InstCombineInternal.h revision 341825
1//===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file
11///
12/// This file provides internal interfaces used to implement the InstCombine.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
17#define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
18
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/InstructionSimplify.h"
22#include "llvm/Analysis/TargetFolder.h"
23#include "llvm/Transforms/Utils/Local.h"
24#include "llvm/Analysis/ValueTracking.h"
25#include "llvm/IR/Argument.h"
26#include "llvm/IR/BasicBlock.h"
27#include "llvm/IR/Constant.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/IRBuilder.h"
31#include "llvm/IR/InstVisitor.h"
32#include "llvm/IR/InstrTypes.h"
33#include "llvm/IR/Instruction.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/Intrinsics.h"
36#include "llvm/IR/Use.h"
37#include "llvm/IR/Value.h"
38#include "llvm/Support/Casting.h"
39#include "llvm/Support/Compiler.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/KnownBits.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
44#include <cassert>
45#include <cstdint>
46
47#define DEBUG_TYPE "instcombine"
48
49namespace llvm {
50
51class APInt;
52class AssumptionCache;
53class CallSite;
54class DataLayout;
55class DominatorTree;
56class GEPOperator;
57class GlobalVariable;
58class LoopInfo;
59class OptimizationRemarkEmitter;
60class TargetLibraryInfo;
61class User;
62
63/// Assign a complexity or rank value to LLVM Values. This is used to reduce
64/// the amount of pattern matching needed for compares and commutative
65/// instructions. For example, if we have:
66///   icmp ugt X, Constant
67/// or
68///   xor (add X, Constant), cast Z
69///
70/// We do not have to consider the commuted variants of these patterns because
71/// canonicalization based on complexity guarantees the above ordering.
72///
73/// This routine maps IR values to various complexity ranks:
74///   0 -> undef
75///   1 -> Constants
76///   2 -> Other non-instructions
77///   3 -> Arguments
78///   4 -> Cast and (f)neg/not instructions
79///   5 -> Other instructions
80static inline unsigned getComplexity(Value *V) {
81  if (isa<Instruction>(V)) {
82    if (isa<CastInst>(V) || BinaryOperator::isNeg(V) ||
83        BinaryOperator::isFNeg(V) || BinaryOperator::isNot(V))
84      return 4;
85    return 5;
86  }
87  if (isa<Argument>(V))
88    return 3;
89  return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
90}
91
92/// Predicate canonicalization reduces the number of patterns that need to be
93/// matched by other transforms. For example, we may swap the operands of a
94/// conditional branch or select to create a compare with a canonical (inverted)
95/// predicate which is then more likely to be matched with other values.
96static inline bool isCanonicalPredicate(CmpInst::Predicate Pred) {
97  switch (Pred) {
98  case CmpInst::ICMP_NE:
99  case CmpInst::ICMP_ULE:
100  case CmpInst::ICMP_SLE:
101  case CmpInst::ICMP_UGE:
102  case CmpInst::ICMP_SGE:
103  // TODO: There are 16 FCMP predicates. Should others be (not) canonical?
104  case CmpInst::FCMP_ONE:
105  case CmpInst::FCMP_OLE:
106  case CmpInst::FCMP_OGE:
107    return false;
108  default:
109    return true;
110  }
111}
112
113/// Return the source operand of a potentially bitcasted value while optionally
114/// checking if it has one use. If there is no bitcast or the one use check is
115/// not met, return the input value itself.
116static inline Value *peekThroughBitcast(Value *V, bool OneUseOnly = false) {
117  if (auto *BitCast = dyn_cast<BitCastInst>(V))
118    if (!OneUseOnly || BitCast->hasOneUse())
119      return BitCast->getOperand(0);
120
121  // V is not a bitcast or V has more than one use and OneUseOnly is true.
122  return V;
123}
124
125/// Add one to a Constant
126static inline Constant *AddOne(Constant *C) {
127  return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
128}
129
130/// Subtract one from a Constant
131static inline Constant *SubOne(Constant *C) {
132  return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
133}
134
135/// Return true if the specified value is free to invert (apply ~ to).
136/// This happens in cases where the ~ can be eliminated.  If WillInvertAllUses
137/// is true, work under the assumption that the caller intends to remove all
138/// uses of V and only keep uses of ~V.
139static inline bool IsFreeToInvert(Value *V, bool WillInvertAllUses) {
140  // ~(~(X)) -> X.
141  if (BinaryOperator::isNot(V))
142    return true;
143
144  // Constants can be considered to be not'ed values.
145  if (isa<ConstantInt>(V))
146    return true;
147
148  // A vector of constant integers can be inverted easily.
149  if (V->getType()->isVectorTy() && isa<Constant>(V)) {
150    unsigned NumElts = V->getType()->getVectorNumElements();
151    for (unsigned i = 0; i != NumElts; ++i) {
152      Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
153      if (!Elt)
154        return false;
155
156      if (isa<UndefValue>(Elt))
157        continue;
158
159      if (!isa<ConstantInt>(Elt))
160        return false;
161    }
162    return true;
163  }
164
165  // Compares can be inverted if all of their uses are being modified to use the
166  // ~V.
167  if (isa<CmpInst>(V))
168    return WillInvertAllUses;
169
170  // If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1
171  // - Constant) - A` if we are willing to invert all of the uses.
172  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
173    if (BO->getOpcode() == Instruction::Add ||
174        BO->getOpcode() == Instruction::Sub)
175      if (isa<Constant>(BO->getOperand(0)) || isa<Constant>(BO->getOperand(1)))
176        return WillInvertAllUses;
177
178  return false;
179}
180
181/// Specific patterns of overflow check idioms that we match.
182enum OverflowCheckFlavor {
183  OCF_UNSIGNED_ADD,
184  OCF_SIGNED_ADD,
185  OCF_UNSIGNED_SUB,
186  OCF_SIGNED_SUB,
187  OCF_UNSIGNED_MUL,
188  OCF_SIGNED_MUL,
189
190  OCF_INVALID
191};
192
193/// Returns the OverflowCheckFlavor corresponding to a overflow_with_op
194/// intrinsic.
195static inline OverflowCheckFlavor
196IntrinsicIDToOverflowCheckFlavor(unsigned ID) {
197  switch (ID) {
198  default:
199    return OCF_INVALID;
200  case Intrinsic::uadd_with_overflow:
201    return OCF_UNSIGNED_ADD;
202  case Intrinsic::sadd_with_overflow:
203    return OCF_SIGNED_ADD;
204  case Intrinsic::usub_with_overflow:
205    return OCF_UNSIGNED_SUB;
206  case Intrinsic::ssub_with_overflow:
207    return OCF_SIGNED_SUB;
208  case Intrinsic::umul_with_overflow:
209    return OCF_UNSIGNED_MUL;
210  case Intrinsic::smul_with_overflow:
211    return OCF_SIGNED_MUL;
212  }
213}
214
215/// Some binary operators require special handling to avoid poison and undefined
216/// behavior. If a constant vector has undef elements, replace those undefs with
217/// identity constants if possible because those are always safe to execute.
218/// If no identity constant exists, replace undef with some other safe constant.
219static inline Constant *getSafeVectorConstantForBinop(
220      BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant) {
221  assert(In->getType()->isVectorTy() && "Not expecting scalars here");
222
223  Type *EltTy = In->getType()->getVectorElementType();
224  auto *SafeC = ConstantExpr::getBinOpIdentity(Opcode, EltTy, IsRHSConstant);
225  if (!SafeC) {
226    // TODO: Should this be available as a constant utility function? It is
227    // similar to getBinOpAbsorber().
228    if (IsRHSConstant) {
229      switch (Opcode) {
230      case Instruction::SRem: // X % 1 = 0
231      case Instruction::URem: // X %u 1 = 0
232        SafeC = ConstantInt::get(EltTy, 1);
233        break;
234      case Instruction::FRem: // X % 1.0 (doesn't simplify, but it is safe)
235        SafeC = ConstantFP::get(EltTy, 1.0);
236        break;
237      default:
238        llvm_unreachable("Only rem opcodes have no identity constant for RHS");
239      }
240    } else {
241      switch (Opcode) {
242      case Instruction::Shl:  // 0 << X = 0
243      case Instruction::LShr: // 0 >>u X = 0
244      case Instruction::AShr: // 0 >> X = 0
245      case Instruction::SDiv: // 0 / X = 0
246      case Instruction::UDiv: // 0 /u X = 0
247      case Instruction::SRem: // 0 % X = 0
248      case Instruction::URem: // 0 %u X = 0
249      case Instruction::Sub:  // 0 - X (doesn't simplify, but it is safe)
250      case Instruction::FSub: // 0.0 - X (doesn't simplify, but it is safe)
251      case Instruction::FDiv: // 0.0 / X (doesn't simplify, but it is safe)
252      case Instruction::FRem: // 0.0 % X = 0
253        SafeC = Constant::getNullValue(EltTy);
254        break;
255      default:
256        llvm_unreachable("Expected to find identity constant for opcode");
257      }
258    }
259  }
260  assert(SafeC && "Must have safe constant for binop");
261  unsigned NumElts = In->getType()->getVectorNumElements();
262  SmallVector<Constant *, 16> Out(NumElts);
263  for (unsigned i = 0; i != NumElts; ++i) {
264    Constant *C = In->getAggregateElement(i);
265    Out[i] = isa<UndefValue>(C) ? SafeC : C;
266  }
267  return ConstantVector::get(Out);
268}
269
270/// The core instruction combiner logic.
271///
272/// This class provides both the logic to recursively visit instructions and
273/// combine them.
274class LLVM_LIBRARY_VISIBILITY InstCombiner
275    : public InstVisitor<InstCombiner, Instruction *> {
276  // FIXME: These members shouldn't be public.
277public:
278  /// A worklist of the instructions that need to be simplified.
279  InstCombineWorklist &Worklist;
280
281  /// An IRBuilder that automatically inserts new instructions into the
282  /// worklist.
283  using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
284  BuilderTy &Builder;
285
286private:
287  // Mode in which we are running the combiner.
288  const bool MinimizeSize;
289
290  /// Enable combines that trigger rarely but are costly in compiletime.
291  const bool ExpensiveCombines;
292
293  AliasAnalysis *AA;
294
295  // Required analyses.
296  AssumptionCache &AC;
297  TargetLibraryInfo &TLI;
298  DominatorTree &DT;
299  const DataLayout &DL;
300  const SimplifyQuery SQ;
301  OptimizationRemarkEmitter &ORE;
302
303  // Optional analyses. When non-null, these can both be used to do better
304  // combining and will be updated to reflect any changes.
305  LoopInfo *LI;
306
307  bool MadeIRChange = false;
308
309public:
310  InstCombiner(InstCombineWorklist &Worklist, BuilderTy &Builder,
311               bool MinimizeSize, bool ExpensiveCombines, AliasAnalysis *AA,
312               AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
313               OptimizationRemarkEmitter &ORE, const DataLayout &DL,
314               LoopInfo *LI)
315      : Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize),
316        ExpensiveCombines(ExpensiveCombines), AA(AA), AC(AC), TLI(TLI), DT(DT),
317        DL(DL), SQ(DL, &TLI, &DT, &AC), ORE(ORE), LI(LI) {}
318
319  /// Run the combiner over the entire worklist until it is empty.
320  ///
321  /// \returns true if the IR is changed.
322  bool run();
323
324  AssumptionCache &getAssumptionCache() const { return AC; }
325
326  const DataLayout &getDataLayout() const { return DL; }
327
328  DominatorTree &getDominatorTree() const { return DT; }
329
330  LoopInfo *getLoopInfo() const { return LI; }
331
332  TargetLibraryInfo &getTargetLibraryInfo() const { return TLI; }
333
334  // Visitation implementation - Implement instruction combining for different
335  // instruction types.  The semantics are as follows:
336  // Return Value:
337  //    null        - No change was made
338  //     I          - Change was made, I is still valid, I may be dead though
339  //   otherwise    - Change was made, replace I with returned instruction
340  //
341  Instruction *visitAdd(BinaryOperator &I);
342  Instruction *visitFAdd(BinaryOperator &I);
343  Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
344  Instruction *visitSub(BinaryOperator &I);
345  Instruction *visitFSub(BinaryOperator &I);
346  Instruction *visitMul(BinaryOperator &I);
347  Instruction *visitFMul(BinaryOperator &I);
348  Instruction *visitURem(BinaryOperator &I);
349  Instruction *visitSRem(BinaryOperator &I);
350  Instruction *visitFRem(BinaryOperator &I);
351  bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I);
352  Instruction *commonRemTransforms(BinaryOperator &I);
353  Instruction *commonIRemTransforms(BinaryOperator &I);
354  Instruction *commonDivTransforms(BinaryOperator &I);
355  Instruction *commonIDivTransforms(BinaryOperator &I);
356  Instruction *visitUDiv(BinaryOperator &I);
357  Instruction *visitSDiv(BinaryOperator &I);
358  Instruction *visitFDiv(BinaryOperator &I);
359  Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
360  Instruction *visitAnd(BinaryOperator &I);
361  Instruction *visitOr(BinaryOperator &I);
362  Instruction *visitXor(BinaryOperator &I);
363  Instruction *visitShl(BinaryOperator &I);
364  Instruction *visitAShr(BinaryOperator &I);
365  Instruction *visitLShr(BinaryOperator &I);
366  Instruction *commonShiftTransforms(BinaryOperator &I);
367  Instruction *visitFCmpInst(FCmpInst &I);
368  Instruction *visitICmpInst(ICmpInst &I);
369  Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
370                                   BinaryOperator &I);
371  Instruction *commonCastTransforms(CastInst &CI);
372  Instruction *commonPointerCastTransforms(CastInst &CI);
373  Instruction *visitTrunc(TruncInst &CI);
374  Instruction *visitZExt(ZExtInst &CI);
375  Instruction *visitSExt(SExtInst &CI);
376  Instruction *visitFPTrunc(FPTruncInst &CI);
377  Instruction *visitFPExt(CastInst &CI);
378  Instruction *visitFPToUI(FPToUIInst &FI);
379  Instruction *visitFPToSI(FPToSIInst &FI);
380  Instruction *visitUIToFP(CastInst &CI);
381  Instruction *visitSIToFP(CastInst &CI);
382  Instruction *visitPtrToInt(PtrToIntInst &CI);
383  Instruction *visitIntToPtr(IntToPtrInst &CI);
384  Instruction *visitBitCast(BitCastInst &CI);
385  Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
386  Instruction *FoldItoFPtoI(Instruction &FI);
387  Instruction *visitSelectInst(SelectInst &SI);
388  Instruction *visitCallInst(CallInst &CI);
389  Instruction *visitInvokeInst(InvokeInst &II);
390
391  Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
392  Instruction *visitPHINode(PHINode &PN);
393  Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
394  Instruction *visitAllocaInst(AllocaInst &AI);
395  Instruction *visitAllocSite(Instruction &FI);
396  Instruction *visitFree(CallInst &FI);
397  Instruction *visitLoadInst(LoadInst &LI);
398  Instruction *visitStoreInst(StoreInst &SI);
399  Instruction *visitBranchInst(BranchInst &BI);
400  Instruction *visitFenceInst(FenceInst &FI);
401  Instruction *visitSwitchInst(SwitchInst &SI);
402  Instruction *visitReturnInst(ReturnInst &RI);
403  Instruction *visitInsertValueInst(InsertValueInst &IV);
404  Instruction *visitInsertElementInst(InsertElementInst &IE);
405  Instruction *visitExtractElementInst(ExtractElementInst &EI);
406  Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
407  Instruction *visitExtractValueInst(ExtractValueInst &EV);
408  Instruction *visitLandingPadInst(LandingPadInst &LI);
409  Instruction *visitVAStartInst(VAStartInst &I);
410  Instruction *visitVACopyInst(VACopyInst &I);
411
412  /// Specify what to return for unhandled instructions.
413  Instruction *visitInstruction(Instruction &I) { return nullptr; }
414
415  /// True when DB dominates all uses of DI except UI.
416  /// UI must be in the same block as DI.
417  /// The routine checks that the DI parent and DB are different.
418  bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
419                        const BasicBlock *DB) const;
420
421  /// Try to replace select with select operand SIOpd in SI-ICmp sequence.
422  bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
423                                 const unsigned SIOpd);
424
425  /// Try to replace instruction \p I with value \p V which are pointers
426  /// in different address space.
427  /// \return true if successful.
428  bool replacePointer(Instruction &I, Value *V);
429
430private:
431  bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
432  bool shouldChangeType(Type *From, Type *To) const;
433  Value *dyn_castNegVal(Value *V) const;
434  Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
435                            SmallVectorImpl<Value *> &NewIndices);
436
437  /// Classify whether a cast is worth optimizing.
438  ///
439  /// This is a helper to decide whether the simplification of
440  /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
441  ///
442  /// \param CI The cast we are interested in.
443  ///
444  /// \return true if this cast actually results in any code being generated and
445  /// if it cannot already be eliminated by some other transformation.
446  bool shouldOptimizeCast(CastInst *CI);
447
448  /// Try to optimize a sequence of instructions checking if an operation
449  /// on LHS and RHS overflows.
450  ///
451  /// If this overflow check is done via one of the overflow check intrinsics,
452  /// then CtxI has to be the call instruction calling that intrinsic.  If this
453  /// overflow check is done by arithmetic followed by a compare, then CtxI has
454  /// to be the arithmetic instruction.
455  ///
456  /// If a simplification is possible, stores the simplified result of the
457  /// operation in OperationResult and result of the overflow check in
458  /// OverflowResult, and return true.  If no simplification is possible,
459  /// returns false.
460  bool OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, Value *RHS,
461                             Instruction &CtxI, Value *&OperationResult,
462                             Constant *&OverflowResult);
463
464  Instruction *visitCallSite(CallSite CS);
465  Instruction *tryOptimizeCall(CallInst *CI);
466  bool transformConstExprCastCall(CallSite CS);
467  Instruction *transformCallThroughTrampoline(CallSite CS,
468                                              IntrinsicInst *Tramp);
469
470  /// Transform (zext icmp) to bitwise / integer operations in order to
471  /// eliminate it.
472  ///
473  /// \param ICI The icmp of the (zext icmp) pair we are interested in.
474  /// \parem CI The zext of the (zext icmp) pair we are interested in.
475  /// \param DoTransform Pass false to just test whether the given (zext icmp)
476  /// would be transformed. Pass true to actually perform the transformation.
477  ///
478  /// \return null if the transformation cannot be performed. If the
479  /// transformation can be performed the new instruction that replaces the
480  /// (zext icmp) pair will be returned (if \p DoTransform is false the
481  /// unmodified \p ICI will be returned in this case).
482  Instruction *transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
483                                 bool DoTransform = true);
484
485  Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
486
487  bool willNotOverflowSignedAdd(const Value *LHS, const Value *RHS,
488                                const Instruction &CxtI) const {
489    return computeOverflowForSignedAdd(LHS, RHS, &CxtI) ==
490           OverflowResult::NeverOverflows;
491  }
492
493  bool willNotOverflowUnsignedAdd(const Value *LHS, const Value *RHS,
494                                  const Instruction &CxtI) const {
495    return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) ==
496           OverflowResult::NeverOverflows;
497  }
498
499  bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS,
500                                const Instruction &CxtI) const {
501    return computeOverflowForSignedSub(LHS, RHS, &CxtI) ==
502           OverflowResult::NeverOverflows;
503  }
504
505  bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS,
506                                  const Instruction &CxtI) const {
507    return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) ==
508           OverflowResult::NeverOverflows;
509  }
510
511  bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS,
512                                const Instruction &CxtI) const {
513    return computeOverflowForSignedMul(LHS, RHS, &CxtI) ==
514           OverflowResult::NeverOverflows;
515  }
516
517  bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS,
518                                  const Instruction &CxtI) const {
519    return computeOverflowForUnsignedMul(LHS, RHS, &CxtI) ==
520           OverflowResult::NeverOverflows;
521  }
522
523  Value *EmitGEPOffset(User *GEP);
524  Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
525  Value *EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask);
526  Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
527  Instruction *narrowBinOp(TruncInst &Trunc);
528  Instruction *narrowMaskedBinOp(BinaryOperator &And);
529  Instruction *narrowRotate(TruncInst &Trunc);
530  Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
531
532  /// Determine if a pair of casts can be replaced by a single cast.
533  ///
534  /// \param CI1 The first of a pair of casts.
535  /// \param CI2 The second of a pair of casts.
536  ///
537  /// \return 0 if the cast pair cannot be eliminated, otherwise returns an
538  /// Instruction::CastOps value for a cast that can replace the pair, casting
539  /// CI1->getSrcTy() to CI2->getDstTy().
540  ///
541  /// \see CastInst::isEliminableCastPair
542  Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
543                                            const CastInst *CI2);
544
545  Value *foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI);
546  Value *foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI);
547  Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS);
548
549  /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
550  /// NOTE: Unlike most of instcombine, this returns a Value which should
551  /// already be inserted into the function.
552  Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd);
553
554  Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
555                                       bool JoinedByAnd, Instruction &CxtI);
556public:
557  /// Inserts an instruction \p New before instruction \p Old
558  ///
559  /// Also adds the new instruction to the worklist and returns \p New so that
560  /// it is suitable for use as the return from the visitation patterns.
561  Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
562    assert(New && !New->getParent() &&
563           "New instruction already inserted into a basic block!");
564    BasicBlock *BB = Old.getParent();
565    BB->getInstList().insert(Old.getIterator(), New); // Insert inst
566    Worklist.Add(New);
567    return New;
568  }
569
570  /// Same as InsertNewInstBefore, but also sets the debug loc.
571  Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
572    New->setDebugLoc(Old.getDebugLoc());
573    return InsertNewInstBefore(New, Old);
574  }
575
576  /// A combiner-aware RAUW-like routine.
577  ///
578  /// This method is to be used when an instruction is found to be dead,
579  /// replaceable with another preexisting expression. Here we add all uses of
580  /// I to the worklist, replace all uses of I with the new value, then return
581  /// I, so that the inst combiner will know that I was modified.
582  Instruction *replaceInstUsesWith(Instruction &I, Value *V) {
583    // If there are no uses to replace, then we return nullptr to indicate that
584    // no changes were made to the program.
585    if (I.use_empty()) return nullptr;
586
587    Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
588
589    // If we are replacing the instruction with itself, this must be in a
590    // segment of unreachable code, so just clobber the instruction.
591    if (&I == V)
592      V = UndefValue::get(I.getType());
593
594    LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n"
595                      << "    with " << *V << '\n');
596
597    I.replaceAllUsesWith(V);
598    return &I;
599  }
600
601  /// Creates a result tuple for an overflow intrinsic \p II with a given
602  /// \p Result and a constant \p Overflow value.
603  Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result,
604                                   Constant *Overflow) {
605    Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
606    StructType *ST = cast<StructType>(II->getType());
607    Constant *Struct = ConstantStruct::get(ST, V);
608    return InsertValueInst::Create(Struct, Result, 0);
609  }
610
611  /// Combiner aware instruction erasure.
612  ///
613  /// When dealing with an instruction that has side effects or produces a void
614  /// value, we can't rely on DCE to delete the instruction. Instead, visit
615  /// methods should return the value returned by this function.
616  Instruction *eraseInstFromFunction(Instruction &I) {
617    LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n');
618    assert(I.use_empty() && "Cannot erase instruction that is used!");
619    salvageDebugInfo(I);
620
621    // Make sure that we reprocess all operands now that we reduced their
622    // use counts.
623    if (I.getNumOperands() < 8) {
624      for (Use &Operand : I.operands())
625        if (auto *Inst = dyn_cast<Instruction>(Operand))
626          Worklist.Add(Inst);
627    }
628    Worklist.Remove(&I);
629    I.eraseFromParent();
630    MadeIRChange = true;
631    return nullptr; // Don't do anything with FI
632  }
633
634  void computeKnownBits(const Value *V, KnownBits &Known,
635                        unsigned Depth, const Instruction *CxtI) const {
636    llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT);
637  }
638
639  KnownBits computeKnownBits(const Value *V, unsigned Depth,
640                             const Instruction *CxtI) const {
641    return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT);
642  }
643
644  bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false,
645                              unsigned Depth = 0,
646                              const Instruction *CxtI = nullptr) {
647    return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT);
648  }
649
650  bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0,
651                         const Instruction *CxtI = nullptr) const {
652    return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT);
653  }
654
655  unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0,
656                              const Instruction *CxtI = nullptr) const {
657    return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT);
658  }
659
660  OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
661                                               const Value *RHS,
662                                               const Instruction *CxtI) const {
663    return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
664  }
665
666  OverflowResult computeOverflowForSignedMul(const Value *LHS,
667	                                         const Value *RHS,
668                                             const Instruction *CxtI) const {
669    return llvm::computeOverflowForSignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
670  }
671
672  OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
673                                               const Value *RHS,
674                                               const Instruction *CxtI) const {
675    return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
676  }
677
678  OverflowResult computeOverflowForSignedAdd(const Value *LHS,
679                                             const Value *RHS,
680                                             const Instruction *CxtI) const {
681    return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
682  }
683
684  OverflowResult computeOverflowForUnsignedSub(const Value *LHS,
685                                               const Value *RHS,
686                                               const Instruction *CxtI) const {
687    return llvm::computeOverflowForUnsignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
688  }
689
690  OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
691                                             const Instruction *CxtI) const {
692    return llvm::computeOverflowForSignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
693  }
694
695  /// Maximum size of array considered when transforming.
696  uint64_t MaxArraySizeForCombine;
697
698private:
699  /// Performs a few simplifications for operators which are associative
700  /// or commutative.
701  bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
702
703  /// Tries to simplify binary operations which some other binary
704  /// operation distributes over.
705  ///
706  /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
707  /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
708  /// & (B | C) -> (A&B) | (A&C)" if this is a win).  Returns the simplified
709  /// value, or null if it didn't simplify.
710  Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
711
712  /// Tries to simplify add operations using the definition of remainder.
713  ///
714  /// The definition of remainder is X % C = X - (X / C ) * C. The add
715  /// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
716  /// X % (C0 * C1)
717  Value *SimplifyAddWithRemainder(BinaryOperator &I);
718
719  // Binary Op helper for select operations where the expression can be
720  // efficiently reorganized.
721  Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS,
722                                        Value *RHS);
723
724  /// This tries to simplify binary operations by factorizing out common terms
725  /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
726  Value *tryFactorization(BinaryOperator &, Instruction::BinaryOps, Value *,
727                          Value *, Value *, Value *);
728
729  /// Match a select chain which produces one of three values based on whether
730  /// the LHS is less than, equal to, or greater than RHS respectively.
731  /// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
732  /// Equal and Greater values are saved in the matching process and returned to
733  /// the caller.
734  bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS,
735                               ConstantInt *&Less, ConstantInt *&Equal,
736                               ConstantInt *&Greater);
737
738  /// Attempts to replace V with a simpler value based on the demanded
739  /// bits.
740  Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known,
741                                 unsigned Depth, Instruction *CxtI);
742  bool SimplifyDemandedBits(Instruction *I, unsigned Op,
743                            const APInt &DemandedMask, KnownBits &Known,
744                            unsigned Depth = 0);
745
746  /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
747  /// bits. It also tries to handle simplifications that can be done based on
748  /// DemandedMask, but without modifying the Instruction.
749  Value *SimplifyMultipleUseDemandedBits(Instruction *I,
750                                         const APInt &DemandedMask,
751                                         KnownBits &Known,
752                                         unsigned Depth, Instruction *CxtI);
753
754  /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
755  /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
756  Value *simplifyShrShlDemandedBits(
757      Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
758      const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known);
759
760  /// Tries to simplify operands to an integer instruction based on its
761  /// demanded bits.
762  bool SimplifyDemandedInstructionBits(Instruction &Inst);
763
764  Value *simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
765                                               APInt DemandedElts,
766                                               int DmaskIdx = -1);
767
768  Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
769                                    APInt &UndefElts, unsigned Depth = 0);
770
771  /// Canonicalize the position of binops relative to shufflevector.
772  Instruction *foldShuffledBinop(BinaryOperator &Inst);
773
774  /// Given a binary operator, cast instruction, or select which has a PHI node
775  /// as operand #0, see if we can fold the instruction into the PHI (which is
776  /// only possible if all operands to the PHI are constants).
777  Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN);
778
779  /// Given an instruction with a select as one operand and a constant as the
780  /// other operand, try to fold the binary operator into the select arguments.
781  /// This also works for Cast instructions, which obviously do not have a
782  /// second operand.
783  Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
784
785  /// This is a convenience wrapper function for the above two functions.
786  Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I);
787
788  Instruction *foldAddWithConstant(BinaryOperator &Add);
789
790  /// Try to rotate an operation below a PHI node, using PHI nodes for
791  /// its operands.
792  Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
793  Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
794  Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
795  Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
796  Instruction *FoldPHIArgZextsIntoPHI(PHINode &PN);
797
798  /// If an integer typed PHI has only one use which is an IntToPtr operation,
799  /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
800  /// insert a new pointer typed PHI and replace the original one.
801  Instruction *FoldIntegerTypedPHI(PHINode &PN);
802
803  /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
804  /// folded operation.
805  void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN);
806
807  Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
808                           ICmpInst::Predicate Cond, Instruction &I);
809  Instruction *foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca,
810                             const Value *Other);
811  Instruction *foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
812                                            GlobalVariable *GV, CmpInst &ICI,
813                                            ConstantInt *AndCst = nullptr);
814  Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
815                                    Constant *RHSC);
816  Instruction *foldICmpAddOpConst(Value *X, ConstantInt *CI,
817                                  ICmpInst::Predicate Pred);
818  Instruction *foldICmpWithCastAndCast(ICmpInst &ICI);
819
820  Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
821  Instruction *foldICmpWithConstant(ICmpInst &Cmp);
822  Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
823  Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
824  Instruction *foldICmpBinOp(ICmpInst &Cmp);
825  Instruction *foldICmpEquality(ICmpInst &Cmp);
826  Instruction *foldICmpWithZero(ICmpInst &Cmp);
827
828  Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select,
829                                      ConstantInt *C);
830  Instruction *foldICmpBitCastConstant(ICmpInst &Cmp, BitCastInst *Bitcast,
831                                       const APInt &C);
832  Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc,
833                                     const APInt &C);
834  Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
835                                   const APInt &C);
836  Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
837                                   const APInt &C);
838  Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
839                                  const APInt &C);
840  Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
841                                   const APInt &C);
842  Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
843                                   const APInt &C);
844  Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
845                                   const APInt &C);
846  Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
847                                    const APInt &C);
848  Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
849                                   const APInt &C);
850  Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
851                                   const APInt &C);
852  Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
853                                   const APInt &C);
854  Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
855                                     const APInt &C1);
856  Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
857                                const APInt &C1, const APInt &C2);
858  Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
859                                     const APInt &C2);
860  Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
861                                     const APInt &C2);
862
863  Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
864                                                 BinaryOperator *BO,
865                                                 const APInt &C);
866  Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, const APInt &C);
867
868  // Helpers of visitSelectInst().
869  Instruction *foldSelectExtConst(SelectInst &Sel);
870  Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
871  Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
872  Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
873                            Value *A, Value *B, Instruction &Outer,
874                            SelectPatternFlavor SPF2, Value *C);
875  Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
876
877  Instruction *OptAndOp(BinaryOperator *Op, ConstantInt *OpRHS,
878                        ConstantInt *AndRHS, BinaryOperator &TheAnd);
879
880  Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
881                         bool isSigned, bool Inside);
882  Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
883  Instruction *MatchBSwap(BinaryOperator &I);
884  bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
885
886  Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI);
887  Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI);
888
889  Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
890
891  /// Returns a value X such that Val = X * Scale, or null if none.
892  ///
893  /// If the multiplication is known not to overflow then NoSignedWrap is set.
894  Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
895};
896
897} // end namespace llvm
898
899#undef DEBUG_TYPE
900
901#endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
902