GVNHoist.cpp revision 360784
1//===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass hoists expressions from branches to a common dominator. It uses
10// GVN (global value numbering) to discover expressions computing the same
11// values. The primary goals of code-hoisting are:
12// 1. To reduce the code size.
13// 2. In some cases reduce critical path (by exposing more ILP).
14//
15// The algorithm factors out the reachability of values such that multiple
16// queries to find reachability of values are fast. This is based on finding the
17// ANTIC points in the CFG which do not change during hoisting. The ANTIC points
18// are basically the dominance-frontiers in the inverse graph. So we introduce a
19// data structure (CHI nodes) to keep track of values flowing out of a basic
20// block. We only do this for values with multiple occurrences in the function
21// as they are the potential hoistable candidates. This approach allows us to
22// hoist instructions to a basic block with more than two successors, as well as
23// deal with infinite loops in a trivial way.
24//
25// Limitations: This pass does not hoist fully redundant expressions because
26// they are already handled by GVN-PRE. It is advisable to run gvn-hoist before
27// and after gvn-pre because gvn-pre creates opportunities for more instructions
28// to be hoisted.
29//
30// Hoisting may affect the performance in some cases. To mitigate that, hoisting
31// is disabled in the following cases.
32// 1. Scalars across calls.
33// 2. geps when corresponding load/store cannot be hoisted.
34//===----------------------------------------------------------------------===//
35
36#include "llvm/ADT/DenseMap.h"
37#include "llvm/ADT/DenseSet.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/SmallVector.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/ADT/iterator_range.h"
43#include "llvm/Analysis/AliasAnalysis.h"
44#include "llvm/Analysis/GlobalsModRef.h"
45#include "llvm/Analysis/IteratedDominanceFrontier.h"
46#include "llvm/Analysis/MemoryDependenceAnalysis.h"
47#include "llvm/Analysis/MemorySSA.h"
48#include "llvm/Analysis/MemorySSAUpdater.h"
49#include "llvm/Analysis/PostDominators.h"
50#include "llvm/Analysis/ValueTracking.h"
51#include "llvm/IR/Argument.h"
52#include "llvm/IR/BasicBlock.h"
53#include "llvm/IR/CFG.h"
54#include "llvm/IR/Constants.h"
55#include "llvm/IR/Dominators.h"
56#include "llvm/IR/Function.h"
57#include "llvm/IR/InstrTypes.h"
58#include "llvm/IR/Instruction.h"
59#include "llvm/IR/Instructions.h"
60#include "llvm/IR/IntrinsicInst.h"
61#include "llvm/IR/Intrinsics.h"
62#include "llvm/IR/LLVMContext.h"
63#include "llvm/IR/PassManager.h"
64#include "llvm/IR/Use.h"
65#include "llvm/IR/User.h"
66#include "llvm/IR/Value.h"
67#include "llvm/InitializePasses.h"
68#include "llvm/Pass.h"
69#include "llvm/Support/Casting.h"
70#include "llvm/Support/CommandLine.h"
71#include "llvm/Support/Debug.h"
72#include "llvm/Support/raw_ostream.h"
73#include "llvm/Transforms/Scalar.h"
74#include "llvm/Transforms/Scalar/GVN.h"
75#include "llvm/Transforms/Utils/Local.h"
76#include <algorithm>
77#include <cassert>
78#include <iterator>
79#include <memory>
80#include <utility>
81#include <vector>
82
83using namespace llvm;
84
85#define DEBUG_TYPE "gvn-hoist"
86
87STATISTIC(NumHoisted, "Number of instructions hoisted");
88STATISTIC(NumRemoved, "Number of instructions removed");
89STATISTIC(NumLoadsHoisted, "Number of loads hoisted");
90STATISTIC(NumLoadsRemoved, "Number of loads removed");
91STATISTIC(NumStoresHoisted, "Number of stores hoisted");
92STATISTIC(NumStoresRemoved, "Number of stores removed");
93STATISTIC(NumCallsHoisted, "Number of calls hoisted");
94STATISTIC(NumCallsRemoved, "Number of calls removed");
95
96static cl::opt<int>
97    MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1),
98                        cl::desc("Max number of instructions to hoist "
99                                 "(default unlimited = -1)"));
100
101static cl::opt<int> MaxNumberOfBBSInPath(
102    "gvn-hoist-max-bbs", cl::Hidden, cl::init(4),
103    cl::desc("Max number of basic blocks on the path between "
104             "hoisting locations (default = 4, unlimited = -1)"));
105
106static cl::opt<int> MaxDepthInBB(
107    "gvn-hoist-max-depth", cl::Hidden, cl::init(100),
108    cl::desc("Hoist instructions from the beginning of the BB up to the "
109             "maximum specified depth (default = 100, unlimited = -1)"));
110
111static cl::opt<int>
112    MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10),
113                   cl::desc("Maximum length of dependent chains to hoist "
114                            "(default = 10, unlimited = -1)"));
115
116namespace llvm {
117
118using BBSideEffectsSet = DenseMap<const BasicBlock *, bool>;
119using SmallVecInsn = SmallVector<Instruction *, 4>;
120using SmallVecImplInsn = SmallVectorImpl<Instruction *>;
121
122// Each element of a hoisting list contains the basic block where to hoist and
123// a list of instructions to be hoisted.
124using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>;
125
126using HoistingPointList = SmallVector<HoistingPointInfo, 4>;
127
128// A map from a pair of VNs to all the instructions with those VNs.
129using VNType = std::pair<unsigned, unsigned>;
130
131using VNtoInsns = DenseMap<VNType, SmallVector<Instruction *, 4>>;
132
133// CHI keeps information about values flowing out of a basic block.  It is
134// similar to PHI but in the inverse graph, and used for outgoing values on each
135// edge. For conciseness, it is computed only for instructions with multiple
136// occurrences in the CFG because they are the only hoistable candidates.
137//     A (CHI[{V, B, I1}, {V, C, I2}]
138//  /     \
139// /       \
140// B(I1)  C (I2)
141// The Value number for both I1 and I2 is V, the CHI node will save the
142// instruction as well as the edge where the value is flowing to.
143struct CHIArg {
144  VNType VN;
145
146  // Edge destination (shows the direction of flow), may not be where the I is.
147  BasicBlock *Dest;
148
149  // The instruction (VN) which uses the values flowing out of CHI.
150  Instruction *I;
151
152  bool operator==(const CHIArg &A) { return VN == A.VN; }
153  bool operator!=(const CHIArg &A) { return !(*this == A); }
154};
155
156using CHIIt = SmallVectorImpl<CHIArg>::iterator;
157using CHIArgs = iterator_range<CHIIt>;
158using OutValuesType = DenseMap<BasicBlock *, SmallVector<CHIArg, 2>>;
159using InValuesType =
160    DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>;
161
162// An invalid value number Used when inserting a single value number into
163// VNtoInsns.
164enum : unsigned { InvalidVN = ~2U };
165
166// Records all scalar instructions candidate for code hoisting.
167class InsnInfo {
168  VNtoInsns VNtoScalars;
169
170public:
171  // Inserts I and its value number in VNtoScalars.
172  void insert(Instruction *I, GVN::ValueTable &VN) {
173    // Scalar instruction.
174    unsigned V = VN.lookupOrAdd(I);
175    VNtoScalars[{V, InvalidVN}].push_back(I);
176  }
177
178  const VNtoInsns &getVNTable() const { return VNtoScalars; }
179};
180
181// Records all load instructions candidate for code hoisting.
182class LoadInfo {
183  VNtoInsns VNtoLoads;
184
185public:
186  // Insert Load and the value number of its memory address in VNtoLoads.
187  void insert(LoadInst *Load, GVN::ValueTable &VN) {
188    if (Load->isSimple()) {
189      unsigned V = VN.lookupOrAdd(Load->getPointerOperand());
190      VNtoLoads[{V, InvalidVN}].push_back(Load);
191    }
192  }
193
194  const VNtoInsns &getVNTable() const { return VNtoLoads; }
195};
196
197// Records all store instructions candidate for code hoisting.
198class StoreInfo {
199  VNtoInsns VNtoStores;
200
201public:
202  // Insert the Store and a hash number of the store address and the stored
203  // value in VNtoStores.
204  void insert(StoreInst *Store, GVN::ValueTable &VN) {
205    if (!Store->isSimple())
206      return;
207    // Hash the store address and the stored value.
208    Value *Ptr = Store->getPointerOperand();
209    Value *Val = Store->getValueOperand();
210    VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store);
211  }
212
213  const VNtoInsns &getVNTable() const { return VNtoStores; }
214};
215
216// Records all call instructions candidate for code hoisting.
217class CallInfo {
218  VNtoInsns VNtoCallsScalars;
219  VNtoInsns VNtoCallsLoads;
220  VNtoInsns VNtoCallsStores;
221
222public:
223  // Insert Call and its value numbering in one of the VNtoCalls* containers.
224  void insert(CallInst *Call, GVN::ValueTable &VN) {
225    // A call that doesNotAccessMemory is handled as a Scalar,
226    // onlyReadsMemory will be handled as a Load instruction,
227    // all other calls will be handled as stores.
228    unsigned V = VN.lookupOrAdd(Call);
229    auto Entry = std::make_pair(V, InvalidVN);
230
231    if (Call->doesNotAccessMemory())
232      VNtoCallsScalars[Entry].push_back(Call);
233    else if (Call->onlyReadsMemory())
234      VNtoCallsLoads[Entry].push_back(Call);
235    else
236      VNtoCallsStores[Entry].push_back(Call);
237  }
238
239  const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; }
240  const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; }
241  const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; }
242};
243
244static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) {
245  static const unsigned KnownIDs[] = {
246      LLVMContext::MD_tbaa,           LLVMContext::MD_alias_scope,
247      LLVMContext::MD_noalias,        LLVMContext::MD_range,
248      LLVMContext::MD_fpmath,         LLVMContext::MD_invariant_load,
249      LLVMContext::MD_invariant_group, LLVMContext::MD_access_group};
250  combineMetadata(ReplInst, I, KnownIDs, true);
251}
252
253// This pass hoists common computations across branches sharing common
254// dominator. The primary goal is to reduce the code size, and in some
255// cases reduce critical path (by exposing more ILP).
256class GVNHoist {
257public:
258  GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA,
259           MemoryDependenceResults *MD, MemorySSA *MSSA)
260      : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA),
261        MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {}
262
263  bool run(Function &F) {
264    NumFuncArgs = F.arg_size();
265    VN.setDomTree(DT);
266    VN.setAliasAnalysis(AA);
267    VN.setMemDep(MD);
268    bool Res = false;
269    // Perform DFS Numbering of instructions.
270    unsigned BBI = 0;
271    for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) {
272      DFSNumber[BB] = ++BBI;
273      unsigned I = 0;
274      for (auto &Inst : *BB)
275        DFSNumber[&Inst] = ++I;
276    }
277
278    int ChainLength = 0;
279
280    // FIXME: use lazy evaluation of VN to avoid the fix-point computation.
281    while (true) {
282      if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength)
283        return Res;
284
285      auto HoistStat = hoistExpressions(F);
286      if (HoistStat.first + HoistStat.second == 0)
287        return Res;
288
289      if (HoistStat.second > 0)
290        // To address a limitation of the current GVN, we need to rerun the
291        // hoisting after we hoisted loads or stores in order to be able to
292        // hoist all scalars dependent on the hoisted ld/st.
293        VN.clear();
294
295      Res = true;
296    }
297
298    return Res;
299  }
300
301  // Copied from NewGVN.cpp
302  // This function provides global ranking of operations so that we can place
303  // them in a canonical order.  Note that rank alone is not necessarily enough
304  // for a complete ordering, as constants all have the same rank.  However,
305  // generally, we will simplify an operation with all constants so that it
306  // doesn't matter what order they appear in.
307  unsigned int rank(const Value *V) const {
308    // Prefer constants to undef to anything else
309    // Undef is a constant, have to check it first.
310    // Prefer smaller constants to constantexprs
311    if (isa<ConstantExpr>(V))
312      return 2;
313    if (isa<UndefValue>(V))
314      return 1;
315    if (isa<Constant>(V))
316      return 0;
317    else if (auto *A = dyn_cast<Argument>(V))
318      return 3 + A->getArgNo();
319
320    // Need to shift the instruction DFS by number of arguments + 3 to account
321    // for the constant and argument ranking above.
322    auto Result = DFSNumber.lookup(V);
323    if (Result > 0)
324      return 4 + NumFuncArgs + Result;
325    // Unreachable or something else, just return a really large number.
326    return ~0;
327  }
328
329private:
330  GVN::ValueTable VN;
331  DominatorTree *DT;
332  PostDominatorTree *PDT;
333  AliasAnalysis *AA;
334  MemoryDependenceResults *MD;
335  MemorySSA *MSSA;
336  std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
337  DenseMap<const Value *, unsigned> DFSNumber;
338  BBSideEffectsSet BBSideEffects;
339  DenseSet<const BasicBlock *> HoistBarrier;
340  SmallVector<BasicBlock *, 32> IDFBlocks;
341  unsigned NumFuncArgs;
342  const bool HoistingGeps = false;
343
344  enum InsKind { Unknown, Scalar, Load, Store };
345
346  // Return true when there are exception handling in BB.
347  bool hasEH(const BasicBlock *BB) {
348    auto It = BBSideEffects.find(BB);
349    if (It != BBSideEffects.end())
350      return It->second;
351
352    if (BB->isEHPad() || BB->hasAddressTaken()) {
353      BBSideEffects[BB] = true;
354      return true;
355    }
356
357    if (BB->getTerminator()->mayThrow()) {
358      BBSideEffects[BB] = true;
359      return true;
360    }
361
362    BBSideEffects[BB] = false;
363    return false;
364  }
365
366  // Return true when a successor of BB dominates A.
367  bool successorDominate(const BasicBlock *BB, const BasicBlock *A) {
368    for (const BasicBlock *Succ : successors(BB))
369      if (DT->dominates(Succ, A))
370        return true;
371
372    return false;
373  }
374
375  // Return true when I1 appears before I2 in the instructions of BB.
376  bool firstInBB(const Instruction *I1, const Instruction *I2) {
377    assert(I1->getParent() == I2->getParent());
378    unsigned I1DFS = DFSNumber.lookup(I1);
379    unsigned I2DFS = DFSNumber.lookup(I2);
380    assert(I1DFS && I2DFS);
381    return I1DFS < I2DFS;
382  }
383
384  // Return true when there are memory uses of Def in BB.
385  bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def,
386                    const BasicBlock *BB) {
387    const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
388    if (!Acc)
389      return false;
390
391    Instruction *OldPt = Def->getMemoryInst();
392    const BasicBlock *OldBB = OldPt->getParent();
393    const BasicBlock *NewBB = NewPt->getParent();
394    bool ReachedNewPt = false;
395
396    for (const MemoryAccess &MA : *Acc)
397      if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) {
398        Instruction *Insn = MU->getMemoryInst();
399
400        // Do not check whether MU aliases Def when MU occurs after OldPt.
401        if (BB == OldBB && firstInBB(OldPt, Insn))
402          break;
403
404        // Do not check whether MU aliases Def when MU occurs before NewPt.
405        if (BB == NewBB) {
406          if (!ReachedNewPt) {
407            if (firstInBB(Insn, NewPt))
408              continue;
409            ReachedNewPt = true;
410          }
411        }
412        if (MemorySSAUtil::defClobbersUseOrDef(Def, MU, *AA))
413          return true;
414      }
415
416    return false;
417  }
418
419  bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB,
420                   int &NBBsOnAllPaths) {
421    // Stop walk once the limit is reached.
422    if (NBBsOnAllPaths == 0)
423      return true;
424
425    // Impossible to hoist with exceptions on the path.
426    if (hasEH(BB))
427      return true;
428
429    // No such instruction after HoistBarrier in a basic block was
430    // selected for hoisting so instructions selected within basic block with
431    // a hoist barrier can be hoisted.
432    if ((BB != SrcBB) && HoistBarrier.count(BB))
433      return true;
434
435    return false;
436  }
437
438  // Return true when there are exception handling or loads of memory Def
439  // between Def and NewPt.  This function is only called for stores: Def is
440  // the MemoryDef of the store to be hoisted.
441
442  // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
443  // return true when the counter NBBsOnAllPaths reaces 0, except when it is
444  // initialized to -1 which is unlimited.
445  bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def,
446                          int &NBBsOnAllPaths) {
447    const BasicBlock *NewBB = NewPt->getParent();
448    const BasicBlock *OldBB = Def->getBlock();
449    assert(DT->dominates(NewBB, OldBB) && "invalid path");
450    assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) &&
451           "def does not dominate new hoisting point");
452
453    // Walk all basic blocks reachable in depth-first iteration on the inverse
454    // CFG from OldBB to NewBB. These blocks are all the blocks that may be
455    // executed between the execution of NewBB and OldBB. Hoisting an expression
456    // from OldBB into NewBB has to be safe on all execution paths.
457    for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) {
458      const BasicBlock *BB = *I;
459      if (BB == NewBB) {
460        // Stop traversal when reaching HoistPt.
461        I.skipChildren();
462        continue;
463      }
464
465      if (hasEHhelper(BB, OldBB, NBBsOnAllPaths))
466        return true;
467
468      // Check that we do not move a store past loads.
469      if (hasMemoryUse(NewPt, Def, BB))
470        return true;
471
472      // -1 is unlimited number of blocks on all paths.
473      if (NBBsOnAllPaths != -1)
474        --NBBsOnAllPaths;
475
476      ++I;
477    }
478
479    return false;
480  }
481
482  // Return true when there are exception handling between HoistPt and BB.
483  // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
484  // return true when the counter NBBsOnAllPaths reaches 0, except when it is
485  // initialized to -1 which is unlimited.
486  bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB,
487                   int &NBBsOnAllPaths) {
488    assert(DT->dominates(HoistPt, SrcBB) && "Invalid path");
489
490    // Walk all basic blocks reachable in depth-first iteration on
491    // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the
492    // blocks that may be executed between the execution of NewHoistPt and
493    // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe
494    // on all execution paths.
495    for (auto I = idf_begin(SrcBB), E = idf_end(SrcBB); I != E;) {
496      const BasicBlock *BB = *I;
497      if (BB == HoistPt) {
498        // Stop traversal when reaching NewHoistPt.
499        I.skipChildren();
500        continue;
501      }
502
503      if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths))
504        return true;
505
506      // -1 is unlimited number of blocks on all paths.
507      if (NBBsOnAllPaths != -1)
508        --NBBsOnAllPaths;
509
510      ++I;
511    }
512
513    return false;
514  }
515
516  // Return true when it is safe to hoist a memory load or store U from OldPt
517  // to NewPt.
518  bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt,
519                       MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) {
520    // In place hoisting is safe.
521    if (NewPt == OldPt)
522      return true;
523
524    const BasicBlock *NewBB = NewPt->getParent();
525    const BasicBlock *OldBB = OldPt->getParent();
526    const BasicBlock *UBB = U->getBlock();
527
528    // Check for dependences on the Memory SSA.
529    MemoryAccess *D = U->getDefiningAccess();
530    BasicBlock *DBB = D->getBlock();
531    if (DT->properlyDominates(NewBB, DBB))
532      // Cannot move the load or store to NewBB above its definition in DBB.
533      return false;
534
535    if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D))
536      if (auto *UD = dyn_cast<MemoryUseOrDef>(D))
537        if (!firstInBB(UD->getMemoryInst(), NewPt))
538          // Cannot move the load or store to NewPt above its definition in D.
539          return false;
540
541    // Check for unsafe hoistings due to side effects.
542    if (K == InsKind::Store) {
543      if (hasEHOrLoadsOnPath(NewPt, cast<MemoryDef>(U), NBBsOnAllPaths))
544        return false;
545    } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths))
546      return false;
547
548    if (UBB == NewBB) {
549      if (DT->properlyDominates(DBB, NewBB))
550        return true;
551      assert(UBB == DBB);
552      assert(MSSA->locallyDominates(D, U));
553    }
554
555    // No side effects: it is safe to hoist.
556    return true;
557  }
558
559  // Return true when it is safe to hoist scalar instructions from all blocks in
560  // WL to HoistBB.
561  bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB,
562                         int &NBBsOnAllPaths) {
563    return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths);
564  }
565
566  // In the inverse CFG, the dominance frontier of basic block (BB) is the
567  // point where ANTIC needs to be computed for instructions which are going
568  // to be hoisted. Since this point does not change during gvn-hoist,
569  // we compute it only once (on demand).
570  // The ides is inspired from:
571  // "Partial Redundancy Elimination in SSA Form"
572  // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW
573  // They use similar idea in the forward graph to find fully redundant and
574  // partially redundant expressions, here it is used in the inverse graph to
575  // find fully anticipable instructions at merge point (post-dominator in
576  // the inverse CFG).
577  // Returns the edge via which an instruction in BB will get the values from.
578
579  // Returns true when the values are flowing out to each edge.
580  bool valueAnticipable(CHIArgs C, Instruction *TI) const {
581    if (TI->getNumSuccessors() > (unsigned)size(C))
582      return false; // Not enough args in this CHI.
583
584    for (auto CHI : C) {
585      BasicBlock *Dest = CHI.Dest;
586      // Find if all the edges have values flowing out of BB.
587      bool Found = llvm::any_of(
588          successors(TI), [Dest](const BasicBlock *BB) { return BB == Dest; });
589      if (!Found)
590        return false;
591    }
592    return true;
593  }
594
595  // Check if it is safe to hoist values tracked by CHI in the range
596  // [Begin, End) and accumulate them in Safe.
597  void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K,
598                   SmallVectorImpl<CHIArg> &Safe) {
599    int NumBBsOnAllPaths = MaxNumberOfBBSInPath;
600    for (auto CHI : C) {
601      Instruction *Insn = CHI.I;
602      if (!Insn) // No instruction was inserted in this CHI.
603        continue;
604      if (K == InsKind::Scalar) {
605        if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths))
606          Safe.push_back(CHI);
607      } else {
608        MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn);
609        if (safeToHoistLdSt(BB->getTerminator(), Insn, UD, K, NumBBsOnAllPaths))
610          Safe.push_back(CHI);
611      }
612    }
613  }
614
615  using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>;
616
617  // Push all the VNs corresponding to BB into RenameStack.
618  void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs,
619                       RenameStackType &RenameStack) {
620    auto it1 = ValueBBs.find(BB);
621    if (it1 != ValueBBs.end()) {
622      // Iterate in reverse order to keep lower ranked values on the top.
623      for (std::pair<VNType, Instruction *> &VI : reverse(it1->second)) {
624        // Get the value of instruction I
625        LLVM_DEBUG(dbgs() << "\nPushing on stack: " << *VI.second);
626        RenameStack[VI.first].push_back(VI.second);
627      }
628    }
629  }
630
631  void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs,
632                   RenameStackType &RenameStack) {
633    // For each *predecessor* (because Post-DOM) of BB check if it has a CHI
634    for (auto Pred : predecessors(BB)) {
635      auto P = CHIBBs.find(Pred);
636      if (P == CHIBBs.end()) {
637        continue;
638      }
639      LLVM_DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName(););
640      // A CHI is found (BB -> Pred is an edge in the CFG)
641      // Pop the stack until Top(V) = Ve.
642      auto &VCHI = P->second;
643      for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) {
644        CHIArg &C = *It;
645        if (!C.Dest) {
646          auto si = RenameStack.find(C.VN);
647          // The Basic Block where CHI is must dominate the value we want to
648          // track in a CHI. In the PDom walk, there can be values in the
649          // stack which are not control dependent e.g., nested loop.
650          if (si != RenameStack.end() && si->second.size() &&
651              DT->properlyDominates(Pred, si->second.back()->getParent())) {
652            C.Dest = BB;                     // Assign the edge
653            C.I = si->second.pop_back_val(); // Assign the argument
654            LLVM_DEBUG(dbgs()
655                       << "\nCHI Inserted in BB: " << C.Dest->getName() << *C.I
656                       << ", VN: " << C.VN.first << ", " << C.VN.second);
657          }
658          // Move to next CHI of a different value
659          It = std::find_if(It, VCHI.end(),
660                            [It](CHIArg &A) { return A != *It; });
661        } else
662          ++It;
663      }
664    }
665  }
666
667  // Walk the post-dominator tree top-down and use a stack for each value to
668  // store the last value you see. When you hit a CHI from a given edge, the
669  // value to use as the argument is at the top of the stack, add the value to
670  // CHI and pop.
671  void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) {
672    auto Root = PDT->getNode(nullptr);
673    if (!Root)
674      return;
675    // Depth first walk on PDom tree to fill the CHIargs at each PDF.
676    RenameStackType RenameStack;
677    for (auto Node : depth_first(Root)) {
678      BasicBlock *BB = Node->getBlock();
679      if (!BB)
680        continue;
681
682      // Collect all values in BB and push to stack.
683      fillRenameStack(BB, ValueBBs, RenameStack);
684
685      // Fill outgoing values in each CHI corresponding to BB.
686      fillChiArgs(BB, CHIBBs, RenameStack);
687    }
688  }
689
690  // Walk all the CHI-nodes to find ones which have a empty-entry and remove
691  // them Then collect all the instructions which are safe to hoist and see if
692  // they form a list of anticipable values. OutValues contains CHIs
693  // corresponding to each basic block.
694  void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K,
695                               HoistingPointList &HPL) {
696    auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; };
697
698    // CHIArgs now have the outgoing values, so check for anticipability and
699    // accumulate hoistable candidates in HPL.
700    for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) {
701      BasicBlock *BB = A.first;
702      SmallVectorImpl<CHIArg> &CHIs = A.second;
703      // Vector of PHIs contains PHIs for different instructions.
704      // Sort the args according to their VNs, such that identical
705      // instructions are together.
706      llvm::stable_sort(CHIs, cmpVN);
707      auto TI = BB->getTerminator();
708      auto B = CHIs.begin();
709      // [PreIt, PHIIt) form a range of CHIs which have identical VNs.
710      auto PHIIt = std::find_if(CHIs.begin(), CHIs.end(),
711                                 [B](CHIArg &A) { return A != *B; });
712      auto PrevIt = CHIs.begin();
713      while (PrevIt != PHIIt) {
714        // Collect values which satisfy safety checks.
715        SmallVector<CHIArg, 2> Safe;
716        // We check for safety first because there might be multiple values in
717        // the same path, some of which are not safe to be hoisted, but overall
718        // each edge has at least one value which can be hoisted, making the
719        // value anticipable along that path.
720        checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe);
721
722        // List of safe values should be anticipable at TI.
723        if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) {
724          HPL.push_back({BB, SmallVecInsn()});
725          SmallVecInsn &V = HPL.back().second;
726          for (auto B : Safe)
727            V.push_back(B.I);
728        }
729
730        // Check other VNs
731        PrevIt = PHIIt;
732        PHIIt = std::find_if(PrevIt, CHIs.end(),
733                             [PrevIt](CHIArg &A) { return A != *PrevIt; });
734      }
735    }
736  }
737
738  // Compute insertion points for each values which can be fully anticipated at
739  // a dominator. HPL contains all such values.
740  void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL,
741                              InsKind K) {
742    // Sort VNs based on their rankings
743    std::vector<VNType> Ranks;
744    for (const auto &Entry : Map) {
745      Ranks.push_back(Entry.first);
746    }
747
748    // TODO: Remove fully-redundant expressions.
749    // Get instruction from the Map, assume that all the Instructions
750    // with same VNs have same rank (this is an approximation).
751    llvm::sort(Ranks, [this, &Map](const VNType &r1, const VNType &r2) {
752      return (rank(*Map.lookup(r1).begin()) < rank(*Map.lookup(r2).begin()));
753    });
754
755    // - Sort VNs according to their rank, and start with lowest ranked VN
756    // - Take a VN and for each instruction with same VN
757    //   - Find the dominance frontier in the inverse graph (PDF)
758    //   - Insert the chi-node at PDF
759    // - Remove the chi-nodes with missing entries
760    // - Remove values from CHI-nodes which do not truly flow out, e.g.,
761    //   modified along the path.
762    // - Collect the remaining values that are still anticipable
763    SmallVector<BasicBlock *, 2> IDFBlocks;
764    ReverseIDFCalculator IDFs(*PDT);
765    OutValuesType OutValue;
766    InValuesType InValue;
767    for (const auto &R : Ranks) {
768      const SmallVecInsn &V = Map.lookup(R);
769      if (V.size() < 2)
770        continue;
771      const VNType &VN = R;
772      SmallPtrSet<BasicBlock *, 2> VNBlocks;
773      for (auto &I : V) {
774        BasicBlock *BBI = I->getParent();
775        if (!hasEH(BBI))
776          VNBlocks.insert(BBI);
777      }
778      // Compute the Post Dominance Frontiers of each basic block
779      // The dominance frontier of a live block X in the reverse
780      // control graph is the set of blocks upon which X is control
781      // dependent. The following sequence computes the set of blocks
782      // which currently have dead terminators that are control
783      // dependence sources of a block which is in NewLiveBlocks.
784      IDFs.setDefiningBlocks(VNBlocks);
785      IDFBlocks.clear();
786      IDFs.calculate(IDFBlocks);
787
788      // Make a map of BB vs instructions to be hoisted.
789      for (unsigned i = 0; i < V.size(); ++i) {
790        InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i]));
791      }
792      // Insert empty CHI node for this VN. This is used to factor out
793      // basic blocks where the ANTIC can potentially change.
794      for (auto IDFB : IDFBlocks) {
795        for (unsigned i = 0; i < V.size(); ++i) {
796          CHIArg C = {VN, nullptr, nullptr};
797           // Ignore spurious PDFs.
798          if (DT->properlyDominates(IDFB, V[i]->getParent())) {
799            OutValue[IDFB].push_back(C);
800            LLVM_DEBUG(dbgs() << "\nInsertion a CHI for BB: " << IDFB->getName()
801                              << ", for Insn: " << *V[i]);
802          }
803        }
804      }
805    }
806
807    // Insert CHI args at each PDF to iterate on factored graph of
808    // control dependence.
809    insertCHI(InValue, OutValue);
810    // Using the CHI args inserted at each PDF, find fully anticipable values.
811    findHoistableCandidates(OutValue, K, HPL);
812  }
813
814  // Return true when all operands of Instr are available at insertion point
815  // HoistPt. When limiting the number of hoisted expressions, one could hoist
816  // a load without hoisting its access function. So before hoisting any
817  // expression, make sure that all its operands are available at insert point.
818  bool allOperandsAvailable(const Instruction *I,
819                            const BasicBlock *HoistPt) const {
820    for (const Use &Op : I->operands())
821      if (const auto *Inst = dyn_cast<Instruction>(&Op))
822        if (!DT->dominates(Inst->getParent(), HoistPt))
823          return false;
824
825    return true;
826  }
827
828  // Same as allOperandsAvailable with recursive check for GEP operands.
829  bool allGepOperandsAvailable(const Instruction *I,
830                               const BasicBlock *HoistPt) const {
831    for (const Use &Op : I->operands())
832      if (const auto *Inst = dyn_cast<Instruction>(&Op))
833        if (!DT->dominates(Inst->getParent(), HoistPt)) {
834          if (const GetElementPtrInst *GepOp =
835                  dyn_cast<GetElementPtrInst>(Inst)) {
836            if (!allGepOperandsAvailable(GepOp, HoistPt))
837              return false;
838            // Gep is available if all operands of GepOp are available.
839          } else {
840            // Gep is not available if it has operands other than GEPs that are
841            // defined in blocks not dominating HoistPt.
842            return false;
843          }
844        }
845    return true;
846  }
847
848  // Make all operands of the GEP available.
849  void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt,
850                         const SmallVecInsn &InstructionsToHoist,
851                         Instruction *Gep) const {
852    assert(allGepOperandsAvailable(Gep, HoistPt) &&
853           "GEP operands not available");
854
855    Instruction *ClonedGep = Gep->clone();
856    for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i)
857      if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) {
858        // Check whether the operand is already available.
859        if (DT->dominates(Op->getParent(), HoistPt))
860          continue;
861
862        // As a GEP can refer to other GEPs, recursively make all the operands
863        // of this GEP available at HoistPt.
864        if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op))
865          makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp);
866      }
867
868    // Copy Gep and replace its uses in Repl with ClonedGep.
869    ClonedGep->insertBefore(HoistPt->getTerminator());
870
871    // Conservatively discard any optimization hints, they may differ on the
872    // other paths.
873    ClonedGep->dropUnknownNonDebugMetadata();
874
875    // If we have optimization hints which agree with each other along different
876    // paths, preserve them.
877    for (const Instruction *OtherInst : InstructionsToHoist) {
878      const GetElementPtrInst *OtherGep;
879      if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst))
880        OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand());
881      else
882        OtherGep = cast<GetElementPtrInst>(
883            cast<StoreInst>(OtherInst)->getPointerOperand());
884      ClonedGep->andIRFlags(OtherGep);
885    }
886
887    // Replace uses of Gep with ClonedGep in Repl.
888    Repl->replaceUsesOfWith(Gep, ClonedGep);
889  }
890
891  void updateAlignment(Instruction *I, Instruction *Repl) {
892    if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) {
893      ReplacementLoad->setAlignment(MaybeAlign(std::min(
894          ReplacementLoad->getAlignment(), cast<LoadInst>(I)->getAlignment())));
895      ++NumLoadsRemoved;
896    } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) {
897      ReplacementStore->setAlignment(
898          MaybeAlign(std::min(ReplacementStore->getAlignment(),
899                              cast<StoreInst>(I)->getAlignment())));
900      ++NumStoresRemoved;
901    } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) {
902      ReplacementAlloca->setAlignment(
903          MaybeAlign(std::max(ReplacementAlloca->getAlignment(),
904                              cast<AllocaInst>(I)->getAlignment())));
905    } else if (isa<CallInst>(Repl)) {
906      ++NumCallsRemoved;
907    }
908  }
909
910  // Remove all the instructions in Candidates and replace their usage with Repl.
911  // Returns the number of instructions removed.
912  unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl,
913                MemoryUseOrDef *NewMemAcc) {
914    unsigned NR = 0;
915    for (Instruction *I : Candidates) {
916      if (I != Repl) {
917        ++NR;
918        updateAlignment(I, Repl);
919        if (NewMemAcc) {
920          // Update the uses of the old MSSA access with NewMemAcc.
921          MemoryAccess *OldMA = MSSA->getMemoryAccess(I);
922          OldMA->replaceAllUsesWith(NewMemAcc);
923          MSSAUpdater->removeMemoryAccess(OldMA);
924        }
925
926        Repl->andIRFlags(I);
927        combineKnownMetadata(Repl, I);
928        I->replaceAllUsesWith(Repl);
929        // Also invalidate the Alias Analysis cache.
930        MD->removeInstruction(I);
931        I->eraseFromParent();
932      }
933    }
934    return NR;
935  }
936
937  // Replace all Memory PHI usage with NewMemAcc.
938  void raMPHIuw(MemoryUseOrDef *NewMemAcc) {
939    SmallPtrSet<MemoryPhi *, 4> UsePhis;
940    for (User *U : NewMemAcc->users())
941      if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U))
942        UsePhis.insert(Phi);
943
944    for (MemoryPhi *Phi : UsePhis) {
945      auto In = Phi->incoming_values();
946      if (llvm::all_of(In, [&](Use &U) { return U == NewMemAcc; })) {
947        Phi->replaceAllUsesWith(NewMemAcc);
948        MSSAUpdater->removeMemoryAccess(Phi);
949      }
950    }
951  }
952
953  // Remove all other instructions and replace them with Repl.
954  unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl,
955                            BasicBlock *DestBB, bool MoveAccess) {
956    MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl);
957    if (MoveAccess && NewMemAcc) {
958        // The definition of this ld/st will not change: ld/st hoisting is
959        // legal when the ld/st is not moved past its current definition.
960        MSSAUpdater->moveToPlace(NewMemAcc, DestBB,
961                                 MemorySSA::BeforeTerminator);
962    }
963
964    // Replace all other instructions with Repl with memory access NewMemAcc.
965    unsigned NR = rauw(Candidates, Repl, NewMemAcc);
966
967    // Remove MemorySSA phi nodes with the same arguments.
968    if (NewMemAcc)
969      raMPHIuw(NewMemAcc);
970    return NR;
971  }
972
973  // In the case Repl is a load or a store, we make all their GEPs
974  // available: GEPs are not hoisted by default to avoid the address
975  // computations to be hoisted without the associated load or store.
976  bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt,
977                                const SmallVecInsn &InstructionsToHoist) const {
978    // Check whether the GEP of a ld/st can be synthesized at HoistPt.
979    GetElementPtrInst *Gep = nullptr;
980    Instruction *Val = nullptr;
981    if (auto *Ld = dyn_cast<LoadInst>(Repl)) {
982      Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand());
983    } else if (auto *St = dyn_cast<StoreInst>(Repl)) {
984      Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand());
985      Val = dyn_cast<Instruction>(St->getValueOperand());
986      // Check that the stored value is available.
987      if (Val) {
988        if (isa<GetElementPtrInst>(Val)) {
989          // Check whether we can compute the GEP at HoistPt.
990          if (!allGepOperandsAvailable(Val, HoistPt))
991            return false;
992        } else if (!DT->dominates(Val->getParent(), HoistPt))
993          return false;
994      }
995    }
996
997    // Check whether we can compute the Gep at HoistPt.
998    if (!Gep || !allGepOperandsAvailable(Gep, HoistPt))
999      return false;
1000
1001    makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep);
1002
1003    if (Val && isa<GetElementPtrInst>(Val))
1004      makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val);
1005
1006    return true;
1007  }
1008
1009  std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL) {
1010    unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0;
1011    for (const HoistingPointInfo &HP : HPL) {
1012      // Find out whether we already have one of the instructions in HoistPt,
1013      // in which case we do not have to move it.
1014      BasicBlock *DestBB = HP.first;
1015      const SmallVecInsn &InstructionsToHoist = HP.second;
1016      Instruction *Repl = nullptr;
1017      for (Instruction *I : InstructionsToHoist)
1018        if (I->getParent() == DestBB)
1019          // If there are two instructions in HoistPt to be hoisted in place:
1020          // update Repl to be the first one, such that we can rename the uses
1021          // of the second based on the first.
1022          if (!Repl || firstInBB(I, Repl))
1023            Repl = I;
1024
1025      // Keep track of whether we moved the instruction so we know whether we
1026      // should move the MemoryAccess.
1027      bool MoveAccess = true;
1028      if (Repl) {
1029        // Repl is already in HoistPt: it remains in place.
1030        assert(allOperandsAvailable(Repl, DestBB) &&
1031               "instruction depends on operands that are not available");
1032        MoveAccess = false;
1033      } else {
1034        // When we do not find Repl in HoistPt, select the first in the list
1035        // and move it to HoistPt.
1036        Repl = InstructionsToHoist.front();
1037
1038        // We can move Repl in HoistPt only when all operands are available.
1039        // The order in which hoistings are done may influence the availability
1040        // of operands.
1041        if (!allOperandsAvailable(Repl, DestBB)) {
1042          // When HoistingGeps there is nothing more we can do to make the
1043          // operands available: just continue.
1044          if (HoistingGeps)
1045            continue;
1046
1047          // When not HoistingGeps we need to copy the GEPs.
1048          if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist))
1049            continue;
1050        }
1051
1052        // Move the instruction at the end of HoistPt.
1053        Instruction *Last = DestBB->getTerminator();
1054        MD->removeInstruction(Repl);
1055        Repl->moveBefore(Last);
1056
1057        DFSNumber[Repl] = DFSNumber[Last]++;
1058      }
1059
1060      NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess);
1061
1062      if (isa<LoadInst>(Repl))
1063        ++NL;
1064      else if (isa<StoreInst>(Repl))
1065        ++NS;
1066      else if (isa<CallInst>(Repl))
1067        ++NC;
1068      else // Scalar
1069        ++NI;
1070    }
1071
1072    if (MSSA && VerifyMemorySSA)
1073      MSSA->verifyMemorySSA();
1074
1075    NumHoisted += NL + NS + NC + NI;
1076    NumRemoved += NR;
1077    NumLoadsHoisted += NL;
1078    NumStoresHoisted += NS;
1079    NumCallsHoisted += NC;
1080    return {NI, NL + NC + NS};
1081  }
1082
1083  // Hoist all expressions. Returns Number of scalars hoisted
1084  // and number of non-scalars hoisted.
1085  std::pair<unsigned, unsigned> hoistExpressions(Function &F) {
1086    InsnInfo II;
1087    LoadInfo LI;
1088    StoreInfo SI;
1089    CallInfo CI;
1090    for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
1091      int InstructionNb = 0;
1092      for (Instruction &I1 : *BB) {
1093        // If I1 cannot guarantee progress, subsequent instructions
1094        // in BB cannot be hoisted anyways.
1095        if (!isGuaranteedToTransferExecutionToSuccessor(&I1)) {
1096          HoistBarrier.insert(BB);
1097          break;
1098        }
1099        // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting
1100        // deeper may increase the register pressure and compilation time.
1101        if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB)
1102          break;
1103
1104        // Do not value number terminator instructions.
1105        if (I1.isTerminator())
1106          break;
1107
1108        if (auto *Load = dyn_cast<LoadInst>(&I1))
1109          LI.insert(Load, VN);
1110        else if (auto *Store = dyn_cast<StoreInst>(&I1))
1111          SI.insert(Store, VN);
1112        else if (auto *Call = dyn_cast<CallInst>(&I1)) {
1113          if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) {
1114            if (isa<DbgInfoIntrinsic>(Intr) ||
1115                Intr->getIntrinsicID() == Intrinsic::assume ||
1116                Intr->getIntrinsicID() == Intrinsic::sideeffect)
1117              continue;
1118          }
1119          if (Call->mayHaveSideEffects())
1120            break;
1121
1122          if (Call->isConvergent())
1123            break;
1124
1125          CI.insert(Call, VN);
1126        } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1))
1127          // Do not hoist scalars past calls that may write to memory because
1128          // that could result in spills later. geps are handled separately.
1129          // TODO: We can relax this for targets like AArch64 as they have more
1130          // registers than X86.
1131          II.insert(&I1, VN);
1132      }
1133    }
1134
1135    HoistingPointList HPL;
1136    computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar);
1137    computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load);
1138    computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store);
1139    computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar);
1140    computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load);
1141    computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store);
1142    return hoist(HPL);
1143  }
1144};
1145
1146class GVNHoistLegacyPass : public FunctionPass {
1147public:
1148  static char ID;
1149
1150  GVNHoistLegacyPass() : FunctionPass(ID) {
1151    initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry());
1152  }
1153
1154  bool runOnFunction(Function &F) override {
1155    if (skipFunction(F))
1156      return false;
1157    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1158    auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1159    auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1160    auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
1161    auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
1162
1163    GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
1164    return G.run(F);
1165  }
1166
1167  void getAnalysisUsage(AnalysisUsage &AU) const override {
1168    AU.addRequired<DominatorTreeWrapperPass>();
1169    AU.addRequired<PostDominatorTreeWrapperPass>();
1170    AU.addRequired<AAResultsWrapperPass>();
1171    AU.addRequired<MemoryDependenceWrapperPass>();
1172    AU.addRequired<MemorySSAWrapperPass>();
1173    AU.addPreserved<DominatorTreeWrapperPass>();
1174    AU.addPreserved<MemorySSAWrapperPass>();
1175    AU.addPreserved<GlobalsAAWrapperPass>();
1176    AU.addPreserved<AAResultsWrapperPass>();
1177  }
1178};
1179
1180} // end namespace llvm
1181
1182PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) {
1183  DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
1184  PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
1185  AliasAnalysis &AA = AM.getResult<AAManager>(F);
1186  MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F);
1187  MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
1188  GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
1189  if (!G.run(F))
1190    return PreservedAnalyses::all();
1191
1192  PreservedAnalyses PA;
1193  PA.preserve<DominatorTreeAnalysis>();
1194  PA.preserve<MemorySSAAnalysis>();
1195  PA.preserve<GlobalsAA>();
1196  return PA;
1197}
1198
1199char GVNHoistLegacyPass::ID = 0;
1200
1201INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist",
1202                      "Early GVN Hoisting of Expressions", false, false)
1203INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
1204INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1205INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1206INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
1207INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1208INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist",
1209                    "Early GVN Hoisting of Expressions", false, false)
1210
1211FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); }
1212