InstCombineAddSub.cpp revision 363496
1//===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visit functions for add, fadd, sub, and fsub.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/ADT/APFloat.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/Analysis/InstructionSimplify.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/IR/Constant.h"
21#include "llvm/IR/Constants.h"
22#include "llvm/IR/InstrTypes.h"
23#include "llvm/IR/Instruction.h"
24#include "llvm/IR/Instructions.h"
25#include "llvm/IR/Operator.h"
26#include "llvm/IR/PatternMatch.h"
27#include "llvm/IR/Type.h"
28#include "llvm/IR/Value.h"
29#include "llvm/Support/AlignOf.h"
30#include "llvm/Support/Casting.h"
31#include "llvm/Support/KnownBits.h"
32#include <cassert>
33#include <utility>
34
35using namespace llvm;
36using namespace PatternMatch;
37
38#define DEBUG_TYPE "instcombine"
39
40namespace {
41
42  /// Class representing coefficient of floating-point addend.
43  /// This class needs to be highly efficient, which is especially true for
44  /// the constructor. As of I write this comment, the cost of the default
45  /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
46  /// perform write-merging).
47  ///
48  class FAddendCoef {
49  public:
50    // The constructor has to initialize a APFloat, which is unnecessary for
51    // most addends which have coefficient either 1 or -1. So, the constructor
52    // is expensive. In order to avoid the cost of the constructor, we should
53    // reuse some instances whenever possible. The pre-created instances
54    // FAddCombine::Add[0-5] embodies this idea.
55    FAddendCoef() = default;
56    ~FAddendCoef();
57
58    // If possible, don't define operator+/operator- etc because these
59    // operators inevitably call FAddendCoef's constructor which is not cheap.
60    void operator=(const FAddendCoef &A);
61    void operator+=(const FAddendCoef &A);
62    void operator*=(const FAddendCoef &S);
63
64    void set(short C) {
65      assert(!insaneIntVal(C) && "Insane coefficient");
66      IsFp = false; IntVal = C;
67    }
68
69    void set(const APFloat& C);
70
71    void negate();
72
73    bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
74    Value *getValue(Type *) const;
75
76    bool isOne() const { return isInt() && IntVal == 1; }
77    bool isTwo() const { return isInt() && IntVal == 2; }
78    bool isMinusOne() const { return isInt() && IntVal == -1; }
79    bool isMinusTwo() const { return isInt() && IntVal == -2; }
80
81  private:
82    bool insaneIntVal(int V) { return V > 4 || V < -4; }
83
84    APFloat *getFpValPtr()
85      { return reinterpret_cast<APFloat *>(&FpValBuf.buffer[0]); }
86
87    const APFloat *getFpValPtr() const
88      { return reinterpret_cast<const APFloat *>(&FpValBuf.buffer[0]); }
89
90    const APFloat &getFpVal() const {
91      assert(IsFp && BufHasFpVal && "Incorret state");
92      return *getFpValPtr();
93    }
94
95    APFloat &getFpVal() {
96      assert(IsFp && BufHasFpVal && "Incorret state");
97      return *getFpValPtr();
98    }
99
100    bool isInt() const { return !IsFp; }
101
102    // If the coefficient is represented by an integer, promote it to a
103    // floating point.
104    void convertToFpType(const fltSemantics &Sem);
105
106    // Construct an APFloat from a signed integer.
107    // TODO: We should get rid of this function when APFloat can be constructed
108    //       from an *SIGNED* integer.
109    APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
110
111    bool IsFp = false;
112
113    // True iff FpValBuf contains an instance of APFloat.
114    bool BufHasFpVal = false;
115
116    // The integer coefficient of an individual addend is either 1 or -1,
117    // and we try to simplify at most 4 addends from neighboring at most
118    // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
119    // is overkill of this end.
120    short IntVal = 0;
121
122    AlignedCharArrayUnion<APFloat> FpValBuf;
123  };
124
125  /// FAddend is used to represent floating-point addend. An addend is
126  /// represented as <C, V>, where the V is a symbolic value, and C is a
127  /// constant coefficient. A constant addend is represented as <C, 0>.
128  class FAddend {
129  public:
130    FAddend() = default;
131
132    void operator+=(const FAddend &T) {
133      assert((Val == T.Val) && "Symbolic-values disagree");
134      Coeff += T.Coeff;
135    }
136
137    Value *getSymVal() const { return Val; }
138    const FAddendCoef &getCoef() const { return Coeff; }
139
140    bool isConstant() const { return Val == nullptr; }
141    bool isZero() const { return Coeff.isZero(); }
142
143    void set(short Coefficient, Value *V) {
144      Coeff.set(Coefficient);
145      Val = V;
146    }
147    void set(const APFloat &Coefficient, Value *V) {
148      Coeff.set(Coefficient);
149      Val = V;
150    }
151    void set(const ConstantFP *Coefficient, Value *V) {
152      Coeff.set(Coefficient->getValueAPF());
153      Val = V;
154    }
155
156    void negate() { Coeff.negate(); }
157
158    /// Drill down the U-D chain one step to find the definition of V, and
159    /// try to break the definition into one or two addends.
160    static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
161
162    /// Similar to FAddend::drillDownOneStep() except that the value being
163    /// splitted is the addend itself.
164    unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
165
166  private:
167    void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
168
169    // This addend has the value of "Coeff * Val".
170    Value *Val = nullptr;
171    FAddendCoef Coeff;
172  };
173
174  /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
175  /// with its neighboring at most two instructions.
176  ///
177  class FAddCombine {
178  public:
179    FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
180
181    Value *simplify(Instruction *FAdd);
182
183  private:
184    using AddendVect = SmallVector<const FAddend *, 4>;
185
186    Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
187
188    /// Convert given addend to a Value
189    Value *createAddendVal(const FAddend &A, bool& NeedNeg);
190
191    /// Return the number of instructions needed to emit the N-ary addition.
192    unsigned calcInstrNumber(const AddendVect& Vect);
193
194    Value *createFSub(Value *Opnd0, Value *Opnd1);
195    Value *createFAdd(Value *Opnd0, Value *Opnd1);
196    Value *createFMul(Value *Opnd0, Value *Opnd1);
197    Value *createFNeg(Value *V);
198    Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
199    void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
200
201     // Debugging stuff are clustered here.
202    #ifndef NDEBUG
203      unsigned CreateInstrNum;
204      void initCreateInstNum() { CreateInstrNum = 0; }
205      void incCreateInstNum() { CreateInstrNum++; }
206    #else
207      void initCreateInstNum() {}
208      void incCreateInstNum() {}
209    #endif
210
211    InstCombiner::BuilderTy &Builder;
212    Instruction *Instr = nullptr;
213  };
214
215} // end anonymous namespace
216
217//===----------------------------------------------------------------------===//
218//
219// Implementation of
220//    {FAddendCoef, FAddend, FAddition, FAddCombine}.
221//
222//===----------------------------------------------------------------------===//
223FAddendCoef::~FAddendCoef() {
224  if (BufHasFpVal)
225    getFpValPtr()->~APFloat();
226}
227
228void FAddendCoef::set(const APFloat& C) {
229  APFloat *P = getFpValPtr();
230
231  if (isInt()) {
232    // As the buffer is meanless byte stream, we cannot call
233    // APFloat::operator=().
234    new(P) APFloat(C);
235  } else
236    *P = C;
237
238  IsFp = BufHasFpVal = true;
239}
240
241void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
242  if (!isInt())
243    return;
244
245  APFloat *P = getFpValPtr();
246  if (IntVal > 0)
247    new(P) APFloat(Sem, IntVal);
248  else {
249    new(P) APFloat(Sem, 0 - IntVal);
250    P->changeSign();
251  }
252  IsFp = BufHasFpVal = true;
253}
254
255APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
256  if (Val >= 0)
257    return APFloat(Sem, Val);
258
259  APFloat T(Sem, 0 - Val);
260  T.changeSign();
261
262  return T;
263}
264
265void FAddendCoef::operator=(const FAddendCoef &That) {
266  if (That.isInt())
267    set(That.IntVal);
268  else
269    set(That.getFpVal());
270}
271
272void FAddendCoef::operator+=(const FAddendCoef &That) {
273  enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
274  if (isInt() == That.isInt()) {
275    if (isInt())
276      IntVal += That.IntVal;
277    else
278      getFpVal().add(That.getFpVal(), RndMode);
279    return;
280  }
281
282  if (isInt()) {
283    const APFloat &T = That.getFpVal();
284    convertToFpType(T.getSemantics());
285    getFpVal().add(T, RndMode);
286    return;
287  }
288
289  APFloat &T = getFpVal();
290  T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
291}
292
293void FAddendCoef::operator*=(const FAddendCoef &That) {
294  if (That.isOne())
295    return;
296
297  if (That.isMinusOne()) {
298    negate();
299    return;
300  }
301
302  if (isInt() && That.isInt()) {
303    int Res = IntVal * (int)That.IntVal;
304    assert(!insaneIntVal(Res) && "Insane int value");
305    IntVal = Res;
306    return;
307  }
308
309  const fltSemantics &Semantic =
310    isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
311
312  if (isInt())
313    convertToFpType(Semantic);
314  APFloat &F0 = getFpVal();
315
316  if (That.isInt())
317    F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
318                APFloat::rmNearestTiesToEven);
319  else
320    F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
321}
322
323void FAddendCoef::negate() {
324  if (isInt())
325    IntVal = 0 - IntVal;
326  else
327    getFpVal().changeSign();
328}
329
330Value *FAddendCoef::getValue(Type *Ty) const {
331  return isInt() ?
332    ConstantFP::get(Ty, float(IntVal)) :
333    ConstantFP::get(Ty->getContext(), getFpVal());
334}
335
336// The definition of <Val>     Addends
337// =========================================
338//  A + B                     <1, A>, <1,B>
339//  A - B                     <1, A>, <1,B>
340//  0 - B                     <-1, B>
341//  C * A,                    <C, A>
342//  A + C                     <1, A> <C, NULL>
343//  0 +/- 0                   <0, NULL> (corner case)
344//
345// Legend: A and B are not constant, C is constant
346unsigned FAddend::drillValueDownOneStep
347  (Value *Val, FAddend &Addend0, FAddend &Addend1) {
348  Instruction *I = nullptr;
349  if (!Val || !(I = dyn_cast<Instruction>(Val)))
350    return 0;
351
352  unsigned Opcode = I->getOpcode();
353
354  if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
355    ConstantFP *C0, *C1;
356    Value *Opnd0 = I->getOperand(0);
357    Value *Opnd1 = I->getOperand(1);
358    if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
359      Opnd0 = nullptr;
360
361    if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
362      Opnd1 = nullptr;
363
364    if (Opnd0) {
365      if (!C0)
366        Addend0.set(1, Opnd0);
367      else
368        Addend0.set(C0, nullptr);
369    }
370
371    if (Opnd1) {
372      FAddend &Addend = Opnd0 ? Addend1 : Addend0;
373      if (!C1)
374        Addend.set(1, Opnd1);
375      else
376        Addend.set(C1, nullptr);
377      if (Opcode == Instruction::FSub)
378        Addend.negate();
379    }
380
381    if (Opnd0 || Opnd1)
382      return Opnd0 && Opnd1 ? 2 : 1;
383
384    // Both operands are zero. Weird!
385    Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
386    return 1;
387  }
388
389  if (I->getOpcode() == Instruction::FMul) {
390    Value *V0 = I->getOperand(0);
391    Value *V1 = I->getOperand(1);
392    if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
393      Addend0.set(C, V1);
394      return 1;
395    }
396
397    if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
398      Addend0.set(C, V0);
399      return 1;
400    }
401  }
402
403  return 0;
404}
405
406// Try to break *this* addend into two addends. e.g. Suppose this addend is
407// <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
408// i.e. <2.3, X> and <2.3, Y>.
409unsigned FAddend::drillAddendDownOneStep
410  (FAddend &Addend0, FAddend &Addend1) const {
411  if (isConstant())
412    return 0;
413
414  unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
415  if (!BreakNum || Coeff.isOne())
416    return BreakNum;
417
418  Addend0.Scale(Coeff);
419
420  if (BreakNum == 2)
421    Addend1.Scale(Coeff);
422
423  return BreakNum;
424}
425
426Value *FAddCombine::simplify(Instruction *I) {
427  assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
428         "Expected 'reassoc'+'nsz' instruction");
429
430  // Currently we are not able to handle vector type.
431  if (I->getType()->isVectorTy())
432    return nullptr;
433
434  assert((I->getOpcode() == Instruction::FAdd ||
435          I->getOpcode() == Instruction::FSub) && "Expect add/sub");
436
437  // Save the instruction before calling other member-functions.
438  Instr = I;
439
440  FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
441
442  unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
443
444  // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
445  unsigned Opnd0_ExpNum = 0;
446  unsigned Opnd1_ExpNum = 0;
447
448  if (!Opnd0.isConstant())
449    Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
450
451  // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
452  if (OpndNum == 2 && !Opnd1.isConstant())
453    Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
454
455  // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
456  if (Opnd0_ExpNum && Opnd1_ExpNum) {
457    AddendVect AllOpnds;
458    AllOpnds.push_back(&Opnd0_0);
459    AllOpnds.push_back(&Opnd1_0);
460    if (Opnd0_ExpNum == 2)
461      AllOpnds.push_back(&Opnd0_1);
462    if (Opnd1_ExpNum == 2)
463      AllOpnds.push_back(&Opnd1_1);
464
465    // Compute instruction quota. We should save at least one instruction.
466    unsigned InstQuota = 0;
467
468    Value *V0 = I->getOperand(0);
469    Value *V1 = I->getOperand(1);
470    InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
471                 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
472
473    if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
474      return R;
475  }
476
477  if (OpndNum != 2) {
478    // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
479    // splitted into two addends, say "V = X - Y", the instruction would have
480    // been optimized into "I = Y - X" in the previous steps.
481    //
482    const FAddendCoef &CE = Opnd0.getCoef();
483    return CE.isOne() ? Opnd0.getSymVal() : nullptr;
484  }
485
486  // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
487  if (Opnd1_ExpNum) {
488    AddendVect AllOpnds;
489    AllOpnds.push_back(&Opnd0);
490    AllOpnds.push_back(&Opnd1_0);
491    if (Opnd1_ExpNum == 2)
492      AllOpnds.push_back(&Opnd1_1);
493
494    if (Value *R = simplifyFAdd(AllOpnds, 1))
495      return R;
496  }
497
498  // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
499  if (Opnd0_ExpNum) {
500    AddendVect AllOpnds;
501    AllOpnds.push_back(&Opnd1);
502    AllOpnds.push_back(&Opnd0_0);
503    if (Opnd0_ExpNum == 2)
504      AllOpnds.push_back(&Opnd0_1);
505
506    if (Value *R = simplifyFAdd(AllOpnds, 1))
507      return R;
508  }
509
510  return nullptr;
511}
512
513Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
514  unsigned AddendNum = Addends.size();
515  assert(AddendNum <= 4 && "Too many addends");
516
517  // For saving intermediate results;
518  unsigned NextTmpIdx = 0;
519  FAddend TmpResult[3];
520
521  // Points to the constant addend of the resulting simplified expression.
522  // If the resulting expr has constant-addend, this constant-addend is
523  // desirable to reside at the top of the resulting expression tree. Placing
524  // constant close to supper-expr(s) will potentially reveal some optimization
525  // opportunities in super-expr(s).
526  const FAddend *ConstAdd = nullptr;
527
528  // Simplified addends are placed <SimpVect>.
529  AddendVect SimpVect;
530
531  // The outer loop works on one symbolic-value at a time. Suppose the input
532  // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
533  // The symbolic-values will be processed in this order: x, y, z.
534  for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
535
536    const FAddend *ThisAddend = Addends[SymIdx];
537    if (!ThisAddend) {
538      // This addend was processed before.
539      continue;
540    }
541
542    Value *Val = ThisAddend->getSymVal();
543    unsigned StartIdx = SimpVect.size();
544    SimpVect.push_back(ThisAddend);
545
546    // The inner loop collects addends sharing same symbolic-value, and these
547    // addends will be later on folded into a single addend. Following above
548    // example, if the symbolic value "y" is being processed, the inner loop
549    // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
550    // be later on folded into "<b1+b2, y>".
551    for (unsigned SameSymIdx = SymIdx + 1;
552         SameSymIdx < AddendNum; SameSymIdx++) {
553      const FAddend *T = Addends[SameSymIdx];
554      if (T && T->getSymVal() == Val) {
555        // Set null such that next iteration of the outer loop will not process
556        // this addend again.
557        Addends[SameSymIdx] = nullptr;
558        SimpVect.push_back(T);
559      }
560    }
561
562    // If multiple addends share same symbolic value, fold them together.
563    if (StartIdx + 1 != SimpVect.size()) {
564      FAddend &R = TmpResult[NextTmpIdx ++];
565      R = *SimpVect[StartIdx];
566      for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
567        R += *SimpVect[Idx];
568
569      // Pop all addends being folded and push the resulting folded addend.
570      SimpVect.resize(StartIdx);
571      if (Val) {
572        if (!R.isZero()) {
573          SimpVect.push_back(&R);
574        }
575      } else {
576        // Don't push constant addend at this time. It will be the last element
577        // of <SimpVect>.
578        ConstAdd = &R;
579      }
580    }
581  }
582
583  assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
584         "out-of-bound access");
585
586  if (ConstAdd)
587    SimpVect.push_back(ConstAdd);
588
589  Value *Result;
590  if (!SimpVect.empty())
591    Result = createNaryFAdd(SimpVect, InstrQuota);
592  else {
593    // The addition is folded to 0.0.
594    Result = ConstantFP::get(Instr->getType(), 0.0);
595  }
596
597  return Result;
598}
599
600Value *FAddCombine::createNaryFAdd
601  (const AddendVect &Opnds, unsigned InstrQuota) {
602  assert(!Opnds.empty() && "Expect at least one addend");
603
604  // Step 1: Check if the # of instructions needed exceeds the quota.
605
606  unsigned InstrNeeded = calcInstrNumber(Opnds);
607  if (InstrNeeded > InstrQuota)
608    return nullptr;
609
610  initCreateInstNum();
611
612  // step 2: Emit the N-ary addition.
613  // Note that at most three instructions are involved in Fadd-InstCombine: the
614  // addition in question, and at most two neighboring instructions.
615  // The resulting optimized addition should have at least one less instruction
616  // than the original addition expression tree. This implies that the resulting
617  // N-ary addition has at most two instructions, and we don't need to worry
618  // about tree-height when constructing the N-ary addition.
619
620  Value *LastVal = nullptr;
621  bool LastValNeedNeg = false;
622
623  // Iterate the addends, creating fadd/fsub using adjacent two addends.
624  for (const FAddend *Opnd : Opnds) {
625    bool NeedNeg;
626    Value *V = createAddendVal(*Opnd, NeedNeg);
627    if (!LastVal) {
628      LastVal = V;
629      LastValNeedNeg = NeedNeg;
630      continue;
631    }
632
633    if (LastValNeedNeg == NeedNeg) {
634      LastVal = createFAdd(LastVal, V);
635      continue;
636    }
637
638    if (LastValNeedNeg)
639      LastVal = createFSub(V, LastVal);
640    else
641      LastVal = createFSub(LastVal, V);
642
643    LastValNeedNeg = false;
644  }
645
646  if (LastValNeedNeg) {
647    LastVal = createFNeg(LastVal);
648  }
649
650#ifndef NDEBUG
651  assert(CreateInstrNum == InstrNeeded &&
652         "Inconsistent in instruction numbers");
653#endif
654
655  return LastVal;
656}
657
658Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
659  Value *V = Builder.CreateFSub(Opnd0, Opnd1);
660  if (Instruction *I = dyn_cast<Instruction>(V))
661    createInstPostProc(I);
662  return V;
663}
664
665Value *FAddCombine::createFNeg(Value *V) {
666  Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType()));
667  Value *NewV = createFSub(Zero, V);
668  if (Instruction *I = dyn_cast<Instruction>(NewV))
669    createInstPostProc(I, true); // fneg's don't receive instruction numbers.
670  return NewV;
671}
672
673Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
674  Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
675  if (Instruction *I = dyn_cast<Instruction>(V))
676    createInstPostProc(I);
677  return V;
678}
679
680Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
681  Value *V = Builder.CreateFMul(Opnd0, Opnd1);
682  if (Instruction *I = dyn_cast<Instruction>(V))
683    createInstPostProc(I);
684  return V;
685}
686
687void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
688  NewInstr->setDebugLoc(Instr->getDebugLoc());
689
690  // Keep track of the number of instruction created.
691  if (!NoNumber)
692    incCreateInstNum();
693
694  // Propagate fast-math flags
695  NewInstr->setFastMathFlags(Instr->getFastMathFlags());
696}
697
698// Return the number of instruction needed to emit the N-ary addition.
699// NOTE: Keep this function in sync with createAddendVal().
700unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
701  unsigned OpndNum = Opnds.size();
702  unsigned InstrNeeded = OpndNum - 1;
703
704  // The number of addends in the form of "(-1)*x".
705  unsigned NegOpndNum = 0;
706
707  // Adjust the number of instructions needed to emit the N-ary add.
708  for (const FAddend *Opnd : Opnds) {
709    if (Opnd->isConstant())
710      continue;
711
712    // The constant check above is really for a few special constant
713    // coefficients.
714    if (isa<UndefValue>(Opnd->getSymVal()))
715      continue;
716
717    const FAddendCoef &CE = Opnd->getCoef();
718    if (CE.isMinusOne() || CE.isMinusTwo())
719      NegOpndNum++;
720
721    // Let the addend be "c * x". If "c == +/-1", the value of the addend
722    // is immediately available; otherwise, it needs exactly one instruction
723    // to evaluate the value.
724    if (!CE.isMinusOne() && !CE.isOne())
725      InstrNeeded++;
726  }
727  if (NegOpndNum == OpndNum)
728    InstrNeeded++;
729  return InstrNeeded;
730}
731
732// Input Addend        Value           NeedNeg(output)
733// ================================================================
734// Constant C          C               false
735// <+/-1, V>           V               coefficient is -1
736// <2/-2, V>          "fadd V, V"      coefficient is -2
737// <C, V>             "fmul V, C"      false
738//
739// NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
740Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
741  const FAddendCoef &Coeff = Opnd.getCoef();
742
743  if (Opnd.isConstant()) {
744    NeedNeg = false;
745    return Coeff.getValue(Instr->getType());
746  }
747
748  Value *OpndVal = Opnd.getSymVal();
749
750  if (Coeff.isMinusOne() || Coeff.isOne()) {
751    NeedNeg = Coeff.isMinusOne();
752    return OpndVal;
753  }
754
755  if (Coeff.isTwo() || Coeff.isMinusTwo()) {
756    NeedNeg = Coeff.isMinusTwo();
757    return createFAdd(OpndVal, OpndVal);
758  }
759
760  NeedNeg = false;
761  return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
762}
763
764// Checks if any operand is negative and we can convert add to sub.
765// This function checks for following negative patterns
766//   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
767//   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
768//   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
769static Value *checkForNegativeOperand(BinaryOperator &I,
770                                      InstCombiner::BuilderTy &Builder) {
771  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
772
773  // This function creates 2 instructions to replace ADD, we need at least one
774  // of LHS or RHS to have one use to ensure benefit in transform.
775  if (!LHS->hasOneUse() && !RHS->hasOneUse())
776    return nullptr;
777
778  Value *X = nullptr, *Y = nullptr, *Z = nullptr;
779  const APInt *C1 = nullptr, *C2 = nullptr;
780
781  // if ONE is on other side, swap
782  if (match(RHS, m_Add(m_Value(X), m_One())))
783    std::swap(LHS, RHS);
784
785  if (match(LHS, m_Add(m_Value(X), m_One()))) {
786    // if XOR on other side, swap
787    if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
788      std::swap(X, RHS);
789
790    if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
791      // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
792      // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
793      if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
794        Value *NewAnd = Builder.CreateAnd(Z, *C1);
795        return Builder.CreateSub(RHS, NewAnd, "sub");
796      } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
797        // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
798        // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
799        Value *NewOr = Builder.CreateOr(Z, ~(*C1));
800        return Builder.CreateSub(RHS, NewOr, "sub");
801      }
802    }
803  }
804
805  // Restore LHS and RHS
806  LHS = I.getOperand(0);
807  RHS = I.getOperand(1);
808
809  // if XOR is on other side, swap
810  if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
811    std::swap(LHS, RHS);
812
813  // C2 is ODD
814  // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
815  // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
816  if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
817    if (C1->countTrailingZeros() == 0)
818      if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
819        Value *NewOr = Builder.CreateOr(Z, ~(*C2));
820        return Builder.CreateSub(RHS, NewOr, "sub");
821      }
822  return nullptr;
823}
824
825/// Wrapping flags may allow combining constants separated by an extend.
826static Instruction *foldNoWrapAdd(BinaryOperator &Add,
827                                  InstCombiner::BuilderTy &Builder) {
828  Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
829  Type *Ty = Add.getType();
830  Constant *Op1C;
831  if (!match(Op1, m_Constant(Op1C)))
832    return nullptr;
833
834  // Try this match first because it results in an add in the narrow type.
835  // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
836  Value *X;
837  const APInt *C1, *C2;
838  if (match(Op1, m_APInt(C1)) &&
839      match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
840      C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
841    Constant *NewC =
842        ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth()));
843    return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
844  }
845
846  // More general combining of constants in the wide type.
847  // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
848  Constant *NarrowC;
849  if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) {
850    Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty);
851    Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
852    Value *WideX = Builder.CreateSExt(X, Ty);
853    return BinaryOperator::CreateAdd(WideX, NewC);
854  }
855  // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
856  if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) {
857    Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty);
858    Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
859    Value *WideX = Builder.CreateZExt(X, Ty);
860    return BinaryOperator::CreateAdd(WideX, NewC);
861  }
862
863  return nullptr;
864}
865
866Instruction *InstCombiner::foldAddWithConstant(BinaryOperator &Add) {
867  Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
868  Constant *Op1C;
869  if (!match(Op1, m_Constant(Op1C)))
870    return nullptr;
871
872  if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
873    return NV;
874
875  Value *X;
876  Constant *Op00C;
877
878  // add (sub C1, X), C2 --> sub (add C1, C2), X
879  if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
880    return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);
881
882  Value *Y;
883
884  // add (sub X, Y), -1 --> add (not Y), X
885  if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
886      match(Op1, m_AllOnes()))
887    return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
888
889  // zext(bool) + C -> bool ? C + 1 : C
890  if (match(Op0, m_ZExt(m_Value(X))) &&
891      X->getType()->getScalarSizeInBits() == 1)
892    return SelectInst::Create(X, AddOne(Op1C), Op1);
893  // sext(bool) + C -> bool ? C - 1 : C
894  if (match(Op0, m_SExt(m_Value(X))) &&
895      X->getType()->getScalarSizeInBits() == 1)
896    return SelectInst::Create(X, SubOne(Op1C), Op1);
897
898  // ~X + C --> (C-1) - X
899  if (match(Op0, m_Not(m_Value(X))))
900    return BinaryOperator::CreateSub(SubOne(Op1C), X);
901
902  const APInt *C;
903  if (!match(Op1, m_APInt(C)))
904    return nullptr;
905
906  // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
907  const APInt *C2;
908  if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
909    return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));
910
911  if (C->isSignMask()) {
912    // If wrapping is not allowed, then the addition must set the sign bit:
913    // X + (signmask) --> X | signmask
914    if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
915      return BinaryOperator::CreateOr(Op0, Op1);
916
917    // If wrapping is allowed, then the addition flips the sign bit of LHS:
918    // X + (signmask) --> X ^ signmask
919    return BinaryOperator::CreateXor(Op0, Op1);
920  }
921
922  // Is this add the last step in a convoluted sext?
923  // add(zext(xor i16 X, -32768), -32768) --> sext X
924  Type *Ty = Add.getType();
925  if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
926      C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
927    return CastInst::Create(Instruction::SExt, X, Ty);
928
929  if (C->isOneValue() && Op0->hasOneUse()) {
930    // add (sext i1 X), 1 --> zext (not X)
931    // TODO: The smallest IR representation is (select X, 0, 1), and that would
932    // not require the one-use check. But we need to remove a transform in
933    // visitSelect and make sure that IR value tracking for select is equal or
934    // better than for these ops.
935    if (match(Op0, m_SExt(m_Value(X))) &&
936        X->getType()->getScalarSizeInBits() == 1)
937      return new ZExtInst(Builder.CreateNot(X), Ty);
938
939    // Shifts and add used to flip and mask off the low bit:
940    // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
941    const APInt *C3;
942    if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
943        C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
944      Value *NotX = Builder.CreateNot(X);
945      return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
946    }
947  }
948
949  return nullptr;
950}
951
952// Matches multiplication expression Op * C where C is a constant. Returns the
953// constant value in C and the other operand in Op. Returns true if such a
954// match is found.
955static bool MatchMul(Value *E, Value *&Op, APInt &C) {
956  const APInt *AI;
957  if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
958    C = *AI;
959    return true;
960  }
961  if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
962    C = APInt(AI->getBitWidth(), 1);
963    C <<= *AI;
964    return true;
965  }
966  return false;
967}
968
969// Matches remainder expression Op % C where C is a constant. Returns the
970// constant value in C and the other operand in Op. Returns the signedness of
971// the remainder operation in IsSigned. Returns true if such a match is
972// found.
973static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
974  const APInt *AI;
975  IsSigned = false;
976  if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
977    IsSigned = true;
978    C = *AI;
979    return true;
980  }
981  if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
982    C = *AI;
983    return true;
984  }
985  if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
986    C = *AI + 1;
987    return true;
988  }
989  return false;
990}
991
992// Matches division expression Op / C with the given signedness as indicated
993// by IsSigned, where C is a constant. Returns the constant value in C and the
994// other operand in Op. Returns true if such a match is found.
995static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
996  const APInt *AI;
997  if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
998    C = *AI;
999    return true;
1000  }
1001  if (!IsSigned) {
1002    if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
1003      C = *AI;
1004      return true;
1005    }
1006    if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
1007      C = APInt(AI->getBitWidth(), 1);
1008      C <<= *AI;
1009      return true;
1010    }
1011  }
1012  return false;
1013}
1014
1015// Returns whether C0 * C1 with the given signedness overflows.
1016static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
1017  bool overflow;
1018  if (IsSigned)
1019    (void)C0.smul_ov(C1, overflow);
1020  else
1021    (void)C0.umul_ov(C1, overflow);
1022  return overflow;
1023}
1024
1025// Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
1026// does not overflow.
1027Value *InstCombiner::SimplifyAddWithRemainder(BinaryOperator &I) {
1028  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1029  Value *X, *MulOpV;
1030  APInt C0, MulOpC;
1031  bool IsSigned;
1032  // Match I = X % C0 + MulOpV * C0
1033  if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
1034       (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
1035      C0 == MulOpC) {
1036    Value *RemOpV;
1037    APInt C1;
1038    bool Rem2IsSigned;
1039    // Match MulOpC = RemOpV % C1
1040    if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
1041        IsSigned == Rem2IsSigned) {
1042      Value *DivOpV;
1043      APInt DivOpC;
1044      // Match RemOpV = X / C0
1045      if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
1046          C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1047        Value *NewDivisor =
1048            ConstantInt::get(X->getType()->getContext(), C0 * C1);
1049        return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
1050                        : Builder.CreateURem(X, NewDivisor, "urem");
1051      }
1052    }
1053  }
1054
1055  return nullptr;
1056}
1057
1058/// Fold
1059///   (1 << NBits) - 1
1060/// Into:
1061///   ~(-(1 << NBits))
1062/// Because a 'not' is better for bit-tracking analysis and other transforms
1063/// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
1064static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
1065                                           InstCombiner::BuilderTy &Builder) {
1066  Value *NBits;
1067  if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
1068    return nullptr;
1069
1070  Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
1071  Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
1072  // Be wary of constant folding.
1073  if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
1074    // Always NSW. But NUW propagates from `add`.
1075    BOp->setHasNoSignedWrap();
1076    BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1077  }
1078
1079  return BinaryOperator::CreateNot(NotMask, I.getName());
1080}
1081
1082static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
1083  assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
1084  Type *Ty = I.getType();
1085  auto getUAddSat = [&]() {
1086    return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty);
1087  };
1088
1089  // add (umin X, ~Y), Y --> uaddsat X, Y
1090  Value *X, *Y;
1091  if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))),
1092                        m_Deferred(Y))))
1093    return CallInst::Create(getUAddSat(), { X, Y });
1094
1095  // add (umin X, ~C), C --> uaddsat X, C
1096  const APInt *C, *NotC;
1097  if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
1098      *C == ~*NotC)
1099    return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });
1100
1101  return nullptr;
1102}
1103
1104Instruction *
1105InstCombiner::canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
1106    BinaryOperator &I) {
1107  assert((I.getOpcode() == Instruction::Add ||
1108          I.getOpcode() == Instruction::Or ||
1109          I.getOpcode() == Instruction::Sub) &&
1110         "Expecting add/or/sub instruction");
1111
1112  // We have a subtraction/addition between a (potentially truncated) *logical*
1113  // right-shift of X and a "select".
1114  Value *X, *Select;
1115  Instruction *LowBitsToSkip, *Extract;
1116  if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd(
1117                               m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)),
1118                               m_Instruction(Extract))),
1119                           m_Value(Select))))
1120    return nullptr;
1121
1122  // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS.
1123  if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select)
1124    return nullptr;
1125
1126  Type *XTy = X->getType();
1127  bool HadTrunc = I.getType() != XTy;
1128
1129  // If there was a truncation of extracted value, then we'll need to produce
1130  // one extra instruction, so we need to ensure one instruction will go away.
1131  if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1132    return nullptr;
1133
1134  // Extraction should extract high NBits bits, with shift amount calculated as:
1135  //   low bits to skip = shift bitwidth - high bits to extract
1136  // The shift amount itself may be extended, and we need to look past zero-ext
1137  // when matching NBits, that will matter for matching later.
1138  Constant *C;
1139  Value *NBits;
1140  if (!match(
1141          LowBitsToSkip,
1142          m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) ||
1143      !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1144                                   APInt(C->getType()->getScalarSizeInBits(),
1145                                         X->getType()->getScalarSizeInBits()))))
1146    return nullptr;
1147
1148  // Sign-extending value can be zero-extended if we `sub`tract it,
1149  // or sign-extended otherwise.
1150  auto SkipExtInMagic = [&I](Value *&V) {
1151    if (I.getOpcode() == Instruction::Sub)
1152      match(V, m_ZExtOrSelf(m_Value(V)));
1153    else
1154      match(V, m_SExtOrSelf(m_Value(V)));
1155  };
1156
1157  // Now, finally validate the sign-extending magic.
1158  // `select` itself may be appropriately extended, look past that.
1159  SkipExtInMagic(Select);
1160
1161  ICmpInst::Predicate Pred;
1162  const APInt *Thr;
1163  Value *SignExtendingValue, *Zero;
1164  bool ShouldSignext;
1165  // It must be a select between two values we will later establish to be a
1166  // sign-extending value and a zero constant. The condition guarding the
1167  // sign-extension must be based on a sign bit of the same X we had in `lshr`.
1168  if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)),
1169                              m_Value(SignExtendingValue), m_Value(Zero))) ||
1170      !isSignBitCheck(Pred, *Thr, ShouldSignext))
1171    return nullptr;
1172
1173  // icmp-select pair is commutative.
1174  if (!ShouldSignext)
1175    std::swap(SignExtendingValue, Zero);
1176
1177  // If we should not perform sign-extension then we must add/or/subtract zero.
1178  if (!match(Zero, m_Zero()))
1179    return nullptr;
1180  // Otherwise, it should be some constant, left-shifted by the same NBits we
1181  // had in `lshr`. Said left-shift can also be appropriately extended.
1182  // Again, we must look past zero-ext when looking for NBits.
1183  SkipExtInMagic(SignExtendingValue);
1184  Constant *SignExtendingValueBaseConstant;
1185  if (!match(SignExtendingValue,
1186             m_Shl(m_Constant(SignExtendingValueBaseConstant),
1187                   m_ZExtOrSelf(m_Specific(NBits)))))
1188    return nullptr;
1189  // If we `sub`, then the constant should be one, else it should be all-ones.
1190  if (I.getOpcode() == Instruction::Sub
1191          ? !match(SignExtendingValueBaseConstant, m_One())
1192          : !match(SignExtendingValueBaseConstant, m_AllOnes()))
1193    return nullptr;
1194
1195  auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip,
1196                                             Extract->getName() + ".sext");
1197  NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness.
1198  if (!HadTrunc)
1199    return NewAShr;
1200
1201  Builder.Insert(NewAShr);
1202  return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType());
1203}
1204
1205Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1206  if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1),
1207                                 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1208                                 SQ.getWithInstruction(&I)))
1209    return replaceInstUsesWith(I, V);
1210
1211  if (SimplifyAssociativeOrCommutative(I))
1212    return &I;
1213
1214  if (Instruction *X = foldVectorBinop(I))
1215    return X;
1216
1217  // (A*B)+(A*C) -> A*(B+C) etc
1218  if (Value *V = SimplifyUsingDistributiveLaws(I))
1219    return replaceInstUsesWith(I, V);
1220
1221  if (Instruction *X = foldAddWithConstant(I))
1222    return X;
1223
1224  if (Instruction *X = foldNoWrapAdd(I, Builder))
1225    return X;
1226
1227  // FIXME: This should be moved into the above helper function to allow these
1228  // transforms for general constant or constant splat vectors.
1229  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1230  Type *Ty = I.getType();
1231  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1232    Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
1233    if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1234      unsigned TySizeBits = Ty->getScalarSizeInBits();
1235      const APInt &RHSVal = CI->getValue();
1236      unsigned ExtendAmt = 0;
1237      // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1238      // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1239      if (XorRHS->getValue() == -RHSVal) {
1240        if (RHSVal.isPowerOf2())
1241          ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
1242        else if (XorRHS->getValue().isPowerOf2())
1243          ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
1244      }
1245
1246      if (ExtendAmt) {
1247        APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
1248        if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
1249          ExtendAmt = 0;
1250      }
1251
1252      if (ExtendAmt) {
1253        Constant *ShAmt = ConstantInt::get(Ty, ExtendAmt);
1254        Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext");
1255        return BinaryOperator::CreateAShr(NewShl, ShAmt);
1256      }
1257
1258      // If this is a xor that was canonicalized from a sub, turn it back into
1259      // a sub and fuse this add with it.
1260      if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
1261        KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I);
1262        if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue())
1263          return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
1264                                           XorLHS);
1265      }
1266      // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C,
1267      // transform them into (X + (signmask ^ C))
1268      if (XorRHS->getValue().isSignMask())
1269        return BinaryOperator::CreateAdd(XorLHS,
1270                                         ConstantExpr::getXor(XorRHS, CI));
1271    }
1272  }
1273
1274  if (Ty->isIntOrIntVectorTy(1))
1275    return BinaryOperator::CreateXor(LHS, RHS);
1276
1277  // X + X --> X << 1
1278  if (LHS == RHS) {
1279    auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
1280    Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
1281    Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1282    return Shl;
1283  }
1284
1285  Value *A, *B;
1286  if (match(LHS, m_Neg(m_Value(A)))) {
1287    // -A + -B --> -(A + B)
1288    if (match(RHS, m_Neg(m_Value(B))))
1289      return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
1290
1291    // -A + B --> B - A
1292    return BinaryOperator::CreateSub(RHS, A);
1293  }
1294
1295  // A + -B  -->  A - B
1296  if (match(RHS, m_Neg(m_Value(B))))
1297    return BinaryOperator::CreateSub(LHS, B);
1298
1299  if (Value *V = checkForNegativeOperand(I, Builder))
1300    return replaceInstUsesWith(I, V);
1301
1302  // (A + 1) + ~B --> A - B
1303  // ~B + (A + 1) --> A - B
1304  // (~B + A) + 1 --> A - B
1305  // (A + ~B) + 1 --> A - B
1306  if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
1307      match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One())))
1308    return BinaryOperator::CreateSub(A, B);
1309
1310  // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
1311  if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
1312
1313  // A+B --> A|B iff A and B have no bits set in common.
1314  if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
1315    return BinaryOperator::CreateOr(LHS, RHS);
1316
1317  // FIXME: We already did a check for ConstantInt RHS above this.
1318  // FIXME: Is this pattern covered by another fold? No regression tests fail on
1319  // removal.
1320  if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
1321    // (X & FF00) + xx00  -> (X+xx00) & FF00
1322    Value *X;
1323    ConstantInt *C2;
1324    if (LHS->hasOneUse() &&
1325        match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
1326        CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
1327      // See if all bits from the first bit set in the Add RHS up are included
1328      // in the mask.  First, get the rightmost bit.
1329      const APInt &AddRHSV = CRHS->getValue();
1330
1331      // Form a mask of all bits from the lowest bit added through the top.
1332      APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
1333
1334      // See if the and mask includes all of these bits.
1335      APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
1336
1337      if (AddRHSHighBits == AddRHSHighBitsAnd) {
1338        // Okay, the xform is safe.  Insert the new add pronto.
1339        Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName());
1340        return BinaryOperator::CreateAnd(NewAdd, C2);
1341      }
1342    }
1343  }
1344
1345  // add (select X 0 (sub n A)) A  -->  select X A n
1346  {
1347    SelectInst *SI = dyn_cast<SelectInst>(LHS);
1348    Value *A = RHS;
1349    if (!SI) {
1350      SI = dyn_cast<SelectInst>(RHS);
1351      A = LHS;
1352    }
1353    if (SI && SI->hasOneUse()) {
1354      Value *TV = SI->getTrueValue();
1355      Value *FV = SI->getFalseValue();
1356      Value *N;
1357
1358      // Can we fold the add into the argument of the select?
1359      // We check both true and false select arguments for a matching subtract.
1360      if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1361        // Fold the add into the true select value.
1362        return SelectInst::Create(SI->getCondition(), N, A);
1363
1364      if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1365        // Fold the add into the false select value.
1366        return SelectInst::Create(SI->getCondition(), A, N);
1367    }
1368  }
1369
1370  if (Instruction *Ext = narrowMathIfNoOverflow(I))
1371    return Ext;
1372
1373  // (add (xor A, B) (and A, B)) --> (or A, B)
1374  // (add (and A, B) (xor A, B)) --> (or A, B)
1375  if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
1376                          m_c_And(m_Deferred(A), m_Deferred(B)))))
1377    return BinaryOperator::CreateOr(A, B);
1378
1379  // (add (or A, B) (and A, B)) --> (add A, B)
1380  // (add (and A, B) (or A, B)) --> (add A, B)
1381  if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
1382                          m_c_And(m_Deferred(A), m_Deferred(B))))) {
1383    I.setOperand(0, A);
1384    I.setOperand(1, B);
1385    return &I;
1386  }
1387
1388  // TODO(jingyue): Consider willNotOverflowSignedAdd and
1389  // willNotOverflowUnsignedAdd to reduce the number of invocations of
1390  // computeKnownBits.
1391  bool Changed = false;
1392  if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
1393    Changed = true;
1394    I.setHasNoSignedWrap(true);
1395  }
1396  if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
1397    Changed = true;
1398    I.setHasNoUnsignedWrap(true);
1399  }
1400
1401  if (Instruction *V = canonicalizeLowbitMask(I, Builder))
1402    return V;
1403
1404  if (Instruction *V =
1405          canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
1406    return V;
1407
1408  if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I))
1409    return SatAdd;
1410
1411  return Changed ? &I : nullptr;
1412}
1413
1414/// Eliminate an op from a linear interpolation (lerp) pattern.
1415static Instruction *factorizeLerp(BinaryOperator &I,
1416                                  InstCombiner::BuilderTy &Builder) {
1417  Value *X, *Y, *Z;
1418  if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y),
1419                                            m_OneUse(m_FSub(m_FPOne(),
1420                                                            m_Value(Z))))),
1421                          m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z))))))
1422    return nullptr;
1423
1424  // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants]
1425  Value *XY = Builder.CreateFSubFMF(X, Y, &I);
1426  Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I);
1427  return BinaryOperator::CreateFAddFMF(Y, MulZ, &I);
1428}
1429
1430/// Factor a common operand out of fadd/fsub of fmul/fdiv.
1431static Instruction *factorizeFAddFSub(BinaryOperator &I,
1432                                      InstCombiner::BuilderTy &Builder) {
1433  assert((I.getOpcode() == Instruction::FAdd ||
1434          I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
1435  assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
1436         "FP factorization requires FMF");
1437
1438  if (Instruction *Lerp = factorizeLerp(I, Builder))
1439    return Lerp;
1440
1441  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1442  Value *X, *Y, *Z;
1443  bool IsFMul;
1444  if ((match(Op0, m_OneUse(m_FMul(m_Value(X), m_Value(Z)))) &&
1445       match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))) ||
1446      (match(Op0, m_OneUse(m_FMul(m_Value(Z), m_Value(X)))) &&
1447       match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))))
1448    IsFMul = true;
1449  else if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Z)))) &&
1450           match(Op1, m_OneUse(m_FDiv(m_Value(Y), m_Specific(Z)))))
1451    IsFMul = false;
1452  else
1453    return nullptr;
1454
1455  // (X * Z) + (Y * Z) --> (X + Y) * Z
1456  // (X * Z) - (Y * Z) --> (X - Y) * Z
1457  // (X / Z) + (Y / Z) --> (X + Y) / Z
1458  // (X / Z) - (Y / Z) --> (X - Y) / Z
1459  bool IsFAdd = I.getOpcode() == Instruction::FAdd;
1460  Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
1461                     : Builder.CreateFSubFMF(X, Y, &I);
1462
1463  // Bail out if we just created a denormal constant.
1464  // TODO: This is copied from a previous implementation. Is it necessary?
1465  const APFloat *C;
1466  if (match(XY, m_APFloat(C)) && !C->isNormal())
1467    return nullptr;
1468
1469  return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
1470                : BinaryOperator::CreateFDivFMF(XY, Z, &I);
1471}
1472
1473Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
1474  if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1),
1475                                  I.getFastMathFlags(),
1476                                  SQ.getWithInstruction(&I)))
1477    return replaceInstUsesWith(I, V);
1478
1479  if (SimplifyAssociativeOrCommutative(I))
1480    return &I;
1481
1482  if (Instruction *X = foldVectorBinop(I))
1483    return X;
1484
1485  if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
1486    return FoldedFAdd;
1487
1488  // (-X) + Y --> Y - X
1489  Value *X, *Y;
1490  if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y))))
1491    return BinaryOperator::CreateFSubFMF(Y, X, &I);
1492
1493  // Similar to above, but look through fmul/fdiv for the negated term.
1494  // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants]
1495  Value *Z;
1496  if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))),
1497                         m_Value(Z)))) {
1498    Value *XY = Builder.CreateFMulFMF(X, Y, &I);
1499    return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1500  }
1501  // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants]
1502  // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants]
1503  if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))),
1504                         m_Value(Z))) ||
1505      match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))),
1506                         m_Value(Z)))) {
1507    Value *XY = Builder.CreateFDivFMF(X, Y, &I);
1508    return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1509  }
1510
1511  // Check for (fadd double (sitofp x), y), see if we can merge this into an
1512  // integer add followed by a promotion.
1513  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1514  if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1515    Value *LHSIntVal = LHSConv->getOperand(0);
1516    Type *FPType = LHSConv->getType();
1517
1518    // TODO: This check is overly conservative. In many cases known bits
1519    // analysis can tell us that the result of the addition has less significant
1520    // bits than the integer type can hold.
1521    auto IsValidPromotion = [](Type *FTy, Type *ITy) {
1522      Type *FScalarTy = FTy->getScalarType();
1523      Type *IScalarTy = ITy->getScalarType();
1524
1525      // Do we have enough bits in the significand to represent the result of
1526      // the integer addition?
1527      unsigned MaxRepresentableBits =
1528          APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
1529      return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
1530    };
1531
1532    // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1533    // ... if the constant fits in the integer value.  This is useful for things
1534    // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1535    // requires a constant pool load, and generally allows the add to be better
1536    // instcombined.
1537    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
1538      if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1539        Constant *CI =
1540          ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
1541        if (LHSConv->hasOneUse() &&
1542            ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1543            willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
1544          // Insert the new integer add.
1545          Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
1546          return new SIToFPInst(NewAdd, I.getType());
1547        }
1548      }
1549
1550    // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1551    if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1552      Value *RHSIntVal = RHSConv->getOperand(0);
1553      // It's enough to check LHS types only because we require int types to
1554      // be the same for this transform.
1555      if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1556        // Only do this if x/y have the same type, if at least one of them has a
1557        // single use (so we don't increase the number of int->fp conversions),
1558        // and if the integer add will not overflow.
1559        if (LHSIntVal->getType() == RHSIntVal->getType() &&
1560            (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1561            willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
1562          // Insert the new integer add.
1563          Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
1564          return new SIToFPInst(NewAdd, I.getType());
1565        }
1566      }
1567    }
1568  }
1569
1570  // Handle specials cases for FAdd with selects feeding the operation
1571  if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
1572    return replaceInstUsesWith(I, V);
1573
1574  if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1575    if (Instruction *F = factorizeFAddFSub(I, Builder))
1576      return F;
1577    if (Value *V = FAddCombine(Builder).simplify(&I))
1578      return replaceInstUsesWith(I, V);
1579  }
1580
1581  return nullptr;
1582}
1583
1584/// Optimize pointer differences into the same array into a size.  Consider:
1585///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1586/// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1587Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
1588                                               Type *Ty, bool IsNUW) {
1589  // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1590  // this.
1591  bool Swapped = false;
1592  GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1593
1594  // For now we require one side to be the base pointer "A" or a constant
1595  // GEP derived from it.
1596  if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1597    // (gep X, ...) - X
1598    if (LHSGEP->getOperand(0) == RHS) {
1599      GEP1 = LHSGEP;
1600      Swapped = false;
1601    } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1602      // (gep X, ...) - (gep X, ...)
1603      if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1604            RHSGEP->getOperand(0)->stripPointerCasts()) {
1605        GEP2 = RHSGEP;
1606        GEP1 = LHSGEP;
1607        Swapped = false;
1608      }
1609    }
1610  }
1611
1612  if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1613    // X - (gep X, ...)
1614    if (RHSGEP->getOperand(0) == LHS) {
1615      GEP1 = RHSGEP;
1616      Swapped = true;
1617    } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1618      // (gep X, ...) - (gep X, ...)
1619      if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1620            LHSGEP->getOperand(0)->stripPointerCasts()) {
1621        GEP2 = LHSGEP;
1622        GEP1 = RHSGEP;
1623        Swapped = true;
1624      }
1625    }
1626  }
1627
1628  if (!GEP1)
1629    // No GEP found.
1630    return nullptr;
1631
1632  if (GEP2) {
1633    // (gep X, ...) - (gep X, ...)
1634    //
1635    // Avoid duplicating the arithmetic if there are more than one non-constant
1636    // indices between the two GEPs and either GEP has a non-constant index and
1637    // multiple users. If zero non-constant index, the result is a constant and
1638    // there is no duplication. If one non-constant index, the result is an add
1639    // or sub with a constant, which is no larger than the original code, and
1640    // there's no duplicated arithmetic, even if either GEP has multiple
1641    // users. If more than one non-constant indices combined, as long as the GEP
1642    // with at least one non-constant index doesn't have multiple users, there
1643    // is no duplication.
1644    unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
1645    unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
1646    if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
1647        ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
1648         (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
1649      return nullptr;
1650    }
1651  }
1652
1653  // Emit the offset of the GEP and an intptr_t.
1654  Value *Result = EmitGEPOffset(GEP1);
1655
1656  // If this is a single inbounds GEP and the original sub was nuw,
1657  // then the final multiplication is also nuw. We match an extra add zero
1658  // here, because that's what EmitGEPOffset() generates.
1659  Instruction *I;
1660  if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() &&
1661      match(Result, m_Add(m_Instruction(I), m_Zero())) &&
1662      I->getOpcode() == Instruction::Mul)
1663    I->setHasNoUnsignedWrap();
1664
1665  // If we had a constant expression GEP on the other side offsetting the
1666  // pointer, subtract it from the offset we have.
1667  if (GEP2) {
1668    Value *Offset = EmitGEPOffset(GEP2);
1669    Result = Builder.CreateSub(Result, Offset);
1670  }
1671
1672  // If we have p - gep(p, ...)  then we have to negate the result.
1673  if (Swapped)
1674    Result = Builder.CreateNeg(Result, "diff.neg");
1675
1676  return Builder.CreateIntCast(Result, Ty, true);
1677}
1678
1679Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1680  if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1),
1681                                 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1682                                 SQ.getWithInstruction(&I)))
1683    return replaceInstUsesWith(I, V);
1684
1685  if (Instruction *X = foldVectorBinop(I))
1686    return X;
1687
1688  // (A*B)-(A*C) -> A*(B-C) etc
1689  if (Value *V = SimplifyUsingDistributiveLaws(I))
1690    return replaceInstUsesWith(I, V);
1691
1692  // If this is a 'B = x-(-A)', change to B = x+A.
1693  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1694  if (Value *V = dyn_castNegVal(Op1)) {
1695    BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1696
1697    if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1698      assert(BO->getOpcode() == Instruction::Sub &&
1699             "Expected a subtraction operator!");
1700      if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1701        Res->setHasNoSignedWrap(true);
1702    } else {
1703      if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1704        Res->setHasNoSignedWrap(true);
1705    }
1706
1707    return Res;
1708  }
1709
1710  if (I.getType()->isIntOrIntVectorTy(1))
1711    return BinaryOperator::CreateXor(Op0, Op1);
1712
1713  // Replace (-1 - A) with (~A).
1714  if (match(Op0, m_AllOnes()))
1715    return BinaryOperator::CreateNot(Op1);
1716
1717  // (~X) - (~Y) --> Y - X
1718  Value *X, *Y;
1719  if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y))))
1720    return BinaryOperator::CreateSub(Y, X);
1721
1722  // (X + -1) - Y --> ~Y + X
1723  if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
1724    return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
1725
1726  // Y - (X + 1) --> ~X + Y
1727  if (match(Op1, m_OneUse(m_Add(m_Value(X), m_One()))))
1728    return BinaryOperator::CreateAdd(Builder.CreateNot(X), Op0);
1729
1730  // Y - ~X --> (X + 1) + Y
1731  if (match(Op1, m_OneUse(m_Not(m_Value(X))))) {
1732    return BinaryOperator::CreateAdd(
1733        Builder.CreateAdd(Op0, ConstantInt::get(I.getType(), 1)), X);
1734  }
1735
1736  if (Constant *C = dyn_cast<Constant>(Op0)) {
1737    bool IsNegate = match(C, m_ZeroInt());
1738    Value *X;
1739    if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1740      // 0 - (zext bool) --> sext bool
1741      // C - (zext bool) --> bool ? C - 1 : C
1742      if (IsNegate)
1743        return CastInst::CreateSExtOrBitCast(X, I.getType());
1744      return SelectInst::Create(X, SubOne(C), C);
1745    }
1746    if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1747      // 0 - (sext bool) --> zext bool
1748      // C - (sext bool) --> bool ? C + 1 : C
1749      if (IsNegate)
1750        return CastInst::CreateZExtOrBitCast(X, I.getType());
1751      return SelectInst::Create(X, AddOne(C), C);
1752    }
1753
1754    // C - ~X == X + (1+C)
1755    if (match(Op1, m_Not(m_Value(X))))
1756      return BinaryOperator::CreateAdd(X, AddOne(C));
1757
1758    // Try to fold constant sub into select arguments.
1759    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1760      if (Instruction *R = FoldOpIntoSelect(I, SI))
1761        return R;
1762
1763    // Try to fold constant sub into PHI values.
1764    if (PHINode *PN = dyn_cast<PHINode>(Op1))
1765      if (Instruction *R = foldOpIntoPhi(I, PN))
1766        return R;
1767
1768    Constant *C2;
1769
1770    // C-(C2-X) --> X+(C-C2)
1771    if (match(Op1, m_Sub(m_Constant(C2), m_Value(X))) && !isa<ConstantExpr>(C2))
1772      return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));
1773
1774    // C-(X+C2) --> (C-C2)-X
1775    if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
1776      return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1777  }
1778
1779  const APInt *Op0C;
1780  if (match(Op0, m_APInt(Op0C))) {
1781
1782    if (Op0C->isNullValue()) {
1783      Value *Op1Wide;
1784      match(Op1, m_TruncOrSelf(m_Value(Op1Wide)));
1785      bool HadTrunc = Op1Wide != Op1;
1786      bool NoTruncOrTruncIsOneUse = !HadTrunc || Op1->hasOneUse();
1787      unsigned BitWidth = Op1Wide->getType()->getScalarSizeInBits();
1788
1789      Value *X;
1790      const APInt *ShAmt;
1791      // -(X >>u 31) -> (X >>s 31)
1792      if (NoTruncOrTruncIsOneUse &&
1793          match(Op1Wide, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1794          *ShAmt == BitWidth - 1) {
1795        Value *ShAmtOp = cast<Instruction>(Op1Wide)->getOperand(1);
1796        Instruction *NewShift = BinaryOperator::CreateAShr(X, ShAmtOp);
1797        NewShift->copyIRFlags(Op1Wide);
1798        if (!HadTrunc)
1799          return NewShift;
1800        Builder.Insert(NewShift);
1801        return TruncInst::CreateTruncOrBitCast(NewShift, Op1->getType());
1802      }
1803      // -(X >>s 31) -> (X >>u 31)
1804      if (NoTruncOrTruncIsOneUse &&
1805          match(Op1Wide, m_AShr(m_Value(X), m_APInt(ShAmt))) &&
1806          *ShAmt == BitWidth - 1) {
1807        Value *ShAmtOp = cast<Instruction>(Op1Wide)->getOperand(1);
1808        Instruction *NewShift = BinaryOperator::CreateLShr(X, ShAmtOp);
1809        NewShift->copyIRFlags(Op1Wide);
1810        if (!HadTrunc)
1811          return NewShift;
1812        Builder.Insert(NewShift);
1813        return TruncInst::CreateTruncOrBitCast(NewShift, Op1->getType());
1814      }
1815
1816      if (!HadTrunc && Op1->hasOneUse()) {
1817        Value *LHS, *RHS;
1818        SelectPatternFlavor SPF = matchSelectPattern(Op1, LHS, RHS).Flavor;
1819        if (SPF == SPF_ABS || SPF == SPF_NABS) {
1820          // This is a negate of an ABS/NABS pattern. Just swap the operands
1821          // of the select.
1822          cast<SelectInst>(Op1)->swapValues();
1823          // Don't swap prof metadata, we didn't change the branch behavior.
1824          return replaceInstUsesWith(I, Op1);
1825        }
1826      }
1827    }
1828
1829    // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
1830    // zero.
1831    if (Op0C->isMask()) {
1832      KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
1833      if ((*Op0C | RHSKnown.Zero).isAllOnesValue())
1834        return BinaryOperator::CreateXor(Op1, Op0);
1835    }
1836  }
1837
1838  {
1839    Value *Y;
1840    // X-(X+Y) == -Y    X-(Y+X) == -Y
1841    if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
1842      return BinaryOperator::CreateNeg(Y);
1843
1844    // (X-Y)-X == -Y
1845    if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1846      return BinaryOperator::CreateNeg(Y);
1847  }
1848
1849  // (sub (or A, B) (and A, B)) --> (xor A, B)
1850  {
1851    Value *A, *B;
1852    if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1853        match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1854      return BinaryOperator::CreateXor(A, B);
1855  }
1856
1857  // (sub (and A, B) (or A, B)) --> neg (xor A, B)
1858  {
1859    Value *A, *B;
1860    if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1861        match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
1862        (Op0->hasOneUse() || Op1->hasOneUse()))
1863      return BinaryOperator::CreateNeg(Builder.CreateXor(A, B));
1864  }
1865
1866  // (sub (or A, B), (xor A, B)) --> (and A, B)
1867  {
1868    Value *A, *B;
1869    if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1870        match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1871      return BinaryOperator::CreateAnd(A, B);
1872  }
1873
1874  // (sub (xor A, B) (or A, B)) --> neg (and A, B)
1875  {
1876    Value *A, *B;
1877    if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1878        match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
1879        (Op0->hasOneUse() || Op1->hasOneUse()))
1880      return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B));
1881  }
1882
1883  {
1884    Value *Y;
1885    // ((X | Y) - X) --> (~X & Y)
1886    if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
1887      return BinaryOperator::CreateAnd(
1888          Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
1889  }
1890
1891  {
1892    // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1))
1893    Value *X;
1894    if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1),
1895                                    m_OneUse(m_Neg(m_Value(X))))))) {
1896      return BinaryOperator::CreateNeg(Builder.CreateAnd(
1897          Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType()))));
1898    }
1899  }
1900
1901  {
1902    // (sub (and Op1, C), Op1) --> neg (and Op1, ~C)
1903    Constant *C;
1904    if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) {
1905      return BinaryOperator::CreateNeg(
1906          Builder.CreateAnd(Op1, Builder.CreateNot(C)));
1907    }
1908  }
1909
1910  {
1911    // If we have a subtraction between some value and a select between
1912    // said value and something else, sink subtraction into select hands, i.e.:
1913    //   sub (select %Cond, %TrueVal, %FalseVal), %Op1
1914    //     ->
1915    //   select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1)
1916    //  or
1917    //   sub %Op0, (select %Cond, %TrueVal, %FalseVal)
1918    //     ->
1919    //   select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal)
1920    // This will result in select between new subtraction and 0.
1921    auto SinkSubIntoSelect =
1922        [Ty = I.getType()](Value *Select, Value *OtherHandOfSub,
1923                           auto SubBuilder) -> Instruction * {
1924      Value *Cond, *TrueVal, *FalseVal;
1925      if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal),
1926                                           m_Value(FalseVal)))))
1927        return nullptr;
1928      if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal)
1929        return nullptr;
1930      // While it is really tempting to just create two subtractions and let
1931      // InstCombine fold one of those to 0, it isn't possible to do so
1932      // because of worklist visitation order. So ugly it is.
1933      bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal;
1934      Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal);
1935      Constant *Zero = Constant::getNullValue(Ty);
1936      SelectInst *NewSel =
1937          SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub,
1938                             OtherHandOfSubIsTrueVal ? NewSub : Zero);
1939      // Preserve prof metadata if any.
1940      NewSel->copyMetadata(cast<Instruction>(*Select));
1941      return NewSel;
1942    };
1943    if (Instruction *NewSel = SinkSubIntoSelect(
1944            /*Select=*/Op0, /*OtherHandOfSub=*/Op1,
1945            [Builder = &Builder, Op1](Value *OtherHandOfSelect) {
1946              return Builder->CreateSub(OtherHandOfSelect,
1947                                        /*OtherHandOfSub=*/Op1);
1948            }))
1949      return NewSel;
1950    if (Instruction *NewSel = SinkSubIntoSelect(
1951            /*Select=*/Op1, /*OtherHandOfSub=*/Op0,
1952            [Builder = &Builder, Op0](Value *OtherHandOfSelect) {
1953              return Builder->CreateSub(/*OtherHandOfSub=*/Op0,
1954                                        OtherHandOfSelect);
1955            }))
1956      return NewSel;
1957  }
1958
1959  if (Op1->hasOneUse()) {
1960    Value *X = nullptr, *Y = nullptr, *Z = nullptr;
1961    Constant *C = nullptr;
1962
1963    // (X - (Y - Z))  -->  (X + (Z - Y)).
1964    if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
1965      return BinaryOperator::CreateAdd(Op0,
1966                                      Builder.CreateSub(Z, Y, Op1->getName()));
1967
1968    // (X - (X & Y))   -->   (X & ~Y)
1969    if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0))))
1970      return BinaryOperator::CreateAnd(Op0,
1971                                  Builder.CreateNot(Y, Y->getName() + ".not"));
1972
1973    // 0 - (X sdiv C)  -> (X sdiv -C)  provided the negation doesn't overflow.
1974    if (match(Op0, m_Zero())) {
1975      Constant *Op11C;
1976      if (match(Op1, m_SDiv(m_Value(X), m_Constant(Op11C))) &&
1977          !Op11C->containsUndefElement() && Op11C->isNotMinSignedValue() &&
1978          Op11C->isNotOneValue()) {
1979        Instruction *BO =
1980            BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(Op11C));
1981        BO->setIsExact(cast<BinaryOperator>(Op1)->isExact());
1982        return BO;
1983      }
1984    }
1985
1986    // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
1987    if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
1988      if (Value *XNeg = dyn_castNegVal(X))
1989        return BinaryOperator::CreateShl(XNeg, Y);
1990
1991    // Subtracting -1/0 is the same as adding 1/0:
1992    // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y)
1993    // 'nuw' is dropped in favor of the canonical form.
1994    if (match(Op1, m_SExt(m_Value(Y))) &&
1995        Y->getType()->getScalarSizeInBits() == 1) {
1996      Value *Zext = Builder.CreateZExt(Y, I.getType());
1997      BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext);
1998      Add->setHasNoSignedWrap(I.hasNoSignedWrap());
1999      return Add;
2000    }
2001    // sub [nsw] X, zext(bool Y) -> add [nsw] X, sext(bool Y)
2002    // 'nuw' is dropped in favor of the canonical form.
2003    if (match(Op1, m_ZExt(m_Value(Y))) && Y->getType()->isIntOrIntVectorTy(1)) {
2004      Value *Sext = Builder.CreateSExt(Y, I.getType());
2005      BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Sext);
2006      Add->setHasNoSignedWrap(I.hasNoSignedWrap());
2007      return Add;
2008    }
2009
2010    // X - A*-B -> X + A*B
2011    // X - -A*B -> X + A*B
2012    Value *A, *B;
2013    if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B)))))
2014      return BinaryOperator::CreateAdd(Op0, Builder.CreateMul(A, B));
2015
2016    // X - A*C -> X + A*-C
2017    // No need to handle commuted multiply because multiply handling will
2018    // ensure constant will be move to the right hand side.
2019    if (match(Op1, m_Mul(m_Value(A), m_Constant(C))) && !isa<ConstantExpr>(C)) {
2020      Value *NewMul = Builder.CreateMul(A, ConstantExpr::getNeg(C));
2021      return BinaryOperator::CreateAdd(Op0, NewMul);
2022    }
2023  }
2024
2025  {
2026    // ~A - Min/Max(~A, O) -> Max/Min(A, ~O) - A
2027    // ~A - Min/Max(O, ~A) -> Max/Min(A, ~O) - A
2028    // Min/Max(~A, O) - ~A -> A - Max/Min(A, ~O)
2029    // Min/Max(O, ~A) - ~A -> A - Max/Min(A, ~O)
2030    // So long as O here is freely invertible, this will be neutral or a win.
2031    Value *LHS, *RHS, *A;
2032    Value *NotA = Op0, *MinMax = Op1;
2033    SelectPatternFlavor SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
2034    if (!SelectPatternResult::isMinOrMax(SPF)) {
2035      NotA = Op1;
2036      MinMax = Op0;
2037      SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
2038    }
2039    if (SelectPatternResult::isMinOrMax(SPF) &&
2040        match(NotA, m_Not(m_Value(A))) && (NotA == LHS || NotA == RHS)) {
2041      if (NotA == LHS)
2042        std::swap(LHS, RHS);
2043      // LHS is now O above and expected to have at least 2 uses (the min/max)
2044      // NotA is epected to have 2 uses from the min/max and 1 from the sub.
2045      if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) &&
2046          !NotA->hasNUsesOrMore(4)) {
2047        // Note: We don't generate the inverse max/min, just create the not of
2048        // it and let other folds do the rest.
2049        Value *Not = Builder.CreateNot(MinMax);
2050        if (NotA == Op0)
2051          return BinaryOperator::CreateSub(Not, A);
2052        else
2053          return BinaryOperator::CreateSub(A, Not);
2054      }
2055    }
2056  }
2057
2058  // Optimize pointer differences into the same array into a size.  Consider:
2059  //  &A[10] - &A[0]: we should compile this to "10".
2060  Value *LHSOp, *RHSOp;
2061  if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
2062      match(Op1, m_PtrToInt(m_Value(RHSOp))))
2063    if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2064                                               I.hasNoUnsignedWrap()))
2065      return replaceInstUsesWith(I, Res);
2066
2067  // trunc(p)-trunc(q) -> trunc(p-q)
2068  if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
2069      match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
2070    if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2071                                               /* IsNUW */ false))
2072      return replaceInstUsesWith(I, Res);
2073
2074  // Canonicalize a shifty way to code absolute value to the common pattern.
2075  // There are 2 potential commuted variants.
2076  // We're relying on the fact that we only do this transform when the shift has
2077  // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
2078  // instructions).
2079  Value *A;
2080  const APInt *ShAmt;
2081  Type *Ty = I.getType();
2082  if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
2083      Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
2084      match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
2085    // B = ashr i32 A, 31 ; smear the sign bit
2086    // sub (xor A, B), B  ; flip bits if negative and subtract -1 (add 1)
2087    // --> (A < 0) ? -A : A
2088    Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
2089    // Copy the nuw/nsw flags from the sub to the negate.
2090    Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(),
2091                                   I.hasNoSignedWrap());
2092    return SelectInst::Create(Cmp, Neg, A);
2093  }
2094
2095  if (Instruction *V =
2096          canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
2097    return V;
2098
2099  if (Instruction *Ext = narrowMathIfNoOverflow(I))
2100    return Ext;
2101
2102  bool Changed = false;
2103  if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
2104    Changed = true;
2105    I.setHasNoSignedWrap(true);
2106  }
2107  if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
2108    Changed = true;
2109    I.setHasNoUnsignedWrap(true);
2110  }
2111
2112  return Changed ? &I : nullptr;
2113}
2114
2115/// This eliminates floating-point negation in either 'fneg(X)' or
2116/// 'fsub(-0.0, X)' form by combining into a constant operand.
2117static Instruction *foldFNegIntoConstant(Instruction &I) {
2118  Value *X;
2119  Constant *C;
2120
2121  // Fold negation into constant operand. This is limited with one-use because
2122  // fneg is assumed better for analysis and cheaper in codegen than fmul/fdiv.
2123  // -(X * C) --> X * (-C)
2124  // FIXME: It's arguable whether these should be m_OneUse or not. The current
2125  // belief is that the FNeg allows for better reassociation opportunities.
2126  if (match(&I, m_FNeg(m_OneUse(m_FMul(m_Value(X), m_Constant(C))))))
2127    return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
2128  // -(X / C) --> X / (-C)
2129  if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Value(X), m_Constant(C))))))
2130    return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
2131  // -(C / X) --> (-C) / X
2132  if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Constant(C), m_Value(X))))))
2133    return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
2134
2135  return nullptr;
2136}
2137
2138static Instruction *hoistFNegAboveFMulFDiv(Instruction &I,
2139                                           InstCombiner::BuilderTy &Builder) {
2140  Value *FNeg;
2141  if (!match(&I, m_FNeg(m_Value(FNeg))))
2142    return nullptr;
2143
2144  Value *X, *Y;
2145  if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y)))))
2146    return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
2147
2148  if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))))
2149    return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
2150
2151  return nullptr;
2152}
2153
2154Instruction *InstCombiner::visitFNeg(UnaryOperator &I) {
2155  Value *Op = I.getOperand(0);
2156
2157  if (Value *V = SimplifyFNegInst(Op, I.getFastMathFlags(),
2158                                  SQ.getWithInstruction(&I)))
2159    return replaceInstUsesWith(I, V);
2160
2161  if (Instruction *X = foldFNegIntoConstant(I))
2162    return X;
2163
2164  Value *X, *Y;
2165
2166  // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
2167  if (I.hasNoSignedZeros() &&
2168      match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y)))))
2169    return BinaryOperator::CreateFSubFMF(Y, X, &I);
2170
2171  if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
2172    return R;
2173
2174  return nullptr;
2175}
2176
2177Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
2178  if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1),
2179                                  I.getFastMathFlags(),
2180                                  SQ.getWithInstruction(&I)))
2181    return replaceInstUsesWith(I, V);
2182
2183  if (Instruction *X = foldVectorBinop(I))
2184    return X;
2185
2186  // Subtraction from -0.0 is the canonical form of fneg.
2187  // fsub nsz 0, X ==> fsub nsz -0.0, X
2188  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2189  if (I.hasNoSignedZeros() && match(Op0, m_PosZeroFP()))
2190    return BinaryOperator::CreateFNegFMF(Op1, &I);
2191
2192  if (Instruction *X = foldFNegIntoConstant(I))
2193    return X;
2194
2195  if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
2196    return R;
2197
2198  Value *X, *Y;
2199  Constant *C;
2200
2201  // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
2202  // Canonicalize to fadd to make analysis easier.
2203  // This can also help codegen because fadd is commutative.
2204  // Note that if this fsub was really an fneg, the fadd with -0.0 will get
2205  // killed later. We still limit that particular transform with 'hasOneUse'
2206  // because an fneg is assumed better/cheaper than a generic fsub.
2207  if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) {
2208    if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2209      Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
2210      return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
2211    }
2212  }
2213
2214  if (isa<Constant>(Op0))
2215    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2216      if (Instruction *NV = FoldOpIntoSelect(I, SI))
2217        return NV;
2218
2219  // X - C --> X + (-C)
2220  // But don't transform constant expressions because there's an inverse fold
2221  // for X + (-Y) --> X - Y.
2222  if (match(Op1, m_Constant(C)) && !isa<ConstantExpr>(Op1))
2223    return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I);
2224
2225  // X - (-Y) --> X + Y
2226  if (match(Op1, m_FNeg(m_Value(Y))))
2227    return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
2228
2229  // Similar to above, but look through a cast of the negated value:
2230  // X - (fptrunc(-Y)) --> X + fptrunc(Y)
2231  Type *Ty = I.getType();
2232  if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
2233    return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
2234
2235  // X - (fpext(-Y)) --> X + fpext(Y)
2236  if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
2237    return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
2238
2239  // Similar to above, but look through fmul/fdiv of the negated value:
2240  // Op0 - (-X * Y) --> Op0 + (X * Y)
2241  // Op0 - (Y * -X) --> Op0 + (X * Y)
2242  if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) {
2243    Value *FMul = Builder.CreateFMulFMF(X, Y, &I);
2244    return BinaryOperator::CreateFAddFMF(Op0, FMul, &I);
2245  }
2246  // Op0 - (-X / Y) --> Op0 + (X / Y)
2247  // Op0 - (X / -Y) --> Op0 + (X / Y)
2248  if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) ||
2249      match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) {
2250    Value *FDiv = Builder.CreateFDivFMF(X, Y, &I);
2251    return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I);
2252  }
2253
2254  // Handle special cases for FSub with selects feeding the operation
2255  if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
2256    return replaceInstUsesWith(I, V);
2257
2258  if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
2259    // (Y - X) - Y --> -X
2260    if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
2261      return BinaryOperator::CreateFNegFMF(X, &I);
2262
2263    // Y - (X + Y) --> -X
2264    // Y - (Y + X) --> -X
2265    if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
2266      return BinaryOperator::CreateFNegFMF(X, &I);
2267
2268    // (X * C) - X --> X * (C - 1.0)
2269    if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
2270      Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0));
2271      return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
2272    }
2273    // X - (X * C) --> X * (1.0 - C)
2274    if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
2275      Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C);
2276      return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
2277    }
2278
2279    if (Instruction *F = factorizeFAddFSub(I, Builder))
2280      return F;
2281
2282    // TODO: This performs reassociative folds for FP ops. Some fraction of the
2283    // functionality has been subsumed by simple pattern matching here and in
2284    // InstSimplify. We should let a dedicated reassociation pass handle more
2285    // complex pattern matching and remove this from InstCombine.
2286    if (Value *V = FAddCombine(Builder).simplify(&I))
2287      return replaceInstUsesWith(I, V);
2288  }
2289
2290  return nullptr;
2291}
2292