PlaceSafepoints.cpp revision 360784
1//===- PlaceSafepoints.cpp - Place GC Safepoints --------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Place garbage collection safepoints at appropriate locations in the IR. This
10// does not make relocation semantics or variable liveness explicit.  That's
11// done by RewriteStatepointsForGC.
12//
13// Terminology:
14// - A call is said to be "parseable" if there is a stack map generated for the
15// return PC of the call.  A runtime can determine where values listed in the
16// deopt arguments and (after RewriteStatepointsForGC) gc arguments are located
17// on the stack when the code is suspended inside such a call.  Every parse
18// point is represented by a call wrapped in an gc.statepoint intrinsic.
19// - A "poll" is an explicit check in the generated code to determine if the
20// runtime needs the generated code to cooperate by calling a helper routine
21// and thus suspending its execution at a known state. The call to the helper
22// routine will be parseable.  The (gc & runtime specific) logic of a poll is
23// assumed to be provided in a function of the name "gc.safepoint_poll".
24//
25// We aim to insert polls such that running code can quickly be brought to a
26// well defined state for inspection by the collector.  In the current
27// implementation, this is done via the insertion of poll sites at method entry
28// and the backedge of most loops.  We try to avoid inserting more polls than
29// are necessary to ensure a finite period between poll sites.  This is not
30// because the poll itself is expensive in the generated code; it's not.  Polls
31// do tend to impact the optimizer itself in negative ways; we'd like to avoid
32// perturbing the optimization of the method as much as we can.
33//
34// We also need to make most call sites parseable.  The callee might execute a
35// poll (or otherwise be inspected by the GC).  If so, the entire stack
36// (including the suspended frame of the current method) must be parseable.
37//
38// This pass will insert:
39// - Call parse points ("call safepoints") for any call which may need to
40// reach a safepoint during the execution of the callee function.
41// - Backedge safepoint polls and entry safepoint polls to ensure that
42// executing code reaches a safepoint poll in a finite amount of time.
43//
44// We do not currently support return statepoints, but adding them would not
45// be hard.  They are not required for correctness - entry safepoints are an
46// alternative - but some GCs may prefer them.  Patches welcome.
47//
48//===----------------------------------------------------------------------===//
49
50#include "llvm/InitializePasses.h"
51#include "llvm/Pass.h"
52
53#include "llvm/ADT/SetVector.h"
54#include "llvm/ADT/Statistic.h"
55#include "llvm/Analysis/CFG.h"
56#include "llvm/Analysis/ScalarEvolution.h"
57#include "llvm/Analysis/TargetLibraryInfo.h"
58#include "llvm/Transforms/Utils/Local.h"
59#include "llvm/IR/Dominators.h"
60#include "llvm/IR/IntrinsicInst.h"
61#include "llvm/IR/LegacyPassManager.h"
62#include "llvm/IR/Statepoint.h"
63#include "llvm/Support/CommandLine.h"
64#include "llvm/Support/Debug.h"
65#include "llvm/Transforms/Scalar.h"
66#include "llvm/Transforms/Utils/BasicBlockUtils.h"
67#include "llvm/Transforms/Utils/Cloning.h"
68
69#define DEBUG_TYPE "safepoint-placement"
70
71STATISTIC(NumEntrySafepoints, "Number of entry safepoints inserted");
72STATISTIC(NumBackedgeSafepoints, "Number of backedge safepoints inserted");
73
74STATISTIC(CallInLoop,
75          "Number of loops without safepoints due to calls in loop");
76STATISTIC(FiniteExecution,
77          "Number of loops without safepoints finite execution");
78
79using namespace llvm;
80
81// Ignore opportunities to avoid placing safepoints on backedges, useful for
82// validation
83static cl::opt<bool> AllBackedges("spp-all-backedges", cl::Hidden,
84                                  cl::init(false));
85
86/// How narrow does the trip count of a loop have to be to have to be considered
87/// "counted"?  Counted loops do not get safepoints at backedges.
88static cl::opt<int> CountedLoopTripWidth("spp-counted-loop-trip-width",
89                                         cl::Hidden, cl::init(32));
90
91// If true, split the backedge of a loop when placing the safepoint, otherwise
92// split the latch block itself.  Both are useful to support for
93// experimentation, but in practice, it looks like splitting the backedge
94// optimizes better.
95static cl::opt<bool> SplitBackedge("spp-split-backedge", cl::Hidden,
96                                   cl::init(false));
97
98namespace {
99
100/// An analysis pass whose purpose is to identify each of the backedges in
101/// the function which require a safepoint poll to be inserted.
102struct PlaceBackedgeSafepointsImpl : public FunctionPass {
103  static char ID;
104
105  /// The output of the pass - gives a list of each backedge (described by
106  /// pointing at the branch) which need a poll inserted.
107  std::vector<Instruction *> PollLocations;
108
109  /// True unless we're running spp-no-calls in which case we need to disable
110  /// the call-dependent placement opts.
111  bool CallSafepointsEnabled;
112
113  ScalarEvolution *SE = nullptr;
114  DominatorTree *DT = nullptr;
115  LoopInfo *LI = nullptr;
116  TargetLibraryInfo *TLI = nullptr;
117
118  PlaceBackedgeSafepointsImpl(bool CallSafepoints = false)
119      : FunctionPass(ID), CallSafepointsEnabled(CallSafepoints) {
120    initializePlaceBackedgeSafepointsImplPass(*PassRegistry::getPassRegistry());
121  }
122
123  bool runOnLoop(Loop *);
124  void runOnLoopAndSubLoops(Loop *L) {
125    // Visit all the subloops
126    for (Loop *I : *L)
127      runOnLoopAndSubLoops(I);
128    runOnLoop(L);
129  }
130
131  bool runOnFunction(Function &F) override {
132    SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
133    DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
134    LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
135    TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
136    for (Loop *I : *LI) {
137      runOnLoopAndSubLoops(I);
138    }
139    return false;
140  }
141
142  void getAnalysisUsage(AnalysisUsage &AU) const override {
143    AU.addRequired<DominatorTreeWrapperPass>();
144    AU.addRequired<ScalarEvolutionWrapperPass>();
145    AU.addRequired<LoopInfoWrapperPass>();
146    AU.addRequired<TargetLibraryInfoWrapperPass>();
147    // We no longer modify the IR at all in this pass.  Thus all
148    // analysis are preserved.
149    AU.setPreservesAll();
150  }
151};
152}
153
154static cl::opt<bool> NoEntry("spp-no-entry", cl::Hidden, cl::init(false));
155static cl::opt<bool> NoCall("spp-no-call", cl::Hidden, cl::init(false));
156static cl::opt<bool> NoBackedge("spp-no-backedge", cl::Hidden, cl::init(false));
157
158namespace {
159struct PlaceSafepoints : public FunctionPass {
160  static char ID; // Pass identification, replacement for typeid
161
162  PlaceSafepoints() : FunctionPass(ID) {
163    initializePlaceSafepointsPass(*PassRegistry::getPassRegistry());
164  }
165  bool runOnFunction(Function &F) override;
166
167  void getAnalysisUsage(AnalysisUsage &AU) const override {
168    // We modify the graph wholesale (inlining, block insertion, etc).  We
169    // preserve nothing at the moment.  We could potentially preserve dom tree
170    // if that was worth doing
171    AU.addRequired<TargetLibraryInfoWrapperPass>();
172  }
173};
174}
175
176// Insert a safepoint poll immediately before the given instruction.  Does
177// not handle the parsability of state at the runtime call, that's the
178// callers job.
179static void
180InsertSafepointPoll(Instruction *InsertBefore,
181                    std::vector<CallBase *> &ParsePointsNeeded /*rval*/,
182                    const TargetLibraryInfo &TLI);
183
184static bool needsStatepoint(CallBase *Call, const TargetLibraryInfo &TLI) {
185  if (callsGCLeafFunction(Call, TLI))
186    return false;
187  if (auto *CI = dyn_cast<CallInst>(Call)) {
188    if (CI->isInlineAsm())
189      return false;
190  }
191
192  return !(isStatepoint(Call) || isGCRelocate(Call) || isGCResult(Call));
193}
194
195/// Returns true if this loop is known to contain a call safepoint which
196/// must unconditionally execute on any iteration of the loop which returns
197/// to the loop header via an edge from Pred.  Returns a conservative correct
198/// answer; i.e. false is always valid.
199static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header,
200                                               BasicBlock *Pred,
201                                               DominatorTree &DT,
202                                               const TargetLibraryInfo &TLI) {
203  // In general, we're looking for any cut of the graph which ensures
204  // there's a call safepoint along every edge between Header and Pred.
205  // For the moment, we look only for the 'cuts' that consist of a single call
206  // instruction in a block which is dominated by the Header and dominates the
207  // loop latch (Pred) block.  Somewhat surprisingly, walking the entire chain
208  // of such dominating blocks gets substantially more occurrences than just
209  // checking the Pred and Header blocks themselves.  This may be due to the
210  // density of loop exit conditions caused by range and null checks.
211  // TODO: structure this as an analysis pass, cache the result for subloops,
212  // avoid dom tree recalculations
213  assert(DT.dominates(Header, Pred) && "loop latch not dominated by header?");
214
215  BasicBlock *Current = Pred;
216  while (true) {
217    for (Instruction &I : *Current) {
218      if (auto *Call = dyn_cast<CallBase>(&I))
219        // Note: Technically, needing a safepoint isn't quite the right
220        // condition here.  We should instead be checking if the target method
221        // has an
222        // unconditional poll. In practice, this is only a theoretical concern
223        // since we don't have any methods with conditional-only safepoint
224        // polls.
225        if (needsStatepoint(Call, TLI))
226          return true;
227    }
228
229    if (Current == Header)
230      break;
231    Current = DT.getNode(Current)->getIDom()->getBlock();
232  }
233
234  return false;
235}
236
237/// Returns true if this loop is known to terminate in a finite number of
238/// iterations.  Note that this function may return false for a loop which
239/// does actual terminate in a finite constant number of iterations due to
240/// conservatism in the analysis.
241static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE,
242                                    BasicBlock *Pred) {
243  // A conservative bound on the loop as a whole.
244  const SCEV *MaxTrips = SE->getConstantMaxBackedgeTakenCount(L);
245  if (MaxTrips != SE->getCouldNotCompute() &&
246      SE->getUnsignedRange(MaxTrips).getUnsignedMax().isIntN(
247          CountedLoopTripWidth))
248    return true;
249
250  // If this is a conditional branch to the header with the alternate path
251  // being outside the loop, we can ask questions about the execution frequency
252  // of the exit block.
253  if (L->isLoopExiting(Pred)) {
254    // This returns an exact expression only.  TODO: We really only need an
255    // upper bound here, but SE doesn't expose that.
256    const SCEV *MaxExec = SE->getExitCount(L, Pred);
257    if (MaxExec != SE->getCouldNotCompute() &&
258        SE->getUnsignedRange(MaxExec).getUnsignedMax().isIntN(
259            CountedLoopTripWidth))
260        return true;
261  }
262
263  return /* not finite */ false;
264}
265
266static void scanOneBB(Instruction *Start, Instruction *End,
267                      std::vector<CallInst *> &Calls,
268                      DenseSet<BasicBlock *> &Seen,
269                      std::vector<BasicBlock *> &Worklist) {
270  for (BasicBlock::iterator BBI(Start), BBE0 = Start->getParent()->end(),
271                                        BBE1 = BasicBlock::iterator(End);
272       BBI != BBE0 && BBI != BBE1; BBI++) {
273    if (CallInst *CI = dyn_cast<CallInst>(&*BBI))
274      Calls.push_back(CI);
275
276    // FIXME: This code does not handle invokes
277    assert(!isa<InvokeInst>(&*BBI) &&
278           "support for invokes in poll code needed");
279
280    // Only add the successor blocks if we reach the terminator instruction
281    // without encountering end first
282    if (BBI->isTerminator()) {
283      BasicBlock *BB = BBI->getParent();
284      for (BasicBlock *Succ : successors(BB)) {
285        if (Seen.insert(Succ).second) {
286          Worklist.push_back(Succ);
287        }
288      }
289    }
290  }
291}
292
293static void scanInlinedCode(Instruction *Start, Instruction *End,
294                            std::vector<CallInst *> &Calls,
295                            DenseSet<BasicBlock *> &Seen) {
296  Calls.clear();
297  std::vector<BasicBlock *> Worklist;
298  Seen.insert(Start->getParent());
299  scanOneBB(Start, End, Calls, Seen, Worklist);
300  while (!Worklist.empty()) {
301    BasicBlock *BB = Worklist.back();
302    Worklist.pop_back();
303    scanOneBB(&*BB->begin(), End, Calls, Seen, Worklist);
304  }
305}
306
307bool PlaceBackedgeSafepointsImpl::runOnLoop(Loop *L) {
308  // Loop through all loop latches (branches controlling backedges).  We need
309  // to place a safepoint on every backedge (potentially).
310  // Note: In common usage, there will be only one edge due to LoopSimplify
311  // having run sometime earlier in the pipeline, but this code must be correct
312  // w.r.t. loops with multiple backedges.
313  BasicBlock *Header = L->getHeader();
314  SmallVector<BasicBlock*, 16> LoopLatches;
315  L->getLoopLatches(LoopLatches);
316  for (BasicBlock *Pred : LoopLatches) {
317    assert(L->contains(Pred));
318
319    // Make a policy decision about whether this loop needs a safepoint or
320    // not.  Note that this is about unburdening the optimizer in loops, not
321    // avoiding the runtime cost of the actual safepoint.
322    if (!AllBackedges) {
323      if (mustBeFiniteCountedLoop(L, SE, Pred)) {
324        LLVM_DEBUG(dbgs() << "skipping safepoint placement in finite loop\n");
325        FiniteExecution++;
326        continue;
327      }
328      if (CallSafepointsEnabled &&
329          containsUnconditionalCallSafepoint(L, Header, Pred, *DT, *TLI)) {
330        // Note: This is only semantically legal since we won't do any further
331        // IPO or inlining before the actual call insertion..  If we hadn't, we
332        // might latter loose this call safepoint.
333        LLVM_DEBUG(
334            dbgs()
335            << "skipping safepoint placement due to unconditional call\n");
336        CallInLoop++;
337        continue;
338      }
339    }
340
341    // TODO: We can create an inner loop which runs a finite number of
342    // iterations with an outer loop which contains a safepoint.  This would
343    // not help runtime performance that much, but it might help our ability to
344    // optimize the inner loop.
345
346    // Safepoint insertion would involve creating a new basic block (as the
347    // target of the current backedge) which does the safepoint (of all live
348    // variables) and branches to the true header
349    Instruction *Term = Pred->getTerminator();
350
351    LLVM_DEBUG(dbgs() << "[LSP] terminator instruction: " << *Term);
352
353    PollLocations.push_back(Term);
354  }
355
356  return false;
357}
358
359/// Returns true if an entry safepoint is not required before this callsite in
360/// the caller function.
361static bool doesNotRequireEntrySafepointBefore(CallBase *Call) {
362  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call)) {
363    switch (II->getIntrinsicID()) {
364    case Intrinsic::experimental_gc_statepoint:
365    case Intrinsic::experimental_patchpoint_void:
366    case Intrinsic::experimental_patchpoint_i64:
367      // The can wrap an actual call which may grow the stack by an unbounded
368      // amount or run forever.
369      return false;
370    default:
371      // Most LLVM intrinsics are things which do not expand to actual calls, or
372      // at least if they do, are leaf functions that cause only finite stack
373      // growth.  In particular, the optimizer likes to form things like memsets
374      // out of stores in the original IR.  Another important example is
375      // llvm.localescape which must occur in the entry block.  Inserting a
376      // safepoint before it is not legal since it could push the localescape
377      // out of the entry block.
378      return true;
379    }
380  }
381  return false;
382}
383
384static Instruction *findLocationForEntrySafepoint(Function &F,
385                                                  DominatorTree &DT) {
386
387  // Conceptually, this poll needs to be on method entry, but in
388  // practice, we place it as late in the entry block as possible.  We
389  // can place it as late as we want as long as it dominates all calls
390  // that can grow the stack.  This, combined with backedge polls,
391  // give us all the progress guarantees we need.
392
393  // hasNextInstruction and nextInstruction are used to iterate
394  // through a "straight line" execution sequence.
395
396  auto HasNextInstruction = [](Instruction *I) {
397    if (!I->isTerminator())
398      return true;
399
400    BasicBlock *nextBB = I->getParent()->getUniqueSuccessor();
401    return nextBB && (nextBB->getUniquePredecessor() != nullptr);
402  };
403
404  auto NextInstruction = [&](Instruction *I) {
405    assert(HasNextInstruction(I) &&
406           "first check if there is a next instruction!");
407
408    if (I->isTerminator())
409      return &I->getParent()->getUniqueSuccessor()->front();
410    return &*++I->getIterator();
411  };
412
413  Instruction *Cursor = nullptr;
414  for (Cursor = &F.getEntryBlock().front(); HasNextInstruction(Cursor);
415       Cursor = NextInstruction(Cursor)) {
416
417    // We need to ensure a safepoint poll occurs before any 'real' call.  The
418    // easiest way to ensure finite execution between safepoints in the face of
419    // recursive and mutually recursive functions is to enforce that each take
420    // a safepoint.  Additionally, we need to ensure a poll before any call
421    // which can grow the stack by an unbounded amount.  This isn't required
422    // for GC semantics per se, but is a common requirement for languages
423    // which detect stack overflow via guard pages and then throw exceptions.
424    if (auto *Call = dyn_cast<CallBase>(Cursor)) {
425      if (doesNotRequireEntrySafepointBefore(Call))
426        continue;
427      break;
428    }
429  }
430
431  assert((HasNextInstruction(Cursor) || Cursor->isTerminator()) &&
432         "either we stopped because of a call, or because of terminator");
433
434  return Cursor;
435}
436
437static const char *const GCSafepointPollName = "gc.safepoint_poll";
438
439static bool isGCSafepointPoll(Function &F) {
440  return F.getName().equals(GCSafepointPollName);
441}
442
443/// Returns true if this function should be rewritten to include safepoint
444/// polls and parseable call sites.  The main point of this function is to be
445/// an extension point for custom logic.
446static bool shouldRewriteFunction(Function &F) {
447  // TODO: This should check the GCStrategy
448  if (F.hasGC()) {
449    const auto &FunctionGCName = F.getGC();
450    const StringRef StatepointExampleName("statepoint-example");
451    const StringRef CoreCLRName("coreclr");
452    return (StatepointExampleName == FunctionGCName) ||
453           (CoreCLRName == FunctionGCName);
454  } else
455    return false;
456}
457
458// TODO: These should become properties of the GCStrategy, possibly with
459// command line overrides.
460static bool enableEntrySafepoints(Function &F) { return !NoEntry; }
461static bool enableBackedgeSafepoints(Function &F) { return !NoBackedge; }
462static bool enableCallSafepoints(Function &F) { return !NoCall; }
463
464bool PlaceSafepoints::runOnFunction(Function &F) {
465  if (F.isDeclaration() || F.empty()) {
466    // This is a declaration, nothing to do.  Must exit early to avoid crash in
467    // dom tree calculation
468    return false;
469  }
470
471  if (isGCSafepointPoll(F)) {
472    // Given we're inlining this inside of safepoint poll insertion, this
473    // doesn't make any sense.  Note that we do make any contained calls
474    // parseable after we inline a poll.
475    return false;
476  }
477
478  if (!shouldRewriteFunction(F))
479    return false;
480
481  const TargetLibraryInfo &TLI =
482      getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
483
484  bool Modified = false;
485
486  // In various bits below, we rely on the fact that uses are reachable from
487  // defs.  When there are basic blocks unreachable from the entry, dominance
488  // and reachablity queries return non-sensical results.  Thus, we preprocess
489  // the function to ensure these properties hold.
490  Modified |= removeUnreachableBlocks(F);
491
492  // STEP 1 - Insert the safepoint polling locations.  We do not need to
493  // actually insert parse points yet.  That will be done for all polls and
494  // calls in a single pass.
495
496  DominatorTree DT;
497  DT.recalculate(F);
498
499  SmallVector<Instruction *, 16> PollsNeeded;
500  std::vector<CallBase *> ParsePointNeeded;
501
502  if (enableBackedgeSafepoints(F)) {
503    // Construct a pass manager to run the LoopPass backedge logic.  We
504    // need the pass manager to handle scheduling all the loop passes
505    // appropriately.  Doing this by hand is painful and just not worth messing
506    // with for the moment.
507    legacy::FunctionPassManager FPM(F.getParent());
508    bool CanAssumeCallSafepoints = enableCallSafepoints(F);
509    auto *PBS = new PlaceBackedgeSafepointsImpl(CanAssumeCallSafepoints);
510    FPM.add(PBS);
511    FPM.run(F);
512
513    // We preserve dominance information when inserting the poll, otherwise
514    // we'd have to recalculate this on every insert
515    DT.recalculate(F);
516
517    auto &PollLocations = PBS->PollLocations;
518
519    auto OrderByBBName = [](Instruction *a, Instruction *b) {
520      return a->getParent()->getName() < b->getParent()->getName();
521    };
522    // We need the order of list to be stable so that naming ends up stable
523    // when we split edges.  This makes test cases much easier to write.
524    llvm::sort(PollLocations, OrderByBBName);
525
526    // We can sometimes end up with duplicate poll locations.  This happens if
527    // a single loop is visited more than once.   The fact this happens seems
528    // wrong, but it does happen for the split-backedge.ll test case.
529    PollLocations.erase(std::unique(PollLocations.begin(),
530                                    PollLocations.end()),
531                        PollLocations.end());
532
533    // Insert a poll at each point the analysis pass identified
534    // The poll location must be the terminator of a loop latch block.
535    for (Instruction *Term : PollLocations) {
536      // We are inserting a poll, the function is modified
537      Modified = true;
538
539      if (SplitBackedge) {
540        // Split the backedge of the loop and insert the poll within that new
541        // basic block.  This creates a loop with two latches per original
542        // latch (which is non-ideal), but this appears to be easier to
543        // optimize in practice than inserting the poll immediately before the
544        // latch test.
545
546        // Since this is a latch, at least one of the successors must dominate
547        // it. Its possible that we have a) duplicate edges to the same header
548        // and b) edges to distinct loop headers.  We need to insert pools on
549        // each.
550        SetVector<BasicBlock *> Headers;
551        for (unsigned i = 0; i < Term->getNumSuccessors(); i++) {
552          BasicBlock *Succ = Term->getSuccessor(i);
553          if (DT.dominates(Succ, Term->getParent())) {
554            Headers.insert(Succ);
555          }
556        }
557        assert(!Headers.empty() && "poll location is not a loop latch?");
558
559        // The split loop structure here is so that we only need to recalculate
560        // the dominator tree once.  Alternatively, we could just keep it up to
561        // date and use a more natural merged loop.
562        SetVector<BasicBlock *> SplitBackedges;
563        for (BasicBlock *Header : Headers) {
564          BasicBlock *NewBB = SplitEdge(Term->getParent(), Header, &DT);
565          PollsNeeded.push_back(NewBB->getTerminator());
566          NumBackedgeSafepoints++;
567        }
568      } else {
569        // Split the latch block itself, right before the terminator.
570        PollsNeeded.push_back(Term);
571        NumBackedgeSafepoints++;
572      }
573    }
574  }
575
576  if (enableEntrySafepoints(F)) {
577    if (Instruction *Location = findLocationForEntrySafepoint(F, DT)) {
578      PollsNeeded.push_back(Location);
579      Modified = true;
580      NumEntrySafepoints++;
581    }
582    // TODO: else we should assert that there was, in fact, a policy choice to
583    // not insert a entry safepoint poll.
584  }
585
586  // Now that we've identified all the needed safepoint poll locations, insert
587  // safepoint polls themselves.
588  for (Instruction *PollLocation : PollsNeeded) {
589    std::vector<CallBase *> RuntimeCalls;
590    InsertSafepointPoll(PollLocation, RuntimeCalls, TLI);
591    ParsePointNeeded.insert(ParsePointNeeded.end(), RuntimeCalls.begin(),
592                            RuntimeCalls.end());
593  }
594
595  return Modified;
596}
597
598char PlaceBackedgeSafepointsImpl::ID = 0;
599char PlaceSafepoints::ID = 0;
600
601FunctionPass *llvm::createPlaceSafepointsPass() {
602  return new PlaceSafepoints();
603}
604
605INITIALIZE_PASS_BEGIN(PlaceBackedgeSafepointsImpl,
606                      "place-backedge-safepoints-impl",
607                      "Place Backedge Safepoints", false, false)
608INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
609INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
610INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
611INITIALIZE_PASS_END(PlaceBackedgeSafepointsImpl,
612                    "place-backedge-safepoints-impl",
613                    "Place Backedge Safepoints", false, false)
614
615INITIALIZE_PASS_BEGIN(PlaceSafepoints, "place-safepoints", "Place Safepoints",
616                      false, false)
617INITIALIZE_PASS_END(PlaceSafepoints, "place-safepoints", "Place Safepoints",
618                    false, false)
619
620static void
621InsertSafepointPoll(Instruction *InsertBefore,
622                    std::vector<CallBase *> &ParsePointsNeeded /*rval*/,
623                    const TargetLibraryInfo &TLI) {
624  BasicBlock *OrigBB = InsertBefore->getParent();
625  Module *M = InsertBefore->getModule();
626  assert(M && "must be part of a module");
627
628  // Inline the safepoint poll implementation - this will get all the branch,
629  // control flow, etc..  Most importantly, it will introduce the actual slow
630  // path call - where we need to insert a safepoint (parsepoint).
631
632  auto *F = M->getFunction(GCSafepointPollName);
633  assert(F && "gc.safepoint_poll function is missing");
634  assert(F->getValueType() ==
635         FunctionType::get(Type::getVoidTy(M->getContext()), false) &&
636         "gc.safepoint_poll declared with wrong type");
637  assert(!F->empty() && "gc.safepoint_poll must be a non-empty function");
638  CallInst *PollCall = CallInst::Create(F, "", InsertBefore);
639
640  // Record some information about the call site we're replacing
641  BasicBlock::iterator Before(PollCall), After(PollCall);
642  bool IsBegin = false;
643  if (Before == OrigBB->begin())
644    IsBegin = true;
645  else
646    Before--;
647
648  After++;
649  assert(After != OrigBB->end() && "must have successor");
650
651  // Do the actual inlining
652  InlineFunctionInfo IFI;
653  bool InlineStatus = InlineFunction(PollCall, IFI);
654  assert(InlineStatus && "inline must succeed");
655  (void)InlineStatus; // suppress warning in release-asserts
656
657  // Check post-conditions
658  assert(IFI.StaticAllocas.empty() && "can't have allocs");
659
660  std::vector<CallInst *> Calls; // new calls
661  DenseSet<BasicBlock *> BBs;    // new BBs + insertee
662
663  // Include only the newly inserted instructions, Note: begin may not be valid
664  // if we inserted to the beginning of the basic block
665  BasicBlock::iterator Start = IsBegin ? OrigBB->begin() : std::next(Before);
666
667  // If your poll function includes an unreachable at the end, that's not
668  // valid.  Bugpoint likes to create this, so check for it.
669  assert(isPotentiallyReachable(&*Start, &*After) &&
670         "malformed poll function");
671
672  scanInlinedCode(&*Start, &*After, Calls, BBs);
673  assert(!Calls.empty() && "slow path not found for safepoint poll");
674
675  // Record the fact we need a parsable state at the runtime call contained in
676  // the poll function.  This is required so that the runtime knows how to
677  // parse the last frame when we actually take  the safepoint (i.e. execute
678  // the slow path)
679  assert(ParsePointsNeeded.empty());
680  for (auto *CI : Calls) {
681    // No safepoint needed or wanted
682    if (!needsStatepoint(CI, TLI))
683      continue;
684
685    // These are likely runtime calls.  Should we assert that via calling
686    // convention or something?
687    ParsePointsNeeded.push_back(CI);
688  }
689  assert(ParsePointsNeeded.size() <= Calls.size());
690}
691