AlignmentFromAssumptions.cpp revision 353358
1//===----------------------- AlignmentFromAssumptions.cpp -----------------===//
2//                  Set Load/Store Alignments From Assumptions
3//
4// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5// See https://llvm.org/LICENSE.txt for license information.
6// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a ScalarEvolution-based transformation to set
11// the alignments of load, stores and memory intrinsics based on the truth
12// expressions of assume intrinsics. The primary motivation is to handle
13// complex alignment assumptions that apply to vector loads and stores that
14// appear after vectorization and unrolling.
15//
16//===----------------------------------------------------------------------===//
17
18#define AA_NAME "alignment-from-assumptions"
19#define DEBUG_TYPE AA_NAME
20#include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/AssumptionCache.h"
25#include "llvm/Analysis/GlobalsModRef.h"
26#include "llvm/Analysis/LoopInfo.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/Analysis/ValueTracking.h"
29#include "llvm/IR/Constant.h"
30#include "llvm/IR/Dominators.h"
31#include "llvm/IR/Instruction.h"
32#include "llvm/IR/Intrinsics.h"
33#include "llvm/IR/Module.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Transforms/Scalar.h"
37using namespace llvm;
38
39STATISTIC(NumLoadAlignChanged,
40  "Number of loads changed by alignment assumptions");
41STATISTIC(NumStoreAlignChanged,
42  "Number of stores changed by alignment assumptions");
43STATISTIC(NumMemIntAlignChanged,
44  "Number of memory intrinsics changed by alignment assumptions");
45
46namespace {
47struct AlignmentFromAssumptions : public FunctionPass {
48  static char ID; // Pass identification, replacement for typeid
49  AlignmentFromAssumptions() : FunctionPass(ID) {
50    initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry());
51  }
52
53  bool runOnFunction(Function &F) override;
54
55  void getAnalysisUsage(AnalysisUsage &AU) const override {
56    AU.addRequired<AssumptionCacheTracker>();
57    AU.addRequired<ScalarEvolutionWrapperPass>();
58    AU.addRequired<DominatorTreeWrapperPass>();
59
60    AU.setPreservesCFG();
61    AU.addPreserved<AAResultsWrapperPass>();
62    AU.addPreserved<GlobalsAAWrapperPass>();
63    AU.addPreserved<LoopInfoWrapperPass>();
64    AU.addPreserved<DominatorTreeWrapperPass>();
65    AU.addPreserved<ScalarEvolutionWrapperPass>();
66  }
67
68  AlignmentFromAssumptionsPass Impl;
69};
70}
71
72char AlignmentFromAssumptions::ID = 0;
73static const char aip_name[] = "Alignment from assumptions";
74INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME,
75                      aip_name, false, false)
76INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
77INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
78INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
79INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME,
80                    aip_name, false, false)
81
82FunctionPass *llvm::createAlignmentFromAssumptionsPass() {
83  return new AlignmentFromAssumptions();
84}
85
86// Given an expression for the (constant) alignment, AlignSCEV, and an
87// expression for the displacement between a pointer and the aligned address,
88// DiffSCEV, compute the alignment of the displaced pointer if it can be reduced
89// to a constant. Using SCEV to compute alignment handles the case where
90// DiffSCEV is a recurrence with constant start such that the aligned offset
91// is constant. e.g. {16,+,32} % 32 -> 16.
92static unsigned getNewAlignmentDiff(const SCEV *DiffSCEV,
93                                    const SCEV *AlignSCEV,
94                                    ScalarEvolution *SE) {
95  // DiffUnits = Diff % int64_t(Alignment)
96  const SCEV *DiffAlignDiv = SE->getUDivExpr(DiffSCEV, AlignSCEV);
97  const SCEV *DiffAlign = SE->getMulExpr(DiffAlignDiv, AlignSCEV);
98  const SCEV *DiffUnitsSCEV = SE->getMinusSCEV(DiffAlign, DiffSCEV);
99
100  LLVM_DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is "
101                    << *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n");
102
103  if (const SCEVConstant *ConstDUSCEV =
104      dyn_cast<SCEVConstant>(DiffUnitsSCEV)) {
105    int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue();
106
107    // If the displacement is an exact multiple of the alignment, then the
108    // displaced pointer has the same alignment as the aligned pointer, so
109    // return the alignment value.
110    if (!DiffUnits)
111      return (unsigned)
112        cast<SCEVConstant>(AlignSCEV)->getValue()->getSExtValue();
113
114    // If the displacement is not an exact multiple, but the remainder is a
115    // constant, then return this remainder (but only if it is a power of 2).
116    uint64_t DiffUnitsAbs = std::abs(DiffUnits);
117    if (isPowerOf2_64(DiffUnitsAbs))
118      return (unsigned) DiffUnitsAbs;
119  }
120
121  return 0;
122}
123
124// There is an address given by an offset OffSCEV from AASCEV which has an
125// alignment AlignSCEV. Use that information, if possible, to compute a new
126// alignment for Ptr.
127static unsigned getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV,
128                                const SCEV *OffSCEV, Value *Ptr,
129                                ScalarEvolution *SE) {
130  const SCEV *PtrSCEV = SE->getSCEV(Ptr);
131  const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV);
132
133  // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always
134  // sign-extended OffSCEV to i64, so make sure they agree again.
135  DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType());
136
137  // What we really want to know is the overall offset to the aligned
138  // address. This address is displaced by the provided offset.
139  DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV);
140
141  LLVM_DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to "
142                    << *AlignSCEV << " and offset " << *OffSCEV
143                    << " using diff " << *DiffSCEV << "\n");
144
145  unsigned NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE);
146  LLVM_DEBUG(dbgs() << "\tnew alignment: " << NewAlignment << "\n");
147
148  if (NewAlignment) {
149    return NewAlignment;
150  } else if (const SCEVAddRecExpr *DiffARSCEV =
151             dyn_cast<SCEVAddRecExpr>(DiffSCEV)) {
152    // The relative offset to the alignment assumption did not yield a constant,
153    // but we should try harder: if we assume that a is 32-byte aligned, then in
154    // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are
155    // 32-byte aligned, but instead alternate between 32 and 16-byte alignment.
156    // As a result, the new alignment will not be a constant, but can still
157    // be improved over the default (of 4) to 16.
158
159    const SCEV *DiffStartSCEV = DiffARSCEV->getStart();
160    const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE);
161
162    LLVM_DEBUG(dbgs() << "\ttrying start/inc alignment using start "
163                      << *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n");
164
165    // Now compute the new alignment using the displacement to the value in the
166    // first iteration, and also the alignment using the per-iteration delta.
167    // If these are the same, then use that answer. Otherwise, use the smaller
168    // one, but only if it divides the larger one.
169    NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE);
170    unsigned NewIncAlignment = getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE);
171
172    LLVM_DEBUG(dbgs() << "\tnew start alignment: " << NewAlignment << "\n");
173    LLVM_DEBUG(dbgs() << "\tnew inc alignment: " << NewIncAlignment << "\n");
174
175    if (!NewAlignment || !NewIncAlignment) {
176      return 0;
177    } else if (NewAlignment > NewIncAlignment) {
178      if (NewAlignment % NewIncAlignment == 0) {
179        LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewIncAlignment
180                          << "\n");
181        return NewIncAlignment;
182      }
183    } else if (NewIncAlignment > NewAlignment) {
184      if (NewIncAlignment % NewAlignment == 0) {
185        LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewAlignment
186                          << "\n");
187        return NewAlignment;
188      }
189    } else if (NewIncAlignment == NewAlignment) {
190      LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewAlignment
191                        << "\n");
192      return NewAlignment;
193    }
194  }
195
196  return 0;
197}
198
199bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I,
200                                                        Value *&AAPtr,
201                                                        const SCEV *&AlignSCEV,
202                                                        const SCEV *&OffSCEV) {
203  // An alignment assume must be a statement about the least-significant
204  // bits of the pointer being zero, possibly with some offset.
205  ICmpInst *ICI = dyn_cast<ICmpInst>(I->getArgOperand(0));
206  if (!ICI)
207    return false;
208
209  // This must be an expression of the form: x & m == 0.
210  if (ICI->getPredicate() != ICmpInst::ICMP_EQ)
211    return false;
212
213  // Swap things around so that the RHS is 0.
214  Value *CmpLHS = ICI->getOperand(0);
215  Value *CmpRHS = ICI->getOperand(1);
216  const SCEV *CmpLHSSCEV = SE->getSCEV(CmpLHS);
217  const SCEV *CmpRHSSCEV = SE->getSCEV(CmpRHS);
218  if (CmpLHSSCEV->isZero())
219    std::swap(CmpLHS, CmpRHS);
220  else if (!CmpRHSSCEV->isZero())
221    return false;
222
223  BinaryOperator *CmpBO = dyn_cast<BinaryOperator>(CmpLHS);
224  if (!CmpBO || CmpBO->getOpcode() != Instruction::And)
225    return false;
226
227  // Swap things around so that the right operand of the and is a constant
228  // (the mask); we cannot deal with variable masks.
229  Value *AndLHS = CmpBO->getOperand(0);
230  Value *AndRHS = CmpBO->getOperand(1);
231  const SCEV *AndLHSSCEV = SE->getSCEV(AndLHS);
232  const SCEV *AndRHSSCEV = SE->getSCEV(AndRHS);
233  if (isa<SCEVConstant>(AndLHSSCEV)) {
234    std::swap(AndLHS, AndRHS);
235    std::swap(AndLHSSCEV, AndRHSSCEV);
236  }
237
238  const SCEVConstant *MaskSCEV = dyn_cast<SCEVConstant>(AndRHSSCEV);
239  if (!MaskSCEV)
240    return false;
241
242  // The mask must have some trailing ones (otherwise the condition is
243  // trivial and tells us nothing about the alignment of the left operand).
244  unsigned TrailingOnes = MaskSCEV->getAPInt().countTrailingOnes();
245  if (!TrailingOnes)
246    return false;
247
248  // Cap the alignment at the maximum with which LLVM can deal (and make sure
249  // we don't overflow the shift).
250  uint64_t Alignment;
251  TrailingOnes = std::min(TrailingOnes,
252    unsigned(sizeof(unsigned) * CHAR_BIT - 1));
253  Alignment = std::min(1u << TrailingOnes, +Value::MaximumAlignment);
254
255  Type *Int64Ty = Type::getInt64Ty(I->getParent()->getParent()->getContext());
256  AlignSCEV = SE->getConstant(Int64Ty, Alignment);
257
258  // The LHS might be a ptrtoint instruction, or it might be the pointer
259  // with an offset.
260  AAPtr = nullptr;
261  OffSCEV = nullptr;
262  if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(AndLHS)) {
263    AAPtr = PToI->getPointerOperand();
264    OffSCEV = SE->getZero(Int64Ty);
265  } else if (const SCEVAddExpr* AndLHSAddSCEV =
266             dyn_cast<SCEVAddExpr>(AndLHSSCEV)) {
267    // Try to find the ptrtoint; subtract it and the rest is the offset.
268    for (SCEVAddExpr::op_iterator J = AndLHSAddSCEV->op_begin(),
269         JE = AndLHSAddSCEV->op_end(); J != JE; ++J)
270      if (const SCEVUnknown *OpUnk = dyn_cast<SCEVUnknown>(*J))
271        if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(OpUnk->getValue())) {
272          AAPtr = PToI->getPointerOperand();
273          OffSCEV = SE->getMinusSCEV(AndLHSAddSCEV, *J);
274          break;
275        }
276  }
277
278  if (!AAPtr)
279    return false;
280
281  // Sign extend the offset to 64 bits (so that it is like all of the other
282  // expressions).
283  unsigned OffSCEVBits = OffSCEV->getType()->getPrimitiveSizeInBits();
284  if (OffSCEVBits < 64)
285    OffSCEV = SE->getSignExtendExpr(OffSCEV, Int64Ty);
286  else if (OffSCEVBits > 64)
287    return false;
288
289  AAPtr = AAPtr->stripPointerCasts();
290  return true;
291}
292
293bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall) {
294  Value *AAPtr;
295  const SCEV *AlignSCEV, *OffSCEV;
296  if (!extractAlignmentInfo(ACall, AAPtr, AlignSCEV, OffSCEV))
297    return false;
298
299  // Skip ConstantPointerNull and UndefValue.  Assumptions on these shouldn't
300  // affect other users.
301  if (isa<ConstantData>(AAPtr))
302    return false;
303
304  const SCEV *AASCEV = SE->getSCEV(AAPtr);
305
306  // Apply the assumption to all other users of the specified pointer.
307  SmallPtrSet<Instruction *, 32> Visited;
308  SmallVector<Instruction*, 16> WorkList;
309  for (User *J : AAPtr->users()) {
310    if (J == ACall)
311      continue;
312
313    if (Instruction *K = dyn_cast<Instruction>(J))
314      if (isValidAssumeForContext(ACall, K, DT))
315        WorkList.push_back(K);
316  }
317
318  while (!WorkList.empty()) {
319    Instruction *J = WorkList.pop_back_val();
320
321    if (LoadInst *LI = dyn_cast<LoadInst>(J)) {
322      unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
323        LI->getPointerOperand(), SE);
324
325      if (NewAlignment > LI->getAlignment()) {
326        LI->setAlignment(NewAlignment);
327        ++NumLoadAlignChanged;
328      }
329    } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) {
330      unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
331        SI->getPointerOperand(), SE);
332
333      if (NewAlignment > SI->getAlignment()) {
334        SI->setAlignment(NewAlignment);
335        ++NumStoreAlignChanged;
336      }
337    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) {
338      unsigned NewDestAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
339        MI->getDest(), SE);
340
341      LLVM_DEBUG(dbgs() << "\tmem inst: " << NewDestAlignment << "\n";);
342      if (NewDestAlignment > MI->getDestAlignment()) {
343        MI->setDestAlignment(NewDestAlignment);
344        ++NumMemIntAlignChanged;
345      }
346
347      // For memory transfers, there is also a source alignment that
348      // can be set.
349      if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
350        unsigned NewSrcAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
351          MTI->getSource(), SE);
352
353        LLVM_DEBUG(dbgs() << "\tmem trans: " << NewSrcAlignment << "\n";);
354
355        if (NewSrcAlignment > MTI->getSourceAlignment()) {
356          MTI->setSourceAlignment(NewSrcAlignment);
357          ++NumMemIntAlignChanged;
358        }
359      }
360    }
361
362    // Now that we've updated that use of the pointer, look for other uses of
363    // the pointer to update.
364    Visited.insert(J);
365    for (User *UJ : J->users()) {
366      Instruction *K = cast<Instruction>(UJ);
367      if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DT))
368        WorkList.push_back(K);
369    }
370  }
371
372  return true;
373}
374
375bool AlignmentFromAssumptions::runOnFunction(Function &F) {
376  if (skipFunction(F))
377    return false;
378
379  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
380  ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
381  DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
382
383  return Impl.runImpl(F, AC, SE, DT);
384}
385
386bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC,
387                                           ScalarEvolution *SE_,
388                                           DominatorTree *DT_) {
389  SE = SE_;
390  DT = DT_;
391
392  bool Changed = false;
393  for (auto &AssumeVH : AC.assumptions())
394    if (AssumeVH)
395      Changed |= processAssumption(cast<CallInst>(AssumeVH));
396
397  return Changed;
398}
399
400PreservedAnalyses
401AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) {
402
403  AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
404  ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
405  DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
406  if (!runImpl(F, AC, &SE, &DT))
407    return PreservedAnalyses::all();
408
409  PreservedAnalyses PA;
410  PA.preserveSet<CFGAnalyses>();
411  PA.preserve<AAManager>();
412  PA.preserve<ScalarEvolutionAnalysis>();
413  PA.preserve<GlobalsAA>();
414  return PA;
415}
416