IndVarSimplify.cpp revision 280031
1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// If the trip count of a loop is computable, this pass also makes the following
15// changes:
16//   1. The exit condition for the loop is canonicalized to compare the
17//      induction value against the exit value.  This turns loops like:
18//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19//   2. Any use outside of the loop of an expression derived from the indvar
20//      is changed to compute the derived value outside of the loop, eliminating
21//      the dependence on the exit value of the induction variable.  If the only
22//      purpose of the loop is to compute the exit value of some derived
23//      expression, this transformation will make the loop dead.
24//
25//===----------------------------------------------------------------------===//
26
27#include "llvm/Transforms/Scalar.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/Analysis/LoopInfo.h"
32#include "llvm/Analysis/LoopPass.h"
33#include "llvm/Analysis/ScalarEvolutionExpander.h"
34#include "llvm/Analysis/TargetTransformInfo.h"
35#include "llvm/IR/BasicBlock.h"
36#include "llvm/IR/CFG.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/DataLayout.h"
39#include "llvm/IR/Dominators.h"
40#include "llvm/IR/Instructions.h"
41#include "llvm/IR/IntrinsicInst.h"
42#include "llvm/IR/LLVMContext.h"
43#include "llvm/IR/Type.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/Target/TargetLibraryInfo.h"
48#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49#include "llvm/Transforms/Utils/Local.h"
50#include "llvm/Transforms/Utils/SimplifyIndVar.h"
51using namespace llvm;
52
53#define DEBUG_TYPE "indvars"
54
55STATISTIC(NumWidened     , "Number of indvars widened");
56STATISTIC(NumReplaced    , "Number of exit values replaced");
57STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
58STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
59STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
60
61// Trip count verification can be enabled by default under NDEBUG if we
62// implement a strong expression equivalence checker in SCEV. Until then, we
63// use the verify-indvars flag, which may assert in some cases.
64static cl::opt<bool> VerifyIndvars(
65  "verify-indvars", cl::Hidden,
66  cl::desc("Verify the ScalarEvolution result after running indvars"));
67
68static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden,
69  cl::desc("Reduce live induction variables."));
70
71namespace {
72  class IndVarSimplify : public LoopPass {
73    LoopInfo                  *LI;
74    ScalarEvolution           *SE;
75    DominatorTree             *DT;
76    const DataLayout          *DL;
77    TargetLibraryInfo         *TLI;
78    const TargetTransformInfo *TTI;
79
80    SmallVector<WeakVH, 16> DeadInsts;
81    bool Changed;
82  public:
83
84    static char ID; // Pass identification, replacement for typeid
85    IndVarSimplify() : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr),
86                       DL(nullptr), Changed(false) {
87      initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
88    }
89
90    bool runOnLoop(Loop *L, LPPassManager &LPM) override;
91
92    void getAnalysisUsage(AnalysisUsage &AU) const override {
93      AU.addRequired<DominatorTreeWrapperPass>();
94      AU.addRequired<LoopInfo>();
95      AU.addRequired<ScalarEvolution>();
96      AU.addRequiredID(LoopSimplifyID);
97      AU.addRequiredID(LCSSAID);
98      AU.addPreserved<ScalarEvolution>();
99      AU.addPreservedID(LoopSimplifyID);
100      AU.addPreservedID(LCSSAID);
101      AU.setPreservesCFG();
102    }
103
104  private:
105    void releaseMemory() override {
106      DeadInsts.clear();
107    }
108
109    bool isValidRewrite(Value *FromVal, Value *ToVal);
110
111    void HandleFloatingPointIV(Loop *L, PHINode *PH);
112    void RewriteNonIntegerIVs(Loop *L);
113
114    void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
115
116    void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
117
118    Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
119                                     PHINode *IndVar, SCEVExpander &Rewriter);
120
121    void SinkUnusedInvariants(Loop *L);
122  };
123}
124
125char IndVarSimplify::ID = 0;
126INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
127                "Induction Variable Simplification", false, false)
128INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
129INITIALIZE_PASS_DEPENDENCY(LoopInfo)
130INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
131INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
132INITIALIZE_PASS_DEPENDENCY(LCSSA)
133INITIALIZE_PASS_END(IndVarSimplify, "indvars",
134                "Induction Variable Simplification", false, false)
135
136Pass *llvm::createIndVarSimplifyPass() {
137  return new IndVarSimplify();
138}
139
140/// isValidRewrite - Return true if the SCEV expansion generated by the
141/// rewriter can replace the original value. SCEV guarantees that it
142/// produces the same value, but the way it is produced may be illegal IR.
143/// Ideally, this function will only be called for verification.
144bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
145  // If an SCEV expression subsumed multiple pointers, its expansion could
146  // reassociate the GEP changing the base pointer. This is illegal because the
147  // final address produced by a GEP chain must be inbounds relative to its
148  // underlying object. Otherwise basic alias analysis, among other things,
149  // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
150  // producing an expression involving multiple pointers. Until then, we must
151  // bail out here.
152  //
153  // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
154  // because it understands lcssa phis while SCEV does not.
155  Value *FromPtr = FromVal;
156  Value *ToPtr = ToVal;
157  if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
158    FromPtr = GEP->getPointerOperand();
159  }
160  if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
161    ToPtr = GEP->getPointerOperand();
162  }
163  if (FromPtr != FromVal || ToPtr != ToVal) {
164    // Quickly check the common case
165    if (FromPtr == ToPtr)
166      return true;
167
168    // SCEV may have rewritten an expression that produces the GEP's pointer
169    // operand. That's ok as long as the pointer operand has the same base
170    // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
171    // base of a recurrence. This handles the case in which SCEV expansion
172    // converts a pointer type recurrence into a nonrecurrent pointer base
173    // indexed by an integer recurrence.
174
175    // If the GEP base pointer is a vector of pointers, abort.
176    if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
177      return false;
178
179    const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
180    const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
181    if (FromBase == ToBase)
182      return true;
183
184    DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
185          << *FromBase << " != " << *ToBase << "\n");
186
187    return false;
188  }
189  return true;
190}
191
192/// Determine the insertion point for this user. By default, insert immediately
193/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
194/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
195/// common dominator for the incoming blocks.
196static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
197                                          DominatorTree *DT) {
198  PHINode *PHI = dyn_cast<PHINode>(User);
199  if (!PHI)
200    return User;
201
202  Instruction *InsertPt = nullptr;
203  for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
204    if (PHI->getIncomingValue(i) != Def)
205      continue;
206
207    BasicBlock *InsertBB = PHI->getIncomingBlock(i);
208    if (!InsertPt) {
209      InsertPt = InsertBB->getTerminator();
210      continue;
211    }
212    InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
213    InsertPt = InsertBB->getTerminator();
214  }
215  assert(InsertPt && "Missing phi operand");
216  assert((!isa<Instruction>(Def) ||
217          DT->dominates(cast<Instruction>(Def), InsertPt)) &&
218         "def does not dominate all uses");
219  return InsertPt;
220}
221
222//===----------------------------------------------------------------------===//
223// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
224//===----------------------------------------------------------------------===//
225
226/// ConvertToSInt - Convert APF to an integer, if possible.
227static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
228  bool isExact = false;
229  // See if we can convert this to an int64_t
230  uint64_t UIntVal;
231  if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
232                           &isExact) != APFloat::opOK || !isExact)
233    return false;
234  IntVal = UIntVal;
235  return true;
236}
237
238/// HandleFloatingPointIV - If the loop has floating induction variable
239/// then insert corresponding integer induction variable if possible.
240/// For example,
241/// for(double i = 0; i < 10000; ++i)
242///   bar(i)
243/// is converted into
244/// for(int i = 0; i < 10000; ++i)
245///   bar((double)i);
246///
247void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
248  unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
249  unsigned BackEdge     = IncomingEdge^1;
250
251  // Check incoming value.
252  ConstantFP *InitValueVal =
253    dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
254
255  int64_t InitValue;
256  if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
257    return;
258
259  // Check IV increment. Reject this PN if increment operation is not
260  // an add or increment value can not be represented by an integer.
261  BinaryOperator *Incr =
262    dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
263  if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return;
264
265  // If this is not an add of the PHI with a constantfp, or if the constant fp
266  // is not an integer, bail out.
267  ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
268  int64_t IncValue;
269  if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
270      !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
271    return;
272
273  // Check Incr uses. One user is PN and the other user is an exit condition
274  // used by the conditional terminator.
275  Value::user_iterator IncrUse = Incr->user_begin();
276  Instruction *U1 = cast<Instruction>(*IncrUse++);
277  if (IncrUse == Incr->user_end()) return;
278  Instruction *U2 = cast<Instruction>(*IncrUse++);
279  if (IncrUse != Incr->user_end()) return;
280
281  // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
282  // only used by a branch, we can't transform it.
283  FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
284  if (!Compare)
285    Compare = dyn_cast<FCmpInst>(U2);
286  if (!Compare || !Compare->hasOneUse() ||
287      !isa<BranchInst>(Compare->user_back()))
288    return;
289
290  BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
291
292  // We need to verify that the branch actually controls the iteration count
293  // of the loop.  If not, the new IV can overflow and no one will notice.
294  // The branch block must be in the loop and one of the successors must be out
295  // of the loop.
296  assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
297  if (!L->contains(TheBr->getParent()) ||
298      (L->contains(TheBr->getSuccessor(0)) &&
299       L->contains(TheBr->getSuccessor(1))))
300    return;
301
302
303  // If it isn't a comparison with an integer-as-fp (the exit value), we can't
304  // transform it.
305  ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
306  int64_t ExitValue;
307  if (ExitValueVal == nullptr ||
308      !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
309    return;
310
311  // Find new predicate for integer comparison.
312  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
313  switch (Compare->getPredicate()) {
314  default: return;  // Unknown comparison.
315  case CmpInst::FCMP_OEQ:
316  case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
317  case CmpInst::FCMP_ONE:
318  case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
319  case CmpInst::FCMP_OGT:
320  case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
321  case CmpInst::FCMP_OGE:
322  case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
323  case CmpInst::FCMP_OLT:
324  case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
325  case CmpInst::FCMP_OLE:
326  case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
327  }
328
329  // We convert the floating point induction variable to a signed i32 value if
330  // we can.  This is only safe if the comparison will not overflow in a way
331  // that won't be trapped by the integer equivalent operations.  Check for this
332  // now.
333  // TODO: We could use i64 if it is native and the range requires it.
334
335  // The start/stride/exit values must all fit in signed i32.
336  if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
337    return;
338
339  // If not actually striding (add x, 0.0), avoid touching the code.
340  if (IncValue == 0)
341    return;
342
343  // Positive and negative strides have different safety conditions.
344  if (IncValue > 0) {
345    // If we have a positive stride, we require the init to be less than the
346    // exit value.
347    if (InitValue >= ExitValue)
348      return;
349
350    uint32_t Range = uint32_t(ExitValue-InitValue);
351    // Check for infinite loop, either:
352    // while (i <= Exit) or until (i > Exit)
353    if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
354      if (++Range == 0) return;  // Range overflows.
355    }
356
357    unsigned Leftover = Range % uint32_t(IncValue);
358
359    // If this is an equality comparison, we require that the strided value
360    // exactly land on the exit value, otherwise the IV condition will wrap
361    // around and do things the fp IV wouldn't.
362    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
363        Leftover != 0)
364      return;
365
366    // If the stride would wrap around the i32 before exiting, we can't
367    // transform the IV.
368    if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
369      return;
370
371  } else {
372    // If we have a negative stride, we require the init to be greater than the
373    // exit value.
374    if (InitValue <= ExitValue)
375      return;
376
377    uint32_t Range = uint32_t(InitValue-ExitValue);
378    // Check for infinite loop, either:
379    // while (i >= Exit) or until (i < Exit)
380    if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
381      if (++Range == 0) return;  // Range overflows.
382    }
383
384    unsigned Leftover = Range % uint32_t(-IncValue);
385
386    // If this is an equality comparison, we require that the strided value
387    // exactly land on the exit value, otherwise the IV condition will wrap
388    // around and do things the fp IV wouldn't.
389    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
390        Leftover != 0)
391      return;
392
393    // If the stride would wrap around the i32 before exiting, we can't
394    // transform the IV.
395    if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
396      return;
397  }
398
399  IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
400
401  // Insert new integer induction variable.
402  PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
403  NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
404                      PN->getIncomingBlock(IncomingEdge));
405
406  Value *NewAdd =
407    BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
408                              Incr->getName()+".int", Incr);
409  NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
410
411  ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
412                                      ConstantInt::get(Int32Ty, ExitValue),
413                                      Compare->getName());
414
415  // In the following deletions, PN may become dead and may be deleted.
416  // Use a WeakVH to observe whether this happens.
417  WeakVH WeakPH = PN;
418
419  // Delete the old floating point exit comparison.  The branch starts using the
420  // new comparison.
421  NewCompare->takeName(Compare);
422  Compare->replaceAllUsesWith(NewCompare);
423  RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
424
425  // Delete the old floating point increment.
426  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
427  RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
428
429  // If the FP induction variable still has uses, this is because something else
430  // in the loop uses its value.  In order to canonicalize the induction
431  // variable, we chose to eliminate the IV and rewrite it in terms of an
432  // int->fp cast.
433  //
434  // We give preference to sitofp over uitofp because it is faster on most
435  // platforms.
436  if (WeakPH) {
437    Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
438                                 PN->getParent()->getFirstInsertionPt());
439    PN->replaceAllUsesWith(Conv);
440    RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
441  }
442  Changed = true;
443}
444
445void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
446  // First step.  Check to see if there are any floating-point recurrences.
447  // If there are, change them into integer recurrences, permitting analysis by
448  // the SCEV routines.
449  //
450  BasicBlock *Header = L->getHeader();
451
452  SmallVector<WeakVH, 8> PHIs;
453  for (BasicBlock::iterator I = Header->begin();
454       PHINode *PN = dyn_cast<PHINode>(I); ++I)
455    PHIs.push_back(PN);
456
457  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
458    if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
459      HandleFloatingPointIV(L, PN);
460
461  // If the loop previously had floating-point IV, ScalarEvolution
462  // may not have been able to compute a trip count. Now that we've done some
463  // re-writing, the trip count may be computable.
464  if (Changed)
465    SE->forgetLoop(L);
466}
467
468//===----------------------------------------------------------------------===//
469// RewriteLoopExitValues - Optimize IV users outside the loop.
470// As a side effect, reduces the amount of IV processing within the loop.
471//===----------------------------------------------------------------------===//
472
473/// RewriteLoopExitValues - Check to see if this loop has a computable
474/// loop-invariant execution count.  If so, this means that we can compute the
475/// final value of any expressions that are recurrent in the loop, and
476/// substitute the exit values from the loop into any instructions outside of
477/// the loop that use the final values of the current expressions.
478///
479/// This is mostly redundant with the regular IndVarSimplify activities that
480/// happen later, except that it's more powerful in some cases, because it's
481/// able to brute-force evaluate arbitrary instructions as long as they have
482/// constant operands at the beginning of the loop.
483void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
484  // Verify the input to the pass in already in LCSSA form.
485  assert(L->isLCSSAForm(*DT));
486
487  SmallVector<BasicBlock*, 8> ExitBlocks;
488  L->getUniqueExitBlocks(ExitBlocks);
489
490  // Find all values that are computed inside the loop, but used outside of it.
491  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
492  // the exit blocks of the loop to find them.
493  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
494    BasicBlock *ExitBB = ExitBlocks[i];
495
496    // If there are no PHI nodes in this exit block, then no values defined
497    // inside the loop are used on this path, skip it.
498    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
499    if (!PN) continue;
500
501    unsigned NumPreds = PN->getNumIncomingValues();
502
503    // We would like to be able to RAUW single-incoming value PHI nodes. We
504    // have to be certain this is safe even when this is an LCSSA PHI node.
505    // While the computed exit value is no longer varying in *this* loop, the
506    // exit block may be an exit block for an outer containing loop as well,
507    // the exit value may be varying in the outer loop, and thus it may still
508    // require an LCSSA PHI node. The safe case is when this is
509    // single-predecessor PHI node (LCSSA) and the exit block containing it is
510    // part of the enclosing loop, or this is the outer most loop of the nest.
511    // In either case the exit value could (at most) be varying in the same
512    // loop body as the phi node itself. Thus if it is in turn used outside of
513    // an enclosing loop it will only be via a separate LCSSA node.
514    bool LCSSASafePhiForRAUW =
515        NumPreds == 1 &&
516        (!L->getParentLoop() || L->getParentLoop() == LI->getLoopFor(ExitBB));
517
518    // Iterate over all of the PHI nodes.
519    BasicBlock::iterator BBI = ExitBB->begin();
520    while ((PN = dyn_cast<PHINode>(BBI++))) {
521      if (PN->use_empty())
522        continue; // dead use, don't replace it
523
524      // SCEV only supports integer expressions for now.
525      if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
526        continue;
527
528      // It's necessary to tell ScalarEvolution about this explicitly so that
529      // it can walk the def-use list and forget all SCEVs, as it may not be
530      // watching the PHI itself. Once the new exit value is in place, there
531      // may not be a def-use connection between the loop and every instruction
532      // which got a SCEVAddRecExpr for that loop.
533      SE->forgetValue(PN);
534
535      // Iterate over all of the values in all the PHI nodes.
536      for (unsigned i = 0; i != NumPreds; ++i) {
537        // If the value being merged in is not integer or is not defined
538        // in the loop, skip it.
539        Value *InVal = PN->getIncomingValue(i);
540        if (!isa<Instruction>(InVal))
541          continue;
542
543        // If this pred is for a subloop, not L itself, skip it.
544        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
545          continue; // The Block is in a subloop, skip it.
546
547        // Check that InVal is defined in the loop.
548        Instruction *Inst = cast<Instruction>(InVal);
549        if (!L->contains(Inst))
550          continue;
551
552        // Okay, this instruction has a user outside of the current loop
553        // and varies predictably *inside* the loop.  Evaluate the value it
554        // contains when the loop exits, if possible.
555        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
556        if (!SE->isLoopInvariant(ExitValue, L) ||
557            !isSafeToExpand(ExitValue, *SE))
558          continue;
559
560        // Computing the value outside of the loop brings no benefit if :
561        //  - it is definitely used inside the loop in a way which can not be
562        //    optimized away.
563        //  - no use outside of the loop can take advantage of hoisting the
564        //    computation out of the loop
565        if (ExitValue->getSCEVType()>=scMulExpr) {
566          unsigned NumHardInternalUses = 0;
567          unsigned NumSoftExternalUses = 0;
568          unsigned NumUses = 0;
569          for (auto IB = Inst->user_begin(), IE = Inst->user_end();
570               IB != IE && NumUses <= 6; ++IB) {
571            Instruction *UseInstr = cast<Instruction>(*IB);
572            unsigned Opc = UseInstr->getOpcode();
573            NumUses++;
574            if (L->contains(UseInstr)) {
575              if (Opc == Instruction::Call || Opc == Instruction::Ret)
576                NumHardInternalUses++;
577            } else {
578              if (Opc == Instruction::PHI) {
579                // Do not count the Phi as a use. LCSSA may have inserted
580                // plenty of trivial ones.
581                NumUses--;
582                for (auto PB = UseInstr->user_begin(),
583                          PE = UseInstr->user_end();
584                     PB != PE && NumUses <= 6; ++PB, ++NumUses) {
585                  unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
586                  if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
587                    NumSoftExternalUses++;
588                }
589                continue;
590              }
591              if (Opc != Instruction::Call && Opc != Instruction::Ret)
592                NumSoftExternalUses++;
593            }
594          }
595          if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
596            continue;
597        }
598
599        Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
600
601        DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
602                     << "  LoopVal = " << *Inst << "\n");
603
604        if (!isValidRewrite(Inst, ExitVal)) {
605          DeadInsts.push_back(ExitVal);
606          continue;
607        }
608        Changed = true;
609        ++NumReplaced;
610
611        PN->setIncomingValue(i, ExitVal);
612
613        // If this instruction is dead now, delete it. Don't do it now to avoid
614        // invalidating iterators.
615        if (isInstructionTriviallyDead(Inst, TLI))
616          DeadInsts.push_back(Inst);
617
618        // If we determined that this PHI is safe to replace even if an LCSSA
619        // PHI, do so.
620        if (LCSSASafePhiForRAUW) {
621          PN->replaceAllUsesWith(ExitVal);
622          PN->eraseFromParent();
623        }
624      }
625
626      // If we were unable to completely replace the PHI node, clone the PHI
627      // and delete the original one. This lets IVUsers and any other maps
628      // purge the original user from their records.
629      if (!LCSSASafePhiForRAUW) {
630        PHINode *NewPN = cast<PHINode>(PN->clone());
631        NewPN->takeName(PN);
632        NewPN->insertBefore(PN);
633        PN->replaceAllUsesWith(NewPN);
634        PN->eraseFromParent();
635      }
636    }
637  }
638
639  // The insertion point instruction may have been deleted; clear it out
640  // so that the rewriter doesn't trip over it later.
641  Rewriter.clearInsertPoint();
642}
643
644//===----------------------------------------------------------------------===//
645//  IV Widening - Extend the width of an IV to cover its widest uses.
646//===----------------------------------------------------------------------===//
647
648namespace {
649  // Collect information about induction variables that are used by sign/zero
650  // extend operations. This information is recorded by CollectExtend and
651  // provides the input to WidenIV.
652  struct WideIVInfo {
653    PHINode *NarrowIV;
654    Type *WidestNativeType; // Widest integer type created [sz]ext
655    bool IsSigned;          // Was a sext user seen before a zext?
656
657    WideIVInfo() : NarrowIV(nullptr), WidestNativeType(nullptr),
658                   IsSigned(false) {}
659  };
660}
661
662/// visitCast - Update information about the induction variable that is
663/// extended by this sign or zero extend operation. This is used to determine
664/// the final width of the IV before actually widening it.
665static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
666                        const DataLayout *DL, const TargetTransformInfo *TTI) {
667  bool IsSigned = Cast->getOpcode() == Instruction::SExt;
668  if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
669    return;
670
671  Type *Ty = Cast->getType();
672  uint64_t Width = SE->getTypeSizeInBits(Ty);
673  if (DL && !DL->isLegalInteger(Width))
674    return;
675
676  // Cast is either an sext or zext up to this point.
677  // We should not widen an indvar if arithmetics on the wider indvar are more
678  // expensive than those on the narrower indvar. We check only the cost of ADD
679  // because at least an ADD is required to increment the induction variable. We
680  // could compute more comprehensively the cost of all instructions on the
681  // induction variable when necessary.
682  if (TTI &&
683      TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
684          TTI->getArithmeticInstrCost(Instruction::Add,
685                                      Cast->getOperand(0)->getType())) {
686    return;
687  }
688
689  if (!WI.WidestNativeType) {
690    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
691    WI.IsSigned = IsSigned;
692    return;
693  }
694
695  // We extend the IV to satisfy the sign of its first user, arbitrarily.
696  if (WI.IsSigned != IsSigned)
697    return;
698
699  if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
700    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
701}
702
703namespace {
704
705/// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
706/// WideIV that computes the same value as the Narrow IV def.  This avoids
707/// caching Use* pointers.
708struct NarrowIVDefUse {
709  Instruction *NarrowDef;
710  Instruction *NarrowUse;
711  Instruction *WideDef;
712
713  NarrowIVDefUse(): NarrowDef(nullptr), NarrowUse(nullptr), WideDef(nullptr) {}
714
715  NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
716    NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
717};
718
719/// WidenIV - The goal of this transform is to remove sign and zero extends
720/// without creating any new induction variables. To do this, it creates a new
721/// phi of the wider type and redirects all users, either removing extends or
722/// inserting truncs whenever we stop propagating the type.
723///
724class WidenIV {
725  // Parameters
726  PHINode *OrigPhi;
727  Type *WideType;
728  bool IsSigned;
729
730  // Context
731  LoopInfo        *LI;
732  Loop            *L;
733  ScalarEvolution *SE;
734  DominatorTree   *DT;
735
736  // Result
737  PHINode *WidePhi;
738  Instruction *WideInc;
739  const SCEV *WideIncExpr;
740  SmallVectorImpl<WeakVH> &DeadInsts;
741
742  SmallPtrSet<Instruction*,16> Widened;
743  SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
744
745public:
746  WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
747          ScalarEvolution *SEv, DominatorTree *DTree,
748          SmallVectorImpl<WeakVH> &DI) :
749    OrigPhi(WI.NarrowIV),
750    WideType(WI.WidestNativeType),
751    IsSigned(WI.IsSigned),
752    LI(LInfo),
753    L(LI->getLoopFor(OrigPhi->getParent())),
754    SE(SEv),
755    DT(DTree),
756    WidePhi(nullptr),
757    WideInc(nullptr),
758    WideIncExpr(nullptr),
759    DeadInsts(DI) {
760    assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
761  }
762
763  PHINode *CreateWideIV(SCEVExpander &Rewriter);
764
765protected:
766  Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
767                   Instruction *Use);
768
769  Instruction *CloneIVUser(NarrowIVDefUse DU);
770
771  const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
772
773  const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
774
775  const SCEV *GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
776                              unsigned OpCode) const;
777
778  Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
779
780  bool WidenLoopCompare(NarrowIVDefUse DU);
781
782  void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
783};
784} // anonymous namespace
785
786/// isLoopInvariant - Perform a quick domtree based check for loop invariance
787/// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
788/// gratuitous for this purpose.
789static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
790  Instruction *Inst = dyn_cast<Instruction>(V);
791  if (!Inst)
792    return true;
793
794  return DT->properlyDominates(Inst->getParent(), L->getHeader());
795}
796
797Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
798                          Instruction *Use) {
799  // Set the debug location and conservative insertion point.
800  IRBuilder<> Builder(Use);
801  // Hoist the insertion point into loop preheaders as far as possible.
802  for (const Loop *L = LI->getLoopFor(Use->getParent());
803       L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
804       L = L->getParentLoop())
805    Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
806
807  return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
808                    Builder.CreateZExt(NarrowOper, WideType);
809}
810
811/// CloneIVUser - Instantiate a wide operation to replace a narrow
812/// operation. This only needs to handle operations that can evaluation to
813/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
814Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
815  unsigned Opcode = DU.NarrowUse->getOpcode();
816  switch (Opcode) {
817  default:
818    return nullptr;
819  case Instruction::Add:
820  case Instruction::Mul:
821  case Instruction::UDiv:
822  case Instruction::Sub:
823  case Instruction::And:
824  case Instruction::Or:
825  case Instruction::Xor:
826  case Instruction::Shl:
827  case Instruction::LShr:
828  case Instruction::AShr:
829    DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
830
831    // Replace NarrowDef operands with WideDef. Otherwise, we don't know
832    // anything about the narrow operand yet so must insert a [sz]ext. It is
833    // probably loop invariant and will be folded or hoisted. If it actually
834    // comes from a widened IV, it should be removed during a future call to
835    // WidenIVUse.
836    Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
837      getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
838    Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
839      getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
840
841    BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
842    BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
843                                                    LHS, RHS,
844                                                    NarrowBO->getName());
845    IRBuilder<> Builder(DU.NarrowUse);
846    Builder.Insert(WideBO);
847    if (const OverflowingBinaryOperator *OBO =
848        dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
849      if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
850      if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
851    }
852    return WideBO;
853  }
854}
855
856const SCEV *WidenIV::GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
857                                     unsigned OpCode) const {
858  if (OpCode == Instruction::Add)
859    return SE->getAddExpr(LHS, RHS);
860  if (OpCode == Instruction::Sub)
861    return SE->getMinusSCEV(LHS, RHS);
862  if (OpCode == Instruction::Mul)
863    return SE->getMulExpr(LHS, RHS);
864
865  llvm_unreachable("Unsupported opcode.");
866}
867
868/// No-wrap operations can transfer sign extension of their result to their
869/// operands. Generate the SCEV value for the widened operation without
870/// actually modifying the IR yet. If the expression after extending the
871/// operands is an AddRec for this loop, return it.
872const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
873
874  // Handle the common case of add<nsw/nuw>
875  const unsigned OpCode = DU.NarrowUse->getOpcode();
876  // Only Add/Sub/Mul instructions supported yet.
877  if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
878      OpCode != Instruction::Mul)
879    return nullptr;
880
881  // One operand (NarrowDef) has already been extended to WideDef. Now determine
882  // if extending the other will lead to a recurrence.
883  const unsigned ExtendOperIdx =
884      DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
885  assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
886
887  const SCEV *ExtendOperExpr = nullptr;
888  const OverflowingBinaryOperator *OBO =
889    cast<OverflowingBinaryOperator>(DU.NarrowUse);
890  if (IsSigned && OBO->hasNoSignedWrap())
891    ExtendOperExpr = SE->getSignExtendExpr(
892      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
893  else if(!IsSigned && OBO->hasNoUnsignedWrap())
894    ExtendOperExpr = SE->getZeroExtendExpr(
895      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
896  else
897    return nullptr;
898
899  // When creating this SCEV expr, don't apply the current operations NSW or NUW
900  // flags. This instruction may be guarded by control flow that the no-wrap
901  // behavior depends on. Non-control-equivalent instructions can be mapped to
902  // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
903  // semantics to those operations.
904  const SCEV *lhs = SE->getSCEV(DU.WideDef);
905  const SCEV *rhs = ExtendOperExpr;
906
907  // Let's swap operands to the initial order for the case of non-commutative
908  // operations, like SUB. See PR21014.
909  if (ExtendOperIdx == 0)
910    std::swap(lhs, rhs);
911  const SCEVAddRecExpr *AddRec =
912      dyn_cast<SCEVAddRecExpr>(GetSCEVByOpCode(lhs, rhs, OpCode));
913
914  if (!AddRec || AddRec->getLoop() != L)
915    return nullptr;
916  return AddRec;
917}
918
919/// GetWideRecurrence - Is this instruction potentially interesting from
920/// IVUsers' perspective after widening it's type? In other words, can the
921/// extend be safely hoisted out of the loop with SCEV reducing the value to a
922/// recurrence on the same loop. If so, return the sign or zero extended
923/// recurrence. Otherwise return NULL.
924const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
925  if (!SE->isSCEVable(NarrowUse->getType()))
926    return nullptr;
927
928  const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
929  if (SE->getTypeSizeInBits(NarrowExpr->getType())
930      >= SE->getTypeSizeInBits(WideType)) {
931    // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
932    // index. So don't follow this use.
933    return nullptr;
934  }
935
936  const SCEV *WideExpr = IsSigned ?
937    SE->getSignExtendExpr(NarrowExpr, WideType) :
938    SE->getZeroExtendExpr(NarrowExpr, WideType);
939  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
940  if (!AddRec || AddRec->getLoop() != L)
941    return nullptr;
942  return AddRec;
943}
944
945/// This IV user cannot be widen. Replace this use of the original narrow IV
946/// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
947static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT) {
948  DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef
949        << " for user " << *DU.NarrowUse << "\n");
950  IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
951  Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
952  DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
953}
954
955/// If the narrow use is a compare instruction, then widen the compare
956//  (and possibly the other operand).  The extend operation is hoisted into the
957// loop preheader as far as possible.
958bool WidenIV::WidenLoopCompare(NarrowIVDefUse DU) {
959  ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
960  if (!Cmp)
961    return false;
962
963  // Sign of IV user and compare must match.
964  if (IsSigned != CmpInst::isSigned(Cmp->getPredicate()))
965    return false;
966
967  Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
968  unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
969  unsigned IVWidth = SE->getTypeSizeInBits(WideType);
970  assert (CastWidth <= IVWidth && "Unexpected width while widening compare.");
971
972  // Widen the compare instruction.
973  IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
974  DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
975
976  // Widen the other operand of the compare, if necessary.
977  if (CastWidth < IVWidth) {
978    Value *ExtOp = getExtend(Op, WideType, IsSigned, Cmp);
979    DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
980  }
981  return true;
982}
983
984/// WidenIVUse - Determine whether an individual user of the narrow IV can be
985/// widened. If so, return the wide clone of the user.
986Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
987
988  // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
989  if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
990    if (LI->getLoopFor(UsePhi->getParent()) != L) {
991      // For LCSSA phis, sink the truncate outside the loop.
992      // After SimplifyCFG most loop exit targets have a single predecessor.
993      // Otherwise fall back to a truncate within the loop.
994      if (UsePhi->getNumOperands() != 1)
995        truncateIVUse(DU, DT);
996      else {
997        PHINode *WidePhi =
998          PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
999                          UsePhi);
1000        WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1001        IRBuilder<> Builder(WidePhi->getParent()->getFirstInsertionPt());
1002        Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1003        UsePhi->replaceAllUsesWith(Trunc);
1004        DeadInsts.push_back(UsePhi);
1005        DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi
1006              << " to " << *WidePhi << "\n");
1007      }
1008      return nullptr;
1009    }
1010  }
1011  // Our raison d'etre! Eliminate sign and zero extension.
1012  if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
1013    Value *NewDef = DU.WideDef;
1014    if (DU.NarrowUse->getType() != WideType) {
1015      unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1016      unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1017      if (CastWidth < IVWidth) {
1018        // The cast isn't as wide as the IV, so insert a Trunc.
1019        IRBuilder<> Builder(DU.NarrowUse);
1020        NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1021      }
1022      else {
1023        // A wider extend was hidden behind a narrower one. This may induce
1024        // another round of IV widening in which the intermediate IV becomes
1025        // dead. It should be very rare.
1026        DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1027              << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1028        DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1029        NewDef = DU.NarrowUse;
1030      }
1031    }
1032    if (NewDef != DU.NarrowUse) {
1033      DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1034            << " replaced by " << *DU.WideDef << "\n");
1035      ++NumElimExt;
1036      DU.NarrowUse->replaceAllUsesWith(NewDef);
1037      DeadInsts.push_back(DU.NarrowUse);
1038    }
1039    // Now that the extend is gone, we want to expose it's uses for potential
1040    // further simplification. We don't need to directly inform SimplifyIVUsers
1041    // of the new users, because their parent IV will be processed later as a
1042    // new loop phi. If we preserved IVUsers analysis, we would also want to
1043    // push the uses of WideDef here.
1044
1045    // No further widening is needed. The deceased [sz]ext had done it for us.
1046    return nullptr;
1047  }
1048
1049  // Does this user itself evaluate to a recurrence after widening?
1050  const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
1051  if (!WideAddRec)
1052    WideAddRec = GetExtendedOperandRecurrence(DU);
1053
1054  if (!WideAddRec) {
1055    // If use is a loop condition, try to promote the condition instead of
1056    // truncating the IV first.
1057    if (WidenLoopCompare(DU))
1058      return nullptr;
1059
1060    // This user does not evaluate to a recurence after widening, so don't
1061    // follow it. Instead insert a Trunc to kill off the original use,
1062    // eventually isolating the original narrow IV so it can be removed.
1063    truncateIVUse(DU, DT);
1064    return nullptr;
1065  }
1066  // Assume block terminators cannot evaluate to a recurrence. We can't to
1067  // insert a Trunc after a terminator if there happens to be a critical edge.
1068  assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1069         "SCEV is not expected to evaluate a block terminator");
1070
1071  // Reuse the IV increment that SCEVExpander created as long as it dominates
1072  // NarrowUse.
1073  Instruction *WideUse = nullptr;
1074  if (WideAddRec == WideIncExpr
1075      && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1076    WideUse = WideInc;
1077  else {
1078    WideUse = CloneIVUser(DU);
1079    if (!WideUse)
1080      return nullptr;
1081  }
1082  // Evaluation of WideAddRec ensured that the narrow expression could be
1083  // extended outside the loop without overflow. This suggests that the wide use
1084  // evaluates to the same expression as the extended narrow use, but doesn't
1085  // absolutely guarantee it. Hence the following failsafe check. In rare cases
1086  // where it fails, we simply throw away the newly created wide use.
1087  if (WideAddRec != SE->getSCEV(WideUse)) {
1088    DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1089          << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1090    DeadInsts.push_back(WideUse);
1091    return nullptr;
1092  }
1093
1094  // Returning WideUse pushes it on the worklist.
1095  return WideUse;
1096}
1097
1098/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
1099///
1100void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1101  for (User *U : NarrowDef->users()) {
1102    Instruction *NarrowUser = cast<Instruction>(U);
1103
1104    // Handle data flow merges and bizarre phi cycles.
1105    if (!Widened.insert(NarrowUser).second)
1106      continue;
1107
1108    NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUser, WideDef));
1109  }
1110}
1111
1112/// CreateWideIV - Process a single induction variable. First use the
1113/// SCEVExpander to create a wide induction variable that evaluates to the same
1114/// recurrence as the original narrow IV. Then use a worklist to forward
1115/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
1116/// interesting IV users, the narrow IV will be isolated for removal by
1117/// DeleteDeadPHIs.
1118///
1119/// It would be simpler to delete uses as they are processed, but we must avoid
1120/// invalidating SCEV expressions.
1121///
1122PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
1123  // Is this phi an induction variable?
1124  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1125  if (!AddRec)
1126    return nullptr;
1127
1128  // Widen the induction variable expression.
1129  const SCEV *WideIVExpr = IsSigned ?
1130    SE->getSignExtendExpr(AddRec, WideType) :
1131    SE->getZeroExtendExpr(AddRec, WideType);
1132
1133  assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1134         "Expect the new IV expression to preserve its type");
1135
1136  // Can the IV be extended outside the loop without overflow?
1137  AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1138  if (!AddRec || AddRec->getLoop() != L)
1139    return nullptr;
1140
1141  // An AddRec must have loop-invariant operands. Since this AddRec is
1142  // materialized by a loop header phi, the expression cannot have any post-loop
1143  // operands, so they must dominate the loop header.
1144  assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1145         SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1146         && "Loop header phi recurrence inputs do not dominate the loop");
1147
1148  // The rewriter provides a value for the desired IV expression. This may
1149  // either find an existing phi or materialize a new one. Either way, we
1150  // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1151  // of the phi-SCC dominates the loop entry.
1152  Instruction *InsertPt = L->getHeader()->begin();
1153  WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1154
1155  // Remembering the WideIV increment generated by SCEVExpander allows
1156  // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1157  // employ a general reuse mechanism because the call above is the only call to
1158  // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1159  if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1160    WideInc =
1161      cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1162    WideIncExpr = SE->getSCEV(WideInc);
1163  }
1164
1165  DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1166  ++NumWidened;
1167
1168  // Traverse the def-use chain using a worklist starting at the original IV.
1169  assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1170
1171  Widened.insert(OrigPhi);
1172  pushNarrowIVUsers(OrigPhi, WidePhi);
1173
1174  while (!NarrowIVUsers.empty()) {
1175    NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1176
1177    // Process a def-use edge. This may replace the use, so don't hold a
1178    // use_iterator across it.
1179    Instruction *WideUse = WidenIVUse(DU, Rewriter);
1180
1181    // Follow all def-use edges from the previous narrow use.
1182    if (WideUse)
1183      pushNarrowIVUsers(DU.NarrowUse, WideUse);
1184
1185    // WidenIVUse may have removed the def-use edge.
1186    if (DU.NarrowDef->use_empty())
1187      DeadInsts.push_back(DU.NarrowDef);
1188  }
1189  return WidePhi;
1190}
1191
1192//===----------------------------------------------------------------------===//
1193//  Live IV Reduction - Minimize IVs live across the loop.
1194//===----------------------------------------------------------------------===//
1195
1196
1197//===----------------------------------------------------------------------===//
1198//  Simplification of IV users based on SCEV evaluation.
1199//===----------------------------------------------------------------------===//
1200
1201namespace {
1202  class IndVarSimplifyVisitor : public IVVisitor {
1203    ScalarEvolution *SE;
1204    const DataLayout *DL;
1205    const TargetTransformInfo *TTI;
1206    PHINode *IVPhi;
1207
1208  public:
1209    WideIVInfo WI;
1210
1211    IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1212                          const DataLayout *DL, const TargetTransformInfo *TTI,
1213                          const DominatorTree *DTree)
1214        : SE(SCEV), DL(DL), TTI(TTI), IVPhi(IV) {
1215      DT = DTree;
1216      WI.NarrowIV = IVPhi;
1217      if (ReduceLiveIVs)
1218        setSplitOverflowIntrinsics();
1219    }
1220
1221    // Implement the interface used by simplifyUsersOfIV.
1222    void visitCast(CastInst *Cast) override {
1223      visitIVCast(Cast, WI, SE, DL, TTI);
1224    }
1225  };
1226}
1227
1228/// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
1229/// users. Each successive simplification may push more users which may
1230/// themselves be candidates for simplification.
1231///
1232/// Sign/Zero extend elimination is interleaved with IV simplification.
1233///
1234void IndVarSimplify::SimplifyAndExtend(Loop *L,
1235                                       SCEVExpander &Rewriter,
1236                                       LPPassManager &LPM) {
1237  SmallVector<WideIVInfo, 8> WideIVs;
1238
1239  SmallVector<PHINode*, 8> LoopPhis;
1240  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1241    LoopPhis.push_back(cast<PHINode>(I));
1242  }
1243  // Each round of simplification iterates through the SimplifyIVUsers worklist
1244  // for all current phis, then determines whether any IVs can be
1245  // widened. Widening adds new phis to LoopPhis, inducing another round of
1246  // simplification on the wide IVs.
1247  while (!LoopPhis.empty()) {
1248    // Evaluate as many IV expressions as possible before widening any IVs. This
1249    // forces SCEV to set no-wrap flags before evaluating sign/zero
1250    // extension. The first time SCEV attempts to normalize sign/zero extension,
1251    // the result becomes final. So for the most predictable results, we delay
1252    // evaluation of sign/zero extend evaluation until needed, and avoid running
1253    // other SCEV based analysis prior to SimplifyAndExtend.
1254    do {
1255      PHINode *CurrIV = LoopPhis.pop_back_val();
1256
1257      // Information about sign/zero extensions of CurrIV.
1258      IndVarSimplifyVisitor Visitor(CurrIV, SE, DL, TTI, DT);
1259
1260      Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &Visitor);
1261
1262      if (Visitor.WI.WidestNativeType) {
1263        WideIVs.push_back(Visitor.WI);
1264      }
1265    } while(!LoopPhis.empty());
1266
1267    for (; !WideIVs.empty(); WideIVs.pop_back()) {
1268      WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
1269      if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1270        Changed = true;
1271        LoopPhis.push_back(WidePhi);
1272      }
1273    }
1274  }
1275}
1276
1277//===----------------------------------------------------------------------===//
1278//  LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1279//===----------------------------------------------------------------------===//
1280
1281/// Check for expressions that ScalarEvolution generates to compute
1282/// BackedgeTakenInfo. If these expressions have not been reduced, then
1283/// expanding them may incur additional cost (albeit in the loop preheader).
1284static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
1285                                SmallPtrSetImpl<const SCEV*> &Processed,
1286                                ScalarEvolution *SE) {
1287  if (!Processed.insert(S).second)
1288    return false;
1289
1290  // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1291  // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1292  // precise expression, rather than a UDiv from the user's code. If we can't
1293  // find a UDiv in the code with some simple searching, assume the former and
1294  // forego rewriting the loop.
1295  if (isa<SCEVUDivExpr>(S)) {
1296    ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1297    if (!OrigCond) return true;
1298    const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1299    R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1300    if (R != S) {
1301      const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1302      L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1303      if (L != S)
1304        return true;
1305    }
1306  }
1307
1308  // Recurse past add expressions, which commonly occur in the
1309  // BackedgeTakenCount. They may already exist in program code, and if not,
1310  // they are not too expensive rematerialize.
1311  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1312    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1313         I != E; ++I) {
1314      if (isHighCostExpansion(*I, BI, Processed, SE))
1315        return true;
1316    }
1317    return false;
1318  }
1319
1320  // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1321  // the exit condition.
1322  if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1323    return true;
1324
1325  // If we haven't recognized an expensive SCEV pattern, assume it's an
1326  // expression produced by program code.
1327  return false;
1328}
1329
1330/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1331/// count expression can be safely and cheaply expanded into an instruction
1332/// sequence that can be used by LinearFunctionTestReplace.
1333///
1334/// TODO: This fails for pointer-type loop counters with greater than one byte
1335/// strides, consequently preventing LFTR from running. For the purpose of LFTR
1336/// we could skip this check in the case that the LFTR loop counter (chosen by
1337/// FindLoopCounter) is also pointer type. Instead, we could directly convert
1338/// the loop test to an inequality test by checking the target data's alignment
1339/// of element types (given that the initial pointer value originates from or is
1340/// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1341/// However, we don't yet have a strong motivation for converting loop tests
1342/// into inequality tests.
1343static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1344  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1345  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1346      BackedgeTakenCount->isZero())
1347    return false;
1348
1349  if (!L->getExitingBlock())
1350    return false;
1351
1352  // Can't rewrite non-branch yet.
1353  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1354  if (!BI)
1355    return false;
1356
1357  SmallPtrSet<const SCEV*, 8> Processed;
1358  if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE))
1359    return false;
1360
1361  return true;
1362}
1363
1364/// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1365/// invariant value to the phi.
1366static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1367  Instruction *IncI = dyn_cast<Instruction>(IncV);
1368  if (!IncI)
1369    return nullptr;
1370
1371  switch (IncI->getOpcode()) {
1372  case Instruction::Add:
1373  case Instruction::Sub:
1374    break;
1375  case Instruction::GetElementPtr:
1376    // An IV counter must preserve its type.
1377    if (IncI->getNumOperands() == 2)
1378      break;
1379  default:
1380    return nullptr;
1381  }
1382
1383  PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1384  if (Phi && Phi->getParent() == L->getHeader()) {
1385    if (isLoopInvariant(IncI->getOperand(1), L, DT))
1386      return Phi;
1387    return nullptr;
1388  }
1389  if (IncI->getOpcode() == Instruction::GetElementPtr)
1390    return nullptr;
1391
1392  // Allow add/sub to be commuted.
1393  Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1394  if (Phi && Phi->getParent() == L->getHeader()) {
1395    if (isLoopInvariant(IncI->getOperand(0), L, DT))
1396      return Phi;
1397  }
1398  return nullptr;
1399}
1400
1401/// Return the compare guarding the loop latch, or NULL for unrecognized tests.
1402static ICmpInst *getLoopTest(Loop *L) {
1403  assert(L->getExitingBlock() && "expected loop exit");
1404
1405  BasicBlock *LatchBlock = L->getLoopLatch();
1406  // Don't bother with LFTR if the loop is not properly simplified.
1407  if (!LatchBlock)
1408    return nullptr;
1409
1410  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1411  assert(BI && "expected exit branch");
1412
1413  return dyn_cast<ICmpInst>(BI->getCondition());
1414}
1415
1416/// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1417/// that the current exit test is already sufficiently canonical.
1418static bool needsLFTR(Loop *L, DominatorTree *DT) {
1419  // Do LFTR to simplify the exit condition to an ICMP.
1420  ICmpInst *Cond = getLoopTest(L);
1421  if (!Cond)
1422    return true;
1423
1424  // Do LFTR to simplify the exit ICMP to EQ/NE
1425  ICmpInst::Predicate Pred = Cond->getPredicate();
1426  if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1427    return true;
1428
1429  // Look for a loop invariant RHS
1430  Value *LHS = Cond->getOperand(0);
1431  Value *RHS = Cond->getOperand(1);
1432  if (!isLoopInvariant(RHS, L, DT)) {
1433    if (!isLoopInvariant(LHS, L, DT))
1434      return true;
1435    std::swap(LHS, RHS);
1436  }
1437  // Look for a simple IV counter LHS
1438  PHINode *Phi = dyn_cast<PHINode>(LHS);
1439  if (!Phi)
1440    Phi = getLoopPhiForCounter(LHS, L, DT);
1441
1442  if (!Phi)
1443    return true;
1444
1445  // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
1446  int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
1447  if (Idx < 0)
1448    return true;
1449
1450  // Do LFTR if the exit condition's IV is *not* a simple counter.
1451  Value *IncV = Phi->getIncomingValue(Idx);
1452  return Phi != getLoopPhiForCounter(IncV, L, DT);
1453}
1454
1455/// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
1456/// down to checking that all operands are constant and listing instructions
1457/// that may hide undef.
1458static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
1459                               unsigned Depth) {
1460  if (isa<Constant>(V))
1461    return !isa<UndefValue>(V);
1462
1463  if (Depth >= 6)
1464    return false;
1465
1466  // Conservatively handle non-constant non-instructions. For example, Arguments
1467  // may be undef.
1468  Instruction *I = dyn_cast<Instruction>(V);
1469  if (!I)
1470    return false;
1471
1472  // Load and return values may be undef.
1473  if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
1474    return false;
1475
1476  // Optimistically handle other instructions.
1477  for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
1478    if (!Visited.insert(*OI).second)
1479      continue;
1480    if (!hasConcreteDefImpl(*OI, Visited, Depth+1))
1481      return false;
1482  }
1483  return true;
1484}
1485
1486/// Return true if the given value is concrete. We must prove that undef can
1487/// never reach it.
1488///
1489/// TODO: If we decide that this is a good approach to checking for undef, we
1490/// may factor it into a common location.
1491static bool hasConcreteDef(Value *V) {
1492  SmallPtrSet<Value*, 8> Visited;
1493  Visited.insert(V);
1494  return hasConcreteDefImpl(V, Visited, 0);
1495}
1496
1497/// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1498/// be rewritten) loop exit test.
1499static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1500  int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1501  Value *IncV = Phi->getIncomingValue(LatchIdx);
1502
1503  for (User *U : Phi->users())
1504    if (U != Cond && U != IncV) return false;
1505
1506  for (User *U : IncV->users())
1507    if (U != Cond && U != Phi) return false;
1508  return true;
1509}
1510
1511/// FindLoopCounter - Find an affine IV in canonical form.
1512///
1513/// BECount may be an i8* pointer type. The pointer difference is already
1514/// valid count without scaling the address stride, so it remains a pointer
1515/// expression as far as SCEV is concerned.
1516///
1517/// Currently only valid for LFTR. See the comments on hasConcreteDef below.
1518///
1519/// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1520///
1521/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1522/// This is difficult in general for SCEV because of potential overflow. But we
1523/// could at least handle constant BECounts.
1524static PHINode *
1525FindLoopCounter(Loop *L, const SCEV *BECount,
1526                ScalarEvolution *SE, DominatorTree *DT, const DataLayout *DL) {
1527  uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1528
1529  Value *Cond =
1530    cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1531
1532  // Loop over all of the PHI nodes, looking for a simple counter.
1533  PHINode *BestPhi = nullptr;
1534  const SCEV *BestInit = nullptr;
1535  BasicBlock *LatchBlock = L->getLoopLatch();
1536  assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1537
1538  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1539    PHINode *Phi = cast<PHINode>(I);
1540    if (!SE->isSCEVable(Phi->getType()))
1541      continue;
1542
1543    // Avoid comparing an integer IV against a pointer Limit.
1544    if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1545      continue;
1546
1547    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1548    if (!AR || AR->getLoop() != L || !AR->isAffine())
1549      continue;
1550
1551    // AR may be a pointer type, while BECount is an integer type.
1552    // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1553    // AR may not be a narrower type, or we may never exit.
1554    uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1555    if (PhiWidth < BCWidth || (DL && !DL->isLegalInteger(PhiWidth)))
1556      continue;
1557
1558    const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1559    if (!Step || !Step->isOne())
1560      continue;
1561
1562    int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1563    Value *IncV = Phi->getIncomingValue(LatchIdx);
1564    if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1565      continue;
1566
1567    // Avoid reusing a potentially undef value to compute other values that may
1568    // have originally had a concrete definition.
1569    if (!hasConcreteDef(Phi)) {
1570      // We explicitly allow unknown phis as long as they are already used by
1571      // the loop test. In this case we assume that performing LFTR could not
1572      // increase the number of undef users.
1573      if (ICmpInst *Cond = getLoopTest(L)) {
1574        if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
1575            && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
1576          continue;
1577        }
1578      }
1579    }
1580    const SCEV *Init = AR->getStart();
1581
1582    if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1583      // Don't force a live loop counter if another IV can be used.
1584      if (AlmostDeadIV(Phi, LatchBlock, Cond))
1585        continue;
1586
1587      // Prefer to count-from-zero. This is a more "canonical" counter form. It
1588      // also prefers integer to pointer IVs.
1589      if (BestInit->isZero() != Init->isZero()) {
1590        if (BestInit->isZero())
1591          continue;
1592      }
1593      // If two IVs both count from zero or both count from nonzero then the
1594      // narrower is likely a dead phi that has been widened. Use the wider phi
1595      // to allow the other to be eliminated.
1596      else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1597        continue;
1598    }
1599    BestPhi = Phi;
1600    BestInit = Init;
1601  }
1602  return BestPhi;
1603}
1604
1605/// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
1606/// holds the RHS of the new loop test.
1607static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1608                           SCEVExpander &Rewriter, ScalarEvolution *SE) {
1609  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1610  assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1611  const SCEV *IVInit = AR->getStart();
1612
1613  // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1614  // finds a valid pointer IV. Sign extend BECount in order to materialize a
1615  // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1616  // the existing GEPs whenever possible.
1617  if (IndVar->getType()->isPointerTy()
1618      && !IVCount->getType()->isPointerTy()) {
1619
1620    // IVOffset will be the new GEP offset that is interpreted by GEP as a
1621    // signed value. IVCount on the other hand represents the loop trip count,
1622    // which is an unsigned value. FindLoopCounter only allows induction
1623    // variables that have a positive unit stride of one. This means we don't
1624    // have to handle the case of negative offsets (yet) and just need to zero
1625    // extend IVCount.
1626    Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1627    const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
1628
1629    // Expand the code for the iteration count.
1630    assert(SE->isLoopInvariant(IVOffset, L) &&
1631           "Computed iteration count is not loop invariant!");
1632    BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1633    Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1634
1635    Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1636    assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1637    // We could handle pointer IVs other than i8*, but we need to compensate for
1638    // gep index scaling. See canExpandBackedgeTakenCount comments.
1639    assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
1640             cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
1641           && "unit stride pointer IV must be i8*");
1642
1643    IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1644    return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
1645  }
1646  else {
1647    // In any other case, convert both IVInit and IVCount to integers before
1648    // comparing. This may result in SCEV expension of pointers, but in practice
1649    // SCEV will fold the pointer arithmetic away as such:
1650    // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1651    //
1652    // Valid Cases: (1) both integers is most common; (2) both may be pointers
1653    // for simple memset-style loops.
1654    //
1655    // IVInit integer and IVCount pointer would only occur if a canonical IV
1656    // were generated on top of case #2, which is not expected.
1657
1658    const SCEV *IVLimit = nullptr;
1659    // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1660    // For non-zero Start, compute IVCount here.
1661    if (AR->getStart()->isZero())
1662      IVLimit = IVCount;
1663    else {
1664      assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1665      const SCEV *IVInit = AR->getStart();
1666
1667      // For integer IVs, truncate the IV before computing IVInit + BECount.
1668      if (SE->getTypeSizeInBits(IVInit->getType())
1669          > SE->getTypeSizeInBits(IVCount->getType()))
1670        IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1671
1672      IVLimit = SE->getAddExpr(IVInit, IVCount);
1673    }
1674    // Expand the code for the iteration count.
1675    BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1676    IRBuilder<> Builder(BI);
1677    assert(SE->isLoopInvariant(IVLimit, L) &&
1678           "Computed iteration count is not loop invariant!");
1679    // Ensure that we generate the same type as IndVar, or a smaller integer
1680    // type. In the presence of null pointer values, we have an integer type
1681    // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1682    Type *LimitTy = IVCount->getType()->isPointerTy() ?
1683      IndVar->getType() : IVCount->getType();
1684    return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1685  }
1686}
1687
1688/// LinearFunctionTestReplace - This method rewrites the exit condition of the
1689/// loop to be a canonical != comparison against the incremented loop induction
1690/// variable.  This pass is able to rewrite the exit tests of any loop where the
1691/// SCEV analysis can determine a loop-invariant trip count of the loop, which
1692/// is actually a much broader range than just linear tests.
1693Value *IndVarSimplify::
1694LinearFunctionTestReplace(Loop *L,
1695                          const SCEV *BackedgeTakenCount,
1696                          PHINode *IndVar,
1697                          SCEVExpander &Rewriter) {
1698  assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
1699
1700  // Initialize CmpIndVar and IVCount to their preincremented values.
1701  Value *CmpIndVar = IndVar;
1702  const SCEV *IVCount = BackedgeTakenCount;
1703
1704  // If the exiting block is the same as the backedge block, we prefer to
1705  // compare against the post-incremented value, otherwise we must compare
1706  // against the preincremented value.
1707  if (L->getExitingBlock() == L->getLoopLatch()) {
1708    // The BackedgeTaken expression contains the number of times that the
1709    // backedge branches to the loop header.  This is one less than the
1710    // number of times the loop executes, so use the incremented indvar.
1711    llvm::Value *IncrementedIndvar =
1712        IndVar->getIncomingValueForBlock(L->getExitingBlock());
1713    const auto *IncrementedIndvarSCEV =
1714        cast<SCEVAddRecExpr>(SE->getSCEV(IncrementedIndvar));
1715    // It is unsafe to use the incremented indvar if it has a wrapping flag, we
1716    // don't want to compare against a poison value.  Check the SCEV that
1717    // corresponds to the incremented indvar, the SCEVExpander will only insert
1718    // flags in the IR if the SCEV originally had wrapping flags.
1719    // FIXME: In theory, SCEV could drop flags even though they exist in IR.
1720    // A more robust solution would involve getting a new expression for
1721    // CmpIndVar by applying non-NSW/NUW AddExprs.
1722    auto WrappingFlags =
1723        ScalarEvolution::setFlags(SCEV::FlagNUW, SCEV::FlagNSW);
1724    const SCEV *IVInit = IncrementedIndvarSCEV->getStart();
1725    if (SE->getTypeSizeInBits(IVInit->getType()) >
1726        SE->getTypeSizeInBits(IVCount->getType()))
1727      IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1728    unsigned BitWidth = SE->getTypeSizeInBits(IVCount->getType());
1729    Type *WideTy = IntegerType::get(SE->getContext(), BitWidth + 1);
1730    // Check if InitIV + BECount+1 requires sign/zero extension.
1731    // If not, clear the corresponding flag from WrappingFlags because it is not
1732    // necessary for those flags in the IncrementedIndvarSCEV expression.
1733    if (SE->getSignExtendExpr(SE->getAddExpr(IVInit, BackedgeTakenCount),
1734                              WideTy) ==
1735        SE->getAddExpr(SE->getSignExtendExpr(IVInit, WideTy),
1736                       SE->getSignExtendExpr(BackedgeTakenCount, WideTy)))
1737      WrappingFlags = ScalarEvolution::clearFlags(WrappingFlags, SCEV::FlagNSW);
1738    if (SE->getZeroExtendExpr(SE->getAddExpr(IVInit, BackedgeTakenCount),
1739                              WideTy) ==
1740        SE->getAddExpr(SE->getZeroExtendExpr(IVInit, WideTy),
1741                       SE->getZeroExtendExpr(BackedgeTakenCount, WideTy)))
1742      WrappingFlags = ScalarEvolution::clearFlags(WrappingFlags, SCEV::FlagNUW);
1743    if (!ScalarEvolution::maskFlags(IncrementedIndvarSCEV->getNoWrapFlags(),
1744                                    WrappingFlags)) {
1745      // Add one to the "backedge-taken" count to get the trip count.
1746      // This addition may overflow, which is valid as long as the comparison is
1747      // truncated to BackedgeTakenCount->getType().
1748      IVCount =
1749          SE->getAddExpr(BackedgeTakenCount,
1750                         SE->getConstant(BackedgeTakenCount->getType(), 1));
1751      CmpIndVar = IncrementedIndvar;
1752    }
1753  }
1754
1755  Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1756  assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1757         && "genLoopLimit missed a cast");
1758
1759  // Insert a new icmp_ne or icmp_eq instruction before the branch.
1760  BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1761  ICmpInst::Predicate P;
1762  if (L->contains(BI->getSuccessor(0)))
1763    P = ICmpInst::ICMP_NE;
1764  else
1765    P = ICmpInst::ICMP_EQ;
1766
1767  DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1768               << "      LHS:" << *CmpIndVar << '\n'
1769               << "       op:\t"
1770               << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1771               << "      RHS:\t" << *ExitCnt << "\n"
1772               << "  IVCount:\t" << *IVCount << "\n");
1773
1774  IRBuilder<> Builder(BI);
1775
1776  // LFTR can ignore IV overflow and truncate to the width of
1777  // BECount. This avoids materializing the add(zext(add)) expression.
1778  unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1779  unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1780  if (CmpIndVarSize > ExitCntSize) {
1781    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1782    const SCEV *ARStart = AR->getStart();
1783    const SCEV *ARStep = AR->getStepRecurrence(*SE);
1784    // For constant IVCount, avoid truncation.
1785    if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
1786      const APInt &Start = cast<SCEVConstant>(ARStart)->getValue()->getValue();
1787      APInt Count = cast<SCEVConstant>(IVCount)->getValue()->getValue();
1788      // Note that the post-inc value of BackedgeTakenCount may have overflowed
1789      // above such that IVCount is now zero.
1790      if (IVCount != BackedgeTakenCount && Count == 0) {
1791        Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
1792        ++Count;
1793      }
1794      else
1795        Count = Count.zext(CmpIndVarSize);
1796      APInt NewLimit;
1797      if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
1798        NewLimit = Start - Count;
1799      else
1800        NewLimit = Start + Count;
1801      ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
1802
1803      DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n");
1804    } else {
1805      CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1806                                      "lftr.wideiv");
1807    }
1808  }
1809  Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1810  Value *OrigCond = BI->getCondition();
1811  // It's tempting to use replaceAllUsesWith here to fully replace the old
1812  // comparison, but that's not immediately safe, since users of the old
1813  // comparison may not be dominated by the new comparison. Instead, just
1814  // update the branch to use the new comparison; in the common case this
1815  // will make old comparison dead.
1816  BI->setCondition(Cond);
1817  DeadInsts.push_back(OrigCond);
1818
1819  ++NumLFTR;
1820  Changed = true;
1821  return Cond;
1822}
1823
1824//===----------------------------------------------------------------------===//
1825//  SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1826//===----------------------------------------------------------------------===//
1827
1828/// If there's a single exit block, sink any loop-invariant values that
1829/// were defined in the preheader but not used inside the loop into the
1830/// exit block to reduce register pressure in the loop.
1831void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1832  BasicBlock *ExitBlock = L->getExitBlock();
1833  if (!ExitBlock) return;
1834
1835  BasicBlock *Preheader = L->getLoopPreheader();
1836  if (!Preheader) return;
1837
1838  Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
1839  BasicBlock::iterator I = Preheader->getTerminator();
1840  while (I != Preheader->begin()) {
1841    --I;
1842    // New instructions were inserted at the end of the preheader.
1843    if (isa<PHINode>(I))
1844      break;
1845
1846    // Don't move instructions which might have side effects, since the side
1847    // effects need to complete before instructions inside the loop.  Also don't
1848    // move instructions which might read memory, since the loop may modify
1849    // memory. Note that it's okay if the instruction might have undefined
1850    // behavior: LoopSimplify guarantees that the preheader dominates the exit
1851    // block.
1852    if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1853      continue;
1854
1855    // Skip debug info intrinsics.
1856    if (isa<DbgInfoIntrinsic>(I))
1857      continue;
1858
1859    // Skip landingpad instructions.
1860    if (isa<LandingPadInst>(I))
1861      continue;
1862
1863    // Don't sink alloca: we never want to sink static alloca's out of the
1864    // entry block, and correctly sinking dynamic alloca's requires
1865    // checks for stacksave/stackrestore intrinsics.
1866    // FIXME: Refactor this check somehow?
1867    if (isa<AllocaInst>(I))
1868      continue;
1869
1870    // Determine if there is a use in or before the loop (direct or
1871    // otherwise).
1872    bool UsedInLoop = false;
1873    for (Use &U : I->uses()) {
1874      Instruction *User = cast<Instruction>(U.getUser());
1875      BasicBlock *UseBB = User->getParent();
1876      if (PHINode *P = dyn_cast<PHINode>(User)) {
1877        unsigned i =
1878          PHINode::getIncomingValueNumForOperand(U.getOperandNo());
1879        UseBB = P->getIncomingBlock(i);
1880      }
1881      if (UseBB == Preheader || L->contains(UseBB)) {
1882        UsedInLoop = true;
1883        break;
1884      }
1885    }
1886
1887    // If there is, the def must remain in the preheader.
1888    if (UsedInLoop)
1889      continue;
1890
1891    // Otherwise, sink it to the exit block.
1892    Instruction *ToMove = I;
1893    bool Done = false;
1894
1895    if (I != Preheader->begin()) {
1896      // Skip debug info intrinsics.
1897      do {
1898        --I;
1899      } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1900
1901      if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1902        Done = true;
1903    } else {
1904      Done = true;
1905    }
1906
1907    ToMove->moveBefore(InsertPt);
1908    if (Done) break;
1909    InsertPt = ToMove;
1910  }
1911}
1912
1913//===----------------------------------------------------------------------===//
1914//  IndVarSimplify driver. Manage several subpasses of IV simplification.
1915//===----------------------------------------------------------------------===//
1916
1917bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1918  if (skipOptnoneFunction(L))
1919    return false;
1920
1921  // If LoopSimplify form is not available, stay out of trouble. Some notes:
1922  //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1923  //    canonicalization can be a pessimization without LSR to "clean up"
1924  //    afterwards.
1925  //  - We depend on having a preheader; in particular,
1926  //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1927  //    and we're in trouble if we can't find the induction variable even when
1928  //    we've manually inserted one.
1929  if (!L->isLoopSimplifyForm())
1930    return false;
1931
1932  LI = &getAnalysis<LoopInfo>();
1933  SE = &getAnalysis<ScalarEvolution>();
1934  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1935  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1936  DL = DLP ? &DLP->getDataLayout() : nullptr;
1937  TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
1938  TTI = getAnalysisIfAvailable<TargetTransformInfo>();
1939
1940  DeadInsts.clear();
1941  Changed = false;
1942
1943  // If there are any floating-point recurrences, attempt to
1944  // transform them to use integer recurrences.
1945  RewriteNonIntegerIVs(L);
1946
1947  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1948
1949  // Create a rewriter object which we'll use to transform the code with.
1950  SCEVExpander Rewriter(*SE, "indvars");
1951#ifndef NDEBUG
1952  Rewriter.setDebugType(DEBUG_TYPE);
1953#endif
1954
1955  // Eliminate redundant IV users.
1956  //
1957  // Simplification works best when run before other consumers of SCEV. We
1958  // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1959  // other expressions involving loop IVs have been evaluated. This helps SCEV
1960  // set no-wrap flags before normalizing sign/zero extension.
1961  Rewriter.disableCanonicalMode();
1962  SimplifyAndExtend(L, Rewriter, LPM);
1963
1964  // Check to see if this loop has a computable loop-invariant execution count.
1965  // If so, this means that we can compute the final value of any expressions
1966  // that are recurrent in the loop, and substitute the exit values from the
1967  // loop into any instructions outside of the loop that use the final values of
1968  // the current expressions.
1969  //
1970  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1971    RewriteLoopExitValues(L, Rewriter);
1972
1973  // Eliminate redundant IV cycles.
1974  NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
1975
1976  // If we have a trip count expression, rewrite the loop's exit condition
1977  // using it.  We can currently only handle loops with a single exit.
1978  if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) {
1979    PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, DL);
1980    if (IndVar) {
1981      // Check preconditions for proper SCEVExpander operation. SCEV does not
1982      // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
1983      // pass that uses the SCEVExpander must do it. This does not work well for
1984      // loop passes because SCEVExpander makes assumptions about all loops,
1985      // while LoopPassManager only forces the current loop to be simplified.
1986      //
1987      // FIXME: SCEV expansion has no way to bail out, so the caller must
1988      // explicitly check any assumptions made by SCEV. Brittle.
1989      const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
1990      if (!AR || AR->getLoop()->getLoopPreheader())
1991        (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
1992                                        Rewriter);
1993    }
1994  }
1995  // Clear the rewriter cache, because values that are in the rewriter's cache
1996  // can be deleted in the loop below, causing the AssertingVH in the cache to
1997  // trigger.
1998  Rewriter.clear();
1999
2000  // Now that we're done iterating through lists, clean up any instructions
2001  // which are now dead.
2002  while (!DeadInsts.empty())
2003    if (Instruction *Inst =
2004          dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
2005      RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2006
2007  // The Rewriter may not be used from this point on.
2008
2009  // Loop-invariant instructions in the preheader that aren't used in the
2010  // loop may be sunk below the loop to reduce register pressure.
2011  SinkUnusedInvariants(L);
2012
2013  // Clean up dead instructions.
2014  Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2015  // Check a post-condition.
2016  assert(L->isLCSSAForm(*DT) &&
2017         "Indvars did not leave the loop in lcssa form!");
2018
2019  // Verify that LFTR, and any other change have not interfered with SCEV's
2020  // ability to compute trip count.
2021#ifndef NDEBUG
2022  if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2023    SE->forgetLoop(L);
2024    const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2025    if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2026        SE->getTypeSizeInBits(NewBECount->getType()))
2027      NewBECount = SE->getTruncateOrNoop(NewBECount,
2028                                         BackedgeTakenCount->getType());
2029    else
2030      BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2031                                                 NewBECount->getType());
2032    assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2033  }
2034#endif
2035
2036  return Changed;
2037}
2038