1327952Sdim//===- LoopReroll.cpp - Loop rerolling pass -------------------------------===//
2259698Sdim//
3353358Sdim// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4353358Sdim// See https://llvm.org/LICENSE.txt for license information.
5353358Sdim// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6259698Sdim//
7259698Sdim//===----------------------------------------------------------------------===//
8259698Sdim//
9259698Sdim// This pass implements a simple loop reroller.
10259698Sdim//
11259698Sdim//===----------------------------------------------------------------------===//
12259698Sdim
13327952Sdim#include "llvm/ADT/APInt.h"
14321369Sdim#include "llvm/ADT/BitVector.h"
15327952Sdim#include "llvm/ADT/DenseMap.h"
16327952Sdim#include "llvm/ADT/DenseSet.h"
17288943Sdim#include "llvm/ADT/MapVector.h"
18276479Sdim#include "llvm/ADT/STLExtras.h"
19341825Sdim#include "llvm/ADT/SmallPtrSet.h"
20327952Sdim#include "llvm/ADT/SmallVector.h"
21259698Sdim#include "llvm/ADT/Statistic.h"
22259698Sdim#include "llvm/Analysis/AliasAnalysis.h"
23259698Sdim#include "llvm/Analysis/AliasSetTracker.h"
24327952Sdim#include "llvm/Analysis/LoopInfo.h"
25259698Sdim#include "llvm/Analysis/LoopPass.h"
26259698Sdim#include "llvm/Analysis/ScalarEvolution.h"
27259698Sdim#include "llvm/Analysis/ScalarEvolutionExpander.h"
28259698Sdim#include "llvm/Analysis/ScalarEvolutionExpressions.h"
29288943Sdim#include "llvm/Analysis/TargetLibraryInfo.h"
30259698Sdim#include "llvm/Analysis/ValueTracking.h"
31327952Sdim#include "llvm/IR/BasicBlock.h"
32327952Sdim#include "llvm/IR/Constants.h"
33259698Sdim#include "llvm/IR/DataLayout.h"
34327952Sdim#include "llvm/IR/DerivedTypes.h"
35276479Sdim#include "llvm/IR/Dominators.h"
36327952Sdim#include "llvm/IR/IRBuilder.h"
37327952Sdim#include "llvm/IR/InstrTypes.h"
38327952Sdim#include "llvm/IR/Instruction.h"
39327952Sdim#include "llvm/IR/Instructions.h"
40259698Sdim#include "llvm/IR/IntrinsicInst.h"
41327952Sdim#include "llvm/IR/Intrinsics.h"
42327952Sdim#include "llvm/IR/Module.h"
43327952Sdim#include "llvm/IR/Type.h"
44327952Sdim#include "llvm/IR/Use.h"
45327952Sdim#include "llvm/IR/User.h"
46327952Sdim#include "llvm/IR/Value.h"
47360784Sdim#include "llvm/InitializePasses.h"
48327952Sdim#include "llvm/Pass.h"
49327952Sdim#include "llvm/Support/Casting.h"
50259698Sdim#include "llvm/Support/CommandLine.h"
51259698Sdim#include "llvm/Support/Debug.h"
52259698Sdim#include "llvm/Support/raw_ostream.h"
53321369Sdim#include "llvm/Transforms/Scalar.h"
54341825Sdim#include "llvm/Transforms/Utils.h"
55259698Sdim#include "llvm/Transforms/Utils/BasicBlockUtils.h"
56360784Sdim#include "llvm/Transforms/Utils/Local.h"
57259698Sdim#include "llvm/Transforms/Utils/LoopUtils.h"
58327952Sdim#include <cassert>
59327952Sdim#include <cstddef>
60327952Sdim#include <cstdint>
61327952Sdim#include <cstdlib>
62327952Sdim#include <iterator>
63327952Sdim#include <map>
64327952Sdim#include <utility>
65259698Sdim
66259698Sdimusing namespace llvm;
67259698Sdim
68276479Sdim#define DEBUG_TYPE "loop-reroll"
69276479Sdim
70259698SdimSTATISTIC(NumRerolledLoops, "Number of rerolled loops");
71259698Sdim
72259698Sdimstatic cl::opt<unsigned>
73288943SdimNumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400),
74288943Sdim                          cl::Hidden,
75288943Sdim                          cl::desc("The maximum number of failures to tolerate"
76288943Sdim                                   " during fuzzy matching. (default: 400)"));
77288943Sdim
78259698Sdim// This loop re-rolling transformation aims to transform loops like this:
79259698Sdim//
80259698Sdim// int foo(int a);
81259698Sdim// void bar(int *x) {
82259698Sdim//   for (int i = 0; i < 500; i += 3) {
83259698Sdim//     foo(i);
84259698Sdim//     foo(i+1);
85259698Sdim//     foo(i+2);
86259698Sdim//   }
87259698Sdim// }
88259698Sdim//
89259698Sdim// into a loop like this:
90259698Sdim//
91259698Sdim// void bar(int *x) {
92259698Sdim//   for (int i = 0; i < 500; ++i)
93259698Sdim//     foo(i);
94259698Sdim// }
95259698Sdim//
96259698Sdim// It does this by looking for loops that, besides the latch code, are composed
97259698Sdim// of isomorphic DAGs of instructions, with each DAG rooted at some increment
98259698Sdim// to the induction variable, and where each DAG is isomorphic to the DAG
99259698Sdim// rooted at the induction variable (excepting the sub-DAGs which root the
100259698Sdim// other induction-variable increments). In other words, we're looking for loop
101259698Sdim// bodies of the form:
102259698Sdim//
103259698Sdim// %iv = phi [ (preheader, ...), (body, %iv.next) ]
104259698Sdim// f(%iv)
105259698Sdim// %iv.1 = add %iv, 1                <-- a root increment
106259698Sdim// f(%iv.1)
107259698Sdim// %iv.2 = add %iv, 2                <-- a root increment
108259698Sdim// f(%iv.2)
109259698Sdim// %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
110259698Sdim// f(%iv.scale_m_1)
111259698Sdim// ...
112259698Sdim// %iv.next = add %iv, scale
113259698Sdim// %cmp = icmp(%iv, ...)
114259698Sdim// br %cmp, header, exit
115259698Sdim//
116259698Sdim// where each f(i) is a set of instructions that, collectively, are a function
117259698Sdim// only of i (and other loop-invariant values).
118259698Sdim//
119259698Sdim// As a special case, we can also reroll loops like this:
120259698Sdim//
121259698Sdim// int foo(int);
122259698Sdim// void bar(int *x) {
123259698Sdim//   for (int i = 0; i < 500; ++i) {
124259698Sdim//     x[3*i] = foo(0);
125259698Sdim//     x[3*i+1] = foo(0);
126259698Sdim//     x[3*i+2] = foo(0);
127259698Sdim//   }
128259698Sdim// }
129259698Sdim//
130259698Sdim// into this:
131259698Sdim//
132259698Sdim// void bar(int *x) {
133259698Sdim//   for (int i = 0; i < 1500; ++i)
134259698Sdim//     x[i] = foo(0);
135259698Sdim// }
136259698Sdim//
137259698Sdim// in which case, we're looking for inputs like this:
138259698Sdim//
139259698Sdim// %iv = phi [ (preheader, ...), (body, %iv.next) ]
140259698Sdim// %scaled.iv = mul %iv, scale
141259698Sdim// f(%scaled.iv)
142259698Sdim// %scaled.iv.1 = add %scaled.iv, 1
143259698Sdim// f(%scaled.iv.1)
144259698Sdim// %scaled.iv.2 = add %scaled.iv, 2
145259698Sdim// f(%scaled.iv.2)
146259698Sdim// %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
147259698Sdim// f(%scaled.iv.scale_m_1)
148259698Sdim// ...
149259698Sdim// %iv.next = add %iv, 1
150259698Sdim// %cmp = icmp(%iv, ...)
151259698Sdim// br %cmp, header, exit
152259698Sdim
153259698Sdimnamespace {
154327952Sdim
155288943Sdim  enum IterationLimits {
156309124Sdim    /// The maximum number of iterations that we'll try and reroll.
157309124Sdim    IL_MaxRerollIterations = 32,
158288943Sdim    /// The bitvector index used by loop induction variables and other
159288943Sdim    /// instructions that belong to all iterations.
160288943Sdim    IL_All,
161288943Sdim    IL_End
162288943Sdim  };
163288943Sdim
164259698Sdim  class LoopReroll : public LoopPass {
165259698Sdim  public:
166259698Sdim    static char ID; // Pass ID, replacement for typeid
167327952Sdim
168259698Sdim    LoopReroll() : LoopPass(ID) {
169259698Sdim      initializeLoopRerollPass(*PassRegistry::getPassRegistry());
170259698Sdim    }
171259698Sdim
172276479Sdim    bool runOnLoop(Loop *L, LPPassManager &LPM) override;
173259698Sdim
174276479Sdim    void getAnalysisUsage(AnalysisUsage &AU) const override {
175288943Sdim      AU.addRequired<TargetLibraryInfoWrapperPass>();
176309124Sdim      getLoopAnalysisUsage(AU);
177259698Sdim    }
178259698Sdim
179288943Sdim  protected:
180259698Sdim    AliasAnalysis *AA;
181259698Sdim    LoopInfo *LI;
182259698Sdim    ScalarEvolution *SE;
183259698Sdim    TargetLibraryInfo *TLI;
184259698Sdim    DominatorTree *DT;
185296417Sdim    bool PreserveLCSSA;
186259698Sdim
187327952Sdim    using SmallInstructionVector = SmallVector<Instruction *, 16>;
188341825Sdim    using SmallInstructionSet = SmallPtrSet<Instruction *, 16>;
189259698Sdim
190296417Sdim    // Map between induction variable and its increment
191296417Sdim    DenseMap<Instruction *, int64_t> IVToIncMap;
192327952Sdim
193309124Sdim    // For loop with multiple induction variable, remember the one used only to
194309124Sdim    // control the loop.
195309124Sdim    Instruction *LoopControlIV;
196296417Sdim
197296417Sdim    // A chain of isomorphic instructions, identified by a single-use PHI
198259698Sdim    // representing a reduction. Only the last value may be used outside the
199259698Sdim    // loop.
200259698Sdim    struct SimpleLoopReduction {
201327952Sdim      SimpleLoopReduction(Instruction *P, Loop *L) : Instructions(1, P) {
202259698Sdim        assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
203259698Sdim        add(L);
204259698Sdim      }
205259698Sdim
206259698Sdim      bool valid() const {
207259698Sdim        return Valid;
208259698Sdim      }
209259698Sdim
210259698Sdim      Instruction *getPHI() const {
211259698Sdim        assert(Valid && "Using invalid reduction");
212259698Sdim        return Instructions.front();
213259698Sdim      }
214259698Sdim
215259698Sdim      Instruction *getReducedValue() const {
216259698Sdim        assert(Valid && "Using invalid reduction");
217259698Sdim        return Instructions.back();
218259698Sdim      }
219259698Sdim
220259698Sdim      Instruction *get(size_t i) const {
221259698Sdim        assert(Valid && "Using invalid reduction");
222259698Sdim        return Instructions[i+1];
223259698Sdim      }
224259698Sdim
225259698Sdim      Instruction *operator [] (size_t i) const { return get(i); }
226259698Sdim
227259698Sdim      // The size, ignoring the initial PHI.
228259698Sdim      size_t size() const {
229259698Sdim        assert(Valid && "Using invalid reduction");
230259698Sdim        return Instructions.size()-1;
231259698Sdim      }
232259698Sdim
233327952Sdim      using iterator = SmallInstructionVector::iterator;
234327952Sdim      using const_iterator = SmallInstructionVector::const_iterator;
235259698Sdim
236259698Sdim      iterator begin() {
237259698Sdim        assert(Valid && "Using invalid reduction");
238276479Sdim        return std::next(Instructions.begin());
239259698Sdim      }
240259698Sdim
241259698Sdim      const_iterator begin() const {
242259698Sdim        assert(Valid && "Using invalid reduction");
243276479Sdim        return std::next(Instructions.begin());
244259698Sdim      }
245259698Sdim
246259698Sdim      iterator end() { return Instructions.end(); }
247259698Sdim      const_iterator end() const { return Instructions.end(); }
248259698Sdim
249259698Sdim    protected:
250327952Sdim      bool Valid = false;
251259698Sdim      SmallInstructionVector Instructions;
252259698Sdim
253259698Sdim      void add(Loop *L);
254259698Sdim    };
255259698Sdim
256259698Sdim    // The set of all reductions, and state tracking of possible reductions
257259698Sdim    // during loop instruction processing.
258259698Sdim    struct ReductionTracker {
259327952Sdim      using SmallReductionVector = SmallVector<SimpleLoopReduction, 16>;
260259698Sdim
261259698Sdim      // Add a new possible reduction.
262280031Sdim      void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); }
263259698Sdim
264259698Sdim      // Setup to track possible reductions corresponding to the provided
265259698Sdim      // rerolling scale. Only reductions with a number of non-PHI instructions
266259698Sdim      // that is divisible by the scale are considered. Three instructions sets
267259698Sdim      // are filled in:
268259698Sdim      //   - A set of all possible instructions in eligible reductions.
269259698Sdim      //   - A set of all PHIs in eligible reductions
270280031Sdim      //   - A set of all reduced values (last instructions) in eligible
271280031Sdim      //     reductions.
272259698Sdim      void restrictToScale(uint64_t Scale,
273259698Sdim                           SmallInstructionSet &PossibleRedSet,
274259698Sdim                           SmallInstructionSet &PossibleRedPHISet,
275259698Sdim                           SmallInstructionSet &PossibleRedLastSet) {
276259698Sdim        PossibleRedIdx.clear();
277259698Sdim        PossibleRedIter.clear();
278259698Sdim        Reds.clear();
279259698Sdim
280259698Sdim        for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
281259698Sdim          if (PossibleReds[i].size() % Scale == 0) {
282259698Sdim            PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
283259698Sdim            PossibleRedPHISet.insert(PossibleReds[i].getPHI());
284280031Sdim
285259698Sdim            PossibleRedSet.insert(PossibleReds[i].getPHI());
286259698Sdim            PossibleRedIdx[PossibleReds[i].getPHI()] = i;
287280031Sdim            for (Instruction *J : PossibleReds[i]) {
288280031Sdim              PossibleRedSet.insert(J);
289280031Sdim              PossibleRedIdx[J] = i;
290259698Sdim            }
291259698Sdim          }
292259698Sdim      }
293259698Sdim
294259698Sdim      // The functions below are used while processing the loop instructions.
295259698Sdim
296259698Sdim      // Are the two instructions both from reductions, and furthermore, from
297259698Sdim      // the same reduction?
298259698Sdim      bool isPairInSame(Instruction *J1, Instruction *J2) {
299259698Sdim        DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
300259698Sdim        if (J1I != PossibleRedIdx.end()) {
301259698Sdim          DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
302259698Sdim          if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
303259698Sdim            return true;
304259698Sdim        }
305259698Sdim
306259698Sdim        return false;
307259698Sdim      }
308259698Sdim
309259698Sdim      // The two provided instructions, the first from the base iteration, and
310259698Sdim      // the second from iteration i, form a matched pair. If these are part of
311259698Sdim      // a reduction, record that fact.
312259698Sdim      void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
313259698Sdim        if (PossibleRedIdx.count(J1)) {
314259698Sdim          assert(PossibleRedIdx.count(J2) &&
315259698Sdim                 "Recording reduction vs. non-reduction instruction?");
316259698Sdim
317259698Sdim          PossibleRedIter[J1] = 0;
318259698Sdim          PossibleRedIter[J2] = i;
319259698Sdim
320259698Sdim          int Idx = PossibleRedIdx[J1];
321259698Sdim          assert(Idx == PossibleRedIdx[J2] &&
322259698Sdim                 "Recording pair from different reductions?");
323259698Sdim          Reds.insert(Idx);
324259698Sdim        }
325259698Sdim      }
326259698Sdim
327259698Sdim      // The functions below can be called after we've finished processing all
328259698Sdim      // instructions in the loop, and we know which reductions were selected.
329259698Sdim
330259698Sdim      bool validateSelected();
331259698Sdim      void replaceSelected();
332259698Sdim
333259698Sdim    protected:
334259698Sdim      // The vector of all possible reductions (for any scale).
335259698Sdim      SmallReductionVector PossibleReds;
336259698Sdim
337259698Sdim      DenseMap<Instruction *, int> PossibleRedIdx;
338259698Sdim      DenseMap<Instruction *, int> PossibleRedIter;
339259698Sdim      DenseSet<int> Reds;
340259698Sdim    };
341259698Sdim
342288943Sdim    // A DAGRootSet models an induction variable being used in a rerollable
343288943Sdim    // loop. For example,
344288943Sdim    //
345288943Sdim    //   x[i*3+0] = y1
346288943Sdim    //   x[i*3+1] = y2
347288943Sdim    //   x[i*3+2] = y3
348288943Sdim    //
349296417Sdim    //   Base instruction -> i*3
350288943Sdim    //                    +---+----+
351288943Sdim    //                   /    |     \
352288943Sdim    //               ST[y1]  +1     +2  <-- Roots
353288943Sdim    //                        |      |
354288943Sdim    //                      ST[y2] ST[y3]
355288943Sdim    //
356288943Sdim    // There may be multiple DAGRoots, for example:
357288943Sdim    //
358288943Sdim    //   x[i*2+0] = ...   (1)
359288943Sdim    //   x[i*2+1] = ...   (1)
360288943Sdim    //   x[i*2+4] = ...   (2)
361288943Sdim    //   x[i*2+5] = ...   (2)
362288943Sdim    //   x[(i+1234)*2+5678] = ... (3)
363288943Sdim    //   x[(i+1234)*2+5679] = ... (3)
364288943Sdim    //
365288943Sdim    // The loop will be rerolled by adding a new loop induction variable,
366288943Sdim    // one for the Base instruction in each DAGRootSet.
367288943Sdim    //
368288943Sdim    struct DAGRootSet {
369288943Sdim      Instruction *BaseInst;
370288943Sdim      SmallInstructionVector Roots;
371327952Sdim
372288943Sdim      // The instructions between IV and BaseInst (but not including BaseInst).
373288943Sdim      SmallInstructionSet SubsumedInsts;
374288943Sdim    };
375288943Sdim
376288943Sdim    // The set of all DAG roots, and state tracking of all roots
377288943Sdim    // for a particular induction variable.
378288943Sdim    struct DAGRootTracker {
379288943Sdim      DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV,
380288943Sdim                     ScalarEvolution *SE, AliasAnalysis *AA,
381296417Sdim                     TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI,
382296417Sdim                     bool PreserveLCSSA,
383309124Sdim                     DenseMap<Instruction *, int64_t> &IncrMap,
384309124Sdim                     Instruction *LoopCtrlIV)
385296417Sdim          : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI),
386309124Sdim            PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap),
387309124Sdim            LoopControlIV(LoopCtrlIV) {}
388288943Sdim
389288943Sdim      /// Stage 1: Find all the DAG roots for the induction variable.
390288943Sdim      bool findRoots();
391327952Sdim
392288943Sdim      /// Stage 2: Validate if the found roots are valid.
393288943Sdim      bool validate(ReductionTracker &Reductions);
394327952Sdim
395288943Sdim      /// Stage 3: Assuming validate() returned true, perform the
396288943Sdim      /// replacement.
397341825Sdim      /// @param BackedgeTakenCount The backedge-taken count of L.
398341825Sdim      void replace(const SCEV *BackedgeTakenCount);
399288943Sdim
400288943Sdim    protected:
401327952Sdim      using UsesTy = MapVector<Instruction *, BitVector>;
402288943Sdim
403314564Sdim      void findRootsRecursive(Instruction *IVU,
404288943Sdim                              SmallInstructionSet SubsumedInsts);
405288943Sdim      bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts);
406288943Sdim      bool collectPossibleRoots(Instruction *Base,
407288943Sdim                                std::map<int64_t,Instruction*> &Roots);
408314564Sdim      bool validateRootSet(DAGRootSet &DRS);
409288943Sdim
410288943Sdim      bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet);
411288943Sdim      void collectInLoopUserSet(const SmallInstructionVector &Roots,
412288943Sdim                                const SmallInstructionSet &Exclude,
413288943Sdim                                const SmallInstructionSet &Final,
414288943Sdim                                DenseSet<Instruction *> &Users);
415288943Sdim      void collectInLoopUserSet(Instruction *Root,
416288943Sdim                                const SmallInstructionSet &Exclude,
417288943Sdim                                const SmallInstructionSet &Final,
418288943Sdim                                DenseSet<Instruction *> &Users);
419288943Sdim
420288943Sdim      UsesTy::iterator nextInstr(int Val, UsesTy &In,
421288943Sdim                                 const SmallInstructionSet &Exclude,
422288943Sdim                                 UsesTy::iterator *StartI=nullptr);
423288943Sdim      bool isBaseInst(Instruction *I);
424288943Sdim      bool isRootInst(Instruction *I);
425288943Sdim      bool instrDependsOn(Instruction *I,
426288943Sdim                          UsesTy::iterator Start,
427288943Sdim                          UsesTy::iterator End);
428341825Sdim      void replaceIV(DAGRootSet &DRS, const SCEV *Start, const SCEV *IncrExpr);
429288943Sdim
430288943Sdim      LoopReroll *Parent;
431288943Sdim
432288943Sdim      // Members of Parent, replicated here for brevity.
433288943Sdim      Loop *L;
434288943Sdim      ScalarEvolution *SE;
435288943Sdim      AliasAnalysis *AA;
436288943Sdim      TargetLibraryInfo *TLI;
437296417Sdim      DominatorTree *DT;
438296417Sdim      LoopInfo *LI;
439296417Sdim      bool PreserveLCSSA;
440288943Sdim
441288943Sdim      // The loop induction variable.
442288943Sdim      Instruction *IV;
443327952Sdim
444288943Sdim      // Loop step amount.
445296417Sdim      int64_t Inc;
446327952Sdim
447288943Sdim      // Loop reroll count; if Inc == 1, this records the scaling applied
448288943Sdim      // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ;
449288943Sdim      // If Inc is not 1, Scale = Inc.
450288943Sdim      uint64_t Scale;
451327952Sdim
452288943Sdim      // The roots themselves.
453288943Sdim      SmallVector<DAGRootSet,16> RootSets;
454327952Sdim
455288943Sdim      // All increment instructions for IV.
456288943Sdim      SmallInstructionVector LoopIncs;
457327952Sdim
458288943Sdim      // Map of all instructions in the loop (in order) to the iterations
459288943Sdim      // they are used in (or specially, IL_All for instructions
460288943Sdim      // used in the loop increment mechanism).
461288943Sdim      UsesTy Uses;
462327952Sdim
463296417Sdim      // Map between induction variable and its increment
464296417Sdim      DenseMap<Instruction *, int64_t> &IVToIncMap;
465327952Sdim
466309124Sdim      Instruction *LoopControlIV;
467288943Sdim    };
468288943Sdim
469309124Sdim    // Check if it is a compare-like instruction whose user is a branch
470309124Sdim    bool isCompareUsedByBranch(Instruction *I) {
471309124Sdim      auto *TI = I->getParent()->getTerminator();
472309124Sdim      if (!isa<BranchInst>(TI) || !isa<CmpInst>(I))
473309124Sdim        return false;
474309124Sdim      return I->hasOneUse() && TI->getOperand(0) == I;
475309124Sdim    };
476309124Sdim
477309124Sdim    bool isLoopControlIV(Loop *L, Instruction *IV);
478259698Sdim    void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
479259698Sdim    void collectPossibleReductions(Loop *L,
480259698Sdim           ReductionTracker &Reductions);
481341825Sdim    bool reroll(Instruction *IV, Loop *L, BasicBlock *Header,
482341825Sdim                const SCEV *BackedgeTakenCount, ReductionTracker &Reductions);
483259698Sdim  };
484259698Sdim
485327952Sdim} // end anonymous namespace
486327952Sdim
487259698Sdimchar LoopReroll::ID = 0;
488327952Sdim
489259698SdimINITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false)
490309124SdimINITIALIZE_PASS_DEPENDENCY(LoopPass)
491288943SdimINITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
492259698SdimINITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false)
493259698Sdim
494259698SdimPass *llvm::createLoopRerollPass() {
495259698Sdim  return new LoopReroll;
496259698Sdim}
497259698Sdim
498259698Sdim// Returns true if the provided instruction is used outside the given loop.
499259698Sdim// This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
500259698Sdim// non-loop blocks to be outside the loop.
501259698Sdimstatic bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
502288943Sdim  for (User *U : I->users()) {
503276479Sdim    if (!L->contains(cast<Instruction>(U)))
504259698Sdim      return true;
505288943Sdim  }
506259698Sdim  return false;
507259698Sdim}
508259698Sdim
509309124Sdim// Check if an IV is only used to control the loop. There are two cases:
510309124Sdim// 1. It only has one use which is loop increment, and the increment is only
511309124Sdim// used by comparison and the PHI (could has sext with nsw in between), and the
512309124Sdim// comparison is only used by branch.
513309124Sdim// 2. It is used by loop increment and the comparison, the loop increment is
514309124Sdim// only used by the PHI, and the comparison is used only by the branch.
515309124Sdimbool LoopReroll::isLoopControlIV(Loop *L, Instruction *IV) {
516309124Sdim  unsigned IVUses = IV->getNumUses();
517309124Sdim  if (IVUses != 2 && IVUses != 1)
518309124Sdim    return false;
519309124Sdim
520309124Sdim  for (auto *User : IV->users()) {
521309124Sdim    int32_t IncOrCmpUses = User->getNumUses();
522309124Sdim    bool IsCompInst = isCompareUsedByBranch(cast<Instruction>(User));
523309124Sdim
524309124Sdim    // User can only have one or two uses.
525309124Sdim    if (IncOrCmpUses != 2 && IncOrCmpUses != 1)
526309124Sdim      return false;
527309124Sdim
528309124Sdim    // Case 1
529309124Sdim    if (IVUses == 1) {
530309124Sdim      // The only user must be the loop increment.
531309124Sdim      // The loop increment must have two uses.
532309124Sdim      if (IsCompInst || IncOrCmpUses != 2)
533309124Sdim        return false;
534309124Sdim    }
535309124Sdim
536309124Sdim    // Case 2
537309124Sdim    if (IVUses == 2 && IncOrCmpUses != 1)
538309124Sdim      return false;
539309124Sdim
540309124Sdim    // The users of the IV must be a binary operation or a comparison
541309124Sdim    if (auto *BO = dyn_cast<BinaryOperator>(User)) {
542309124Sdim      if (BO->getOpcode() == Instruction::Add) {
543309124Sdim        // Loop Increment
544309124Sdim        // User of Loop Increment should be either PHI or CMP
545309124Sdim        for (auto *UU : User->users()) {
546309124Sdim          if (PHINode *PN = dyn_cast<PHINode>(UU)) {
547309124Sdim            if (PN != IV)
548309124Sdim              return false;
549309124Sdim          }
550309124Sdim          // Must be a CMP or an ext (of a value with nsw) then CMP
551309124Sdim          else {
552309124Sdim            Instruction *UUser = dyn_cast<Instruction>(UU);
553309124Sdim            // Skip SExt if we are extending an nsw value
554309124Sdim            // TODO: Allow ZExt too
555321369Sdim            if (BO->hasNoSignedWrap() && UUser && UUser->hasOneUse() &&
556309124Sdim                isa<SExtInst>(UUser))
557309124Sdim              UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
558309124Sdim            if (!isCompareUsedByBranch(UUser))
559309124Sdim              return false;
560309124Sdim          }
561309124Sdim        }
562309124Sdim      } else
563309124Sdim        return false;
564309124Sdim      // Compare : can only have one use, and must be branch
565309124Sdim    } else if (!IsCompInst)
566309124Sdim      return false;
567309124Sdim  }
568309124Sdim  return true;
569309124Sdim}
570309124Sdim
571259698Sdim// Collect the list of loop induction variables with respect to which it might
572259698Sdim// be possible to reroll the loop.
573259698Sdimvoid LoopReroll::collectPossibleIVs(Loop *L,
574259698Sdim                                    SmallInstructionVector &PossibleIVs) {
575259698Sdim  BasicBlock *Header = L->getHeader();
576259698Sdim  for (BasicBlock::iterator I = Header->begin(),
577259698Sdim       IE = Header->getFirstInsertionPt(); I != IE; ++I) {
578259698Sdim    if (!isa<PHINode>(I))
579259698Sdim      continue;
580309124Sdim    if (!I->getType()->isIntegerTy() && !I->getType()->isPointerTy())
581259698Sdim      continue;
582259698Sdim
583259698Sdim    if (const SCEVAddRecExpr *PHISCEV =
584296417Sdim            dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&*I))) {
585259698Sdim      if (PHISCEV->getLoop() != L)
586259698Sdim        continue;
587259698Sdim      if (!PHISCEV->isAffine())
588259698Sdim        continue;
589341825Sdim      auto IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE));
590309124Sdim      if (IncSCEV) {
591296417Sdim        IVToIncMap[&*I] = IncSCEV->getValue()->getSExtValue();
592341825Sdim        LLVM_DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " << *PHISCEV
593341825Sdim                          << "\n");
594309124Sdim
595309124Sdim        if (isLoopControlIV(L, &*I)) {
596309124Sdim          assert(!LoopControlIV && "Found two loop control only IV");
597309124Sdim          LoopControlIV = &(*I);
598341825Sdim          LLVM_DEBUG(dbgs() << "LRR: Possible loop control only IV: " << *I
599341825Sdim                            << " = " << *PHISCEV << "\n");
600309124Sdim        } else
601309124Sdim          PossibleIVs.push_back(&*I);
602259698Sdim      }
603259698Sdim    }
604259698Sdim  }
605259698Sdim}
606259698Sdim
607259698Sdim// Add the remainder of the reduction-variable chain to the instruction vector
608259698Sdim// (the initial PHINode has already been added). If successful, the object is
609259698Sdim// marked as valid.
610259698Sdimvoid LoopReroll::SimpleLoopReduction::add(Loop *L) {
611259698Sdim  assert(!Valid && "Cannot add to an already-valid chain");
612259698Sdim
613259698Sdim  // The reduction variable must be a chain of single-use instructions
614259698Sdim  // (including the PHI), except for the last value (which is used by the PHI
615259698Sdim  // and also outside the loop).
616259698Sdim  Instruction *C = Instructions.front();
617288943Sdim  if (C->user_empty())
618288943Sdim    return;
619259698Sdim
620259698Sdim  do {
621276479Sdim    C = cast<Instruction>(*C->user_begin());
622259698Sdim    if (C->hasOneUse()) {
623259698Sdim      if (!C->isBinaryOp())
624259698Sdim        return;
625259698Sdim
626259698Sdim      if (!(isa<PHINode>(Instructions.back()) ||
627259698Sdim            C->isSameOperationAs(Instructions.back())))
628259698Sdim        return;
629259698Sdim
630259698Sdim      Instructions.push_back(C);
631259698Sdim    }
632259698Sdim  } while (C->hasOneUse());
633259698Sdim
634259698Sdim  if (Instructions.size() < 2 ||
635259698Sdim      !C->isSameOperationAs(Instructions.back()) ||
636276479Sdim      C->use_empty())
637259698Sdim    return;
638259698Sdim
639259698Sdim  // C is now the (potential) last instruction in the reduction chain.
640288943Sdim  for (User *U : C->users()) {
641259698Sdim    // The only in-loop user can be the initial PHI.
642276479Sdim    if (L->contains(cast<Instruction>(U)))
643276479Sdim      if (cast<Instruction>(U) != Instructions.front())
644259698Sdim        return;
645288943Sdim  }
646259698Sdim
647259698Sdim  Instructions.push_back(C);
648259698Sdim  Valid = true;
649259698Sdim}
650259698Sdim
651259698Sdim// Collect the vector of possible reduction variables.
652259698Sdimvoid LoopReroll::collectPossibleReductions(Loop *L,
653259698Sdim  ReductionTracker &Reductions) {
654259698Sdim  BasicBlock *Header = L->getHeader();
655259698Sdim  for (BasicBlock::iterator I = Header->begin(),
656259698Sdim       IE = Header->getFirstInsertionPt(); I != IE; ++I) {
657259698Sdim    if (!isa<PHINode>(I))
658259698Sdim      continue;
659259698Sdim    if (!I->getType()->isSingleValueType())
660259698Sdim      continue;
661259698Sdim
662296417Sdim    SimpleLoopReduction SLR(&*I, L);
663259698Sdim    if (!SLR.valid())
664259698Sdim      continue;
665259698Sdim
666341825Sdim    LLVM_DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with "
667341825Sdim                      << SLR.size() << " chained instructions)\n");
668259698Sdim    Reductions.addSLR(SLR);
669259698Sdim  }
670259698Sdim}
671259698Sdim
672259698Sdim// Collect the set of all users of the provided root instruction. This set of
673259698Sdim// users contains not only the direct users of the root instruction, but also
674259698Sdim// all users of those users, and so on. There are two exceptions:
675259698Sdim//
676259698Sdim//   1. Instructions in the set of excluded instructions are never added to the
677259698Sdim//   use set (even if they are users). This is used, for example, to exclude
678259698Sdim//   including root increments in the use set of the primary IV.
679259698Sdim//
680259698Sdim//   2. Instructions in the set of final instructions are added to the use set
681259698Sdim//   if they are users, but their users are not added. This is used, for
682259698Sdim//   example, to prevent a reduction update from forcing all later reduction
683259698Sdim//   updates into the use set.
684288943Sdimvoid LoopReroll::DAGRootTracker::collectInLoopUserSet(
685259698Sdim  Instruction *Root, const SmallInstructionSet &Exclude,
686259698Sdim  const SmallInstructionSet &Final,
687259698Sdim  DenseSet<Instruction *> &Users) {
688259698Sdim  SmallInstructionVector Queue(1, Root);
689259698Sdim  while (!Queue.empty()) {
690259698Sdim    Instruction *I = Queue.pop_back_val();
691259698Sdim    if (!Users.insert(I).second)
692259698Sdim      continue;
693259698Sdim
694259698Sdim    if (!Final.count(I))
695276479Sdim      for (Use &U : I->uses()) {
696276479Sdim        Instruction *User = cast<Instruction>(U.getUser());
697259698Sdim        if (PHINode *PN = dyn_cast<PHINode>(User)) {
698259698Sdim          // Ignore "wrap-around" uses to PHIs of this loop's header.
699276479Sdim          if (PN->getIncomingBlock(U) == L->getHeader())
700259698Sdim            continue;
701259698Sdim        }
702280031Sdim
703259698Sdim        if (L->contains(User) && !Exclude.count(User)) {
704259698Sdim          Queue.push_back(User);
705259698Sdim        }
706259698Sdim      }
707259698Sdim
708259698Sdim    // We also want to collect single-user "feeder" values.
709259698Sdim    for (User::op_iterator OI = I->op_begin(),
710259698Sdim         OIE = I->op_end(); OI != OIE; ++OI) {
711259698Sdim      if (Instruction *Op = dyn_cast<Instruction>(*OI))
712259698Sdim        if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
713259698Sdim            !Final.count(Op))
714259698Sdim          Queue.push_back(Op);
715259698Sdim    }
716259698Sdim  }
717259698Sdim}
718259698Sdim
719259698Sdim// Collect all of the users of all of the provided root instructions (combined
720259698Sdim// into a single set).
721288943Sdimvoid LoopReroll::DAGRootTracker::collectInLoopUserSet(
722259698Sdim  const SmallInstructionVector &Roots,
723259698Sdim  const SmallInstructionSet &Exclude,
724259698Sdim  const SmallInstructionSet &Final,
725259698Sdim  DenseSet<Instruction *> &Users) {
726309124Sdim  for (Instruction *Root : Roots)
727309124Sdim    collectInLoopUserSet(Root, Exclude, Final, Users);
728259698Sdim}
729259698Sdim
730314564Sdimstatic bool isUnorderedLoadStore(Instruction *I) {
731259698Sdim  if (LoadInst *LI = dyn_cast<LoadInst>(I))
732314564Sdim    return LI->isUnordered();
733259698Sdim  if (StoreInst *SI = dyn_cast<StoreInst>(I))
734314564Sdim    return SI->isUnordered();
735259698Sdim  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
736259698Sdim    return !MI->isVolatile();
737259698Sdim  return false;
738259698Sdim}
739259698Sdim
740288943Sdim/// Return true if IVU is a "simple" arithmetic operation.
741288943Sdim/// This is used for narrowing the search space for DAGRoots; only arithmetic
742288943Sdim/// and GEPs can be part of a DAGRoot.
743288943Sdimstatic bool isSimpleArithmeticOp(User *IVU) {
744288943Sdim  if (Instruction *I = dyn_cast<Instruction>(IVU)) {
745288943Sdim    switch (I->getOpcode()) {
746288943Sdim    default: return false;
747288943Sdim    case Instruction::Add:
748288943Sdim    case Instruction::Sub:
749288943Sdim    case Instruction::Mul:
750288943Sdim    case Instruction::Shl:
751288943Sdim    case Instruction::AShr:
752288943Sdim    case Instruction::LShr:
753288943Sdim    case Instruction::GetElementPtr:
754288943Sdim    case Instruction::Trunc:
755288943Sdim    case Instruction::ZExt:
756288943Sdim    case Instruction::SExt:
757288943Sdim      return true;
758288943Sdim    }
759288943Sdim  }
760288943Sdim  return false;
761288943Sdim}
762288943Sdim
763288943Sdimstatic bool isLoopIncrement(User *U, Instruction *IV) {
764288943Sdim  BinaryOperator *BO = dyn_cast<BinaryOperator>(U);
765309124Sdim
766309124Sdim  if ((BO && BO->getOpcode() != Instruction::Add) ||
767309124Sdim      (!BO && !isa<GetElementPtrInst>(U)))
768259698Sdim    return false;
769259698Sdim
770309124Sdim  for (auto *UU : U->users()) {
771288943Sdim    PHINode *PN = dyn_cast<PHINode>(UU);
772288943Sdim    if (PN && PN == IV)
773288943Sdim      return true;
774259698Sdim  }
775288943Sdim  return false;
776288943Sdim}
777259698Sdim
778288943Sdimbool LoopReroll::DAGRootTracker::
779288943SdimcollectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) {
780288943Sdim  SmallInstructionVector BaseUsers;
781288943Sdim
782288943Sdim  for (auto *I : Base->users()) {
783288943Sdim    ConstantInt *CI = nullptr;
784288943Sdim
785288943Sdim    if (isLoopIncrement(I, IV)) {
786288943Sdim      LoopIncs.push_back(cast<Instruction>(I));
787288943Sdim      continue;
788288943Sdim    }
789288943Sdim
790288943Sdim    // The root nodes must be either GEPs, ORs or ADDs.
791288943Sdim    if (auto *BO = dyn_cast<BinaryOperator>(I)) {
792288943Sdim      if (BO->getOpcode() == Instruction::Add ||
793288943Sdim          BO->getOpcode() == Instruction::Or)
794288943Sdim        CI = dyn_cast<ConstantInt>(BO->getOperand(1));
795288943Sdim    } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
796288943Sdim      Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1);
797288943Sdim      CI = dyn_cast<ConstantInt>(LastOperand);
798288943Sdim    }
799288943Sdim
800288943Sdim    if (!CI) {
801288943Sdim      if (Instruction *II = dyn_cast<Instruction>(I)) {
802288943Sdim        BaseUsers.push_back(II);
803288943Sdim        continue;
804288943Sdim      } else {
805341825Sdim        LLVM_DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I
806341825Sdim                          << "\n");
807288943Sdim        return false;
808288943Sdim      }
809288943Sdim    }
810288943Sdim
811296417Sdim    int64_t V = std::abs(CI->getValue().getSExtValue());
812288943Sdim    if (Roots.find(V) != Roots.end())
813288943Sdim      // No duplicates, please.
814288943Sdim      return false;
815288943Sdim
816288943Sdim    Roots[V] = cast<Instruction>(I);
817288943Sdim  }
818288943Sdim
819314564Sdim  // Make sure we have at least two roots.
820314564Sdim  if (Roots.empty() || (Roots.size() == 1 && BaseUsers.empty()))
821259698Sdim    return false;
822259698Sdim
823288943Sdim  // If we found non-loop-inc, non-root users of Base, assume they are
824288943Sdim  // for the zeroth root index. This is because "add %a, 0" gets optimized
825288943Sdim  // away.
826288943Sdim  if (BaseUsers.size()) {
827288943Sdim    if (Roots.find(0) != Roots.end()) {
828341825Sdim      LLVM_DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n");
829259698Sdim      return false;
830288943Sdim    }
831288943Sdim    Roots[0] = Base;
832288943Sdim  }
833288943Sdim
834288943Sdim  // Calculate the number of users of the base, or lowest indexed, iteration.
835288943Sdim  unsigned NumBaseUses = BaseUsers.size();
836288943Sdim  if (NumBaseUses == 0)
837288943Sdim    NumBaseUses = Roots.begin()->second->getNumUses();
838296417Sdim
839288943Sdim  // Check that every node has the same number of users.
840288943Sdim  for (auto &KV : Roots) {
841288943Sdim    if (KV.first == 0)
842288943Sdim      continue;
843321369Sdim    if (!KV.second->hasNUses(NumBaseUses)) {
844341825Sdim      LLVM_DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: "
845341825Sdim                        << "#Base=" << NumBaseUses
846341825Sdim                        << ", #Root=" << KV.second->getNumUses() << "\n");
847259698Sdim      return false;
848288943Sdim    }
849288943Sdim  }
850259698Sdim
851296417Sdim  return true;
852288943Sdim}
853288943Sdim
854314564Sdimvoid LoopReroll::DAGRootTracker::
855288943SdimfindRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) {
856288943Sdim  // Does the user look like it could be part of a root set?
857288943Sdim  // All its users must be simple arithmetic ops.
858321369Sdim  if (I->hasNUsesOrMore(IL_MaxRerollIterations + 1))
859314564Sdim    return;
860288943Sdim
861314564Sdim  if (I != IV && findRootsBase(I, SubsumedInsts))
862314564Sdim    return;
863288943Sdim
864288943Sdim  SubsumedInsts.insert(I);
865288943Sdim
866288943Sdim  for (User *V : I->users()) {
867314564Sdim    Instruction *I = cast<Instruction>(V);
868314564Sdim    if (is_contained(LoopIncs, I))
869288943Sdim      continue;
870288943Sdim
871314564Sdim    if (!isSimpleArithmeticOp(I))
872314564Sdim      continue;
873314564Sdim
874314564Sdim    // The recursive call makes a copy of SubsumedInsts.
875314564Sdim    findRootsRecursive(I, SubsumedInsts);
876288943Sdim  }
877314564Sdim}
878314564Sdim
879314564Sdimbool LoopReroll::DAGRootTracker::validateRootSet(DAGRootSet &DRS) {
880314564Sdim  if (DRS.Roots.empty())
881314564Sdim    return false;
882314564Sdim
883314564Sdim  // Consider a DAGRootSet with N-1 roots (so N different values including
884314564Sdim  //   BaseInst).
885314564Sdim  // Define d = Roots[0] - BaseInst, which should be the same as
886314564Sdim  //   Roots[I] - Roots[I-1] for all I in [1..N).
887314564Sdim  // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the
888314564Sdim  //   loop iteration J.
889314564Sdim  //
890314564Sdim  // Now, For the loop iterations to be consecutive:
891314564Sdim  //   D = d * N
892314564Sdim  const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
893314564Sdim  if (!ADR)
894314564Sdim    return false;
895353358Sdim
896353358Sdim  // Check that the first root is evenly spaced.
897314564Sdim  unsigned N = DRS.Roots.size() + 1;
898314564Sdim  const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), ADR);
899314564Sdim  const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N);
900314564Sdim  if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV))
901314564Sdim    return false;
902314564Sdim
903353358Sdim  // Check that the remainling roots are evenly spaced.
904353358Sdim  for (unsigned i = 1; i < N - 1; ++i) {
905353358Sdim    const SCEV *NewStepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[i]),
906353358Sdim                                               SE->getSCEV(DRS.Roots[i-1]));
907353358Sdim    if (NewStepSCEV != StepSCEV)
908353358Sdim      return false;
909353358Sdim  }
910353358Sdim
911288943Sdim  return true;
912288943Sdim}
913288943Sdim
914288943Sdimbool LoopReroll::DAGRootTracker::
915288943SdimfindRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) {
916314564Sdim  // The base of a RootSet must be an AddRec, so it can be erased.
917314564Sdim  const auto *IVU_ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IVU));
918314564Sdim  if (!IVU_ADR || IVU_ADR->getLoop() != L)
919259698Sdim    return false;
920259698Sdim
921288943Sdim  std::map<int64_t, Instruction*> V;
922288943Sdim  if (!collectPossibleRoots(IVU, V))
923288943Sdim    return false;
924288943Sdim
925296417Sdim  // If we didn't get a root for index zero, then IVU must be
926288943Sdim  // subsumed.
927288943Sdim  if (V.find(0) == V.end())
928288943Sdim    SubsumedInsts.insert(IVU);
929288943Sdim
930288943Sdim  // Partition the vector into monotonically increasing indexes.
931288943Sdim  DAGRootSet DRS;
932288943Sdim  DRS.BaseInst = nullptr;
933288943Sdim
934314564Sdim  SmallVector<DAGRootSet, 16> PotentialRootSets;
935314564Sdim
936288943Sdim  for (auto &KV : V) {
937288943Sdim    if (!DRS.BaseInst) {
938288943Sdim      DRS.BaseInst = KV.second;
939288943Sdim      DRS.SubsumedInsts = SubsumedInsts;
940288943Sdim    } else if (DRS.Roots.empty()) {
941288943Sdim      DRS.Roots.push_back(KV.second);
942288943Sdim    } else if (V.find(KV.first - 1) != V.end()) {
943288943Sdim      DRS.Roots.push_back(KV.second);
944288943Sdim    } else {
945288943Sdim      // Linear sequence terminated.
946314564Sdim      if (!validateRootSet(DRS))
947314564Sdim        return false;
948314564Sdim
949314564Sdim      // Construct a new DAGRootSet with the next sequence.
950314564Sdim      PotentialRootSets.push_back(DRS);
951288943Sdim      DRS.BaseInst = KV.second;
952288943Sdim      DRS.Roots.clear();
953288943Sdim    }
954288943Sdim  }
955288943Sdim
956314564Sdim  if (!validateRootSet(DRS))
957314564Sdim    return false;
958314564Sdim
959314564Sdim  PotentialRootSets.push_back(DRS);
960314564Sdim
961314564Sdim  RootSets.append(PotentialRootSets.begin(), PotentialRootSets.end());
962314564Sdim
963259698Sdim  return true;
964259698Sdim}
965259698Sdim
966288943Sdimbool LoopReroll::DAGRootTracker::findRoots() {
967296417Sdim  Inc = IVToIncMap[IV];
968259698Sdim
969288943Sdim  assert(RootSets.empty() && "Unclean state!");
970296417Sdim  if (std::abs(Inc) == 1) {
971288943Sdim    for (auto *IVU : IV->users()) {
972288943Sdim      if (isLoopIncrement(IVU, IV))
973288943Sdim        LoopIncs.push_back(cast<Instruction>(IVU));
974259698Sdim    }
975314564Sdim    findRootsRecursive(IV, SmallInstructionSet());
976288943Sdim    LoopIncs.push_back(IV);
977288943Sdim  } else {
978288943Sdim    if (!findRootsBase(IV, SmallInstructionSet()))
979288943Sdim      return false;
980259698Sdim  }
981259698Sdim
982288943Sdim  // Ensure all sets have the same size.
983288943Sdim  if (RootSets.empty()) {
984341825Sdim    LLVM_DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n");
985259698Sdim    return false;
986288943Sdim  }
987288943Sdim  for (auto &V : RootSets) {
988288943Sdim    if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) {
989341825Sdim      LLVM_DEBUG(
990341825Sdim          dbgs()
991341825Sdim          << "LRR: Aborting because not all root sets have the same size\n");
992288943Sdim      return false;
993259698Sdim    }
994288943Sdim  }
995259698Sdim
996288943Sdim  Scale = RootSets[0].Roots.size() + 1;
997288943Sdim
998288943Sdim  if (Scale > IL_MaxRerollIterations) {
999341825Sdim    LLVM_DEBUG(dbgs() << "LRR: Aborting - too many iterations found. "
1000341825Sdim                      << "#Found=" << Scale
1001341825Sdim                      << ", #Max=" << IL_MaxRerollIterations << "\n");
1002259698Sdim    return false;
1003288943Sdim  }
1004259698Sdim
1005341825Sdim  LLVM_DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale
1006341825Sdim                    << "\n");
1007288943Sdim
1008259698Sdim  return true;
1009259698Sdim}
1010259698Sdim
1011288943Sdimbool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) {
1012288943Sdim  // Populate the MapVector with all instructions in the block, in order first,
1013288943Sdim  // so we can iterate over the contents later in perfect order.
1014288943Sdim  for (auto &I : *L->getHeader()) {
1015288943Sdim    Uses[&I].resize(IL_End);
1016288943Sdim  }
1017288943Sdim
1018288943Sdim  SmallInstructionSet Exclude;
1019288943Sdim  for (auto &DRS : RootSets) {
1020288943Sdim    Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
1021288943Sdim    Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
1022288943Sdim    Exclude.insert(DRS.BaseInst);
1023288943Sdim  }
1024288943Sdim  Exclude.insert(LoopIncs.begin(), LoopIncs.end());
1025288943Sdim
1026288943Sdim  for (auto &DRS : RootSets) {
1027288943Sdim    DenseSet<Instruction*> VBase;
1028288943Sdim    collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase);
1029288943Sdim    for (auto *I : VBase) {
1030288943Sdim      Uses[I].set(0);
1031288943Sdim    }
1032288943Sdim
1033288943Sdim    unsigned Idx = 1;
1034288943Sdim    for (auto *Root : DRS.Roots) {
1035288943Sdim      DenseSet<Instruction*> V;
1036288943Sdim      collectInLoopUserSet(Root, Exclude, PossibleRedSet, V);
1037288943Sdim
1038288943Sdim      // While we're here, check the use sets are the same size.
1039288943Sdim      if (V.size() != VBase.size()) {
1040341825Sdim        LLVM_DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n");
1041259698Sdim        return false;
1042259698Sdim      }
1043259698Sdim
1044288943Sdim      for (auto *I : V) {
1045288943Sdim        Uses[I].set(Idx);
1046259698Sdim      }
1047288943Sdim      ++Idx;
1048288943Sdim    }
1049259698Sdim
1050288943Sdim    // Make sure our subsumed instructions are remembered too.
1051288943Sdim    for (auto *I : DRS.SubsumedInsts) {
1052288943Sdim      Uses[I].set(IL_All);
1053259698Sdim    }
1054259698Sdim  }
1055259698Sdim
1056288943Sdim  // Make sure the loop increments are also accounted for.
1057259698Sdim
1058288943Sdim  Exclude.clear();
1059288943Sdim  for (auto &DRS : RootSets) {
1060288943Sdim    Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
1061288943Sdim    Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
1062288943Sdim    Exclude.insert(DRS.BaseInst);
1063288943Sdim  }
1064259698Sdim
1065288943Sdim  DenseSet<Instruction*> V;
1066288943Sdim  collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V);
1067288943Sdim  for (auto *I : V) {
1068288943Sdim    Uses[I].set(IL_All);
1069259698Sdim  }
1070259698Sdim
1071288943Sdim  return true;
1072288943Sdim}
1073259698Sdim
1074288943Sdim/// Get the next instruction in "In" that is a member of set Val.
1075288943Sdim/// Start searching from StartI, and do not return anything in Exclude.
1076288943Sdim/// If StartI is not given, start from In.begin().
1077288943SdimLoopReroll::DAGRootTracker::UsesTy::iterator
1078288943SdimLoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In,
1079288943Sdim                                      const SmallInstructionSet &Exclude,
1080288943Sdim                                      UsesTy::iterator *StartI) {
1081288943Sdim  UsesTy::iterator I = StartI ? *StartI : In.begin();
1082288943Sdim  while (I != In.end() && (I->second.test(Val) == 0 ||
1083288943Sdim                           Exclude.count(I->first) != 0))
1084288943Sdim    ++I;
1085288943Sdim  return I;
1086288943Sdim}
1087259698Sdim
1088288943Sdimbool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) {
1089288943Sdim  for (auto &DRS : RootSets) {
1090288943Sdim    if (DRS.BaseInst == I)
1091288943Sdim      return true;
1092288943Sdim  }
1093288943Sdim  return false;
1094288943Sdim}
1095259698Sdim
1096288943Sdimbool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) {
1097288943Sdim  for (auto &DRS : RootSets) {
1098314564Sdim    if (is_contained(DRS.Roots, I))
1099288943Sdim      return true;
1100288943Sdim  }
1101288943Sdim  return false;
1102288943Sdim}
1103259698Sdim
1104288943Sdim/// Return true if instruction I depends on any instruction between
1105288943Sdim/// Start and End.
1106288943Sdimbool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I,
1107288943Sdim                                                UsesTy::iterator Start,
1108288943Sdim                                                UsesTy::iterator End) {
1109288943Sdim  for (auto *U : I->users()) {
1110288943Sdim    for (auto It = Start; It != End; ++It)
1111288943Sdim      if (U == It->first)
1112288943Sdim        return true;
1113288943Sdim  }
1114288943Sdim  return false;
1115288943Sdim}
1116259698Sdim
1117296417Sdimstatic bool isIgnorableInst(const Instruction *I) {
1118296417Sdim  if (isa<DbgInfoIntrinsic>(I))
1119296417Sdim    return true;
1120296417Sdim  const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I);
1121296417Sdim  if (!II)
1122296417Sdim    return false;
1123296417Sdim  switch (II->getIntrinsicID()) {
1124296417Sdim    default:
1125296417Sdim      return false;
1126327952Sdim    case Intrinsic::annotation:
1127296417Sdim    case Intrinsic::ptr_annotation:
1128296417Sdim    case Intrinsic::var_annotation:
1129296417Sdim    // TODO: the following intrinsics may also be whitelisted:
1130296417Sdim    //   lifetime_start, lifetime_end, invariant_start, invariant_end
1131296417Sdim      return true;
1132296417Sdim  }
1133296417Sdim  return false;
1134296417Sdim}
1135296417Sdim
1136288943Sdimbool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
1137259698Sdim  // We now need to check for equivalence of the use graph of each root with
1138259698Sdim  // that of the primary induction variable (excluding the roots). Our goal
1139259698Sdim  // here is not to solve the full graph isomorphism problem, but rather to
1140259698Sdim  // catch common cases without a lot of work. As a result, we will assume
1141259698Sdim  // that the relative order of the instructions in each unrolled iteration
1142259698Sdim  // is the same (although we will not make an assumption about how the
1143259698Sdim  // different iterations are intermixed). Note that while the order must be
1144259698Sdim  // the same, the instructions may not be in the same basic block.
1145259698Sdim
1146288943Sdim  // An array of just the possible reductions for this scale factor. When we
1147288943Sdim  // collect the set of all users of some root instructions, these reduction
1148288943Sdim  // instructions are treated as 'final' (their uses are not considered).
1149288943Sdim  // This is important because we don't want the root use set to search down
1150288943Sdim  // the reduction chain.
1151288943Sdim  SmallInstructionSet PossibleRedSet;
1152288943Sdim  SmallInstructionSet PossibleRedLastSet;
1153288943Sdim  SmallInstructionSet PossibleRedPHISet;
1154288943Sdim  Reductions.restrictToScale(Scale, PossibleRedSet,
1155288943Sdim                             PossibleRedPHISet, PossibleRedLastSet);
1156259698Sdim
1157288943Sdim  // Populate "Uses" with where each instruction is used.
1158288943Sdim  if (!collectUsedInstructions(PossibleRedSet))
1159288943Sdim    return false;
1160259698Sdim
1161288943Sdim  // Make sure we mark the reduction PHIs as used in all iterations.
1162288943Sdim  for (auto *I : PossibleRedPHISet) {
1163288943Sdim    Uses[I].set(IL_All);
1164288943Sdim  }
1165259698Sdim
1166309124Sdim  // Make sure we mark loop-control-only PHIs as used in all iterations. See
1167309124Sdim  // comment above LoopReroll::isLoopControlIV for more information.
1168309124Sdim  BasicBlock *Header = L->getHeader();
1169309124Sdim  if (LoopControlIV && LoopControlIV != IV) {
1170309124Sdim    for (auto *U : LoopControlIV->users()) {
1171309124Sdim      Instruction *IVUser = dyn_cast<Instruction>(U);
1172309124Sdim      // IVUser could be loop increment or compare
1173309124Sdim      Uses[IVUser].set(IL_All);
1174309124Sdim      for (auto *UU : IVUser->users()) {
1175309124Sdim        Instruction *UUser = dyn_cast<Instruction>(UU);
1176309124Sdim        // UUser could be compare, PHI or branch
1177309124Sdim        Uses[UUser].set(IL_All);
1178309124Sdim        // Skip SExt
1179309124Sdim        if (isa<SExtInst>(UUser)) {
1180309124Sdim          UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
1181309124Sdim          Uses[UUser].set(IL_All);
1182309124Sdim        }
1183309124Sdim        // Is UUser a compare instruction?
1184309124Sdim        if (UU->hasOneUse()) {
1185309124Sdim          Instruction *BI = dyn_cast<BranchInst>(*UUser->user_begin());
1186309124Sdim          if (BI == cast<BranchInst>(Header->getTerminator()))
1187309124Sdim            Uses[BI].set(IL_All);
1188309124Sdim        }
1189309124Sdim      }
1190309124Sdim    }
1191309124Sdim  }
1192309124Sdim
1193288943Sdim  // Make sure all instructions in the loop are in one and only one
1194288943Sdim  // set.
1195288943Sdim  for (auto &KV : Uses) {
1196296417Sdim    if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) {
1197341825Sdim      LLVM_DEBUG(
1198341825Sdim          dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: "
1199341825Sdim                 << *KV.first << " (#uses=" << KV.second.count() << ")\n");
1200288943Sdim      return false;
1201288943Sdim    }
1202288943Sdim  }
1203259698Sdim
1204341825Sdim  LLVM_DEBUG(for (auto &KV
1205341825Sdim                  : Uses) {
1206341825Sdim    dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n";
1207341825Sdim  });
1208259698Sdim
1209288943Sdim  for (unsigned Iter = 1; Iter < Scale; ++Iter) {
1210259698Sdim    // In addition to regular aliasing information, we need to look for
1211259698Sdim    // instructions from later (future) iterations that have side effects
1212259698Sdim    // preventing us from reordering them past other instructions with side
1213259698Sdim    // effects.
1214259698Sdim    bool FutureSideEffects = false;
1215259698Sdim    AliasSetTracker AST(*AA);
1216259698Sdim    // The map between instructions in f(%iv.(i+1)) and f(%iv).
1217259698Sdim    DenseMap<Value *, Value *> BaseMap;
1218259698Sdim
1219288943Sdim    // Compare iteration Iter to the base.
1220288943Sdim    SmallInstructionSet Visited;
1221288943Sdim    auto BaseIt = nextInstr(0, Uses, Visited);
1222288943Sdim    auto RootIt = nextInstr(Iter, Uses, Visited);
1223288943Sdim    auto LastRootIt = Uses.begin();
1224259698Sdim
1225288943Sdim    while (BaseIt != Uses.end() && RootIt != Uses.end()) {
1226288943Sdim      Instruction *BaseInst = BaseIt->first;
1227288943Sdim      Instruction *RootInst = RootIt->first;
1228259698Sdim
1229288943Sdim      // Skip over the IV or root instructions; only match their users.
1230288943Sdim      bool Continue = false;
1231288943Sdim      if (isBaseInst(BaseInst)) {
1232288943Sdim        Visited.insert(BaseInst);
1233288943Sdim        BaseIt = nextInstr(0, Uses, Visited);
1234288943Sdim        Continue = true;
1235288943Sdim      }
1236288943Sdim      if (isRootInst(RootInst)) {
1237288943Sdim        LastRootIt = RootIt;
1238288943Sdim        Visited.insert(RootInst);
1239288943Sdim        RootIt = nextInstr(Iter, Uses, Visited);
1240288943Sdim        Continue = true;
1241288943Sdim      }
1242288943Sdim      if (Continue) continue;
1243288943Sdim
1244288943Sdim      if (!BaseInst->isSameOperationAs(RootInst)) {
1245288943Sdim        // Last chance saloon. We don't try and solve the full isomorphism
1246288943Sdim        // problem, but try and at least catch the case where two instructions
1247288943Sdim        // *of different types* are round the wrong way. We won't be able to
1248288943Sdim        // efficiently tell, given two ADD instructions, which way around we
1249288943Sdim        // should match them, but given an ADD and a SUB, we can at least infer
1250288943Sdim        // which one is which.
1251288943Sdim        //
1252288943Sdim        // This should allow us to deal with a greater subset of the isomorphism
1253288943Sdim        // problem. It does however change a linear algorithm into a quadratic
1254288943Sdim        // one, so limit the number of probes we do.
1255288943Sdim        auto TryIt = RootIt;
1256288943Sdim        unsigned N = NumToleratedFailedMatches;
1257288943Sdim        while (TryIt != Uses.end() &&
1258288943Sdim               !BaseInst->isSameOperationAs(TryIt->first) &&
1259288943Sdim               N--) {
1260288943Sdim          ++TryIt;
1261288943Sdim          TryIt = nextInstr(Iter, Uses, Visited, &TryIt);
1262259698Sdim        }
1263259698Sdim
1264288943Sdim        if (TryIt == Uses.end() || TryIt == RootIt ||
1265288943Sdim            instrDependsOn(TryIt->first, RootIt, TryIt)) {
1266341825Sdim          LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
1267341825Sdim                            << *BaseInst << " vs. " << *RootInst << "\n");
1268288943Sdim          return false;
1269288943Sdim        }
1270296417Sdim
1271288943Sdim        RootIt = TryIt;
1272288943Sdim        RootInst = TryIt->first;
1273259698Sdim      }
1274259698Sdim
1275288943Sdim      // All instructions between the last root and this root
1276296417Sdim      // may belong to some other iteration. If they belong to a
1277288943Sdim      // future iteration, then they're dangerous to alias with.
1278296417Sdim      //
1279288943Sdim      // Note that because we allow a limited amount of flexibility in the order
1280288943Sdim      // that we visit nodes, LastRootIt might be *before* RootIt, in which
1281288943Sdim      // case we've already checked this set of instructions so we shouldn't
1282288943Sdim      // do anything.
1283288943Sdim      for (; LastRootIt < RootIt; ++LastRootIt) {
1284288943Sdim        Instruction *I = LastRootIt->first;
1285288943Sdim        if (LastRootIt->second.find_first() < (int)Iter)
1286288943Sdim          continue;
1287288943Sdim        if (I->mayWriteToMemory())
1288288943Sdim          AST.add(I);
1289288943Sdim        // Note: This is specifically guarded by a check on isa<PHINode>,
1290288943Sdim        // which while a valid (somewhat arbitrary) micro-optimization, is
1291288943Sdim        // needed because otherwise isSafeToSpeculativelyExecute returns
1292288943Sdim        // false on PHI nodes.
1293314564Sdim        if (!isa<PHINode>(I) && !isUnorderedLoadStore(I) &&
1294288943Sdim            !isSafeToSpeculativelyExecute(I))
1295288943Sdim          // Intervening instructions cause side effects.
1296288943Sdim          FutureSideEffects = true;
1297259698Sdim      }
1298259698Sdim
1299259698Sdim      // Make sure that this instruction, which is in the use set of this
1300259698Sdim      // root instruction, does not also belong to the base set or the set of
1301288943Sdim      // some other root instruction.
1302288943Sdim      if (RootIt->second.count() > 1) {
1303341825Sdim        LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1304341825Sdim                          << " vs. " << *RootInst << " (prev. case overlap)\n");
1305288943Sdim        return false;
1306259698Sdim      }
1307259698Sdim
1308259698Sdim      // Make sure that we don't alias with any instruction in the alias set
1309259698Sdim      // tracker. If we do, then we depend on a future iteration, and we
1310259698Sdim      // can't reroll.
1311288943Sdim      if (RootInst->mayReadFromMemory())
1312288943Sdim        for (auto &K : AST) {
1313288943Sdim          if (K.aliasesUnknownInst(RootInst, *AA)) {
1314341825Sdim            LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
1315341825Sdim                              << *BaseInst << " vs. " << *RootInst
1316341825Sdim                              << " (depends on future store)\n");
1317288943Sdim            return false;
1318259698Sdim          }
1319259698Sdim        }
1320259698Sdim
1321259698Sdim      // If we've past an instruction from a future iteration that may have
1322259698Sdim      // side effects, and this instruction might also, then we can't reorder
1323259698Sdim      // them, and this matching fails. As an exception, we allow the alias
1324314564Sdim      // set tracker to handle regular (unordered) load/store dependencies.
1325314564Sdim      if (FutureSideEffects && ((!isUnorderedLoadStore(BaseInst) &&
1326288943Sdim                                 !isSafeToSpeculativelyExecute(BaseInst)) ||
1327314564Sdim                                (!isUnorderedLoadStore(RootInst) &&
1328288943Sdim                                 !isSafeToSpeculativelyExecute(RootInst)))) {
1329341825Sdim        LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1330341825Sdim                          << " vs. " << *RootInst
1331341825Sdim                          << " (side effects prevent reordering)\n");
1332288943Sdim        return false;
1333259698Sdim      }
1334259698Sdim
1335259698Sdim      // For instructions that are part of a reduction, if the operation is
1336259698Sdim      // associative, then don't bother matching the operands (because we
1337259698Sdim      // already know that the instructions are isomorphic, and the order
1338259698Sdim      // within the iteration does not matter). For non-associative reductions,
1339259698Sdim      // we do need to match the operands, because we need to reject
1340259698Sdim      // out-of-order instructions within an iteration!
1341259698Sdim      // For example (assume floating-point addition), we need to reject this:
1342259698Sdim      //   x += a[i]; x += b[i];
1343259698Sdim      //   x += a[i+1]; x += b[i+1];
1344259698Sdim      //   x += b[i+2]; x += a[i+2];
1345288943Sdim      bool InReduction = Reductions.isPairInSame(BaseInst, RootInst);
1346259698Sdim
1347288943Sdim      if (!(InReduction && BaseInst->isAssociative())) {
1348276479Sdim        bool Swapped = false, SomeOpMatched = false;
1349288943Sdim        for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) {
1350288943Sdim          Value *Op2 = RootInst->getOperand(j);
1351259698Sdim
1352280031Sdim          // If this is part of a reduction (and the operation is not
1353280031Sdim          // associatve), then we match all operands, but not those that are
1354280031Sdim          // part of the reduction.
1355259698Sdim          if (InReduction)
1356259698Sdim            if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
1357288943Sdim              if (Reductions.isPairInSame(RootInst, Op2I))
1358259698Sdim                continue;
1359259698Sdim
1360259698Sdim          DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
1361288943Sdim          if (BMI != BaseMap.end()) {
1362259698Sdim            Op2 = BMI->second;
1363288943Sdim          } else {
1364288943Sdim            for (auto &DRS : RootSets) {
1365288943Sdim              if (DRS.Roots[Iter-1] == (Instruction*) Op2) {
1366288943Sdim                Op2 = DRS.BaseInst;
1367288943Sdim                break;
1368288943Sdim              }
1369288943Sdim            }
1370288943Sdim          }
1371259698Sdim
1372288943Sdim          if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
1373280031Sdim            // If we've not already decided to swap the matched operands, and
1374280031Sdim            // we've not already matched our first operand (note that we could
1375280031Sdim            // have skipped matching the first operand because it is part of a
1376280031Sdim            // reduction above), and the instruction is commutative, then try
1377280031Sdim            // the swapped match.
1378288943Sdim            if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched &&
1379288943Sdim                BaseInst->getOperand(!j) == Op2) {
1380259698Sdim              Swapped = true;
1381259698Sdim            } else {
1382341825Sdim              LLVM_DEBUG(dbgs()
1383341825Sdim                         << "LRR: iteration root match failed at " << *BaseInst
1384341825Sdim                         << " vs. " << *RootInst << " (operand " << j << ")\n");
1385288943Sdim              return false;
1386259698Sdim            }
1387259698Sdim          }
1388259698Sdim
1389259698Sdim          SomeOpMatched = true;
1390259698Sdim        }
1391259698Sdim      }
1392259698Sdim
1393288943Sdim      if ((!PossibleRedLastSet.count(BaseInst) &&
1394288943Sdim           hasUsesOutsideLoop(BaseInst, L)) ||
1395288943Sdim          (!PossibleRedLastSet.count(RootInst) &&
1396288943Sdim           hasUsesOutsideLoop(RootInst, L))) {
1397341825Sdim        LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1398341825Sdim                          << " vs. " << *RootInst << " (uses outside loop)\n");
1399288943Sdim        return false;
1400259698Sdim      }
1401259698Sdim
1402288943Sdim      Reductions.recordPair(BaseInst, RootInst, Iter);
1403288943Sdim      BaseMap.insert(std::make_pair(RootInst, BaseInst));
1404259698Sdim
1405288943Sdim      LastRootIt = RootIt;
1406288943Sdim      Visited.insert(BaseInst);
1407288943Sdim      Visited.insert(RootInst);
1408288943Sdim      BaseIt = nextInstr(0, Uses, Visited);
1409288943Sdim      RootIt = nextInstr(Iter, Uses, Visited);
1410259698Sdim    }
1411327952Sdim    assert(BaseIt == Uses.end() && RootIt == Uses.end() &&
1412327952Sdim           "Mismatched set sizes!");
1413259698Sdim  }
1414259698Sdim
1415341825Sdim  LLVM_DEBUG(dbgs() << "LRR: Matched all iteration increments for " << *IV
1416341825Sdim                    << "\n");
1417259698Sdim
1418288943Sdim  return true;
1419288943Sdim}
1420259698Sdim
1421341825Sdimvoid LoopReroll::DAGRootTracker::replace(const SCEV *BackedgeTakenCount) {
1422288943Sdim  BasicBlock *Header = L->getHeader();
1423341825Sdim
1424341825Sdim  // Compute the start and increment for each BaseInst before we start erasing
1425341825Sdim  // instructions.
1426341825Sdim  SmallVector<const SCEV *, 8> StartExprs;
1427341825Sdim  SmallVector<const SCEV *, 8> IncrExprs;
1428341825Sdim  for (auto &DRS : RootSets) {
1429341825Sdim    const SCEVAddRecExpr *IVSCEV =
1430341825Sdim        cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
1431341825Sdim    StartExprs.push_back(IVSCEV->getStart());
1432341825Sdim    IncrExprs.push_back(SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), IVSCEV));
1433341825Sdim  }
1434341825Sdim
1435259698Sdim  // Remove instructions associated with non-base iterations.
1436314564Sdim  for (BasicBlock::reverse_iterator J = Header->rbegin(), JE = Header->rend();
1437314564Sdim       J != JE;) {
1438288943Sdim    unsigned I = Uses[&*J].find_first();
1439288943Sdim    if (I > 0 && I < IL_All) {
1440341825Sdim      LLVM_DEBUG(dbgs() << "LRR: removing: " << *J << "\n");
1441314564Sdim      J++->eraseFromParent();
1442259698Sdim      continue;
1443259698Sdim    }
1444259698Sdim
1445280031Sdim    ++J;
1446259698Sdim  }
1447259698Sdim
1448341825Sdim  // Rewrite each BaseInst using SCEV.
1449341825Sdim  for (size_t i = 0, e = RootSets.size(); i != e; ++i)
1450341825Sdim    // Insert the new induction variable.
1451341825Sdim    replaceIV(RootSets[i], StartExprs[i], IncrExprs[i]);
1452265925Sdim
1453341825Sdim  { // Limit the lifetime of SCEVExpander.
1454341825Sdim    BranchInst *BI = cast<BranchInst>(Header->getTerminator());
1455341825Sdim    const DataLayout &DL = Header->getModule()->getDataLayout();
1456341825Sdim    SCEVExpander Expander(*SE, DL, "reroll");
1457341825Sdim    auto Zero = SE->getZero(BackedgeTakenCount->getType());
1458341825Sdim    auto One = SE->getOne(BackedgeTakenCount->getType());
1459341825Sdim    auto NewIVSCEV = SE->getAddRecExpr(Zero, One, L, SCEV::FlagAnyWrap);
1460341825Sdim    Value *NewIV =
1461341825Sdim        Expander.expandCodeFor(NewIVSCEV, BackedgeTakenCount->getType(),
1462341825Sdim                               Header->getFirstNonPHIOrDbg());
1463341825Sdim    // FIXME: This arithmetic can overflow.
1464341825Sdim    auto TripCount = SE->getAddExpr(BackedgeTakenCount, One);
1465341825Sdim    auto ScaledTripCount = SE->getMulExpr(
1466341825Sdim        TripCount, SE->getConstant(BackedgeTakenCount->getType(), Scale));
1467341825Sdim    auto ScaledBECount = SE->getMinusSCEV(ScaledTripCount, One);
1468341825Sdim    Value *TakenCount =
1469341825Sdim        Expander.expandCodeFor(ScaledBECount, BackedgeTakenCount->getType(),
1470341825Sdim                               Header->getFirstNonPHIOrDbg());
1471341825Sdim    Value *Cond =
1472341825Sdim        new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, TakenCount, "exitcond");
1473341825Sdim    BI->setCondition(Cond);
1474259698Sdim
1475341825Sdim    if (BI->getSuccessor(1) != Header)
1476341825Sdim      BI->swapSuccessors();
1477341825Sdim  }
1478341825Sdim
1479309124Sdim  SimplifyInstructionsInBlock(Header, TLI);
1480309124Sdim  DeleteDeadPHIs(Header, TLI);
1481309124Sdim}
1482265925Sdim
1483341825Sdimvoid LoopReroll::DAGRootTracker::replaceIV(DAGRootSet &DRS,
1484341825Sdim                                           const SCEV *Start,
1485341825Sdim                                           const SCEV *IncrExpr) {
1486309124Sdim  BasicBlock *Header = L->getHeader();
1487341825Sdim  Instruction *Inst = DRS.BaseInst;
1488309124Sdim
1489309124Sdim  const SCEV *NewIVSCEV =
1490309124Sdim      SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap);
1491309124Sdim
1492309124Sdim  { // Limit the lifetime of SCEVExpander.
1493309124Sdim    const DataLayout &DL = Header->getModule()->getDataLayout();
1494309124Sdim    SCEVExpander Expander(*SE, DL, "reroll");
1495314564Sdim    Value *NewIV = Expander.expandCodeFor(NewIVSCEV, Inst->getType(),
1496314564Sdim                                          Header->getFirstNonPHIOrDbg());
1497309124Sdim
1498309124Sdim    for (auto &KV : Uses)
1499309124Sdim      if (KV.second.find_first() == 0)
1500309124Sdim        KV.first->replaceUsesOfWith(Inst, NewIV);
1501259698Sdim  }
1502288943Sdim}
1503288943Sdim
1504288943Sdim// Validate the selected reductions. All iterations must have an isomorphic
1505288943Sdim// part of the reduction chain and, for non-associative reductions, the chain
1506288943Sdim// entries must appear in order.
1507288943Sdimbool LoopReroll::ReductionTracker::validateSelected() {
1508288943Sdim  // For a non-associative reduction, the chain entries must appear in order.
1509309124Sdim  for (int i : Reds) {
1510288943Sdim    int PrevIter = 0, BaseCount = 0, Count = 0;
1511288943Sdim    for (Instruction *J : PossibleReds[i]) {
1512288943Sdim      // Note that all instructions in the chain must have been found because
1513288943Sdim      // all instructions in the function must have been assigned to some
1514288943Sdim      // iteration.
1515288943Sdim      int Iter = PossibleRedIter[J];
1516288943Sdim      if (Iter != PrevIter && Iter != PrevIter + 1 &&
1517288943Sdim          !PossibleReds[i].getReducedValue()->isAssociative()) {
1518341825Sdim        LLVM_DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: "
1519341825Sdim                          << J << "\n");
1520288943Sdim        return false;
1521288943Sdim      }
1522288943Sdim
1523288943Sdim      if (Iter != PrevIter) {
1524288943Sdim        if (Count != BaseCount) {
1525341825Sdim          LLVM_DEBUG(dbgs()
1526341825Sdim                     << "LRR: Iteration " << PrevIter << " reduction use count "
1527341825Sdim                     << Count << " is not equal to the base use count "
1528341825Sdim                     << BaseCount << "\n");
1529288943Sdim          return false;
1530288943Sdim        }
1531288943Sdim
1532288943Sdim        Count = 0;
1533288943Sdim      }
1534288943Sdim
1535288943Sdim      ++Count;
1536288943Sdim      if (Iter == 0)
1537288943Sdim        ++BaseCount;
1538288943Sdim
1539288943Sdim      PrevIter = Iter;
1540288943Sdim    }
1541288943Sdim  }
1542288943Sdim
1543288943Sdim  return true;
1544288943Sdim}
1545288943Sdim
1546288943Sdim// For all selected reductions, remove all parts except those in the first
1547288943Sdim// iteration (and the PHI). Replace outside uses of the reduced value with uses
1548288943Sdim// of the first-iteration reduced value (in other words, reroll the selected
1549288943Sdim// reductions).
1550288943Sdimvoid LoopReroll::ReductionTracker::replaceSelected() {
1551288943Sdim  // Fixup reductions to refer to the last instruction associated with the
1552288943Sdim  // first iteration (not the last).
1553309124Sdim  for (int i : Reds) {
1554288943Sdim    int j = 0;
1555288943Sdim    for (int e = PossibleReds[i].size(); j != e; ++j)
1556288943Sdim      if (PossibleRedIter[PossibleReds[i][j]] != 0) {
1557288943Sdim        --j;
1558288943Sdim        break;
1559288943Sdim      }
1560288943Sdim
1561288943Sdim    // Replace users with the new end-of-chain value.
1562288943Sdim    SmallInstructionVector Users;
1563288943Sdim    for (User *U : PossibleReds[i].getReducedValue()->users()) {
1564288943Sdim      Users.push_back(cast<Instruction>(U));
1565288943Sdim    }
1566288943Sdim
1567309124Sdim    for (Instruction *User : Users)
1568309124Sdim      User->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
1569288943Sdim                              PossibleReds[i][j]);
1570288943Sdim  }
1571288943Sdim}
1572288943Sdim
1573288943Sdim// Reroll the provided loop with respect to the provided induction variable.
1574288943Sdim// Generally, we're looking for a loop like this:
1575288943Sdim//
1576288943Sdim// %iv = phi [ (preheader, ...), (body, %iv.next) ]
1577288943Sdim// f(%iv)
1578288943Sdim// %iv.1 = add %iv, 1                <-- a root increment
1579288943Sdim// f(%iv.1)
1580288943Sdim// %iv.2 = add %iv, 2                <-- a root increment
1581288943Sdim// f(%iv.2)
1582288943Sdim// %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
1583288943Sdim// f(%iv.scale_m_1)
1584288943Sdim// ...
1585288943Sdim// %iv.next = add %iv, scale
1586288943Sdim// %cmp = icmp(%iv, ...)
1587288943Sdim// br %cmp, header, exit
1588288943Sdim//
1589288943Sdim// Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
1590288943Sdim// instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
1591288943Sdim// be intermixed with eachother. The restriction imposed by this algorithm is
1592288943Sdim// that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
1593288943Sdim// etc. be the same.
1594288943Sdim//
1595288943Sdim// First, we collect the use set of %iv, excluding the other increment roots.
1596288943Sdim// This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
1597288943Sdim// times, having collected the use set of f(%iv.(i+1)), during which we:
1598288943Sdim//   - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
1599288943Sdim//     the next unmatched instruction in f(%iv.(i+1)).
1600288943Sdim//   - Ensure that both matched instructions don't have any external users
1601288943Sdim//     (with the exception of last-in-chain reduction instructions).
1602288943Sdim//   - Track the (aliasing) write set, and other side effects, of all
1603288943Sdim//     instructions that belong to future iterations that come before the matched
1604288943Sdim//     instructions. If the matched instructions read from that write set, then
1605288943Sdim//     f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
1606288943Sdim//     f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
1607288943Sdim//     if any of these future instructions had side effects (could not be
1608288943Sdim//     speculatively executed), and so do the matched instructions, when we
1609288943Sdim//     cannot reorder those side-effect-producing instructions, and rerolling
1610288943Sdim//     fails.
1611288943Sdim//
1612288943Sdim// Finally, we make sure that all loop instructions are either loop increment
1613288943Sdim// roots, belong to simple latch code, parts of validated reductions, part of
1614288943Sdim// f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
1615288943Sdim// have been validated), then we reroll the loop.
1616288943Sdimbool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
1617341825Sdim                        const SCEV *BackedgeTakenCount,
1618288943Sdim                        ReductionTracker &Reductions) {
1619296417Sdim  DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA,
1620309124Sdim                          IVToIncMap, LoopControlIV);
1621288943Sdim
1622288943Sdim  if (!DAGRoots.findRoots())
1623288943Sdim    return false;
1624341825Sdim  LLVM_DEBUG(dbgs() << "LRR: Found all root induction increments for: " << *IV
1625341825Sdim                    << "\n");
1626296417Sdim
1627288943Sdim  if (!DAGRoots.validate(Reductions))
1628288943Sdim    return false;
1629288943Sdim  if (!Reductions.validateSelected())
1630288943Sdim    return false;
1631288943Sdim  // At this point, we've validated the rerolling, and we're committed to
1632288943Sdim  // making changes!
1633288943Sdim
1634288943Sdim  Reductions.replaceSelected();
1635341825Sdim  DAGRoots.replace(BackedgeTakenCount);
1636288943Sdim
1637259698Sdim  ++NumRerolledLoops;
1638259698Sdim  return true;
1639259698Sdim}
1640259698Sdim
1641259698Sdimbool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
1642309124Sdim  if (skipLoop(L))
1643276479Sdim    return false;
1644276479Sdim
1645296417Sdim  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1646288943Sdim  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1647296417Sdim  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1648360784Sdim  TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
1649360784Sdim      *L->getHeader()->getParent());
1650276479Sdim  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1651296417Sdim  PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1652259698Sdim
1653259698Sdim  BasicBlock *Header = L->getHeader();
1654341825Sdim  LLVM_DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() << "] Loop %"
1655341825Sdim                    << Header->getName() << " (" << L->getNumBlocks()
1656341825Sdim                    << " block(s))\n");
1657259698Sdim
1658259698Sdim  // For now, we'll handle only single BB loops.
1659259698Sdim  if (L->getNumBlocks() > 1)
1660309124Sdim    return false;
1661259698Sdim
1662259698Sdim  if (!SE->hasLoopInvariantBackedgeTakenCount(L))
1663309124Sdim    return false;
1664259698Sdim
1665341825Sdim  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1666341825Sdim  LLVM_DEBUG(dbgs() << "\n Before Reroll:\n" << *(L->getHeader()) << "\n");
1667341825Sdim  LLVM_DEBUG(dbgs() << "LRR: backedge-taken count = " << *BackedgeTakenCount
1668341825Sdim               << "\n");
1669259698Sdim
1670259698Sdim  // First, we need to find the induction variable with respect to which we can
1671259698Sdim  // reroll (there may be several possible options).
1672259698Sdim  SmallInstructionVector PossibleIVs;
1673296417Sdim  IVToIncMap.clear();
1674309124Sdim  LoopControlIV = nullptr;
1675259698Sdim  collectPossibleIVs(L, PossibleIVs);
1676259698Sdim
1677259698Sdim  if (PossibleIVs.empty()) {
1678341825Sdim    LLVM_DEBUG(dbgs() << "LRR: No possible IVs found\n");
1679309124Sdim    return false;
1680259698Sdim  }
1681259698Sdim
1682259698Sdim  ReductionTracker Reductions;
1683259698Sdim  collectPossibleReductions(L, Reductions);
1684309124Sdim  bool Changed = false;
1685259698Sdim
1686259698Sdim  // For each possible IV, collect the associated possible set of 'root' nodes
1687259698Sdim  // (i+1, i+2, etc.).
1688309124Sdim  for (Instruction *PossibleIV : PossibleIVs)
1689341825Sdim    if (reroll(PossibleIV, L, Header, BackedgeTakenCount, Reductions)) {
1690259698Sdim      Changed = true;
1691259698Sdim      break;
1692259698Sdim    }
1693341825Sdim  LLVM_DEBUG(dbgs() << "\n After Reroll:\n" << *(L->getHeader()) << "\n");
1694259698Sdim
1695309124Sdim  // Trip count of L has changed so SE must be re-evaluated.
1696309124Sdim  if (Changed)
1697309124Sdim    SE->forgetLoop(L);
1698309124Sdim
1699259698Sdim  return Changed;
1700259698Sdim}
1701