InstCombineInternal.h revision 344779
1//===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file
11///
12/// This file provides internal interfaces used to implement the InstCombine.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
17#define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
18
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/InstructionSimplify.h"
22#include "llvm/Analysis/TargetFolder.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/IR/Argument.h"
25#include "llvm/IR/BasicBlock.h"
26#include "llvm/IR/Constant.h"
27#include "llvm/IR/Constants.h"
28#include "llvm/IR/DerivedTypes.h"
29#include "llvm/IR/IRBuilder.h"
30#include "llvm/IR/InstVisitor.h"
31#include "llvm/IR/InstrTypes.h"
32#include "llvm/IR/Instruction.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/Intrinsics.h"
35#include "llvm/IR/PatternMatch.h"
36#include "llvm/IR/Use.h"
37#include "llvm/IR/Value.h"
38#include "llvm/Support/Casting.h"
39#include "llvm/Support/Compiler.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/KnownBits.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
44#include "llvm/Transforms/Utils/Local.h"
45#include <cassert>
46#include <cstdint>
47
48#define DEBUG_TYPE "instcombine"
49
50using namespace llvm::PatternMatch;
51
52namespace llvm {
53
54class APInt;
55class AssumptionCache;
56class CallSite;
57class DataLayout;
58class DominatorTree;
59class GEPOperator;
60class GlobalVariable;
61class LoopInfo;
62class OptimizationRemarkEmitter;
63class TargetLibraryInfo;
64class User;
65
66/// Assign a complexity or rank value to LLVM Values. This is used to reduce
67/// the amount of pattern matching needed for compares and commutative
68/// instructions. For example, if we have:
69///   icmp ugt X, Constant
70/// or
71///   xor (add X, Constant), cast Z
72///
73/// We do not have to consider the commuted variants of these patterns because
74/// canonicalization based on complexity guarantees the above ordering.
75///
76/// This routine maps IR values to various complexity ranks:
77///   0 -> undef
78///   1 -> Constants
79///   2 -> Other non-instructions
80///   3 -> Arguments
81///   4 -> Cast and (f)neg/not instructions
82///   5 -> Other instructions
83static inline unsigned getComplexity(Value *V) {
84  if (isa<Instruction>(V)) {
85    if (isa<CastInst>(V) || match(V, m_Neg(m_Value())) ||
86        match(V, m_Not(m_Value())) || match(V, m_FNeg(m_Value())))
87      return 4;
88    return 5;
89  }
90  if (isa<Argument>(V))
91    return 3;
92  return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
93}
94
95/// Predicate canonicalization reduces the number of patterns that need to be
96/// matched by other transforms. For example, we may swap the operands of a
97/// conditional branch or select to create a compare with a canonical (inverted)
98/// predicate which is then more likely to be matched with other values.
99static inline bool isCanonicalPredicate(CmpInst::Predicate Pred) {
100  switch (Pred) {
101  case CmpInst::ICMP_NE:
102  case CmpInst::ICMP_ULE:
103  case CmpInst::ICMP_SLE:
104  case CmpInst::ICMP_UGE:
105  case CmpInst::ICMP_SGE:
106  // TODO: There are 16 FCMP predicates. Should others be (not) canonical?
107  case CmpInst::FCMP_ONE:
108  case CmpInst::FCMP_OLE:
109  case CmpInst::FCMP_OGE:
110    return false;
111  default:
112    return true;
113  }
114}
115
116/// Return the source operand of a potentially bitcasted value while optionally
117/// checking if it has one use. If there is no bitcast or the one use check is
118/// not met, return the input value itself.
119static inline Value *peekThroughBitcast(Value *V, bool OneUseOnly = false) {
120  if (auto *BitCast = dyn_cast<BitCastInst>(V))
121    if (!OneUseOnly || BitCast->hasOneUse())
122      return BitCast->getOperand(0);
123
124  // V is not a bitcast or V has more than one use and OneUseOnly is true.
125  return V;
126}
127
128/// Add one to a Constant
129static inline Constant *AddOne(Constant *C) {
130  return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
131}
132
133/// Subtract one from a Constant
134static inline Constant *SubOne(Constant *C) {
135  return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
136}
137
138/// Return true if the specified value is free to invert (apply ~ to).
139/// This happens in cases where the ~ can be eliminated.  If WillInvertAllUses
140/// is true, work under the assumption that the caller intends to remove all
141/// uses of V and only keep uses of ~V.
142static inline bool IsFreeToInvert(Value *V, bool WillInvertAllUses) {
143  // ~(~(X)) -> X.
144  if (match(V, m_Not(m_Value())))
145    return true;
146
147  // Constants can be considered to be not'ed values.
148  if (isa<ConstantInt>(V))
149    return true;
150
151  // A vector of constant integers can be inverted easily.
152  if (V->getType()->isVectorTy() && isa<Constant>(V)) {
153    unsigned NumElts = V->getType()->getVectorNumElements();
154    for (unsigned i = 0; i != NumElts; ++i) {
155      Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
156      if (!Elt)
157        return false;
158
159      if (isa<UndefValue>(Elt))
160        continue;
161
162      if (!isa<ConstantInt>(Elt))
163        return false;
164    }
165    return true;
166  }
167
168  // Compares can be inverted if all of their uses are being modified to use the
169  // ~V.
170  if (isa<CmpInst>(V))
171    return WillInvertAllUses;
172
173  // If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1
174  // - Constant) - A` if we are willing to invert all of the uses.
175  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
176    if (BO->getOpcode() == Instruction::Add ||
177        BO->getOpcode() == Instruction::Sub)
178      if (isa<Constant>(BO->getOperand(0)) || isa<Constant>(BO->getOperand(1)))
179        return WillInvertAllUses;
180
181  // Selects with invertible operands are freely invertible
182  if (match(V, m_Select(m_Value(), m_Not(m_Value()), m_Not(m_Value()))))
183    return WillInvertAllUses;
184
185  return false;
186}
187
188/// Specific patterns of overflow check idioms that we match.
189enum OverflowCheckFlavor {
190  OCF_UNSIGNED_ADD,
191  OCF_SIGNED_ADD,
192  OCF_UNSIGNED_SUB,
193  OCF_SIGNED_SUB,
194  OCF_UNSIGNED_MUL,
195  OCF_SIGNED_MUL,
196
197  OCF_INVALID
198};
199
200/// Returns the OverflowCheckFlavor corresponding to a overflow_with_op
201/// intrinsic.
202static inline OverflowCheckFlavor
203IntrinsicIDToOverflowCheckFlavor(unsigned ID) {
204  switch (ID) {
205  default:
206    return OCF_INVALID;
207  case Intrinsic::uadd_with_overflow:
208    return OCF_UNSIGNED_ADD;
209  case Intrinsic::sadd_with_overflow:
210    return OCF_SIGNED_ADD;
211  case Intrinsic::usub_with_overflow:
212    return OCF_UNSIGNED_SUB;
213  case Intrinsic::ssub_with_overflow:
214    return OCF_SIGNED_SUB;
215  case Intrinsic::umul_with_overflow:
216    return OCF_UNSIGNED_MUL;
217  case Intrinsic::smul_with_overflow:
218    return OCF_SIGNED_MUL;
219  }
220}
221
222/// Some binary operators require special handling to avoid poison and undefined
223/// behavior. If a constant vector has undef elements, replace those undefs with
224/// identity constants if possible because those are always safe to execute.
225/// If no identity constant exists, replace undef with some other safe constant.
226static inline Constant *getSafeVectorConstantForBinop(
227      BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant) {
228  assert(In->getType()->isVectorTy() && "Not expecting scalars here");
229
230  Type *EltTy = In->getType()->getVectorElementType();
231  auto *SafeC = ConstantExpr::getBinOpIdentity(Opcode, EltTy, IsRHSConstant);
232  if (!SafeC) {
233    // TODO: Should this be available as a constant utility function? It is
234    // similar to getBinOpAbsorber().
235    if (IsRHSConstant) {
236      switch (Opcode) {
237      case Instruction::SRem: // X % 1 = 0
238      case Instruction::URem: // X %u 1 = 0
239        SafeC = ConstantInt::get(EltTy, 1);
240        break;
241      case Instruction::FRem: // X % 1.0 (doesn't simplify, but it is safe)
242        SafeC = ConstantFP::get(EltTy, 1.0);
243        break;
244      default:
245        llvm_unreachable("Only rem opcodes have no identity constant for RHS");
246      }
247    } else {
248      switch (Opcode) {
249      case Instruction::Shl:  // 0 << X = 0
250      case Instruction::LShr: // 0 >>u X = 0
251      case Instruction::AShr: // 0 >> X = 0
252      case Instruction::SDiv: // 0 / X = 0
253      case Instruction::UDiv: // 0 /u X = 0
254      case Instruction::SRem: // 0 % X = 0
255      case Instruction::URem: // 0 %u X = 0
256      case Instruction::Sub:  // 0 - X (doesn't simplify, but it is safe)
257      case Instruction::FSub: // 0.0 - X (doesn't simplify, but it is safe)
258      case Instruction::FDiv: // 0.0 / X (doesn't simplify, but it is safe)
259      case Instruction::FRem: // 0.0 % X = 0
260        SafeC = Constant::getNullValue(EltTy);
261        break;
262      default:
263        llvm_unreachable("Expected to find identity constant for opcode");
264      }
265    }
266  }
267  assert(SafeC && "Must have safe constant for binop");
268  unsigned NumElts = In->getType()->getVectorNumElements();
269  SmallVector<Constant *, 16> Out(NumElts);
270  for (unsigned i = 0; i != NumElts; ++i) {
271    Constant *C = In->getAggregateElement(i);
272    Out[i] = isa<UndefValue>(C) ? SafeC : C;
273  }
274  return ConstantVector::get(Out);
275}
276
277/// The core instruction combiner logic.
278///
279/// This class provides both the logic to recursively visit instructions and
280/// combine them.
281class LLVM_LIBRARY_VISIBILITY InstCombiner
282    : public InstVisitor<InstCombiner, Instruction *> {
283  // FIXME: These members shouldn't be public.
284public:
285  /// A worklist of the instructions that need to be simplified.
286  InstCombineWorklist &Worklist;
287
288  /// An IRBuilder that automatically inserts new instructions into the
289  /// worklist.
290  using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
291  BuilderTy &Builder;
292
293private:
294  // Mode in which we are running the combiner.
295  const bool MinimizeSize;
296
297  /// Enable combines that trigger rarely but are costly in compiletime.
298  const bool ExpensiveCombines;
299
300  AliasAnalysis *AA;
301
302  // Required analyses.
303  AssumptionCache &AC;
304  TargetLibraryInfo &TLI;
305  DominatorTree &DT;
306  const DataLayout &DL;
307  const SimplifyQuery SQ;
308  OptimizationRemarkEmitter &ORE;
309
310  // Optional analyses. When non-null, these can both be used to do better
311  // combining and will be updated to reflect any changes.
312  LoopInfo *LI;
313
314  bool MadeIRChange = false;
315
316public:
317  InstCombiner(InstCombineWorklist &Worklist, BuilderTy &Builder,
318               bool MinimizeSize, bool ExpensiveCombines, AliasAnalysis *AA,
319               AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
320               OptimizationRemarkEmitter &ORE, const DataLayout &DL,
321               LoopInfo *LI)
322      : Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize),
323        ExpensiveCombines(ExpensiveCombines), AA(AA), AC(AC), TLI(TLI), DT(DT),
324        DL(DL), SQ(DL, &TLI, &DT, &AC), ORE(ORE), LI(LI) {}
325
326  /// Run the combiner over the entire worklist until it is empty.
327  ///
328  /// \returns true if the IR is changed.
329  bool run();
330
331  AssumptionCache &getAssumptionCache() const { return AC; }
332
333  const DataLayout &getDataLayout() const { return DL; }
334
335  DominatorTree &getDominatorTree() const { return DT; }
336
337  LoopInfo *getLoopInfo() const { return LI; }
338
339  TargetLibraryInfo &getTargetLibraryInfo() const { return TLI; }
340
341  // Visitation implementation - Implement instruction combining for different
342  // instruction types.  The semantics are as follows:
343  // Return Value:
344  //    null        - No change was made
345  //     I          - Change was made, I is still valid, I may be dead though
346  //   otherwise    - Change was made, replace I with returned instruction
347  //
348  Instruction *visitAdd(BinaryOperator &I);
349  Instruction *visitFAdd(BinaryOperator &I);
350  Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
351  Instruction *visitSub(BinaryOperator &I);
352  Instruction *visitFSub(BinaryOperator &I);
353  Instruction *visitMul(BinaryOperator &I);
354  Instruction *visitFMul(BinaryOperator &I);
355  Instruction *visitURem(BinaryOperator &I);
356  Instruction *visitSRem(BinaryOperator &I);
357  Instruction *visitFRem(BinaryOperator &I);
358  bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I);
359  Instruction *commonRemTransforms(BinaryOperator &I);
360  Instruction *commonIRemTransforms(BinaryOperator &I);
361  Instruction *commonDivTransforms(BinaryOperator &I);
362  Instruction *commonIDivTransforms(BinaryOperator &I);
363  Instruction *visitUDiv(BinaryOperator &I);
364  Instruction *visitSDiv(BinaryOperator &I);
365  Instruction *visitFDiv(BinaryOperator &I);
366  Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
367  Instruction *visitAnd(BinaryOperator &I);
368  Instruction *visitOr(BinaryOperator &I);
369  Instruction *visitXor(BinaryOperator &I);
370  Instruction *visitShl(BinaryOperator &I);
371  Instruction *visitAShr(BinaryOperator &I);
372  Instruction *visitLShr(BinaryOperator &I);
373  Instruction *commonShiftTransforms(BinaryOperator &I);
374  Instruction *visitFCmpInst(FCmpInst &I);
375  Instruction *visitICmpInst(ICmpInst &I);
376  Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
377                                   BinaryOperator &I);
378  Instruction *commonCastTransforms(CastInst &CI);
379  Instruction *commonPointerCastTransforms(CastInst &CI);
380  Instruction *visitTrunc(TruncInst &CI);
381  Instruction *visitZExt(ZExtInst &CI);
382  Instruction *visitSExt(SExtInst &CI);
383  Instruction *visitFPTrunc(FPTruncInst &CI);
384  Instruction *visitFPExt(CastInst &CI);
385  Instruction *visitFPToUI(FPToUIInst &FI);
386  Instruction *visitFPToSI(FPToSIInst &FI);
387  Instruction *visitUIToFP(CastInst &CI);
388  Instruction *visitSIToFP(CastInst &CI);
389  Instruction *visitPtrToInt(PtrToIntInst &CI);
390  Instruction *visitIntToPtr(IntToPtrInst &CI);
391  Instruction *visitBitCast(BitCastInst &CI);
392  Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
393  Instruction *FoldItoFPtoI(Instruction &FI);
394  Instruction *visitSelectInst(SelectInst &SI);
395  Instruction *visitCallInst(CallInst &CI);
396  Instruction *visitInvokeInst(InvokeInst &II);
397
398  Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
399  Instruction *visitPHINode(PHINode &PN);
400  Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
401  Instruction *visitAllocaInst(AllocaInst &AI);
402  Instruction *visitAllocSite(Instruction &FI);
403  Instruction *visitFree(CallInst &FI);
404  Instruction *visitLoadInst(LoadInst &LI);
405  Instruction *visitStoreInst(StoreInst &SI);
406  Instruction *visitBranchInst(BranchInst &BI);
407  Instruction *visitFenceInst(FenceInst &FI);
408  Instruction *visitSwitchInst(SwitchInst &SI);
409  Instruction *visitReturnInst(ReturnInst &RI);
410  Instruction *visitInsertValueInst(InsertValueInst &IV);
411  Instruction *visitInsertElementInst(InsertElementInst &IE);
412  Instruction *visitExtractElementInst(ExtractElementInst &EI);
413  Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
414  Instruction *visitExtractValueInst(ExtractValueInst &EV);
415  Instruction *visitLandingPadInst(LandingPadInst &LI);
416  Instruction *visitVAStartInst(VAStartInst &I);
417  Instruction *visitVACopyInst(VACopyInst &I);
418
419  /// Specify what to return for unhandled instructions.
420  Instruction *visitInstruction(Instruction &I) { return nullptr; }
421
422  /// True when DB dominates all uses of DI except UI.
423  /// UI must be in the same block as DI.
424  /// The routine checks that the DI parent and DB are different.
425  bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
426                        const BasicBlock *DB) const;
427
428  /// Try to replace select with select operand SIOpd in SI-ICmp sequence.
429  bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
430                                 const unsigned SIOpd);
431
432  /// Try to replace instruction \p I with value \p V which are pointers
433  /// in different address space.
434  /// \return true if successful.
435  bool replacePointer(Instruction &I, Value *V);
436
437private:
438  bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
439  bool shouldChangeType(Type *From, Type *To) const;
440  Value *dyn_castNegVal(Value *V) const;
441  Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
442                            SmallVectorImpl<Value *> &NewIndices);
443
444  /// Classify whether a cast is worth optimizing.
445  ///
446  /// This is a helper to decide whether the simplification of
447  /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
448  ///
449  /// \param CI The cast we are interested in.
450  ///
451  /// \return true if this cast actually results in any code being generated and
452  /// if it cannot already be eliminated by some other transformation.
453  bool shouldOptimizeCast(CastInst *CI);
454
455  /// Try to optimize a sequence of instructions checking if an operation
456  /// on LHS and RHS overflows.
457  ///
458  /// If this overflow check is done via one of the overflow check intrinsics,
459  /// then CtxI has to be the call instruction calling that intrinsic.  If this
460  /// overflow check is done by arithmetic followed by a compare, then CtxI has
461  /// to be the arithmetic instruction.
462  ///
463  /// If a simplification is possible, stores the simplified result of the
464  /// operation in OperationResult and result of the overflow check in
465  /// OverflowResult, and return true.  If no simplification is possible,
466  /// returns false.
467  bool OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, Value *RHS,
468                             Instruction &CtxI, Value *&OperationResult,
469                             Constant *&OverflowResult);
470
471  Instruction *visitCallSite(CallSite CS);
472  Instruction *tryOptimizeCall(CallInst *CI);
473  bool transformConstExprCastCall(CallSite CS);
474  Instruction *transformCallThroughTrampoline(CallSite CS,
475                                              IntrinsicInst *Tramp);
476
477  /// Transform (zext icmp) to bitwise / integer operations in order to
478  /// eliminate it.
479  ///
480  /// \param ICI The icmp of the (zext icmp) pair we are interested in.
481  /// \parem CI The zext of the (zext icmp) pair we are interested in.
482  /// \param DoTransform Pass false to just test whether the given (zext icmp)
483  /// would be transformed. Pass true to actually perform the transformation.
484  ///
485  /// \return null if the transformation cannot be performed. If the
486  /// transformation can be performed the new instruction that replaces the
487  /// (zext icmp) pair will be returned (if \p DoTransform is false the
488  /// unmodified \p ICI will be returned in this case).
489  Instruction *transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
490                                 bool DoTransform = true);
491
492  Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
493
494  bool willNotOverflowSignedAdd(const Value *LHS, const Value *RHS,
495                                const Instruction &CxtI) const {
496    return computeOverflowForSignedAdd(LHS, RHS, &CxtI) ==
497           OverflowResult::NeverOverflows;
498  }
499
500  bool willNotOverflowUnsignedAdd(const Value *LHS, const Value *RHS,
501                                  const Instruction &CxtI) const {
502    return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) ==
503           OverflowResult::NeverOverflows;
504  }
505
506  bool willNotOverflowAdd(const Value *LHS, const Value *RHS,
507                          const Instruction &CxtI, bool IsSigned) const {
508    return IsSigned ? willNotOverflowSignedAdd(LHS, RHS, CxtI)
509                    : willNotOverflowUnsignedAdd(LHS, RHS, CxtI);
510  }
511
512  bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS,
513                                const Instruction &CxtI) const {
514    return computeOverflowForSignedSub(LHS, RHS, &CxtI) ==
515           OverflowResult::NeverOverflows;
516  }
517
518  bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS,
519                                  const Instruction &CxtI) const {
520    return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) ==
521           OverflowResult::NeverOverflows;
522  }
523
524  bool willNotOverflowSub(const Value *LHS, const Value *RHS,
525                          const Instruction &CxtI, bool IsSigned) const {
526    return IsSigned ? willNotOverflowSignedSub(LHS, RHS, CxtI)
527                    : willNotOverflowUnsignedSub(LHS, RHS, CxtI);
528  }
529
530  bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS,
531                                const Instruction &CxtI) const {
532    return computeOverflowForSignedMul(LHS, RHS, &CxtI) ==
533           OverflowResult::NeverOverflows;
534  }
535
536  bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS,
537                                  const Instruction &CxtI) const {
538    return computeOverflowForUnsignedMul(LHS, RHS, &CxtI) ==
539           OverflowResult::NeverOverflows;
540  }
541
542  bool willNotOverflowMul(const Value *LHS, const Value *RHS,
543                          const Instruction &CxtI, bool IsSigned) const {
544    return IsSigned ? willNotOverflowSignedMul(LHS, RHS, CxtI)
545                    : willNotOverflowUnsignedMul(LHS, RHS, CxtI);
546  }
547
548  bool willNotOverflow(BinaryOperator::BinaryOps Opcode, const Value *LHS,
549                       const Value *RHS, const Instruction &CxtI,
550                       bool IsSigned) const {
551    switch (Opcode) {
552    case Instruction::Add: return willNotOverflowAdd(LHS, RHS, CxtI, IsSigned);
553    case Instruction::Sub: return willNotOverflowSub(LHS, RHS, CxtI, IsSigned);
554    case Instruction::Mul: return willNotOverflowMul(LHS, RHS, CxtI, IsSigned);
555    default: llvm_unreachable("Unexpected opcode for overflow query");
556    }
557  }
558
559  Value *EmitGEPOffset(User *GEP);
560  Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
561  Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
562  Instruction *narrowBinOp(TruncInst &Trunc);
563  Instruction *narrowMaskedBinOp(BinaryOperator &And);
564  Instruction *narrowMathIfNoOverflow(BinaryOperator &I);
565  Instruction *narrowRotate(TruncInst &Trunc);
566  Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
567
568  /// Determine if a pair of casts can be replaced by a single cast.
569  ///
570  /// \param CI1 The first of a pair of casts.
571  /// \param CI2 The second of a pair of casts.
572  ///
573  /// \return 0 if the cast pair cannot be eliminated, otherwise returns an
574  /// Instruction::CastOps value for a cast that can replace the pair, casting
575  /// CI1->getSrcTy() to CI2->getDstTy().
576  ///
577  /// \see CastInst::isEliminableCastPair
578  Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
579                                            const CastInst *CI2);
580
581  Value *foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI);
582  Value *foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI);
583  Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS);
584
585  /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
586  /// NOTE: Unlike most of instcombine, this returns a Value which should
587  /// already be inserted into the function.
588  Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd);
589
590  Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
591                                       bool JoinedByAnd, Instruction &CxtI);
592  Value *matchSelectFromAndOr(Value *A, Value *B, Value *C, Value *D);
593  Value *getSelectCondition(Value *A, Value *B);
594
595public:
596  /// Inserts an instruction \p New before instruction \p Old
597  ///
598  /// Also adds the new instruction to the worklist and returns \p New so that
599  /// it is suitable for use as the return from the visitation patterns.
600  Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
601    assert(New && !New->getParent() &&
602           "New instruction already inserted into a basic block!");
603    BasicBlock *BB = Old.getParent();
604    BB->getInstList().insert(Old.getIterator(), New); // Insert inst
605    Worklist.Add(New);
606    return New;
607  }
608
609  /// Same as InsertNewInstBefore, but also sets the debug loc.
610  Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
611    New->setDebugLoc(Old.getDebugLoc());
612    return InsertNewInstBefore(New, Old);
613  }
614
615  /// A combiner-aware RAUW-like routine.
616  ///
617  /// This method is to be used when an instruction is found to be dead,
618  /// replaceable with another preexisting expression. Here we add all uses of
619  /// I to the worklist, replace all uses of I with the new value, then return
620  /// I, so that the inst combiner will know that I was modified.
621  Instruction *replaceInstUsesWith(Instruction &I, Value *V) {
622    // If there are no uses to replace, then we return nullptr to indicate that
623    // no changes were made to the program.
624    if (I.use_empty()) return nullptr;
625
626    Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
627
628    // If we are replacing the instruction with itself, this must be in a
629    // segment of unreachable code, so just clobber the instruction.
630    if (&I == V)
631      V = UndefValue::get(I.getType());
632
633    LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n"
634                      << "    with " << *V << '\n');
635
636    I.replaceAllUsesWith(V);
637    return &I;
638  }
639
640  /// Creates a result tuple for an overflow intrinsic \p II with a given
641  /// \p Result and a constant \p Overflow value.
642  Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result,
643                                   Constant *Overflow) {
644    Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
645    StructType *ST = cast<StructType>(II->getType());
646    Constant *Struct = ConstantStruct::get(ST, V);
647    return InsertValueInst::Create(Struct, Result, 0);
648  }
649
650  /// Combiner aware instruction erasure.
651  ///
652  /// When dealing with an instruction that has side effects or produces a void
653  /// value, we can't rely on DCE to delete the instruction. Instead, visit
654  /// methods should return the value returned by this function.
655  Instruction *eraseInstFromFunction(Instruction &I) {
656    LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n');
657    assert(I.use_empty() && "Cannot erase instruction that is used!");
658    salvageDebugInfo(I);
659
660    // Make sure that we reprocess all operands now that we reduced their
661    // use counts.
662    if (I.getNumOperands() < 8) {
663      for (Use &Operand : I.operands())
664        if (auto *Inst = dyn_cast<Instruction>(Operand))
665          Worklist.Add(Inst);
666    }
667    Worklist.Remove(&I);
668    I.eraseFromParent();
669    MadeIRChange = true;
670    return nullptr; // Don't do anything with FI
671  }
672
673  void computeKnownBits(const Value *V, KnownBits &Known,
674                        unsigned Depth, const Instruction *CxtI) const {
675    llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT);
676  }
677
678  KnownBits computeKnownBits(const Value *V, unsigned Depth,
679                             const Instruction *CxtI) const {
680    return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT);
681  }
682
683  bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false,
684                              unsigned Depth = 0,
685                              const Instruction *CxtI = nullptr) {
686    return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT);
687  }
688
689  bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0,
690                         const Instruction *CxtI = nullptr) const {
691    return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT);
692  }
693
694  unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0,
695                              const Instruction *CxtI = nullptr) const {
696    return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT);
697  }
698
699  OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
700                                               const Value *RHS,
701                                               const Instruction *CxtI) const {
702    return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
703  }
704
705  OverflowResult computeOverflowForSignedMul(const Value *LHS,
706	                                         const Value *RHS,
707                                             const Instruction *CxtI) const {
708    return llvm::computeOverflowForSignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
709  }
710
711  OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
712                                               const Value *RHS,
713                                               const Instruction *CxtI) const {
714    return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
715  }
716
717  OverflowResult computeOverflowForSignedAdd(const Value *LHS,
718                                             const Value *RHS,
719                                             const Instruction *CxtI) const {
720    return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
721  }
722
723  OverflowResult computeOverflowForUnsignedSub(const Value *LHS,
724                                               const Value *RHS,
725                                               const Instruction *CxtI) const {
726    return llvm::computeOverflowForUnsignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
727  }
728
729  OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
730                                             const Instruction *CxtI) const {
731    return llvm::computeOverflowForSignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
732  }
733
734  /// Maximum size of array considered when transforming.
735  uint64_t MaxArraySizeForCombine;
736
737private:
738  /// Performs a few simplifications for operators which are associative
739  /// or commutative.
740  bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
741
742  /// Tries to simplify binary operations which some other binary
743  /// operation distributes over.
744  ///
745  /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
746  /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
747  /// & (B | C) -> (A&B) | (A&C)" if this is a win).  Returns the simplified
748  /// value, or null if it didn't simplify.
749  Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
750
751  /// Tries to simplify add operations using the definition of remainder.
752  ///
753  /// The definition of remainder is X % C = X - (X / C ) * C. The add
754  /// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
755  /// X % (C0 * C1)
756  Value *SimplifyAddWithRemainder(BinaryOperator &I);
757
758  // Binary Op helper for select operations where the expression can be
759  // efficiently reorganized.
760  Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS,
761                                        Value *RHS);
762
763  /// This tries to simplify binary operations by factorizing out common terms
764  /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
765  Value *tryFactorization(BinaryOperator &, Instruction::BinaryOps, Value *,
766                          Value *, Value *, Value *);
767
768  /// Match a select chain which produces one of three values based on whether
769  /// the LHS is less than, equal to, or greater than RHS respectively.
770  /// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
771  /// Equal and Greater values are saved in the matching process and returned to
772  /// the caller.
773  bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS,
774                               ConstantInt *&Less, ConstantInt *&Equal,
775                               ConstantInt *&Greater);
776
777  /// Attempts to replace V with a simpler value based on the demanded
778  /// bits.
779  Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known,
780                                 unsigned Depth, Instruction *CxtI);
781  bool SimplifyDemandedBits(Instruction *I, unsigned Op,
782                            const APInt &DemandedMask, KnownBits &Known,
783                            unsigned Depth = 0);
784
785  /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
786  /// bits. It also tries to handle simplifications that can be done based on
787  /// DemandedMask, but without modifying the Instruction.
788  Value *SimplifyMultipleUseDemandedBits(Instruction *I,
789                                         const APInt &DemandedMask,
790                                         KnownBits &Known,
791                                         unsigned Depth, Instruction *CxtI);
792
793  /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
794  /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
795  Value *simplifyShrShlDemandedBits(
796      Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
797      const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known);
798
799  /// Tries to simplify operands to an integer instruction based on its
800  /// demanded bits.
801  bool SimplifyDemandedInstructionBits(Instruction &Inst);
802
803  Value *simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
804                                               APInt DemandedElts,
805                                               int DmaskIdx = -1,
806                                               int TFCIdx = -1);
807
808  Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
809                                    APInt &UndefElts, unsigned Depth = 0);
810
811  /// Canonicalize the position of binops relative to shufflevector.
812  Instruction *foldVectorBinop(BinaryOperator &Inst);
813
814  /// Given a binary operator, cast instruction, or select which has a PHI node
815  /// as operand #0, see if we can fold the instruction into the PHI (which is
816  /// only possible if all operands to the PHI are constants).
817  Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN);
818
819  /// Given an instruction with a select as one operand and a constant as the
820  /// other operand, try to fold the binary operator into the select arguments.
821  /// This also works for Cast instructions, which obviously do not have a
822  /// second operand.
823  Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
824
825  /// This is a convenience wrapper function for the above two functions.
826  Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I);
827
828  Instruction *foldAddWithConstant(BinaryOperator &Add);
829
830  /// Try to rotate an operation below a PHI node, using PHI nodes for
831  /// its operands.
832  Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
833  Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
834  Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
835  Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
836  Instruction *FoldPHIArgZextsIntoPHI(PHINode &PN);
837
838  /// If an integer typed PHI has only one use which is an IntToPtr operation,
839  /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
840  /// insert a new pointer typed PHI and replace the original one.
841  Instruction *FoldIntegerTypedPHI(PHINode &PN);
842
843  /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
844  /// folded operation.
845  void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN);
846
847  Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
848                           ICmpInst::Predicate Cond, Instruction &I);
849  Instruction *foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca,
850                             const Value *Other);
851  Instruction *foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
852                                            GlobalVariable *GV, CmpInst &ICI,
853                                            ConstantInt *AndCst = nullptr);
854  Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
855                                    Constant *RHSC);
856  Instruction *foldICmpAddOpConst(Value *X, const APInt &C,
857                                  ICmpInst::Predicate Pred);
858  Instruction *foldICmpWithCastAndCast(ICmpInst &ICI);
859
860  Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
861  Instruction *foldICmpWithDominatingICmp(ICmpInst &Cmp);
862  Instruction *foldICmpWithConstant(ICmpInst &Cmp);
863  Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
864  Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
865  Instruction *foldICmpBinOp(ICmpInst &Cmp);
866  Instruction *foldICmpEquality(ICmpInst &Cmp);
867  Instruction *foldICmpWithZero(ICmpInst &Cmp);
868
869  Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select,
870                                      ConstantInt *C);
871  Instruction *foldICmpBitCastConstant(ICmpInst &Cmp, BitCastInst *Bitcast,
872                                       const APInt &C);
873  Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc,
874                                     const APInt &C);
875  Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
876                                   const APInt &C);
877  Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
878                                   const APInt &C);
879  Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
880                                  const APInt &C);
881  Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
882                                   const APInt &C);
883  Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
884                                   const APInt &C);
885  Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
886                                   const APInt &C);
887  Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
888                                    const APInt &C);
889  Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
890                                   const APInt &C);
891  Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
892                                   const APInt &C);
893  Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
894                                   const APInt &C);
895  Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
896                                     const APInt &C1);
897  Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
898                                const APInt &C1, const APInt &C2);
899  Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
900                                     const APInt &C2);
901  Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
902                                     const APInt &C2);
903
904  Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
905                                                 BinaryOperator *BO,
906                                                 const APInt &C);
907  Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, const APInt &C);
908
909  // Helpers of visitSelectInst().
910  Instruction *foldSelectExtConst(SelectInst &Sel);
911  Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
912  Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
913  Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
914                            Value *A, Value *B, Instruction &Outer,
915                            SelectPatternFlavor SPF2, Value *C);
916  Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
917
918  Instruction *OptAndOp(BinaryOperator *Op, ConstantInt *OpRHS,
919                        ConstantInt *AndRHS, BinaryOperator &TheAnd);
920
921  Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
922                         bool isSigned, bool Inside);
923  Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
924  bool mergeStoreIntoSuccessor(StoreInst &SI);
925
926  /// Given an 'or' instruction, check to see if it is part of a bswap idiom.
927  /// If so, return the equivalent bswap intrinsic.
928  Instruction *matchBSwap(BinaryOperator &Or);
929
930  Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI);
931  Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI);
932
933  Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
934
935  /// Returns a value X such that Val = X * Scale, or null if none.
936  ///
937  /// If the multiplication is known not to overflow then NoSignedWrap is set.
938  Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
939};
940
941} // end namespace llvm
942
943#undef DEBUG_TYPE
944
945#endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
946