RewriteStatepointsForGC.cpp revision 360784
1//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Rewrite call/invoke instructions so as to make potential relocations
10// performed by the garbage collector explicit in the IR.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
15
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/DenseSet.h"
19#include "llvm/ADT/MapVector.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/Optional.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SetVector.h"
24#include "llvm/ADT/SmallSet.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/StringRef.h"
27#include "llvm/ADT/iterator_range.h"
28#include "llvm/Analysis/DomTreeUpdater.h"
29#include "llvm/Analysis/TargetLibraryInfo.h"
30#include "llvm/Analysis/TargetTransformInfo.h"
31#include "llvm/IR/Argument.h"
32#include "llvm/IR/Attributes.h"
33#include "llvm/IR/BasicBlock.h"
34#include "llvm/IR/CallingConv.h"
35#include "llvm/IR/Constant.h"
36#include "llvm/IR/Constants.h"
37#include "llvm/IR/DataLayout.h"
38#include "llvm/IR/DerivedTypes.h"
39#include "llvm/IR/Dominators.h"
40#include "llvm/IR/Function.h"
41#include "llvm/IR/IRBuilder.h"
42#include "llvm/IR/InstIterator.h"
43#include "llvm/IR/InstrTypes.h"
44#include "llvm/IR/Instruction.h"
45#include "llvm/IR/Instructions.h"
46#include "llvm/IR/IntrinsicInst.h"
47#include "llvm/IR/Intrinsics.h"
48#include "llvm/IR/LLVMContext.h"
49#include "llvm/IR/MDBuilder.h"
50#include "llvm/IR/Metadata.h"
51#include "llvm/IR/Module.h"
52#include "llvm/IR/Statepoint.h"
53#include "llvm/IR/Type.h"
54#include "llvm/IR/User.h"
55#include "llvm/IR/Value.h"
56#include "llvm/IR/ValueHandle.h"
57#include "llvm/InitializePasses.h"
58#include "llvm/Pass.h"
59#include "llvm/Support/Casting.h"
60#include "llvm/Support/CommandLine.h"
61#include "llvm/Support/Compiler.h"
62#include "llvm/Support/Debug.h"
63#include "llvm/Support/ErrorHandling.h"
64#include "llvm/Support/raw_ostream.h"
65#include "llvm/Transforms/Scalar.h"
66#include "llvm/Transforms/Utils/BasicBlockUtils.h"
67#include "llvm/Transforms/Utils/Local.h"
68#include "llvm/Transforms/Utils/PromoteMemToReg.h"
69#include <algorithm>
70#include <cassert>
71#include <cstddef>
72#include <cstdint>
73#include <iterator>
74#include <set>
75#include <string>
76#include <utility>
77#include <vector>
78
79#define DEBUG_TYPE "rewrite-statepoints-for-gc"
80
81using namespace llvm;
82
83// Print the liveset found at the insert location
84static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
85                                  cl::init(false));
86static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
87                                      cl::init(false));
88
89// Print out the base pointers for debugging
90static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
91                                       cl::init(false));
92
93// Cost threshold measuring when it is profitable to rematerialize value instead
94// of relocating it
95static cl::opt<unsigned>
96RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
97                           cl::init(6));
98
99#ifdef EXPENSIVE_CHECKS
100static bool ClobberNonLive = true;
101#else
102static bool ClobberNonLive = false;
103#endif
104
105static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
106                                                  cl::location(ClobberNonLive),
107                                                  cl::Hidden);
108
109static cl::opt<bool>
110    AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
111                                   cl::Hidden, cl::init(true));
112
113/// The IR fed into RewriteStatepointsForGC may have had attributes and
114/// metadata implying dereferenceability that are no longer valid/correct after
115/// RewriteStatepointsForGC has run. This is because semantically, after
116/// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
117/// heap. stripNonValidData (conservatively) restores
118/// correctness by erasing all attributes in the module that externally imply
119/// dereferenceability. Similar reasoning also applies to the noalias
120/// attributes and metadata. gc.statepoint can touch the entire heap including
121/// noalias objects.
122/// Apart from attributes and metadata, we also remove instructions that imply
123/// constant physical memory: llvm.invariant.start.
124static void stripNonValidData(Module &M);
125
126static bool shouldRewriteStatepointsIn(Function &F);
127
128PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
129                                               ModuleAnalysisManager &AM) {
130  bool Changed = false;
131  auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
132  for (Function &F : M) {
133    // Nothing to do for declarations.
134    if (F.isDeclaration() || F.empty())
135      continue;
136
137    // Policy choice says not to rewrite - the most common reason is that we're
138    // compiling code without a GCStrategy.
139    if (!shouldRewriteStatepointsIn(F))
140      continue;
141
142    auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
143    auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
144    auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
145    Changed |= runOnFunction(F, DT, TTI, TLI);
146  }
147  if (!Changed)
148    return PreservedAnalyses::all();
149
150  // stripNonValidData asserts that shouldRewriteStatepointsIn
151  // returns true for at least one function in the module.  Since at least
152  // one function changed, we know that the precondition is satisfied.
153  stripNonValidData(M);
154
155  PreservedAnalyses PA;
156  PA.preserve<TargetIRAnalysis>();
157  PA.preserve<TargetLibraryAnalysis>();
158  return PA;
159}
160
161namespace {
162
163class RewriteStatepointsForGCLegacyPass : public ModulePass {
164  RewriteStatepointsForGC Impl;
165
166public:
167  static char ID; // Pass identification, replacement for typeid
168
169  RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
170    initializeRewriteStatepointsForGCLegacyPassPass(
171        *PassRegistry::getPassRegistry());
172  }
173
174  bool runOnModule(Module &M) override {
175    bool Changed = false;
176    for (Function &F : M) {
177      // Nothing to do for declarations.
178      if (F.isDeclaration() || F.empty())
179        continue;
180
181      // Policy choice says not to rewrite - the most common reason is that
182      // we're compiling code without a GCStrategy.
183      if (!shouldRewriteStatepointsIn(F))
184        continue;
185
186      TargetTransformInfo &TTI =
187          getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
188      const TargetLibraryInfo &TLI =
189          getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
190      auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
191
192      Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
193    }
194
195    if (!Changed)
196      return false;
197
198    // stripNonValidData asserts that shouldRewriteStatepointsIn
199    // returns true for at least one function in the module.  Since at least
200    // one function changed, we know that the precondition is satisfied.
201    stripNonValidData(M);
202    return true;
203  }
204
205  void getAnalysisUsage(AnalysisUsage &AU) const override {
206    // We add and rewrite a bunch of instructions, but don't really do much
207    // else.  We could in theory preserve a lot more analyses here.
208    AU.addRequired<DominatorTreeWrapperPass>();
209    AU.addRequired<TargetTransformInfoWrapperPass>();
210    AU.addRequired<TargetLibraryInfoWrapperPass>();
211  }
212};
213
214} // end anonymous namespace
215
216char RewriteStatepointsForGCLegacyPass::ID = 0;
217
218ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
219  return new RewriteStatepointsForGCLegacyPass();
220}
221
222INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
223                      "rewrite-statepoints-for-gc",
224                      "Make relocations explicit at statepoints", false, false)
225INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
226INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
227INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
228                    "rewrite-statepoints-for-gc",
229                    "Make relocations explicit at statepoints", false, false)
230
231namespace {
232
233struct GCPtrLivenessData {
234  /// Values defined in this block.
235  MapVector<BasicBlock *, SetVector<Value *>> KillSet;
236
237  /// Values used in this block (and thus live); does not included values
238  /// killed within this block.
239  MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
240
241  /// Values live into this basic block (i.e. used by any
242  /// instruction in this basic block or ones reachable from here)
243  MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
244
245  /// Values live out of this basic block (i.e. live into
246  /// any successor block)
247  MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
248};
249
250// The type of the internal cache used inside the findBasePointers family
251// of functions.  From the callers perspective, this is an opaque type and
252// should not be inspected.
253//
254// In the actual implementation this caches two relations:
255// - The base relation itself (i.e. this pointer is based on that one)
256// - The base defining value relation (i.e. before base_phi insertion)
257// Generally, after the execution of a full findBasePointer call, only the
258// base relation will remain.  Internally, we add a mixture of the two
259// types, then update all the second type to the first type
260using DefiningValueMapTy = MapVector<Value *, Value *>;
261using StatepointLiveSetTy = SetVector<Value *>;
262using RematerializedValueMapTy =
263    MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
264
265struct PartiallyConstructedSafepointRecord {
266  /// The set of values known to be live across this safepoint
267  StatepointLiveSetTy LiveSet;
268
269  /// Mapping from live pointers to a base-defining-value
270  MapVector<Value *, Value *> PointerToBase;
271
272  /// The *new* gc.statepoint instruction itself.  This produces the token
273  /// that normal path gc.relocates and the gc.result are tied to.
274  Instruction *StatepointToken;
275
276  /// Instruction to which exceptional gc relocates are attached
277  /// Makes it easier to iterate through them during relocationViaAlloca.
278  Instruction *UnwindToken;
279
280  /// Record live values we are rematerialized instead of relocating.
281  /// They are not included into 'LiveSet' field.
282  /// Maps rematerialized copy to it's original value.
283  RematerializedValueMapTy RematerializedValues;
284};
285
286} // end anonymous namespace
287
288static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
289  Optional<OperandBundleUse> DeoptBundle =
290      Call->getOperandBundle(LLVMContext::OB_deopt);
291
292  if (!DeoptBundle.hasValue()) {
293    assert(AllowStatepointWithNoDeoptInfo &&
294           "Found non-leaf call without deopt info!");
295    return None;
296  }
297
298  return DeoptBundle.getValue().Inputs;
299}
300
301/// Compute the live-in set for every basic block in the function
302static void computeLiveInValues(DominatorTree &DT, Function &F,
303                                GCPtrLivenessData &Data);
304
305/// Given results from the dataflow liveness computation, find the set of live
306/// Values at a particular instruction.
307static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
308                              StatepointLiveSetTy &out);
309
310// TODO: Once we can get to the GCStrategy, this becomes
311// Optional<bool> isGCManagedPointer(const Type *Ty) const override {
312
313static bool isGCPointerType(Type *T) {
314  if (auto *PT = dyn_cast<PointerType>(T))
315    // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
316    // GC managed heap.  We know that a pointer into this heap needs to be
317    // updated and that no other pointer does.
318    return PT->getAddressSpace() == 1;
319  return false;
320}
321
322// Return true if this type is one which a) is a gc pointer or contains a GC
323// pointer and b) is of a type this code expects to encounter as a live value.
324// (The insertion code will assert that a type which matches (a) and not (b)
325// is not encountered.)
326static bool isHandledGCPointerType(Type *T) {
327  // We fully support gc pointers
328  if (isGCPointerType(T))
329    return true;
330  // We partially support vectors of gc pointers. The code will assert if it
331  // can't handle something.
332  if (auto VT = dyn_cast<VectorType>(T))
333    if (isGCPointerType(VT->getElementType()))
334      return true;
335  return false;
336}
337
338#ifndef NDEBUG
339/// Returns true if this type contains a gc pointer whether we know how to
340/// handle that type or not.
341static bool containsGCPtrType(Type *Ty) {
342  if (isGCPointerType(Ty))
343    return true;
344  if (VectorType *VT = dyn_cast<VectorType>(Ty))
345    return isGCPointerType(VT->getScalarType());
346  if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
347    return containsGCPtrType(AT->getElementType());
348  if (StructType *ST = dyn_cast<StructType>(Ty))
349    return llvm::any_of(ST->elements(), containsGCPtrType);
350  return false;
351}
352
353// Returns true if this is a type which a) is a gc pointer or contains a GC
354// pointer and b) is of a type which the code doesn't expect (i.e. first class
355// aggregates).  Used to trip assertions.
356static bool isUnhandledGCPointerType(Type *Ty) {
357  return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
358}
359#endif
360
361// Return the name of the value suffixed with the provided value, or if the
362// value didn't have a name, the default value specified.
363static std::string suffixed_name_or(Value *V, StringRef Suffix,
364                                    StringRef DefaultName) {
365  return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
366}
367
368// Conservatively identifies any definitions which might be live at the
369// given instruction. The  analysis is performed immediately before the
370// given instruction. Values defined by that instruction are not considered
371// live.  Values used by that instruction are considered live.
372static void analyzeParsePointLiveness(
373    DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
374    PartiallyConstructedSafepointRecord &Result) {
375  StatepointLiveSetTy LiveSet;
376  findLiveSetAtInst(Call, OriginalLivenessData, LiveSet);
377
378  if (PrintLiveSet) {
379    dbgs() << "Live Variables:\n";
380    for (Value *V : LiveSet)
381      dbgs() << " " << V->getName() << " " << *V << "\n";
382  }
383  if (PrintLiveSetSize) {
384    dbgs() << "Safepoint For: " << Call->getCalledValue()->getName() << "\n";
385    dbgs() << "Number live values: " << LiveSet.size() << "\n";
386  }
387  Result.LiveSet = LiveSet;
388}
389
390static bool isKnownBaseResult(Value *V);
391
392namespace {
393
394/// A single base defining value - An immediate base defining value for an
395/// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
396/// For instructions which have multiple pointer [vector] inputs or that
397/// transition between vector and scalar types, there is no immediate base
398/// defining value.  The 'base defining value' for 'Def' is the transitive
399/// closure of this relation stopping at the first instruction which has no
400/// immediate base defining value.  The b.d.v. might itself be a base pointer,
401/// but it can also be an arbitrary derived pointer.
402struct BaseDefiningValueResult {
403  /// Contains the value which is the base defining value.
404  Value * const BDV;
405
406  /// True if the base defining value is also known to be an actual base
407  /// pointer.
408  const bool IsKnownBase;
409
410  BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
411    : BDV(BDV), IsKnownBase(IsKnownBase) {
412#ifndef NDEBUG
413    // Check consistency between new and old means of checking whether a BDV is
414    // a base.
415    bool MustBeBase = isKnownBaseResult(BDV);
416    assert(!MustBeBase || MustBeBase == IsKnownBase);
417#endif
418  }
419};
420
421} // end anonymous namespace
422
423static BaseDefiningValueResult findBaseDefiningValue(Value *I);
424
425/// Return a base defining value for the 'Index' element of the given vector
426/// instruction 'I'.  If Index is null, returns a BDV for the entire vector
427/// 'I'.  As an optimization, this method will try to determine when the
428/// element is known to already be a base pointer.  If this can be established,
429/// the second value in the returned pair will be true.  Note that either a
430/// vector or a pointer typed value can be returned.  For the former, the
431/// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
432/// If the later, the return pointer is a BDV (or possibly a base) for the
433/// particular element in 'I'.
434static BaseDefiningValueResult
435findBaseDefiningValueOfVector(Value *I) {
436  // Each case parallels findBaseDefiningValue below, see that code for
437  // detailed motivation.
438
439  if (isa<Argument>(I))
440    // An incoming argument to the function is a base pointer
441    return BaseDefiningValueResult(I, true);
442
443  if (isa<Constant>(I))
444    // Base of constant vector consists only of constant null pointers.
445    // For reasoning see similar case inside 'findBaseDefiningValue' function.
446    return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
447                                   true);
448
449  if (isa<LoadInst>(I))
450    return BaseDefiningValueResult(I, true);
451
452  if (isa<InsertElementInst>(I))
453    // We don't know whether this vector contains entirely base pointers or
454    // not.  To be conservatively correct, we treat it as a BDV and will
455    // duplicate code as needed to construct a parallel vector of bases.
456    return BaseDefiningValueResult(I, false);
457
458  if (isa<ShuffleVectorInst>(I))
459    // We don't know whether this vector contains entirely base pointers or
460    // not.  To be conservatively correct, we treat it as a BDV and will
461    // duplicate code as needed to construct a parallel vector of bases.
462    // TODO: There a number of local optimizations which could be applied here
463    // for particular sufflevector patterns.
464    return BaseDefiningValueResult(I, false);
465
466  // The behavior of getelementptr instructions is the same for vector and
467  // non-vector data types.
468  if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
469    return findBaseDefiningValue(GEP->getPointerOperand());
470
471  // If the pointer comes through a bitcast of a vector of pointers to
472  // a vector of another type of pointer, then look through the bitcast
473  if (auto *BC = dyn_cast<BitCastInst>(I))
474    return findBaseDefiningValue(BC->getOperand(0));
475
476  // We assume that functions in the source language only return base
477  // pointers.  This should probably be generalized via attributes to support
478  // both source language and internal functions.
479  if (isa<CallInst>(I) || isa<InvokeInst>(I))
480    return BaseDefiningValueResult(I, true);
481
482  // A PHI or Select is a base defining value.  The outer findBasePointer
483  // algorithm is responsible for constructing a base value for this BDV.
484  assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
485         "unknown vector instruction - no base found for vector element");
486  return BaseDefiningValueResult(I, false);
487}
488
489/// Helper function for findBasePointer - Will return a value which either a)
490/// defines the base pointer for the input, b) blocks the simple search
491/// (i.e. a PHI or Select of two derived pointers), or c) involves a change
492/// from pointer to vector type or back.
493static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
494  assert(I->getType()->isPtrOrPtrVectorTy() &&
495         "Illegal to ask for the base pointer of a non-pointer type");
496
497  if (I->getType()->isVectorTy())
498    return findBaseDefiningValueOfVector(I);
499
500  if (isa<Argument>(I))
501    // An incoming argument to the function is a base pointer
502    // We should have never reached here if this argument isn't an gc value
503    return BaseDefiningValueResult(I, true);
504
505  if (isa<Constant>(I)) {
506    // We assume that objects with a constant base (e.g. a global) can't move
507    // and don't need to be reported to the collector because they are always
508    // live. Besides global references, all kinds of constants (e.g. undef,
509    // constant expressions, null pointers) can be introduced by the inliner or
510    // the optimizer, especially on dynamically dead paths.
511    // Here we treat all of them as having single null base. By doing this we
512    // trying to avoid problems reporting various conflicts in a form of
513    // "phi (const1, const2)" or "phi (const, regular gc ptr)".
514    // See constant.ll file for relevant test cases.
515
516    return BaseDefiningValueResult(
517        ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
518  }
519
520  if (CastInst *CI = dyn_cast<CastInst>(I)) {
521    Value *Def = CI->stripPointerCasts();
522    // If stripping pointer casts changes the address space there is an
523    // addrspacecast in between.
524    assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
525               cast<PointerType>(CI->getType())->getAddressSpace() &&
526           "unsupported addrspacecast");
527    // If we find a cast instruction here, it means we've found a cast which is
528    // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
529    // handle int->ptr conversion.
530    assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
531    return findBaseDefiningValue(Def);
532  }
533
534  if (isa<LoadInst>(I))
535    // The value loaded is an gc base itself
536    return BaseDefiningValueResult(I, true);
537
538  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
539    // The base of this GEP is the base
540    return findBaseDefiningValue(GEP->getPointerOperand());
541
542  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
543    switch (II->getIntrinsicID()) {
544    default:
545      // fall through to general call handling
546      break;
547    case Intrinsic::experimental_gc_statepoint:
548      llvm_unreachable("statepoints don't produce pointers");
549    case Intrinsic::experimental_gc_relocate:
550      // Rerunning safepoint insertion after safepoints are already
551      // inserted is not supported.  It could probably be made to work,
552      // but why are you doing this?  There's no good reason.
553      llvm_unreachable("repeat safepoint insertion is not supported");
554    case Intrinsic::gcroot:
555      // Currently, this mechanism hasn't been extended to work with gcroot.
556      // There's no reason it couldn't be, but I haven't thought about the
557      // implications much.
558      llvm_unreachable(
559          "interaction with the gcroot mechanism is not supported");
560    }
561  }
562  // We assume that functions in the source language only return base
563  // pointers.  This should probably be generalized via attributes to support
564  // both source language and internal functions.
565  if (isa<CallInst>(I) || isa<InvokeInst>(I))
566    return BaseDefiningValueResult(I, true);
567
568  // TODO: I have absolutely no idea how to implement this part yet.  It's not
569  // necessarily hard, I just haven't really looked at it yet.
570  assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
571
572  if (isa<AtomicCmpXchgInst>(I))
573    // A CAS is effectively a atomic store and load combined under a
574    // predicate.  From the perspective of base pointers, we just treat it
575    // like a load.
576    return BaseDefiningValueResult(I, true);
577
578  assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
579                                   "binary ops which don't apply to pointers");
580
581  // The aggregate ops.  Aggregates can either be in the heap or on the
582  // stack, but in either case, this is simply a field load.  As a result,
583  // this is a defining definition of the base just like a load is.
584  if (isa<ExtractValueInst>(I))
585    return BaseDefiningValueResult(I, true);
586
587  // We should never see an insert vector since that would require we be
588  // tracing back a struct value not a pointer value.
589  assert(!isa<InsertValueInst>(I) &&
590         "Base pointer for a struct is meaningless");
591
592  // An extractelement produces a base result exactly when it's input does.
593  // We may need to insert a parallel instruction to extract the appropriate
594  // element out of the base vector corresponding to the input. Given this,
595  // it's analogous to the phi and select case even though it's not a merge.
596  if (isa<ExtractElementInst>(I))
597    // Note: There a lot of obvious peephole cases here.  This are deliberately
598    // handled after the main base pointer inference algorithm to make writing
599    // test cases to exercise that code easier.
600    return BaseDefiningValueResult(I, false);
601
602  // The last two cases here don't return a base pointer.  Instead, they
603  // return a value which dynamically selects from among several base
604  // derived pointers (each with it's own base potentially).  It's the job of
605  // the caller to resolve these.
606  assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
607         "missing instruction case in findBaseDefiningValing");
608  return BaseDefiningValueResult(I, false);
609}
610
611/// Returns the base defining value for this value.
612static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
613  Value *&Cached = Cache[I];
614  if (!Cached) {
615    Cached = findBaseDefiningValue(I).BDV;
616    LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
617                      << Cached->getName() << "\n");
618  }
619  assert(Cache[I] != nullptr);
620  return Cached;
621}
622
623/// Return a base pointer for this value if known.  Otherwise, return it's
624/// base defining value.
625static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
626  Value *Def = findBaseDefiningValueCached(I, Cache);
627  auto Found = Cache.find(Def);
628  if (Found != Cache.end()) {
629    // Either a base-of relation, or a self reference.  Caller must check.
630    return Found->second;
631  }
632  // Only a BDV available
633  return Def;
634}
635
636/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
637/// is it known to be a base pointer?  Or do we need to continue searching.
638static bool isKnownBaseResult(Value *V) {
639  if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
640      !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
641      !isa<ShuffleVectorInst>(V)) {
642    // no recursion possible
643    return true;
644  }
645  if (isa<Instruction>(V) &&
646      cast<Instruction>(V)->getMetadata("is_base_value")) {
647    // This is a previously inserted base phi or select.  We know
648    // that this is a base value.
649    return true;
650  }
651
652  // We need to keep searching
653  return false;
654}
655
656namespace {
657
658/// Models the state of a single base defining value in the findBasePointer
659/// algorithm for determining where a new instruction is needed to propagate
660/// the base of this BDV.
661class BDVState {
662public:
663  enum Status { Unknown, Base, Conflict };
664
665  BDVState() : BaseValue(nullptr) {}
666
667  explicit BDVState(Status Status, Value *BaseValue = nullptr)
668      : Status(Status), BaseValue(BaseValue) {
669    assert(Status != Base || BaseValue);
670  }
671
672  explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {}
673
674  Status getStatus() const { return Status; }
675  Value *getBaseValue() const { return BaseValue; }
676
677  bool isBase() const { return getStatus() == Base; }
678  bool isUnknown() const { return getStatus() == Unknown; }
679  bool isConflict() const { return getStatus() == Conflict; }
680
681  bool operator==(const BDVState &Other) const {
682    return BaseValue == Other.BaseValue && Status == Other.Status;
683  }
684
685  bool operator!=(const BDVState &other) const { return !(*this == other); }
686
687  LLVM_DUMP_METHOD
688  void dump() const {
689    print(dbgs());
690    dbgs() << '\n';
691  }
692
693  void print(raw_ostream &OS) const {
694    switch (getStatus()) {
695    case Unknown:
696      OS << "U";
697      break;
698    case Base:
699      OS << "B";
700      break;
701    case Conflict:
702      OS << "C";
703      break;
704    }
705    OS << " (" << getBaseValue() << " - "
706       << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): ";
707  }
708
709private:
710  Status Status = Unknown;
711  AssertingVH<Value> BaseValue; // Non-null only if Status == Base.
712};
713
714} // end anonymous namespace
715
716#ifndef NDEBUG
717static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
718  State.print(OS);
719  return OS;
720}
721#endif
722
723static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
724  switch (LHS.getStatus()) {
725  case BDVState::Unknown:
726    return RHS;
727
728  case BDVState::Base:
729    assert(LHS.getBaseValue() && "can't be null");
730    if (RHS.isUnknown())
731      return LHS;
732
733    if (RHS.isBase()) {
734      if (LHS.getBaseValue() == RHS.getBaseValue()) {
735        assert(LHS == RHS && "equality broken!");
736        return LHS;
737      }
738      return BDVState(BDVState::Conflict);
739    }
740    assert(RHS.isConflict() && "only three states!");
741    return BDVState(BDVState::Conflict);
742
743  case BDVState::Conflict:
744    return LHS;
745  }
746  llvm_unreachable("only three states!");
747}
748
749// Values of type BDVState form a lattice, and this function implements the meet
750// operation.
751static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) {
752  BDVState Result = meetBDVStateImpl(LHS, RHS);
753  assert(Result == meetBDVStateImpl(RHS, LHS) &&
754         "Math is wrong: meet does not commute!");
755  return Result;
756}
757
758/// For a given value or instruction, figure out what base ptr its derived from.
759/// For gc objects, this is simply itself.  On success, returns a value which is
760/// the base pointer.  (This is reliable and can be used for relocation.)  On
761/// failure, returns nullptr.
762static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
763  Value *Def = findBaseOrBDV(I, Cache);
764
765  if (isKnownBaseResult(Def))
766    return Def;
767
768  // Here's the rough algorithm:
769  // - For every SSA value, construct a mapping to either an actual base
770  //   pointer or a PHI which obscures the base pointer.
771  // - Construct a mapping from PHI to unknown TOP state.  Use an
772  //   optimistic algorithm to propagate base pointer information.  Lattice
773  //   looks like:
774  //   UNKNOWN
775  //   b1 b2 b3 b4
776  //   CONFLICT
777  //   When algorithm terminates, all PHIs will either have a single concrete
778  //   base or be in a conflict state.
779  // - For every conflict, insert a dummy PHI node without arguments.  Add
780  //   these to the base[Instruction] = BasePtr mapping.  For every
781  //   non-conflict, add the actual base.
782  //  - For every conflict, add arguments for the base[a] of each input
783  //   arguments.
784  //
785  // Note: A simpler form of this would be to add the conflict form of all
786  // PHIs without running the optimistic algorithm.  This would be
787  // analogous to pessimistic data flow and would likely lead to an
788  // overall worse solution.
789
790#ifndef NDEBUG
791  auto isExpectedBDVType = [](Value *BDV) {
792    return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
793           isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
794           isa<ShuffleVectorInst>(BDV);
795  };
796#endif
797
798  // Once populated, will contain a mapping from each potentially non-base BDV
799  // to a lattice value (described above) which corresponds to that BDV.
800  // We use the order of insertion (DFS over the def/use graph) to provide a
801  // stable deterministic ordering for visiting DenseMaps (which are unordered)
802  // below.  This is important for deterministic compilation.
803  MapVector<Value *, BDVState> States;
804
805  // Recursively fill in all base defining values reachable from the initial
806  // one for which we don't already know a definite base value for
807  /* scope */ {
808    SmallVector<Value*, 16> Worklist;
809    Worklist.push_back(Def);
810    States.insert({Def, BDVState()});
811    while (!Worklist.empty()) {
812      Value *Current = Worklist.pop_back_val();
813      assert(!isKnownBaseResult(Current) && "why did it get added?");
814
815      auto visitIncomingValue = [&](Value *InVal) {
816        Value *Base = findBaseOrBDV(InVal, Cache);
817        if (isKnownBaseResult(Base))
818          // Known bases won't need new instructions introduced and can be
819          // ignored safely
820          return;
821        assert(isExpectedBDVType(Base) && "the only non-base values "
822               "we see should be base defining values");
823        if (States.insert(std::make_pair(Base, BDVState())).second)
824          Worklist.push_back(Base);
825      };
826      if (PHINode *PN = dyn_cast<PHINode>(Current)) {
827        for (Value *InVal : PN->incoming_values())
828          visitIncomingValue(InVal);
829      } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
830        visitIncomingValue(SI->getTrueValue());
831        visitIncomingValue(SI->getFalseValue());
832      } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
833        visitIncomingValue(EE->getVectorOperand());
834      } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
835        visitIncomingValue(IE->getOperand(0)); // vector operand
836        visitIncomingValue(IE->getOperand(1)); // scalar operand
837      } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) {
838        visitIncomingValue(SV->getOperand(0));
839        visitIncomingValue(SV->getOperand(1));
840      }
841      else {
842        llvm_unreachable("Unimplemented instruction case");
843      }
844    }
845  }
846
847#ifndef NDEBUG
848  LLVM_DEBUG(dbgs() << "States after initialization:\n");
849  for (auto Pair : States) {
850    LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
851  }
852#endif
853
854  // Return a phi state for a base defining value.  We'll generate a new
855  // base state for known bases and expect to find a cached state otherwise.
856  auto getStateForBDV = [&](Value *baseValue) {
857    if (isKnownBaseResult(baseValue))
858      return BDVState(baseValue);
859    auto I = States.find(baseValue);
860    assert(I != States.end() && "lookup failed!");
861    return I->second;
862  };
863
864  bool Progress = true;
865  while (Progress) {
866#ifndef NDEBUG
867    const size_t OldSize = States.size();
868#endif
869    Progress = false;
870    // We're only changing values in this loop, thus safe to keep iterators.
871    // Since this is computing a fixed point, the order of visit does not
872    // effect the result.  TODO: We could use a worklist here and make this run
873    // much faster.
874    for (auto Pair : States) {
875      Value *BDV = Pair.first;
876      assert(!isKnownBaseResult(BDV) && "why did it get added?");
877
878      // Given an input value for the current instruction, return a BDVState
879      // instance which represents the BDV of that value.
880      auto getStateForInput = [&](Value *V) mutable {
881        Value *BDV = findBaseOrBDV(V, Cache);
882        return getStateForBDV(BDV);
883      };
884
885      BDVState NewState;
886      if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
887        NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
888        NewState =
889            meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
890      } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
891        for (Value *Val : PN->incoming_values())
892          NewState = meetBDVState(NewState, getStateForInput(Val));
893      } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
894        // The 'meet' for an extractelement is slightly trivial, but it's still
895        // useful in that it drives us to conflict if our input is.
896        NewState =
897            meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
898      } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){
899        // Given there's a inherent type mismatch between the operands, will
900        // *always* produce Conflict.
901        NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
902        NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
903      } else {
904        // The only instance this does not return a Conflict is when both the
905        // vector operands are the same vector.
906        auto *SV = cast<ShuffleVectorInst>(BDV);
907        NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0)));
908        NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1)));
909      }
910
911      BDVState OldState = States[BDV];
912      if (OldState != NewState) {
913        Progress = true;
914        States[BDV] = NewState;
915      }
916    }
917
918    assert(OldSize == States.size() &&
919           "fixed point shouldn't be adding any new nodes to state");
920  }
921
922#ifndef NDEBUG
923  LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
924  for (auto Pair : States) {
925    LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
926  }
927#endif
928
929  // Insert Phis for all conflicts
930  // TODO: adjust naming patterns to avoid this order of iteration dependency
931  for (auto Pair : States) {
932    Instruction *I = cast<Instruction>(Pair.first);
933    BDVState State = Pair.second;
934    assert(!isKnownBaseResult(I) && "why did it get added?");
935    assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
936
937    // extractelement instructions are a bit special in that we may need to
938    // insert an extract even when we know an exact base for the instruction.
939    // The problem is that we need to convert from a vector base to a scalar
940    // base for the particular indice we're interested in.
941    if (State.isBase() && isa<ExtractElementInst>(I) &&
942        isa<VectorType>(State.getBaseValue()->getType())) {
943      auto *EE = cast<ExtractElementInst>(I);
944      // TODO: In many cases, the new instruction is just EE itself.  We should
945      // exploit this, but can't do it here since it would break the invariant
946      // about the BDV not being known to be a base.
947      auto *BaseInst = ExtractElementInst::Create(
948          State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
949      BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
950      States[I] = BDVState(BDVState::Base, BaseInst);
951    }
952
953    // Since we're joining a vector and scalar base, they can never be the
954    // same.  As a result, we should always see insert element having reached
955    // the conflict state.
956    assert(!isa<InsertElementInst>(I) || State.isConflict());
957
958    if (!State.isConflict())
959      continue;
960
961    /// Create and insert a new instruction which will represent the base of
962    /// the given instruction 'I'.
963    auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
964      if (isa<PHINode>(I)) {
965        BasicBlock *BB = I->getParent();
966        int NumPreds = pred_size(BB);
967        assert(NumPreds > 0 && "how did we reach here");
968        std::string Name = suffixed_name_or(I, ".base", "base_phi");
969        return PHINode::Create(I->getType(), NumPreds, Name, I);
970      } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
971        // The undef will be replaced later
972        UndefValue *Undef = UndefValue::get(SI->getType());
973        std::string Name = suffixed_name_or(I, ".base", "base_select");
974        return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
975      } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
976        UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
977        std::string Name = suffixed_name_or(I, ".base", "base_ee");
978        return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
979                                          EE);
980      } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
981        UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
982        UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
983        std::string Name = suffixed_name_or(I, ".base", "base_ie");
984        return InsertElementInst::Create(VecUndef, ScalarUndef,
985                                         IE->getOperand(2), Name, IE);
986      } else {
987        auto *SV = cast<ShuffleVectorInst>(I);
988        UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType());
989        std::string Name = suffixed_name_or(I, ".base", "base_sv");
990        return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2),
991                                     Name, SV);
992      }
993    };
994    Instruction *BaseInst = MakeBaseInstPlaceholder(I);
995    // Add metadata marking this as a base value
996    BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
997    States[I] = BDVState(BDVState::Conflict, BaseInst);
998  }
999
1000  // Returns a instruction which produces the base pointer for a given
1001  // instruction.  The instruction is assumed to be an input to one of the BDVs
1002  // seen in the inference algorithm above.  As such, we must either already
1003  // know it's base defining value is a base, or have inserted a new
1004  // instruction to propagate the base of it's BDV and have entered that newly
1005  // introduced instruction into the state table.  In either case, we are
1006  // assured to be able to determine an instruction which produces it's base
1007  // pointer.
1008  auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
1009    Value *BDV = findBaseOrBDV(Input, Cache);
1010    Value *Base = nullptr;
1011    if (isKnownBaseResult(BDV)) {
1012      Base = BDV;
1013    } else {
1014      // Either conflict or base.
1015      assert(States.count(BDV));
1016      Base = States[BDV].getBaseValue();
1017    }
1018    assert(Base && "Can't be null");
1019    // The cast is needed since base traversal may strip away bitcasts
1020    if (Base->getType() != Input->getType() && InsertPt)
1021      Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
1022    return Base;
1023  };
1024
1025  // Fixup all the inputs of the new PHIs.  Visit order needs to be
1026  // deterministic and predictable because we're naming newly created
1027  // instructions.
1028  for (auto Pair : States) {
1029    Instruction *BDV = cast<Instruction>(Pair.first);
1030    BDVState State = Pair.second;
1031
1032    assert(!isKnownBaseResult(BDV) && "why did it get added?");
1033    assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1034    if (!State.isConflict())
1035      continue;
1036
1037    if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
1038      PHINode *PN = cast<PHINode>(BDV);
1039      unsigned NumPHIValues = PN->getNumIncomingValues();
1040      for (unsigned i = 0; i < NumPHIValues; i++) {
1041        Value *InVal = PN->getIncomingValue(i);
1042        BasicBlock *InBB = PN->getIncomingBlock(i);
1043
1044        // If we've already seen InBB, add the same incoming value
1045        // we added for it earlier.  The IR verifier requires phi
1046        // nodes with multiple entries from the same basic block
1047        // to have the same incoming value for each of those
1048        // entries.  If we don't do this check here and basephi
1049        // has a different type than base, we'll end up adding two
1050        // bitcasts (and hence two distinct values) as incoming
1051        // values for the same basic block.
1052
1053        int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
1054        if (BlockIndex != -1) {
1055          Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
1056          BasePHI->addIncoming(OldBase, InBB);
1057
1058#ifndef NDEBUG
1059          Value *Base = getBaseForInput(InVal, nullptr);
1060          // In essence this assert states: the only way two values
1061          // incoming from the same basic block may be different is by
1062          // being different bitcasts of the same value.  A cleanup
1063          // that remains TODO is changing findBaseOrBDV to return an
1064          // llvm::Value of the correct type (and still remain pure).
1065          // This will remove the need to add bitcasts.
1066          assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
1067                 "Sanity -- findBaseOrBDV should be pure!");
1068#endif
1069          continue;
1070        }
1071
1072        // Find the instruction which produces the base for each input.  We may
1073        // need to insert a bitcast in the incoming block.
1074        // TODO: Need to split critical edges if insertion is needed
1075        Value *Base = getBaseForInput(InVal, InBB->getTerminator());
1076        BasePHI->addIncoming(Base, InBB);
1077      }
1078      assert(BasePHI->getNumIncomingValues() == NumPHIValues);
1079    } else if (SelectInst *BaseSI =
1080                   dyn_cast<SelectInst>(State.getBaseValue())) {
1081      SelectInst *SI = cast<SelectInst>(BDV);
1082
1083      // Find the instruction which produces the base for each input.
1084      // We may need to insert a bitcast.
1085      BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
1086      BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
1087    } else if (auto *BaseEE =
1088                   dyn_cast<ExtractElementInst>(State.getBaseValue())) {
1089      Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1090      // Find the instruction which produces the base for each input.  We may
1091      // need to insert a bitcast.
1092      BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
1093    } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
1094      auto *BdvIE = cast<InsertElementInst>(BDV);
1095      auto UpdateOperand = [&](int OperandIdx) {
1096        Value *InVal = BdvIE->getOperand(OperandIdx);
1097        Value *Base = getBaseForInput(InVal, BaseIE);
1098        BaseIE->setOperand(OperandIdx, Base);
1099      };
1100      UpdateOperand(0); // vector operand
1101      UpdateOperand(1); // scalar operand
1102    } else {
1103      auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
1104      auto *BdvSV = cast<ShuffleVectorInst>(BDV);
1105      auto UpdateOperand = [&](int OperandIdx) {
1106        Value *InVal = BdvSV->getOperand(OperandIdx);
1107        Value *Base = getBaseForInput(InVal, BaseSV);
1108        BaseSV->setOperand(OperandIdx, Base);
1109      };
1110      UpdateOperand(0); // vector operand
1111      UpdateOperand(1); // vector operand
1112    }
1113  }
1114
1115  // Cache all of our results so we can cheaply reuse them
1116  // NOTE: This is actually two caches: one of the base defining value
1117  // relation and one of the base pointer relation!  FIXME
1118  for (auto Pair : States) {
1119    auto *BDV = Pair.first;
1120    Value *Base = Pair.second.getBaseValue();
1121    assert(BDV && Base);
1122    assert(!isKnownBaseResult(BDV) && "why did it get added?");
1123
1124    LLVM_DEBUG(
1125        dbgs() << "Updating base value cache"
1126               << " for: " << BDV->getName() << " from: "
1127               << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
1128               << " to: " << Base->getName() << "\n");
1129
1130    if (Cache.count(BDV)) {
1131      assert(isKnownBaseResult(Base) &&
1132             "must be something we 'know' is a base pointer");
1133      // Once we transition from the BDV relation being store in the Cache to
1134      // the base relation being stored, it must be stable
1135      assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
1136             "base relation should be stable");
1137    }
1138    Cache[BDV] = Base;
1139  }
1140  assert(Cache.count(Def));
1141  return Cache[Def];
1142}
1143
1144// For a set of live pointers (base and/or derived), identify the base
1145// pointer of the object which they are derived from.  This routine will
1146// mutate the IR graph as needed to make the 'base' pointer live at the
1147// definition site of 'derived'.  This ensures that any use of 'derived' can
1148// also use 'base'.  This may involve the insertion of a number of
1149// additional PHI nodes.
1150//
1151// preconditions: live is a set of pointer type Values
1152//
1153// side effects: may insert PHI nodes into the existing CFG, will preserve
1154// CFG, will not remove or mutate any existing nodes
1155//
1156// post condition: PointerToBase contains one (derived, base) pair for every
1157// pointer in live.  Note that derived can be equal to base if the original
1158// pointer was a base pointer.
1159static void
1160findBasePointers(const StatepointLiveSetTy &live,
1161                 MapVector<Value *, Value *> &PointerToBase,
1162                 DominatorTree *DT, DefiningValueMapTy &DVCache) {
1163  for (Value *ptr : live) {
1164    Value *base = findBasePointer(ptr, DVCache);
1165    assert(base && "failed to find base pointer");
1166    PointerToBase[ptr] = base;
1167    assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1168            DT->dominates(cast<Instruction>(base)->getParent(),
1169                          cast<Instruction>(ptr)->getParent())) &&
1170           "The base we found better dominate the derived pointer");
1171  }
1172}
1173
1174/// Find the required based pointers (and adjust the live set) for the given
1175/// parse point.
1176static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1177                             CallBase *Call,
1178                             PartiallyConstructedSafepointRecord &result) {
1179  MapVector<Value *, Value *> PointerToBase;
1180  findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1181
1182  if (PrintBasePointers) {
1183    errs() << "Base Pairs (w/o Relocation):\n";
1184    for (auto &Pair : PointerToBase) {
1185      errs() << " derived ";
1186      Pair.first->printAsOperand(errs(), false);
1187      errs() << " base ";
1188      Pair.second->printAsOperand(errs(), false);
1189      errs() << "\n";;
1190    }
1191  }
1192
1193  result.PointerToBase = PointerToBase;
1194}
1195
1196/// Given an updated version of the dataflow liveness results, update the
1197/// liveset and base pointer maps for the call site CS.
1198static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1199                                  CallBase *Call,
1200                                  PartiallyConstructedSafepointRecord &result);
1201
1202static void recomputeLiveInValues(
1203    Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
1204    MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1205  // TODO-PERF: reuse the original liveness, then simply run the dataflow
1206  // again.  The old values are still live and will help it stabilize quickly.
1207  GCPtrLivenessData RevisedLivenessData;
1208  computeLiveInValues(DT, F, RevisedLivenessData);
1209  for (size_t i = 0; i < records.size(); i++) {
1210    struct PartiallyConstructedSafepointRecord &info = records[i];
1211    recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1212  }
1213}
1214
1215// When inserting gc.relocate and gc.result calls, we need to ensure there are
1216// no uses of the original value / return value between the gc.statepoint and
1217// the gc.relocate / gc.result call.  One case which can arise is a phi node
1218// starting one of the successor blocks.  We also need to be able to insert the
1219// gc.relocates only on the path which goes through the statepoint.  We might
1220// need to split an edge to make this possible.
1221static BasicBlock *
1222normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1223                            DominatorTree &DT) {
1224  BasicBlock *Ret = BB;
1225  if (!BB->getUniquePredecessor())
1226    Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1227
1228  // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1229  // from it
1230  FoldSingleEntryPHINodes(Ret);
1231  assert(!isa<PHINode>(Ret->begin()) &&
1232         "All PHI nodes should have been removed!");
1233
1234  // At this point, we can safely insert a gc.relocate or gc.result as the first
1235  // instruction in Ret if needed.
1236  return Ret;
1237}
1238
1239// Create new attribute set containing only attributes which can be transferred
1240// from original call to the safepoint.
1241static AttributeList legalizeCallAttributes(AttributeList AL) {
1242  if (AL.isEmpty())
1243    return AL;
1244
1245  // Remove the readonly, readnone, and statepoint function attributes.
1246  AttrBuilder FnAttrs = AL.getFnAttributes();
1247  FnAttrs.removeAttribute(Attribute::ReadNone);
1248  FnAttrs.removeAttribute(Attribute::ReadOnly);
1249  for (Attribute A : AL.getFnAttributes()) {
1250    if (isStatepointDirectiveAttr(A))
1251      FnAttrs.remove(A);
1252  }
1253
1254  // Just skip parameter and return attributes for now
1255  LLVMContext &Ctx = AL.getContext();
1256  return AttributeList::get(Ctx, AttributeList::FunctionIndex,
1257                            AttributeSet::get(Ctx, FnAttrs));
1258}
1259
1260/// Helper function to place all gc relocates necessary for the given
1261/// statepoint.
1262/// Inputs:
1263///   liveVariables - list of variables to be relocated.
1264///   liveStart - index of the first live variable.
1265///   basePtrs - base pointers.
1266///   statepointToken - statepoint instruction to which relocates should be
1267///   bound.
1268///   Builder - Llvm IR builder to be used to construct new calls.
1269static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1270                              const int LiveStart,
1271                              ArrayRef<Value *> BasePtrs,
1272                              Instruction *StatepointToken,
1273                              IRBuilder<> Builder) {
1274  if (LiveVariables.empty())
1275    return;
1276
1277  auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1278    auto ValIt = llvm::find(LiveVec, Val);
1279    assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1280    size_t Index = std::distance(LiveVec.begin(), ValIt);
1281    assert(Index < LiveVec.size() && "Bug in std::find?");
1282    return Index;
1283  };
1284  Module *M = StatepointToken->getModule();
1285
1286  // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1287  // element type is i8 addrspace(1)*). We originally generated unique
1288  // declarations for each pointer type, but this proved problematic because
1289  // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1290  // towards a single unified pointer type anyways, we can just cast everything
1291  // to an i8* of the right address space.  A bitcast is added later to convert
1292  // gc_relocate to the actual value's type.
1293  auto getGCRelocateDecl = [&] (Type *Ty) {
1294    assert(isHandledGCPointerType(Ty));
1295    auto AS = Ty->getScalarType()->getPointerAddressSpace();
1296    Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1297    if (auto *VT = dyn_cast<VectorType>(Ty))
1298      NewTy = VectorType::get(NewTy, VT->getNumElements());
1299    return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1300                                     {NewTy});
1301  };
1302
1303  // Lazily populated map from input types to the canonicalized form mentioned
1304  // in the comment above.  This should probably be cached somewhere more
1305  // broadly.
1306  DenseMap<Type *, Function *> TypeToDeclMap;
1307
1308  for (unsigned i = 0; i < LiveVariables.size(); i++) {
1309    // Generate the gc.relocate call and save the result
1310    Value *BaseIdx =
1311      Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
1312    Value *LiveIdx = Builder.getInt32(LiveStart + i);
1313
1314    Type *Ty = LiveVariables[i]->getType();
1315    if (!TypeToDeclMap.count(Ty))
1316      TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1317    Function *GCRelocateDecl = TypeToDeclMap[Ty];
1318
1319    // only specify a debug name if we can give a useful one
1320    CallInst *Reloc = Builder.CreateCall(
1321        GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1322        suffixed_name_or(LiveVariables[i], ".relocated", ""));
1323    // Trick CodeGen into thinking there are lots of free registers at this
1324    // fake call.
1325    Reloc->setCallingConv(CallingConv::Cold);
1326  }
1327}
1328
1329namespace {
1330
1331/// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1332/// avoids having to worry about keeping around dangling pointers to Values.
1333class DeferredReplacement {
1334  AssertingVH<Instruction> Old;
1335  AssertingVH<Instruction> New;
1336  bool IsDeoptimize = false;
1337
1338  DeferredReplacement() = default;
1339
1340public:
1341  static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1342    assert(Old != New && Old && New &&
1343           "Cannot RAUW equal values or to / from null!");
1344
1345    DeferredReplacement D;
1346    D.Old = Old;
1347    D.New = New;
1348    return D;
1349  }
1350
1351  static DeferredReplacement createDelete(Instruction *ToErase) {
1352    DeferredReplacement D;
1353    D.Old = ToErase;
1354    return D;
1355  }
1356
1357  static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1358#ifndef NDEBUG
1359    auto *F = cast<CallInst>(Old)->getCalledFunction();
1360    assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1361           "Only way to construct a deoptimize deferred replacement");
1362#endif
1363    DeferredReplacement D;
1364    D.Old = Old;
1365    D.IsDeoptimize = true;
1366    return D;
1367  }
1368
1369  /// Does the task represented by this instance.
1370  void doReplacement() {
1371    Instruction *OldI = Old;
1372    Instruction *NewI = New;
1373
1374    assert(OldI != NewI && "Disallowed at construction?!");
1375    assert((!IsDeoptimize || !New) &&
1376           "Deoptimize intrinsics are not replaced!");
1377
1378    Old = nullptr;
1379    New = nullptr;
1380
1381    if (NewI)
1382      OldI->replaceAllUsesWith(NewI);
1383
1384    if (IsDeoptimize) {
1385      // Note: we've inserted instructions, so the call to llvm.deoptimize may
1386      // not necessarily be followed by the matching return.
1387      auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1388      new UnreachableInst(RI->getContext(), RI);
1389      RI->eraseFromParent();
1390    }
1391
1392    OldI->eraseFromParent();
1393  }
1394};
1395
1396} // end anonymous namespace
1397
1398static StringRef getDeoptLowering(CallBase *Call) {
1399  const char *DeoptLowering = "deopt-lowering";
1400  if (Call->hasFnAttr(DeoptLowering)) {
1401    // FIXME: Calls have a *really* confusing interface around attributes
1402    // with values.
1403    const AttributeList &CSAS = Call->getAttributes();
1404    if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
1405      return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
1406          .getValueAsString();
1407    Function *F = Call->getCalledFunction();
1408    assert(F && F->hasFnAttribute(DeoptLowering));
1409    return F->getFnAttribute(DeoptLowering).getValueAsString();
1410  }
1411  return "live-through";
1412}
1413
1414static void
1415makeStatepointExplicitImpl(CallBase *Call, /* to replace */
1416                           const SmallVectorImpl<Value *> &BasePtrs,
1417                           const SmallVectorImpl<Value *> &LiveVariables,
1418                           PartiallyConstructedSafepointRecord &Result,
1419                           std::vector<DeferredReplacement> &Replacements) {
1420  assert(BasePtrs.size() == LiveVariables.size());
1421
1422  // Then go ahead and use the builder do actually do the inserts.  We insert
1423  // immediately before the previous instruction under the assumption that all
1424  // arguments will be available here.  We can't insert afterwards since we may
1425  // be replacing a terminator.
1426  IRBuilder<> Builder(Call);
1427
1428  ArrayRef<Value *> GCArgs(LiveVariables);
1429  uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1430  uint32_t NumPatchBytes = 0;
1431  uint32_t Flags = uint32_t(StatepointFlags::None);
1432
1433  ArrayRef<Use> CallArgs(Call->arg_begin(), Call->arg_end());
1434  ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(Call);
1435  ArrayRef<Use> TransitionArgs;
1436  if (auto TransitionBundle =
1437          Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
1438    Flags |= uint32_t(StatepointFlags::GCTransition);
1439    TransitionArgs = TransitionBundle->Inputs;
1440  }
1441
1442  // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1443  // with a return value, we lower then as never returning calls to
1444  // __llvm_deoptimize that are followed by unreachable to get better codegen.
1445  bool IsDeoptimize = false;
1446
1447  StatepointDirectives SD =
1448      parseStatepointDirectivesFromAttrs(Call->getAttributes());
1449  if (SD.NumPatchBytes)
1450    NumPatchBytes = *SD.NumPatchBytes;
1451  if (SD.StatepointID)
1452    StatepointID = *SD.StatepointID;
1453
1454  // Pass through the requested lowering if any.  The default is live-through.
1455  StringRef DeoptLowering = getDeoptLowering(Call);
1456  if (DeoptLowering.equals("live-in"))
1457    Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
1458  else {
1459    assert(DeoptLowering.equals("live-through") && "Unsupported value!");
1460  }
1461
1462  Value *CallTarget = Call->getCalledValue();
1463  if (Function *F = dyn_cast<Function>(CallTarget)) {
1464    if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
1465      // Calls to llvm.experimental.deoptimize are lowered to calls to the
1466      // __llvm_deoptimize symbol.  We want to resolve this now, since the
1467      // verifier does not allow taking the address of an intrinsic function.
1468
1469      SmallVector<Type *, 8> DomainTy;
1470      for (Value *Arg : CallArgs)
1471        DomainTy.push_back(Arg->getType());
1472      auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1473                                    /* isVarArg = */ false);
1474
1475      // Note: CallTarget can be a bitcast instruction of a symbol if there are
1476      // calls to @llvm.experimental.deoptimize with different argument types in
1477      // the same module.  This is fine -- we assume the frontend knew what it
1478      // was doing when generating this kind of IR.
1479      CallTarget = F->getParent()
1480                       ->getOrInsertFunction("__llvm_deoptimize", FTy)
1481                       .getCallee();
1482
1483      IsDeoptimize = true;
1484    }
1485  }
1486
1487  // Create the statepoint given all the arguments
1488  Instruction *Token = nullptr;
1489  if (auto *CI = dyn_cast<CallInst>(Call)) {
1490    CallInst *SPCall = Builder.CreateGCStatepointCall(
1491        StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1492        TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1493
1494    SPCall->setTailCallKind(CI->getTailCallKind());
1495    SPCall->setCallingConv(CI->getCallingConv());
1496
1497    // Currently we will fail on parameter attributes and on certain
1498    // function attributes.  In case if we can handle this set of attributes -
1499    // set up function attrs directly on statepoint and return attrs later for
1500    // gc_result intrinsic.
1501    SPCall->setAttributes(legalizeCallAttributes(CI->getAttributes()));
1502
1503    Token = SPCall;
1504
1505    // Put the following gc_result and gc_relocate calls immediately after the
1506    // the old call (which we're about to delete)
1507    assert(CI->getNextNode() && "Not a terminator, must have next!");
1508    Builder.SetInsertPoint(CI->getNextNode());
1509    Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
1510  } else {
1511    auto *II = cast<InvokeInst>(Call);
1512
1513    // Insert the new invoke into the old block.  We'll remove the old one in a
1514    // moment at which point this will become the new terminator for the
1515    // original block.
1516    InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
1517        StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
1518        II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
1519        "statepoint_token");
1520
1521    SPInvoke->setCallingConv(II->getCallingConv());
1522
1523    // Currently we will fail on parameter attributes and on certain
1524    // function attributes.  In case if we can handle this set of attributes -
1525    // set up function attrs directly on statepoint and return attrs later for
1526    // gc_result intrinsic.
1527    SPInvoke->setAttributes(legalizeCallAttributes(II->getAttributes()));
1528
1529    Token = SPInvoke;
1530
1531    // Generate gc relocates in exceptional path
1532    BasicBlock *UnwindBlock = II->getUnwindDest();
1533    assert(!isa<PHINode>(UnwindBlock->begin()) &&
1534           UnwindBlock->getUniquePredecessor() &&
1535           "can't safely insert in this block!");
1536
1537    Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1538    Builder.SetCurrentDebugLocation(II->getDebugLoc());
1539
1540    // Attach exceptional gc relocates to the landingpad.
1541    Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1542    Result.UnwindToken = ExceptionalToken;
1543
1544    const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1545    CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1546                      Builder);
1547
1548    // Generate gc relocates and returns for normal block
1549    BasicBlock *NormalDest = II->getNormalDest();
1550    assert(!isa<PHINode>(NormalDest->begin()) &&
1551           NormalDest->getUniquePredecessor() &&
1552           "can't safely insert in this block!");
1553
1554    Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1555
1556    // gc relocates will be generated later as if it were regular call
1557    // statepoint
1558  }
1559  assert(Token && "Should be set in one of the above branches!");
1560
1561  if (IsDeoptimize) {
1562    // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1563    // transform the tail-call like structure to a call to a void function
1564    // followed by unreachable to get better codegen.
1565    Replacements.push_back(
1566        DeferredReplacement::createDeoptimizeReplacement(Call));
1567  } else {
1568    Token->setName("statepoint_token");
1569    if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
1570      StringRef Name = Call->hasName() ? Call->getName() : "";
1571      CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
1572      GCResult->setAttributes(
1573          AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
1574                             Call->getAttributes().getRetAttributes()));
1575
1576      // We cannot RAUW or delete CS.getInstruction() because it could be in the
1577      // live set of some other safepoint, in which case that safepoint's
1578      // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1579      // llvm::Instruction.  Instead, we defer the replacement and deletion to
1580      // after the live sets have been made explicit in the IR, and we no longer
1581      // have raw pointers to worry about.
1582      Replacements.emplace_back(
1583          DeferredReplacement::createRAUW(Call, GCResult));
1584    } else {
1585      Replacements.emplace_back(DeferredReplacement::createDelete(Call));
1586    }
1587  }
1588
1589  Result.StatepointToken = Token;
1590
1591  // Second, create a gc.relocate for every live variable
1592  const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1593  CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
1594}
1595
1596// Replace an existing gc.statepoint with a new one and a set of gc.relocates
1597// which make the relocations happening at this safepoint explicit.
1598//
1599// WARNING: Does not do any fixup to adjust users of the original live
1600// values.  That's the callers responsibility.
1601static void
1602makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
1603                       PartiallyConstructedSafepointRecord &Result,
1604                       std::vector<DeferredReplacement> &Replacements) {
1605  const auto &LiveSet = Result.LiveSet;
1606  const auto &PointerToBase = Result.PointerToBase;
1607
1608  // Convert to vector for efficient cross referencing.
1609  SmallVector<Value *, 64> BaseVec, LiveVec;
1610  LiveVec.reserve(LiveSet.size());
1611  BaseVec.reserve(LiveSet.size());
1612  for (Value *L : LiveSet) {
1613    LiveVec.push_back(L);
1614    assert(PointerToBase.count(L));
1615    Value *Base = PointerToBase.find(L)->second;
1616    BaseVec.push_back(Base);
1617  }
1618  assert(LiveVec.size() == BaseVec.size());
1619
1620  // Do the actual rewriting and delete the old statepoint
1621  makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements);
1622}
1623
1624// Helper function for the relocationViaAlloca.
1625//
1626// It receives iterator to the statepoint gc relocates and emits a store to the
1627// assigned location (via allocaMap) for the each one of them.  It adds the
1628// visited values into the visitedLiveValues set, which we will later use them
1629// for sanity checking.
1630static void
1631insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1632                       DenseMap<Value *, AllocaInst *> &AllocaMap,
1633                       DenseSet<Value *> &VisitedLiveValues) {
1634  for (User *U : GCRelocs) {
1635    GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1636    if (!Relocate)
1637      continue;
1638
1639    Value *OriginalValue = Relocate->getDerivedPtr();
1640    assert(AllocaMap.count(OriginalValue));
1641    Value *Alloca = AllocaMap[OriginalValue];
1642
1643    // Emit store into the related alloca
1644    // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1645    // the correct type according to alloca.
1646    assert(Relocate->getNextNode() &&
1647           "Should always have one since it's not a terminator");
1648    IRBuilder<> Builder(Relocate->getNextNode());
1649    Value *CastedRelocatedValue =
1650      Builder.CreateBitCast(Relocate,
1651                            cast<AllocaInst>(Alloca)->getAllocatedType(),
1652                            suffixed_name_or(Relocate, ".casted", ""));
1653
1654    StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1655    Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
1656
1657#ifndef NDEBUG
1658    VisitedLiveValues.insert(OriginalValue);
1659#endif
1660  }
1661}
1662
1663// Helper function for the "relocationViaAlloca". Similar to the
1664// "insertRelocationStores" but works for rematerialized values.
1665static void insertRematerializationStores(
1666    const RematerializedValueMapTy &RematerializedValues,
1667    DenseMap<Value *, AllocaInst *> &AllocaMap,
1668    DenseSet<Value *> &VisitedLiveValues) {
1669  for (auto RematerializedValuePair: RematerializedValues) {
1670    Instruction *RematerializedValue = RematerializedValuePair.first;
1671    Value *OriginalValue = RematerializedValuePair.second;
1672
1673    assert(AllocaMap.count(OriginalValue) &&
1674           "Can not find alloca for rematerialized value");
1675    Value *Alloca = AllocaMap[OriginalValue];
1676
1677    StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1678    Store->insertAfter(RematerializedValue);
1679
1680#ifndef NDEBUG
1681    VisitedLiveValues.insert(OriginalValue);
1682#endif
1683  }
1684}
1685
1686/// Do all the relocation update via allocas and mem2reg
1687static void relocationViaAlloca(
1688    Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1689    ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1690#ifndef NDEBUG
1691  // record initial number of (static) allocas; we'll check we have the same
1692  // number when we get done.
1693  int InitialAllocaNum = 0;
1694  for (Instruction &I : F.getEntryBlock())
1695    if (isa<AllocaInst>(I))
1696      InitialAllocaNum++;
1697#endif
1698
1699  // TODO-PERF: change data structures, reserve
1700  DenseMap<Value *, AllocaInst *> AllocaMap;
1701  SmallVector<AllocaInst *, 200> PromotableAllocas;
1702  // Used later to chack that we have enough allocas to store all values
1703  std::size_t NumRematerializedValues = 0;
1704  PromotableAllocas.reserve(Live.size());
1705
1706  // Emit alloca for "LiveValue" and record it in "allocaMap" and
1707  // "PromotableAllocas"
1708  const DataLayout &DL = F.getParent()->getDataLayout();
1709  auto emitAllocaFor = [&](Value *LiveValue) {
1710    AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
1711                                        DL.getAllocaAddrSpace(), "",
1712                                        F.getEntryBlock().getFirstNonPHI());
1713    AllocaMap[LiveValue] = Alloca;
1714    PromotableAllocas.push_back(Alloca);
1715  };
1716
1717  // Emit alloca for each live gc pointer
1718  for (Value *V : Live)
1719    emitAllocaFor(V);
1720
1721  // Emit allocas for rematerialized values
1722  for (const auto &Info : Records)
1723    for (auto RematerializedValuePair : Info.RematerializedValues) {
1724      Value *OriginalValue = RematerializedValuePair.second;
1725      if (AllocaMap.count(OriginalValue) != 0)
1726        continue;
1727
1728      emitAllocaFor(OriginalValue);
1729      ++NumRematerializedValues;
1730    }
1731
1732  // The next two loops are part of the same conceptual operation.  We need to
1733  // insert a store to the alloca after the original def and at each
1734  // redefinition.  We need to insert a load before each use.  These are split
1735  // into distinct loops for performance reasons.
1736
1737  // Update gc pointer after each statepoint: either store a relocated value or
1738  // null (if no relocated value was found for this gc pointer and it is not a
1739  // gc_result).  This must happen before we update the statepoint with load of
1740  // alloca otherwise we lose the link between statepoint and old def.
1741  for (const auto &Info : Records) {
1742    Value *Statepoint = Info.StatepointToken;
1743
1744    // This will be used for consistency check
1745    DenseSet<Value *> VisitedLiveValues;
1746
1747    // Insert stores for normal statepoint gc relocates
1748    insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1749
1750    // In case if it was invoke statepoint
1751    // we will insert stores for exceptional path gc relocates.
1752    if (isa<InvokeInst>(Statepoint)) {
1753      insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1754                             VisitedLiveValues);
1755    }
1756
1757    // Do similar thing with rematerialized values
1758    insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1759                                  VisitedLiveValues);
1760
1761    if (ClobberNonLive) {
1762      // As a debugging aid, pretend that an unrelocated pointer becomes null at
1763      // the gc.statepoint.  This will turn some subtle GC problems into
1764      // slightly easier to debug SEGVs.  Note that on large IR files with
1765      // lots of gc.statepoints this is extremely costly both memory and time
1766      // wise.
1767      SmallVector<AllocaInst *, 64> ToClobber;
1768      for (auto Pair : AllocaMap) {
1769        Value *Def = Pair.first;
1770        AllocaInst *Alloca = Pair.second;
1771
1772        // This value was relocated
1773        if (VisitedLiveValues.count(Def)) {
1774          continue;
1775        }
1776        ToClobber.push_back(Alloca);
1777      }
1778
1779      auto InsertClobbersAt = [&](Instruction *IP) {
1780        for (auto *AI : ToClobber) {
1781          auto PT = cast<PointerType>(AI->getAllocatedType());
1782          Constant *CPN = ConstantPointerNull::get(PT);
1783          StoreInst *Store = new StoreInst(CPN, AI);
1784          Store->insertBefore(IP);
1785        }
1786      };
1787
1788      // Insert the clobbering stores.  These may get intermixed with the
1789      // gc.results and gc.relocates, but that's fine.
1790      if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1791        InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1792        InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1793      } else {
1794        InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1795      }
1796    }
1797  }
1798
1799  // Update use with load allocas and add store for gc_relocated.
1800  for (auto Pair : AllocaMap) {
1801    Value *Def = Pair.first;
1802    AllocaInst *Alloca = Pair.second;
1803
1804    // We pre-record the uses of allocas so that we dont have to worry about
1805    // later update that changes the user information..
1806
1807    SmallVector<Instruction *, 20> Uses;
1808    // PERF: trade a linear scan for repeated reallocation
1809    Uses.reserve(Def->getNumUses());
1810    for (User *U : Def->users()) {
1811      if (!isa<ConstantExpr>(U)) {
1812        // If the def has a ConstantExpr use, then the def is either a
1813        // ConstantExpr use itself or null.  In either case
1814        // (recursively in the first, directly in the second), the oop
1815        // it is ultimately dependent on is null and this particular
1816        // use does not need to be fixed up.
1817        Uses.push_back(cast<Instruction>(U));
1818      }
1819    }
1820
1821    llvm::sort(Uses);
1822    auto Last = std::unique(Uses.begin(), Uses.end());
1823    Uses.erase(Last, Uses.end());
1824
1825    for (Instruction *Use : Uses) {
1826      if (isa<PHINode>(Use)) {
1827        PHINode *Phi = cast<PHINode>(Use);
1828        for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1829          if (Def == Phi->getIncomingValue(i)) {
1830            LoadInst *Load =
1831                new LoadInst(Alloca->getAllocatedType(), Alloca, "",
1832                             Phi->getIncomingBlock(i)->getTerminator());
1833            Phi->setIncomingValue(i, Load);
1834          }
1835        }
1836      } else {
1837        LoadInst *Load =
1838            new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
1839        Use->replaceUsesOfWith(Def, Load);
1840      }
1841    }
1842
1843    // Emit store for the initial gc value.  Store must be inserted after load,
1844    // otherwise store will be in alloca's use list and an extra load will be
1845    // inserted before it.
1846    StoreInst *Store = new StoreInst(Def, Alloca);
1847    if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1848      if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
1849        // InvokeInst is a terminator so the store need to be inserted into its
1850        // normal destination block.
1851        BasicBlock *NormalDest = Invoke->getNormalDest();
1852        Store->insertBefore(NormalDest->getFirstNonPHI());
1853      } else {
1854        assert(!Inst->isTerminator() &&
1855               "The only terminator that can produce a value is "
1856               "InvokeInst which is handled above.");
1857        Store->insertAfter(Inst);
1858      }
1859    } else {
1860      assert(isa<Argument>(Def));
1861      Store->insertAfter(cast<Instruction>(Alloca));
1862    }
1863  }
1864
1865  assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
1866         "we must have the same allocas with lives");
1867  if (!PromotableAllocas.empty()) {
1868    // Apply mem2reg to promote alloca to SSA
1869    PromoteMemToReg(PromotableAllocas, DT);
1870  }
1871
1872#ifndef NDEBUG
1873  for (auto &I : F.getEntryBlock())
1874    if (isa<AllocaInst>(I))
1875      InitialAllocaNum--;
1876  assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
1877#endif
1878}
1879
1880/// Implement a unique function which doesn't require we sort the input
1881/// vector.  Doing so has the effect of changing the output of a couple of
1882/// tests in ways which make them less useful in testing fused safepoints.
1883template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1884  SmallSet<T, 8> Seen;
1885  Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }),
1886            Vec.end());
1887}
1888
1889/// Insert holders so that each Value is obviously live through the entire
1890/// lifetime of the call.
1891static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
1892                                 SmallVectorImpl<CallInst *> &Holders) {
1893  if (Values.empty())
1894    // No values to hold live, might as well not insert the empty holder
1895    return;
1896
1897  Module *M = Call->getModule();
1898  // Use a dummy vararg function to actually hold the values live
1899  FunctionCallee Func = M->getOrInsertFunction(
1900      "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
1901  if (isa<CallInst>(Call)) {
1902    // For call safepoints insert dummy calls right after safepoint
1903    Holders.push_back(
1904        CallInst::Create(Func, Values, "", &*++Call->getIterator()));
1905    return;
1906  }
1907  // For invoke safepooints insert dummy calls both in normal and
1908  // exceptional destination blocks
1909  auto *II = cast<InvokeInst>(Call);
1910  Holders.push_back(CallInst::Create(
1911      Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
1912  Holders.push_back(CallInst::Create(
1913      Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
1914}
1915
1916static void findLiveReferences(
1917    Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
1918    MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1919  GCPtrLivenessData OriginalLivenessData;
1920  computeLiveInValues(DT, F, OriginalLivenessData);
1921  for (size_t i = 0; i < records.size(); i++) {
1922    struct PartiallyConstructedSafepointRecord &info = records[i];
1923    analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
1924  }
1925}
1926
1927// Helper function for the "rematerializeLiveValues". It walks use chain
1928// starting from the "CurrentValue" until it reaches the root of the chain, i.e.
1929// the base or a value it cannot process. Only "simple" values are processed
1930// (currently it is GEP's and casts). The returned root is  examined by the
1931// callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array
1932// with all visited values.
1933static Value* findRematerializableChainToBasePointer(
1934  SmallVectorImpl<Instruction*> &ChainToBase,
1935  Value *CurrentValue) {
1936  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
1937    ChainToBase.push_back(GEP);
1938    return findRematerializableChainToBasePointer(ChainToBase,
1939                                                  GEP->getPointerOperand());
1940  }
1941
1942  if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
1943    if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
1944      return CI;
1945
1946    ChainToBase.push_back(CI);
1947    return findRematerializableChainToBasePointer(ChainToBase,
1948                                                  CI->getOperand(0));
1949  }
1950
1951  // We have reached the root of the chain, which is either equal to the base or
1952  // is the first unsupported value along the use chain.
1953  return CurrentValue;
1954}
1955
1956// Helper function for the "rematerializeLiveValues". Compute cost of the use
1957// chain we are going to rematerialize.
1958static unsigned
1959chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
1960                       TargetTransformInfo &TTI) {
1961  unsigned Cost = 0;
1962
1963  for (Instruction *Instr : Chain) {
1964    if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
1965      assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
1966             "non noop cast is found during rematerialization");
1967
1968      Type *SrcTy = CI->getOperand(0)->getType();
1969      Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI);
1970
1971    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
1972      // Cost of the address calculation
1973      Type *ValTy = GEP->getSourceElementType();
1974      Cost += TTI.getAddressComputationCost(ValTy);
1975
1976      // And cost of the GEP itself
1977      // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
1978      //       allowed for the external usage)
1979      if (!GEP->hasAllConstantIndices())
1980        Cost += 2;
1981
1982    } else {
1983      llvm_unreachable("unsupported instruction type during rematerialization");
1984    }
1985  }
1986
1987  return Cost;
1988}
1989
1990static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
1991  unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
1992  if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
1993      OrigRootPhi.getParent() != AlternateRootPhi.getParent())
1994    return false;
1995  // Map of incoming values and their corresponding basic blocks of
1996  // OrigRootPhi.
1997  SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
1998  for (unsigned i = 0; i < PhiNum; i++)
1999    CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
2000        OrigRootPhi.getIncomingBlock(i);
2001
2002  // Both current and base PHIs should have same incoming values and
2003  // the same basic blocks corresponding to the incoming values.
2004  for (unsigned i = 0; i < PhiNum; i++) {
2005    auto CIVI =
2006        CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
2007    if (CIVI == CurrentIncomingValues.end())
2008      return false;
2009    BasicBlock *CurrentIncomingBB = CIVI->second;
2010    if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
2011      return false;
2012  }
2013  return true;
2014}
2015
2016// From the statepoint live set pick values that are cheaper to recompute then
2017// to relocate. Remove this values from the live set, rematerialize them after
2018// statepoint and record them in "Info" structure. Note that similar to
2019// relocated values we don't do any user adjustments here.
2020static void rematerializeLiveValues(CallBase *Call,
2021                                    PartiallyConstructedSafepointRecord &Info,
2022                                    TargetTransformInfo &TTI) {
2023  const unsigned int ChainLengthThreshold = 10;
2024
2025  // Record values we are going to delete from this statepoint live set.
2026  // We can not di this in following loop due to iterator invalidation.
2027  SmallVector<Value *, 32> LiveValuesToBeDeleted;
2028
2029  for (Value *LiveValue: Info.LiveSet) {
2030    // For each live pointer find its defining chain
2031    SmallVector<Instruction *, 3> ChainToBase;
2032    assert(Info.PointerToBase.count(LiveValue));
2033    Value *RootOfChain =
2034      findRematerializableChainToBasePointer(ChainToBase,
2035                                             LiveValue);
2036
2037    // Nothing to do, or chain is too long
2038    if ( ChainToBase.size() == 0 ||
2039        ChainToBase.size() > ChainLengthThreshold)
2040      continue;
2041
2042    // Handle the scenario where the RootOfChain is not equal to the
2043    // Base Value, but they are essentially the same phi values.
2044    if (RootOfChain != Info.PointerToBase[LiveValue]) {
2045      PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
2046      PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
2047      if (!OrigRootPhi || !AlternateRootPhi)
2048        continue;
2049      // PHI nodes that have the same incoming values, and belonging to the same
2050      // basic blocks are essentially the same SSA value.  When the original phi
2051      // has incoming values with different base pointers, the original phi is
2052      // marked as conflict, and an additional `AlternateRootPhi` with the same
2053      // incoming values get generated by the findBasePointer function. We need
2054      // to identify the newly generated AlternateRootPhi (.base version of phi)
2055      // and RootOfChain (the original phi node itself) are the same, so that we
2056      // can rematerialize the gep and casts. This is a workaround for the
2057      // deficiency in the findBasePointer algorithm.
2058      if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
2059        continue;
2060      // Now that the phi nodes are proved to be the same, assert that
2061      // findBasePointer's newly generated AlternateRootPhi is present in the
2062      // liveset of the call.
2063      assert(Info.LiveSet.count(AlternateRootPhi));
2064    }
2065    // Compute cost of this chain
2066    unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
2067    // TODO: We can also account for cases when we will be able to remove some
2068    //       of the rematerialized values by later optimization passes. I.e if
2069    //       we rematerialized several intersecting chains. Or if original values
2070    //       don't have any uses besides this statepoint.
2071
2072    // For invokes we need to rematerialize each chain twice - for normal and
2073    // for unwind basic blocks. Model this by multiplying cost by two.
2074    if (isa<InvokeInst>(Call)) {
2075      Cost *= 2;
2076    }
2077    // If it's too expensive - skip it
2078    if (Cost >= RematerializationThreshold)
2079      continue;
2080
2081    // Remove value from the live set
2082    LiveValuesToBeDeleted.push_back(LiveValue);
2083
2084    // Clone instructions and record them inside "Info" structure
2085
2086    // Walk backwards to visit top-most instructions first
2087    std::reverse(ChainToBase.begin(), ChainToBase.end());
2088
2089    // Utility function which clones all instructions from "ChainToBase"
2090    // and inserts them before "InsertBefore". Returns rematerialized value
2091    // which should be used after statepoint.
2092    auto rematerializeChain = [&ChainToBase](
2093        Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
2094      Instruction *LastClonedValue = nullptr;
2095      Instruction *LastValue = nullptr;
2096      for (Instruction *Instr: ChainToBase) {
2097        // Only GEP's and casts are supported as we need to be careful to not
2098        // introduce any new uses of pointers not in the liveset.
2099        // Note that it's fine to introduce new uses of pointers which were
2100        // otherwise not used after this statepoint.
2101        assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2102
2103        Instruction *ClonedValue = Instr->clone();
2104        ClonedValue->insertBefore(InsertBefore);
2105        ClonedValue->setName(Instr->getName() + ".remat");
2106
2107        // If it is not first instruction in the chain then it uses previously
2108        // cloned value. We should update it to use cloned value.
2109        if (LastClonedValue) {
2110          assert(LastValue);
2111          ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2112#ifndef NDEBUG
2113          for (auto OpValue : ClonedValue->operand_values()) {
2114            // Assert that cloned instruction does not use any instructions from
2115            // this chain other than LastClonedValue
2116            assert(!is_contained(ChainToBase, OpValue) &&
2117                   "incorrect use in rematerialization chain");
2118            // Assert that the cloned instruction does not use the RootOfChain
2119            // or the AlternateLiveBase.
2120            assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
2121          }
2122#endif
2123        } else {
2124          // For the first instruction, replace the use of unrelocated base i.e.
2125          // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
2126          // live set. They have been proved to be the same PHI nodes.  Note
2127          // that the *only* use of the RootOfChain in the ChainToBase list is
2128          // the first Value in the list.
2129          if (RootOfChain != AlternateLiveBase)
2130            ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
2131        }
2132
2133        LastClonedValue = ClonedValue;
2134        LastValue = Instr;
2135      }
2136      assert(LastClonedValue);
2137      return LastClonedValue;
2138    };
2139
2140    // Different cases for calls and invokes. For invokes we need to clone
2141    // instructions both on normal and unwind path.
2142    if (isa<CallInst>(Call)) {
2143      Instruction *InsertBefore = Call->getNextNode();
2144      assert(InsertBefore);
2145      Instruction *RematerializedValue = rematerializeChain(
2146          InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2147      Info.RematerializedValues[RematerializedValue] = LiveValue;
2148    } else {
2149      auto *Invoke = cast<InvokeInst>(Call);
2150
2151      Instruction *NormalInsertBefore =
2152          &*Invoke->getNormalDest()->getFirstInsertionPt();
2153      Instruction *UnwindInsertBefore =
2154          &*Invoke->getUnwindDest()->getFirstInsertionPt();
2155
2156      Instruction *NormalRematerializedValue = rematerializeChain(
2157          NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2158      Instruction *UnwindRematerializedValue = rematerializeChain(
2159          UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2160
2161      Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2162      Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2163    }
2164  }
2165
2166  // Remove rematerializaed values from the live set
2167  for (auto LiveValue: LiveValuesToBeDeleted) {
2168    Info.LiveSet.remove(LiveValue);
2169  }
2170}
2171
2172static bool insertParsePoints(Function &F, DominatorTree &DT,
2173                              TargetTransformInfo &TTI,
2174                              SmallVectorImpl<CallBase *> &ToUpdate) {
2175#ifndef NDEBUG
2176  // sanity check the input
2177  std::set<CallBase *> Uniqued;
2178  Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2179  assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2180
2181  for (CallBase *Call : ToUpdate)
2182    assert(Call->getFunction() == &F);
2183#endif
2184
2185  // When inserting gc.relocates for invokes, we need to be able to insert at
2186  // the top of the successor blocks.  See the comment on
2187  // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2188  // may restructure the CFG.
2189  for (CallBase *Call : ToUpdate) {
2190    auto *II = dyn_cast<InvokeInst>(Call);
2191    if (!II)
2192      continue;
2193    normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2194    normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2195  }
2196
2197  // A list of dummy calls added to the IR to keep various values obviously
2198  // live in the IR.  We'll remove all of these when done.
2199  SmallVector<CallInst *, 64> Holders;
2200
2201  // Insert a dummy call with all of the deopt operands we'll need for the
2202  // actual safepoint insertion as arguments.  This ensures reference operands
2203  // in the deopt argument list are considered live through the safepoint (and
2204  // thus makes sure they get relocated.)
2205  for (CallBase *Call : ToUpdate) {
2206    SmallVector<Value *, 64> DeoptValues;
2207
2208    for (Value *Arg : GetDeoptBundleOperands(Call)) {
2209      assert(!isUnhandledGCPointerType(Arg->getType()) &&
2210             "support for FCA unimplemented");
2211      if (isHandledGCPointerType(Arg->getType()))
2212        DeoptValues.push_back(Arg);
2213    }
2214
2215    insertUseHolderAfter(Call, DeoptValues, Holders);
2216  }
2217
2218  SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2219
2220  // A) Identify all gc pointers which are statically live at the given call
2221  // site.
2222  findLiveReferences(F, DT, ToUpdate, Records);
2223
2224  // B) Find the base pointers for each live pointer
2225  /* scope for caching */ {
2226    // Cache the 'defining value' relation used in the computation and
2227    // insertion of base phis and selects.  This ensures that we don't insert
2228    // large numbers of duplicate base_phis.
2229    DefiningValueMapTy DVCache;
2230
2231    for (size_t i = 0; i < Records.size(); i++) {
2232      PartiallyConstructedSafepointRecord &info = Records[i];
2233      findBasePointers(DT, DVCache, ToUpdate[i], info);
2234    }
2235  } // end of cache scope
2236
2237  // The base phi insertion logic (for any safepoint) may have inserted new
2238  // instructions which are now live at some safepoint.  The simplest such
2239  // example is:
2240  // loop:
2241  //   phi a  <-- will be a new base_phi here
2242  //   safepoint 1 <-- that needs to be live here
2243  //   gep a + 1
2244  //   safepoint 2
2245  //   br loop
2246  // We insert some dummy calls after each safepoint to definitely hold live
2247  // the base pointers which were identified for that safepoint.  We'll then
2248  // ask liveness for _every_ base inserted to see what is now live.  Then we
2249  // remove the dummy calls.
2250  Holders.reserve(Holders.size() + Records.size());
2251  for (size_t i = 0; i < Records.size(); i++) {
2252    PartiallyConstructedSafepointRecord &Info = Records[i];
2253
2254    SmallVector<Value *, 128> Bases;
2255    for (auto Pair : Info.PointerToBase)
2256      Bases.push_back(Pair.second);
2257
2258    insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2259  }
2260
2261  // By selecting base pointers, we've effectively inserted new uses. Thus, we
2262  // need to rerun liveness.  We may *also* have inserted new defs, but that's
2263  // not the key issue.
2264  recomputeLiveInValues(F, DT, ToUpdate, Records);
2265
2266  if (PrintBasePointers) {
2267    for (auto &Info : Records) {
2268      errs() << "Base Pairs: (w/Relocation)\n";
2269      for (auto Pair : Info.PointerToBase) {
2270        errs() << " derived ";
2271        Pair.first->printAsOperand(errs(), false);
2272        errs() << " base ";
2273        Pair.second->printAsOperand(errs(), false);
2274        errs() << "\n";
2275      }
2276    }
2277  }
2278
2279  // It is possible that non-constant live variables have a constant base.  For
2280  // example, a GEP with a variable offset from a global.  In this case we can
2281  // remove it from the liveset.  We already don't add constants to the liveset
2282  // because we assume they won't move at runtime and the GC doesn't need to be
2283  // informed about them.  The same reasoning applies if the base is constant.
2284  // Note that the relocation placement code relies on this filtering for
2285  // correctness as it expects the base to be in the liveset, which isn't true
2286  // if the base is constant.
2287  for (auto &Info : Records)
2288    for (auto &BasePair : Info.PointerToBase)
2289      if (isa<Constant>(BasePair.second))
2290        Info.LiveSet.remove(BasePair.first);
2291
2292  for (CallInst *CI : Holders)
2293    CI->eraseFromParent();
2294
2295  Holders.clear();
2296
2297  // In order to reduce live set of statepoint we might choose to rematerialize
2298  // some values instead of relocating them. This is purely an optimization and
2299  // does not influence correctness.
2300  for (size_t i = 0; i < Records.size(); i++)
2301    rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2302
2303  // We need this to safely RAUW and delete call or invoke return values that
2304  // may themselves be live over a statepoint.  For details, please see usage in
2305  // makeStatepointExplicitImpl.
2306  std::vector<DeferredReplacement> Replacements;
2307
2308  // Now run through and replace the existing statepoints with new ones with
2309  // the live variables listed.  We do not yet update uses of the values being
2310  // relocated. We have references to live variables that need to
2311  // survive to the last iteration of this loop.  (By construction, the
2312  // previous statepoint can not be a live variable, thus we can and remove
2313  // the old statepoint calls as we go.)
2314  for (size_t i = 0; i < Records.size(); i++)
2315    makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2316
2317  ToUpdate.clear(); // prevent accident use of invalid calls.
2318
2319  for (auto &PR : Replacements)
2320    PR.doReplacement();
2321
2322  Replacements.clear();
2323
2324  for (auto &Info : Records) {
2325    // These live sets may contain state Value pointers, since we replaced calls
2326    // with operand bundles with calls wrapped in gc.statepoint, and some of
2327    // those calls may have been def'ing live gc pointers.  Clear these out to
2328    // avoid accidentally using them.
2329    //
2330    // TODO: We should create a separate data structure that does not contain
2331    // these live sets, and migrate to using that data structure from this point
2332    // onward.
2333    Info.LiveSet.clear();
2334    Info.PointerToBase.clear();
2335  }
2336
2337  // Do all the fixups of the original live variables to their relocated selves
2338  SmallVector<Value *, 128> Live;
2339  for (size_t i = 0; i < Records.size(); i++) {
2340    PartiallyConstructedSafepointRecord &Info = Records[i];
2341
2342    // We can't simply save the live set from the original insertion.  One of
2343    // the live values might be the result of a call which needs a safepoint.
2344    // That Value* no longer exists and we need to use the new gc_result.
2345    // Thankfully, the live set is embedded in the statepoint (and updated), so
2346    // we just grab that.
2347    Statepoint Statepoint(Info.StatepointToken);
2348    Live.insert(Live.end(), Statepoint.gc_args_begin(),
2349                Statepoint.gc_args_end());
2350#ifndef NDEBUG
2351    // Do some basic sanity checks on our liveness results before performing
2352    // relocation.  Relocation can and will turn mistakes in liveness results
2353    // into non-sensical code which is must harder to debug.
2354    // TODO: It would be nice to test consistency as well
2355    assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2356           "statepoint must be reachable or liveness is meaningless");
2357    for (Value *V : Statepoint.gc_args()) {
2358      if (!isa<Instruction>(V))
2359        // Non-instruction values trivial dominate all possible uses
2360        continue;
2361      auto *LiveInst = cast<Instruction>(V);
2362      assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2363             "unreachable values should never be live");
2364      assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2365             "basic SSA liveness expectation violated by liveness analysis");
2366    }
2367#endif
2368  }
2369  unique_unsorted(Live);
2370
2371#ifndef NDEBUG
2372  // sanity check
2373  for (auto *Ptr : Live)
2374    assert(isHandledGCPointerType(Ptr->getType()) &&
2375           "must be a gc pointer type");
2376#endif
2377
2378  relocationViaAlloca(F, DT, Live, Records);
2379  return !Records.empty();
2380}
2381
2382// Handles both return values and arguments for Functions and calls.
2383template <typename AttrHolder>
2384static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2385                                      unsigned Index) {
2386  AttrBuilder R;
2387  if (AH.getDereferenceableBytes(Index))
2388    R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2389                                  AH.getDereferenceableBytes(Index)));
2390  if (AH.getDereferenceableOrNullBytes(Index))
2391    R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2392                                  AH.getDereferenceableOrNullBytes(Index)));
2393  if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias))
2394    R.addAttribute(Attribute::NoAlias);
2395
2396  if (!R.empty())
2397    AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
2398}
2399
2400static void stripNonValidAttributesFromPrototype(Function &F) {
2401  LLVMContext &Ctx = F.getContext();
2402
2403  for (Argument &A : F.args())
2404    if (isa<PointerType>(A.getType()))
2405      RemoveNonValidAttrAtIndex(Ctx, F,
2406                                A.getArgNo() + AttributeList::FirstArgIndex);
2407
2408  if (isa<PointerType>(F.getReturnType()))
2409    RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
2410}
2411
2412/// Certain metadata on instructions are invalid after running RS4GC.
2413/// Optimizations that run after RS4GC can incorrectly use this metadata to
2414/// optimize functions. We drop such metadata on the instruction.
2415static void stripInvalidMetadataFromInstruction(Instruction &I) {
2416  if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2417    return;
2418  // These are the attributes that are still valid on loads and stores after
2419  // RS4GC.
2420  // The metadata implying dereferenceability and noalias are (conservatively)
2421  // dropped.  This is because semantically, after RewriteStatepointsForGC runs,
2422  // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
2423  // touch the entire heap including noalias objects. Note: The reasoning is
2424  // same as stripping the dereferenceability and noalias attributes that are
2425  // analogous to the metadata counterparts.
2426  // We also drop the invariant.load metadata on the load because that metadata
2427  // implies the address operand to the load points to memory that is never
2428  // changed once it became dereferenceable. This is no longer true after RS4GC.
2429  // Similar reasoning applies to invariant.group metadata, which applies to
2430  // loads within a group.
2431  unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
2432                         LLVMContext::MD_range,
2433                         LLVMContext::MD_alias_scope,
2434                         LLVMContext::MD_nontemporal,
2435                         LLVMContext::MD_nonnull,
2436                         LLVMContext::MD_align,
2437                         LLVMContext::MD_type};
2438
2439  // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
2440  I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
2441}
2442
2443static void stripNonValidDataFromBody(Function &F) {
2444  if (F.empty())
2445    return;
2446
2447  LLVMContext &Ctx = F.getContext();
2448  MDBuilder Builder(Ctx);
2449
2450  // Set of invariantstart instructions that we need to remove.
2451  // Use this to avoid invalidating the instruction iterator.
2452  SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
2453
2454  for (Instruction &I : instructions(F)) {
2455    // invariant.start on memory location implies that the referenced memory
2456    // location is constant and unchanging. This is no longer true after
2457    // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
2458    // which frees the entire heap and the presence of invariant.start allows
2459    // the optimizer to sink the load of a memory location past a statepoint,
2460    // which is incorrect.
2461    if (auto *II = dyn_cast<IntrinsicInst>(&I))
2462      if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2463        InvariantStartInstructions.push_back(II);
2464        continue;
2465      }
2466
2467    if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
2468      MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
2469      I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2470    }
2471
2472    stripInvalidMetadataFromInstruction(I);
2473
2474    if (auto *Call = dyn_cast<CallBase>(&I)) {
2475      for (int i = 0, e = Call->arg_size(); i != e; i++)
2476        if (isa<PointerType>(Call->getArgOperand(i)->getType()))
2477          RemoveNonValidAttrAtIndex(Ctx, *Call,
2478                                    i + AttributeList::FirstArgIndex);
2479      if (isa<PointerType>(Call->getType()))
2480        RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex);
2481    }
2482  }
2483
2484  // Delete the invariant.start instructions and RAUW undef.
2485  for (auto *II : InvariantStartInstructions) {
2486    II->replaceAllUsesWith(UndefValue::get(II->getType()));
2487    II->eraseFromParent();
2488  }
2489}
2490
2491/// Returns true if this function should be rewritten by this pass.  The main
2492/// point of this function is as an extension point for custom logic.
2493static bool shouldRewriteStatepointsIn(Function &F) {
2494  // TODO: This should check the GCStrategy
2495  if (F.hasGC()) {
2496    const auto &FunctionGCName = F.getGC();
2497    const StringRef StatepointExampleName("statepoint-example");
2498    const StringRef CoreCLRName("coreclr");
2499    return (StatepointExampleName == FunctionGCName) ||
2500           (CoreCLRName == FunctionGCName);
2501  } else
2502    return false;
2503}
2504
2505static void stripNonValidData(Module &M) {
2506#ifndef NDEBUG
2507  assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
2508#endif
2509
2510  for (Function &F : M)
2511    stripNonValidAttributesFromPrototype(F);
2512
2513  for (Function &F : M)
2514    stripNonValidDataFromBody(F);
2515}
2516
2517bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
2518                                            TargetTransformInfo &TTI,
2519                                            const TargetLibraryInfo &TLI) {
2520  assert(!F.isDeclaration() && !F.empty() &&
2521         "need function body to rewrite statepoints in");
2522  assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
2523
2524  auto NeedsRewrite = [&TLI](Instruction &I) {
2525    if (const auto *Call = dyn_cast<CallBase>(&I))
2526      return !callsGCLeafFunction(Call, TLI) && !isStatepoint(Call);
2527    return false;
2528  };
2529
2530  // Delete any unreachable statepoints so that we don't have unrewritten
2531  // statepoints surviving this pass.  This makes testing easier and the
2532  // resulting IR less confusing to human readers.
2533  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
2534  bool MadeChange = removeUnreachableBlocks(F, &DTU);
2535  // Flush the Dominator Tree.
2536  DTU.getDomTree();
2537
2538  // Gather all the statepoints which need rewritten.  Be careful to only
2539  // consider those in reachable code since we need to ask dominance queries
2540  // when rewriting.  We'll delete the unreachable ones in a moment.
2541  SmallVector<CallBase *, 64> ParsePointNeeded;
2542  for (Instruction &I : instructions(F)) {
2543    // TODO: only the ones with the flag set!
2544    if (NeedsRewrite(I)) {
2545      // NOTE removeUnreachableBlocks() is stronger than
2546      // DominatorTree::isReachableFromEntry(). In other words
2547      // removeUnreachableBlocks can remove some blocks for which
2548      // isReachableFromEntry() returns true.
2549      assert(DT.isReachableFromEntry(I.getParent()) &&
2550            "no unreachable blocks expected");
2551      ParsePointNeeded.push_back(cast<CallBase>(&I));
2552    }
2553  }
2554
2555  // Return early if no work to do.
2556  if (ParsePointNeeded.empty())
2557    return MadeChange;
2558
2559  // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2560  // These are created by LCSSA.  They have the effect of increasing the size
2561  // of liveness sets for no good reason.  It may be harder to do this post
2562  // insertion since relocations and base phis can confuse things.
2563  for (BasicBlock &BB : F)
2564    if (BB.getUniquePredecessor()) {
2565      MadeChange = true;
2566      FoldSingleEntryPHINodes(&BB);
2567    }
2568
2569  // Before we start introducing relocations, we want to tweak the IR a bit to
2570  // avoid unfortunate code generation effects.  The main example is that we
2571  // want to try to make sure the comparison feeding a branch is after any
2572  // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2573  // values feeding a branch after relocation.  This is semantically correct,
2574  // but results in extra register pressure since both the pre-relocation and
2575  // post-relocation copies must be available in registers.  For code without
2576  // relocations this is handled elsewhere, but teaching the scheduler to
2577  // reverse the transform we're about to do would be slightly complex.
2578  // Note: This may extend the live range of the inputs to the icmp and thus
2579  // increase the liveset of any statepoint we move over.  This is profitable
2580  // as long as all statepoints are in rare blocks.  If we had in-register
2581  // lowering for live values this would be a much safer transform.
2582  auto getConditionInst = [](Instruction *TI) -> Instruction * {
2583    if (auto *BI = dyn_cast<BranchInst>(TI))
2584      if (BI->isConditional())
2585        return dyn_cast<Instruction>(BI->getCondition());
2586    // TODO: Extend this to handle switches
2587    return nullptr;
2588  };
2589  for (BasicBlock &BB : F) {
2590    Instruction *TI = BB.getTerminator();
2591    if (auto *Cond = getConditionInst(TI))
2592      // TODO: Handle more than just ICmps here.  We should be able to move
2593      // most instructions without side effects or memory access.
2594      if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2595        MadeChange = true;
2596        Cond->moveBefore(TI);
2597      }
2598  }
2599
2600  // Nasty workaround - The base computation code in the main algorithm doesn't
2601  // consider the fact that a GEP can be used to convert a scalar to a vector.
2602  // The right fix for this is to integrate GEPs into the base rewriting
2603  // algorithm properly, this is just a short term workaround to prevent
2604  // crashes by canonicalizing such GEPs into fully vector GEPs.
2605  for (Instruction &I : instructions(F)) {
2606    if (!isa<GetElementPtrInst>(I))
2607      continue;
2608
2609    unsigned VF = 0;
2610    for (unsigned i = 0; i < I.getNumOperands(); i++)
2611      if (I.getOperand(i)->getType()->isVectorTy()) {
2612        assert(VF == 0 ||
2613               VF == I.getOperand(i)->getType()->getVectorNumElements());
2614        VF = I.getOperand(i)->getType()->getVectorNumElements();
2615      }
2616
2617    // It's the vector to scalar traversal through the pointer operand which
2618    // confuses base pointer rewriting, so limit ourselves to that case.
2619    if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
2620      IRBuilder<> B(&I);
2621      auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
2622      I.setOperand(0, Splat);
2623      MadeChange = true;
2624    }
2625  }
2626
2627  MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2628  return MadeChange;
2629}
2630
2631// liveness computation via standard dataflow
2632// -------------------------------------------------------------------
2633
2634// TODO: Consider using bitvectors for liveness, the set of potentially
2635// interesting values should be small and easy to pre-compute.
2636
2637/// Compute the live-in set for the location rbegin starting from
2638/// the live-out set of the basic block
2639static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
2640                                BasicBlock::reverse_iterator End,
2641                                SetVector<Value *> &LiveTmp) {
2642  for (auto &I : make_range(Begin, End)) {
2643    // KILL/Def - Remove this definition from LiveIn
2644    LiveTmp.remove(&I);
2645
2646    // Don't consider *uses* in PHI nodes, we handle their contribution to
2647    // predecessor blocks when we seed the LiveOut sets
2648    if (isa<PHINode>(I))
2649      continue;
2650
2651    // USE - Add to the LiveIn set for this instruction
2652    for (Value *V : I.operands()) {
2653      assert(!isUnhandledGCPointerType(V->getType()) &&
2654             "support for FCA unimplemented");
2655      if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2656        // The choice to exclude all things constant here is slightly subtle.
2657        // There are two independent reasons:
2658        // - We assume that things which are constant (from LLVM's definition)
2659        // do not move at runtime.  For example, the address of a global
2660        // variable is fixed, even though it's contents may not be.
2661        // - Second, we can't disallow arbitrary inttoptr constants even
2662        // if the language frontend does.  Optimization passes are free to
2663        // locally exploit facts without respect to global reachability.  This
2664        // can create sections of code which are dynamically unreachable and
2665        // contain just about anything.  (see constants.ll in tests)
2666        LiveTmp.insert(V);
2667      }
2668    }
2669  }
2670}
2671
2672static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2673  for (BasicBlock *Succ : successors(BB)) {
2674    for (auto &I : *Succ) {
2675      PHINode *PN = dyn_cast<PHINode>(&I);
2676      if (!PN)
2677        break;
2678
2679      Value *V = PN->getIncomingValueForBlock(BB);
2680      assert(!isUnhandledGCPointerType(V->getType()) &&
2681             "support for FCA unimplemented");
2682      if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
2683        LiveTmp.insert(V);
2684    }
2685  }
2686}
2687
2688static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2689  SetVector<Value *> KillSet;
2690  for (Instruction &I : *BB)
2691    if (isHandledGCPointerType(I.getType()))
2692      KillSet.insert(&I);
2693  return KillSet;
2694}
2695
2696#ifndef NDEBUG
2697/// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2698/// sanity check for the liveness computation.
2699static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2700                          Instruction *TI, bool TermOkay = false) {
2701  for (Value *V : Live) {
2702    if (auto *I = dyn_cast<Instruction>(V)) {
2703      // The terminator can be a member of the LiveOut set.  LLVM's definition
2704      // of instruction dominance states that V does not dominate itself.  As
2705      // such, we need to special case this to allow it.
2706      if (TermOkay && TI == I)
2707        continue;
2708      assert(DT.dominates(I, TI) &&
2709             "basic SSA liveness expectation violated by liveness analysis");
2710    }
2711  }
2712}
2713
2714/// Check that all the liveness sets used during the computation of liveness
2715/// obey basic SSA properties.  This is useful for finding cases where we miss
2716/// a def.
2717static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2718                          BasicBlock &BB) {
2719  checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2720  checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2721  checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2722}
2723#endif
2724
2725static void computeLiveInValues(DominatorTree &DT, Function &F,
2726                                GCPtrLivenessData &Data) {
2727  SmallSetVector<BasicBlock *, 32> Worklist;
2728
2729  // Seed the liveness for each individual block
2730  for (BasicBlock &BB : F) {
2731    Data.KillSet[&BB] = computeKillSet(&BB);
2732    Data.LiveSet[&BB].clear();
2733    computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2734
2735#ifndef NDEBUG
2736    for (Value *Kill : Data.KillSet[&BB])
2737      assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2738#endif
2739
2740    Data.LiveOut[&BB] = SetVector<Value *>();
2741    computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2742    Data.LiveIn[&BB] = Data.LiveSet[&BB];
2743    Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2744    Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2745    if (!Data.LiveIn[&BB].empty())
2746      Worklist.insert(pred_begin(&BB), pred_end(&BB));
2747  }
2748
2749  // Propagate that liveness until stable
2750  while (!Worklist.empty()) {
2751    BasicBlock *BB = Worklist.pop_back_val();
2752
2753    // Compute our new liveout set, then exit early if it hasn't changed despite
2754    // the contribution of our successor.
2755    SetVector<Value *> LiveOut = Data.LiveOut[BB];
2756    const auto OldLiveOutSize = LiveOut.size();
2757    for (BasicBlock *Succ : successors(BB)) {
2758      assert(Data.LiveIn.count(Succ));
2759      LiveOut.set_union(Data.LiveIn[Succ]);
2760    }
2761    // assert OutLiveOut is a subset of LiveOut
2762    if (OldLiveOutSize == LiveOut.size()) {
2763      // If the sets are the same size, then we didn't actually add anything
2764      // when unioning our successors LiveIn.  Thus, the LiveIn of this block
2765      // hasn't changed.
2766      continue;
2767    }
2768    Data.LiveOut[BB] = LiveOut;
2769
2770    // Apply the effects of this basic block
2771    SetVector<Value *> LiveTmp = LiveOut;
2772    LiveTmp.set_union(Data.LiveSet[BB]);
2773    LiveTmp.set_subtract(Data.KillSet[BB]);
2774
2775    assert(Data.LiveIn.count(BB));
2776    const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2777    // assert: OldLiveIn is a subset of LiveTmp
2778    if (OldLiveIn.size() != LiveTmp.size()) {
2779      Data.LiveIn[BB] = LiveTmp;
2780      Worklist.insert(pred_begin(BB), pred_end(BB));
2781    }
2782  } // while (!Worklist.empty())
2783
2784#ifndef NDEBUG
2785  // Sanity check our output against SSA properties.  This helps catch any
2786  // missing kills during the above iteration.
2787  for (BasicBlock &BB : F)
2788    checkBasicSSA(DT, Data, BB);
2789#endif
2790}
2791
2792static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2793                              StatepointLiveSetTy &Out) {
2794  BasicBlock *BB = Inst->getParent();
2795
2796  // Note: The copy is intentional and required
2797  assert(Data.LiveOut.count(BB));
2798  SetVector<Value *> LiveOut = Data.LiveOut[BB];
2799
2800  // We want to handle the statepoint itself oddly.  It's
2801  // call result is not live (normal), nor are it's arguments
2802  // (unless they're used again later).  This adjustment is
2803  // specifically what we need to relocate
2804  computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
2805                      LiveOut);
2806  LiveOut.remove(Inst);
2807  Out.insert(LiveOut.begin(), LiveOut.end());
2808}
2809
2810static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2811                                  CallBase *Call,
2812                                  PartiallyConstructedSafepointRecord &Info) {
2813  StatepointLiveSetTy Updated;
2814  findLiveSetAtInst(Call, RevisedLivenessData, Updated);
2815
2816  // We may have base pointers which are now live that weren't before.  We need
2817  // to update the PointerToBase structure to reflect this.
2818  for (auto V : Updated)
2819    if (Info.PointerToBase.insert({V, V}).second) {
2820      assert(isKnownBaseResult(V) &&
2821             "Can't find base for unexpected live value!");
2822      continue;
2823    }
2824
2825#ifndef NDEBUG
2826  for (auto V : Updated)
2827    assert(Info.PointerToBase.count(V) &&
2828           "Must be able to find base for live value!");
2829#endif
2830
2831  // Remove any stale base mappings - this can happen since our liveness is
2832  // more precise then the one inherent in the base pointer analysis.
2833  DenseSet<Value *> ToErase;
2834  for (auto KVPair : Info.PointerToBase)
2835    if (!Updated.count(KVPair.first))
2836      ToErase.insert(KVPair.first);
2837
2838  for (auto *V : ToErase)
2839    Info.PointerToBase.erase(V);
2840
2841#ifndef NDEBUG
2842  for (auto KVPair : Info.PointerToBase)
2843    assert(Updated.count(KVPair.first) && "record for non-live value");
2844#endif
2845
2846  Info.LiveSet = Updated;
2847}
2848