875    if (Offset.uge(AllocSize)) {
876      SmallDenseMap<Instruction *, unsigned>::iterator MTPI =
877          MemTransferSliceMap.find(&II);
878      if (MTPI != MemTransferSliceMap.end())
879        AS.Slices[MTPI->second].kill();
880      return markAsDead(II);
881    }
882
883    uint64_t RawOffset = Offset.getLimitedValue();
884    uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset;
885
886    // Check for the special case where the same exact value is used for both
887    // source and dest.
888    if (*U == II.getRawDest() && *U == II.getRawSource()) {
889      // For non-volatile transfers this is a no-op.
890      if (!II.isVolatile())
891        return markAsDead(II);
892
893      return insertUse(II, Offset, Size, /*IsSplittable=*/false);
894    }
895
896    // If we have seen both source and destination for a mem transfer, then
897    // they both point to the same alloca.
898    bool Inserted;
899    SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
900    std::tie(MTPI, Inserted) =
901        MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size()));
902    unsigned PrevIdx = MTPI->second;
903    if (!Inserted) {
904      Slice &PrevP = AS.Slices[PrevIdx];
905
906      // Check if the begin offsets match and this is a non-volatile transfer.
907      // In that case, we can completely elide the transfer.
908      if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
909        PrevP.kill();
910        return markAsDead(II);
911      }
912
913      // Otherwise we have an offset transfer within the same alloca. We can't
914      // split those.
915      PrevP.makeUnsplittable();
916    }
917
918    // Insert the use now that we've fixed up the splittable nature.
919    insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
920
921    // Check that we ended up with a valid index in the map.
922    assert(AS.Slices[PrevIdx].getUse()->getUser() == &II &&
923           "Map index doesn't point back to a slice with this user.");
924  }
925
926  // Disable SRoA for any intrinsics except for lifetime invariants.
927  // FIXME: What about debug intrinsics? This matches old behavior, but
928  // doesn't make sense.
929  void visitIntrinsicInst(IntrinsicInst &II) {
930    if (!IsOffsetKnown)
931      return PI.setAborted(&II);
932
933    if (II.isLifetimeStartOrEnd()) {
934      ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
935      uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
936                               Length->getLimitedValue());
937      insertUse(II, Offset, Size, true);
938      return;
939    }
940
941    Base::visitIntrinsicInst(II);
942  }
943
944  Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
945    // We consider any PHI or select that results in a direct load or store of
946    // the same offset to be a viable use for slicing purposes. These uses
947    // are considered unsplittable and the size is the maximum loaded or stored
948    // size.
949    SmallPtrSet<Instruction *, 4> Visited;
950    SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
951    Visited.insert(Root);
952    Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
953    const DataLayout &DL = Root->getModule()->getDataLayout();
954    // If there are no loads or stores, the access is dead. We mark that as
955    // a size zero access.
956    Size = 0;
957    do {
958      Instruction *I, *UsedI;
959      std::tie(UsedI, I) = Uses.pop_back_val();
960
961      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
962        Size = std::max(Size, DL.getTypeStoreSize(LI->getType()));
963        continue;
964      }
965      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
966        Value *Op = SI->getOperand(0);
967        if (Op == UsedI)
968          return SI;
969        Size = std::max(Size, DL.getTypeStoreSize(Op->getType()));
970        continue;
971      }
972
973      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
974        if (!GEP->hasAllZeroIndices())
975          return GEP;
976      } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
977                 !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) {
978        return I;
979      }
980
981      for (User *U : I->users())
982        if (Visited.insert(cast<Instruction>(U)).second)
983          Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
984    } while (!Uses.empty());
985
986    return nullptr;
987  }
988
989  void visitPHINodeOrSelectInst(Instruction &I) {
990    assert(isa<PHINode>(I) || isa<SelectInst>(I));
991    if (I.use_empty())
992      return markAsDead(I);
993
994    // TODO: We could use SimplifyInstruction here to fold PHINodes and
995    // SelectInsts. However, doing so requires to change the current
996    // dead-operand-tracking mechanism. For instance, suppose neither loading
997    // from %U nor %other traps. Then "load (select undef, %U, %other)" does not
998    // trap either.  However, if we simply replace %U with undef using the
999    // current dead-operand-tracking mechanism, "load (select undef, undef,
1000    // %other)" may trap because the select may return the first operand
1001    // "undef".
1002    if (Value *Result = foldPHINodeOrSelectInst(I)) {
1003      if (Result == *U)
1004        // If the result of the constant fold will be the pointer, recurse
1005        // through the PHI/select as if we had RAUW'ed it.
1006        enqueueUsers(I);
1007      else
1008        // Otherwise the operand to the PHI/select is dead, and we can replace
1009        // it with undef.
1010        AS.DeadOperands.push_back(U);
1011
1012      return;
1013    }
1014
1015    if (!IsOffsetKnown)
1016      return PI.setAborted(&I);
1017
1018    // See if we already have computed info on this node.
1019    uint64_t &Size = PHIOrSelectSizes[&I];
1020    if (!Size) {
1021      // This is a new PHI/Select, check for an unsafe use of it.
1022      if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size))
1023        return PI.setAborted(UnsafeI);
1024    }
1025
1026    // For PHI and select operands outside the alloca, we can't nuke the entire
1027    // phi or select -- the other side might still be relevant, so we special
1028    // case them here and use a separate structure to track the operands
1029    // themselves which should be replaced with undef.
1030    // FIXME: This should instead be escaped in the event we're instrumenting
1031    // for address sanitization.
1032    if (Offset.uge(AllocSize)) {
1033      AS.DeadOperands.push_back(U);
1034      return;
1035    }
1036
1037    insertUse(I, Offset, Size);
1038  }
1039
1040  void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); }
1041
1042  void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); }
1043
1044  /// Disable SROA entirely if there are unhandled users of the alloca.
1045  void visitInstruction(Instruction &I) { PI.setAborted(&I); }
1046};
1047
1048AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
1049    :
1050#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1051      AI(AI),
1052#endif
1053      PointerEscapingInstr(nullptr) {
1054  SliceBuilder PB(DL, AI, *this);
1055  SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
1056  if (PtrI.isEscaped() || PtrI.isAborted()) {
1057    // FIXME: We should sink the escape vs. abort info into the caller nicely,
1058    // possibly by just storing the PtrInfo in the AllocaSlices.
1059    PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
1060                                                  : PtrI.getAbortingInst();
1061    assert(PointerEscapingInstr && "Did not track a bad instruction");
1062    return;
1063  }
1064
1065  Slices.erase(
1066      llvm::remove_if(Slices, [](const Slice &S) { return S.isDead(); }),
1067      Slices.end());
1068
1069#ifndef NDEBUG
1070  if (SROARandomShuffleSlices) {
1071    std::mt19937 MT(static_cast<unsigned>(
1072        std::chrono::system_clock::now().time_since_epoch().count()));
1073    std::shuffle(Slices.begin(), Slices.end(), MT);
1074  }
1075#endif
1076
1077  // Sort the uses. This arranges for the offsets to be in ascending order,
1078  // and the sizes to be in descending order.
1079  llvm::sort(Slices);
1080}
1081
1082#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1083
1084void AllocaSlices::print(raw_ostream &OS, const_iterator I,
1085                         StringRef Indent) const {
1086  printSlice(OS, I, Indent);
1087  OS << "\n";
1088  printUse(OS, I, Indent);
1089}
1090
1091void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
1092                              StringRef Indent) const {
1093  OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
1094     << " slice #" << (I - begin())
1095     << (I->isSplittable() ? " (splittable)" : "");
1096}
1097
1098void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
1099                            StringRef Indent) const {
1100  OS << Indent << "  used by: " << *I->getUse()->getUser() << "\n";
1101}
1102
1103void AllocaSlices::print(raw_ostream &OS) const {
1104  if (PointerEscapingInstr) {
1105    OS << "Can't analyze slices for alloca: " << AI << "\n"
1106       << "  A pointer to this alloca escaped by:\n"
1107       << "  " << *PointerEscapingInstr << "\n";
1108    return;
1109  }
1110
1111  OS << "Slices of alloca: " << AI << "\n";
1112  for (const_iterator I = begin(), E = end(); I != E; ++I)
1113    print(OS, I);
1114}
1115
1116LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const {
1117  print(dbgs(), I);
1118}
1119LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
1120
1121#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1122
1123/// Walk the range of a partitioning looking for a common type to cover this
1124/// sequence of slices.
1125static Type *findCommonType(AllocaSlices::const_iterator B,
1126                            AllocaSlices::const_iterator E,
1127                            uint64_t EndOffset) {
1128  Type *Ty = nullptr;
1129  bool TyIsCommon = true;
1130  IntegerType *ITy = nullptr;
1131
1132  // Note that we need to look at *every* alloca slice's Use to ensure we
1133  // always get consistent results regardless of the order of slices.
1134  for (AllocaSlices::const_iterator I = B; I != E; ++I) {
1135    Use *U = I->getUse();
1136    if (isa<IntrinsicInst>(*U->getUser()))
1137      continue;
1138    if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
1139      continue;
1140
1141    Type *UserTy = nullptr;
1142    if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1143      UserTy = LI->getType();
1144    } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1145      UserTy = SI->getValueOperand()->getType();
1146    }
1147
1148    if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) {
1149      // If the type is larger than the partition, skip it. We only encounter
1150      // this for split integer operations where we want to use the type of the
1151      // entity causing the split. Also skip if the type is not a byte width
1152      // multiple.
1153      if (UserITy->getBitWidth() % 8 != 0 ||
1154          UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
1155        continue;
1156
1157      // Track the largest bitwidth integer type used in this way in case there
1158      // is no common type.
1159      if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth())
1160        ITy = UserITy;
1161    }
1162
1163    // To avoid depending on the order of slices, Ty and TyIsCommon must not
1164    // depend on types skipped above.
1165    if (!UserTy || (Ty && Ty != UserTy))
1166      TyIsCommon = false; // Give up on anything but an iN type.
1167    else
1168      Ty = UserTy;
1169  }
1170
1171  return TyIsCommon ? Ty : ITy;
1172}
1173
1174/// PHI instructions that use an alloca and are subsequently loaded can be
1175/// rewritten to load both input pointers in the pred blocks and then PHI the
1176/// results, allowing the load of the alloca to be promoted.
1177/// From this:
1178///   %P2 = phi [i32* %Alloca, i32* %Other]
1179///   %V = load i32* %P2
1180/// to:
1181///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1182///   ...
1183///   %V2 = load i32* %Other
1184///   ...
1185///   %V = phi [i32 %V1, i32 %V2]
1186///
1187/// We can do this to a select if its only uses are loads and if the operands
1188/// to the select can be loaded unconditionally.
1189///
1190/// FIXME: This should be hoisted into a generic utility, likely in
1191/// Transforms/Util/Local.h
1192static bool isSafePHIToSpeculate(PHINode &PN) {
1193  const DataLayout &DL = PN.getModule()->getDataLayout();
1194
1195  // For now, we can only do this promotion if the load is in the same block
1196  // as the PHI, and if there are no stores between the phi and load.
1197  // TODO: Allow recursive phi users.
1198  // TODO: Allow stores.
1199  BasicBlock *BB = PN.getParent();
1200  unsigned MaxAlign = 0;
1201  uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType());
1202  APInt MaxSize(APWidth, 0);
1203  bool HaveLoad = false;
1204  for (User *U : PN.users()) {
1205    LoadInst *LI = dyn_cast<LoadInst>(U);
1206    if (!LI || !LI->isSimple())
1207      return false;
1208
1209    // For now we only allow loads in the same block as the PHI.  This is
1210    // a common case that happens when instcombine merges two loads through
1211    // a PHI.
1212    if (LI->getParent() != BB)
1213      return false;
1214
1215    // Ensure that there are no instructions between the PHI and the load that
1216    // could store.
1217    for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI)
1218      if (BBI->mayWriteToMemory())
1219        return false;
1220
1221    uint64_t Size = DL.getTypeStoreSizeInBits(LI->getType());
1222    MaxAlign = std::max(MaxAlign, LI->getAlignment());
1223    MaxSize = MaxSize.ult(Size) ? APInt(APWidth, Size) : MaxSize;
1224    HaveLoad = true;
1225  }
1226
1227  if (!HaveLoad)
1228    return false;
1229
1230  // We can only transform this if it is safe to push the loads into the
1231  // predecessor blocks. The only thing to watch out for is that we can't put
1232  // a possibly trapping load in the predecessor if it is a critical edge.
1233  for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1234    Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator();
1235    Value *InVal = PN.getIncomingValue(Idx);
1236
1237    // If the value is produced by the terminator of the predecessor (an
1238    // invoke) or it has side-effects, there is no valid place to put a load
1239    // in the predecessor.
1240    if (TI == InVal || TI->mayHaveSideEffects())
1241      return false;
1242
1243    // If the predecessor has a single successor, then the edge isn't
1244    // critical.
1245    if (TI->getNumSuccessors() == 1)
1246      continue;
1247
1248    // If this pointer is always safe to load, or if we can prove that there
1249    // is already a load in the block, then we can move the load to the pred
1250    // block.
1251    if (isSafeToLoadUnconditionally(InVal, MaxAlign, MaxSize, DL, TI))
1252      continue;
1253
1254    return false;
1255  }
1256
1257  return true;
1258}
1259
1260static void speculatePHINodeLoads(PHINode &PN) {
1261  LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
1262
1263  LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
1264  Type *LoadTy = SomeLoad->getType();
1265  IRBuilderTy PHIBuilder(&PN);
1266  PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1267                                        PN.getName() + ".sroa.speculated");
1268
1269  // Get the AA tags and alignment to use from one of the loads.  It doesn't
1270  // matter which one we get and if any differ.
1271  AAMDNodes AATags;
1272  SomeLoad->getAAMetadata(AATags);
1273  unsigned Align = SomeLoad->getAlignment();
1274
1275  // Rewrite all loads of the PN to use the new PHI.
1276  while (!PN.use_empty()) {
1277    LoadInst *LI = cast<LoadInst>(PN.user_back());
1278    LI->replaceAllUsesWith(NewPN);
1279    LI->eraseFromParent();
1280  }
1281
1282  // Inject loads into all of the pred blocks.
1283  DenseMap<BasicBlock*, Value*> InjectedLoads;
1284  for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1285    BasicBlock *Pred = PN.getIncomingBlock(Idx);
1286    Value *InVal = PN.getIncomingValue(Idx);
1287
1288    // A PHI node is allowed to have multiple (duplicated) entries for the same
1289    // basic block, as long as the value is the same. So if we already injected
1290    // a load in the predecessor, then we should reuse the same load for all
1291    // duplicated entries.
1292    if (Value* V = InjectedLoads.lookup(Pred)) {
1293      NewPN->addIncoming(V, Pred);
1294      continue;
1295    }
1296
1297    Instruction *TI = Pred->getTerminator();
1298    IRBuilderTy PredBuilder(TI);
1299
1300    LoadInst *Load = PredBuilder.CreateLoad(
1301        LoadTy, InVal,
1302        (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1303    ++NumLoadsSpeculated;
1304    Load->setAlignment(Align);
1305    if (AATags)
1306      Load->setAAMetadata(AATags);
1307    NewPN->addIncoming(Load, Pred);
1308    InjectedLoads[Pred] = Load;
1309  }
1310
1311  LLVM_DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
1312  PN.eraseFromParent();
1313}
1314
1315/// Select instructions that use an alloca and are subsequently loaded can be
1316/// rewritten to load both input pointers and then select between the result,
1317/// allowing the load of the alloca to be promoted.
1318/// From this:
1319///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1320///   %V = load i32* %P2
1321/// to:
1322///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1323///   %V2 = load i32* %Other
1324///   %V = select i1 %cond, i32 %V1, i32 %V2
1325///
1326/// We can do this to a select if its only uses are loads and if the operand
1327/// to the select can be loaded unconditionally.
1328static bool isSafeSelectToSpeculate(SelectInst &SI) {
1329  Value *TValue = SI.getTrueValue();
1330  Value *FValue = SI.getFalseValue();
1331  const DataLayout &DL = SI.getModule()->getDataLayout();
1332
1333  for (User *U : SI.users()) {
1334    LoadInst *LI = dyn_cast<LoadInst>(U);
1335    if (!LI || !LI->isSimple())
1336      return false;
1337
1338    // Both operands to the select need to be dereferenceable, either
1339    // absolutely (e.g. allocas) or at this point because we can see other
1340    // accesses to it.
1341    if (!isSafeToLoadUnconditionally(TValue, LI->getType(), LI->getAlignment(),
1342                                     DL, LI))
1343      return false;
1344    if (!isSafeToLoadUnconditionally(FValue, LI->getType(), LI->getAlignment(),
1345                                     DL, LI))
1346      return false;
1347  }
1348
1349  return true;
1350}
1351
1352static void speculateSelectInstLoads(SelectInst &SI) {
1353  LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
1354
1355  IRBuilderTy IRB(&SI);
1356  Value *TV = SI.getTrueValue();
1357  Value *FV = SI.getFalseValue();
1358  // Replace the loads of the select with a select of two loads.
1359  while (!SI.use_empty()) {
1360    LoadInst *LI = cast<LoadInst>(SI.user_back());
1361    assert(LI->isSimple() && "We only speculate simple loads");
1362
1363    IRB.SetInsertPoint(LI);
1364    LoadInst *TL = IRB.CreateLoad(LI->getType(), TV,
1365                                  LI->getName() + ".sroa.speculate.load.true");
1366    LoadInst *FL = IRB.CreateLoad(LI->getType(), FV,
1367                                  LI->getName() + ".sroa.speculate.load.false");
1368    NumLoadsSpeculated += 2;
1369
1370    // Transfer alignment and AA info if present.
1371    TL->setAlignment(LI->getAlignment());
1372    FL->setAlignment(LI->getAlignment());
1373
1374    AAMDNodes Tags;
1375    LI->getAAMetadata(Tags);
1376    if (Tags) {
1377      TL->setAAMetadata(Tags);
1378      FL->setAAMetadata(Tags);
1379    }
1380
1381    Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1382                                LI->getName() + ".sroa.speculated");
1383
1384    LLVM_DEBUG(dbgs() << "          speculated to: " << *V << "\n");
1385    LI->replaceAllUsesWith(V);
1386    LI->eraseFromParent();
1387  }
1388  SI.eraseFromParent();
1389}
1390
1391/// Build a GEP out of a base pointer and indices.
1392///
1393/// This will return the BasePtr if that is valid, or build a new GEP
1394/// instruction using the IRBuilder if GEP-ing is needed.
1395static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
1396                       SmallVectorImpl<Value *> &Indices, Twine NamePrefix) {
1397  if (Indices.empty())
1398    return BasePtr;
1399
1400  // A single zero index is a no-op, so check for this and avoid building a GEP
1401  // in that case.
1402  if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1403    return BasePtr;
1404
1405  return IRB.CreateInBoundsGEP(BasePtr->getType()->getPointerElementType(),
1406                               BasePtr, Indices, NamePrefix + "sroa_idx");
1407}
1408
1409/// Get a natural GEP off of the BasePtr walking through Ty toward
1410/// TargetTy without changing the offset of the pointer.
1411///
1412/// This routine assumes we've already established a properly offset GEP with
1413/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1414/// zero-indices down through type layers until we find one the same as
1415/// TargetTy. If we can't find one with the same type, we at least try to use
1416/// one with the same size. If none of that works, we just produce the GEP as
1417/// indicated by Indices to have the correct offset.
1418static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
1419                                    Value *BasePtr, Type *Ty, Type *TargetTy,
1420                                    SmallVectorImpl<Value *> &Indices,
1421                                    Twine NamePrefix) {
1422  if (Ty == TargetTy)
1423    return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1424
1425  // Offset size to use for the indices.
1426  unsigned OffsetSize = DL.getIndexTypeSizeInBits(BasePtr->getType());
1427
1428  // See if we can descend into a struct and locate a field with the correct
1429  // type.
1430  unsigned NumLayers = 0;
1431  Type *ElementTy = Ty;
1432  do {
1433    if (ElementTy->isPointerTy())
1434      break;
1435
1436    if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) {
1437      ElementTy = ArrayTy->getElementType();
1438      Indices.push_back(IRB.getIntN(OffsetSize, 0));
1439    } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) {
1440      ElementTy = VectorTy->getElementType();
1441      Indices.push_back(IRB.getInt32(0));
1442    } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1443      if (STy->element_begin() == STy->element_end())
1444        break; // Nothing left to descend into.
1445      ElementTy = *STy->element_begin();
1446      Indices.push_back(IRB.getInt32(0));
1447    } else {
1448      break;
1449    }
1450    ++NumLayers;
1451  } while (ElementTy != TargetTy);
1452  if (ElementTy != TargetTy)
1453    Indices.erase(Indices.end() - NumLayers, Indices.end());
1454
1455  return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1456}
1457
1458/// Recursively compute indices for a natural GEP.
1459///
1460/// This is the recursive step for getNaturalGEPWithOffset that walks down the
1461/// element types adding appropriate indices for the GEP.
1462static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL,
1463                                       Value *Ptr, Type *Ty, APInt &Offset,
1464                                       Type *TargetTy,
1465                                       SmallVectorImpl<Value *> &Indices,
1466                                       Twine NamePrefix) {
1467  if (Offset == 0)
1468    return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices,
1469                                 NamePrefix);
1470
1471  // We can't recurse through pointer types.
1472  if (Ty->isPointerTy())
1473    return nullptr;
1474
1475  // We try to analyze GEPs over vectors here, but note that these GEPs are
1476  // extremely poorly defined currently. The long-term goal is to remove GEPing
1477  // over a vector from the IR completely.
1478  if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1479    unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType());
1480    if (ElementSizeInBits % 8 != 0) {
1481      // GEPs over non-multiple of 8 size vector elements are invalid.
1482      return nullptr;
1483    }
1484    APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1485    APInt NumSkippedElements = Offset.sdiv(ElementSize);
1486    if (NumSkippedElements.ugt(VecTy->getNumElements()))
1487      return nullptr;
1488    Offset -= NumSkippedElements * ElementSize;
1489    Indices.push_back(IRB.getInt(NumSkippedElements));
1490    return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(),
1491                                    Offset, TargetTy, Indices, NamePrefix);
1492  }
1493
1494  if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1495    Type *ElementTy = ArrTy->getElementType();
1496    APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1497    APInt NumSkippedElements = Offset.sdiv(ElementSize);
1498    if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1499      return nullptr;
1500
1501    Offset -= NumSkippedElements * ElementSize;
1502    Indices.push_back(IRB.getInt(NumSkippedElements));
1503    return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1504                                    Indices, NamePrefix);
1505  }
1506
1507  StructType *STy = dyn_cast<StructType>(Ty);
1508  if (!STy)
1509    return nullptr;
1510
1511  const StructLayout *SL = DL.getStructLayout(STy);
1512  uint64_t StructOffset = Offset.getZExtValue();
1513  if (StructOffset >= SL->getSizeInBytes())
1514    return nullptr;
1515  unsigned Index = SL->getElementContainingOffset(StructOffset);
1516  Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1517  Type *ElementTy = STy->getElementType(Index);
1518  if (Offset.uge(DL.getTypeAllocSize(ElementTy)))
1519    return nullptr; // The offset points into alignment padding.
1520
1521  Indices.push_back(IRB.getInt32(Index));
1522  return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1523                                  Indices, NamePrefix);
1524}
1525
1526/// Get a natural GEP from a base pointer to a particular offset and
1527/// resulting in a particular type.
1528///
1529/// The goal is to produce a "natural" looking GEP that works with the existing
1530/// composite types to arrive at the appropriate offset and element type for
1531/// a pointer. TargetTy is the element type the returned GEP should point-to if
1532/// possible. We recurse by decreasing Offset, adding the appropriate index to
1533/// Indices, and setting Ty to the result subtype.
1534///
1535/// If no natural GEP can be constructed, this function returns null.
1536static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
1537                                      Value *Ptr, APInt Offset, Type *TargetTy,
1538                                      SmallVectorImpl<Value *> &Indices,
1539                                      Twine NamePrefix) {
1540  PointerType *Ty = cast<PointerType>(Ptr->getType());
1541
1542  // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1543  // an i8.
1544  if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8))
1545    return nullptr;
1546
1547  Type *ElementTy = Ty->getElementType();
1548  if (!ElementTy->isSized())
1549    return nullptr; // We can't GEP through an unsized element.
1550  APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1551  if (ElementSize == 0)
1552    return nullptr; // Zero-length arrays can't help us build a natural GEP.
1553  APInt NumSkippedElements = Offset.sdiv(ElementSize);
1554
1555  Offset -= NumSkippedElements * ElementSize;
1556  Indices.push_back(IRB.getInt(NumSkippedElements));
1557  return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1558                                  Indices, NamePrefix);
1559}
1560
1561/// Compute an adjusted pointer from Ptr by Offset bytes where the
1562/// resulting pointer has PointerTy.
1563///
1564/// This tries very hard to compute a "natural" GEP which arrives at the offset
1565/// and produces the pointer type desired. Where it cannot, it will try to use
1566/// the natural GEP to arrive at the offset and bitcast to the type. Where that
1567/// fails, it will try to use an existing i8* and GEP to the byte offset and
1568/// bitcast to the type.
1569///
1570/// The strategy for finding the more natural GEPs is to peel off layers of the
1571/// pointer, walking back through bit casts and GEPs, searching for a base
1572/// pointer from which we can compute a natural GEP with the desired
1573/// properties. The algorithm tries to fold as many constant indices into
1574/// a single GEP as possible, thus making each GEP more independent of the
1575/// surrounding code.
1576static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
1577                             APInt Offset, Type *PointerTy, Twine NamePrefix) {
1578  // Even though we don't look through PHI nodes, we could be called on an
1579  // instruction in an unreachable block, which may be on a cycle.
1580  SmallPtrSet<Value *, 4> Visited;
1581  Visited.insert(Ptr);
1582  SmallVector<Value *, 4> Indices;
1583
1584  // We may end up computing an offset pointer that has the wrong type. If we
1585  // never are able to compute one directly that has the correct type, we'll
1586  // fall back to it, so keep it and the base it was computed from around here.
1587  Value *OffsetPtr = nullptr;
1588  Value *OffsetBasePtr;
1589
1590  // Remember any i8 pointer we come across to re-use if we need to do a raw
1591  // byte offset.
1592  Value *Int8Ptr = nullptr;
1593  APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1594
1595  PointerType *TargetPtrTy = cast<PointerType>(PointerTy);
1596  Type *TargetTy = TargetPtrTy->getElementType();
1597
1598  // As `addrspacecast` is , `Ptr` (the storage pointer) may have different
1599  // address space from the expected `PointerTy` (the pointer to be used).
1600  // Adjust the pointer type based the original storage pointer.
1601  auto AS = cast<PointerType>(Ptr->getType())->getAddressSpace();
1602  PointerTy = TargetTy->getPointerTo(AS);
1603
1604  do {
1605    // First fold any existing GEPs into the offset.
1606    while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1607      APInt GEPOffset(Offset.getBitWidth(), 0);
1608      if (!GEP->accumulateConstantOffset(DL, GEPOffset))
1609        break;
1610      Offset += GEPOffset;
1611      Ptr = GEP->getPointerOperand();
1612      if (!Visited.insert(Ptr).second)
1613        break;
1614    }
1615
1616    // See if we can perform a natural GEP here.
1617    Indices.clear();
1618    if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
1619                                           Indices, NamePrefix)) {
1620      // If we have a new natural pointer at the offset, clear out any old
1621      // offset pointer we computed. Unless it is the base pointer or
1622      // a non-instruction, we built a GEP we don't need. Zap it.
1623      if (OffsetPtr && OffsetPtr != OffsetBasePtr)
1624        if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) {
1625          assert(I->use_empty() && "Built a GEP with uses some how!");
1626          I->eraseFromParent();
1627        }
1628      OffsetPtr = P;
1629      OffsetBasePtr = Ptr;
1630      // If we also found a pointer of the right type, we're done.
1631      if (P->getType() == PointerTy)
1632        break;
1633    }
1634
1635    // Stash this pointer if we've found an i8*.
1636    if (Ptr->getType()->isIntegerTy(8)) {
1637      Int8Ptr = Ptr;
1638      Int8PtrOffset = Offset;
1639    }
1640
1641    // Peel off a layer of the pointer and update the offset appropriately.
1642    if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1643      Ptr = cast<Operator>(Ptr)->getOperand(0);
1644    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1645      if (GA->isInterposable())
1646        break;
1647      Ptr = GA->getAliasee();
1648    } else {
1649      break;
1650    }
1651    assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1652  } while (Visited.insert(Ptr).second);
1653
1654  if (!OffsetPtr) {
1655    if (!Int8Ptr) {
1656      Int8Ptr = IRB.CreateBitCast(
1657          Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()),
1658          NamePrefix + "sroa_raw_cast");
1659      Int8PtrOffset = Offset;
1660    }
1661
1662    OffsetPtr = Int8PtrOffset == 0
1663                    ? Int8Ptr
1664                    : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr,
1665                                            IRB.getInt(Int8PtrOffset),
1666                                            NamePrefix + "sroa_raw_idx");
1667  }
1668  Ptr = OffsetPtr;
1669
1670  // On the off chance we were targeting i8*, guard the bitcast here.
1671  if (cast<PointerType>(Ptr->getType()) != TargetPtrTy) {
1672    Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr,
1673                                                  TargetPtrTy,
1674                                                  NamePrefix + "sroa_cast");
1675  }
1676
1677  return Ptr;
1678}
1679
1680/// Compute the adjusted alignment for a load or store from an offset.
1681static unsigned getAdjustedAlignment(Instruction *I, uint64_t Offset,
1682                                     const DataLayout &DL) {
1683  unsigned Alignment;
1684  Type *Ty;
1685  if (auto *LI = dyn_cast<LoadInst>(I)) {
1686    Alignment = LI->getAlignment();
1687    Ty = LI->getType();
1688  } else if (auto *SI = dyn_cast<StoreInst>(I)) {
1689    Alignment = SI->getAlignment();
1690    Ty = SI->getValueOperand()->getType();
1691  } else {
1692    llvm_unreachable("Only loads and stores are allowed!");
1693  }
1694
1695  if (!Alignment)
1696    Alignment = DL.getABITypeAlignment(Ty);
1697
1698  return MinAlign(Alignment, Offset);
1699}
1700
1701/// Test whether we can convert a value from the old to the new type.
1702///
1703/// This predicate should be used to guard calls to convertValue in order to
1704/// ensure that we only try to convert viable values. The strategy is that we
1705/// will peel off single element struct and array wrappings to get to an
1706/// underlying value, and convert that value.
1707static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1708  if (OldTy == NewTy)
1709    return true;
1710
1711  // For integer types, we can't handle any bit-width differences. This would
1712  // break both vector conversions with extension and introduce endianness
1713  // issues when in conjunction with loads and stores.
1714  if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) {
1715    assert(cast<IntegerType>(OldTy)->getBitWidth() !=
1716               cast<IntegerType>(NewTy)->getBitWidth() &&
1717           "We can't have the same bitwidth for different int types");
1718    return false;
1719  }
1720
1721  if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
1722    return false;
1723  if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1724    return false;
1725
1726  // We can convert pointers to integers and vice-versa. Same for vectors
1727  // of pointers and integers.
1728  OldTy = OldTy->getScalarType();
1729  NewTy = NewTy->getScalarType();
1730  if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1731    if (NewTy->isPointerTy() && OldTy->isPointerTy()) {
1732      return cast<PointerType>(NewTy)->getPointerAddressSpace() ==
1733        cast<PointerType>(OldTy)->getPointerAddressSpace();
1734    }
1735
1736    // We can convert integers to integral pointers, but not to non-integral
1737    // pointers.
1738    if (OldTy->isIntegerTy())
1739      return !DL.isNonIntegralPointerType(NewTy);
1740
1741    // We can convert integral pointers to integers, but non-integral pointers
1742    // need to remain pointers.
1743    if (!DL.isNonIntegralPointerType(OldTy))
1744      return NewTy->isIntegerTy();
1745
1746    return false;
1747  }
1748
1749  return true;
1750}
1751
1752/// Generic routine to convert an SSA value to a value of a different
1753/// type.
1754///
1755/// This will try various different casting techniques, such as bitcasts,
1756/// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1757/// two types for viability with this routine.
1758static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1759                           Type *NewTy) {
1760  Type *OldTy = V->getType();
1761  assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
1762
1763  if (OldTy == NewTy)
1764    return V;
1765
1766  assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) &&
1767         "Integer types must be the exact same to convert.");
1768
1769  // See if we need inttoptr for this type pair. A cast involving both scalars
1770  // and vectors requires and additional bitcast.
1771  if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
1772    // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
1773    if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1774      return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1775                                NewTy);
1776
1777    // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
1778    if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1779      return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1780                                NewTy);
1781
1782    return IRB.CreateIntToPtr(V, NewTy);
1783  }
1784
1785  // See if we need ptrtoint for this type pair. A cast involving both scalars
1786  // and vectors requires and additional bitcast.
1787  if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) {
1788    // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
1789    if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1790      return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1791                               NewTy);
1792
1793    // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
1794    if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1795      return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1796                               NewTy);
1797
1798    return IRB.CreatePtrToInt(V, NewTy);
1799  }
1800
1801  return IRB.CreateBitCast(V, NewTy);
1802}
1803
1804/// Test whether the given slice use can be promoted to a vector.
1805///
1806/// This function is called to test each entry in a partition which is slated
1807/// for a single slice.
1808static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S,
1809                                            VectorType *Ty,
1810                                            uint64_t ElementSize,
1811                                            const DataLayout &DL) {
1812  // First validate the slice offsets.
1813  uint64_t BeginOffset =
1814      std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset();
1815  uint64_t BeginIndex = BeginOffset / ElementSize;
1816  if (BeginIndex * ElementSize != BeginOffset ||
1817      BeginIndex >= Ty->getNumElements())
1818    return false;
1819  uint64_t EndOffset =
1820      std::min(S.endOffset(), P.endOffset()) - P.beginOffset();
1821  uint64_t EndIndex = EndOffset / ElementSize;
1822  if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements())
1823    return false;
1824
1825  assert(EndIndex > BeginIndex && "Empty vector!");
1826  uint64_t NumElements = EndIndex - BeginIndex;
1827  Type *SliceTy = (NumElements == 1)
1828                      ? Ty->getElementType()
1829                      : VectorType::get(Ty->getElementType(), NumElements);
1830
1831  Type *SplitIntTy =
1832      Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
1833
1834  Use *U = S.getUse();
1835
1836  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1837    if (MI->isVolatile())
1838      return false;
1839    if (!S.isSplittable())
1840      return false; // Skip any unsplittable intrinsics.
1841  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
1842    if (!II->isLifetimeStartOrEnd())
1843      return false;
1844  } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
1845    // Disable vector promotion when there are loads or stores of an FCA.
1846    return false;
1847  } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1848    if (LI->isVolatile())
1849      return false;
1850    Type *LTy = LI->getType();
1851    if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1852      assert(LTy->isIntegerTy());
1853      LTy = SplitIntTy;
1854    }
1855    if (!canConvertValue(DL, SliceTy, LTy))
1856      return false;
1857  } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1858    if (SI->isVolatile())
1859      return false;
1860    Type *STy = SI->getValueOperand()->getType();
1861    if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1862      assert(STy->isIntegerTy());
1863      STy = SplitIntTy;
1864    }
1865    if (!canConvertValue(DL, STy, SliceTy))
1866      return false;
1867  } else {
1868    return false;
1869  }
1870
1871  return true;
1872}
1873
1874/// Test whether the given alloca partitioning and range of slices can be
1875/// promoted to a vector.
1876///
1877/// This is a quick test to check whether we can rewrite a particular alloca
1878/// partition (and its newly formed alloca) into a vector alloca with only
1879/// whole-vector loads and stores such that it could be promoted to a vector
1880/// SSA value. We only can ensure this for a limited set of operations, and we
1881/// don't want to do the rewrites unless we are confident that the result will
1882/// be promotable, so we have an early test here.
1883static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) {
1884  // Collect the candidate types for vector-based promotion. Also track whether
1885  // we have different element types.
1886  SmallVector<VectorType *, 4> CandidateTys;
1887  Type *CommonEltTy = nullptr;
1888  bool HaveCommonEltTy = true;
1889  auto CheckCandidateType = [&](Type *Ty) {
1890    if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1891      // Return if bitcast to vectors is different for total size in bits.
1892      if (!CandidateTys.empty()) {
1893        VectorType *V = CandidateTys[0];
1894        if (DL.getTypeSizeInBits(VTy) != DL.getTypeSizeInBits(V)) {
1895          CandidateTys.clear();
1896          return;
1897        }
1898      }
1899      CandidateTys.push_back(VTy);
1900      if (!CommonEltTy)
1901        CommonEltTy = VTy->getElementType();
1902      else if (CommonEltTy != VTy->getElementType())
1903        HaveCommonEltTy = false;
1904    }
1905  };
1906  // Consider any loads or stores that are the exact size of the slice.
1907  for (const Slice &S : P)
1908    if (S.beginOffset() == P.beginOffset() &&
1909        S.endOffset() == P.endOffset()) {
1910      if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser()))
1911        CheckCandidateType(LI->getType());
1912      else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser()))
1913        CheckCandidateType(SI->getValueOperand()->getType());
1914    }
1915
1916  // If we didn't find a vector type, nothing to do here.
1917  if (CandidateTys.empty())
1918    return nullptr;
1919
1920  // Remove non-integer vector types if we had multiple common element types.
1921  // FIXME: It'd be nice to replace them with integer vector types, but we can't
1922  // do that until all the backends are known to produce good code for all
1923  // integer vector types.
1924  if (!HaveCommonEltTy) {
1925    CandidateTys.erase(
1926        llvm::remove_if(CandidateTys,
1927                        [](VectorType *VTy) {
1928                          return !VTy->getElementType()->isIntegerTy();
1929                        }),
1930        CandidateTys.end());
1931
1932    // If there were no integer vector types, give up.
1933    if (CandidateTys.empty())
1934      return nullptr;
1935
1936    // Rank the remaining candidate vector types. This is easy because we know
1937    // they're all integer vectors. We sort by ascending number of elements.
1938    auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) {
1939      (void)DL;
1940      assert(DL.getTypeSizeInBits(RHSTy) == DL.getTypeSizeInBits(LHSTy) &&
1941             "Cannot have vector types of different sizes!");
1942      assert(RHSTy->getElementType()->isIntegerTy() &&
1943             "All non-integer types eliminated!");
1944      assert(LHSTy->getElementType()->isIntegerTy() &&
1945             "All non-integer types eliminated!");
1946      return RHSTy->getNumElements() < LHSTy->getNumElements();
1947    };
1948    llvm::sort(CandidateTys, RankVectorTypes);
1949    CandidateTys.erase(
1950        std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes),
1951        CandidateTys.end());
1952  } else {
1953// The only way to have the same element type in every vector type is to
1954// have the same vector type. Check that and remove all but one.
1955#ifndef NDEBUG
1956    for (VectorType *VTy : CandidateTys) {
1957      assert(VTy->getElementType() == CommonEltTy &&
1958             "Unaccounted for element type!");
1959      assert(VTy == CandidateTys[0] &&
1960             "Different vector types with the same element type!");
1961    }
1962#endif
1963    CandidateTys.resize(1);
1964  }
1965
1966  // Try each vector type, and return the one which works.
1967  auto CheckVectorTypeForPromotion = [&](VectorType *VTy) {
1968    uint64_t ElementSize = DL.getTypeSizeInBits(VTy->getElementType());
1969
1970    // While the definition of LLVM vectors is bitpacked, we don't support sizes
1971    // that aren't byte sized.
1972    if (ElementSize % 8)
1973      return false;
1974    assert((DL.getTypeSizeInBits(VTy) % 8) == 0 &&
1975           "vector size not a multiple of element size?");
1976    ElementSize /= 8;
1977
1978    for (const Slice &S : P)
1979      if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL))
1980        return false;
1981
1982    for (const Slice *S : P.splitSliceTails())
1983      if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL))
1984        return false;
1985
1986    return true;
1987  };
1988  for (VectorType *VTy : CandidateTys)
1989    if (CheckVectorTypeForPromotion(VTy))
1990      return VTy;
1991
1992  return nullptr;
1993}
1994
1995/// Test whether a slice of an alloca is valid for integer widening.
1996///
1997/// This implements the necessary checking for the \c isIntegerWideningViable
1998/// test below on a single slice of the alloca.
1999static bool isIntegerWideningViableForSlice(const Slice &S,
2000                                            uint64_t AllocBeginOffset,
2001                                            Type *AllocaTy,
2002                                            const DataLayout &DL,
2003                                            bool &WholeAllocaOp) {
2004  uint64_t Size = DL.getTypeStoreSize(AllocaTy);
2005
2006  uint64_t RelBegin = S.beginOffset() - AllocBeginOffset;
2007  uint64_t RelEnd = S.endOffset() - AllocBeginOffset;
2008
2009  // We can't reasonably handle cases where the load or store extends past
2010  // the end of the alloca's type and into its padding.
2011  if (RelEnd > Size)
2012    return false;
2013
2014  Use *U = S.getUse();
2015
2016  if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
2017    if (LI->isVolatile())
2018      return false;
2019    // We can't handle loads that extend past the allocated memory.
2020    if (DL.getTypeStoreSize(LI->getType()) > Size)
2021      return false;
2022    // So far, AllocaSliceRewriter does not support widening split slice tails
2023    // in rewriteIntegerLoad.
2024    if (S.beginOffset() < AllocBeginOffset)
2025      return false;
2026    // Note that we don't count vector loads or stores as whole-alloca
2027    // operations which enable integer widening because we would prefer to use
2028    // vector widening instead.
2029    if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size)
2030      WholeAllocaOp = true;
2031    if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
2032      if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
2033        return false;
2034    } else if (RelBegin != 0 || RelEnd != Size ||
2035               !canConvertValue(DL, AllocaTy, LI->getType())) {
2036      // Non-integer loads need to be convertible from the alloca type so that
2037      // they are promotable.
2038      return false;
2039    }
2040  } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
2041    Type *ValueTy = SI->getValueOperand()->getType();
2042    if (SI->isVolatile())
2043      return false;
2044    // We can't handle stores that extend past the allocated memory.
2045    if (DL.getTypeStoreSize(ValueTy) > Size)
2046      return false;
2047    // So far, AllocaSliceRewriter does not support widening split slice tails
2048    // in rewriteIntegerStore.
2049    if (S.beginOffset() < AllocBeginOffset)
2050      return false;
2051    // Note that we don't count vector loads or stores as whole-alloca
2052    // operations which enable integer widening because we would prefer to use
2053    // vector widening instead.
2054    if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size)
2055      WholeAllocaOp = true;
2056    if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
2057      if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
2058        return false;
2059    } else if (RelBegin != 0 || RelEnd != Size ||
2060               !canConvertValue(DL, ValueTy, AllocaTy)) {
2061      // Non-integer stores need to be convertible to the alloca type so that
2062      // they are promotable.
2063      return false;
2064    }
2065  } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
2066    if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
2067      return false;
2068    if (!S.isSplittable())
2069      return false; // Skip any unsplittable intrinsics.
2070  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
2071    if (!II->isLifetimeStartOrEnd())
2072      return false;
2073  } else {
2074    return false;
2075  }
2076
2077  return true;
2078}
2079
2080/// Test whether the given alloca partition's integer operations can be
2081/// widened to promotable ones.
2082///
2083/// This is a quick test to check whether we can rewrite the integer loads and
2084/// stores to a particular alloca into wider loads and stores and be able to
2085/// promote the resulting alloca.
2086static bool isIntegerWideningViable(Partition &P, Type *AllocaTy,
2087                                    const DataLayout &DL) {
2088  uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy);
2089  // Don't create integer types larger than the maximum bitwidth.
2090  if (SizeInBits > IntegerType::MAX_INT_BITS)
2091    return false;
2092
2093  // Don't try to handle allocas with bit-padding.
2094  if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy))
2095    return false;
2096
2097  // We need to ensure that an integer type with the appropriate bitwidth can
2098  // be converted to the alloca type, whatever that is. We don't want to force
2099  // the alloca itself to have an integer type if there is a more suitable one.
2100  Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
2101  if (!canConvertValue(DL, AllocaTy, IntTy) ||
2102      !canConvertValue(DL, IntTy, AllocaTy))
2103    return false;
2104
2105  // While examining uses, we ensure that the alloca has a covering load or
2106  // store. We don't want to widen the integer operations only to fail to
2107  // promote due to some other unsplittable entry (which we may make splittable
2108  // later). However, if there are only splittable uses, go ahead and assume
2109  // that we cover the alloca.
2110  // FIXME: We shouldn't consider split slices that happen to start in the
2111  // partition here...
2112  bool WholeAllocaOp =
2113      P.begin() != P.end() ? false : DL.isLegalInteger(SizeInBits);
2114
2115  for (const Slice &S : P)
2116    if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL,
2117                                         WholeAllocaOp))
2118      return false;
2119
2120  for (const Slice *S : P.splitSliceTails())
2121    if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL,
2122                                         WholeAllocaOp))
2123      return false;
2124
2125  return WholeAllocaOp;
2126}
2127
2128static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
2129                             IntegerType *Ty, uint64_t Offset,
2130                             const Twine &Name) {
2131  LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2132  IntegerType *IntTy = cast<IntegerType>(V->getType());
2133  assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2134         "Element extends past full value");
2135  uint64_t ShAmt = 8 * Offset;
2136  if (DL.isBigEndian())
2137    ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
2138  if (ShAmt) {
2139    V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
2140    LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2141  }
2142  assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2143         "Cannot extract to a larger integer!");
2144  if (Ty != IntTy) {
2145    V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
2146    LLVM_DEBUG(dbgs() << "     trunced: " << *V << "\n");
2147  }
2148  return V;
2149}
2150
2151static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
2152                            Value *V, uint64_t Offset, const Twine &Name) {
2153  IntegerType *IntTy = cast<IntegerType>(Old->getType());
2154  IntegerType *Ty = cast<IntegerType>(V->getType());
2155  assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2156         "Cannot insert a larger integer!");
2157  LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2158  if (Ty != IntTy) {
2159    V = IRB.CreateZExt(V, IntTy, Name + ".ext");
2160    LLVM_DEBUG(dbgs() << "    extended: " << *V << "\n");
2161  }
2162  assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2163         "Element store outside of alloca store");
2164  uint64_t ShAmt = 8 * Offset;
2165  if (DL.isBigEndian())
2166    ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
2167  if (ShAmt) {
2168    V = IRB.CreateShl(V, ShAmt, Name + ".shift");
2169    LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2170  }
2171
2172  if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
2173    APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
2174    Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
2175    LLVM_DEBUG(dbgs() << "      masked: " << *Old << "\n");
2176    V = IRB.CreateOr(Old, V, Name + ".insert");
2177    LLVM_DEBUG(dbgs() << "    inserted: " << *V << "\n");
2178  }
2179  return V;
2180}
2181
2182static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex,
2183                            unsigned EndIndex, const Twine &Name) {
2184  VectorType *VecTy = cast<VectorType>(V->getType());
2185  unsigned NumElements = EndIndex - BeginIndex;
2186  assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2187
2188  if (NumElements == VecTy->getNumElements())
2189    return V;
2190
2191  if (NumElements == 1) {
2192    V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
2193                                 Name + ".extract");
2194    LLVM_DEBUG(dbgs() << "     extract: " << *V << "\n");
2195    return V;
2196  }
2197
2198  SmallVector<Constant *, 8> Mask;
2199  Mask.reserve(NumElements);
2200  for (unsigned i = BeginIndex; i != EndIndex; ++i)
2201    Mask.push_back(IRB.getInt32(i));
2202  V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2203                              ConstantVector::get(Mask), Name + ".extract");
2204  LLVM_DEBUG(dbgs() << "     shuffle: " << *V << "\n");
2205  return V;
2206}
2207
2208static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
2209                           unsigned BeginIndex, const Twine &Name) {
2210  VectorType *VecTy = cast<VectorType>(Old->getType());
2211  assert(VecTy && "Can only insert a vector into a vector");
2212
2213  VectorType *Ty = dyn_cast<VectorType>(V->getType());
2214  if (!Ty) {
2215    // Single element to insert.
2216    V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
2217                                Name + ".insert");
2218    LLVM_DEBUG(dbgs() << "     insert: " << *V << "\n");
2219    return V;
2220  }
2221
2222  assert(Ty->getNumElements() <= VecTy->getNumElements() &&
2223         "Too many elements!");
2224  if (Ty->getNumElements() == VecTy->getNumElements()) {
2225    assert(V->getType() == VecTy && "Vector type mismatch");
2226    return V;
2227  }
2228  unsigned EndIndex = BeginIndex + Ty->getNumElements();
2229
2230  // When inserting a smaller vector into the larger to store, we first
2231  // use a shuffle vector to widen it with undef elements, and then
2232  // a second shuffle vector to select between the loaded vector and the
2233  // incoming vector.
2234  SmallVector<Constant *, 8> Mask;
2235  Mask.reserve(VecTy->getNumElements());
2236  for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2237    if (i >= BeginIndex && i < EndIndex)
2238      Mask.push_back(IRB.getInt32(i - BeginIndex));
2239    else
2240      Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
2241  V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2242                              ConstantVector::get(Mask), Name + ".expand");
2243  LLVM_DEBUG(dbgs() << "    shuffle: " << *V << "\n");
2244
2245  Mask.clear();
2246  for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2247    Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
2248
2249  V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend");
2250
2251  LLVM_DEBUG(dbgs() << "    blend: " << *V << "\n");
2252  return V;
2253}
2254
2255/// Visitor to rewrite instructions using p particular slice of an alloca
2256/// to use a new alloca.
2257///
2258/// Also implements the rewriting to vector-based accesses when the partition
2259/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2260/// lives here.
2261class llvm::sroa::AllocaSliceRewriter
2262    : public InstVisitor<AllocaSliceRewriter, bool> {
2263  // Befriend the base class so it can delegate to private visit methods.
2264  friend class InstVisitor<AllocaSliceRewriter, bool>;
2265
2266  using Base = InstVisitor<AllocaSliceRewriter, bool>;
2267
2268  const DataLayout &DL;
2269  AllocaSlices &AS;
2270  SROA &Pass;
2271  AllocaInst &OldAI, &NewAI;
2272  const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2273  Type *NewAllocaTy;
2274
2275  // This is a convenience and flag variable that will be null unless the new
2276  // alloca's integer operations should be widened to this integer type due to
2277  // passing isIntegerWideningViable above. If it is non-null, the desired
2278  // integer type will be stored here for easy access during rewriting.
2279  IntegerType *IntTy;
2280
2281  // If we are rewriting an alloca partition which can be written as pure
2282  // vector operations, we stash extra information here. When VecTy is
2283  // non-null, we have some strict guarantees about the rewritten alloca:
2284  //   - The new alloca is exactly the size of the vector type here.
2285  //   - The accesses all either map to the entire vector or to a single
2286  //     element.
2287  //   - The set of accessing instructions is only one of those handled above
2288  //     in isVectorPromotionViable. Generally these are the same access kinds
2289  //     which are promotable via mem2reg.
2290  VectorType *VecTy;
2291  Type *ElementTy;
2292  uint64_t ElementSize;
2293
2294  // The original offset of the slice currently being rewritten relative to
2295  // the original alloca.
2296  uint64_t BeginOffset = 0;
2297  uint64_t EndOffset = 0;
2298
2299  // The new offsets of the slice currently being rewritten relative to the
2300  // original alloca.
2301  uint64_t NewBeginOffset, NewEndOffset;
2302
2303  uint64_t SliceSize;
2304  bool IsSplittable = false;
2305  bool IsSplit = false;
2306  Use *OldUse = nullptr;
2307  Instruction *OldPtr = nullptr;
2308
2309  // Track post-rewrite users which are PHI nodes and Selects.
2310  SmallSetVector<PHINode *, 8> &PHIUsers;
2311  SmallSetVector<SelectInst *, 8> &SelectUsers;
2312
2313  // Utility IR builder, whose name prefix is setup for each visited use, and
2314  // the insertion point is set to point to the user.
2315  IRBuilderTy IRB;
2316
2317public:
2318  AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass,
2319                      AllocaInst &OldAI, AllocaInst &NewAI,
2320                      uint64_t NewAllocaBeginOffset,
2321                      uint64_t NewAllocaEndOffset, bool IsIntegerPromotable,
2322                      VectorType *PromotableVecTy,
2323                      SmallSetVector<PHINode *, 8> &PHIUsers,
2324                      SmallSetVector<SelectInst *, 8> &SelectUsers)
2325      : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
2326        NewAllocaBeginOffset(NewAllocaBeginOffset),
2327        NewAllocaEndOffset(NewAllocaEndOffset),
2328        NewAllocaTy(NewAI.getAllocatedType()),
2329        IntTy(IsIntegerPromotable
2330                  ? Type::getIntNTy(
2331                        NewAI.getContext(),
2332                        DL.getTypeSizeInBits(NewAI.getAllocatedType()))
2333                  : nullptr),
2334        VecTy(PromotableVecTy),
2335        ElementTy(VecTy ? VecTy->getElementType() : nullptr),
2336        ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0),
2337        PHIUsers(PHIUsers), SelectUsers(SelectUsers),
2338        IRB(NewAI.getContext(), ConstantFolder()) {
2339    if (VecTy) {
2340      assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 &&
2341             "Only multiple-of-8 sized vector elements are viable");
2342      ++NumVectorized;
2343    }
2344    assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy));
2345  }
2346
2347  bool visit(AllocaSlices::const_iterator I) {
2348    bool CanSROA = true;
2349    BeginOffset = I->beginOffset();
2350    EndOffset = I->endOffset();
2351    IsSplittable = I->isSplittable();
2352    IsSplit =
2353        BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
2354    LLVM_DEBUG(dbgs() << "  rewriting " << (IsSplit ? "split " : ""));
2355    LLVM_DEBUG(AS.printSlice(dbgs(), I, ""));
2356    LLVM_DEBUG(dbgs() << "\n");
2357
2358    // Compute the intersecting offset range.
2359    assert(BeginOffset < NewAllocaEndOffset);
2360    assert(EndOffset > NewAllocaBeginOffset);
2361    NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2362    NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2363
2364    SliceSize = NewEndOffset - NewBeginOffset;
2365
2366    OldUse = I->getUse();
2367    OldPtr = cast<Instruction>(OldUse->get());
2368
2369    Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
2370    IRB.SetInsertPoint(OldUserI);
2371    IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
2372    IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
2373
2374    CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
2375    if (VecTy || IntTy)
2376      assert(CanSROA);
2377    return CanSROA;
2378  }
2379
2380private:
2381  // Make sure the other visit overloads are visible.
2382  using Base::visit;
2383
2384  // Every instruction which can end up as a user must have a rewrite rule.
2385  bool visitInstruction(Instruction &I) {
2386    LLVM_DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
2387    llvm_unreachable("No rewrite rule for this instruction!");
2388  }
2389
2390  Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) {
2391    // Note that the offset computation can use BeginOffset or NewBeginOffset
2392    // interchangeably for unsplit slices.
2393    assert(IsSplit || BeginOffset == NewBeginOffset);
2394    uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2395
2396#ifndef NDEBUG
2397    StringRef OldName = OldPtr->getName();
2398    // Skip through the last '.sroa.' component of the name.
2399    size_t LastSROAPrefix = OldName.rfind(".sroa.");
2400    if (LastSROAPrefix != StringRef::npos) {
2401      OldName = OldName.substr(LastSROAPrefix + strlen(".sroa."));
2402      // Look for an SROA slice index.
2403      size_t IndexEnd = OldName.find_first_not_of("0123456789");
2404      if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') {
2405        // Strip the index and look for the offset.
2406        OldName = OldName.substr(IndexEnd + 1);
2407        size_t OffsetEnd = OldName.find_first_not_of("0123456789");
2408        if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.')
2409          // Strip the offset.
2410          OldName = OldName.substr(OffsetEnd + 1);
2411      }
2412    }
2413    // Strip any SROA suffixes as well.
2414    OldName = OldName.substr(0, OldName.find(".sroa_"));
2415#endif
2416
2417    return getAdjustedPtr(IRB, DL, &NewAI,
2418                          APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset),
2419                          PointerTy,
2420#ifndef NDEBUG
2421                          Twine(OldName) + "."
2422#else
2423                          Twine()
2424#endif
2425                          );
2426  }
2427
2428  /// Compute suitable alignment to access this slice of the *new*
2429  /// alloca.
2430  ///
2431  /// You can optionally pass a type to this routine and if that type's ABI
2432  /// alignment is itself suitable, this will return zero.
2433  unsigned getSliceAlign(Type *Ty = nullptr) {
2434    unsigned NewAIAlign = NewAI.getAlignment();
2435    if (!NewAIAlign)
2436      NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType());
2437    unsigned Align =
2438        MinAlign(NewAIAlign, NewBeginOffset - NewAllocaBeginOffset);
2439    return (Ty && Align == DL.getABITypeAlignment(Ty)) ? 0 : Align;
2440  }
2441
2442  unsigned getIndex(uint64_t Offset) {
2443    assert(VecTy && "Can only call getIndex when rewriting a vector");
2444    uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2445    assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2446    uint32_t Index = RelOffset / ElementSize;
2447    assert(Index * ElementSize == RelOffset);
2448    return Index;
2449  }
2450
2451  void deleteIfTriviallyDead(Value *V) {
2452    Instruction *I = cast<Instruction>(V);
2453    if (isInstructionTriviallyDead(I))
2454      Pass.DeadInsts.insert(I);
2455  }
2456
2457  Value *rewriteVectorizedLoadInst() {
2458    unsigned BeginIndex = getIndex(NewBeginOffset);
2459    unsigned EndIndex = getIndex(NewEndOffset);
2460    assert(EndIndex > BeginIndex && "Empty vector!");
2461
2462    Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2463                                     NewAI.getAlignment(), "load");
2464    return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
2465  }
2466
2467  Value *rewriteIntegerLoad(LoadInst &LI) {
2468    assert(IntTy && "We cannot insert an integer to the alloca");
2469    assert(!LI.isVolatile());
2470    Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2471                                     NewAI.getAlignment(), "load");
2472    V = convertValue(DL, IRB, V, IntTy);
2473    assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2474    uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2475    if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) {
2476      IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8);
2477      V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract");
2478    }
2479    // It is possible that the extracted type is not the load type. This
2480    // happens if there is a load past the end of the alloca, and as
2481    // a consequence the slice is narrower but still a candidate for integer
2482    // lowering. To handle this case, we just zero extend the extracted
2483    // integer.
2484    assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 &&
2485           "Can only handle an extract for an overly wide load");
2486    if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8)
2487      V = IRB.CreateZExt(V, LI.getType());
2488    return V;
2489  }
2490
2491  bool visitLoadInst(LoadInst &LI) {
2492    LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
2493    Value *OldOp = LI.getOperand(0);
2494    assert(OldOp == OldPtr);
2495
2496    AAMDNodes AATags;
2497    LI.getAAMetadata(AATags);
2498
2499    unsigned AS = LI.getPointerAddressSpace();
2500
2501    Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8)
2502                             : LI.getType();
2503    const bool IsLoadPastEnd = DL.getTypeStoreSize(TargetTy) > SliceSize;
2504    bool IsPtrAdjusted = false;
2505    Value *V;
2506    if (VecTy) {
2507      V = rewriteVectorizedLoadInst();
2508    } else if (IntTy && LI.getType()->isIntegerTy()) {
2509      V = rewriteIntegerLoad(LI);
2510    } else if (NewBeginOffset == NewAllocaBeginOffset &&
2511               NewEndOffset == NewAllocaEndOffset &&
2512               (canConvertValue(DL, NewAllocaTy, TargetTy) ||
2513                (IsLoadPastEnd && NewAllocaTy->isIntegerTy() &&
2514                 TargetTy->isIntegerTy()))) {
2515      LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2516                                              NewAI.getAlignment(),
2517                                              LI.isVolatile(), LI.getName());
2518      if (AATags)
2519        NewLI->setAAMetadata(AATags);
2520      if (LI.isVolatile())
2521        NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2522
2523      // Any !nonnull metadata or !range metadata on the old load is also valid
2524      // on the new load. This is even true in some cases even when the loads
2525      // are different types, for example by mapping !nonnull metadata to
2526      // !range metadata by modeling the null pointer constant converted to the
2527      // integer type.
2528      // FIXME: Add support for range metadata here. Currently the utilities
2529      // for this don't propagate range metadata in trivial cases from one
2530      // integer load to another, don't handle non-addrspace-0 null pointers
2531      // correctly, and don't have any support for mapping ranges as the
2532      // integer type becomes winder or narrower.
2533      if (MDNode *N = LI.getMetadata(LLVMContext::MD_nonnull))
2534        copyNonnullMetadata(LI, N, *NewLI);
2535
2536      // Try to preserve nonnull metadata
2537      V = NewLI;
2538
2539      // If this is an integer load past the end of the slice (which means the
2540      // bytes outside the slice are undef or this load is dead) just forcibly
2541      // fix the integer size with correct handling of endianness.
2542      if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2543        if (auto *TITy = dyn_cast<IntegerType>(TargetTy))
2544          if (AITy->getBitWidth() < TITy->getBitWidth()) {
2545            V = IRB.CreateZExt(V, TITy, "load.ext");
2546            if (DL.isBigEndian())
2547              V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(),
2548                                "endian_shift");
2549          }
2550    } else {
2551      Type *LTy = TargetTy->getPointerTo(AS);
2552      LoadInst *NewLI = IRB.CreateAlignedLoad(
2553          TargetTy, getNewAllocaSlicePtr(IRB, LTy), getSliceAlign(TargetTy),
2554          LI.isVolatile(), LI.getName());
2555      if (AATags)
2556        NewLI->setAAMetadata(AATags);
2557      if (LI.isVolatile())
2558        NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2559
2560      V = NewLI;
2561      IsPtrAdjusted = true;
2562    }
2563    V = convertValue(DL, IRB, V, TargetTy);
2564
2565    if (IsSplit) {
2566      assert(!LI.isVolatile());
2567      assert(LI.getType()->isIntegerTy() &&
2568             "Only integer type loads and stores are split");
2569      assert(SliceSize < DL.getTypeStoreSize(LI.getType()) &&
2570             "Split load isn't smaller than original load");
2571      assert(DL.typeSizeEqualsStoreSize(LI.getType()) &&
2572             "Non-byte-multiple bit width");
2573      // Move the insertion point just past the load so that we can refer to it.
2574      IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI)));
2575      // Create a placeholder value with the same type as LI to use as the
2576      // basis for the new value. This allows us to replace the uses of LI with
2577      // the computed value, and then replace the placeholder with LI, leaving
2578      // LI only used for this computation.
2579      Value *Placeholder = new LoadInst(
2580          LI.getType(), UndefValue::get(LI.getType()->getPointerTo(AS)));
2581      V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset,
2582                        "insert");
2583      LI.replaceAllUsesWith(V);
2584      Placeholder->replaceAllUsesWith(&LI);
2585      Placeholder->deleteValue();
2586    } else {
2587      LI.replaceAllUsesWith(V);
2588    }
2589
2590    Pass.DeadInsts.insert(&LI);
2591    deleteIfTriviallyDead(OldOp);
2592    LLVM_DEBUG(dbgs() << "          to: " << *V << "\n");
2593    return !LI.isVolatile() && !IsPtrAdjusted;
2594  }
2595
2596  bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
2597                                  AAMDNodes AATags) {
2598    if (V->getType() != VecTy) {
2599      unsigned BeginIndex = getIndex(NewBeginOffset);
2600      unsigned EndIndex = getIndex(NewEndOffset);
2601      assert(EndIndex > BeginIndex && "Empty vector!");
2602      unsigned NumElements = EndIndex - BeginIndex;
2603      assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2604      Type *SliceTy = (NumElements == 1)
2605                          ? ElementTy
2606                          : VectorType::get(ElementTy, NumElements);
2607      if (V->getType() != SliceTy)
2608        V = convertValue(DL, IRB, V, SliceTy);
2609
2610      // Mix in the existing elements.
2611      Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2612                                         NewAI.getAlignment(), "load");
2613      V = insertVector(IRB, Old, V, BeginIndex, "vec");
2614    }
2615    StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2616    if (AATags)
2617      Store->setAAMetadata(AATags);
2618    Pass.DeadInsts.insert(&SI);
2619
2620    LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
2621    return true;
2622  }
2623
2624  bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) {
2625    assert(IntTy && "We cannot extract an integer from the alloca");
2626    assert(!SI.isVolatile());
2627    if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
2628      Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2629                                         NewAI.getAlignment(), "oldload");
2630      Old = convertValue(DL, IRB, Old, IntTy);
2631      assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2632      uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2633      V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert");
2634    }
2635    V = convertValue(DL, IRB, V, NewAllocaTy);
2636    StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2637    Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2638                             LLVMContext::MD_access_group});
2639    if (AATags)
2640      Store->setAAMetadata(AATags);
2641    Pass.DeadInsts.insert(&SI);
2642    LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
2643    return true;
2644  }
2645
2646  bool visitStoreInst(StoreInst &SI) {
2647    LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
2648    Value *OldOp = SI.getOperand(1);
2649    assert(OldOp == OldPtr);
2650
2651    AAMDNodes AATags;
2652    SI.getAAMetadata(AATags);
2653
2654    Value *V = SI.getValueOperand();
2655
2656    // Strip all inbounds GEPs and pointer casts to try to dig out any root
2657    // alloca that should be re-examined after promoting this alloca.
2658    if (V->getType()->isPointerTy())
2659      if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
2660        Pass.PostPromotionWorklist.insert(AI);
2661
2662    if (SliceSize < DL.getTypeStoreSize(V->getType())) {
2663      assert(!SI.isVolatile());
2664      assert(V->getType()->isIntegerTy() &&
2665             "Only integer type loads and stores are split");
2666      assert(DL.typeSizeEqualsStoreSize(V->getType()) &&
2667             "Non-byte-multiple bit width");
2668      IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
2669      V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset,
2670                         "extract");
2671    }
2672
2673    if (VecTy)
2674      return rewriteVectorizedStoreInst(V, SI, OldOp, AATags);
2675    if (IntTy && V->getType()->isIntegerTy())
2676      return rewriteIntegerStore(V, SI, AATags);
2677
2678    const bool IsStorePastEnd = DL.getTypeStoreSize(V->getType()) > SliceSize;
2679    StoreInst *NewSI;
2680    if (NewBeginOffset == NewAllocaBeginOffset &&
2681        NewEndOffset == NewAllocaEndOffset &&
2682        (canConvertValue(DL, V->getType(), NewAllocaTy) ||
2683         (IsStorePastEnd && NewAllocaTy->isIntegerTy() &&
2684          V->getType()->isIntegerTy()))) {
2685      // If this is an integer store past the end of slice (and thus the bytes
2686      // past that point are irrelevant or this is unreachable), truncate the
2687      // value prior to storing.
2688      if (auto *VITy = dyn_cast<IntegerType>(V->getType()))
2689        if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2690          if (VITy->getBitWidth() > AITy->getBitWidth()) {
2691            if (DL.isBigEndian())
2692              V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(),
2693                                 "endian_shift");
2694            V = IRB.CreateTrunc(V, AITy, "load.trunc");
2695          }
2696
2697      V = convertValue(DL, IRB, V, NewAllocaTy);
2698      NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2699                                     SI.isVolatile());
2700    } else {
2701      unsigned AS = SI.getPointerAddressSpace();
2702      Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS));
2703      NewSI = IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(V->getType()),
2704                                     SI.isVolatile());
2705    }
2706    NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2707                             LLVMContext::MD_access_group});
2708    if (AATags)
2709      NewSI->setAAMetadata(AATags);
2710    if (SI.isVolatile())
2711      NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
2712    Pass.DeadInsts.insert(&SI);
2713    deleteIfTriviallyDead(OldOp);
2714
2715    LLVM_DEBUG(dbgs() << "          to: " << *NewSI << "\n");
2716    return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
2717  }
2718
2719  /// Compute an integer value from splatting an i8 across the given
2720  /// number of bytes.
2721  ///
2722  /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2723  /// call this routine.
2724  /// FIXME: Heed the advice above.
2725  ///
2726  /// \param V The i8 value to splat.
2727  /// \param Size The number of bytes in the output (assuming i8 is one byte)
2728  Value *getIntegerSplat(Value *V, unsigned Size) {
2729    assert(Size > 0 && "Expected a positive number of bytes.");
2730    IntegerType *VTy = cast<IntegerType>(V->getType());
2731    assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
2732    if (Size == 1)
2733      return V;
2734
2735    Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8);
2736    V = IRB.CreateMul(
2737        IRB.CreateZExt(V, SplatIntTy, "zext"),
2738        ConstantExpr::getUDiv(
2739            Constant::getAllOnesValue(SplatIntTy),
2740            ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()),
2741                                  SplatIntTy)),
2742        "isplat");
2743    return V;
2744  }
2745
2746  /// Compute a vector splat for a given element value.
2747  Value *getVectorSplat(Value *V, unsigned NumElements) {
2748    V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
2749    LLVM_DEBUG(dbgs() << "       splat: " << *V << "\n");
2750    return V;
2751  }
2752
2753  bool visitMemSetInst(MemSetInst &II) {
2754    LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
2755    assert(II.getRawDest() == OldPtr);
2756
2757    AAMDNodes AATags;
2758    II.getAAMetadata(AATags);
2759
2760    // If the memset has a variable size, it cannot be split, just adjust the
2761    // pointer to the new alloca.
2762    if (!isa<Constant>(II.getLength())) {
2763      assert(!IsSplit);
2764      assert(NewBeginOffset == BeginOffset);
2765      II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType()));
2766      II.setDestAlignment(getSliceAlign());
2767
2768      deleteIfTriviallyDead(OldPtr);
2769      return false;
2770    }
2771
2772    // Record this instruction for deletion.
2773    Pass.DeadInsts.insert(&II);
2774
2775    Type *AllocaTy = NewAI.getAllocatedType();
2776    Type *ScalarTy = AllocaTy->getScalarType();
2777
2778    const bool CanContinue = [&]() {
2779      if (VecTy || IntTy)
2780        return true;
2781      if (BeginOffset > NewAllocaBeginOffset ||
2782          EndOffset < NewAllocaEndOffset)
2783        return false;
2784      auto *C = cast<ConstantInt>(II.getLength());
2785      if (C->getBitWidth() > 64)
2786        return false;
2787      const auto Len = C->getZExtValue();
2788      auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext());
2789      auto *SrcTy = VectorType::get(Int8Ty, Len);
2790      return canConvertValue(DL, SrcTy, AllocaTy) &&
2791        DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy));
2792    }();
2793
2794    // If this doesn't map cleanly onto the alloca type, and that type isn't
2795    // a single value type, just emit a memset.
2796    if (!CanContinue) {
2797      Type *SizeTy = II.getLength()->getType();
2798      Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2799      CallInst *New = IRB.CreateMemSet(
2800          getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size,
2801          getSliceAlign(), II.isVolatile());
2802      if (AATags)
2803        New->setAAMetadata(AATags);
2804      LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
2805      return false;
2806    }
2807
2808    // If we can represent this as a simple value, we have to build the actual
2809    // value to store, which requires expanding the byte present in memset to
2810    // a sensible representation for the alloca type. This is essentially
2811    // splatting the byte to a sufficiently wide integer, splatting it across
2812    // any desired vector width, and bitcasting to the final type.
2813    Value *V;
2814
2815    if (VecTy) {
2816      // If this is a memset of a vectorized alloca, insert it.
2817      assert(ElementTy == ScalarTy);
2818
2819      unsigned BeginIndex = getIndex(NewBeginOffset);
2820      unsigned EndIndex = getIndex(NewEndOffset);
2821      assert(EndIndex > BeginIndex && "Empty vector!");
2822      unsigned NumElements = EndIndex - BeginIndex;
2823      assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2824
2825      Value *Splat =
2826          getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8);
2827      Splat = convertValue(DL, IRB, Splat, ElementTy);
2828      if (NumElements > 1)
2829        Splat = getVectorSplat(Splat, NumElements);
2830
2831      Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2832                                         NewAI.getAlignment(), "oldload");
2833      V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
2834    } else if (IntTy) {
2835      // If this is a memset on an alloca where we can widen stores, insert the
2836      // set integer.
2837      assert(!II.isVolatile());
2838
2839      uint64_t Size = NewEndOffset - NewBeginOffset;
2840      V = getIntegerSplat(II.getValue(), Size);
2841
2842      if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
2843                    EndOffset != NewAllocaBeginOffset)) {
2844        Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2845                                           NewAI.getAlignment(), "oldload");
2846        Old = convertValue(DL, IRB, Old, IntTy);
2847        uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2848        V = insertInteger(DL, IRB, Old, V, Offset, "insert");
2849      } else {
2850        assert(V->getType() == IntTy &&
2851               "Wrong type for an alloca wide integer!");
2852      }
2853      V = convertValue(DL, IRB, V, AllocaTy);
2854    } else {
2855      // Established these invariants above.
2856      assert(NewBeginOffset == NewAllocaBeginOffset);
2857      assert(NewEndOffset == NewAllocaEndOffset);
2858
2859      V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8);
2860      if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
2861        V = getVectorSplat(V, AllocaVecTy->getNumElements());
2862
2863      V = convertValue(DL, IRB, V, AllocaTy);
2864    }
2865
2866    StoreInst *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2867                                            II.isVolatile());
2868    if (AATags)
2869      New->setAAMetadata(AATags);
2870    LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
2871    return !II.isVolatile();
2872  }
2873
2874  bool visitMemTransferInst(MemTransferInst &II) {
2875    // Rewriting of memory transfer instructions can be a bit tricky. We break
2876    // them into two categories: split intrinsics and unsplit intrinsics.
2877
2878    LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
2879
2880    AAMDNodes AATags;
2881    II.getAAMetadata(AATags);
2882
2883    bool IsDest = &II.getRawDestUse() == OldUse;
2884    assert((IsDest && II.getRawDest() == OldPtr) ||
2885           (!IsDest && II.getRawSource() == OldPtr));
2886
2887    unsigned SliceAlign = getSliceAlign();
2888
2889    // For unsplit intrinsics, we simply modify the source and destination
2890    // pointers in place. This isn't just an optimization, it is a matter of
2891    // correctness. With unsplit intrinsics we may be dealing with transfers
2892    // within a single alloca before SROA ran, or with transfers that have
2893    // a variable length. We may also be dealing with memmove instead of
2894    // memcpy, and so simply updating the pointers is the necessary for us to
2895    // update both source and dest of a single call.
2896    if (!IsSplittable) {
2897      Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2898      if (IsDest) {
2899        II.setDest(AdjustedPtr);
2900        II.setDestAlignment(SliceAlign);
2901      }
2902      else {
2903        II.setSource(AdjustedPtr);
2904        II.setSourceAlignment(SliceAlign);
2905      }
2906
2907      LLVM_DEBUG(dbgs() << "          to: " << II << "\n");
2908      deleteIfTriviallyDead(OldPtr);
2909      return false;
2910    }
2911    // For split transfer intrinsics we have an incredibly useful assurance:
2912    // the source and destination do not reside within the same alloca, and at
2913    // least one of them does not escape. This means that we can replace
2914    // memmove with memcpy, and we don't need to worry about all manner of
2915    // downsides to splitting and transforming the operations.
2916
2917    // If this doesn't map cleanly onto the alloca type, and that type isn't
2918    // a single value type, just emit a memcpy.
2919    bool EmitMemCpy =
2920        !VecTy && !IntTy &&
2921        (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
2922         SliceSize != DL.getTypeStoreSize(NewAI.getAllocatedType()) ||
2923         !NewAI.getAllocatedType()->isSingleValueType());
2924
2925    // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2926    // size hasn't been shrunk based on analysis of the viable range, this is
2927    // a no-op.
2928    if (EmitMemCpy && &OldAI == &NewAI) {
2929      // Ensure the start lines up.
2930      assert(NewBeginOffset == BeginOffset);
2931
2932      // Rewrite the size as needed.
2933      if (NewEndOffset != EndOffset)
2934        II.setLength(ConstantInt::get(II.getLength()->getType(),
2935                                      NewEndOffset - NewBeginOffset));
2936      return false;
2937    }
2938    // Record this instruction for deletion.
2939    Pass.DeadInsts.insert(&II);
2940
2941    // Strip all inbounds GEPs and pointer casts to try to dig out any root
2942    // alloca that should be re-examined after rewriting this instruction.
2943    Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2944    if (AllocaInst *AI =
2945            dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
2946      assert(AI != &OldAI && AI != &NewAI &&
2947             "Splittable transfers cannot reach the same alloca on both ends.");
2948      Pass.Worklist.insert(AI);
2949    }
2950
2951    Type *OtherPtrTy = OtherPtr->getType();
2952    unsigned OtherAS = OtherPtrTy->getPointerAddressSpace();
2953
2954    // Compute the relative offset for the other pointer within the transfer.
2955    unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS);
2956    APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset);
2957    unsigned OtherAlign =
2958      IsDest ? II.getSourceAlignment() : II.getDestAlignment();
2959    OtherAlign =  MinAlign(OtherAlign ? OtherAlign : 1,
2960                           OtherOffset.zextOrTrunc(64).getZExtValue());
2961
2962    if (EmitMemCpy) {
2963      // Compute the other pointer, folding as much as possible to produce
2964      // a single, simple GEP in most cases.
2965      OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
2966                                OtherPtr->getName() + ".");
2967
2968      Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2969      Type *SizeTy = II.getLength()->getType();
2970      Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2971
2972      Value *DestPtr, *SrcPtr;
2973      unsigned DestAlign, SrcAlign;
2974      // Note: IsDest is true iff we're copying into the new alloca slice
2975      if (IsDest) {
2976        DestPtr = OurPtr;
2977        DestAlign = SliceAlign;
2978        SrcPtr = OtherPtr;
2979        SrcAlign = OtherAlign;
2980      } else {
2981        DestPtr = OtherPtr;
2982        DestAlign = OtherAlign;
2983        SrcPtr = OurPtr;
2984        SrcAlign = SliceAlign;
2985      }
2986      CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign,
2987                                       Size, II.isVolatile());
2988      if (AATags)
2989        New->setAAMetadata(AATags);
2990      LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
2991      return false;
2992    }
2993
2994    bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
2995                         NewEndOffset == NewAllocaEndOffset;
2996    uint64_t Size = NewEndOffset - NewBeginOffset;
2997    unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
2998    unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
2999    unsigned NumElements = EndIndex - BeginIndex;
3000    IntegerType *SubIntTy =
3001        IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr;
3002
3003    // Reset the other pointer type to match the register type we're going to
3004    // use, but using the address space of the original other pointer.
3005    Type *OtherTy;
3006    if (VecTy && !IsWholeAlloca) {
3007      if (NumElements == 1)
3008        OtherTy = VecTy->getElementType();
3009      else
3010        OtherTy = VectorType::get(VecTy->getElementType(), NumElements);
3011    } else if (IntTy && !IsWholeAlloca) {
3012      OtherTy = SubIntTy;
3013    } else {
3014      OtherTy = NewAllocaTy;
3015    }
3016    OtherPtrTy = OtherTy->getPointerTo(OtherAS);
3017
3018    Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
3019                                   OtherPtr->getName() + ".");
3020    unsigned SrcAlign = OtherAlign;
3021    Value *DstPtr = &NewAI;
3022    unsigned DstAlign = SliceAlign;
3023    if (!IsDest) {
3024      std::swap(SrcPtr, DstPtr);
3025      std::swap(SrcAlign, DstAlign);
3026    }
3027
3028    Value *Src;
3029    if (VecTy && !IsWholeAlloca && !IsDest) {
3030      Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3031                                  NewAI.getAlignment(), "load");
3032      Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
3033    } else if (IntTy && !IsWholeAlloca && !IsDest) {
3034      Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3035                                  NewAI.getAlignment(), "load");
3036      Src = convertValue(DL, IRB, Src, IntTy);
3037      uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3038      Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
3039    } else {
3040      LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign,
3041                                             II.isVolatile(), "copyload");
3042      if (AATags)
3043        Load->setAAMetadata(AATags);
3044      Src = Load;
3045    }
3046
3047    if (VecTy && !IsWholeAlloca && IsDest) {
3048      Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3049                                         NewAI.getAlignment(), "oldload");
3050      Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
3051    } else if (IntTy && !IsWholeAlloca && IsDest) {
3052      Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3053                                         NewAI.getAlignment(), "oldload");
3054      Old = convertValue(DL, IRB, Old, IntTy);
3055      uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3056      Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
3057      Src = convertValue(DL, IRB, Src, NewAllocaTy);
3058    }
3059
3060    StoreInst *Store = cast<StoreInst>(
3061        IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile()));
3062    if (AATags)
3063      Store->setAAMetadata(AATags);
3064    LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3065    return !II.isVolatile();
3066  }
3067
3068  bool visitIntrinsicInst(IntrinsicInst &II) {
3069    assert(II.isLifetimeStartOrEnd());
3070    LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
3071    assert(II.getArgOperand(1) == OldPtr);
3072
3073    // Record this instruction for deletion.
3074    Pass.DeadInsts.insert(&II);
3075
3076    // Lifetime intrinsics are only promotable if they cover the whole alloca.
3077    // Therefore, we drop lifetime intrinsics which don't cover the whole
3078    // alloca.
3079    // (In theory, intrinsics which partially cover an alloca could be
3080    // promoted, but PromoteMemToReg doesn't handle that case.)
3081    // FIXME: Check whether the alloca is promotable before dropping the
3082    // lifetime intrinsics?
3083    if (NewBeginOffset != NewAllocaBeginOffset ||
3084        NewEndOffset != NewAllocaEndOffset)
3085      return true;
3086
3087    ConstantInt *Size =
3088        ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
3089                         NewEndOffset - NewBeginOffset);
3090    // Lifetime intrinsics always expect an i8* so directly get such a pointer
3091    // for the new alloca slice.
3092    Type *PointerTy = IRB.getInt8PtrTy(OldPtr->getType()->getPointerAddressSpace());
3093    Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy);
3094    Value *New;
3095    if (II.getIntrinsicID() == Intrinsic::lifetime_start)
3096      New = IRB.CreateLifetimeStart(Ptr, Size);
3097    else
3098      New = IRB.CreateLifetimeEnd(Ptr, Size);
3099
3100    (void)New;
3101    LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3102
3103    return true;
3104  }
3105
3106  void fixLoadStoreAlign(Instruction &Root) {
3107    // This algorithm implements the same visitor loop as
3108    // hasUnsafePHIOrSelectUse, and fixes the alignment of each load
3109    // or store found.
3110    SmallPtrSet<Instruction *, 4> Visited;
3111    SmallVector<Instruction *, 4> Uses;
3112    Visited.insert(&Root);
3113    Uses.push_back(&Root);
3114    do {
3115      Instruction *I = Uses.pop_back_val();
3116
3117      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
3118        unsigned LoadAlign = LI->getAlignment();
3119        if (!LoadAlign)
3120          LoadAlign = DL.getABITypeAlignment(LI->getType());
3121        LI->setAlignment(std::min(LoadAlign, getSliceAlign()));
3122        continue;
3123      }
3124      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
3125        unsigned StoreAlign = SI->getAlignment();
3126        if (!StoreAlign) {
3127          Value *Op = SI->getOperand(0);
3128          StoreAlign = DL.getABITypeAlignment(Op->getType());
3129        }
3130        SI->setAlignment(std::min(StoreAlign, getSliceAlign()));
3131        continue;
3132      }
3133
3134      assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) ||
3135             isa<PHINode>(I) || isa<SelectInst>(I) ||
3136             isa<GetElementPtrInst>(I));
3137      for (User *U : I->users())
3138        if (Visited.insert(cast<Instruction>(U)).second)
3139          Uses.push_back(cast<Instruction>(U));
3140    } while (!Uses.empty());
3141  }
3142
3143  bool visitPHINode(PHINode &PN) {
3144    LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
3145    assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
3146    assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
3147
3148    // We would like to compute a new pointer in only one place, but have it be
3149    // as local as possible to the PHI. To do that, we re-use the location of
3150    // the old pointer, which necessarily must be in the right position to
3151    // dominate the PHI.
3152    IRBuilderTy PtrBuilder(IRB);
3153    if (isa<PHINode>(OldPtr))
3154      PtrBuilder.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt());
3155    else
3156      PtrBuilder.SetInsertPoint(OldPtr);
3157    PtrBuilder.SetCurrentDebugLocation(OldPtr->getDebugLoc());
3158
3159    Value *NewPtr = getNewAllocaSlicePtr(PtrBuilder, OldPtr->getType());
3160    // Replace the operands which were using the old pointer.
3161    std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
3162
3163    LLVM_DEBUG(dbgs() << "          to: " << PN << "\n");
3164    deleteIfTriviallyDead(OldPtr);
3165
3166    // Fix the alignment of any loads or stores using this PHI node.
3167    fixLoadStoreAlign(PN);
3168
3169    // PHIs can't be promoted on their own, but often can be speculated. We
3170    // check the speculation outside of the rewriter so that we see the
3171    // fully-rewritten alloca.
3172    PHIUsers.insert(&PN);
3173    return true;
3174  }
3175
3176  bool visitSelectInst(SelectInst &SI) {
3177    LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3178    assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
3179           "Pointer isn't an operand!");
3180    assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
3181    assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
3182
3183    Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3184    // Replace the operands which were using the old pointer.
3185    if (SI.getOperand(1) == OldPtr)
3186      SI.setOperand(1, NewPtr);
3187    if (SI.getOperand(2) == OldPtr)
3188      SI.setOperand(2, NewPtr);
3189
3190    LLVM_DEBUG(dbgs() << "          to: " << SI << "\n");
3191    deleteIfTriviallyDead(OldPtr);
3192
3193    // Fix the alignment of any loads or stores using this select.
3194    fixLoadStoreAlign(SI);
3195
3196    // Selects can't be promoted on their own, but often can be speculated. We
3197    // check the speculation outside of the rewriter so that we see the
3198    // fully-rewritten alloca.
3199    SelectUsers.insert(&SI);
3200    return true;
3201  }
3202};
3203
3204namespace {
3205
3206/// Visitor to rewrite aggregate loads and stores as scalar.
3207///
3208/// This pass aggressively rewrites all aggregate loads and stores on
3209/// a particular pointer (or any pointer derived from it which we can identify)
3210/// with scalar loads and stores.
3211class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
3212  // Befriend the base class so it can delegate to private visit methods.
3213  friend class InstVisitor<AggLoadStoreRewriter, bool>;
3214
3215  /// Queue of pointer uses to analyze and potentially rewrite.
3216  SmallVector<Use *, 8> Queue;
3217
3218  /// Set to prevent us from cycling with phi nodes and loops.
3219  SmallPtrSet<User *, 8> Visited;
3220
3221  /// The current pointer use being rewritten. This is used to dig up the used
3222  /// value (as opposed to the user).
3223  Use *U;
3224
3225  /// Used to calculate offsets, and hence alignment, of subobjects.
3226  const DataLayout &DL;
3227
3228public:
3229  AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {}
3230
3231  /// Rewrite loads and stores through a pointer and all pointers derived from
3232  /// it.
3233  bool rewrite(Instruction &I) {
3234    LLVM_DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
3235    enqueueUsers(I);
3236    bool Changed = false;
3237    while (!Queue.empty()) {
3238      U = Queue.pop_back_val();
3239      Changed |= visit(cast<Instruction>(U->getUser()));
3240    }
3241    return Changed;
3242  }
3243
3244private:
3245  /// Enqueue all the users of the given instruction for further processing.
3246  /// This uses a set to de-duplicate users.
3247  void enqueueUsers(Instruction &I) {
3248    for (Use &U : I.uses())
3249      if (Visited.insert(U.getUser()).second)
3250        Queue.push_back(&U);
3251  }
3252
3253  // Conservative default is to not rewrite anything.
3254  bool visitInstruction(Instruction &I) { return false; }
3255
3256  /// Generic recursive split emission class.
3257  template <typename Derived> class OpSplitter {
3258  protected:
3259    /// The builder used to form new instructions.
3260    IRBuilderTy IRB;
3261
3262    /// The indices which to be used with insert- or extractvalue to select the
3263    /// appropriate value within the aggregate.
3264    SmallVector<unsigned, 4> Indices;
3265
3266    /// The indices to a GEP instruction which will move Ptr to the correct slot
3267    /// within the aggregate.
3268    SmallVector<Value *, 4> GEPIndices;
3269
3270    /// The base pointer of the original op, used as a base for GEPing the
3271    /// split operations.
3272    Value *Ptr;
3273
3274    /// The base pointee type being GEPed into.
3275    Type *BaseTy;
3276
3277    /// Known alignment of the base pointer.
3278    unsigned BaseAlign;
3279
3280    /// To calculate offset of each component so we can correctly deduce
3281    /// alignments.
3282    const DataLayout &DL;
3283
3284    /// Initialize the splitter with an insertion point, Ptr and start with a
3285    /// single zero GEP index.
3286    OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3287               unsigned BaseAlign, const DataLayout &DL)
3288        : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr),
3289          BaseTy(BaseTy), BaseAlign(BaseAlign), DL(DL) {}
3290
3291  public:
3292    /// Generic recursive split emission routine.
3293    ///
3294    /// This method recursively splits an aggregate op (load or store) into
3295    /// scalar or vector ops. It splits recursively until it hits a single value
3296    /// and emits that single value operation via the template argument.
3297    ///
3298    /// The logic of this routine relies on GEPs and insertvalue and
3299    /// extractvalue all operating with the same fundamental index list, merely
3300    /// formatted differently (GEPs need actual values).
3301    ///
3302    /// \param Ty  The type being split recursively into smaller ops.
3303    /// \param Agg The aggregate value being built up or stored, depending on
3304    /// whether this is splitting a load or a store respectively.
3305    void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
3306      if (Ty->isSingleValueType()) {
3307        unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices);
3308        return static_cast<Derived *>(this)->emitFunc(
3309            Ty, Agg, MinAlign(BaseAlign, Offset), Name);
3310      }
3311
3312      if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
3313        unsigned OldSize = Indices.size();
3314        (void)OldSize;
3315        for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
3316             ++Idx) {
3317          assert(Indices.size() == OldSize && "Did not return to the old size");
3318          Indices.push_back(Idx);
3319          GEPIndices.push_back(IRB.getInt32(Idx));
3320          emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
3321          GEPIndices.pop_back();
3322          Indices.pop_back();
3323        }
3324        return;
3325      }
3326
3327      if (StructType *STy = dyn_cast<StructType>(Ty)) {
3328        unsigned OldSize = Indices.size();
3329        (void)OldSize;
3330        for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
3331             ++Idx) {
3332          assert(Indices.size() == OldSize && "Did not return to the old size");
3333          Indices.push_back(Idx);
3334          GEPIndices.push_back(IRB.getInt32(Idx));
3335          emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
3336          GEPIndices.pop_back();
3337          Indices.pop_back();
3338        }
3339        return;
3340      }
3341
3342      llvm_unreachable("Only arrays and structs are aggregate loadable types");
3343    }
3344  };
3345
3346  struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
3347    AAMDNodes AATags;
3348
3349    LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3350                   AAMDNodes AATags, unsigned BaseAlign, const DataLayout &DL)
3351        : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
3352                                     DL), AATags(AATags) {}
3353
3354    /// Emit a leaf load of a single value. This is called at the leaves of the
3355    /// recursive emission to actually load values.
3356    void emitFunc(Type *Ty, Value *&Agg, unsigned Align, const Twine &Name) {
3357      assert(Ty->isSingleValueType());
3358      // Load the single value and insert it using the indices.
3359      Value *GEP =
3360          IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3361      LoadInst *Load = IRB.CreateAlignedLoad(Ty, GEP, Align, Name + ".load");
3362      if (AATags)
3363        Load->setAAMetadata(AATags);
3364      Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
3365      LLVM_DEBUG(dbgs() << "          to: " << *Load << "\n");
3366    }
3367  };
3368
3369  bool visitLoadInst(LoadInst &LI) {
3370    assert(LI.getPointerOperand() == *U);
3371    if (!LI.isSimple() || LI.getType()->isSingleValueType())
3372      return false;
3373
3374    // We have an aggregate being loaded, split it apart.
3375    LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
3376    AAMDNodes AATags;
3377    LI.getAAMetadata(AATags);
3378    LoadOpSplitter Splitter(&LI, *U, LI.getType(), AATags,
3379                            getAdjustedAlignment(&LI, 0, DL), DL);
3380    Value *V = UndefValue::get(LI.getType());
3381    Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
3382    LI.replaceAllUsesWith(V);
3383    LI.eraseFromParent();
3384    return true;
3385  }
3386
3387  struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
3388    StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3389                    AAMDNodes AATags, unsigned BaseAlign, const DataLayout &DL)
3390        : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
3391                                      DL),
3392          AATags(AATags) {}
3393    AAMDNodes AATags;
3394    /// Emit a leaf store of a single value. This is called at the leaves of the
3395    /// recursive emission to actually produce stores.
3396    void emitFunc(Type *Ty, Value *&Agg, unsigned Align, const Twine &Name) {
3397      assert(Ty->isSingleValueType());
3398      // Extract the single value and store it using the indices.
3399      //
3400      // The gep and extractvalue values are factored out of the CreateStore
3401      // call to make the output independent of the argument evaluation order.
3402      Value *ExtractValue =
3403          IRB.CreateExtractValue(Agg, Indices, Name + ".extract");
3404      Value *InBoundsGEP =
3405          IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3406      StoreInst *Store =
3407          IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Align);
3408      if (AATags)
3409        Store->setAAMetadata(AATags);
3410      LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3411    }
3412  };
3413
3414  bool visitStoreInst(StoreInst &SI) {
3415    if (!SI.isSimple() || SI.getPointerOperand() != *U)
3416      return false;
3417    Value *V = SI.getValueOperand();
3418    if (V->getType()->isSingleValueType())
3419      return false;
3420
3421    // We have an aggregate being stored, split it apart.
3422    LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3423    AAMDNodes AATags;
3424    SI.getAAMetadata(AATags);
3425    StoreOpSplitter Splitter(&SI, *U, V->getType(), AATags,
3426                             getAdjustedAlignment(&SI, 0, DL), DL);
3427    Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
3428    SI.eraseFromParent();
3429    return true;
3430  }
3431
3432  bool visitBitCastInst(BitCastInst &BC) {
3433    enqueueUsers(BC);
3434    return false;
3435  }
3436
3437  bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
3438    enqueueUsers(ASC);
3439    return false;
3440  }
3441
3442  bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
3443    enqueueUsers(GEPI);
3444    return false;
3445  }
3446
3447  bool visitPHINode(PHINode &PN) {
3448    enqueueUsers(PN);
3449    return false;
3450  }
3451
3452  bool visitSelectInst(SelectInst &SI) {
3453    enqueueUsers(SI);
3454    return false;
3455  }
3456};
3457
3458} // end anonymous namespace
3459
3460/// Strip aggregate type wrapping.
3461///
3462/// This removes no-op aggregate types wrapping an underlying type. It will
3463/// strip as many layers of types as it can without changing either the type
3464/// size or the allocated size.
3465static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
3466  if (Ty->isSingleValueType())
3467    return Ty;
3468
3469  uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3470  uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
3471
3472  Type *InnerTy;
3473  if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
3474    InnerTy = ArrTy->getElementType();
3475  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
3476    const StructLayout *SL = DL.getStructLayout(STy);
3477    unsigned Index = SL->getElementContainingOffset(0);
3478    InnerTy = STy->getElementType(Index);
3479  } else {
3480    return Ty;
3481  }
3482
3483  if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
3484      TypeSize > DL.getTypeSizeInBits(InnerTy))
3485    return Ty;
3486
3487  return stripAggregateTypeWrapping(DL, InnerTy);
3488}
3489
3490/// Try to find a partition of the aggregate type passed in for a given
3491/// offset and size.
3492///
3493/// This recurses through the aggregate type and tries to compute a subtype
3494/// based on the offset and size. When the offset and size span a sub-section
3495/// of an array, it will even compute a new array type for that sub-section,
3496/// and the same for structs.
3497///
3498/// Note that this routine is very strict and tries to find a partition of the
3499/// type which produces the *exact* right offset and size. It is not forgiving
3500/// when the size or offset cause either end of type-based partition to be off.
3501/// Also, this is a best-effort routine. It is reasonable to give up and not
3502/// return a type if necessary.
3503static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset,
3504                              uint64_t Size) {
3505  if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size)
3506    return stripAggregateTypeWrapping(DL, Ty);
3507  if (Offset > DL.getTypeAllocSize(Ty) ||
3508      (DL.getTypeAllocSize(Ty) - Offset) < Size)
3509    return nullptr;
3510
3511  if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
3512    Type *ElementTy = SeqTy->getElementType();
3513    uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
3514    uint64_t NumSkippedElements = Offset / ElementSize;
3515    if (NumSkippedElements >= SeqTy->getNumElements())
3516      return nullptr;
3517    Offset -= NumSkippedElements * ElementSize;
3518
3519    // First check if we need to recurse.
3520    if (Offset > 0 || Size < ElementSize) {
3521      // Bail if the partition ends in a different array element.
3522      if ((Offset + Size) > ElementSize)
3523        return nullptr;
3524      // Recurse through the element type trying to peel off offset bytes.
3525      return getTypePartition(DL, ElementTy, Offset, Size);
3526    }
3527    assert(Offset == 0);
3528
3529    if (Size == ElementSize)
3530      return stripAggregateTypeWrapping(DL, ElementTy);
3531    assert(Size > ElementSize);
3532    uint64_t NumElements = Size / ElementSize;
3533    if (NumElements * ElementSize != Size)
3534      return nullptr;
3535    return ArrayType::get(ElementTy, NumElements);
3536  }
3537
3538  StructType *STy = dyn_cast<StructType>(Ty);
3539  if (!STy)
3540    return nullptr;
3541
3542  const StructLayout *SL = DL.getStructLayout(STy);
3543  if (Offset >= SL->getSizeInBytes())
3544    return nullptr;
3545  uint64_t EndOffset = Offset + Size;
3546  if (EndOffset > SL->getSizeInBytes())
3547    return nullptr;
3548
3549  unsigned Index = SL->getElementContainingOffset(Offset);
3550  Offset -= SL->getElementOffset(Index);
3551
3552  Type *ElementTy = STy->getElementType(Index);
3553  uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
3554  if (Offset >= ElementSize)
3555    return nullptr; // The offset points into alignment padding.
3556
3557  // See if any partition must be contained by the element.
3558  if (Offset > 0 || Size < ElementSize) {
3559    if ((Offset + Size) > ElementSize)
3560      return nullptr;
3561    return getTypePartition(DL, ElementTy, Offset, Size);
3562  }
3563  assert(Offset == 0);
3564
3565  if (Size == ElementSize)
3566    return stripAggregateTypeWrapping(DL, ElementTy);
3567
3568  StructType::element_iterator EI = STy->element_begin() + Index,
3569                               EE = STy->element_end();
3570  if (EndOffset < SL->getSizeInBytes()) {
3571    unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3572    if (Index == EndIndex)
3573      return nullptr; // Within a single element and its padding.
3574
3575    // Don't try to form "natural" types if the elements don't line up with the
3576    // expected size.
3577    // FIXME: We could potentially recurse down through the last element in the
3578    // sub-struct to find a natural end point.
3579    if (SL->getElementOffset(EndIndex) != EndOffset)
3580      return nullptr;
3581
3582    assert(Index < EndIndex);
3583    EE = STy->element_begin() + EndIndex;
3584  }
3585
3586  // Try to build up a sub-structure.
3587  StructType *SubTy =
3588      StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked());
3589  const StructLayout *SubSL = DL.getStructLayout(SubTy);
3590  if (Size != SubSL->getSizeInBytes())
3591    return nullptr; // The sub-struct doesn't have quite the size needed.
3592
3593  return SubTy;
3594}
3595
3596/// Pre-split loads and stores to simplify rewriting.
3597///
3598/// We want to break up the splittable load+store pairs as much as
3599/// possible. This is important to do as a preprocessing step, as once we
3600/// start rewriting the accesses to partitions of the alloca we lose the
3601/// necessary information to correctly split apart paired loads and stores
3602/// which both point into this alloca. The case to consider is something like
3603/// the following:
3604///
3605///   %a = alloca [12 x i8]
3606///   %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0
3607///   %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4
3608///   %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8
3609///   %iptr1 = bitcast i8* %gep1 to i64*
3610///   %iptr2 = bitcast i8* %gep2 to i64*
3611///   %fptr1 = bitcast i8* %gep1 to float*
3612///   %fptr2 = bitcast i8* %gep2 to float*
3613///   %fptr3 = bitcast i8* %gep3 to float*
3614///   store float 0.0, float* %fptr1
3615///   store float 1.0, float* %fptr2
3616///   %v = load i64* %iptr1
3617///   store i64 %v, i64* %iptr2
3618///   %f1 = load float* %fptr2
3619///   %f2 = load float* %fptr3
3620///
3621/// Here we want to form 3 partitions of the alloca, each 4 bytes large, and
3622/// promote everything so we recover the 2 SSA values that should have been
3623/// there all along.
3624///
3625/// \returns true if any changes are made.
3626bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
3627  LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n");
3628
3629  // Track the loads and stores which are candidates for pre-splitting here, in
3630  // the order they first appear during the partition scan. These give stable
3631  // iteration order and a basis for tracking which loads and stores we
3632  // actually split.
3633  SmallVector<LoadInst *, 4> Loads;
3634  SmallVector<StoreInst *, 4> Stores;
3635
3636  // We need to accumulate the splits required of each load or store where we
3637  // can find them via a direct lookup. This is important to cross-check loads
3638  // and stores against each other. We also track the slice so that we can kill
3639  // all the slices that end up split.
3640  struct SplitOffsets {
3641    Slice *S;
3642    std::vector<uint64_t> Splits;
3643  };
3644  SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap;
3645
3646  // Track loads out of this alloca which cannot, for any reason, be pre-split.
3647  // This is important as we also cannot pre-split stores of those loads!
3648  // FIXME: This is all pretty gross. It means that we can be more aggressive
3649  // in pre-splitting when the load feeding the store happens to come from
3650  // a separate alloca. Put another way, the effectiveness of SROA would be
3651  // decreased by a frontend which just concatenated all of its local allocas
3652  // into one big flat alloca. But defeating such patterns is exactly the job
3653  // SROA is tasked with! Sadly, to not have this discrepancy we would have
3654  // change store pre-splitting to actually force pre-splitting of the load
3655  // that feeds it *and all stores*. That makes pre-splitting much harder, but
3656  // maybe it would make it more principled?
3657  SmallPtrSet<LoadInst *, 8> UnsplittableLoads;
3658
3659  LLVM_DEBUG(dbgs() << "  Searching for candidate loads and stores\n");
3660  for (auto &P : AS.partitions()) {
3661    for (Slice &S : P) {
3662      Instruction *I = cast<Instruction>(S.getUse()->getUser());
3663      if (!S.isSplittable() || S.endOffset() <= P.endOffset()) {
3664        // If this is a load we have to track that it can't participate in any
3665        // pre-splitting. If this is a store of a load we have to track that
3666        // that load also can't participate in any pre-splitting.
3667        if (auto *LI = dyn_cast<LoadInst>(I))
3668          UnsplittableLoads.insert(LI);
3669        else if (auto *SI = dyn_cast<StoreInst>(I))
3670          if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand()))
3671            UnsplittableLoads.insert(LI);
3672        continue;
3673      }
3674      assert(P.endOffset() > S.beginOffset() &&
3675             "Empty or backwards partition!");
3676
3677      // Determine if this is a pre-splittable slice.
3678      if (auto *LI = dyn_cast<LoadInst>(I)) {
3679        assert(!LI->isVolatile() && "Cannot split volatile loads!");
3680
3681        // The load must be used exclusively to store into other pointers for
3682        // us to be able to arbitrarily pre-split it. The stores must also be
3683        // simple to avoid changing semantics.
3684        auto IsLoadSimplyStored = [](LoadInst *LI) {
3685          for (User *LU : LI->users()) {
3686            auto *SI = dyn_cast<StoreInst>(LU);
3687            if (!SI || !SI->isSimple())
3688              return false;
3689          }
3690          return true;
3691        };
3692        if (!IsLoadSimplyStored(LI)) {
3693          UnsplittableLoads.insert(LI);
3694          continue;
3695        }
3696
3697        Loads.push_back(LI);
3698      } else if (auto *SI = dyn_cast<StoreInst>(I)) {
3699        if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex()))
3700          // Skip stores *of* pointers. FIXME: This shouldn't even be possible!
3701          continue;
3702        auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand());
3703        if (!StoredLoad || !StoredLoad->isSimple())
3704          continue;
3705        assert(!SI->isVolatile() && "Cannot split volatile stores!");
3706
3707        Stores.push_back(SI);
3708      } else {
3709        // Other uses cannot be pre-split.
3710        continue;
3711      }
3712
3713      // Record the initial split.
3714      LLVM_DEBUG(dbgs() << "    Candidate: " << *I << "\n");
3715      auto &Offsets = SplitOffsetsMap[I];
3716      assert(Offsets.Splits.empty() &&
3717             "Should not have splits the first time we see an instruction!");
3718      Offsets.S = &S;
3719      Offsets.Splits.push_back(P.endOffset() - S.beginOffset());
3720    }
3721
3722    // Now scan the already split slices, and add a split for any of them which
3723    // we're going to pre-split.
3724    for (Slice *S : P.splitSliceTails()) {
3725      auto SplitOffsetsMapI =
3726          SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser()));
3727      if (SplitOffsetsMapI == SplitOffsetsMap.end())
3728        continue;
3729      auto &Offsets = SplitOffsetsMapI->second;
3730
3731      assert(Offsets.S == S && "Found a mismatched slice!");
3732      assert(!Offsets.Splits.empty() &&
3733             "Cannot have an empty set of splits on the second partition!");
3734      assert(Offsets.Splits.back() ==
3735                 P.beginOffset() - Offsets.S->beginOffset() &&
3736             "Previous split does not end where this one begins!");
3737
3738      // Record each split. The last partition's end isn't needed as the size
3739      // of the slice dictates that.
3740      if (S->endOffset() > P.endOffset())
3741        Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset());
3742    }
3743  }
3744
3745  // We may have split loads where some of their stores are split stores. For
3746  // such loads and stores, we can only pre-split them if their splits exactly
3747  // match relative to their starting offset. We have to verify this prior to
3748  // any rewriting.
3749  Stores.erase(
3750      llvm::remove_if(Stores,
3751                      [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) {
3752                        // Lookup the load we are storing in our map of split
3753                        // offsets.
3754                        auto *LI = cast<LoadInst>(SI->getValueOperand());
3755                        // If it was completely unsplittable, then we're done,
3756                        // and this store can't be pre-split.
3757                        if (UnsplittableLoads.count(LI))
3758                          return true;
3759
3760                        auto LoadOffsetsI = SplitOffsetsMap.find(LI);
3761                        if (LoadOffsetsI == SplitOffsetsMap.end())
3762                          return false; // Unrelated loads are definitely safe.
3763                        auto &LoadOffsets = LoadOffsetsI->second;
3764
3765                        // Now lookup the store's offsets.
3766                        auto &StoreOffsets = SplitOffsetsMap[SI];
3767
3768                        // If the relative offsets of each split in the load and
3769                        // store match exactly, then we can split them and we
3770                        // don't need to remove them here.
3771                        if (LoadOffsets.Splits == StoreOffsets.Splits)
3772                          return false;
3773
3774                        LLVM_DEBUG(
3775                            dbgs()
3776                            << "    Mismatched splits for load and store:\n"
3777                            << "      " << *LI << "\n"
3778                            << "      " << *SI << "\n");
3779
3780                        // We've found a store and load that we need to split
3781                        // with mismatched relative splits. Just give up on them
3782                        // and remove both instructions from our list of
3783                        // candidates.
3784                        UnsplittableLoads.insert(LI);
3785                        return true;
3786                      }),
3787      Stores.end());
3788  // Now we have to go *back* through all the stores, because a later store may
3789  // have caused an earlier store's load to become unsplittable and if it is
3790  // unsplittable for the later store, then we can't rely on it being split in
3791  // the earlier store either.
3792  Stores.erase(llvm::remove_if(Stores,
3793                               [&UnsplittableLoads](StoreInst *SI) {
3794                                 auto *LI =
3795                                     cast<LoadInst>(SI->getValueOperand());
3796                                 return UnsplittableLoads.count(LI);
3797                               }),
3798               Stores.end());
3799  // Once we've established all the loads that can't be split for some reason,
3800  // filter any that made it into our list out.
3801  Loads.erase(llvm::remove_if(Loads,
3802                              [&UnsplittableLoads](LoadInst *LI) {
3803                                return UnsplittableLoads.count(LI);
3804                              }),
3805              Loads.end());
3806
3807  // If no loads or stores are left, there is no pre-splitting to be done for
3808  // this alloca.
3809  if (Loads.empty() && Stores.empty())
3810    return false;
3811
3812  // From here on, we can't fail and will be building new accesses, so rig up
3813  // an IR builder.
3814  IRBuilderTy IRB(&AI);
3815
3816  // Collect the new slices which we will merge into the alloca slices.
3817  SmallVector<Slice, 4> NewSlices;
3818
3819  // Track any allocas we end up splitting loads and stores for so we iterate
3820  // on them.
3821  SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas;
3822
3823  // At this point, we have collected all of the loads and stores we can
3824  // pre-split, and the specific splits needed for them. We actually do the
3825  // splitting in a specific order in order to handle when one of the loads in
3826  // the value operand to one of the stores.
3827  //
3828  // First, we rewrite all of the split loads, and just accumulate each split
3829  // load in a parallel structure. We also build the slices for them and append
3830  // them to the alloca slices.
3831  SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap;
3832  std::vector<LoadInst *> SplitLoads;
3833  const DataLayout &DL = AI.getModule()->getDataLayout();
3834  for (LoadInst *LI : Loads) {
3835    SplitLoads.clear();
3836
3837    IntegerType *Ty = cast<IntegerType>(LI->getType());
3838    uint64_t LoadSize = Ty->getBitWidth() / 8;
3839    assert(LoadSize > 0 && "Cannot have a zero-sized integer load!");
3840
3841    auto &Offsets = SplitOffsetsMap[LI];
3842    assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
3843           "Slice size should always match load size exactly!");
3844    uint64_t BaseOffset = Offsets.S->beginOffset();
3845    assert(BaseOffset + LoadSize > BaseOffset &&
3846           "Cannot represent alloca access size using 64-bit integers!");
3847
3848    Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand());
3849    IRB.SetInsertPoint(LI);
3850
3851    LLVM_DEBUG(dbgs() << "  Splitting load: " << *LI << "\n");
3852
3853    uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
3854    int Idx = 0, Size = Offsets.Splits.size();
3855    for (;;) {
3856      auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
3857      auto AS = LI->getPointerAddressSpace();
3858      auto *PartPtrTy = PartTy->getPointerTo(AS);
3859      LoadInst *PLoad = IRB.CreateAlignedLoad(
3860          PartTy,
3861          getAdjustedPtr(IRB, DL, BasePtr,
3862                         APInt(DL.getIndexSizeInBits(AS), PartOffset),
3863                         PartPtrTy, BasePtr->getName() + "."),
3864          getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false,
3865          LI->getName());
3866      PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
3867                                LLVMContext::MD_access_group});
3868
3869      // Append this load onto the list of split loads so we can find it later
3870      // to rewrite the stores.
3871      SplitLoads.push_back(PLoad);
3872
3873      // Now build a new slice for the alloca.
3874      NewSlices.push_back(
3875          Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
3876                &PLoad->getOperandUse(PLoad->getPointerOperandIndex()),
3877                /*IsSplittable*/ false));
3878      LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
3879                        << ", " << NewSlices.back().endOffset()
3880                        << "): " << *PLoad << "\n");
3881
3882      // See if we've handled all the splits.
3883      if (Idx >= Size)
3884        break;
3885
3886      // Setup the next partition.
3887      PartOffset = Offsets.Splits[Idx];
3888      ++Idx;
3889      PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset;
3890    }
3891
3892    // Now that we have the split loads, do the slow walk over all uses of the
3893    // load and rewrite them as split stores, or save the split loads to use
3894    // below if the store is going to be split there anyways.
3895    bool DeferredStores = false;
3896    for (User *LU : LI->users()) {
3897      StoreInst *SI = cast<StoreInst>(LU);
3898      if (!Stores.empty() && SplitOffsetsMap.count(SI)) {
3899        DeferredStores = true;
3900        LLVM_DEBUG(dbgs() << "    Deferred splitting of store: " << *SI
3901                          << "\n");
3902        continue;
3903      }
3904
3905      Value *StoreBasePtr = SI->getPointerOperand();
3906      IRB.SetInsertPoint(SI);
3907
3908      LLVM_DEBUG(dbgs() << "    Splitting store of load: " << *SI << "\n");
3909
3910      for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) {
3911        LoadInst *PLoad = SplitLoads[Idx];
3912        uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1];
3913        auto *PartPtrTy =
3914            PLoad->getType()->getPointerTo(SI->getPointerAddressSpace());
3915
3916        auto AS = SI->getPointerAddressSpace();
3917        StoreInst *PStore = IRB.CreateAlignedStore(
3918            PLoad,
3919            getAdjustedPtr(IRB, DL, StoreBasePtr,
3920                           APInt(DL.getIndexSizeInBits(AS), PartOffset),
3921                           PartPtrTy, StoreBasePtr->getName() + "."),
3922            getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false);
3923        PStore->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
3924                                   LLVMContext::MD_access_group});
3925        LLVM_DEBUG(dbgs() << "      +" << PartOffset << ":" << *PStore << "\n");
3926      }
3927
3928      // We want to immediately iterate on any allocas impacted by splitting
3929      // this store, and we have to track any promotable alloca (indicated by
3930      // a direct store) as needing to be resplit because it is no longer
3931      // promotable.
3932      if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) {
3933        ResplitPromotableAllocas.insert(OtherAI);
3934        Worklist.insert(OtherAI);
3935      } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
3936                     StoreBasePtr->stripInBoundsOffsets())) {
3937        Worklist.insert(OtherAI);
3938      }
3939
3940      // Mark the original store as dead.
3941      DeadInsts.insert(SI);
3942    }
3943
3944    // Save the split loads if there are deferred stores among the users.
3945    if (DeferredStores)
3946      SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads)));
3947
3948    // Mark the original load as dead and kill the original slice.
3949    DeadInsts.insert(LI);
3950    Offsets.S->kill();
3951  }
3952
3953  // Second, we rewrite all of the split stores. At this point, we know that
3954  // all loads from this alloca have been split already. For stores of such
3955  // loads, we can simply look up the pre-existing split loads. For stores of
3956  // other loads, we split those loads first and then write split stores of
3957  // them.
3958  for (StoreInst *SI : Stores) {
3959    auto *LI = cast<LoadInst>(SI->getValueOperand());
3960    IntegerType *Ty = cast<IntegerType>(LI->getType());
3961    uint64_t StoreSize = Ty->getBitWidth() / 8;
3962    assert(StoreSize > 0 && "Cannot have a zero-sized integer store!");
3963
3964    auto &Offsets = SplitOffsetsMap[SI];
3965    assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
3966           "Slice size should always match load size exactly!");
3967    uint64_t BaseOffset = Offsets.S->beginOffset();
3968    assert(BaseOffset + StoreSize > BaseOffset &&
3969           "Cannot represent alloca access size using 64-bit integers!");
3970
3971    Value *LoadBasePtr = LI->getPointerOperand();
3972    Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand());
3973
3974    LLVM_DEBUG(dbgs() << "  Splitting store: " << *SI << "\n");
3975
3976    // Check whether we have an already split load.
3977    auto SplitLoadsMapI = SplitLoadsMap.find(LI);
3978    std::vector<LoadInst *> *SplitLoads = nullptr;
3979    if (SplitLoadsMapI != SplitLoadsMap.end()) {
3980      SplitLoads = &SplitLoadsMapI->second;
3981      assert(SplitLoads->size() == Offsets.Splits.size() + 1 &&
3982             "Too few split loads for the number of splits in the store!");
3983    } else {
3984      LLVM_DEBUG(dbgs() << "          of load: " << *LI << "\n");
3985    }
3986
3987    uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
3988    int Idx = 0, Size = Offsets.Splits.size();
3989    for (;;) {
3990      auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
3991      auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace());
3992      auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace());
3993
3994      // Either lookup a split load or create one.
3995      LoadInst *PLoad;
3996      if (SplitLoads) {
3997        PLoad = (*SplitLoads)[Idx];
3998      } else {
3999        IRB.SetInsertPoint(LI);
4000        auto AS = LI->getPointerAddressSpace();
4001        PLoad = IRB.CreateAlignedLoad(
4002            PartTy,
4003            getAdjustedPtr(IRB, DL, LoadBasePtr,
4004                           APInt(DL.getIndexSizeInBits(AS), PartOffset),
4005                           LoadPartPtrTy, LoadBasePtr->getName() + "."),
4006            getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false,
4007            LI->getName());
4008      }
4009
4010      // And store this partition.
4011      IRB.SetInsertPoint(SI);
4012      auto AS = SI->getPointerAddressSpace();
4013      StoreInst *PStore = IRB.CreateAlignedStore(
4014          PLoad,
4015          getAdjustedPtr(IRB, DL, StoreBasePtr,
4016                         APInt(DL.getIndexSizeInBits(AS), PartOffset),
4017                         StorePartPtrTy, StoreBasePtr->getName() + "."),
4018          getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false);
4019
4020      // Now build a new slice for the alloca.
4021      NewSlices.push_back(
4022          Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
4023                &PStore->getOperandUse(PStore->getPointerOperandIndex()),
4024                /*IsSplittable*/ false));
4025      LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
4026                        << ", " << NewSlices.back().endOffset()
4027                        << "): " << *PStore << "\n");
4028      if (!SplitLoads) {
4029        LLVM_DEBUG(dbgs() << "      of split load: " << *PLoad << "\n");
4030      }
4031
4032      // See if we've finished all the splits.
4033      if (Idx >= Size)
4034        break;
4035
4036      // Setup the next partition.
4037      PartOffset = Offsets.Splits[Idx];
4038      ++Idx;
4039      PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset;
4040    }
4041
4042    // We want to immediately iterate on any allocas impacted by splitting
4043    // this load, which is only relevant if it isn't a load of this alloca and
4044    // thus we didn't already split the loads above. We also have to keep track
4045    // of any promotable allocas we split loads on as they can no longer be
4046    // promoted.
4047    if (!SplitLoads) {
4048      if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) {
4049        assert(OtherAI != &AI && "We can't re-split our own alloca!");
4050        ResplitPromotableAllocas.insert(OtherAI);
4051        Worklist.insert(OtherAI);
4052      } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
4053                     LoadBasePtr->stripInBoundsOffsets())) {
4054        assert(OtherAI != &AI && "We can't re-split our own alloca!");
4055        Worklist.insert(OtherAI);
4056      }
4057    }
4058
4059    // Mark the original store as dead now that we've split it up and kill its
4060    // slice. Note that we leave the original load in place unless this store
4061    // was its only use. It may in turn be split up if it is an alloca load
4062    // for some other alloca, but it may be a normal load. This may introduce
4063    // redundant loads, but where those can be merged the rest of the optimizer
4064    // should handle the merging, and this uncovers SSA splits which is more
4065    // important. In practice, the original loads will almost always be fully
4066    // split and removed eventually, and the splits will be merged by any
4067    // trivial CSE, including instcombine.
4068    if (LI->hasOneUse()) {
4069      assert(*LI->user_begin() == SI && "Single use isn't this store!");
4070      DeadInsts.insert(LI);
4071    }
4072    DeadInsts.insert(SI);
4073    Offsets.S->kill();
4074  }
4075
4076  // Remove the killed slices that have ben pre-split.
4077  AS.erase(llvm::remove_if(AS, [](const Slice &S) { return S.isDead(); }),
4078           AS.end());
4079
4080  // Insert our new slices. This will sort and merge them into the sorted
4081  // sequence.
4082  AS.insert(NewSlices);
4083
4084  LLVM_DEBUG(dbgs() << "  Pre-split slices:\n");
4085#ifndef NDEBUG
4086  for (auto I = AS.begin(), E = AS.end(); I != E; ++I)
4087    LLVM_DEBUG(AS.print(dbgs(), I, "    "));
4088#endif
4089
4090  // Finally, don't try to promote any allocas that new require re-splitting.
4091  // They have already been added to the worklist above.
4092  PromotableAllocas.erase(
4093      llvm::remove_if(
4094          PromotableAllocas,
4095          [&](AllocaInst *AI) { return ResplitPromotableAllocas.count(AI); }),
4096      PromotableAllocas.end());
4097
4098  return true;
4099}
4100
4101/// Rewrite an alloca partition's users.
4102///
4103/// This routine drives both of the rewriting goals of the SROA pass. It tries
4104/// to rewrite uses of an alloca partition to be conducive for SSA value
4105/// promotion. If the partition needs a new, more refined alloca, this will
4106/// build that new alloca, preserving as much type information as possible, and
4107/// rewrite the uses of the old alloca to point at the new one and have the
4108/// appropriate new offsets. It also evaluates how successful the rewrite was
4109/// at enabling promotion and if it was successful queues the alloca to be
4110/// promoted.
4111AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
4112                                   Partition &P) {
4113  // Try to compute a friendly type for this partition of the alloca. This
4114  // won't always succeed, in which case we fall back to a legal integer type
4115  // or an i8 array of an appropriate size.
4116  Type *SliceTy = nullptr;
4117  const DataLayout &DL = AI.getModule()->getDataLayout();
4118  if (Type *CommonUseTy = findCommonType(P.begin(), P.end(), P.endOffset()))
4119    if (DL.getTypeAllocSize(CommonUseTy) >= P.size())
4120      SliceTy = CommonUseTy;
4121  if (!SliceTy)
4122    if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
4123                                                 P.beginOffset(), P.size()))
4124      SliceTy = TypePartitionTy;
4125  if ((!SliceTy || (SliceTy->isArrayTy() &&
4126                    SliceTy->getArrayElementType()->isIntegerTy())) &&
4127      DL.isLegalInteger(P.size() * 8))
4128    SliceTy = Type::getIntNTy(*C, P.size() * 8);
4129  if (!SliceTy)
4130    SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size());
4131  assert(DL.getTypeAllocSize(SliceTy) >= P.size());
4132
4133  bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL);
4134
4135  VectorType *VecTy =
4136      IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL);
4137  if (VecTy)
4138    SliceTy = VecTy;
4139
4140  // Check for the case where we're going to rewrite to a new alloca of the
4141  // exact same type as the original, and with the same access offsets. In that
4142  // case, re-use the existing alloca, but still run through the rewriter to
4143  // perform phi and select speculation.
4144  // P.beginOffset() can be non-zero even with the same type in a case with
4145  // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll).
4146  AllocaInst *NewAI;
4147  if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) {
4148    NewAI = &AI;
4149    // FIXME: We should be able to bail at this point with "nothing changed".
4150    // FIXME: We might want to defer PHI speculation until after here.
4151    // FIXME: return nullptr;
4152  } else {
4153    unsigned Alignment = AI.getAlignment();
4154    if (!Alignment) {
4155      // The minimum alignment which users can rely on when the explicit
4156      // alignment is omitted or zero is that required by the ABI for this
4157      // type.
4158      Alignment = DL.getABITypeAlignment(AI.getAllocatedType());
4159    }
4160    Alignment = MinAlign(Alignment, P.beginOffset());
4161    // If we will get at least this much alignment from the type alone, leave
4162    // the alloca's alignment unconstrained.
4163    if (Alignment <= DL.getABITypeAlignment(SliceTy))
4164      Alignment = 0;
4165    NewAI = new AllocaInst(
4166      SliceTy, AI.getType()->getAddressSpace(), nullptr, Alignment,
4167        AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI);
4168    // Copy the old AI debug location over to the new one.
4169    NewAI->setDebugLoc(AI.getDebugLoc());
4170    ++NumNewAllocas;
4171  }
4172
4173  LLVM_DEBUG(dbgs() << "Rewriting alloca partition "
4174                    << "[" << P.beginOffset() << "," << P.endOffset()
4175                    << ") to: " << *NewAI << "\n");
4176
4177  // Track the high watermark on the worklist as it is only relevant for
4178  // promoted allocas. We will reset it to this point if the alloca is not in
4179  // fact scheduled for promotion.
4180  unsigned PPWOldSize = PostPromotionWorklist.size();
4181  unsigned NumUses = 0;
4182  SmallSetVector<PHINode *, 8> PHIUsers;
4183  SmallSetVector<SelectInst *, 8> SelectUsers;
4184
4185  AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(),
4186                               P.endOffset(), IsIntegerPromotable, VecTy,
4187                               PHIUsers, SelectUsers);
4188  bool Promotable = true;
4189  for (Slice *S : P.splitSliceTails()) {
4190    Promotable &= Rewriter.visit(S);
4191    ++NumUses;
4192  }
4193  for (Slice &S : P) {
4194    Promotable &= Rewriter.visit(&S);
4195    ++NumUses;
4196  }
4197
4198  NumAllocaPartitionUses += NumUses;
4199  MaxUsesPerAllocaPartition.updateMax(NumUses);
4200
4201  // Now that we've processed all the slices in the new partition, check if any
4202  // PHIs or Selects would block promotion.
4203  for (PHINode *PHI : PHIUsers)
4204    if (!isSafePHIToSpeculate(*PHI)) {
4205      Promotable = false;
4206      PHIUsers.clear();
4207      SelectUsers.clear();
4208      break;
4209    }
4210
4211  for (SelectInst *Sel : SelectUsers)
4212    if (!isSafeSelectToSpeculate(*Sel)) {
4213      Promotable = false;
4214      PHIUsers.clear();
4215      SelectUsers.clear();
4216      break;
4217    }
4218
4219  if (Promotable) {
4220    if (PHIUsers.empty() && SelectUsers.empty()) {
4221      // Promote the alloca.
4222      PromotableAllocas.push_back(NewAI);
4223    } else {
4224      // If we have either PHIs or Selects to speculate, add them to those
4225      // worklists and re-queue the new alloca so that we promote in on the
4226      // next iteration.
4227      for (PHINode *PHIUser : PHIUsers)
4228        SpeculatablePHIs.insert(PHIUser);
4229      for (SelectInst *SelectUser : SelectUsers)
4230        SpeculatableSelects.insert(SelectUser);
4231      Worklist.insert(NewAI);
4232    }
4233  } else {
4234    // Drop any post-promotion work items if promotion didn't happen.
4235    while (PostPromotionWorklist.size() > PPWOldSize)
4236      PostPromotionWorklist.pop_back();
4237
4238    // We couldn't promote and we didn't create a new partition, nothing
4239    // happened.
4240    if (NewAI == &AI)
4241      return nullptr;
4242
4243    // If we can't promote the alloca, iterate on it to check for new
4244    // refinements exposed by splitting the current alloca. Don't iterate on an
4245    // alloca which didn't actually change and didn't get promoted.
4246    Worklist.insert(NewAI);
4247  }
4248
4249  return NewAI;
4250}
4251
4252/// Walks the slices of an alloca and form partitions based on them,
4253/// rewriting each of their uses.
4254bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
4255  if (AS.begin() == AS.end())
4256    return false;
4257
4258  unsigned NumPartitions = 0;
4259  bool Changed = false;
4260  const DataLayout &DL = AI.getModule()->getDataLayout();
4261
4262  // First try to pre-split loads and stores.
4263  Changed |= presplitLoadsAndStores(AI, AS);
4264
4265  // Now that we have identified any pre-splitting opportunities,
4266  // mark loads and stores unsplittable except for the following case.
4267  // We leave a slice splittable if all other slices are disjoint or fully
4268  // included in the slice, such as whole-alloca loads and stores.
4269  // If we fail to split these during pre-splitting, we want to force them
4270  // to be rewritten into a partition.
4271  bool IsSorted = true;
4272
4273  uint64_t AllocaSize = DL.getTypeAllocSize(AI.getAllocatedType());
4274  const uint64_t MaxBitVectorSize = 1024;
4275  if (AllocaSize <= MaxBitVectorSize) {
4276    // If a byte boundary is included in any load or store, a slice starting or
4277    // ending at the boundary is not splittable.
4278    SmallBitVector SplittableOffset(AllocaSize + 1, true);
4279    for (Slice &S : AS)
4280      for (unsigned O = S.beginOffset() + 1;
4281           O < S.endOffset() && O < AllocaSize; O++)
4282        SplittableOffset.reset(O);
4283
4284    for (Slice &S : AS) {
4285      if (!S.isSplittable())
4286        continue;
4287
4288      if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) &&
4289          (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()]))
4290        continue;
4291
4292      if (isa<LoadInst>(S.getUse()->getUser()) ||
4293          isa<StoreInst>(S.getUse()->getUser())) {
4294        S.makeUnsplittable();
4295        IsSorted = false;
4296      }
4297    }
4298  }
4299  else {
4300    // We only allow whole-alloca splittable loads and stores
4301    // for a large alloca to avoid creating too large BitVector.
4302    for (Slice &S : AS) {
4303      if (!S.isSplittable())
4304        continue;
4305
4306      if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize)
4307        continue;
4308
4309      if (isa<LoadInst>(S.getUse()->getUser()) ||
4310          isa<StoreInst>(S.getUse()->getUser())) {
4311        S.makeUnsplittable();
4312        IsSorted = false;
4313      }
4314    }
4315  }
4316
4317  if (!IsSorted)
4318    llvm::sort(AS);
4319
4320  /// Describes the allocas introduced by rewritePartition in order to migrate
4321  /// the debug info.
4322  struct Fragment {
4323    AllocaInst *Alloca;
4324    uint64_t Offset;
4325    uint64_t Size;
4326    Fragment(AllocaInst *AI, uint64_t O, uint64_t S)
4327      : Alloca(AI), Offset(O), Size(S) {}
4328  };
4329  SmallVector<Fragment, 4> Fragments;
4330
4331  // Rewrite each partition.
4332  for (auto &P : AS.partitions()) {
4333    if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) {
4334      Changed = true;
4335      if (NewAI != &AI) {
4336        uint64_t SizeOfByte = 8;
4337        uint64_t AllocaSize = DL.getTypeSizeInBits(NewAI->getAllocatedType());
4338        // Don't include any padding.
4339        uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte);
4340        Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size));
4341      }
4342    }
4343    ++NumPartitions;
4344  }
4345
4346  NumAllocaPartitions += NumPartitions;
4347  MaxPartitionsPerAlloca.updateMax(NumPartitions);
4348
4349  // Migrate debug information from the old alloca to the new alloca(s)
4350  // and the individual partitions.
4351  TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares = FindDbgAddrUses(&AI);
4352  if (!DbgDeclares.empty()) {
4353    auto *Var = DbgDeclares.front()->getVariable();
4354    auto *Expr = DbgDeclares.front()->getExpression();
4355    auto VarSize = Var->getSizeInBits();
4356    DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false);
4357    uint64_t AllocaSize = DL.getTypeSizeInBits(AI.getAllocatedType());
4358    for (auto Fragment : Fragments) {
4359      // Create a fragment expression describing the new partition or reuse AI's
4360      // expression if there is only one partition.
4361      auto *FragmentExpr = Expr;
4362      if (Fragment.Size < AllocaSize || Expr->isFragment()) {
4363        // If this alloca is already a scalar replacement of a larger aggregate,
4364        // Fragment.Offset describes the offset inside the scalar.
4365        auto ExprFragment = Expr->getFragmentInfo();
4366        uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0;
4367        uint64_t Start = Offset + Fragment.Offset;
4368        uint64_t Size = Fragment.Size;
4369        if (ExprFragment) {
4370          uint64_t AbsEnd =
4371              ExprFragment->OffsetInBits + ExprFragment->SizeInBits;
4372          if (Start >= AbsEnd)
4373            // No need to describe a SROAed padding.
4374            continue;
4375          Size = std::min(Size, AbsEnd - Start);
4376        }
4377        // The new, smaller fragment is stenciled out from the old fragment.
4378        if (auto OrigFragment = FragmentExpr->getFragmentInfo()) {
4379          assert(Start >= OrigFragment->OffsetInBits &&
4380                 "new fragment is outside of original fragment");
4381          Start -= OrigFragment->OffsetInBits;
4382        }
4383
4384        // The alloca may be larger than the variable.
4385        if (VarSize) {
4386          if (Size > *VarSize)
4387            Size = *VarSize;
4388          if (Size == 0 || Start + Size > *VarSize)
4389            continue;
4390        }
4391
4392        // Avoid creating a fragment expression that covers the entire variable.
4393        if (!VarSize || *VarSize != Size) {
4394          if (auto E =
4395                  DIExpression::createFragmentExpression(Expr, Start, Size))
4396            FragmentExpr = *E;
4397          else
4398            continue;
4399        }
4400      }
4401
4402      // Remove any existing intrinsics describing the same alloca.
4403      for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca))
4404        OldDII->eraseFromParent();
4405
4406      DIB.insertDeclare(Fragment.Alloca, Var, FragmentExpr,
4407                        DbgDeclares.front()->getDebugLoc(), &AI);
4408    }
4409  }
4410  return Changed;
4411}
4412
4413/// Clobber a use with undef, deleting the used value if it becomes dead.
4414void SROA::clobberUse(Use &U) {
4415  Value *OldV = U;
4416  // Replace the use with an undef value.
4417  U = UndefValue::get(OldV->getType());
4418
4419  // Check for this making an instruction dead. We have to garbage collect
4420  // all the dead instructions to ensure the uses of any alloca end up being
4421  // minimal.
4422  if (Instruction *OldI = dyn_cast<Instruction>(OldV))
4423    if (isInstructionTriviallyDead(OldI)) {
4424      DeadInsts.insert(OldI);
4425    }
4426}
4427
4428/// Analyze an alloca for SROA.
4429///
4430/// This analyzes the alloca to ensure we can reason about it, builds
4431/// the slices of the alloca, and then hands it off to be split and
4432/// rewritten as needed.
4433bool SROA::runOnAlloca(AllocaInst &AI) {
4434  LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
4435  ++NumAllocasAnalyzed;
4436
4437  // Special case dead allocas, as they're trivial.
4438  if (AI.use_empty()) {
4439    AI.eraseFromParent();
4440    return true;
4441  }
4442  const DataLayout &DL = AI.getModule()->getDataLayout();
4443
4444  // Skip alloca forms that this analysis can't handle.
4445  if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
4446      DL.getTypeAllocSize(AI.getAllocatedType()) == 0)
4447    return false;
4448
4449  bool Changed = false;
4450
4451  // First, split any FCA loads and stores touching this alloca to promote
4452  // better splitting and promotion opportunities.
4453  AggLoadStoreRewriter AggRewriter(DL);
4454  Changed |= AggRewriter.rewrite(AI);
4455
4456  // Build the slices using a recursive instruction-visiting builder.
4457  AllocaSlices AS(DL, AI);
4458  LLVM_DEBUG(AS.print(dbgs()));
4459  if (AS.isEscaped())
4460    return Changed;
4461
4462  // Delete all the dead users of this alloca before splitting and rewriting it.
4463  for (Instruction *DeadUser : AS.getDeadUsers()) {
4464    // Free up everything used by this instruction.
4465    for (Use &DeadOp : DeadUser->operands())
4466      clobberUse(DeadOp);
4467
4468    // Now replace the uses of this instruction.
4469    DeadUser->replaceAllUsesWith(UndefValue::get(DeadUser->getType()));
4470
4471    // And mark it for deletion.
4472    DeadInsts.insert(DeadUser);
4473    Changed = true;
4474  }
4475  for (Use *DeadOp : AS.getDeadOperands()) {
4476    clobberUse(*DeadOp);
4477    Changed = true;
4478  }
4479
4480  // No slices to split. Leave the dead alloca for a later pass to clean up.
4481  if (AS.begin() == AS.end())
4482    return Changed;
4483
4484  Changed |= splitAlloca(AI, AS);
4485
4486  LLVM_DEBUG(dbgs() << "  Speculating PHIs\n");
4487  while (!SpeculatablePHIs.empty())
4488    speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val());
4489
4490  LLVM_DEBUG(dbgs() << "  Speculating Selects\n");
4491  while (!SpeculatableSelects.empty())
4492    speculateSelectInstLoads(*SpeculatableSelects.pop_back_val());
4493
4494  return Changed;
4495}
4496
4497/// Delete the dead instructions accumulated in this run.
4498///
4499/// Recursively deletes the dead instructions we've accumulated. This is done
4500/// at the very end to maximize locality of the recursive delete and to
4501/// minimize the problems of invalidated instruction pointers as such pointers
4502/// are used heavily in the intermediate stages of the algorithm.
4503///
4504/// We also record the alloca instructions deleted here so that they aren't
4505/// subsequently handed to mem2reg to promote.
4506bool SROA::deleteDeadInstructions(
4507    SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) {
4508  bool Changed = false;
4509  while (!DeadInsts.empty()) {
4510    Instruction *I = DeadInsts.pop_back_val();
4511    LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
4512
4513    // If the instruction is an alloca, find the possible dbg.declare connected
4514    // to it, and remove it too. We must do this before calling RAUW or we will
4515    // not be able to find it.
4516    if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
4517      DeletedAllocas.insert(AI);
4518      for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(AI))
4519        OldDII->eraseFromParent();
4520    }
4521
4522    I->replaceAllUsesWith(UndefValue::get(I->getType()));
4523
4524    for (Use &Operand : I->operands())
4525      if (Instruction *U = dyn_cast<Instruction>(Operand)) {
4526        // Zero out the operand and see if it becomes trivially dead.
4527        Operand = nullptr;
4528        if (isInstructionTriviallyDead(U))
4529          DeadInsts.insert(U);
4530      }
4531
4532    ++NumDeleted;
4533    I->eraseFromParent();
4534    Changed = true;
4535  }
4536  return Changed;
4537}
4538
4539/// Promote the allocas, using the best available technique.
4540///
4541/// This attempts to promote whatever allocas have been identified as viable in
4542/// the PromotableAllocas list. If that list is empty, there is nothing to do.
4543/// This function returns whether any promotion occurred.
4544bool SROA::promoteAllocas(Function &F) {
4545  if (PromotableAllocas.empty())
4546    return false;
4547
4548  NumPromoted += PromotableAllocas.size();
4549
4550  LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
4551  PromoteMemToReg(PromotableAllocas, *DT, AC);
4552  PromotableAllocas.clear();
4553  return true;
4554}
4555
4556PreservedAnalyses SROA::runImpl(Function &F, DominatorTree &RunDT,
4557                                AssumptionCache &RunAC) {
4558  LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
4559  C = &F.getContext();
4560  DT = &RunDT;
4561  AC = &RunAC;
4562
4563  BasicBlock &EntryBB = F.getEntryBlock();
4564  for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
4565       I != E; ++I) {
4566    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
4567      Worklist.insert(AI);
4568  }
4569
4570  bool Changed = false;
4571  // A set of deleted alloca instruction pointers which should be removed from
4572  // the list of promotable allocas.
4573  SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
4574
4575  do {
4576    while (!Worklist.empty()) {
4577      Changed |= runOnAlloca(*Worklist.pop_back_val());
4578      Changed |= deleteDeadInstructions(DeletedAllocas);
4579
4580      // Remove the deleted allocas from various lists so that we don't try to
4581      // continue processing them.
4582      if (!DeletedAllocas.empty()) {
4583        auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); };
4584        Worklist.remove_if(IsInSet);
4585        PostPromotionWorklist.remove_if(IsInSet);
4586        PromotableAllocas.erase(llvm::remove_if(PromotableAllocas, IsInSet),
4587                                PromotableAllocas.end());
4588        DeletedAllocas.clear();
4589      }
4590    }
4591
4592    Changed |= promoteAllocas(F);
4593
4594    Worklist = PostPromotionWorklist;
4595    PostPromotionWorklist.clear();
4596  } while (!Worklist.empty());
4597
4598  if (!Changed)
4599    return PreservedAnalyses::all();
4600
4601  PreservedAnalyses PA;
4602  PA.preserveSet<CFGAnalyses>();
4603  PA.preserve<GlobalsAA>();
4604  return PA;
4605}
4606
4607PreservedAnalyses SROA::run(Function &F, FunctionAnalysisManager &AM) {
4608  return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F),
4609                 AM.getResult<AssumptionAnalysis>(F));
4610}
4611
4612/// A legacy pass for the legacy pass manager that wraps the \c SROA pass.
4613///
4614/// This is in the llvm namespace purely to allow it to be a friend of the \c
4615/// SROA pass.
4616class llvm::sroa::SROALegacyPass : public FunctionPass {
4617  /// The SROA implementation.
4618  SROA Impl;
4619
4620public:
4621  static char ID;
4622
4623  SROALegacyPass() : FunctionPass(ID) {
4624    initializeSROALegacyPassPass(*PassRegistry::getPassRegistry());
4625  }
4626
4627  bool runOnFunction(Function &F) override {
4628    if (skipFunction(F))
4629      return false;
4630
4631    auto PA = Impl.runImpl(
4632        F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4633        getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
4634    return !PA.areAllPreserved();
4635  }
4636
4637  void getAnalysisUsage(AnalysisUsage &AU) const override {
4638    AU.addRequired<AssumptionCacheTracker>();
4639    AU.addRequired<DominatorTreeWrapperPass>();
4640    AU.addPreserved<GlobalsAAWrapperPass>();
4641    AU.setPreservesCFG();
4642  }
4643
4644  StringRef getPassName() const override { return "SROA"; }
4645};
4646
4647char SROALegacyPass::ID = 0;
4648
4649FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); }
4650
4651INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa",
4652                      "Scalar Replacement Of Aggregates", false, false)
4653INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4654INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4655INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates",
4656                    false, false)
4657