LoopDistribute.cpp revision 360784
1//===- LoopDistribute.cpp - Loop Distribution Pass ------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Loop Distribution Pass.  Its main focus is to
10// distribute loops that cannot be vectorized due to dependence cycles.  It
11// tries to isolate the offending dependences into a new loop allowing
12// vectorization of the remaining parts.
13//
14// For dependence analysis, the pass uses the LoopVectorizer's
15// LoopAccessAnalysis.  Because this analysis presumes no change in the order of
16// memory operations, special care is taken to preserve the lexical order of
17// these operations.
18//
19// Similarly to the Vectorizer, the pass also supports loop versioning to
20// run-time disambiguate potentially overlapping arrays.
21//
22//===----------------------------------------------------------------------===//
23
24#include "llvm/Transforms/Scalar/LoopDistribute.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/DepthFirstIterator.h"
27#include "llvm/ADT/EquivalenceClasses.h"
28#include "llvm/ADT/Optional.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/ADT/StringRef.h"
34#include "llvm/ADT/Twine.h"
35#include "llvm/ADT/iterator_range.h"
36#include "llvm/Analysis/AliasAnalysis.h"
37#include "llvm/Analysis/AssumptionCache.h"
38#include "llvm/Analysis/GlobalsModRef.h"
39#include "llvm/Analysis/LoopAccessAnalysis.h"
40#include "llvm/Analysis/LoopAnalysisManager.h"
41#include "llvm/Analysis/LoopInfo.h"
42#include "llvm/Analysis/OptimizationRemarkEmitter.h"
43#include "llvm/Analysis/ScalarEvolution.h"
44#include "llvm/Analysis/TargetLibraryInfo.h"
45#include "llvm/Analysis/TargetTransformInfo.h"
46#include "llvm/IR/BasicBlock.h"
47#include "llvm/IR/Constants.h"
48#include "llvm/IR/DiagnosticInfo.h"
49#include "llvm/IR/Dominators.h"
50#include "llvm/IR/Function.h"
51#include "llvm/IR/InstrTypes.h"
52#include "llvm/IR/Instruction.h"
53#include "llvm/IR/Instructions.h"
54#include "llvm/IR/LLVMContext.h"
55#include "llvm/IR/Metadata.h"
56#include "llvm/IR/PassManager.h"
57#include "llvm/IR/Value.h"
58#include "llvm/InitializePasses.h"
59#include "llvm/Pass.h"
60#include "llvm/Support/Casting.h"
61#include "llvm/Support/CommandLine.h"
62#include "llvm/Support/Debug.h"
63#include "llvm/Support/raw_ostream.h"
64#include "llvm/Transforms/Scalar.h"
65#include "llvm/Transforms/Utils/BasicBlockUtils.h"
66#include "llvm/Transforms/Utils/Cloning.h"
67#include "llvm/Transforms/Utils/LoopUtils.h"
68#include "llvm/Transforms/Utils/LoopVersioning.h"
69#include "llvm/Transforms/Utils/ValueMapper.h"
70#include <cassert>
71#include <functional>
72#include <list>
73#include <tuple>
74#include <utility>
75
76using namespace llvm;
77
78#define LDIST_NAME "loop-distribute"
79#define DEBUG_TYPE LDIST_NAME
80
81/// @{
82/// Metadata attribute names
83static const char *const LLVMLoopDistributeFollowupAll =
84    "llvm.loop.distribute.followup_all";
85static const char *const LLVMLoopDistributeFollowupCoincident =
86    "llvm.loop.distribute.followup_coincident";
87static const char *const LLVMLoopDistributeFollowupSequential =
88    "llvm.loop.distribute.followup_sequential";
89static const char *const LLVMLoopDistributeFollowupFallback =
90    "llvm.loop.distribute.followup_fallback";
91/// @}
92
93static cl::opt<bool>
94    LDistVerify("loop-distribute-verify", cl::Hidden,
95                cl::desc("Turn on DominatorTree and LoopInfo verification "
96                         "after Loop Distribution"),
97                cl::init(false));
98
99static cl::opt<bool> DistributeNonIfConvertible(
100    "loop-distribute-non-if-convertible", cl::Hidden,
101    cl::desc("Whether to distribute into a loop that may not be "
102             "if-convertible by the loop vectorizer"),
103    cl::init(false));
104
105static cl::opt<unsigned> DistributeSCEVCheckThreshold(
106    "loop-distribute-scev-check-threshold", cl::init(8), cl::Hidden,
107    cl::desc("The maximum number of SCEV checks allowed for Loop "
108             "Distribution"));
109
110static cl::opt<unsigned> PragmaDistributeSCEVCheckThreshold(
111    "loop-distribute-scev-check-threshold-with-pragma", cl::init(128),
112    cl::Hidden,
113    cl::desc(
114        "The maximum number of SCEV checks allowed for Loop "
115        "Distribution for loop marked with #pragma loop distribute(enable)"));
116
117static cl::opt<bool> EnableLoopDistribute(
118    "enable-loop-distribute", cl::Hidden,
119    cl::desc("Enable the new, experimental LoopDistribution Pass"),
120    cl::init(false));
121
122STATISTIC(NumLoopsDistributed, "Number of loops distributed");
123
124namespace {
125
126/// Maintains the set of instructions of the loop for a partition before
127/// cloning.  After cloning, it hosts the new loop.
128class InstPartition {
129  using InstructionSet = SmallPtrSet<Instruction *, 8>;
130
131public:
132  InstPartition(Instruction *I, Loop *L, bool DepCycle = false)
133      : DepCycle(DepCycle), OrigLoop(L) {
134    Set.insert(I);
135  }
136
137  /// Returns whether this partition contains a dependence cycle.
138  bool hasDepCycle() const { return DepCycle; }
139
140  /// Adds an instruction to this partition.
141  void add(Instruction *I) { Set.insert(I); }
142
143  /// Collection accessors.
144  InstructionSet::iterator begin() { return Set.begin(); }
145  InstructionSet::iterator end() { return Set.end(); }
146  InstructionSet::const_iterator begin() const { return Set.begin(); }
147  InstructionSet::const_iterator end() const { return Set.end(); }
148  bool empty() const { return Set.empty(); }
149
150  /// Moves this partition into \p Other.  This partition becomes empty
151  /// after this.
152  void moveTo(InstPartition &Other) {
153    Other.Set.insert(Set.begin(), Set.end());
154    Set.clear();
155    Other.DepCycle |= DepCycle;
156  }
157
158  /// Populates the partition with a transitive closure of all the
159  /// instructions that the seeded instructions dependent on.
160  void populateUsedSet() {
161    // FIXME: We currently don't use control-dependence but simply include all
162    // blocks (possibly empty at the end) and let simplifycfg mostly clean this
163    // up.
164    for (auto *B : OrigLoop->getBlocks())
165      Set.insert(B->getTerminator());
166
167    // Follow the use-def chains to form a transitive closure of all the
168    // instructions that the originally seeded instructions depend on.
169    SmallVector<Instruction *, 8> Worklist(Set.begin(), Set.end());
170    while (!Worklist.empty()) {
171      Instruction *I = Worklist.pop_back_val();
172      // Insert instructions from the loop that we depend on.
173      for (Value *V : I->operand_values()) {
174        auto *I = dyn_cast<Instruction>(V);
175        if (I && OrigLoop->contains(I->getParent()) && Set.insert(I).second)
176          Worklist.push_back(I);
177      }
178    }
179  }
180
181  /// Clones the original loop.
182  ///
183  /// Updates LoopInfo and DominatorTree using the information that block \p
184  /// LoopDomBB dominates the loop.
185  Loop *cloneLoopWithPreheader(BasicBlock *InsertBefore, BasicBlock *LoopDomBB,
186                               unsigned Index, LoopInfo *LI,
187                               DominatorTree *DT) {
188    ClonedLoop = ::cloneLoopWithPreheader(InsertBefore, LoopDomBB, OrigLoop,
189                                          VMap, Twine(".ldist") + Twine(Index),
190                                          LI, DT, ClonedLoopBlocks);
191    return ClonedLoop;
192  }
193
194  /// The cloned loop.  If this partition is mapped to the original loop,
195  /// this is null.
196  const Loop *getClonedLoop() const { return ClonedLoop; }
197
198  /// Returns the loop where this partition ends up after distribution.
199  /// If this partition is mapped to the original loop then use the block from
200  /// the loop.
201  Loop *getDistributedLoop() const {
202    return ClonedLoop ? ClonedLoop : OrigLoop;
203  }
204
205  /// The VMap that is populated by cloning and then used in
206  /// remapinstruction to remap the cloned instructions.
207  ValueToValueMapTy &getVMap() { return VMap; }
208
209  /// Remaps the cloned instructions using VMap.
210  void remapInstructions() {
211    remapInstructionsInBlocks(ClonedLoopBlocks, VMap);
212  }
213
214  /// Based on the set of instructions selected for this partition,
215  /// removes the unnecessary ones.
216  void removeUnusedInsts() {
217    SmallVector<Instruction *, 8> Unused;
218
219    for (auto *Block : OrigLoop->getBlocks())
220      for (auto &Inst : *Block)
221        if (!Set.count(&Inst)) {
222          Instruction *NewInst = &Inst;
223          if (!VMap.empty())
224            NewInst = cast<Instruction>(VMap[NewInst]);
225
226          assert(!isa<BranchInst>(NewInst) &&
227                 "Branches are marked used early on");
228          Unused.push_back(NewInst);
229        }
230
231    // Delete the instructions backwards, as it has a reduced likelihood of
232    // having to update as many def-use and use-def chains.
233    for (auto *Inst : reverse(Unused)) {
234      if (!Inst->use_empty())
235        Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
236      Inst->eraseFromParent();
237    }
238  }
239
240  void print() const {
241    if (DepCycle)
242      dbgs() << "  (cycle)\n";
243    for (auto *I : Set)
244      // Prefix with the block name.
245      dbgs() << "  " << I->getParent()->getName() << ":" << *I << "\n";
246  }
247
248  void printBlocks() const {
249    for (auto *BB : getDistributedLoop()->getBlocks())
250      dbgs() << *BB;
251  }
252
253private:
254  /// Instructions from OrigLoop selected for this partition.
255  InstructionSet Set;
256
257  /// Whether this partition contains a dependence cycle.
258  bool DepCycle;
259
260  /// The original loop.
261  Loop *OrigLoop;
262
263  /// The cloned loop.  If this partition is mapped to the original loop,
264  /// this is null.
265  Loop *ClonedLoop = nullptr;
266
267  /// The blocks of ClonedLoop including the preheader.  If this
268  /// partition is mapped to the original loop, this is empty.
269  SmallVector<BasicBlock *, 8> ClonedLoopBlocks;
270
271  /// These gets populated once the set of instructions have been
272  /// finalized. If this partition is mapped to the original loop, these are not
273  /// set.
274  ValueToValueMapTy VMap;
275};
276
277/// Holds the set of Partitions.  It populates them, merges them and then
278/// clones the loops.
279class InstPartitionContainer {
280  using InstToPartitionIdT = DenseMap<Instruction *, int>;
281
282public:
283  InstPartitionContainer(Loop *L, LoopInfo *LI, DominatorTree *DT)
284      : L(L), LI(LI), DT(DT) {}
285
286  /// Returns the number of partitions.
287  unsigned getSize() const { return PartitionContainer.size(); }
288
289  /// Adds \p Inst into the current partition if that is marked to
290  /// contain cycles.  Otherwise start a new partition for it.
291  void addToCyclicPartition(Instruction *Inst) {
292    // If the current partition is non-cyclic.  Start a new one.
293    if (PartitionContainer.empty() || !PartitionContainer.back().hasDepCycle())
294      PartitionContainer.emplace_back(Inst, L, /*DepCycle=*/true);
295    else
296      PartitionContainer.back().add(Inst);
297  }
298
299  /// Adds \p Inst into a partition that is not marked to contain
300  /// dependence cycles.
301  ///
302  //  Initially we isolate memory instructions into as many partitions as
303  //  possible, then later we may merge them back together.
304  void addToNewNonCyclicPartition(Instruction *Inst) {
305    PartitionContainer.emplace_back(Inst, L);
306  }
307
308  /// Merges adjacent non-cyclic partitions.
309  ///
310  /// The idea is that we currently only want to isolate the non-vectorizable
311  /// partition.  We could later allow more distribution among these partition
312  /// too.
313  void mergeAdjacentNonCyclic() {
314    mergeAdjacentPartitionsIf(
315        [](const InstPartition *P) { return !P->hasDepCycle(); });
316  }
317
318  /// If a partition contains only conditional stores, we won't vectorize
319  /// it.  Try to merge it with a previous cyclic partition.
320  void mergeNonIfConvertible() {
321    mergeAdjacentPartitionsIf([&](const InstPartition *Partition) {
322      if (Partition->hasDepCycle())
323        return true;
324
325      // Now, check if all stores are conditional in this partition.
326      bool seenStore = false;
327
328      for (auto *Inst : *Partition)
329        if (isa<StoreInst>(Inst)) {
330          seenStore = true;
331          if (!LoopAccessInfo::blockNeedsPredication(Inst->getParent(), L, DT))
332            return false;
333        }
334      return seenStore;
335    });
336  }
337
338  /// Merges the partitions according to various heuristics.
339  void mergeBeforePopulating() {
340    mergeAdjacentNonCyclic();
341    if (!DistributeNonIfConvertible)
342      mergeNonIfConvertible();
343  }
344
345  /// Merges partitions in order to ensure that no loads are duplicated.
346  ///
347  /// We can't duplicate loads because that could potentially reorder them.
348  /// LoopAccessAnalysis provides dependency information with the context that
349  /// the order of memory operation is preserved.
350  ///
351  /// Return if any partitions were merged.
352  bool mergeToAvoidDuplicatedLoads() {
353    using LoadToPartitionT = DenseMap<Instruction *, InstPartition *>;
354    using ToBeMergedT = EquivalenceClasses<InstPartition *>;
355
356    LoadToPartitionT LoadToPartition;
357    ToBeMergedT ToBeMerged;
358
359    // Step through the partitions and create equivalence between partitions
360    // that contain the same load.  Also put partitions in between them in the
361    // same equivalence class to avoid reordering of memory operations.
362    for (PartitionContainerT::iterator I = PartitionContainer.begin(),
363                                       E = PartitionContainer.end();
364         I != E; ++I) {
365      auto *PartI = &*I;
366
367      // If a load occurs in two partitions PartI and PartJ, merge all
368      // partitions (PartI, PartJ] into PartI.
369      for (Instruction *Inst : *PartI)
370        if (isa<LoadInst>(Inst)) {
371          bool NewElt;
372          LoadToPartitionT::iterator LoadToPart;
373
374          std::tie(LoadToPart, NewElt) =
375              LoadToPartition.insert(std::make_pair(Inst, PartI));
376          if (!NewElt) {
377            LLVM_DEBUG(dbgs()
378                       << "Merging partitions due to this load in multiple "
379                       << "partitions: " << PartI << ", " << LoadToPart->second
380                       << "\n"
381                       << *Inst << "\n");
382
383            auto PartJ = I;
384            do {
385              --PartJ;
386              ToBeMerged.unionSets(PartI, &*PartJ);
387            } while (&*PartJ != LoadToPart->second);
388          }
389        }
390    }
391    if (ToBeMerged.empty())
392      return false;
393
394    // Merge the member of an equivalence class into its class leader.  This
395    // makes the members empty.
396    for (ToBeMergedT::iterator I = ToBeMerged.begin(), E = ToBeMerged.end();
397         I != E; ++I) {
398      if (!I->isLeader())
399        continue;
400
401      auto PartI = I->getData();
402      for (auto PartJ : make_range(std::next(ToBeMerged.member_begin(I)),
403                                   ToBeMerged.member_end())) {
404        PartJ->moveTo(*PartI);
405      }
406    }
407
408    // Remove the empty partitions.
409    PartitionContainer.remove_if(
410        [](const InstPartition &P) { return P.empty(); });
411
412    return true;
413  }
414
415  /// Sets up the mapping between instructions to partitions.  If the
416  /// instruction is duplicated across multiple partitions, set the entry to -1.
417  void setupPartitionIdOnInstructions() {
418    int PartitionID = 0;
419    for (const auto &Partition : PartitionContainer) {
420      for (Instruction *Inst : Partition) {
421        bool NewElt;
422        InstToPartitionIdT::iterator Iter;
423
424        std::tie(Iter, NewElt) =
425            InstToPartitionId.insert(std::make_pair(Inst, PartitionID));
426        if (!NewElt)
427          Iter->second = -1;
428      }
429      ++PartitionID;
430    }
431  }
432
433  /// Populates the partition with everything that the seeding
434  /// instructions require.
435  void populateUsedSet() {
436    for (auto &P : PartitionContainer)
437      P.populateUsedSet();
438  }
439
440  /// This performs the main chunk of the work of cloning the loops for
441  /// the partitions.
442  void cloneLoops() {
443    BasicBlock *OrigPH = L->getLoopPreheader();
444    // At this point the predecessor of the preheader is either the memcheck
445    // block or the top part of the original preheader.
446    BasicBlock *Pred = OrigPH->getSinglePredecessor();
447    assert(Pred && "Preheader does not have a single predecessor");
448    BasicBlock *ExitBlock = L->getExitBlock();
449    assert(ExitBlock && "No single exit block");
450    Loop *NewLoop;
451
452    assert(!PartitionContainer.empty() && "at least two partitions expected");
453    // We're cloning the preheader along with the loop so we already made sure
454    // it was empty.
455    assert(&*OrigPH->begin() == OrigPH->getTerminator() &&
456           "preheader not empty");
457
458    // Preserve the original loop ID for use after the transformation.
459    MDNode *OrigLoopID = L->getLoopID();
460
461    // Create a loop for each partition except the last.  Clone the original
462    // loop before PH along with adding a preheader for the cloned loop.  Then
463    // update PH to point to the newly added preheader.
464    BasicBlock *TopPH = OrigPH;
465    unsigned Index = getSize() - 1;
466    for (auto I = std::next(PartitionContainer.rbegin()),
467              E = PartitionContainer.rend();
468         I != E; ++I, --Index, TopPH = NewLoop->getLoopPreheader()) {
469      auto *Part = &*I;
470
471      NewLoop = Part->cloneLoopWithPreheader(TopPH, Pred, Index, LI, DT);
472
473      Part->getVMap()[ExitBlock] = TopPH;
474      Part->remapInstructions();
475      setNewLoopID(OrigLoopID, Part);
476    }
477    Pred->getTerminator()->replaceUsesOfWith(OrigPH, TopPH);
478
479    // Also set a new loop ID for the last loop.
480    setNewLoopID(OrigLoopID, &PartitionContainer.back());
481
482    // Now go in forward order and update the immediate dominator for the
483    // preheaders with the exiting block of the previous loop.  Dominance
484    // within the loop is updated in cloneLoopWithPreheader.
485    for (auto Curr = PartitionContainer.cbegin(),
486              Next = std::next(PartitionContainer.cbegin()),
487              E = PartitionContainer.cend();
488         Next != E; ++Curr, ++Next)
489      DT->changeImmediateDominator(
490          Next->getDistributedLoop()->getLoopPreheader(),
491          Curr->getDistributedLoop()->getExitingBlock());
492  }
493
494  /// Removes the dead instructions from the cloned loops.
495  void removeUnusedInsts() {
496    for (auto &Partition : PartitionContainer)
497      Partition.removeUnusedInsts();
498  }
499
500  /// For each memory pointer, it computes the partitionId the pointer is
501  /// used in.
502  ///
503  /// This returns an array of int where the I-th entry corresponds to I-th
504  /// entry in LAI.getRuntimePointerCheck().  If the pointer is used in multiple
505  /// partitions its entry is set to -1.
506  SmallVector<int, 8>
507  computePartitionSetForPointers(const LoopAccessInfo &LAI) {
508    const RuntimePointerChecking *RtPtrCheck = LAI.getRuntimePointerChecking();
509
510    unsigned N = RtPtrCheck->Pointers.size();
511    SmallVector<int, 8> PtrToPartitions(N);
512    for (unsigned I = 0; I < N; ++I) {
513      Value *Ptr = RtPtrCheck->Pointers[I].PointerValue;
514      auto Instructions =
515          LAI.getInstructionsForAccess(Ptr, RtPtrCheck->Pointers[I].IsWritePtr);
516
517      int &Partition = PtrToPartitions[I];
518      // First set it to uninitialized.
519      Partition = -2;
520      for (Instruction *Inst : Instructions) {
521        // Note that this could be -1 if Inst is duplicated across multiple
522        // partitions.
523        int ThisPartition = this->InstToPartitionId[Inst];
524        if (Partition == -2)
525          Partition = ThisPartition;
526        // -1 means belonging to multiple partitions.
527        else if (Partition == -1)
528          break;
529        else if (Partition != (int)ThisPartition)
530          Partition = -1;
531      }
532      assert(Partition != -2 && "Pointer not belonging to any partition");
533    }
534
535    return PtrToPartitions;
536  }
537
538  void print(raw_ostream &OS) const {
539    unsigned Index = 0;
540    for (const auto &P : PartitionContainer) {
541      OS << "Partition " << Index++ << " (" << &P << "):\n";
542      P.print();
543    }
544  }
545
546  void dump() const { print(dbgs()); }
547
548#ifndef NDEBUG
549  friend raw_ostream &operator<<(raw_ostream &OS,
550                                 const InstPartitionContainer &Partitions) {
551    Partitions.print(OS);
552    return OS;
553  }
554#endif
555
556  void printBlocks() const {
557    unsigned Index = 0;
558    for (const auto &P : PartitionContainer) {
559      dbgs() << "\nPartition " << Index++ << " (" << &P << "):\n";
560      P.printBlocks();
561    }
562  }
563
564private:
565  using PartitionContainerT = std::list<InstPartition>;
566
567  /// List of partitions.
568  PartitionContainerT PartitionContainer;
569
570  /// Mapping from Instruction to partition Id.  If the instruction
571  /// belongs to multiple partitions the entry contains -1.
572  InstToPartitionIdT InstToPartitionId;
573
574  Loop *L;
575  LoopInfo *LI;
576  DominatorTree *DT;
577
578  /// The control structure to merge adjacent partitions if both satisfy
579  /// the \p Predicate.
580  template <class UnaryPredicate>
581  void mergeAdjacentPartitionsIf(UnaryPredicate Predicate) {
582    InstPartition *PrevMatch = nullptr;
583    for (auto I = PartitionContainer.begin(); I != PartitionContainer.end();) {
584      auto DoesMatch = Predicate(&*I);
585      if (PrevMatch == nullptr && DoesMatch) {
586        PrevMatch = &*I;
587        ++I;
588      } else if (PrevMatch != nullptr && DoesMatch) {
589        I->moveTo(*PrevMatch);
590        I = PartitionContainer.erase(I);
591      } else {
592        PrevMatch = nullptr;
593        ++I;
594      }
595    }
596  }
597
598  /// Assign new LoopIDs for the partition's cloned loop.
599  void setNewLoopID(MDNode *OrigLoopID, InstPartition *Part) {
600    Optional<MDNode *> PartitionID = makeFollowupLoopID(
601        OrigLoopID,
602        {LLVMLoopDistributeFollowupAll,
603         Part->hasDepCycle() ? LLVMLoopDistributeFollowupSequential
604                             : LLVMLoopDistributeFollowupCoincident});
605    if (PartitionID.hasValue()) {
606      Loop *NewLoop = Part->getDistributedLoop();
607      NewLoop->setLoopID(PartitionID.getValue());
608    }
609  }
610};
611
612/// For each memory instruction, this class maintains difference of the
613/// number of unsafe dependences that start out from this instruction minus
614/// those that end here.
615///
616/// By traversing the memory instructions in program order and accumulating this
617/// number, we know whether any unsafe dependence crosses over a program point.
618class MemoryInstructionDependences {
619  using Dependence = MemoryDepChecker::Dependence;
620
621public:
622  struct Entry {
623    Instruction *Inst;
624    unsigned NumUnsafeDependencesStartOrEnd = 0;
625
626    Entry(Instruction *Inst) : Inst(Inst) {}
627  };
628
629  using AccessesType = SmallVector<Entry, 8>;
630
631  AccessesType::const_iterator begin() const { return Accesses.begin(); }
632  AccessesType::const_iterator end() const { return Accesses.end(); }
633
634  MemoryInstructionDependences(
635      const SmallVectorImpl<Instruction *> &Instructions,
636      const SmallVectorImpl<Dependence> &Dependences) {
637    Accesses.append(Instructions.begin(), Instructions.end());
638
639    LLVM_DEBUG(dbgs() << "Backward dependences:\n");
640    for (auto &Dep : Dependences)
641      if (Dep.isPossiblyBackward()) {
642        // Note that the designations source and destination follow the program
643        // order, i.e. source is always first.  (The direction is given by the
644        // DepType.)
645        ++Accesses[Dep.Source].NumUnsafeDependencesStartOrEnd;
646        --Accesses[Dep.Destination].NumUnsafeDependencesStartOrEnd;
647
648        LLVM_DEBUG(Dep.print(dbgs(), 2, Instructions));
649      }
650  }
651
652private:
653  AccessesType Accesses;
654};
655
656/// The actual class performing the per-loop work.
657class LoopDistributeForLoop {
658public:
659  LoopDistributeForLoop(Loop *L, Function *F, LoopInfo *LI, DominatorTree *DT,
660                        ScalarEvolution *SE, OptimizationRemarkEmitter *ORE)
661      : L(L), F(F), LI(LI), DT(DT), SE(SE), ORE(ORE) {
662    setForced();
663  }
664
665  /// Try to distribute an inner-most loop.
666  bool processLoop(std::function<const LoopAccessInfo &(Loop &)> &GetLAA) {
667    assert(L->empty() && "Only process inner loops.");
668
669    LLVM_DEBUG(dbgs() << "\nLDist: In \""
670                      << L->getHeader()->getParent()->getName()
671                      << "\" checking " << *L << "\n");
672
673    if (!L->getExitBlock())
674      return fail("MultipleExitBlocks", "multiple exit blocks");
675    if (!L->isLoopSimplifyForm())
676      return fail("NotLoopSimplifyForm",
677                  "loop is not in loop-simplify form");
678
679    BasicBlock *PH = L->getLoopPreheader();
680
681    // LAA will check that we only have a single exiting block.
682    LAI = &GetLAA(*L);
683
684    // Currently, we only distribute to isolate the part of the loop with
685    // dependence cycles to enable partial vectorization.
686    if (LAI->canVectorizeMemory())
687      return fail("MemOpsCanBeVectorized",
688                  "memory operations are safe for vectorization");
689
690    auto *Dependences = LAI->getDepChecker().getDependences();
691    if (!Dependences || Dependences->empty())
692      return fail("NoUnsafeDeps", "no unsafe dependences to isolate");
693
694    InstPartitionContainer Partitions(L, LI, DT);
695
696    // First, go through each memory operation and assign them to consecutive
697    // partitions (the order of partitions follows program order).  Put those
698    // with unsafe dependences into "cyclic" partition otherwise put each store
699    // in its own "non-cyclic" partition (we'll merge these later).
700    //
701    // Note that a memory operation (e.g. Load2 below) at a program point that
702    // has an unsafe dependence (Store3->Load1) spanning over it must be
703    // included in the same cyclic partition as the dependent operations.  This
704    // is to preserve the original program order after distribution.  E.g.:
705    //
706    //                NumUnsafeDependencesStartOrEnd  NumUnsafeDependencesActive
707    //  Load1   -.                     1                       0->1
708    //  Load2    | /Unsafe/            0                       1
709    //  Store3  -'                    -1                       1->0
710    //  Load4                          0                       0
711    //
712    // NumUnsafeDependencesActive > 0 indicates this situation and in this case
713    // we just keep assigning to the same cyclic partition until
714    // NumUnsafeDependencesActive reaches 0.
715    const MemoryDepChecker &DepChecker = LAI->getDepChecker();
716    MemoryInstructionDependences MID(DepChecker.getMemoryInstructions(),
717                                     *Dependences);
718
719    int NumUnsafeDependencesActive = 0;
720    for (auto &InstDep : MID) {
721      Instruction *I = InstDep.Inst;
722      // We update NumUnsafeDependencesActive post-instruction, catch the
723      // start of a dependence directly via NumUnsafeDependencesStartOrEnd.
724      if (NumUnsafeDependencesActive ||
725          InstDep.NumUnsafeDependencesStartOrEnd > 0)
726        Partitions.addToCyclicPartition(I);
727      else
728        Partitions.addToNewNonCyclicPartition(I);
729      NumUnsafeDependencesActive += InstDep.NumUnsafeDependencesStartOrEnd;
730      assert(NumUnsafeDependencesActive >= 0 &&
731             "Negative number of dependences active");
732    }
733
734    // Add partitions for values used outside.  These partitions can be out of
735    // order from the original program order.  This is OK because if the
736    // partition uses a load we will merge this partition with the original
737    // partition of the load that we set up in the previous loop (see
738    // mergeToAvoidDuplicatedLoads).
739    auto DefsUsedOutside = findDefsUsedOutsideOfLoop(L);
740    for (auto *Inst : DefsUsedOutside)
741      Partitions.addToNewNonCyclicPartition(Inst);
742
743    LLVM_DEBUG(dbgs() << "Seeded partitions:\n" << Partitions);
744    if (Partitions.getSize() < 2)
745      return fail("CantIsolateUnsafeDeps",
746                  "cannot isolate unsafe dependencies");
747
748    // Run the merge heuristics: Merge non-cyclic adjacent partitions since we
749    // should be able to vectorize these together.
750    Partitions.mergeBeforePopulating();
751    LLVM_DEBUG(dbgs() << "\nMerged partitions:\n" << Partitions);
752    if (Partitions.getSize() < 2)
753      return fail("CantIsolateUnsafeDeps",
754                  "cannot isolate unsafe dependencies");
755
756    // Now, populate the partitions with non-memory operations.
757    Partitions.populateUsedSet();
758    LLVM_DEBUG(dbgs() << "\nPopulated partitions:\n" << Partitions);
759
760    // In order to preserve original lexical order for loads, keep them in the
761    // partition that we set up in the MemoryInstructionDependences loop.
762    if (Partitions.mergeToAvoidDuplicatedLoads()) {
763      LLVM_DEBUG(dbgs() << "\nPartitions merged to ensure unique loads:\n"
764                        << Partitions);
765      if (Partitions.getSize() < 2)
766        return fail("CantIsolateUnsafeDeps",
767                    "cannot isolate unsafe dependencies");
768    }
769
770    // Don't distribute the loop if we need too many SCEV run-time checks, or
771    // any if it's illegal.
772    const SCEVUnionPredicate &Pred = LAI->getPSE().getUnionPredicate();
773    if (LAI->hasConvergentOp() && !Pred.isAlwaysTrue()) {
774      return fail("RuntimeCheckWithConvergent",
775                  "may not insert runtime check with convergent operation");
776    }
777
778    if (Pred.getComplexity() > (IsForced.getValueOr(false)
779                                    ? PragmaDistributeSCEVCheckThreshold
780                                    : DistributeSCEVCheckThreshold))
781      return fail("TooManySCEVRuntimeChecks",
782                  "too many SCEV run-time checks needed.\n");
783
784    if (!IsForced.getValueOr(false) && hasDisableAllTransformsHint(L))
785      return fail("HeuristicDisabled", "distribution heuristic disabled");
786
787    LLVM_DEBUG(dbgs() << "\nDistributing loop: " << *L << "\n");
788    // We're done forming the partitions set up the reverse mapping from
789    // instructions to partitions.
790    Partitions.setupPartitionIdOnInstructions();
791
792    // To keep things simple have an empty preheader before we version or clone
793    // the loop.  (Also split if this has no predecessor, i.e. entry, because we
794    // rely on PH having a predecessor.)
795    if (!PH->getSinglePredecessor() || &*PH->begin() != PH->getTerminator())
796      SplitBlock(PH, PH->getTerminator(), DT, LI);
797
798    // If we need run-time checks, version the loop now.
799    auto PtrToPartition = Partitions.computePartitionSetForPointers(*LAI);
800    const auto *RtPtrChecking = LAI->getRuntimePointerChecking();
801    const auto &AllChecks = RtPtrChecking->getChecks();
802    auto Checks = includeOnlyCrossPartitionChecks(AllChecks, PtrToPartition,
803                                                  RtPtrChecking);
804
805    if (LAI->hasConvergentOp() && !Checks.empty()) {
806      return fail("RuntimeCheckWithConvergent",
807                  "may not insert runtime check with convergent operation");
808    }
809
810    if (!Pred.isAlwaysTrue() || !Checks.empty()) {
811      assert(!LAI->hasConvergentOp() && "inserting illegal loop versioning");
812
813      MDNode *OrigLoopID = L->getLoopID();
814
815      LLVM_DEBUG(dbgs() << "\nPointers:\n");
816      LLVM_DEBUG(LAI->getRuntimePointerChecking()->printChecks(dbgs(), Checks));
817      LoopVersioning LVer(*LAI, L, LI, DT, SE, false);
818      LVer.setAliasChecks(std::move(Checks));
819      LVer.setSCEVChecks(LAI->getPSE().getUnionPredicate());
820      LVer.versionLoop(DefsUsedOutside);
821      LVer.annotateLoopWithNoAlias();
822
823      // The unversioned loop will not be changed, so we inherit all attributes
824      // from the original loop, but remove the loop distribution metadata to
825      // avoid to distribute it again.
826      MDNode *UnversionedLoopID =
827          makeFollowupLoopID(OrigLoopID,
828                             {LLVMLoopDistributeFollowupAll,
829                              LLVMLoopDistributeFollowupFallback},
830                             "llvm.loop.distribute.", true)
831              .getValue();
832      LVer.getNonVersionedLoop()->setLoopID(UnversionedLoopID);
833    }
834
835    // Create identical copies of the original loop for each partition and hook
836    // them up sequentially.
837    Partitions.cloneLoops();
838
839    // Now, we remove the instruction from each loop that don't belong to that
840    // partition.
841    Partitions.removeUnusedInsts();
842    LLVM_DEBUG(dbgs() << "\nAfter removing unused Instrs:\n");
843    LLVM_DEBUG(Partitions.printBlocks());
844
845    if (LDistVerify) {
846      LI->verify(*DT);
847      assert(DT->verify(DominatorTree::VerificationLevel::Fast));
848    }
849
850    ++NumLoopsDistributed;
851    // Report the success.
852    ORE->emit([&]() {
853      return OptimizationRemark(LDIST_NAME, "Distribute", L->getStartLoc(),
854                                L->getHeader())
855             << "distributed loop";
856    });
857    return true;
858  }
859
860  /// Provide diagnostics then \return with false.
861  bool fail(StringRef RemarkName, StringRef Message) {
862    LLVMContext &Ctx = F->getContext();
863    bool Forced = isForced().getValueOr(false);
864
865    LLVM_DEBUG(dbgs() << "Skipping; " << Message << "\n");
866
867    // With Rpass-missed report that distribution failed.
868    ORE->emit([&]() {
869      return OptimizationRemarkMissed(LDIST_NAME, "NotDistributed",
870                                      L->getStartLoc(), L->getHeader())
871             << "loop not distributed: use -Rpass-analysis=loop-distribute for "
872                "more "
873                "info";
874    });
875
876    // With Rpass-analysis report why.  This is on by default if distribution
877    // was requested explicitly.
878    ORE->emit(OptimizationRemarkAnalysis(
879                  Forced ? OptimizationRemarkAnalysis::AlwaysPrint : LDIST_NAME,
880                  RemarkName, L->getStartLoc(), L->getHeader())
881              << "loop not distributed: " << Message);
882
883    // Also issue a warning if distribution was requested explicitly but it
884    // failed.
885    if (Forced)
886      Ctx.diagnose(DiagnosticInfoOptimizationFailure(
887          *F, L->getStartLoc(), "loop not distributed: failed "
888                                "explicitly specified loop distribution"));
889
890    return false;
891  }
892
893  /// Return if distribution forced to be enabled/disabled for the loop.
894  ///
895  /// If the optional has a value, it indicates whether distribution was forced
896  /// to be enabled (true) or disabled (false).  If the optional has no value
897  /// distribution was not forced either way.
898  const Optional<bool> &isForced() const { return IsForced; }
899
900private:
901  /// Filter out checks between pointers from the same partition.
902  ///
903  /// \p PtrToPartition contains the partition number for pointers.  Partition
904  /// number -1 means that the pointer is used in multiple partitions.  In this
905  /// case we can't safely omit the check.
906  SmallVector<RuntimePointerChecking::PointerCheck, 4>
907  includeOnlyCrossPartitionChecks(
908      const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &AllChecks,
909      const SmallVectorImpl<int> &PtrToPartition,
910      const RuntimePointerChecking *RtPtrChecking) {
911    SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
912
913    copy_if(AllChecks, std::back_inserter(Checks),
914            [&](const RuntimePointerChecking::PointerCheck &Check) {
915              for (unsigned PtrIdx1 : Check.first->Members)
916                for (unsigned PtrIdx2 : Check.second->Members)
917                  // Only include this check if there is a pair of pointers
918                  // that require checking and the pointers fall into
919                  // separate partitions.
920                  //
921                  // (Note that we already know at this point that the two
922                  // pointer groups need checking but it doesn't follow
923                  // that each pair of pointers within the two groups need
924                  // checking as well.
925                  //
926                  // In other words we don't want to include a check just
927                  // because there is a pair of pointers between the two
928                  // pointer groups that require checks and a different
929                  // pair whose pointers fall into different partitions.)
930                  if (RtPtrChecking->needsChecking(PtrIdx1, PtrIdx2) &&
931                      !RuntimePointerChecking::arePointersInSamePartition(
932                          PtrToPartition, PtrIdx1, PtrIdx2))
933                    return true;
934              return false;
935            });
936
937    return Checks;
938  }
939
940  /// Check whether the loop metadata is forcing distribution to be
941  /// enabled/disabled.
942  void setForced() {
943    Optional<const MDOperand *> Value =
944        findStringMetadataForLoop(L, "llvm.loop.distribute.enable");
945    if (!Value)
946      return;
947
948    const MDOperand *Op = *Value;
949    assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata");
950    IsForced = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
951  }
952
953  Loop *L;
954  Function *F;
955
956  // Analyses used.
957  LoopInfo *LI;
958  const LoopAccessInfo *LAI = nullptr;
959  DominatorTree *DT;
960  ScalarEvolution *SE;
961  OptimizationRemarkEmitter *ORE;
962
963  /// Indicates whether distribution is forced to be enabled/disabled for
964  /// the loop.
965  ///
966  /// If the optional has a value, it indicates whether distribution was forced
967  /// to be enabled (true) or disabled (false).  If the optional has no value
968  /// distribution was not forced either way.
969  Optional<bool> IsForced;
970};
971
972} // end anonymous namespace
973
974/// Shared implementation between new and old PMs.
975static bool runImpl(Function &F, LoopInfo *LI, DominatorTree *DT,
976                    ScalarEvolution *SE, OptimizationRemarkEmitter *ORE,
977                    std::function<const LoopAccessInfo &(Loop &)> &GetLAA) {
978  // Build up a worklist of inner-loops to vectorize. This is necessary as the
979  // act of distributing a loop creates new loops and can invalidate iterators
980  // across the loops.
981  SmallVector<Loop *, 8> Worklist;
982
983  for (Loop *TopLevelLoop : *LI)
984    for (Loop *L : depth_first(TopLevelLoop))
985      // We only handle inner-most loops.
986      if (L->empty())
987        Worklist.push_back(L);
988
989  // Now walk the identified inner loops.
990  bool Changed = false;
991  for (Loop *L : Worklist) {
992    LoopDistributeForLoop LDL(L, &F, LI, DT, SE, ORE);
993
994    // If distribution was forced for the specific loop to be
995    // enabled/disabled, follow that.  Otherwise use the global flag.
996    if (LDL.isForced().getValueOr(EnableLoopDistribute))
997      Changed |= LDL.processLoop(GetLAA);
998  }
999
1000  // Process each loop nest in the function.
1001  return Changed;
1002}
1003
1004namespace {
1005
1006/// The pass class.
1007class LoopDistributeLegacy : public FunctionPass {
1008public:
1009  static char ID;
1010
1011  LoopDistributeLegacy() : FunctionPass(ID) {
1012    // The default is set by the caller.
1013    initializeLoopDistributeLegacyPass(*PassRegistry::getPassRegistry());
1014  }
1015
1016  bool runOnFunction(Function &F) override {
1017    if (skipFunction(F))
1018      return false;
1019
1020    auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1021    auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
1022    auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1023    auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1024    auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1025    std::function<const LoopAccessInfo &(Loop &)> GetLAA =
1026        [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
1027
1028    return runImpl(F, LI, DT, SE, ORE, GetLAA);
1029  }
1030
1031  void getAnalysisUsage(AnalysisUsage &AU) const override {
1032    AU.addRequired<ScalarEvolutionWrapperPass>();
1033    AU.addRequired<LoopInfoWrapperPass>();
1034    AU.addPreserved<LoopInfoWrapperPass>();
1035    AU.addRequired<LoopAccessLegacyAnalysis>();
1036    AU.addRequired<DominatorTreeWrapperPass>();
1037    AU.addPreserved<DominatorTreeWrapperPass>();
1038    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1039    AU.addPreserved<GlobalsAAWrapperPass>();
1040  }
1041};
1042
1043} // end anonymous namespace
1044
1045PreservedAnalyses LoopDistributePass::run(Function &F,
1046                                          FunctionAnalysisManager &AM) {
1047  auto &LI = AM.getResult<LoopAnalysis>(F);
1048  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1049  auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1050  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1051
1052  // We don't directly need these analyses but they're required for loop
1053  // analyses so provide them below.
1054  auto &AA = AM.getResult<AAManager>(F);
1055  auto &AC = AM.getResult<AssumptionAnalysis>(F);
1056  auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1057  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1058
1059  auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
1060  std::function<const LoopAccessInfo &(Loop &)> GetLAA =
1061      [&](Loop &L) -> const LoopAccessInfo & {
1062    LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr};
1063    return LAM.getResult<LoopAccessAnalysis>(L, AR);
1064  };
1065
1066  bool Changed = runImpl(F, &LI, &DT, &SE, &ORE, GetLAA);
1067  if (!Changed)
1068    return PreservedAnalyses::all();
1069  PreservedAnalyses PA;
1070  PA.preserve<LoopAnalysis>();
1071  PA.preserve<DominatorTreeAnalysis>();
1072  PA.preserve<GlobalsAA>();
1073  return PA;
1074}
1075
1076char LoopDistributeLegacy::ID;
1077
1078static const char ldist_name[] = "Loop Distribution";
1079
1080INITIALIZE_PASS_BEGIN(LoopDistributeLegacy, LDIST_NAME, ldist_name, false,
1081                      false)
1082INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1083INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
1084INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1085INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1086INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1087INITIALIZE_PASS_END(LoopDistributeLegacy, LDIST_NAME, ldist_name, false, false)
1088
1089FunctionPass *llvm::createLoopDistributePass() { return new LoopDistributeLegacy(); }
1090