1//===- InstCombineSelect.cpp ----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visitSelect function.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/ADT/APInt.h"
15#include "llvm/ADT/Optional.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/Analysis/AssumptionCache.h"
19#include "llvm/Analysis/CmpInstAnalysis.h"
20#include "llvm/Analysis/InstructionSimplify.h"
21#include "llvm/Analysis/ValueTracking.h"
22#include "llvm/IR/BasicBlock.h"
23#include "llvm/IR/Constant.h"
24#include "llvm/IR/Constants.h"
25#include "llvm/IR/DerivedTypes.h"
26#include "llvm/IR/IRBuilder.h"
27#include "llvm/IR/InstrTypes.h"
28#include "llvm/IR/Instruction.h"
29#include "llvm/IR/Instructions.h"
30#include "llvm/IR/IntrinsicInst.h"
31#include "llvm/IR/Intrinsics.h"
32#include "llvm/IR/Operator.h"
33#include "llvm/IR/PatternMatch.h"
34#include "llvm/IR/Type.h"
35#include "llvm/IR/User.h"
36#include "llvm/IR/Value.h"
37#include "llvm/Support/Casting.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/KnownBits.h"
40#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
41#include <cassert>
42#include <utility>
43
44using namespace llvm;
45using namespace PatternMatch;
46
47#define DEBUG_TYPE "instcombine"
48
49static Value *createMinMax(InstCombiner::BuilderTy &Builder,
50                           SelectPatternFlavor SPF, Value *A, Value *B) {
51  CmpInst::Predicate Pred = getMinMaxPred(SPF);
52  assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
53  return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
54}
55
56/// Replace a select operand based on an equality comparison with the identity
57/// constant of a binop.
58static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
59                                            const TargetLibraryInfo &TLI) {
60  // The select condition must be an equality compare with a constant operand.
61  Value *X;
62  Constant *C;
63  CmpInst::Predicate Pred;
64  if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
65    return nullptr;
66
67  bool IsEq;
68  if (ICmpInst::isEquality(Pred))
69    IsEq = Pred == ICmpInst::ICMP_EQ;
70  else if (Pred == FCmpInst::FCMP_OEQ)
71    IsEq = true;
72  else if (Pred == FCmpInst::FCMP_UNE)
73    IsEq = false;
74  else
75    return nullptr;
76
77  // A select operand must be a binop.
78  BinaryOperator *BO;
79  if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
80    return nullptr;
81
82  // The compare constant must be the identity constant for that binop.
83  // If this a floating-point compare with 0.0, any zero constant will do.
84  Type *Ty = BO->getType();
85  Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
86  if (IdC != C) {
87    if (!IdC || !CmpInst::isFPPredicate(Pred))
88      return nullptr;
89    if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
90      return nullptr;
91  }
92
93  // Last, match the compare variable operand with a binop operand.
94  Value *Y;
95  if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
96    return nullptr;
97  if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
98    return nullptr;
99
100  // +0.0 compares equal to -0.0, and so it does not behave as required for this
101  // transform. Bail out if we can not exclude that possibility.
102  if (isa<FPMathOperator>(BO))
103    if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
104      return nullptr;
105
106  // BO = binop Y, X
107  // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
108  // =>
109  // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
110  Sel.setOperand(IsEq ? 1 : 2, Y);
111  return &Sel;
112}
113
114/// This folds:
115///  select (icmp eq (and X, C1)), TC, FC
116///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
117/// To something like:
118///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
119/// Or:
120///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
121/// With some variations depending if FC is larger than TC, or the shift
122/// isn't needed, or the bit widths don't match.
123static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
124                                InstCombiner::BuilderTy &Builder) {
125  const APInt *SelTC, *SelFC;
126  if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
127      !match(Sel.getFalseValue(), m_APInt(SelFC)))
128    return nullptr;
129
130  // If this is a vector select, we need a vector compare.
131  Type *SelType = Sel.getType();
132  if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
133    return nullptr;
134
135  Value *V;
136  APInt AndMask;
137  bool CreateAnd = false;
138  ICmpInst::Predicate Pred = Cmp->getPredicate();
139  if (ICmpInst::isEquality(Pred)) {
140    if (!match(Cmp->getOperand(1), m_Zero()))
141      return nullptr;
142
143    V = Cmp->getOperand(0);
144    const APInt *AndRHS;
145    if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
146      return nullptr;
147
148    AndMask = *AndRHS;
149  } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
150                                  Pred, V, AndMask)) {
151    assert(ICmpInst::isEquality(Pred) && "Not equality test?");
152    if (!AndMask.isPowerOf2())
153      return nullptr;
154
155    CreateAnd = true;
156  } else {
157    return nullptr;
158  }
159
160  // In general, when both constants are non-zero, we would need an offset to
161  // replace the select. This would require more instructions than we started
162  // with. But there's one special-case that we handle here because it can
163  // simplify/reduce the instructions.
164  APInt TC = *SelTC;
165  APInt FC = *SelFC;
166  if (!TC.isNullValue() && !FC.isNullValue()) {
167    // If the select constants differ by exactly one bit and that's the same
168    // bit that is masked and checked by the select condition, the select can
169    // be replaced by bitwise logic to set/clear one bit of the constant result.
170    if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
171      return nullptr;
172    if (CreateAnd) {
173      // If we have to create an 'and', then we must kill the cmp to not
174      // increase the instruction count.
175      if (!Cmp->hasOneUse())
176        return nullptr;
177      V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
178    }
179    bool ExtraBitInTC = TC.ugt(FC);
180    if (Pred == ICmpInst::ICMP_EQ) {
181      // If the masked bit in V is clear, clear or set the bit in the result:
182      // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
183      // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
184      Constant *C = ConstantInt::get(SelType, TC);
185      return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
186    }
187    if (Pred == ICmpInst::ICMP_NE) {
188      // If the masked bit in V is set, set or clear the bit in the result:
189      // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
190      // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
191      Constant *C = ConstantInt::get(SelType, FC);
192      return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
193    }
194    llvm_unreachable("Only expecting equality predicates");
195  }
196
197  // Make sure one of the select arms is a power-of-2.
198  if (!TC.isPowerOf2() && !FC.isPowerOf2())
199    return nullptr;
200
201  // Determine which shift is needed to transform result of the 'and' into the
202  // desired result.
203  const APInt &ValC = !TC.isNullValue() ? TC : FC;
204  unsigned ValZeros = ValC.logBase2();
205  unsigned AndZeros = AndMask.logBase2();
206
207  // Insert the 'and' instruction on the input to the truncate.
208  if (CreateAnd)
209    V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
210
211  // If types don't match, we can still convert the select by introducing a zext
212  // or a trunc of the 'and'.
213  if (ValZeros > AndZeros) {
214    V = Builder.CreateZExtOrTrunc(V, SelType);
215    V = Builder.CreateShl(V, ValZeros - AndZeros);
216  } else if (ValZeros < AndZeros) {
217    V = Builder.CreateLShr(V, AndZeros - ValZeros);
218    V = Builder.CreateZExtOrTrunc(V, SelType);
219  } else {
220    V = Builder.CreateZExtOrTrunc(V, SelType);
221  }
222
223  // Okay, now we know that everything is set up, we just don't know whether we
224  // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
225  bool ShouldNotVal = !TC.isNullValue();
226  ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
227  if (ShouldNotVal)
228    V = Builder.CreateXor(V, ValC);
229
230  return V;
231}
232
233/// We want to turn code that looks like this:
234///   %C = or %A, %B
235///   %D = select %cond, %C, %A
236/// into:
237///   %C = select %cond, %B, 0
238///   %D = or %A, %C
239///
240/// Assuming that the specified instruction is an operand to the select, return
241/// a bitmask indicating which operands of this instruction are foldable if they
242/// equal the other incoming value of the select.
243static unsigned getSelectFoldableOperands(BinaryOperator *I) {
244  switch (I->getOpcode()) {
245  case Instruction::Add:
246  case Instruction::Mul:
247  case Instruction::And:
248  case Instruction::Or:
249  case Instruction::Xor:
250    return 3;              // Can fold through either operand.
251  case Instruction::Sub:   // Can only fold on the amount subtracted.
252  case Instruction::Shl:   // Can only fold on the shift amount.
253  case Instruction::LShr:
254  case Instruction::AShr:
255    return 1;
256  default:
257    return 0;              // Cannot fold
258  }
259}
260
261/// For the same transformation as the previous function, return the identity
262/// constant that goes into the select.
263static APInt getSelectFoldableConstant(BinaryOperator *I) {
264  switch (I->getOpcode()) {
265  default: llvm_unreachable("This cannot happen!");
266  case Instruction::Add:
267  case Instruction::Sub:
268  case Instruction::Or:
269  case Instruction::Xor:
270  case Instruction::Shl:
271  case Instruction::LShr:
272  case Instruction::AShr:
273    return APInt::getNullValue(I->getType()->getScalarSizeInBits());
274  case Instruction::And:
275    return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits());
276  case Instruction::Mul:
277    return APInt(I->getType()->getScalarSizeInBits(), 1);
278  }
279}
280
281/// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
282Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI,
283                                          Instruction *FI) {
284  // Don't break up min/max patterns. The hasOneUse checks below prevent that
285  // for most cases, but vector min/max with bitcasts can be transformed. If the
286  // one-use restrictions are eased for other patterns, we still don't want to
287  // obfuscate min/max.
288  if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
289       match(&SI, m_SMax(m_Value(), m_Value())) ||
290       match(&SI, m_UMin(m_Value(), m_Value())) ||
291       match(&SI, m_UMax(m_Value(), m_Value()))))
292    return nullptr;
293
294  // If this is a cast from the same type, merge.
295  Value *Cond = SI.getCondition();
296  Type *CondTy = Cond->getType();
297  if (TI->getNumOperands() == 1 && TI->isCast()) {
298    Type *FIOpndTy = FI->getOperand(0)->getType();
299    if (TI->getOperand(0)->getType() != FIOpndTy)
300      return nullptr;
301
302    // The select condition may be a vector. We may only change the operand
303    // type if the vector width remains the same (and matches the condition).
304    if (CondTy->isVectorTy()) {
305      if (!FIOpndTy->isVectorTy())
306        return nullptr;
307      if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())
308        return nullptr;
309
310      // TODO: If the backend knew how to deal with casts better, we could
311      // remove this limitation. For now, there's too much potential to create
312      // worse codegen by promoting the select ahead of size-altering casts
313      // (PR28160).
314      //
315      // Note that ValueTracking's matchSelectPattern() looks through casts
316      // without checking 'hasOneUse' when it matches min/max patterns, so this
317      // transform may end up happening anyway.
318      if (TI->getOpcode() != Instruction::BitCast &&
319          (!TI->hasOneUse() || !FI->hasOneUse()))
320        return nullptr;
321    } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
322      // TODO: The one-use restrictions for a scalar select could be eased if
323      // the fold of a select in visitLoadInst() was enhanced to match a pattern
324      // that includes a cast.
325      return nullptr;
326    }
327
328    // Fold this by inserting a select from the input values.
329    Value *NewSI =
330        Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
331                             SI.getName() + ".v", &SI);
332    return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
333                            TI->getType());
334  }
335
336  // Cond ? -X : -Y --> -(Cond ? X : Y)
337  Value *X, *Y;
338  if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
339      (TI->hasOneUse() || FI->hasOneUse())) {
340    Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
341    // TODO: Remove the hack for the binop form when the unary op is optimized
342    //       properly with all IR passes.
343    if (TI->getOpcode() != Instruction::FNeg)
344      return BinaryOperator::CreateFNegFMF(NewSel, cast<BinaryOperator>(TI));
345    return UnaryOperator::CreateFNeg(NewSel);
346  }
347
348  // Only handle binary operators (including two-operand getelementptr) with
349  // one-use here. As with the cast case above, it may be possible to relax the
350  // one-use constraint, but that needs be examined carefully since it may not
351  // reduce the total number of instructions.
352  if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
353      (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
354      !TI->hasOneUse() || !FI->hasOneUse())
355    return nullptr;
356
357  // Figure out if the operations have any operands in common.
358  Value *MatchOp, *OtherOpT, *OtherOpF;
359  bool MatchIsOpZero;
360  if (TI->getOperand(0) == FI->getOperand(0)) {
361    MatchOp  = TI->getOperand(0);
362    OtherOpT = TI->getOperand(1);
363    OtherOpF = FI->getOperand(1);
364    MatchIsOpZero = true;
365  } else if (TI->getOperand(1) == FI->getOperand(1)) {
366    MatchOp  = TI->getOperand(1);
367    OtherOpT = TI->getOperand(0);
368    OtherOpF = FI->getOperand(0);
369    MatchIsOpZero = false;
370  } else if (!TI->isCommutative()) {
371    return nullptr;
372  } else if (TI->getOperand(0) == FI->getOperand(1)) {
373    MatchOp  = TI->getOperand(0);
374    OtherOpT = TI->getOperand(1);
375    OtherOpF = FI->getOperand(0);
376    MatchIsOpZero = true;
377  } else if (TI->getOperand(1) == FI->getOperand(0)) {
378    MatchOp  = TI->getOperand(1);
379    OtherOpT = TI->getOperand(0);
380    OtherOpF = FI->getOperand(1);
381    MatchIsOpZero = true;
382  } else {
383    return nullptr;
384  }
385
386  // If the select condition is a vector, the operands of the original select's
387  // operands also must be vectors. This may not be the case for getelementptr
388  // for example.
389  if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
390                               !OtherOpF->getType()->isVectorTy()))
391    return nullptr;
392
393  // If we reach here, they do have operations in common.
394  Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
395                                      SI.getName() + ".v", &SI);
396  Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
397  Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
398  if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
399    BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
400    NewBO->copyIRFlags(TI);
401    NewBO->andIRFlags(FI);
402    return NewBO;
403  }
404  if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
405    auto *FGEP = cast<GetElementPtrInst>(FI);
406    Type *ElementType = TGEP->getResultElementType();
407    return TGEP->isInBounds() && FGEP->isInBounds()
408               ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
409               : GetElementPtrInst::Create(ElementType, Op0, {Op1});
410  }
411  llvm_unreachable("Expected BinaryOperator or GEP");
412  return nullptr;
413}
414
415static bool isSelect01(const APInt &C1I, const APInt &C2I) {
416  if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero.
417    return false;
418  return C1I.isOneValue() || C1I.isAllOnesValue() ||
419         C2I.isOneValue() || C2I.isAllOnesValue();
420}
421
422/// Try to fold the select into one of the operands to allow further
423/// optimization.
424Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
425                                            Value *FalseVal) {
426  // See the comment above GetSelectFoldableOperands for a description of the
427  // transformation we are doing here.
428  if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
429    if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
430      if (unsigned SFO = getSelectFoldableOperands(TVI)) {
431        unsigned OpToFold = 0;
432        if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
433          OpToFold = 1;
434        } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
435          OpToFold = 2;
436        }
437
438        if (OpToFold) {
439          APInt CI = getSelectFoldableConstant(TVI);
440          Value *OOp = TVI->getOperand(2-OpToFold);
441          // Avoid creating select between 2 constants unless it's selecting
442          // between 0, 1 and -1.
443          const APInt *OOpC;
444          bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
445          if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
446            Value *C = ConstantInt::get(OOp->getType(), CI);
447            Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
448            NewSel->takeName(TVI);
449            BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
450                                                        FalseVal, NewSel);
451            BO->copyIRFlags(TVI);
452            return BO;
453          }
454        }
455      }
456    }
457  }
458
459  if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
460    if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
461      if (unsigned SFO = getSelectFoldableOperands(FVI)) {
462        unsigned OpToFold = 0;
463        if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
464          OpToFold = 1;
465        } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
466          OpToFold = 2;
467        }
468
469        if (OpToFold) {
470          APInt CI = getSelectFoldableConstant(FVI);
471          Value *OOp = FVI->getOperand(2-OpToFold);
472          // Avoid creating select between 2 constants unless it's selecting
473          // between 0, 1 and -1.
474          const APInt *OOpC;
475          bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
476          if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
477            Value *C = ConstantInt::get(OOp->getType(), CI);
478            Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
479            NewSel->takeName(FVI);
480            BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
481                                                        TrueVal, NewSel);
482            BO->copyIRFlags(FVI);
483            return BO;
484          }
485        }
486      }
487    }
488  }
489
490  return nullptr;
491}
492
493/// We want to turn:
494///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
495/// into:
496///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
497/// Note:
498///   Z may be 0 if lshr is missing.
499/// Worst-case scenario is that we will replace 5 instructions with 5 different
500/// instructions, but we got rid of select.
501static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
502                                         Value *TVal, Value *FVal,
503                                         InstCombiner::BuilderTy &Builder) {
504  if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
505        Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
506        match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
507    return nullptr;
508
509  // The TrueVal has general form of:  and %B, 1
510  Value *B;
511  if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
512    return nullptr;
513
514  // Where %B may be optionally shifted:  lshr %X, %Z.
515  Value *X, *Z;
516  const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
517  if (!HasShift)
518    X = B;
519
520  Value *Y;
521  if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
522    return nullptr;
523
524  // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
525  // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
526  Constant *One = ConstantInt::get(SelType, 1);
527  Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
528  Value *FullMask = Builder.CreateOr(Y, MaskB);
529  Value *MaskedX = Builder.CreateAnd(X, FullMask);
530  Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
531  return new ZExtInst(ICmpNeZero, SelType);
532}
533
534/// We want to turn:
535///   (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
536///   (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
537/// into:
538///   ashr (X, Y)
539static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
540                                     Value *FalseVal,
541                                     InstCombiner::BuilderTy &Builder) {
542  ICmpInst::Predicate Pred = IC->getPredicate();
543  Value *CmpLHS = IC->getOperand(0);
544  Value *CmpRHS = IC->getOperand(1);
545  if (!CmpRHS->getType()->isIntOrIntVectorTy())
546    return nullptr;
547
548  Value *X, *Y;
549  unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
550  if ((Pred != ICmpInst::ICMP_SGT ||
551       !match(CmpRHS,
552              m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
553      (Pred != ICmpInst::ICMP_SLT ||
554       !match(CmpRHS,
555              m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
556    return nullptr;
557
558  // Canonicalize so that ashr is in FalseVal.
559  if (Pred == ICmpInst::ICMP_SLT)
560    std::swap(TrueVal, FalseVal);
561
562  if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
563      match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
564      match(CmpLHS, m_Specific(X))) {
565    const auto *Ashr = cast<Instruction>(FalseVal);
566    // if lshr is not exact and ashr is, this new ashr must not be exact.
567    bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
568    return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
569  }
570
571  return nullptr;
572}
573
574/// We want to turn:
575///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
576/// into:
577///   (or (shl (and X, C1), C3), Y)
578/// iff:
579///   C1 and C2 are both powers of 2
580/// where:
581///   C3 = Log(C2) - Log(C1)
582///
583/// This transform handles cases where:
584/// 1. The icmp predicate is inverted
585/// 2. The select operands are reversed
586/// 3. The magnitude of C2 and C1 are flipped
587static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
588                                  Value *FalseVal,
589                                  InstCombiner::BuilderTy &Builder) {
590  // Only handle integer compares. Also, if this is a vector select, we need a
591  // vector compare.
592  if (!TrueVal->getType()->isIntOrIntVectorTy() ||
593      TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
594    return nullptr;
595
596  Value *CmpLHS = IC->getOperand(0);
597  Value *CmpRHS = IC->getOperand(1);
598
599  Value *V;
600  unsigned C1Log;
601  bool IsEqualZero;
602  bool NeedAnd = false;
603  if (IC->isEquality()) {
604    if (!match(CmpRHS, m_Zero()))
605      return nullptr;
606
607    const APInt *C1;
608    if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
609      return nullptr;
610
611    V = CmpLHS;
612    C1Log = C1->logBase2();
613    IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
614  } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
615             IC->getPredicate() == ICmpInst::ICMP_SGT) {
616    // We also need to recognize (icmp slt (trunc (X)), 0) and
617    // (icmp sgt (trunc (X)), -1).
618    IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
619    if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
620        (!IsEqualZero && !match(CmpRHS, m_Zero())))
621      return nullptr;
622
623    if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
624      return nullptr;
625
626    C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
627    NeedAnd = true;
628  } else {
629    return nullptr;
630  }
631
632  const APInt *C2;
633  bool OrOnTrueVal = false;
634  bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
635  if (!OrOnFalseVal)
636    OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
637
638  if (!OrOnFalseVal && !OrOnTrueVal)
639    return nullptr;
640
641  Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
642
643  unsigned C2Log = C2->logBase2();
644
645  bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
646  bool NeedShift = C1Log != C2Log;
647  bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
648                       V->getType()->getScalarSizeInBits();
649
650  // Make sure we don't create more instructions than we save.
651  Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
652  if ((NeedShift + NeedXor + NeedZExtTrunc) >
653      (IC->hasOneUse() + Or->hasOneUse()))
654    return nullptr;
655
656  if (NeedAnd) {
657    // Insert the AND instruction on the input to the truncate.
658    APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
659    V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
660  }
661
662  if (C2Log > C1Log) {
663    V = Builder.CreateZExtOrTrunc(V, Y->getType());
664    V = Builder.CreateShl(V, C2Log - C1Log);
665  } else if (C1Log > C2Log) {
666    V = Builder.CreateLShr(V, C1Log - C2Log);
667    V = Builder.CreateZExtOrTrunc(V, Y->getType());
668  } else
669    V = Builder.CreateZExtOrTrunc(V, Y->getType());
670
671  if (NeedXor)
672    V = Builder.CreateXor(V, *C2);
673
674  return Builder.CreateOr(V, Y);
675}
676
677/// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
678/// There are 8 commuted/swapped variants of this pattern.
679/// TODO: Also support a - UMIN(a,b) patterns.
680static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
681                                            const Value *TrueVal,
682                                            const Value *FalseVal,
683                                            InstCombiner::BuilderTy &Builder) {
684  ICmpInst::Predicate Pred = ICI->getPredicate();
685  if (!ICmpInst::isUnsigned(Pred))
686    return nullptr;
687
688  // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
689  if (match(TrueVal, m_Zero())) {
690    Pred = ICmpInst::getInversePredicate(Pred);
691    std::swap(TrueVal, FalseVal);
692  }
693  if (!match(FalseVal, m_Zero()))
694    return nullptr;
695
696  Value *A = ICI->getOperand(0);
697  Value *B = ICI->getOperand(1);
698  if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
699    // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
700    std::swap(A, B);
701    Pred = ICmpInst::getSwappedPredicate(Pred);
702  }
703
704  assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
705         "Unexpected isUnsigned predicate!");
706
707  // Ensure the sub is of the form:
708  //  (a > b) ? a - b : 0 -> usub.sat(a, b)
709  //  (a > b) ? b - a : 0 -> -usub.sat(a, b)
710  // Checking for both a-b and a+(-b) as a constant.
711  bool IsNegative = false;
712  const APInt *C;
713  if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
714      (match(A, m_APInt(C)) &&
715       match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
716    IsNegative = true;
717  else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
718           !(match(B, m_APInt(C)) &&
719             match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
720    return nullptr;
721
722  // If we are adding a negate and the sub and icmp are used anywhere else, we
723  // would end up with more instructions.
724  if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
725    return nullptr;
726
727  // (a > b) ? a - b : 0 -> usub.sat(a, b)
728  // (a > b) ? b - a : 0 -> -usub.sat(a, b)
729  Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
730  if (IsNegative)
731    Result = Builder.CreateNeg(Result);
732  return Result;
733}
734
735static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
736                                       InstCombiner::BuilderTy &Builder) {
737  if (!Cmp->hasOneUse())
738    return nullptr;
739
740  // Match unsigned saturated add with constant.
741  Value *Cmp0 = Cmp->getOperand(0);
742  Value *Cmp1 = Cmp->getOperand(1);
743  ICmpInst::Predicate Pred = Cmp->getPredicate();
744  Value *X;
745  const APInt *C, *CmpC;
746  if (Pred == ICmpInst::ICMP_ULT &&
747      match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
748      match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
749    // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
750    return Builder.CreateBinaryIntrinsic(
751        Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
752  }
753
754  // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
755  // There are 8 commuted variants.
756  // Canonicalize -1 (saturated result) to true value of the select. Just
757  // swapping the compare operands is legal, because the selected value is the
758  // same in case of equality, so we can interchange u< and u<=.
759  if (match(FVal, m_AllOnes())) {
760    std::swap(TVal, FVal);
761    std::swap(Cmp0, Cmp1);
762  }
763  if (!match(TVal, m_AllOnes()))
764    return nullptr;
765
766  // Canonicalize predicate to 'ULT'.
767  if (Pred == ICmpInst::ICMP_UGT) {
768    Pred = ICmpInst::ICMP_ULT;
769    std::swap(Cmp0, Cmp1);
770  }
771  if (Pred != ICmpInst::ICMP_ULT)
772    return nullptr;
773
774  // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
775  Value *Y;
776  if (match(Cmp0, m_Not(m_Value(X))) &&
777      match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
778    // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
779    // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
780    return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
781  }
782  // The 'not' op may be included in the sum but not the compare.
783  X = Cmp0;
784  Y = Cmp1;
785  if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
786    // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
787    // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
788    BinaryOperator *BO = cast<BinaryOperator>(FVal);
789    return Builder.CreateBinaryIntrinsic(
790        Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
791  }
792  // The overflow may be detected via the add wrapping round.
793  if (match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
794      match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
795    // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
796    // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
797    return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
798  }
799
800  return nullptr;
801}
802
803/// Fold the following code sequence:
804/// \code
805///   int a = ctlz(x & -x);
806//    x ? 31 - a : a;
807/// \code
808///
809/// into:
810///   cttz(x)
811static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
812                                         Value *FalseVal,
813                                         InstCombiner::BuilderTy &Builder) {
814  unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
815  if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
816    return nullptr;
817
818  if (ICI->getPredicate() == ICmpInst::ICMP_NE)
819    std::swap(TrueVal, FalseVal);
820
821  if (!match(FalseVal,
822             m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
823    return nullptr;
824
825  if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
826    return nullptr;
827
828  Value *X = ICI->getOperand(0);
829  auto *II = cast<IntrinsicInst>(TrueVal);
830  if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
831    return nullptr;
832
833  Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
834                                          II->getType());
835  return CallInst::Create(F, {X, II->getArgOperand(1)});
836}
837
838/// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
839/// call to cttz/ctlz with flag 'is_zero_undef' cleared.
840///
841/// For example, we can fold the following code sequence:
842/// \code
843///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
844///   %1 = icmp ne i32 %x, 0
845///   %2 = select i1 %1, i32 %0, i32 32
846/// \code
847///
848/// into:
849///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
850static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
851                                 InstCombiner::BuilderTy &Builder) {
852  ICmpInst::Predicate Pred = ICI->getPredicate();
853  Value *CmpLHS = ICI->getOperand(0);
854  Value *CmpRHS = ICI->getOperand(1);
855
856  // Check if the condition value compares a value for equality against zero.
857  if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
858    return nullptr;
859
860  Value *Count = FalseVal;
861  Value *ValueOnZero = TrueVal;
862  if (Pred == ICmpInst::ICMP_NE)
863    std::swap(Count, ValueOnZero);
864
865  // Skip zero extend/truncate.
866  Value *V = nullptr;
867  if (match(Count, m_ZExt(m_Value(V))) ||
868      match(Count, m_Trunc(m_Value(V))))
869    Count = V;
870
871  // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
872  // input to the cttz/ctlz is used as LHS for the compare instruction.
873  if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
874      !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
875    return nullptr;
876
877  IntrinsicInst *II = cast<IntrinsicInst>(Count);
878
879  // Check if the value propagated on zero is a constant number equal to the
880  // sizeof in bits of 'Count'.
881  unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
882  if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
883    // Explicitly clear the 'undef_on_zero' flag.
884    IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
885    NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext()));
886    Builder.Insert(NewI);
887    return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType());
888  }
889
890  // If the ValueOnZero is not the bitwidth, we can at least make use of the
891  // fact that the cttz/ctlz result will not be used if the input is zero, so
892  // it's okay to relax it to undef for that case.
893  if (II->hasOneUse() && !match(II->getArgOperand(1), m_One()))
894    II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
895
896  return nullptr;
897}
898
899/// Return true if we find and adjust an icmp+select pattern where the compare
900/// is with a constant that can be incremented or decremented to match the
901/// minimum or maximum idiom.
902static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
903  ICmpInst::Predicate Pred = Cmp.getPredicate();
904  Value *CmpLHS = Cmp.getOperand(0);
905  Value *CmpRHS = Cmp.getOperand(1);
906  Value *TrueVal = Sel.getTrueValue();
907  Value *FalseVal = Sel.getFalseValue();
908
909  // We may move or edit the compare, so make sure the select is the only user.
910  const APInt *CmpC;
911  if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
912    return false;
913
914  // These transforms only work for selects of integers or vector selects of
915  // integer vectors.
916  Type *SelTy = Sel.getType();
917  auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
918  if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
919    return false;
920
921  Constant *AdjustedRHS;
922  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
923    AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
924  else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
925    AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
926  else
927    return false;
928
929  // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
930  // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
931  if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
932      (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
933    ; // Nothing to do here. Values match without any sign/zero extension.
934  }
935  // Types do not match. Instead of calculating this with mixed types, promote
936  // all to the larger type. This enables scalar evolution to analyze this
937  // expression.
938  else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
939    Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
940
941    // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
942    // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
943    // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
944    // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
945    if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
946      CmpLHS = TrueVal;
947      AdjustedRHS = SextRHS;
948    } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
949               SextRHS == TrueVal) {
950      CmpLHS = FalseVal;
951      AdjustedRHS = SextRHS;
952    } else if (Cmp.isUnsigned()) {
953      Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
954      // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
955      // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
956      // zext + signed compare cannot be changed:
957      //    0xff <s 0x00, but 0x00ff >s 0x0000
958      if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
959        CmpLHS = TrueVal;
960        AdjustedRHS = ZextRHS;
961      } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
962                 ZextRHS == TrueVal) {
963        CmpLHS = FalseVal;
964        AdjustedRHS = ZextRHS;
965      } else {
966        return false;
967      }
968    } else {
969      return false;
970    }
971  } else {
972    return false;
973  }
974
975  Pred = ICmpInst::getSwappedPredicate(Pred);
976  CmpRHS = AdjustedRHS;
977  std::swap(FalseVal, TrueVal);
978  Cmp.setPredicate(Pred);
979  Cmp.setOperand(0, CmpLHS);
980  Cmp.setOperand(1, CmpRHS);
981  Sel.setOperand(1, TrueVal);
982  Sel.setOperand(2, FalseVal);
983  Sel.swapProfMetadata();
984
985  // Move the compare instruction right before the select instruction. Otherwise
986  // the sext/zext value may be defined after the compare instruction uses it.
987  Cmp.moveBefore(&Sel);
988
989  return true;
990}
991
992/// If this is an integer min/max (icmp + select) with a constant operand,
993/// create the canonical icmp for the min/max operation and canonicalize the
994/// constant to the 'false' operand of the select:
995/// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
996/// Note: if C1 != C2, this will change the icmp constant to the existing
997/// constant operand of the select.
998static Instruction *
999canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp,
1000                               InstCombiner::BuilderTy &Builder) {
1001  if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
1002    return nullptr;
1003
1004  // Canonicalize the compare predicate based on whether we have min or max.
1005  Value *LHS, *RHS;
1006  SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
1007  if (!SelectPatternResult::isMinOrMax(SPR.Flavor))
1008    return nullptr;
1009
1010  // Is this already canonical?
1011  ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
1012  if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
1013      Cmp.getPredicate() == CanonicalPred)
1014    return nullptr;
1015
1016  // Bail out on unsimplified X-0 operand (due to some worklist management bug),
1017  // as this may cause an infinite combine loop. Let the sub be folded first.
1018  if (match(LHS, m_Sub(m_Value(), m_Zero())) ||
1019      match(RHS, m_Sub(m_Value(), m_Zero())))
1020    return nullptr;
1021
1022  // Create the canonical compare and plug it into the select.
1023  Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS));
1024
1025  // If the select operands did not change, we're done.
1026  if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
1027    return &Sel;
1028
1029  // If we are swapping the select operands, swap the metadata too.
1030  assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
1031         "Unexpected results from matchSelectPattern");
1032  Sel.swapValues();
1033  Sel.swapProfMetadata();
1034  return &Sel;
1035}
1036
1037/// There are many select variants for each of ABS/NABS.
1038/// In matchSelectPattern(), there are different compare constants, compare
1039/// predicates/operands and select operands.
1040/// In isKnownNegation(), there are different formats of negated operands.
1041/// Canonicalize all these variants to 1 pattern.
1042/// This makes CSE more likely.
1043static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
1044                                        InstCombiner::BuilderTy &Builder) {
1045  if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
1046    return nullptr;
1047
1048  // Choose a sign-bit check for the compare (likely simpler for codegen).
1049  // ABS:  (X <s 0) ? -X : X
1050  // NABS: (X <s 0) ? X : -X
1051  Value *LHS, *RHS;
1052  SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
1053  if (SPF != SelectPatternFlavor::SPF_ABS &&
1054      SPF != SelectPatternFlavor::SPF_NABS)
1055    return nullptr;
1056
1057  Value *TVal = Sel.getTrueValue();
1058  Value *FVal = Sel.getFalseValue();
1059  assert(isKnownNegation(TVal, FVal) &&
1060         "Unexpected result from matchSelectPattern");
1061
1062  // The compare may use the negated abs()/nabs() operand, or it may use
1063  // negation in non-canonical form such as: sub A, B.
1064  bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) ||
1065                          match(Cmp.getOperand(0), m_Neg(m_Specific(FVal)));
1066
1067  bool CmpCanonicalized = !CmpUsesNegatedOp &&
1068                          match(Cmp.getOperand(1), m_ZeroInt()) &&
1069                          Cmp.getPredicate() == ICmpInst::ICMP_SLT;
1070  bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS)));
1071
1072  // Is this already canonical?
1073  if (CmpCanonicalized && RHSCanonicalized)
1074    return nullptr;
1075
1076  // If RHS is used by other instructions except compare and select, don't
1077  // canonicalize it to not increase the instruction count.
1078  if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp)))
1079    return nullptr;
1080
1081  // Create the canonical compare: icmp slt LHS 0.
1082  if (!CmpCanonicalized) {
1083    Cmp.setPredicate(ICmpInst::ICMP_SLT);
1084    Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType()));
1085    if (CmpUsesNegatedOp)
1086      Cmp.setOperand(0, LHS);
1087  }
1088
1089  // Create the canonical RHS: RHS = sub (0, LHS).
1090  if (!RHSCanonicalized) {
1091    assert(RHS->hasOneUse() && "RHS use number is not right");
1092    RHS = Builder.CreateNeg(LHS);
1093    if (TVal == LHS) {
1094      Sel.setFalseValue(RHS);
1095      FVal = RHS;
1096    } else {
1097      Sel.setTrueValue(RHS);
1098      TVal = RHS;
1099    }
1100  }
1101
1102  // If the select operands do not change, we're done.
1103  if (SPF == SelectPatternFlavor::SPF_NABS) {
1104    if (TVal == LHS)
1105      return &Sel;
1106    assert(FVal == LHS && "Unexpected results from matchSelectPattern");
1107  } else {
1108    if (FVal == LHS)
1109      return &Sel;
1110    assert(TVal == LHS && "Unexpected results from matchSelectPattern");
1111  }
1112
1113  // We are swapping the select operands, so swap the metadata too.
1114  Sel.swapValues();
1115  Sel.swapProfMetadata();
1116  return &Sel;
1117}
1118
1119static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *ReplaceOp,
1120                                     const SimplifyQuery &Q) {
1121  // If this is a binary operator, try to simplify it with the replaced op
1122  // because we know Op and ReplaceOp are equivalant.
1123  // For example: V = X + 1, Op = X, ReplaceOp = 42
1124  // Simplifies as: add(42, 1) --> 43
1125  if (auto *BO = dyn_cast<BinaryOperator>(V)) {
1126    if (BO->getOperand(0) == Op)
1127      return SimplifyBinOp(BO->getOpcode(), ReplaceOp, BO->getOperand(1), Q);
1128    if (BO->getOperand(1) == Op)
1129      return SimplifyBinOp(BO->getOpcode(), BO->getOperand(0), ReplaceOp, Q);
1130  }
1131
1132  return nullptr;
1133}
1134
1135/// If we have a select with an equality comparison, then we know the value in
1136/// one of the arms of the select. See if substituting this value into an arm
1137/// and simplifying the result yields the same value as the other arm.
1138///
1139/// To make this transform safe, we must drop poison-generating flags
1140/// (nsw, etc) if we simplified to a binop because the select may be guarding
1141/// that poison from propagating. If the existing binop already had no
1142/// poison-generating flags, then this transform can be done by instsimplify.
1143///
1144/// Consider:
1145///   %cmp = icmp eq i32 %x, 2147483647
1146///   %add = add nsw i32 %x, 1
1147///   %sel = select i1 %cmp, i32 -2147483648, i32 %add
1148///
1149/// We can't replace %sel with %add unless we strip away the flags.
1150/// TODO: Wrapping flags could be preserved in some cases with better analysis.
1151static Value *foldSelectValueEquivalence(SelectInst &Sel, ICmpInst &Cmp,
1152                                         const SimplifyQuery &Q) {
1153  if (!Cmp.isEquality())
1154    return nullptr;
1155
1156  // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1157  Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1158  if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1159    std::swap(TrueVal, FalseVal);
1160
1161  // Try each equivalence substitution possibility.
1162  // We have an 'EQ' comparison, so the select's false value will propagate.
1163  // Example:
1164  // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1165  // (X == 42) ? (X + 1) : 43 --> (X == 42) ? (42 + 1) : 43 --> 43
1166  Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1167  if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q) == TrueVal ||
1168      simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q) == TrueVal ||
1169      simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q) == FalseVal ||
1170      simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q) == FalseVal) {
1171    if (auto *FalseInst = dyn_cast<Instruction>(FalseVal))
1172      FalseInst->dropPoisonGeneratingFlags();
1173    return FalseVal;
1174  }
1175  return nullptr;
1176}
1177
1178// See if this is a pattern like:
1179//   %old_cmp1 = icmp slt i32 %x, C2
1180//   %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1181//   %old_x_offseted = add i32 %x, C1
1182//   %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1183//   %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1184// This can be rewritten as more canonical pattern:
1185//   %new_cmp1 = icmp slt i32 %x, -C1
1186//   %new_cmp2 = icmp sge i32 %x, C0-C1
1187//   %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1188//   %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1189// Iff -C1 s<= C2 s<= C0-C1
1190// Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1191//      SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
1192static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1193                                          InstCombiner::BuilderTy &Builder) {
1194  Value *X = Sel0.getTrueValue();
1195  Value *Sel1 = Sel0.getFalseValue();
1196
1197  // First match the condition of the outermost select.
1198  // Said condition must be one-use.
1199  if (!Cmp0.hasOneUse())
1200    return nullptr;
1201  Value *Cmp00 = Cmp0.getOperand(0);
1202  Constant *C0;
1203  if (!match(Cmp0.getOperand(1),
1204             m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
1205    return nullptr;
1206  // Canonicalize Cmp0 into the form we expect.
1207  // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1208  switch (Cmp0.getPredicate()) {
1209  case ICmpInst::Predicate::ICMP_ULT:
1210    break; // Great!
1211  case ICmpInst::Predicate::ICMP_ULE:
1212    // We'd have to increment C0 by one, and for that it must not have all-ones
1213    // element, but then it would have been canonicalized to 'ult' before
1214    // we get here. So we can't do anything useful with 'ule'.
1215    return nullptr;
1216  case ICmpInst::Predicate::ICMP_UGT:
1217    // We want to canonicalize it to 'ult', so we'll need to increment C0,
1218    // which again means it must not have any all-ones elements.
1219    if (!match(C0,
1220               m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1221                                  APInt::getAllOnesValue(
1222                                      C0->getType()->getScalarSizeInBits()))))
1223      return nullptr; // Can't do, have all-ones element[s].
1224    C0 = AddOne(C0);
1225    std::swap(X, Sel1);
1226    break;
1227  case ICmpInst::Predicate::ICMP_UGE:
1228    // The only way we'd get this predicate if this `icmp` has extra uses,
1229    // but then we won't be able to do this fold.
1230    return nullptr;
1231  default:
1232    return nullptr; // Unknown predicate.
1233  }
1234
1235  // Now that we've canonicalized the ICmp, we know the X we expect;
1236  // the select in other hand should be one-use.
1237  if (!Sel1->hasOneUse())
1238    return nullptr;
1239
1240  // We now can finish matching the condition of the outermost select:
1241  // it should either be the X itself, or an addition of some constant to X.
1242  Constant *C1;
1243  if (Cmp00 == X)
1244    C1 = ConstantInt::getNullValue(Sel0.getType());
1245  else if (!match(Cmp00,
1246                  m_Add(m_Specific(X),
1247                        m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
1248    return nullptr;
1249
1250  Value *Cmp1;
1251  ICmpInst::Predicate Pred1;
1252  Constant *C2;
1253  Value *ReplacementLow, *ReplacementHigh;
1254  if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1255                            m_Value(ReplacementHigh))) ||
1256      !match(Cmp1,
1257             m_ICmp(Pred1, m_Specific(X),
1258                    m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
1259    return nullptr;
1260
1261  if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1262    return nullptr; // Not enough one-use instructions for the fold.
1263  // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1264  //        two comparisons we'll need to build.
1265
1266  // Canonicalize Cmp1 into the form we expect.
1267  // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1268  switch (Pred1) {
1269  case ICmpInst::Predicate::ICMP_SLT:
1270    break;
1271  case ICmpInst::Predicate::ICMP_SLE:
1272    // We'd have to increment C2 by one, and for that it must not have signed
1273    // max element, but then it would have been canonicalized to 'slt' before
1274    // we get here. So we can't do anything useful with 'sle'.
1275    return nullptr;
1276  case ICmpInst::Predicate::ICMP_SGT:
1277    // We want to canonicalize it to 'slt', so we'll need to increment C2,
1278    // which again means it must not have any signed max elements.
1279    if (!match(C2,
1280               m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1281                                  APInt::getSignedMaxValue(
1282                                      C2->getType()->getScalarSizeInBits()))))
1283      return nullptr; // Can't do, have signed max element[s].
1284    C2 = AddOne(C2);
1285    LLVM_FALLTHROUGH;
1286  case ICmpInst::Predicate::ICMP_SGE:
1287    // Also non-canonical, but here we don't need to change C2,
1288    // so we don't have any restrictions on C2, so we can just handle it.
1289    std::swap(ReplacementLow, ReplacementHigh);
1290    break;
1291  default:
1292    return nullptr; // Unknown predicate.
1293  }
1294
1295  // The thresholds of this clamp-like pattern.
1296  auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1297  auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1298
1299  // The fold has a precondition 1: C2 s>= ThresholdLow
1300  auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
1301                                         ThresholdLowIncl);
1302  if (!match(Precond1, m_One()))
1303    return nullptr;
1304  // The fold has a precondition 2: C2 s<= ThresholdHigh
1305  auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
1306                                         ThresholdHighExcl);
1307  if (!match(Precond2, m_One()))
1308    return nullptr;
1309
1310  // All good, finally emit the new pattern.
1311  Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1312  Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1313  Value *MaybeReplacedLow =
1314      Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1315  Instruction *MaybeReplacedHigh =
1316      SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1317
1318  return MaybeReplacedHigh;
1319}
1320
1321// If we have
1322//  %cmp = icmp [canonical predicate] i32 %x, C0
1323//  %r = select i1 %cmp, i32 %y, i32 C1
1324// Where C0 != C1 and %x may be different from %y, see if the constant that we
1325// will have if we flip the strictness of the predicate (i.e. without changing
1326// the result) is identical to the C1 in select. If it matches we can change
1327// original comparison to one with swapped predicate, reuse the constant,
1328// and swap the hands of select.
1329static Instruction *
1330tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
1331                                         InstCombiner::BuilderTy &Builder) {
1332  ICmpInst::Predicate Pred;
1333  Value *X;
1334  Constant *C0;
1335  if (!match(&Cmp, m_OneUse(m_ICmp(
1336                       Pred, m_Value(X),
1337                       m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
1338    return nullptr;
1339
1340  // If comparison predicate is non-relational, we won't be able to do anything.
1341  if (ICmpInst::isEquality(Pred))
1342    return nullptr;
1343
1344  // If comparison predicate is non-canonical, then we certainly won't be able
1345  // to make it canonical; canonicalizeCmpWithConstant() already tried.
1346  if (!isCanonicalPredicate(Pred))
1347    return nullptr;
1348
1349  // If the [input] type of comparison and select type are different, lets abort
1350  // for now. We could try to compare constants with trunc/[zs]ext though.
1351  if (C0->getType() != Sel.getType())
1352    return nullptr;
1353
1354  // FIXME: are there any magic icmp predicate+constant pairs we must not touch?
1355
1356  Value *SelVal0, *SelVal1; // We do not care which one is from where.
1357  match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
1358  // At least one of these values we are selecting between must be a constant
1359  // else we'll never succeed.
1360  if (!match(SelVal0, m_AnyIntegralConstant()) &&
1361      !match(SelVal1, m_AnyIntegralConstant()))
1362    return nullptr;
1363
1364  // Does this constant C match any of the `select` values?
1365  auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
1366    return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
1367  };
1368
1369  // If C0 *already* matches true/false value of select, we are done.
1370  if (MatchesSelectValue(C0))
1371    return nullptr;
1372
1373  // Check the constant we'd have with flipped-strictness predicate.
1374  auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, C0);
1375  if (!FlippedStrictness)
1376    return nullptr;
1377
1378  // If said constant doesn't match either, then there is no hope,
1379  if (!MatchesSelectValue(FlippedStrictness->second))
1380    return nullptr;
1381
1382  // It matched! Lets insert the new comparison just before select.
1383  InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
1384  Builder.SetInsertPoint(&Sel);
1385
1386  Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
1387  Value *NewCmp = Builder.CreateICmp(Pred, X, FlippedStrictness->second,
1388                                     Cmp.getName() + ".inv");
1389  Sel.setCondition(NewCmp);
1390  Sel.swapValues();
1391  Sel.swapProfMetadata();
1392
1393  return &Sel;
1394}
1395
1396/// Visit a SelectInst that has an ICmpInst as its first operand.
1397Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI,
1398                                                  ICmpInst *ICI) {
1399  if (Value *V = foldSelectValueEquivalence(SI, *ICI, SQ))
1400    return replaceInstUsesWith(SI, V);
1401
1402  if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder))
1403    return NewSel;
1404
1405  if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder))
1406    return NewAbs;
1407
1408  if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder))
1409    return NewAbs;
1410
1411  if (Instruction *NewSel =
1412          tryToReuseConstantFromSelectInComparison(SI, *ICI, Builder))
1413    return NewSel;
1414
1415  bool Changed = adjustMinMax(SI, *ICI);
1416
1417  if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1418    return replaceInstUsesWith(SI, V);
1419
1420  // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1421  Value *TrueVal = SI.getTrueValue();
1422  Value *FalseVal = SI.getFalseValue();
1423  ICmpInst::Predicate Pred = ICI->getPredicate();
1424  Value *CmpLHS = ICI->getOperand(0);
1425  Value *CmpRHS = ICI->getOperand(1);
1426  if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
1427    if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1428      // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1429      SI.setOperand(1, CmpRHS);
1430      Changed = true;
1431    } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1432      // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1433      SI.setOperand(2, CmpRHS);
1434      Changed = true;
1435    }
1436  }
1437
1438  // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1439  // decomposeBitTestICmp() might help.
1440  {
1441    unsigned BitWidth =
1442        DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1443    APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1444    Value *X;
1445    const APInt *Y, *C;
1446    bool TrueWhenUnset;
1447    bool IsBitTest = false;
1448    if (ICmpInst::isEquality(Pred) &&
1449        match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1450        match(CmpRHS, m_Zero())) {
1451      IsBitTest = true;
1452      TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1453    } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1454      X = CmpLHS;
1455      Y = &MinSignedValue;
1456      IsBitTest = true;
1457      TrueWhenUnset = false;
1458    } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1459      X = CmpLHS;
1460      Y = &MinSignedValue;
1461      IsBitTest = true;
1462      TrueWhenUnset = true;
1463    }
1464    if (IsBitTest) {
1465      Value *V = nullptr;
1466      // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
1467      if (TrueWhenUnset && TrueVal == X &&
1468          match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1469        V = Builder.CreateAnd(X, ~(*Y));
1470      // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
1471      else if (!TrueWhenUnset && FalseVal == X &&
1472               match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1473        V = Builder.CreateAnd(X, ~(*Y));
1474      // (X & Y) == 0 ? X ^ Y : X  --> X | Y
1475      else if (TrueWhenUnset && FalseVal == X &&
1476               match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1477        V = Builder.CreateOr(X, *Y);
1478      // (X & Y) != 0 ? X : X ^ Y  --> X | Y
1479      else if (!TrueWhenUnset && TrueVal == X &&
1480               match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1481        V = Builder.CreateOr(X, *Y);
1482
1483      if (V)
1484        return replaceInstUsesWith(SI, V);
1485    }
1486  }
1487
1488  if (Instruction *V =
1489          foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1490    return V;
1491
1492  if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
1493    return V;
1494
1495  if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1496    return replaceInstUsesWith(SI, V);
1497
1498  if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1499    return replaceInstUsesWith(SI, V);
1500
1501  if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1502    return replaceInstUsesWith(SI, V);
1503
1504  if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1505    return replaceInstUsesWith(SI, V);
1506
1507  if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1508    return replaceInstUsesWith(SI, V);
1509
1510  return Changed ? &SI : nullptr;
1511}
1512
1513/// SI is a select whose condition is a PHI node (but the two may be in
1514/// different blocks). See if the true/false values (V) are live in all of the
1515/// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1516///
1517///   X = phi [ C1, BB1], [C2, BB2]
1518///   Y = add
1519///   Z = select X, Y, 0
1520///
1521/// because Y is not live in BB1/BB2.
1522static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1523                                                   const SelectInst &SI) {
1524  // If the value is a non-instruction value like a constant or argument, it
1525  // can always be mapped.
1526  const Instruction *I = dyn_cast<Instruction>(V);
1527  if (!I) return true;
1528
1529  // If V is a PHI node defined in the same block as the condition PHI, we can
1530  // map the arguments.
1531  const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1532
1533  if (const PHINode *VP = dyn_cast<PHINode>(I))
1534    if (VP->getParent() == CondPHI->getParent())
1535      return true;
1536
1537  // Otherwise, if the PHI and select are defined in the same block and if V is
1538  // defined in a different block, then we can transform it.
1539  if (SI.getParent() == CondPHI->getParent() &&
1540      I->getParent() != CondPHI->getParent())
1541    return true;
1542
1543  // Otherwise we have a 'hard' case and we can't tell without doing more
1544  // detailed dominator based analysis, punt.
1545  return false;
1546}
1547
1548/// We have an SPF (e.g. a min or max) of an SPF of the form:
1549///   SPF2(SPF1(A, B), C)
1550Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner,
1551                                        SelectPatternFlavor SPF1,
1552                                        Value *A, Value *B,
1553                                        Instruction &Outer,
1554                                        SelectPatternFlavor SPF2, Value *C) {
1555  if (Outer.getType() != Inner->getType())
1556    return nullptr;
1557
1558  if (C == A || C == B) {
1559    // MAX(MAX(A, B), B) -> MAX(A, B)
1560    // MIN(MIN(a, b), a) -> MIN(a, b)
1561    // TODO: This could be done in instsimplify.
1562    if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1563      return replaceInstUsesWith(Outer, Inner);
1564
1565    // MAX(MIN(a, b), a) -> a
1566    // MIN(MAX(a, b), a) -> a
1567    // TODO: This could be done in instsimplify.
1568    if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
1569        (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
1570        (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
1571        (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
1572      return replaceInstUsesWith(Outer, C);
1573  }
1574
1575  if (SPF1 == SPF2) {
1576    const APInt *CB, *CC;
1577    if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
1578      // MIN(MIN(A, 23), 97) -> MIN(A, 23)
1579      // MAX(MAX(A, 97), 23) -> MAX(A, 97)
1580      // TODO: This could be done in instsimplify.
1581      if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
1582          (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
1583          (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
1584          (SPF1 == SPF_SMAX && CB->sge(*CC)))
1585        return replaceInstUsesWith(Outer, Inner);
1586
1587      // MIN(MIN(A, 97), 23) -> MIN(A, 23)
1588      // MAX(MAX(A, 23), 97) -> MAX(A, 97)
1589      if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
1590          (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
1591          (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
1592          (SPF1 == SPF_SMAX && CB->slt(*CC))) {
1593        Outer.replaceUsesOfWith(Inner, A);
1594        return &Outer;
1595      }
1596    }
1597  }
1598
1599  // max(max(A, B), min(A, B)) --> max(A, B)
1600  // min(min(A, B), max(A, B)) --> min(A, B)
1601  // TODO: This could be done in instsimplify.
1602  if (SPF1 == SPF2 &&
1603      ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) ||
1604       (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) ||
1605       (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) ||
1606       (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B))))))
1607    return replaceInstUsesWith(Outer, Inner);
1608
1609  // ABS(ABS(X)) -> ABS(X)
1610  // NABS(NABS(X)) -> NABS(X)
1611  // TODO: This could be done in instsimplify.
1612  if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
1613    return replaceInstUsesWith(Outer, Inner);
1614  }
1615
1616  // ABS(NABS(X)) -> ABS(X)
1617  // NABS(ABS(X)) -> NABS(X)
1618  if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
1619      (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
1620    SelectInst *SI = cast<SelectInst>(Inner);
1621    Value *NewSI =
1622        Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
1623                             SI->getTrueValue(), SI->getName(), SI);
1624    return replaceInstUsesWith(Outer, NewSI);
1625  }
1626
1627  auto IsFreeOrProfitableToInvert =
1628      [&](Value *V, Value *&NotV, bool &ElidesXor) {
1629    if (match(V, m_Not(m_Value(NotV)))) {
1630      // If V has at most 2 uses then we can get rid of the xor operation
1631      // entirely.
1632      ElidesXor |= !V->hasNUsesOrMore(3);
1633      return true;
1634    }
1635
1636    if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) {
1637      NotV = nullptr;
1638      return true;
1639    }
1640
1641    return false;
1642  };
1643
1644  Value *NotA, *NotB, *NotC;
1645  bool ElidesXor = false;
1646
1647  // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
1648  // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
1649  // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
1650  // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
1651  //
1652  // This transform is performance neutral if we can elide at least one xor from
1653  // the set of three operands, since we'll be tacking on an xor at the very
1654  // end.
1655  if (SelectPatternResult::isMinOrMax(SPF1) &&
1656      SelectPatternResult::isMinOrMax(SPF2) &&
1657      IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
1658      IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
1659      IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
1660    if (!NotA)
1661      NotA = Builder.CreateNot(A);
1662    if (!NotB)
1663      NotB = Builder.CreateNot(B);
1664    if (!NotC)
1665      NotC = Builder.CreateNot(C);
1666
1667    Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
1668                                   NotB);
1669    Value *NewOuter = Builder.CreateNot(
1670        createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
1671    return replaceInstUsesWith(Outer, NewOuter);
1672  }
1673
1674  return nullptr;
1675}
1676
1677/// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1678/// This is even legal for FP.
1679static Instruction *foldAddSubSelect(SelectInst &SI,
1680                                     InstCombiner::BuilderTy &Builder) {
1681  Value *CondVal = SI.getCondition();
1682  Value *TrueVal = SI.getTrueValue();
1683  Value *FalseVal = SI.getFalseValue();
1684  auto *TI = dyn_cast<Instruction>(TrueVal);
1685  auto *FI = dyn_cast<Instruction>(FalseVal);
1686  if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1687    return nullptr;
1688
1689  Instruction *AddOp = nullptr, *SubOp = nullptr;
1690  if ((TI->getOpcode() == Instruction::Sub &&
1691       FI->getOpcode() == Instruction::Add) ||
1692      (TI->getOpcode() == Instruction::FSub &&
1693       FI->getOpcode() == Instruction::FAdd)) {
1694    AddOp = FI;
1695    SubOp = TI;
1696  } else if ((FI->getOpcode() == Instruction::Sub &&
1697              TI->getOpcode() == Instruction::Add) ||
1698             (FI->getOpcode() == Instruction::FSub &&
1699              TI->getOpcode() == Instruction::FAdd)) {
1700    AddOp = TI;
1701    SubOp = FI;
1702  }
1703
1704  if (AddOp) {
1705    Value *OtherAddOp = nullptr;
1706    if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1707      OtherAddOp = AddOp->getOperand(1);
1708    } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1709      OtherAddOp = AddOp->getOperand(0);
1710    }
1711
1712    if (OtherAddOp) {
1713      // So at this point we know we have (Y -> OtherAddOp):
1714      //        select C, (add X, Y), (sub X, Z)
1715      Value *NegVal; // Compute -Z
1716      if (SI.getType()->isFPOrFPVectorTy()) {
1717        NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1718        if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1719          FastMathFlags Flags = AddOp->getFastMathFlags();
1720          Flags &= SubOp->getFastMathFlags();
1721          NegInst->setFastMathFlags(Flags);
1722        }
1723      } else {
1724        NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1725      }
1726
1727      Value *NewTrueOp = OtherAddOp;
1728      Value *NewFalseOp = NegVal;
1729      if (AddOp != TI)
1730        std::swap(NewTrueOp, NewFalseOp);
1731      Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1732                                           SI.getName() + ".p", &SI);
1733
1734      if (SI.getType()->isFPOrFPVectorTy()) {
1735        Instruction *RI =
1736            BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1737
1738        FastMathFlags Flags = AddOp->getFastMathFlags();
1739        Flags &= SubOp->getFastMathFlags();
1740        RI->setFastMathFlags(Flags);
1741        return RI;
1742      } else
1743        return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1744    }
1745  }
1746  return nullptr;
1747}
1748
1749/// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1750/// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1751/// Along with a number of patterns similar to:
1752/// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1753/// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1754static Instruction *
1755foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
1756  Value *CondVal = SI.getCondition();
1757  Value *TrueVal = SI.getTrueValue();
1758  Value *FalseVal = SI.getFalseValue();
1759
1760  WithOverflowInst *II;
1761  if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
1762      !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
1763    return nullptr;
1764
1765  Value *X = II->getLHS();
1766  Value *Y = II->getRHS();
1767
1768  auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
1769    Type *Ty = Limit->getType();
1770
1771    ICmpInst::Predicate Pred;
1772    Value *TrueVal, *FalseVal, *Op;
1773    const APInt *C;
1774    if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
1775                               m_Value(TrueVal), m_Value(FalseVal))))
1776      return false;
1777
1778    auto IsZeroOrOne = [](const APInt &C) {
1779      return C.isNullValue() || C.isOneValue();
1780    };
1781    auto IsMinMax = [&](Value *Min, Value *Max) {
1782      APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
1783      APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
1784      return match(Min, m_SpecificInt(MinVal)) &&
1785             match(Max, m_SpecificInt(MaxVal));
1786    };
1787
1788    if (Op != X && Op != Y)
1789      return false;
1790
1791    if (IsAdd) {
1792      // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1793      // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1794      // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1795      // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1796      if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1797          IsMinMax(TrueVal, FalseVal))
1798        return true;
1799      // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1800      // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1801      // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1802      // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1803      if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1804          IsMinMax(FalseVal, TrueVal))
1805        return true;
1806    } else {
1807      // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1808      // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1809      if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
1810          IsMinMax(TrueVal, FalseVal))
1811        return true;
1812      // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1813      // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1814      if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
1815          IsMinMax(FalseVal, TrueVal))
1816        return true;
1817      // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1818      // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1819      if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1820          IsMinMax(FalseVal, TrueVal))
1821        return true;
1822      // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1823      // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1824      if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1825          IsMinMax(TrueVal, FalseVal))
1826        return true;
1827    }
1828
1829    return false;
1830  };
1831
1832  Intrinsic::ID NewIntrinsicID;
1833  if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
1834      match(TrueVal, m_AllOnes()))
1835    // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1836    NewIntrinsicID = Intrinsic::uadd_sat;
1837  else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
1838           match(TrueVal, m_Zero()))
1839    // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1840    NewIntrinsicID = Intrinsic::usub_sat;
1841  else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
1842           IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
1843    // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1844    // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1845    // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1846    // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1847    // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1848    // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1849    // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1850    // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1851    NewIntrinsicID = Intrinsic::sadd_sat;
1852  else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
1853           IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
1854    // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1855    // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1856    // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1857    // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1858    // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1859    // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1860    // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1861    // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1862    NewIntrinsicID = Intrinsic::ssub_sat;
1863  else
1864    return nullptr;
1865
1866  Function *F =
1867      Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
1868  return CallInst::Create(F, {X, Y});
1869}
1870
1871Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) {
1872  Constant *C;
1873  if (!match(Sel.getTrueValue(), m_Constant(C)) &&
1874      !match(Sel.getFalseValue(), m_Constant(C)))
1875    return nullptr;
1876
1877  Instruction *ExtInst;
1878  if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
1879      !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
1880    return nullptr;
1881
1882  auto ExtOpcode = ExtInst->getOpcode();
1883  if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
1884    return nullptr;
1885
1886  // If we are extending from a boolean type or if we can create a select that
1887  // has the same size operands as its condition, try to narrow the select.
1888  Value *X = ExtInst->getOperand(0);
1889  Type *SmallType = X->getType();
1890  Value *Cond = Sel.getCondition();
1891  auto *Cmp = dyn_cast<CmpInst>(Cond);
1892  if (!SmallType->isIntOrIntVectorTy(1) &&
1893      (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
1894    return nullptr;
1895
1896  // If the constant is the same after truncation to the smaller type and
1897  // extension to the original type, we can narrow the select.
1898  Type *SelType = Sel.getType();
1899  Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
1900  Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
1901  if (ExtC == C) {
1902    Value *TruncCVal = cast<Value>(TruncC);
1903    if (ExtInst == Sel.getFalseValue())
1904      std::swap(X, TruncCVal);
1905
1906    // select Cond, (ext X), C --> ext(select Cond, X, C')
1907    // select Cond, C, (ext X) --> ext(select Cond, C', X)
1908    Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
1909    return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
1910  }
1911
1912  // If one arm of the select is the extend of the condition, replace that arm
1913  // with the extension of the appropriate known bool value.
1914  if (Cond == X) {
1915    if (ExtInst == Sel.getTrueValue()) {
1916      // select X, (sext X), C --> select X, -1, C
1917      // select X, (zext X), C --> select X,  1, C
1918      Constant *One = ConstantInt::getTrue(SmallType);
1919      Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
1920      return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
1921    } else {
1922      // select X, C, (sext X) --> select X, C, 0
1923      // select X, C, (zext X) --> select X, C, 0
1924      Constant *Zero = ConstantInt::getNullValue(SelType);
1925      return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
1926    }
1927  }
1928
1929  return nullptr;
1930}
1931
1932/// Try to transform a vector select with a constant condition vector into a
1933/// shuffle for easier combining with other shuffles and insert/extract.
1934static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
1935  Value *CondVal = SI.getCondition();
1936  Constant *CondC;
1937  if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
1938    return nullptr;
1939
1940  unsigned NumElts = CondVal->getType()->getVectorNumElements();
1941  SmallVector<Constant *, 16> Mask;
1942  Mask.reserve(NumElts);
1943  Type *Int32Ty = Type::getInt32Ty(CondVal->getContext());
1944  for (unsigned i = 0; i != NumElts; ++i) {
1945    Constant *Elt = CondC->getAggregateElement(i);
1946    if (!Elt)
1947      return nullptr;
1948
1949    if (Elt->isOneValue()) {
1950      // If the select condition element is true, choose from the 1st vector.
1951      Mask.push_back(ConstantInt::get(Int32Ty, i));
1952    } else if (Elt->isNullValue()) {
1953      // If the select condition element is false, choose from the 2nd vector.
1954      Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts));
1955    } else if (isa<UndefValue>(Elt)) {
1956      // Undef in a select condition (choose one of the operands) does not mean
1957      // the same thing as undef in a shuffle mask (any value is acceptable), so
1958      // give up.
1959      return nullptr;
1960    } else {
1961      // Bail out on a constant expression.
1962      return nullptr;
1963    }
1964  }
1965
1966  return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(),
1967                               ConstantVector::get(Mask));
1968}
1969
1970/// If we have a select of vectors with a scalar condition, try to convert that
1971/// to a vector select by splatting the condition. A splat may get folded with
1972/// other operations in IR and having all operands of a select be vector types
1973/// is likely better for vector codegen.
1974static Instruction *canonicalizeScalarSelectOfVecs(
1975    SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
1976  Type *Ty = Sel.getType();
1977  if (!Ty->isVectorTy())
1978    return nullptr;
1979
1980  // We can replace a single-use extract with constant index.
1981  Value *Cond = Sel.getCondition();
1982  if (!match(Cond, m_OneUse(m_ExtractElement(m_Value(), m_ConstantInt()))))
1983    return nullptr;
1984
1985  // select (extelt V, Index), T, F --> select (splat V, Index), T, F
1986  // Splatting the extracted condition reduces code (we could directly create a
1987  // splat shuffle of the source vector to eliminate the intermediate step).
1988  unsigned NumElts = Ty->getVectorNumElements();
1989  Value *SplatCond = Builder.CreateVectorSplat(NumElts, Cond);
1990  Sel.setCondition(SplatCond);
1991  return &Sel;
1992}
1993
1994/// Reuse bitcasted operands between a compare and select:
1995/// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1996/// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
1997static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
1998                                          InstCombiner::BuilderTy &Builder) {
1999  Value *Cond = Sel.getCondition();
2000  Value *TVal = Sel.getTrueValue();
2001  Value *FVal = Sel.getFalseValue();
2002
2003  CmpInst::Predicate Pred;
2004  Value *A, *B;
2005  if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
2006    return nullptr;
2007
2008  // The select condition is a compare instruction. If the select's true/false
2009  // values are already the same as the compare operands, there's nothing to do.
2010  if (TVal == A || TVal == B || FVal == A || FVal == B)
2011    return nullptr;
2012
2013  Value *C, *D;
2014  if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
2015    return nullptr;
2016
2017  // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
2018  Value *TSrc, *FSrc;
2019  if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
2020      !match(FVal, m_BitCast(m_Value(FSrc))))
2021    return nullptr;
2022
2023  // If the select true/false values are *different bitcasts* of the same source
2024  // operands, make the select operands the same as the compare operands and
2025  // cast the result. This is the canonical select form for min/max.
2026  Value *NewSel;
2027  if (TSrc == C && FSrc == D) {
2028    // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2029    // bitcast (select (cmp A, B), A, B)
2030    NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
2031  } else if (TSrc == D && FSrc == C) {
2032    // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
2033    // bitcast (select (cmp A, B), B, A)
2034    NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
2035  } else {
2036    return nullptr;
2037  }
2038  return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
2039}
2040
2041/// Try to eliminate select instructions that test the returned flag of cmpxchg
2042/// instructions.
2043///
2044/// If a select instruction tests the returned flag of a cmpxchg instruction and
2045/// selects between the returned value of the cmpxchg instruction its compare
2046/// operand, the result of the select will always be equal to its false value.
2047/// For example:
2048///
2049///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2050///   %1 = extractvalue { i64, i1 } %0, 1
2051///   %2 = extractvalue { i64, i1 } %0, 0
2052///   %3 = select i1 %1, i64 %compare, i64 %2
2053///   ret i64 %3
2054///
2055/// The returned value of the cmpxchg instruction (%2) is the original value
2056/// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
2057/// must have been equal to %compare. Thus, the result of the select is always
2058/// equal to %2, and the code can be simplified to:
2059///
2060///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2061///   %1 = extractvalue { i64, i1 } %0, 0
2062///   ret i64 %1
2063///
2064static Instruction *foldSelectCmpXchg(SelectInst &SI) {
2065  // A helper that determines if V is an extractvalue instruction whose
2066  // aggregate operand is a cmpxchg instruction and whose single index is equal
2067  // to I. If such conditions are true, the helper returns the cmpxchg
2068  // instruction; otherwise, a nullptr is returned.
2069  auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
2070    auto *Extract = dyn_cast<ExtractValueInst>(V);
2071    if (!Extract)
2072      return nullptr;
2073    if (Extract->getIndices()[0] != I)
2074      return nullptr;
2075    return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
2076  };
2077
2078  // If the select has a single user, and this user is a select instruction that
2079  // we can simplify, skip the cmpxchg simplification for now.
2080  if (SI.hasOneUse())
2081    if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
2082      if (Select->getCondition() == SI.getCondition())
2083        if (Select->getFalseValue() == SI.getTrueValue() ||
2084            Select->getTrueValue() == SI.getFalseValue())
2085          return nullptr;
2086
2087  // Ensure the select condition is the returned flag of a cmpxchg instruction.
2088  auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
2089  if (!CmpXchg)
2090    return nullptr;
2091
2092  // Check the true value case: The true value of the select is the returned
2093  // value of the same cmpxchg used by the condition, and the false value is the
2094  // cmpxchg instruction's compare operand.
2095  if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
2096    if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) {
2097      SI.setTrueValue(SI.getFalseValue());
2098      return &SI;
2099    }
2100
2101  // Check the false value case: The false value of the select is the returned
2102  // value of the same cmpxchg used by the condition, and the true value is the
2103  // cmpxchg instruction's compare operand.
2104  if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
2105    if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) {
2106      SI.setTrueValue(SI.getFalseValue());
2107      return &SI;
2108    }
2109
2110  return nullptr;
2111}
2112
2113static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X,
2114                                       Value *Y,
2115                                       InstCombiner::BuilderTy &Builder) {
2116  assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern");
2117  bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN ||
2118                    SPF == SelectPatternFlavor::SPF_UMAX;
2119  // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change
2120  // the constant value check to an assert.
2121  Value *A;
2122  const APInt *C1, *C2;
2123  if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) &&
2124      match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) {
2125    // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1
2126    // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1
2127    Value *NewMinMax = createMinMax(Builder, SPF, A,
2128                                    ConstantInt::get(X->getType(), *C2 - *C1));
2129    return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax,
2130                                     ConstantInt::get(X->getType(), *C1));
2131  }
2132
2133  if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) &&
2134      match(Y, m_APInt(C2)) && X->hasNUses(2)) {
2135    bool Overflow;
2136    APInt Diff = C2->ssub_ov(*C1, Overflow);
2137    if (!Overflow) {
2138      // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1
2139      // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1
2140      Value *NewMinMax = createMinMax(Builder, SPF, A,
2141                                      ConstantInt::get(X->getType(), Diff));
2142      return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax,
2143                                       ConstantInt::get(X->getType(), *C1));
2144    }
2145  }
2146
2147  return nullptr;
2148}
2149
2150/// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
2151Instruction *InstCombiner::matchSAddSubSat(SelectInst &MinMax1) {
2152  Type *Ty = MinMax1.getType();
2153
2154  // We are looking for a tree of:
2155  // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
2156  // Where the min and max could be reversed
2157  Instruction *MinMax2;
2158  BinaryOperator *AddSub;
2159  const APInt *MinValue, *MaxValue;
2160  if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
2161    if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
2162      return nullptr;
2163  } else if (match(&MinMax1,
2164                   m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
2165    if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
2166      return nullptr;
2167  } else
2168    return nullptr;
2169
2170  // Check that the constants clamp a saturate, and that the new type would be
2171  // sensible to convert to.
2172  if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
2173    return nullptr;
2174  // In what bitwidth can this be treated as saturating arithmetics?
2175  unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
2176  // FIXME: This isn't quite right for vectors, but using the scalar type is a
2177  // good first approximation for what should be done there.
2178  if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
2179    return nullptr;
2180
2181  // Also make sure that the number of uses is as expected. The "3"s are for the
2182  // the two items of min/max (the compare and the select).
2183  if (MinMax2->hasNUsesOrMore(3) || AddSub->hasNUsesOrMore(3))
2184    return nullptr;
2185
2186  // Create the new type (which can be a vector type)
2187  Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
2188  // Match the two extends from the add/sub
2189  Value *A, *B;
2190  if(!match(AddSub, m_BinOp(m_SExt(m_Value(A)), m_SExt(m_Value(B)))))
2191    return nullptr;
2192  // And check the incoming values are of a type smaller than or equal to the
2193  // size of the saturation. Otherwise the higher bits can cause different
2194  // results.
2195  if (A->getType()->getScalarSizeInBits() > NewBitWidth ||
2196      B->getType()->getScalarSizeInBits() > NewBitWidth)
2197    return nullptr;
2198
2199  Intrinsic::ID IntrinsicID;
2200  if (AddSub->getOpcode() == Instruction::Add)
2201    IntrinsicID = Intrinsic::sadd_sat;
2202  else if (AddSub->getOpcode() == Instruction::Sub)
2203    IntrinsicID = Intrinsic::ssub_sat;
2204  else
2205    return nullptr;
2206
2207  // Finally create and return the sat intrinsic, truncated to the new type
2208  Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
2209  Value *AT = Builder.CreateSExt(A, NewTy);
2210  Value *BT = Builder.CreateSExt(B, NewTy);
2211  Value *Sat = Builder.CreateCall(F, {AT, BT});
2212  return CastInst::Create(Instruction::SExt, Sat, Ty);
2213}
2214
2215/// Reduce a sequence of min/max with a common operand.
2216static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
2217                                        Value *RHS,
2218                                        InstCombiner::BuilderTy &Builder) {
2219  assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
2220  // TODO: Allow FP min/max with nnan/nsz.
2221  if (!LHS->getType()->isIntOrIntVectorTy())
2222    return nullptr;
2223
2224  // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
2225  Value *A, *B, *C, *D;
2226  SelectPatternResult L = matchSelectPattern(LHS, A, B);
2227  SelectPatternResult R = matchSelectPattern(RHS, C, D);
2228  if (SPF != L.Flavor || L.Flavor != R.Flavor)
2229    return nullptr;
2230
2231  // Look for a common operand. The use checks are different than usual because
2232  // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
2233  // the select.
2234  Value *MinMaxOp = nullptr;
2235  Value *ThirdOp = nullptr;
2236  if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
2237    // If the LHS is only used in this chain and the RHS is used outside of it,
2238    // reuse the RHS min/max because that will eliminate the LHS.
2239    if (D == A || C == A) {
2240      // min(min(a, b), min(c, a)) --> min(min(c, a), b)
2241      // min(min(a, b), min(a, d)) --> min(min(a, d), b)
2242      MinMaxOp = RHS;
2243      ThirdOp = B;
2244    } else if (D == B || C == B) {
2245      // min(min(a, b), min(c, b)) --> min(min(c, b), a)
2246      // min(min(a, b), min(b, d)) --> min(min(b, d), a)
2247      MinMaxOp = RHS;
2248      ThirdOp = A;
2249    }
2250  } else if (!RHS->hasNUsesOrMore(3)) {
2251    // Reuse the LHS. This will eliminate the RHS.
2252    if (D == A || D == B) {
2253      // min(min(a, b), min(c, a)) --> min(min(a, b), c)
2254      // min(min(a, b), min(c, b)) --> min(min(a, b), c)
2255      MinMaxOp = LHS;
2256      ThirdOp = C;
2257    } else if (C == A || C == B) {
2258      // min(min(a, b), min(b, d)) --> min(min(a, b), d)
2259      // min(min(a, b), min(c, b)) --> min(min(a, b), d)
2260      MinMaxOp = LHS;
2261      ThirdOp = D;
2262    }
2263  }
2264  if (!MinMaxOp || !ThirdOp)
2265    return nullptr;
2266
2267  CmpInst::Predicate P = getMinMaxPred(SPF);
2268  Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
2269  return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
2270}
2271
2272/// Try to reduce a rotate pattern that includes a compare and select into a
2273/// funnel shift intrinsic. Example:
2274/// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2275///              --> call llvm.fshl.i32(a, a, b)
2276static Instruction *foldSelectRotate(SelectInst &Sel) {
2277  // The false value of the select must be a rotate of the true value.
2278  Value *Or0, *Or1;
2279  if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
2280    return nullptr;
2281
2282  Value *TVal = Sel.getTrueValue();
2283  Value *SA0, *SA1;
2284  if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA0)))) ||
2285      !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA1)))))
2286    return nullptr;
2287
2288  auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
2289  auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
2290  if (ShiftOpcode0 == ShiftOpcode1)
2291    return nullptr;
2292
2293  // We have one of these patterns so far:
2294  // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1))
2295  // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1))
2296  // This must be a power-of-2 rotate for a bitmasking transform to be valid.
2297  unsigned Width = Sel.getType()->getScalarSizeInBits();
2298  if (!isPowerOf2_32(Width))
2299    return nullptr;
2300
2301  // Check the shift amounts to see if they are an opposite pair.
2302  Value *ShAmt;
2303  if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
2304    ShAmt = SA0;
2305  else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
2306    ShAmt = SA1;
2307  else
2308    return nullptr;
2309
2310  // Finally, see if the select is filtering out a shift-by-zero.
2311  Value *Cond = Sel.getCondition();
2312  ICmpInst::Predicate Pred;
2313  if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
2314      Pred != ICmpInst::ICMP_EQ)
2315    return nullptr;
2316
2317  // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2318  // Convert to funnel shift intrinsic.
2319  bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) ||
2320                (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl);
2321  Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2322  Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
2323  return IntrinsicInst::Create(F, { TVal, TVal, ShAmt });
2324}
2325
2326Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
2327  Value *CondVal = SI.getCondition();
2328  Value *TrueVal = SI.getTrueValue();
2329  Value *FalseVal = SI.getFalseValue();
2330  Type *SelType = SI.getType();
2331
2332  // FIXME: Remove this workaround when freeze related patches are done.
2333  // For select with undef operand which feeds into an equality comparison,
2334  // don't simplify it so loop unswitch can know the equality comparison
2335  // may have an undef operand. This is a workaround for PR31652 caused by
2336  // descrepancy about branch on undef between LoopUnswitch and GVN.
2337  if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) {
2338    if (llvm::any_of(SI.users(), [&](User *U) {
2339          ICmpInst *CI = dyn_cast<ICmpInst>(U);
2340          if (CI && CI->isEquality())
2341            return true;
2342          return false;
2343        })) {
2344      return nullptr;
2345    }
2346  }
2347
2348  if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
2349                                    SQ.getWithInstruction(&SI)))
2350    return replaceInstUsesWith(SI, V);
2351
2352  if (Instruction *I = canonicalizeSelectToShuffle(SI))
2353    return I;
2354
2355  if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, Builder))
2356    return I;
2357
2358  // Canonicalize a one-use integer compare with a non-canonical predicate by
2359  // inverting the predicate and swapping the select operands. This matches a
2360  // compare canonicalization for conditional branches.
2361  // TODO: Should we do the same for FP compares?
2362  CmpInst::Predicate Pred;
2363  if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) &&
2364      !isCanonicalPredicate(Pred)) {
2365    // Swap true/false values and condition.
2366    CmpInst *Cond = cast<CmpInst>(CondVal);
2367    Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2368    SI.setOperand(1, FalseVal);
2369    SI.setOperand(2, TrueVal);
2370    SI.swapProfMetadata();
2371    Worklist.Add(Cond);
2372    return &SI;
2373  }
2374
2375  if (SelType->isIntOrIntVectorTy(1) &&
2376      TrueVal->getType() == CondVal->getType()) {
2377    if (match(TrueVal, m_One())) {
2378      // Change: A = select B, true, C --> A = or B, C
2379      return BinaryOperator::CreateOr(CondVal, FalseVal);
2380    }
2381    if (match(TrueVal, m_Zero())) {
2382      // Change: A = select B, false, C --> A = and !B, C
2383      Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2384      return BinaryOperator::CreateAnd(NotCond, FalseVal);
2385    }
2386    if (match(FalseVal, m_Zero())) {
2387      // Change: A = select B, C, false --> A = and B, C
2388      return BinaryOperator::CreateAnd(CondVal, TrueVal);
2389    }
2390    if (match(FalseVal, m_One())) {
2391      // Change: A = select B, C, true --> A = or !B, C
2392      Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2393      return BinaryOperator::CreateOr(NotCond, TrueVal);
2394    }
2395
2396    // select a, a, b  -> a | b
2397    // select a, b, a  -> a & b
2398    if (CondVal == TrueVal)
2399      return BinaryOperator::CreateOr(CondVal, FalseVal);
2400    if (CondVal == FalseVal)
2401      return BinaryOperator::CreateAnd(CondVal, TrueVal);
2402
2403    // select a, ~a, b -> (~a) & b
2404    // select a, b, ~a -> (~a) | b
2405    if (match(TrueVal, m_Not(m_Specific(CondVal))))
2406      return BinaryOperator::CreateAnd(TrueVal, FalseVal);
2407    if (match(FalseVal, m_Not(m_Specific(CondVal))))
2408      return BinaryOperator::CreateOr(TrueVal, FalseVal);
2409  }
2410
2411  // Selecting between two integer or vector splat integer constants?
2412  //
2413  // Note that we don't handle a scalar select of vectors:
2414  // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
2415  // because that may need 3 instructions to splat the condition value:
2416  // extend, insertelement, shufflevector.
2417  if (SelType->isIntOrIntVectorTy() &&
2418      CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
2419    // select C, 1, 0 -> zext C to int
2420    if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
2421      return new ZExtInst(CondVal, SelType);
2422
2423    // select C, -1, 0 -> sext C to int
2424    if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
2425      return new SExtInst(CondVal, SelType);
2426
2427    // select C, 0, 1 -> zext !C to int
2428    if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
2429      Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2430      return new ZExtInst(NotCond, SelType);
2431    }
2432
2433    // select C, 0, -1 -> sext !C to int
2434    if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
2435      Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2436      return new SExtInst(NotCond, SelType);
2437    }
2438  }
2439
2440  // See if we are selecting two values based on a comparison of the two values.
2441  if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
2442    Value *Cmp0 = FCI->getOperand(0), *Cmp1 = FCI->getOperand(1);
2443    if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
2444        (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
2445      // Canonicalize to use ordered comparisons by swapping the select
2446      // operands.
2447      //
2448      // e.g.
2449      // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
2450      if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
2451        FCmpInst::Predicate InvPred = FCI->getInversePredicate();
2452        IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2453        // FIXME: The FMF should propagate from the select, not the fcmp.
2454        Builder.setFastMathFlags(FCI->getFastMathFlags());
2455        Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
2456                                            FCI->getName() + ".inv");
2457        Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
2458        return replaceInstUsesWith(SI, NewSel);
2459      }
2460
2461      // NOTE: if we wanted to, this is where to detect MIN/MAX
2462    }
2463  }
2464
2465  // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2466  // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We
2467  // also require nnan because we do not want to unintentionally change the
2468  // sign of a NaN value.
2469  // FIXME: These folds should test/propagate FMF from the select, not the
2470  //        fsub or fneg.
2471  // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
2472  Instruction *FSub;
2473  if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2474      match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
2475      match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
2476      (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2477    Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub);
2478    return replaceInstUsesWith(SI, Fabs);
2479  }
2480  // (X >  +/-0.0) ? X : (0.0 - X) --> fabs(X)
2481  if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2482      match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
2483      match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
2484      (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2485    Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub);
2486    return replaceInstUsesWith(SI, Fabs);
2487  }
2488  // With nnan and nsz:
2489  // (X <  +/-0.0) ? -X : X --> fabs(X)
2490  // (X <= +/-0.0) ? -X : X --> fabs(X)
2491  Instruction *FNeg;
2492  if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2493      match(TrueVal, m_FNeg(m_Specific(FalseVal))) &&
2494      match(TrueVal, m_Instruction(FNeg)) &&
2495      FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
2496      (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2497       Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
2498    Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg);
2499    return replaceInstUsesWith(SI, Fabs);
2500  }
2501  // With nnan and nsz:
2502  // (X >  +/-0.0) ? X : -X --> fabs(X)
2503  // (X >= +/-0.0) ? X : -X --> fabs(X)
2504  if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2505      match(FalseVal, m_FNeg(m_Specific(TrueVal))) &&
2506      match(FalseVal, m_Instruction(FNeg)) &&
2507      FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
2508      (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2509       Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
2510    Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg);
2511    return replaceInstUsesWith(SI, Fabs);
2512  }
2513
2514  // See if we are selecting two values based on a comparison of the two values.
2515  if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
2516    if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
2517      return Result;
2518
2519  if (Instruction *Add = foldAddSubSelect(SI, Builder))
2520    return Add;
2521  if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
2522    return Add;
2523
2524  // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
2525  auto *TI = dyn_cast<Instruction>(TrueVal);
2526  auto *FI = dyn_cast<Instruction>(FalseVal);
2527  if (TI && FI && TI->getOpcode() == FI->getOpcode())
2528    if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
2529      return IV;
2530
2531  if (Instruction *I = foldSelectExtConst(SI))
2532    return I;
2533
2534  // See if we can fold the select into one of our operands.
2535  if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
2536    if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
2537      return FoldI;
2538
2539    Value *LHS, *RHS;
2540    Instruction::CastOps CastOp;
2541    SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
2542    auto SPF = SPR.Flavor;
2543    if (SPF) {
2544      Value *LHS2, *RHS2;
2545      if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
2546        if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
2547                                          RHS2, SI, SPF, RHS))
2548          return R;
2549      if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
2550        if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
2551                                          RHS2, SI, SPF, LHS))
2552          return R;
2553      // TODO.
2554      // ABS(-X) -> ABS(X)
2555    }
2556
2557    if (SelectPatternResult::isMinOrMax(SPF)) {
2558      // Canonicalize so that
2559      // - type casts are outside select patterns.
2560      // - float clamp is transformed to min/max pattern
2561
2562      bool IsCastNeeded = LHS->getType() != SelType;
2563      Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
2564      Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
2565      if (IsCastNeeded ||
2566          (LHS->getType()->isFPOrFPVectorTy() &&
2567           ((CmpLHS != LHS && CmpLHS != RHS) ||
2568            (CmpRHS != LHS && CmpRHS != RHS)))) {
2569        CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
2570
2571        Value *Cmp;
2572        if (CmpInst::isIntPredicate(MinMaxPred)) {
2573          Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
2574        } else {
2575          IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2576          auto FMF =
2577              cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
2578          Builder.setFastMathFlags(FMF);
2579          Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
2580        }
2581
2582        Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
2583        if (!IsCastNeeded)
2584          return replaceInstUsesWith(SI, NewSI);
2585
2586        Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
2587        return replaceInstUsesWith(SI, NewCast);
2588      }
2589
2590      // MAX(~a, ~b) -> ~MIN(a, b)
2591      // MAX(~a, C)  -> ~MIN(a, ~C)
2592      // MIN(~a, ~b) -> ~MAX(a, b)
2593      // MIN(~a, C)  -> ~MAX(a, ~C)
2594      auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
2595        Value *A;
2596        if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
2597            !isFreeToInvert(A, A->hasOneUse()) &&
2598            // Passing false to only consider m_Not and constants.
2599            isFreeToInvert(Y, false)) {
2600          Value *B = Builder.CreateNot(Y);
2601          Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
2602                                          A, B);
2603          // Copy the profile metadata.
2604          if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
2605            cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
2606            // Swap the metadata if the operands are swapped.
2607            if (X == SI.getFalseValue() && Y == SI.getTrueValue())
2608              cast<SelectInst>(NewMinMax)->swapProfMetadata();
2609          }
2610
2611          return BinaryOperator::CreateNot(NewMinMax);
2612        }
2613
2614        return nullptr;
2615      };
2616
2617      if (Instruction *I = moveNotAfterMinMax(LHS, RHS))
2618        return I;
2619      if (Instruction *I = moveNotAfterMinMax(RHS, LHS))
2620        return I;
2621
2622      if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder))
2623        return I;
2624
2625      if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
2626        return I;
2627      if (Instruction *I = matchSAddSubSat(SI))
2628        return I;
2629    }
2630  }
2631
2632  // Canonicalize select of FP values where NaN and -0.0 are not valid as
2633  // minnum/maxnum intrinsics.
2634  if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
2635    Value *X, *Y;
2636    if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
2637      return replaceInstUsesWith(
2638          SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
2639
2640    if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
2641      return replaceInstUsesWith(
2642          SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
2643  }
2644
2645  // See if we can fold the select into a phi node if the condition is a select.
2646  if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
2647    // The true/false values have to be live in the PHI predecessor's blocks.
2648    if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
2649        canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
2650      if (Instruction *NV = foldOpIntoPhi(SI, PN))
2651        return NV;
2652
2653  if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
2654    if (TrueSI->getCondition()->getType() == CondVal->getType()) {
2655      // select(C, select(C, a, b), c) -> select(C, a, c)
2656      if (TrueSI->getCondition() == CondVal) {
2657        if (SI.getTrueValue() == TrueSI->getTrueValue())
2658          return nullptr;
2659        SI.setOperand(1, TrueSI->getTrueValue());
2660        return &SI;
2661      }
2662      // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
2663      // We choose this as normal form to enable folding on the And and shortening
2664      // paths for the values (this helps GetUnderlyingObjects() for example).
2665      if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
2666        Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition());
2667        SI.setOperand(0, And);
2668        SI.setOperand(1, TrueSI->getTrueValue());
2669        return &SI;
2670      }
2671    }
2672  }
2673  if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
2674    if (FalseSI->getCondition()->getType() == CondVal->getType()) {
2675      // select(C, a, select(C, b, c)) -> select(C, a, c)
2676      if (FalseSI->getCondition() == CondVal) {
2677        if (SI.getFalseValue() == FalseSI->getFalseValue())
2678          return nullptr;
2679        SI.setOperand(2, FalseSI->getFalseValue());
2680        return &SI;
2681      }
2682      // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
2683      if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
2684        Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition());
2685        SI.setOperand(0, Or);
2686        SI.setOperand(2, FalseSI->getFalseValue());
2687        return &SI;
2688      }
2689    }
2690  }
2691
2692  auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
2693    // The select might be preventing a division by 0.
2694    switch (BO->getOpcode()) {
2695    default:
2696      return true;
2697    case Instruction::SRem:
2698    case Instruction::URem:
2699    case Instruction::SDiv:
2700    case Instruction::UDiv:
2701      return false;
2702    }
2703  };
2704
2705  // Try to simplify a binop sandwiched between 2 selects with the same
2706  // condition.
2707  // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
2708  BinaryOperator *TrueBO;
2709  if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
2710      canMergeSelectThroughBinop(TrueBO)) {
2711    if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
2712      if (TrueBOSI->getCondition() == CondVal) {
2713        TrueBO->setOperand(0, TrueBOSI->getTrueValue());
2714        Worklist.Add(TrueBO);
2715        return &SI;
2716      }
2717    }
2718    if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
2719      if (TrueBOSI->getCondition() == CondVal) {
2720        TrueBO->setOperand(1, TrueBOSI->getTrueValue());
2721        Worklist.Add(TrueBO);
2722        return &SI;
2723      }
2724    }
2725  }
2726
2727  // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
2728  BinaryOperator *FalseBO;
2729  if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
2730      canMergeSelectThroughBinop(FalseBO)) {
2731    if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
2732      if (FalseBOSI->getCondition() == CondVal) {
2733        FalseBO->setOperand(0, FalseBOSI->getFalseValue());
2734        Worklist.Add(FalseBO);
2735        return &SI;
2736      }
2737    }
2738    if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
2739      if (FalseBOSI->getCondition() == CondVal) {
2740        FalseBO->setOperand(1, FalseBOSI->getFalseValue());
2741        Worklist.Add(FalseBO);
2742        return &SI;
2743      }
2744    }
2745  }
2746
2747  Value *NotCond;
2748  if (match(CondVal, m_Not(m_Value(NotCond)))) {
2749    SI.setOperand(0, NotCond);
2750    SI.setOperand(1, FalseVal);
2751    SI.setOperand(2, TrueVal);
2752    SI.swapProfMetadata();
2753    return &SI;
2754  }
2755
2756  if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) {
2757    unsigned VWidth = VecTy->getNumElements();
2758    APInt UndefElts(VWidth, 0);
2759    APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
2760    if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
2761      if (V != &SI)
2762        return replaceInstUsesWith(SI, V);
2763      return &SI;
2764    }
2765  }
2766
2767  // If we can compute the condition, there's no need for a select.
2768  // Like the above fold, we are attempting to reduce compile-time cost by
2769  // putting this fold here with limitations rather than in InstSimplify.
2770  // The motivation for this call into value tracking is to take advantage of
2771  // the assumption cache, so make sure that is populated.
2772  if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
2773    KnownBits Known(1);
2774    computeKnownBits(CondVal, Known, 0, &SI);
2775    if (Known.One.isOneValue())
2776      return replaceInstUsesWith(SI, TrueVal);
2777    if (Known.Zero.isOneValue())
2778      return replaceInstUsesWith(SI, FalseVal);
2779  }
2780
2781  if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
2782    return BitCastSel;
2783
2784  // Simplify selects that test the returned flag of cmpxchg instructions.
2785  if (Instruction *Select = foldSelectCmpXchg(SI))
2786    return Select;
2787
2788  if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI))
2789    return Select;
2790
2791  if (Instruction *Rot = foldSelectRotate(SI))
2792    return Rot;
2793
2794  return nullptr;
2795}
2796