InstCombineAddSub.cpp revision 353358
1//===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visit functions for add, fadd, sub, and fsub.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/ADT/APFloat.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/Analysis/InstructionSimplify.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/IR/Constant.h"
21#include "llvm/IR/Constants.h"
22#include "llvm/IR/InstrTypes.h"
23#include "llvm/IR/Instruction.h"
24#include "llvm/IR/Instructions.h"
25#include "llvm/IR/Operator.h"
26#include "llvm/IR/PatternMatch.h"
27#include "llvm/IR/Type.h"
28#include "llvm/IR/Value.h"
29#include "llvm/Support/AlignOf.h"
30#include "llvm/Support/Casting.h"
31#include "llvm/Support/KnownBits.h"
32#include <cassert>
33#include <utility>
34
35using namespace llvm;
36using namespace PatternMatch;
37
38#define DEBUG_TYPE "instcombine"
39
40namespace {
41
42  /// Class representing coefficient of floating-point addend.
43  /// This class needs to be highly efficient, which is especially true for
44  /// the constructor. As of I write this comment, the cost of the default
45  /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
46  /// perform write-merging).
47  ///
48  class FAddendCoef {
49  public:
50    // The constructor has to initialize a APFloat, which is unnecessary for
51    // most addends which have coefficient either 1 or -1. So, the constructor
52    // is expensive. In order to avoid the cost of the constructor, we should
53    // reuse some instances whenever possible. The pre-created instances
54    // FAddCombine::Add[0-5] embodies this idea.
55    FAddendCoef() = default;
56    ~FAddendCoef();
57
58    // If possible, don't define operator+/operator- etc because these
59    // operators inevitably call FAddendCoef's constructor which is not cheap.
60    void operator=(const FAddendCoef &A);
61    void operator+=(const FAddendCoef &A);
62    void operator*=(const FAddendCoef &S);
63
64    void set(short C) {
65      assert(!insaneIntVal(C) && "Insane coefficient");
66      IsFp = false; IntVal = C;
67    }
68
69    void set(const APFloat& C);
70
71    void negate();
72
73    bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
74    Value *getValue(Type *) const;
75
76    bool isOne() const { return isInt() && IntVal == 1; }
77    bool isTwo() const { return isInt() && IntVal == 2; }
78    bool isMinusOne() const { return isInt() && IntVal == -1; }
79    bool isMinusTwo() const { return isInt() && IntVal == -2; }
80
81  private:
82    bool insaneIntVal(int V) { return V > 4 || V < -4; }
83
84    APFloat *getFpValPtr()
85      { return reinterpret_cast<APFloat *>(&FpValBuf.buffer[0]); }
86
87    const APFloat *getFpValPtr() const
88      { return reinterpret_cast<const APFloat *>(&FpValBuf.buffer[0]); }
89
90    const APFloat &getFpVal() const {
91      assert(IsFp && BufHasFpVal && "Incorret state");
92      return *getFpValPtr();
93    }
94
95    APFloat &getFpVal() {
96      assert(IsFp && BufHasFpVal && "Incorret state");
97      return *getFpValPtr();
98    }
99
100    bool isInt() const { return !IsFp; }
101
102    // If the coefficient is represented by an integer, promote it to a
103    // floating point.
104    void convertToFpType(const fltSemantics &Sem);
105
106    // Construct an APFloat from a signed integer.
107    // TODO: We should get rid of this function when APFloat can be constructed
108    //       from an *SIGNED* integer.
109    APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
110
111    bool IsFp = false;
112
113    // True iff FpValBuf contains an instance of APFloat.
114    bool BufHasFpVal = false;
115
116    // The integer coefficient of an individual addend is either 1 or -1,
117    // and we try to simplify at most 4 addends from neighboring at most
118    // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
119    // is overkill of this end.
120    short IntVal = 0;
121
122    AlignedCharArrayUnion<APFloat> FpValBuf;
123  };
124
125  /// FAddend is used to represent floating-point addend. An addend is
126  /// represented as <C, V>, where the V is a symbolic value, and C is a
127  /// constant coefficient. A constant addend is represented as <C, 0>.
128  class FAddend {
129  public:
130    FAddend() = default;
131
132    void operator+=(const FAddend &T) {
133      assert((Val == T.Val) && "Symbolic-values disagree");
134      Coeff += T.Coeff;
135    }
136
137    Value *getSymVal() const { return Val; }
138    const FAddendCoef &getCoef() const { return Coeff; }
139
140    bool isConstant() const { return Val == nullptr; }
141    bool isZero() const { return Coeff.isZero(); }
142
143    void set(short Coefficient, Value *V) {
144      Coeff.set(Coefficient);
145      Val = V;
146    }
147    void set(const APFloat &Coefficient, Value *V) {
148      Coeff.set(Coefficient);
149      Val = V;
150    }
151    void set(const ConstantFP *Coefficient, Value *V) {
152      Coeff.set(Coefficient->getValueAPF());
153      Val = V;
154    }
155
156    void negate() { Coeff.negate(); }
157
158    /// Drill down the U-D chain one step to find the definition of V, and
159    /// try to break the definition into one or two addends.
160    static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
161
162    /// Similar to FAddend::drillDownOneStep() except that the value being
163    /// splitted is the addend itself.
164    unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
165
166  private:
167    void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
168
169    // This addend has the value of "Coeff * Val".
170    Value *Val = nullptr;
171    FAddendCoef Coeff;
172  };
173
174  /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
175  /// with its neighboring at most two instructions.
176  ///
177  class FAddCombine {
178  public:
179    FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
180
181    Value *simplify(Instruction *FAdd);
182
183  private:
184    using AddendVect = SmallVector<const FAddend *, 4>;
185
186    Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
187
188    /// Convert given addend to a Value
189    Value *createAddendVal(const FAddend &A, bool& NeedNeg);
190
191    /// Return the number of instructions needed to emit the N-ary addition.
192    unsigned calcInstrNumber(const AddendVect& Vect);
193
194    Value *createFSub(Value *Opnd0, Value *Opnd1);
195    Value *createFAdd(Value *Opnd0, Value *Opnd1);
196    Value *createFMul(Value *Opnd0, Value *Opnd1);
197    Value *createFNeg(Value *V);
198    Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
199    void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
200
201     // Debugging stuff are clustered here.
202    #ifndef NDEBUG
203      unsigned CreateInstrNum;
204      void initCreateInstNum() { CreateInstrNum = 0; }
205      void incCreateInstNum() { CreateInstrNum++; }
206    #else
207      void initCreateInstNum() {}
208      void incCreateInstNum() {}
209    #endif
210
211    InstCombiner::BuilderTy &Builder;
212    Instruction *Instr = nullptr;
213  };
214
215} // end anonymous namespace
216
217//===----------------------------------------------------------------------===//
218//
219// Implementation of
220//    {FAddendCoef, FAddend, FAddition, FAddCombine}.
221//
222//===----------------------------------------------------------------------===//
223FAddendCoef::~FAddendCoef() {
224  if (BufHasFpVal)
225    getFpValPtr()->~APFloat();
226}
227
228void FAddendCoef::set(const APFloat& C) {
229  APFloat *P = getFpValPtr();
230
231  if (isInt()) {
232    // As the buffer is meanless byte stream, we cannot call
233    // APFloat::operator=().
234    new(P) APFloat(C);
235  } else
236    *P = C;
237
238  IsFp = BufHasFpVal = true;
239}
240
241void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
242  if (!isInt())
243    return;
244
245  APFloat *P = getFpValPtr();
246  if (IntVal > 0)
247    new(P) APFloat(Sem, IntVal);
248  else {
249    new(P) APFloat(Sem, 0 - IntVal);
250    P->changeSign();
251  }
252  IsFp = BufHasFpVal = true;
253}
254
255APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
256  if (Val >= 0)
257    return APFloat(Sem, Val);
258
259  APFloat T(Sem, 0 - Val);
260  T.changeSign();
261
262  return T;
263}
264
265void FAddendCoef::operator=(const FAddendCoef &That) {
266  if (That.isInt())
267    set(That.IntVal);
268  else
269    set(That.getFpVal());
270}
271
272void FAddendCoef::operator+=(const FAddendCoef &That) {
273  enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
274  if (isInt() == That.isInt()) {
275    if (isInt())
276      IntVal += That.IntVal;
277    else
278      getFpVal().add(That.getFpVal(), RndMode);
279    return;
280  }
281
282  if (isInt()) {
283    const APFloat &T = That.getFpVal();
284    convertToFpType(T.getSemantics());
285    getFpVal().add(T, RndMode);
286    return;
287  }
288
289  APFloat &T = getFpVal();
290  T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
291}
292
293void FAddendCoef::operator*=(const FAddendCoef &That) {
294  if (That.isOne())
295    return;
296
297  if (That.isMinusOne()) {
298    negate();
299    return;
300  }
301
302  if (isInt() && That.isInt()) {
303    int Res = IntVal * (int)That.IntVal;
304    assert(!insaneIntVal(Res) && "Insane int value");
305    IntVal = Res;
306    return;
307  }
308
309  const fltSemantics &Semantic =
310    isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
311
312  if (isInt())
313    convertToFpType(Semantic);
314  APFloat &F0 = getFpVal();
315
316  if (That.isInt())
317    F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
318                APFloat::rmNearestTiesToEven);
319  else
320    F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
321}
322
323void FAddendCoef::negate() {
324  if (isInt())
325    IntVal = 0 - IntVal;
326  else
327    getFpVal().changeSign();
328}
329
330Value *FAddendCoef::getValue(Type *Ty) const {
331  return isInt() ?
332    ConstantFP::get(Ty, float(IntVal)) :
333    ConstantFP::get(Ty->getContext(), getFpVal());
334}
335
336// The definition of <Val>     Addends
337// =========================================
338//  A + B                     <1, A>, <1,B>
339//  A - B                     <1, A>, <1,B>
340//  0 - B                     <-1, B>
341//  C * A,                    <C, A>
342//  A + C                     <1, A> <C, NULL>
343//  0 +/- 0                   <0, NULL> (corner case)
344//
345// Legend: A and B are not constant, C is constant
346unsigned FAddend::drillValueDownOneStep
347  (Value *Val, FAddend &Addend0, FAddend &Addend1) {
348  Instruction *I = nullptr;
349  if (!Val || !(I = dyn_cast<Instruction>(Val)))
350    return 0;
351
352  unsigned Opcode = I->getOpcode();
353
354  if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
355    ConstantFP *C0, *C1;
356    Value *Opnd0 = I->getOperand(0);
357    Value *Opnd1 = I->getOperand(1);
358    if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
359      Opnd0 = nullptr;
360
361    if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
362      Opnd1 = nullptr;
363
364    if (Opnd0) {
365      if (!C0)
366        Addend0.set(1, Opnd0);
367      else
368        Addend0.set(C0, nullptr);
369    }
370
371    if (Opnd1) {
372      FAddend &Addend = Opnd0 ? Addend1 : Addend0;
373      if (!C1)
374        Addend.set(1, Opnd1);
375      else
376        Addend.set(C1, nullptr);
377      if (Opcode == Instruction::FSub)
378        Addend.negate();
379    }
380
381    if (Opnd0 || Opnd1)
382      return Opnd0 && Opnd1 ? 2 : 1;
383
384    // Both operands are zero. Weird!
385    Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
386    return 1;
387  }
388
389  if (I->getOpcode() == Instruction::FMul) {
390    Value *V0 = I->getOperand(0);
391    Value *V1 = I->getOperand(1);
392    if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
393      Addend0.set(C, V1);
394      return 1;
395    }
396
397    if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
398      Addend0.set(C, V0);
399      return 1;
400    }
401  }
402
403  return 0;
404}
405
406// Try to break *this* addend into two addends. e.g. Suppose this addend is
407// <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
408// i.e. <2.3, X> and <2.3, Y>.
409unsigned FAddend::drillAddendDownOneStep
410  (FAddend &Addend0, FAddend &Addend1) const {
411  if (isConstant())
412    return 0;
413
414  unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
415  if (!BreakNum || Coeff.isOne())
416    return BreakNum;
417
418  Addend0.Scale(Coeff);
419
420  if (BreakNum == 2)
421    Addend1.Scale(Coeff);
422
423  return BreakNum;
424}
425
426Value *FAddCombine::simplify(Instruction *I) {
427  assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
428         "Expected 'reassoc'+'nsz' instruction");
429
430  // Currently we are not able to handle vector type.
431  if (I->getType()->isVectorTy())
432    return nullptr;
433
434  assert((I->getOpcode() == Instruction::FAdd ||
435          I->getOpcode() == Instruction::FSub) && "Expect add/sub");
436
437  // Save the instruction before calling other member-functions.
438  Instr = I;
439
440  FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
441
442  unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
443
444  // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
445  unsigned Opnd0_ExpNum = 0;
446  unsigned Opnd1_ExpNum = 0;
447
448  if (!Opnd0.isConstant())
449    Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
450
451  // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
452  if (OpndNum == 2 && !Opnd1.isConstant())
453    Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
454
455  // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
456  if (Opnd0_ExpNum && Opnd1_ExpNum) {
457    AddendVect AllOpnds;
458    AllOpnds.push_back(&Opnd0_0);
459    AllOpnds.push_back(&Opnd1_0);
460    if (Opnd0_ExpNum == 2)
461      AllOpnds.push_back(&Opnd0_1);
462    if (Opnd1_ExpNum == 2)
463      AllOpnds.push_back(&Opnd1_1);
464
465    // Compute instruction quota. We should save at least one instruction.
466    unsigned InstQuota = 0;
467
468    Value *V0 = I->getOperand(0);
469    Value *V1 = I->getOperand(1);
470    InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
471                 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
472
473    if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
474      return R;
475  }
476
477  if (OpndNum != 2) {
478    // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
479    // splitted into two addends, say "V = X - Y", the instruction would have
480    // been optimized into "I = Y - X" in the previous steps.
481    //
482    const FAddendCoef &CE = Opnd0.getCoef();
483    return CE.isOne() ? Opnd0.getSymVal() : nullptr;
484  }
485
486  // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
487  if (Opnd1_ExpNum) {
488    AddendVect AllOpnds;
489    AllOpnds.push_back(&Opnd0);
490    AllOpnds.push_back(&Opnd1_0);
491    if (Opnd1_ExpNum == 2)
492      AllOpnds.push_back(&Opnd1_1);
493
494    if (Value *R = simplifyFAdd(AllOpnds, 1))
495      return R;
496  }
497
498  // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
499  if (Opnd0_ExpNum) {
500    AddendVect AllOpnds;
501    AllOpnds.push_back(&Opnd1);
502    AllOpnds.push_back(&Opnd0_0);
503    if (Opnd0_ExpNum == 2)
504      AllOpnds.push_back(&Opnd0_1);
505
506    if (Value *R = simplifyFAdd(AllOpnds, 1))
507      return R;
508  }
509
510  return nullptr;
511}
512
513Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
514  unsigned AddendNum = Addends.size();
515  assert(AddendNum <= 4 && "Too many addends");
516
517  // For saving intermediate results;
518  unsigned NextTmpIdx = 0;
519  FAddend TmpResult[3];
520
521  // Points to the constant addend of the resulting simplified expression.
522  // If the resulting expr has constant-addend, this constant-addend is
523  // desirable to reside at the top of the resulting expression tree. Placing
524  // constant close to supper-expr(s) will potentially reveal some optimization
525  // opportunities in super-expr(s).
526  const FAddend *ConstAdd = nullptr;
527
528  // Simplified addends are placed <SimpVect>.
529  AddendVect SimpVect;
530
531  // The outer loop works on one symbolic-value at a time. Suppose the input
532  // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
533  // The symbolic-values will be processed in this order: x, y, z.
534  for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
535
536    const FAddend *ThisAddend = Addends[SymIdx];
537    if (!ThisAddend) {
538      // This addend was processed before.
539      continue;
540    }
541
542    Value *Val = ThisAddend->getSymVal();
543    unsigned StartIdx = SimpVect.size();
544    SimpVect.push_back(ThisAddend);
545
546    // The inner loop collects addends sharing same symbolic-value, and these
547    // addends will be later on folded into a single addend. Following above
548    // example, if the symbolic value "y" is being processed, the inner loop
549    // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
550    // be later on folded into "<b1+b2, y>".
551    for (unsigned SameSymIdx = SymIdx + 1;
552         SameSymIdx < AddendNum; SameSymIdx++) {
553      const FAddend *T = Addends[SameSymIdx];
554      if (T && T->getSymVal() == Val) {
555        // Set null such that next iteration of the outer loop will not process
556        // this addend again.
557        Addends[SameSymIdx] = nullptr;
558        SimpVect.push_back(T);
559      }
560    }
561
562    // If multiple addends share same symbolic value, fold them together.
563    if (StartIdx + 1 != SimpVect.size()) {
564      FAddend &R = TmpResult[NextTmpIdx ++];
565      R = *SimpVect[StartIdx];
566      for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
567        R += *SimpVect[Idx];
568
569      // Pop all addends being folded and push the resulting folded addend.
570      SimpVect.resize(StartIdx);
571      if (Val) {
572        if (!R.isZero()) {
573          SimpVect.push_back(&R);
574        }
575      } else {
576        // Don't push constant addend at this time. It will be the last element
577        // of <SimpVect>.
578        ConstAdd = &R;
579      }
580    }
581  }
582
583  assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
584         "out-of-bound access");
585
586  if (ConstAdd)
587    SimpVect.push_back(ConstAdd);
588
589  Value *Result;
590  if (!SimpVect.empty())
591    Result = createNaryFAdd(SimpVect, InstrQuota);
592  else {
593    // The addition is folded to 0.0.
594    Result = ConstantFP::get(Instr->getType(), 0.0);
595  }
596
597  return Result;
598}
599
600Value *FAddCombine::createNaryFAdd
601  (const AddendVect &Opnds, unsigned InstrQuota) {
602  assert(!Opnds.empty() && "Expect at least one addend");
603
604  // Step 1: Check if the # of instructions needed exceeds the quota.
605
606  unsigned InstrNeeded = calcInstrNumber(Opnds);
607  if (InstrNeeded > InstrQuota)
608    return nullptr;
609
610  initCreateInstNum();
611
612  // step 2: Emit the N-ary addition.
613  // Note that at most three instructions are involved in Fadd-InstCombine: the
614  // addition in question, and at most two neighboring instructions.
615  // The resulting optimized addition should have at least one less instruction
616  // than the original addition expression tree. This implies that the resulting
617  // N-ary addition has at most two instructions, and we don't need to worry
618  // about tree-height when constructing the N-ary addition.
619
620  Value *LastVal = nullptr;
621  bool LastValNeedNeg = false;
622
623  // Iterate the addends, creating fadd/fsub using adjacent two addends.
624  for (const FAddend *Opnd : Opnds) {
625    bool NeedNeg;
626    Value *V = createAddendVal(*Opnd, NeedNeg);
627    if (!LastVal) {
628      LastVal = V;
629      LastValNeedNeg = NeedNeg;
630      continue;
631    }
632
633    if (LastValNeedNeg == NeedNeg) {
634      LastVal = createFAdd(LastVal, V);
635      continue;
636    }
637
638    if (LastValNeedNeg)
639      LastVal = createFSub(V, LastVal);
640    else
641      LastVal = createFSub(LastVal, V);
642
643    LastValNeedNeg = false;
644  }
645
646  if (LastValNeedNeg) {
647    LastVal = createFNeg(LastVal);
648  }
649
650#ifndef NDEBUG
651  assert(CreateInstrNum == InstrNeeded &&
652         "Inconsistent in instruction numbers");
653#endif
654
655  return LastVal;
656}
657
658Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
659  Value *V = Builder.CreateFSub(Opnd0, Opnd1);
660  if (Instruction *I = dyn_cast<Instruction>(V))
661    createInstPostProc(I);
662  return V;
663}
664
665Value *FAddCombine::createFNeg(Value *V) {
666  Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType()));
667  Value *NewV = createFSub(Zero, V);
668  if (Instruction *I = dyn_cast<Instruction>(NewV))
669    createInstPostProc(I, true); // fneg's don't receive instruction numbers.
670  return NewV;
671}
672
673Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
674  Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
675  if (Instruction *I = dyn_cast<Instruction>(V))
676    createInstPostProc(I);
677  return V;
678}
679
680Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
681  Value *V = Builder.CreateFMul(Opnd0, Opnd1);
682  if (Instruction *I = dyn_cast<Instruction>(V))
683    createInstPostProc(I);
684  return V;
685}
686
687void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
688  NewInstr->setDebugLoc(Instr->getDebugLoc());
689
690  // Keep track of the number of instruction created.
691  if (!NoNumber)
692    incCreateInstNum();
693
694  // Propagate fast-math flags
695  NewInstr->setFastMathFlags(Instr->getFastMathFlags());
696}
697
698// Return the number of instruction needed to emit the N-ary addition.
699// NOTE: Keep this function in sync with createAddendVal().
700unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
701  unsigned OpndNum = Opnds.size();
702  unsigned InstrNeeded = OpndNum - 1;
703
704  // The number of addends in the form of "(-1)*x".
705  unsigned NegOpndNum = 0;
706
707  // Adjust the number of instructions needed to emit the N-ary add.
708  for (const FAddend *Opnd : Opnds) {
709    if (Opnd->isConstant())
710      continue;
711
712    // The constant check above is really for a few special constant
713    // coefficients.
714    if (isa<UndefValue>(Opnd->getSymVal()))
715      continue;
716
717    const FAddendCoef &CE = Opnd->getCoef();
718    if (CE.isMinusOne() || CE.isMinusTwo())
719      NegOpndNum++;
720
721    // Let the addend be "c * x". If "c == +/-1", the value of the addend
722    // is immediately available; otherwise, it needs exactly one instruction
723    // to evaluate the value.
724    if (!CE.isMinusOne() && !CE.isOne())
725      InstrNeeded++;
726  }
727  if (NegOpndNum == OpndNum)
728    InstrNeeded++;
729  return InstrNeeded;
730}
731
732// Input Addend        Value           NeedNeg(output)
733// ================================================================
734// Constant C          C               false
735// <+/-1, V>           V               coefficient is -1
736// <2/-2, V>          "fadd V, V"      coefficient is -2
737// <C, V>             "fmul V, C"      false
738//
739// NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
740Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
741  const FAddendCoef &Coeff = Opnd.getCoef();
742
743  if (Opnd.isConstant()) {
744    NeedNeg = false;
745    return Coeff.getValue(Instr->getType());
746  }
747
748  Value *OpndVal = Opnd.getSymVal();
749
750  if (Coeff.isMinusOne() || Coeff.isOne()) {
751    NeedNeg = Coeff.isMinusOne();
752    return OpndVal;
753  }
754
755  if (Coeff.isTwo() || Coeff.isMinusTwo()) {
756    NeedNeg = Coeff.isMinusTwo();
757    return createFAdd(OpndVal, OpndVal);
758  }
759
760  NeedNeg = false;
761  return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
762}
763
764// Checks if any operand is negative and we can convert add to sub.
765// This function checks for following negative patterns
766//   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
767//   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
768//   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
769static Value *checkForNegativeOperand(BinaryOperator &I,
770                                      InstCombiner::BuilderTy &Builder) {
771  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
772
773  // This function creates 2 instructions to replace ADD, we need at least one
774  // of LHS or RHS to have one use to ensure benefit in transform.
775  if (!LHS->hasOneUse() && !RHS->hasOneUse())
776    return nullptr;
777
778  Value *X = nullptr, *Y = nullptr, *Z = nullptr;
779  const APInt *C1 = nullptr, *C2 = nullptr;
780
781  // if ONE is on other side, swap
782  if (match(RHS, m_Add(m_Value(X), m_One())))
783    std::swap(LHS, RHS);
784
785  if (match(LHS, m_Add(m_Value(X), m_One()))) {
786    // if XOR on other side, swap
787    if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
788      std::swap(X, RHS);
789
790    if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
791      // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
792      // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
793      if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
794        Value *NewAnd = Builder.CreateAnd(Z, *C1);
795        return Builder.CreateSub(RHS, NewAnd, "sub");
796      } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
797        // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
798        // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
799        Value *NewOr = Builder.CreateOr(Z, ~(*C1));
800        return Builder.CreateSub(RHS, NewOr, "sub");
801      }
802    }
803  }
804
805  // Restore LHS and RHS
806  LHS = I.getOperand(0);
807  RHS = I.getOperand(1);
808
809  // if XOR is on other side, swap
810  if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
811    std::swap(LHS, RHS);
812
813  // C2 is ODD
814  // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
815  // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
816  if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
817    if (C1->countTrailingZeros() == 0)
818      if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
819        Value *NewOr = Builder.CreateOr(Z, ~(*C2));
820        return Builder.CreateSub(RHS, NewOr, "sub");
821      }
822  return nullptr;
823}
824
825/// Wrapping flags may allow combining constants separated by an extend.
826static Instruction *foldNoWrapAdd(BinaryOperator &Add,
827                                  InstCombiner::BuilderTy &Builder) {
828  Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
829  Type *Ty = Add.getType();
830  Constant *Op1C;
831  if (!match(Op1, m_Constant(Op1C)))
832    return nullptr;
833
834  // Try this match first because it results in an add in the narrow type.
835  // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
836  Value *X;
837  const APInt *C1, *C2;
838  if (match(Op1, m_APInt(C1)) &&
839      match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
840      C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
841    Constant *NewC =
842        ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth()));
843    return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
844  }
845
846  // More general combining of constants in the wide type.
847  // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
848  Constant *NarrowC;
849  if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) {
850    Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty);
851    Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
852    Value *WideX = Builder.CreateSExt(X, Ty);
853    return BinaryOperator::CreateAdd(WideX, NewC);
854  }
855  // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
856  if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) {
857    Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty);
858    Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
859    Value *WideX = Builder.CreateZExt(X, Ty);
860    return BinaryOperator::CreateAdd(WideX, NewC);
861  }
862
863  return nullptr;
864}
865
866Instruction *InstCombiner::foldAddWithConstant(BinaryOperator &Add) {
867  Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
868  Constant *Op1C;
869  if (!match(Op1, m_Constant(Op1C)))
870    return nullptr;
871
872  if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
873    return NV;
874
875  Value *X;
876  Constant *Op00C;
877
878  // add (sub C1, X), C2 --> sub (add C1, C2), X
879  if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
880    return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);
881
882  Value *Y;
883
884  // add (sub X, Y), -1 --> add (not Y), X
885  if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
886      match(Op1, m_AllOnes()))
887    return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
888
889  // zext(bool) + C -> bool ? C + 1 : C
890  if (match(Op0, m_ZExt(m_Value(X))) &&
891      X->getType()->getScalarSizeInBits() == 1)
892    return SelectInst::Create(X, AddOne(Op1C), Op1);
893
894  // ~X + C --> (C-1) - X
895  if (match(Op0, m_Not(m_Value(X))))
896    return BinaryOperator::CreateSub(SubOne(Op1C), X);
897
898  const APInt *C;
899  if (!match(Op1, m_APInt(C)))
900    return nullptr;
901
902  // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
903  const APInt *C2;
904  if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
905    return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));
906
907  if (C->isSignMask()) {
908    // If wrapping is not allowed, then the addition must set the sign bit:
909    // X + (signmask) --> X | signmask
910    if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
911      return BinaryOperator::CreateOr(Op0, Op1);
912
913    // If wrapping is allowed, then the addition flips the sign bit of LHS:
914    // X + (signmask) --> X ^ signmask
915    return BinaryOperator::CreateXor(Op0, Op1);
916  }
917
918  // Is this add the last step in a convoluted sext?
919  // add(zext(xor i16 X, -32768), -32768) --> sext X
920  Type *Ty = Add.getType();
921  if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
922      C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
923    return CastInst::Create(Instruction::SExt, X, Ty);
924
925  if (C->isOneValue() && Op0->hasOneUse()) {
926    // add (sext i1 X), 1 --> zext (not X)
927    // TODO: The smallest IR representation is (select X, 0, 1), and that would
928    // not require the one-use check. But we need to remove a transform in
929    // visitSelect and make sure that IR value tracking for select is equal or
930    // better than for these ops.
931    if (match(Op0, m_SExt(m_Value(X))) &&
932        X->getType()->getScalarSizeInBits() == 1)
933      return new ZExtInst(Builder.CreateNot(X), Ty);
934
935    // Shifts and add used to flip and mask off the low bit:
936    // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
937    const APInt *C3;
938    if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
939        C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
940      Value *NotX = Builder.CreateNot(X);
941      return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
942    }
943  }
944
945  return nullptr;
946}
947
948// Matches multiplication expression Op * C where C is a constant. Returns the
949// constant value in C and the other operand in Op. Returns true if such a
950// match is found.
951static bool MatchMul(Value *E, Value *&Op, APInt &C) {
952  const APInt *AI;
953  if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
954    C = *AI;
955    return true;
956  }
957  if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
958    C = APInt(AI->getBitWidth(), 1);
959    C <<= *AI;
960    return true;
961  }
962  return false;
963}
964
965// Matches remainder expression Op % C where C is a constant. Returns the
966// constant value in C and the other operand in Op. Returns the signedness of
967// the remainder operation in IsSigned. Returns true if such a match is
968// found.
969static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
970  const APInt *AI;
971  IsSigned = false;
972  if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
973    IsSigned = true;
974    C = *AI;
975    return true;
976  }
977  if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
978    C = *AI;
979    return true;
980  }
981  if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
982    C = *AI + 1;
983    return true;
984  }
985  return false;
986}
987
988// Matches division expression Op / C with the given signedness as indicated
989// by IsSigned, where C is a constant. Returns the constant value in C and the
990// other operand in Op. Returns true if such a match is found.
991static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
992  const APInt *AI;
993  if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
994    C = *AI;
995    return true;
996  }
997  if (!IsSigned) {
998    if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
999      C = *AI;
1000      return true;
1001    }
1002    if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
1003      C = APInt(AI->getBitWidth(), 1);
1004      C <<= *AI;
1005      return true;
1006    }
1007  }
1008  return false;
1009}
1010
1011// Returns whether C0 * C1 with the given signedness overflows.
1012static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
1013  bool overflow;
1014  if (IsSigned)
1015    (void)C0.smul_ov(C1, overflow);
1016  else
1017    (void)C0.umul_ov(C1, overflow);
1018  return overflow;
1019}
1020
1021// Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
1022// does not overflow.
1023Value *InstCombiner::SimplifyAddWithRemainder(BinaryOperator &I) {
1024  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1025  Value *X, *MulOpV;
1026  APInt C0, MulOpC;
1027  bool IsSigned;
1028  // Match I = X % C0 + MulOpV * C0
1029  if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
1030       (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
1031      C0 == MulOpC) {
1032    Value *RemOpV;
1033    APInt C1;
1034    bool Rem2IsSigned;
1035    // Match MulOpC = RemOpV % C1
1036    if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
1037        IsSigned == Rem2IsSigned) {
1038      Value *DivOpV;
1039      APInt DivOpC;
1040      // Match RemOpV = X / C0
1041      if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
1042          C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1043        Value *NewDivisor =
1044            ConstantInt::get(X->getType()->getContext(), C0 * C1);
1045        return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
1046                        : Builder.CreateURem(X, NewDivisor, "urem");
1047      }
1048    }
1049  }
1050
1051  return nullptr;
1052}
1053
1054/// Fold
1055///   (1 << NBits) - 1
1056/// Into:
1057///   ~(-(1 << NBits))
1058/// Because a 'not' is better for bit-tracking analysis and other transforms
1059/// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
1060static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
1061                                           InstCombiner::BuilderTy &Builder) {
1062  Value *NBits;
1063  if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
1064    return nullptr;
1065
1066  Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
1067  Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
1068  // Be wary of constant folding.
1069  if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
1070    // Always NSW. But NUW propagates from `add`.
1071    BOp->setHasNoSignedWrap();
1072    BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1073  }
1074
1075  return BinaryOperator::CreateNot(NotMask, I.getName());
1076}
1077
1078static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
1079  assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
1080  Type *Ty = I.getType();
1081  auto getUAddSat = [&]() {
1082    return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty);
1083  };
1084
1085  // add (umin X, ~Y), Y --> uaddsat X, Y
1086  Value *X, *Y;
1087  if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))),
1088                        m_Deferred(Y))))
1089    return CallInst::Create(getUAddSat(), { X, Y });
1090
1091  // add (umin X, ~C), C --> uaddsat X, C
1092  const APInt *C, *NotC;
1093  if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
1094      *C == ~*NotC)
1095    return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });
1096
1097  return nullptr;
1098}
1099
1100Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1101  if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1),
1102                                 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1103                                 SQ.getWithInstruction(&I)))
1104    return replaceInstUsesWith(I, V);
1105
1106  if (SimplifyAssociativeOrCommutative(I))
1107    return &I;
1108
1109  if (Instruction *X = foldVectorBinop(I))
1110    return X;
1111
1112  // (A*B)+(A*C) -> A*(B+C) etc
1113  if (Value *V = SimplifyUsingDistributiveLaws(I))
1114    return replaceInstUsesWith(I, V);
1115
1116  if (Instruction *X = foldAddWithConstant(I))
1117    return X;
1118
1119  if (Instruction *X = foldNoWrapAdd(I, Builder))
1120    return X;
1121
1122  // FIXME: This should be moved into the above helper function to allow these
1123  // transforms for general constant or constant splat vectors.
1124  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1125  Type *Ty = I.getType();
1126  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1127    Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
1128    if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1129      unsigned TySizeBits = Ty->getScalarSizeInBits();
1130      const APInt &RHSVal = CI->getValue();
1131      unsigned ExtendAmt = 0;
1132      // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1133      // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1134      if (XorRHS->getValue() == -RHSVal) {
1135        if (RHSVal.isPowerOf2())
1136          ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
1137        else if (XorRHS->getValue().isPowerOf2())
1138          ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
1139      }
1140
1141      if (ExtendAmt) {
1142        APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
1143        if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
1144          ExtendAmt = 0;
1145      }
1146
1147      if (ExtendAmt) {
1148        Constant *ShAmt = ConstantInt::get(Ty, ExtendAmt);
1149        Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext");
1150        return BinaryOperator::CreateAShr(NewShl, ShAmt);
1151      }
1152
1153      // If this is a xor that was canonicalized from a sub, turn it back into
1154      // a sub and fuse this add with it.
1155      if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
1156        KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I);
1157        if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue())
1158          return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
1159                                           XorLHS);
1160      }
1161      // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C,
1162      // transform them into (X + (signmask ^ C))
1163      if (XorRHS->getValue().isSignMask())
1164        return BinaryOperator::CreateAdd(XorLHS,
1165                                         ConstantExpr::getXor(XorRHS, CI));
1166    }
1167  }
1168
1169  if (Ty->isIntOrIntVectorTy(1))
1170    return BinaryOperator::CreateXor(LHS, RHS);
1171
1172  // X + X --> X << 1
1173  if (LHS == RHS) {
1174    auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
1175    Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
1176    Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1177    return Shl;
1178  }
1179
1180  Value *A, *B;
1181  if (match(LHS, m_Neg(m_Value(A)))) {
1182    // -A + -B --> -(A + B)
1183    if (match(RHS, m_Neg(m_Value(B))))
1184      return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
1185
1186    // -A + B --> B - A
1187    return BinaryOperator::CreateSub(RHS, A);
1188  }
1189
1190  // Canonicalize sext to zext for better value tracking potential.
1191  // add A, sext(B) --> sub A, zext(B)
1192  if (match(&I, m_c_Add(m_Value(A), m_OneUse(m_SExt(m_Value(B))))) &&
1193      B->getType()->isIntOrIntVectorTy(1))
1194    return BinaryOperator::CreateSub(A, Builder.CreateZExt(B, Ty));
1195
1196  // A + -B  -->  A - B
1197  if (match(RHS, m_Neg(m_Value(B))))
1198    return BinaryOperator::CreateSub(LHS, B);
1199
1200  if (Value *V = checkForNegativeOperand(I, Builder))
1201    return replaceInstUsesWith(I, V);
1202
1203  // (A + 1) + ~B --> A - B
1204  // ~B + (A + 1) --> A - B
1205  // (~B + A) + 1 --> A - B
1206  // (A + ~B) + 1 --> A - B
1207  if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
1208      match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One())))
1209    return BinaryOperator::CreateSub(A, B);
1210
1211  // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
1212  if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
1213
1214  // A+B --> A|B iff A and B have no bits set in common.
1215  if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
1216    return BinaryOperator::CreateOr(LHS, RHS);
1217
1218  // FIXME: We already did a check for ConstantInt RHS above this.
1219  // FIXME: Is this pattern covered by another fold? No regression tests fail on
1220  // removal.
1221  if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
1222    // (X & FF00) + xx00  -> (X+xx00) & FF00
1223    Value *X;
1224    ConstantInt *C2;
1225    if (LHS->hasOneUse() &&
1226        match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
1227        CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
1228      // See if all bits from the first bit set in the Add RHS up are included
1229      // in the mask.  First, get the rightmost bit.
1230      const APInt &AddRHSV = CRHS->getValue();
1231
1232      // Form a mask of all bits from the lowest bit added through the top.
1233      APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
1234
1235      // See if the and mask includes all of these bits.
1236      APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
1237
1238      if (AddRHSHighBits == AddRHSHighBitsAnd) {
1239        // Okay, the xform is safe.  Insert the new add pronto.
1240        Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName());
1241        return BinaryOperator::CreateAnd(NewAdd, C2);
1242      }
1243    }
1244  }
1245
1246  // add (select X 0 (sub n A)) A  -->  select X A n
1247  {
1248    SelectInst *SI = dyn_cast<SelectInst>(LHS);
1249    Value *A = RHS;
1250    if (!SI) {
1251      SI = dyn_cast<SelectInst>(RHS);
1252      A = LHS;
1253    }
1254    if (SI && SI->hasOneUse()) {
1255      Value *TV = SI->getTrueValue();
1256      Value *FV = SI->getFalseValue();
1257      Value *N;
1258
1259      // Can we fold the add into the argument of the select?
1260      // We check both true and false select arguments for a matching subtract.
1261      if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1262        // Fold the add into the true select value.
1263        return SelectInst::Create(SI->getCondition(), N, A);
1264
1265      if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1266        // Fold the add into the false select value.
1267        return SelectInst::Create(SI->getCondition(), A, N);
1268    }
1269  }
1270
1271  if (Instruction *Ext = narrowMathIfNoOverflow(I))
1272    return Ext;
1273
1274  // (add (xor A, B) (and A, B)) --> (or A, B)
1275  // (add (and A, B) (xor A, B)) --> (or A, B)
1276  if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
1277                          m_c_And(m_Deferred(A), m_Deferred(B)))))
1278    return BinaryOperator::CreateOr(A, B);
1279
1280  // (add (or A, B) (and A, B)) --> (add A, B)
1281  // (add (and A, B) (or A, B)) --> (add A, B)
1282  if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
1283                          m_c_And(m_Deferred(A), m_Deferred(B))))) {
1284    I.setOperand(0, A);
1285    I.setOperand(1, B);
1286    return &I;
1287  }
1288
1289  // TODO(jingyue): Consider willNotOverflowSignedAdd and
1290  // willNotOverflowUnsignedAdd to reduce the number of invocations of
1291  // computeKnownBits.
1292  bool Changed = false;
1293  if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
1294    Changed = true;
1295    I.setHasNoSignedWrap(true);
1296  }
1297  if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
1298    Changed = true;
1299    I.setHasNoUnsignedWrap(true);
1300  }
1301
1302  if (Instruction *V = canonicalizeLowbitMask(I, Builder))
1303    return V;
1304
1305  if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I))
1306    return SatAdd;
1307
1308  return Changed ? &I : nullptr;
1309}
1310
1311/// Factor a common operand out of fadd/fsub of fmul/fdiv.
1312static Instruction *factorizeFAddFSub(BinaryOperator &I,
1313                                      InstCombiner::BuilderTy &Builder) {
1314  assert((I.getOpcode() == Instruction::FAdd ||
1315          I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
1316  assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
1317         "FP factorization requires FMF");
1318  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1319  Value *X, *Y, *Z;
1320  bool IsFMul;
1321  if ((match(Op0, m_OneUse(m_FMul(m_Value(X), m_Value(Z)))) &&
1322       match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))) ||
1323      (match(Op0, m_OneUse(m_FMul(m_Value(Z), m_Value(X)))) &&
1324       match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))))
1325    IsFMul = true;
1326  else if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Z)))) &&
1327           match(Op1, m_OneUse(m_FDiv(m_Value(Y), m_Specific(Z)))))
1328    IsFMul = false;
1329  else
1330    return nullptr;
1331
1332  // (X * Z) + (Y * Z) --> (X + Y) * Z
1333  // (X * Z) - (Y * Z) --> (X - Y) * Z
1334  // (X / Z) + (Y / Z) --> (X + Y) / Z
1335  // (X / Z) - (Y / Z) --> (X - Y) / Z
1336  bool IsFAdd = I.getOpcode() == Instruction::FAdd;
1337  Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
1338                     : Builder.CreateFSubFMF(X, Y, &I);
1339
1340  // Bail out if we just created a denormal constant.
1341  // TODO: This is copied from a previous implementation. Is it necessary?
1342  const APFloat *C;
1343  if (match(XY, m_APFloat(C)) && !C->isNormal())
1344    return nullptr;
1345
1346  return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
1347                : BinaryOperator::CreateFDivFMF(XY, Z, &I);
1348}
1349
1350Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
1351  if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1),
1352                                  I.getFastMathFlags(),
1353                                  SQ.getWithInstruction(&I)))
1354    return replaceInstUsesWith(I, V);
1355
1356  if (SimplifyAssociativeOrCommutative(I))
1357    return &I;
1358
1359  if (Instruction *X = foldVectorBinop(I))
1360    return X;
1361
1362  if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
1363    return FoldedFAdd;
1364
1365  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1366  Value *X;
1367  // (-X) + Y --> Y - X
1368  if (match(LHS, m_FNeg(m_Value(X))))
1369    return BinaryOperator::CreateFSubFMF(RHS, X, &I);
1370  // Y + (-X) --> Y - X
1371  if (match(RHS, m_FNeg(m_Value(X))))
1372    return BinaryOperator::CreateFSubFMF(LHS, X, &I);
1373
1374  // Check for (fadd double (sitofp x), y), see if we can merge this into an
1375  // integer add followed by a promotion.
1376  if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1377    Value *LHSIntVal = LHSConv->getOperand(0);
1378    Type *FPType = LHSConv->getType();
1379
1380    // TODO: This check is overly conservative. In many cases known bits
1381    // analysis can tell us that the result of the addition has less significant
1382    // bits than the integer type can hold.
1383    auto IsValidPromotion = [](Type *FTy, Type *ITy) {
1384      Type *FScalarTy = FTy->getScalarType();
1385      Type *IScalarTy = ITy->getScalarType();
1386
1387      // Do we have enough bits in the significand to represent the result of
1388      // the integer addition?
1389      unsigned MaxRepresentableBits =
1390          APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
1391      return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
1392    };
1393
1394    // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1395    // ... if the constant fits in the integer value.  This is useful for things
1396    // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1397    // requires a constant pool load, and generally allows the add to be better
1398    // instcombined.
1399    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
1400      if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1401        Constant *CI =
1402          ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
1403        if (LHSConv->hasOneUse() &&
1404            ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1405            willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
1406          // Insert the new integer add.
1407          Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
1408          return new SIToFPInst(NewAdd, I.getType());
1409        }
1410      }
1411
1412    // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1413    if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1414      Value *RHSIntVal = RHSConv->getOperand(0);
1415      // It's enough to check LHS types only because we require int types to
1416      // be the same for this transform.
1417      if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1418        // Only do this if x/y have the same type, if at least one of them has a
1419        // single use (so we don't increase the number of int->fp conversions),
1420        // and if the integer add will not overflow.
1421        if (LHSIntVal->getType() == RHSIntVal->getType() &&
1422            (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1423            willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
1424          // Insert the new integer add.
1425          Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
1426          return new SIToFPInst(NewAdd, I.getType());
1427        }
1428      }
1429    }
1430  }
1431
1432  // Handle specials cases for FAdd with selects feeding the operation
1433  if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
1434    return replaceInstUsesWith(I, V);
1435
1436  if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1437    if (Instruction *F = factorizeFAddFSub(I, Builder))
1438      return F;
1439    if (Value *V = FAddCombine(Builder).simplify(&I))
1440      return replaceInstUsesWith(I, V);
1441  }
1442
1443  return nullptr;
1444}
1445
1446/// Optimize pointer differences into the same array into a size.  Consider:
1447///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1448/// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1449Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
1450                                               Type *Ty) {
1451  // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1452  // this.
1453  bool Swapped = false;
1454  GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1455
1456  // For now we require one side to be the base pointer "A" or a constant
1457  // GEP derived from it.
1458  if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1459    // (gep X, ...) - X
1460    if (LHSGEP->getOperand(0) == RHS) {
1461      GEP1 = LHSGEP;
1462      Swapped = false;
1463    } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1464      // (gep X, ...) - (gep X, ...)
1465      if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1466            RHSGEP->getOperand(0)->stripPointerCasts()) {
1467        GEP2 = RHSGEP;
1468        GEP1 = LHSGEP;
1469        Swapped = false;
1470      }
1471    }
1472  }
1473
1474  if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1475    // X - (gep X, ...)
1476    if (RHSGEP->getOperand(0) == LHS) {
1477      GEP1 = RHSGEP;
1478      Swapped = true;
1479    } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1480      // (gep X, ...) - (gep X, ...)
1481      if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1482            LHSGEP->getOperand(0)->stripPointerCasts()) {
1483        GEP2 = LHSGEP;
1484        GEP1 = RHSGEP;
1485        Swapped = true;
1486      }
1487    }
1488  }
1489
1490  if (!GEP1)
1491    // No GEP found.
1492    return nullptr;
1493
1494  if (GEP2) {
1495    // (gep X, ...) - (gep X, ...)
1496    //
1497    // Avoid duplicating the arithmetic if there are more than one non-constant
1498    // indices between the two GEPs and either GEP has a non-constant index and
1499    // multiple users. If zero non-constant index, the result is a constant and
1500    // there is no duplication. If one non-constant index, the result is an add
1501    // or sub with a constant, which is no larger than the original code, and
1502    // there's no duplicated arithmetic, even if either GEP has multiple
1503    // users. If more than one non-constant indices combined, as long as the GEP
1504    // with at least one non-constant index doesn't have multiple users, there
1505    // is no duplication.
1506    unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
1507    unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
1508    if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
1509        ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
1510         (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
1511      return nullptr;
1512    }
1513  }
1514
1515  // Emit the offset of the GEP and an intptr_t.
1516  Value *Result = EmitGEPOffset(GEP1);
1517
1518  // If we had a constant expression GEP on the other side offsetting the
1519  // pointer, subtract it from the offset we have.
1520  if (GEP2) {
1521    Value *Offset = EmitGEPOffset(GEP2);
1522    Result = Builder.CreateSub(Result, Offset);
1523  }
1524
1525  // If we have p - gep(p, ...)  then we have to negate the result.
1526  if (Swapped)
1527    Result = Builder.CreateNeg(Result, "diff.neg");
1528
1529  return Builder.CreateIntCast(Result, Ty, true);
1530}
1531
1532Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1533  if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1),
1534                                 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1535                                 SQ.getWithInstruction(&I)))
1536    return replaceInstUsesWith(I, V);
1537
1538  if (Instruction *X = foldVectorBinop(I))
1539    return X;
1540
1541  // (A*B)-(A*C) -> A*(B-C) etc
1542  if (Value *V = SimplifyUsingDistributiveLaws(I))
1543    return replaceInstUsesWith(I, V);
1544
1545  // If this is a 'B = x-(-A)', change to B = x+A.
1546  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1547  if (Value *V = dyn_castNegVal(Op1)) {
1548    BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1549
1550    if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1551      assert(BO->getOpcode() == Instruction::Sub &&
1552             "Expected a subtraction operator!");
1553      if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1554        Res->setHasNoSignedWrap(true);
1555    } else {
1556      if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1557        Res->setHasNoSignedWrap(true);
1558    }
1559
1560    return Res;
1561  }
1562
1563  if (I.getType()->isIntOrIntVectorTy(1))
1564    return BinaryOperator::CreateXor(Op0, Op1);
1565
1566  // Replace (-1 - A) with (~A).
1567  if (match(Op0, m_AllOnes()))
1568    return BinaryOperator::CreateNot(Op1);
1569
1570  // (~X) - (~Y) --> Y - X
1571  Value *X, *Y;
1572  if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y))))
1573    return BinaryOperator::CreateSub(Y, X);
1574
1575  // (X + -1) - Y --> ~Y + X
1576  if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
1577    return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
1578
1579  // Y - (X + 1) --> ~X + Y
1580  if (match(Op1, m_OneUse(m_Add(m_Value(X), m_One()))))
1581    return BinaryOperator::CreateAdd(Builder.CreateNot(X), Op0);
1582
1583  // Y - ~X --> (X + 1) + Y
1584  if (match(Op1, m_OneUse(m_Not(m_Value(X))))) {
1585    return BinaryOperator::CreateAdd(
1586        Builder.CreateAdd(Op0, ConstantInt::get(I.getType(), 1)), X);
1587  }
1588
1589  if (Constant *C = dyn_cast<Constant>(Op0)) {
1590    bool IsNegate = match(C, m_ZeroInt());
1591    Value *X;
1592    if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1593      // 0 - (zext bool) --> sext bool
1594      // C - (zext bool) --> bool ? C - 1 : C
1595      if (IsNegate)
1596        return CastInst::CreateSExtOrBitCast(X, I.getType());
1597      return SelectInst::Create(X, SubOne(C), C);
1598    }
1599    if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1600      // 0 - (sext bool) --> zext bool
1601      // C - (sext bool) --> bool ? C + 1 : C
1602      if (IsNegate)
1603        return CastInst::CreateZExtOrBitCast(X, I.getType());
1604      return SelectInst::Create(X, AddOne(C), C);
1605    }
1606
1607    // C - ~X == X + (1+C)
1608    if (match(Op1, m_Not(m_Value(X))))
1609      return BinaryOperator::CreateAdd(X, AddOne(C));
1610
1611    // Try to fold constant sub into select arguments.
1612    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1613      if (Instruction *R = FoldOpIntoSelect(I, SI))
1614        return R;
1615
1616    // Try to fold constant sub into PHI values.
1617    if (PHINode *PN = dyn_cast<PHINode>(Op1))
1618      if (Instruction *R = foldOpIntoPhi(I, PN))
1619        return R;
1620
1621    Constant *C2;
1622
1623    // C-(C2-X) --> X+(C-C2)
1624    if (match(Op1, m_Sub(m_Constant(C2), m_Value(X))))
1625      return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));
1626
1627    // C-(X+C2) --> (C-C2)-X
1628    if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
1629      return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1630  }
1631
1632  const APInt *Op0C;
1633  if (match(Op0, m_APInt(Op0C))) {
1634    unsigned BitWidth = I.getType()->getScalarSizeInBits();
1635
1636    // -(X >>u 31) -> (X >>s 31)
1637    // -(X >>s 31) -> (X >>u 31)
1638    if (Op0C->isNullValue()) {
1639      Value *X;
1640      const APInt *ShAmt;
1641      if (match(Op1, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1642          *ShAmt == BitWidth - 1) {
1643        Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
1644        return BinaryOperator::CreateAShr(X, ShAmtOp);
1645      }
1646      if (match(Op1, m_AShr(m_Value(X), m_APInt(ShAmt))) &&
1647          *ShAmt == BitWidth - 1) {
1648        Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
1649        return BinaryOperator::CreateLShr(X, ShAmtOp);
1650      }
1651
1652      if (Op1->hasOneUse()) {
1653        Value *LHS, *RHS;
1654        SelectPatternFlavor SPF = matchSelectPattern(Op1, LHS, RHS).Flavor;
1655        if (SPF == SPF_ABS || SPF == SPF_NABS) {
1656          // This is a negate of an ABS/NABS pattern. Just swap the operands
1657          // of the select.
1658          SelectInst *SI = cast<SelectInst>(Op1);
1659          Value *TrueVal = SI->getTrueValue();
1660          Value *FalseVal = SI->getFalseValue();
1661          SI->setTrueValue(FalseVal);
1662          SI->setFalseValue(TrueVal);
1663          // Don't swap prof metadata, we didn't change the branch behavior.
1664          return replaceInstUsesWith(I, SI);
1665        }
1666      }
1667    }
1668
1669    // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
1670    // zero.
1671    if (Op0C->isMask()) {
1672      KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
1673      if ((*Op0C | RHSKnown.Zero).isAllOnesValue())
1674        return BinaryOperator::CreateXor(Op1, Op0);
1675    }
1676  }
1677
1678  {
1679    Value *Y;
1680    // X-(X+Y) == -Y    X-(Y+X) == -Y
1681    if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
1682      return BinaryOperator::CreateNeg(Y);
1683
1684    // (X-Y)-X == -Y
1685    if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1686      return BinaryOperator::CreateNeg(Y);
1687  }
1688
1689  // (sub (or A, B), (xor A, B)) --> (and A, B)
1690  {
1691    Value *A, *B;
1692    if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1693        match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1694      return BinaryOperator::CreateAnd(A, B);
1695  }
1696
1697  {
1698    Value *Y;
1699    // ((X | Y) - X) --> (~X & Y)
1700    if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
1701      return BinaryOperator::CreateAnd(
1702          Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
1703  }
1704
1705  if (Op1->hasOneUse()) {
1706    Value *X = nullptr, *Y = nullptr, *Z = nullptr;
1707    Constant *C = nullptr;
1708
1709    // (X - (Y - Z))  -->  (X + (Z - Y)).
1710    if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
1711      return BinaryOperator::CreateAdd(Op0,
1712                                      Builder.CreateSub(Z, Y, Op1->getName()));
1713
1714    // (X - (X & Y))   -->   (X & ~Y)
1715    if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0))))
1716      return BinaryOperator::CreateAnd(Op0,
1717                                  Builder.CreateNot(Y, Y->getName() + ".not"));
1718
1719    // 0 - (X sdiv C)  -> (X sdiv -C)  provided the negation doesn't overflow.
1720    // TODO: This could be extended to match arbitrary vector constants.
1721    const APInt *DivC;
1722    if (match(Op0, m_Zero()) && match(Op1, m_SDiv(m_Value(X), m_APInt(DivC))) &&
1723        !DivC->isMinSignedValue() && *DivC != 1) {
1724      Constant *NegDivC = ConstantInt::get(I.getType(), -(*DivC));
1725      Instruction *BO = BinaryOperator::CreateSDiv(X, NegDivC);
1726      BO->setIsExact(cast<BinaryOperator>(Op1)->isExact());
1727      return BO;
1728    }
1729
1730    // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
1731    if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
1732      if (Value *XNeg = dyn_castNegVal(X))
1733        return BinaryOperator::CreateShl(XNeg, Y);
1734
1735    // Subtracting -1/0 is the same as adding 1/0:
1736    // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y)
1737    // 'nuw' is dropped in favor of the canonical form.
1738    if (match(Op1, m_SExt(m_Value(Y))) &&
1739        Y->getType()->getScalarSizeInBits() == 1) {
1740      Value *Zext = Builder.CreateZExt(Y, I.getType());
1741      BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext);
1742      Add->setHasNoSignedWrap(I.hasNoSignedWrap());
1743      return Add;
1744    }
1745
1746    // X - A*-B -> X + A*B
1747    // X - -A*B -> X + A*B
1748    Value *A, *B;
1749    if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B)))))
1750      return BinaryOperator::CreateAdd(Op0, Builder.CreateMul(A, B));
1751
1752    // X - A*C -> X + A*-C
1753    // No need to handle commuted multiply because multiply handling will
1754    // ensure constant will be move to the right hand side.
1755    if (match(Op1, m_Mul(m_Value(A), m_Constant(C))) && !isa<ConstantExpr>(C)) {
1756      Value *NewMul = Builder.CreateMul(A, ConstantExpr::getNeg(C));
1757      return BinaryOperator::CreateAdd(Op0, NewMul);
1758    }
1759  }
1760
1761  {
1762    // ~A - Min/Max(~A, O) -> Max/Min(A, ~O) - A
1763    // ~A - Min/Max(O, ~A) -> Max/Min(A, ~O) - A
1764    // Min/Max(~A, O) - ~A -> A - Max/Min(A, ~O)
1765    // Min/Max(O, ~A) - ~A -> A - Max/Min(A, ~O)
1766    // So long as O here is freely invertible, this will be neutral or a win.
1767    Value *LHS, *RHS, *A;
1768    Value *NotA = Op0, *MinMax = Op1;
1769    SelectPatternFlavor SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
1770    if (!SelectPatternResult::isMinOrMax(SPF)) {
1771      NotA = Op1;
1772      MinMax = Op0;
1773      SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
1774    }
1775    if (SelectPatternResult::isMinOrMax(SPF) &&
1776        match(NotA, m_Not(m_Value(A))) && (NotA == LHS || NotA == RHS)) {
1777      if (NotA == LHS)
1778        std::swap(LHS, RHS);
1779      // LHS is now O above and expected to have at least 2 uses (the min/max)
1780      // NotA is epected to have 2 uses from the min/max and 1 from the sub.
1781      if (IsFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) &&
1782          !NotA->hasNUsesOrMore(4)) {
1783        // Note: We don't generate the inverse max/min, just create the not of
1784        // it and let other folds do the rest.
1785        Value *Not = Builder.CreateNot(MinMax);
1786        if (NotA == Op0)
1787          return BinaryOperator::CreateSub(Not, A);
1788        else
1789          return BinaryOperator::CreateSub(A, Not);
1790      }
1791    }
1792  }
1793
1794  // Optimize pointer differences into the same array into a size.  Consider:
1795  //  &A[10] - &A[0]: we should compile this to "10".
1796  Value *LHSOp, *RHSOp;
1797  if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
1798      match(Op1, m_PtrToInt(m_Value(RHSOp))))
1799    if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1800      return replaceInstUsesWith(I, Res);
1801
1802  // trunc(p)-trunc(q) -> trunc(p-q)
1803  if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
1804      match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
1805    if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1806      return replaceInstUsesWith(I, Res);
1807
1808  // Canonicalize a shifty way to code absolute value to the common pattern.
1809  // There are 2 potential commuted variants.
1810  // We're relying on the fact that we only do this transform when the shift has
1811  // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
1812  // instructions).
1813  Value *A;
1814  const APInt *ShAmt;
1815  Type *Ty = I.getType();
1816  if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
1817      Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
1818      match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
1819    // B = ashr i32 A, 31 ; smear the sign bit
1820    // sub (xor A, B), B  ; flip bits if negative and subtract -1 (add 1)
1821    // --> (A < 0) ? -A : A
1822    Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
1823    // Copy the nuw/nsw flags from the sub to the negate.
1824    Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(),
1825                                   I.hasNoSignedWrap());
1826    return SelectInst::Create(Cmp, Neg, A);
1827  }
1828
1829  if (Instruction *Ext = narrowMathIfNoOverflow(I))
1830    return Ext;
1831
1832  bool Changed = false;
1833  if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
1834    Changed = true;
1835    I.setHasNoSignedWrap(true);
1836  }
1837  if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
1838    Changed = true;
1839    I.setHasNoUnsignedWrap(true);
1840  }
1841
1842  return Changed ? &I : nullptr;
1843}
1844
1845/// This eliminates floating-point negation in either 'fneg(X)' or
1846/// 'fsub(-0.0, X)' form by combining into a constant operand.
1847static Instruction *foldFNegIntoConstant(Instruction &I) {
1848  Value *X;
1849  Constant *C;
1850
1851  // Fold negation into constant operand. This is limited with one-use because
1852  // fneg is assumed better for analysis and cheaper in codegen than fmul/fdiv.
1853  // -(X * C) --> X * (-C)
1854  // FIXME: It's arguable whether these should be m_OneUse or not. The current
1855  // belief is that the FNeg allows for better reassociation opportunities.
1856  if (match(&I, m_FNeg(m_OneUse(m_FMul(m_Value(X), m_Constant(C))))))
1857    return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
1858  // -(X / C) --> X / (-C)
1859  if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Value(X), m_Constant(C))))))
1860    return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
1861  // -(C / X) --> (-C) / X
1862  if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Constant(C), m_Value(X))))))
1863    return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
1864
1865  return nullptr;
1866}
1867
1868Instruction *InstCombiner::visitFNeg(UnaryOperator &I) {
1869  Value *Op = I.getOperand(0);
1870
1871  if (Value *V = SimplifyFNegInst(Op, I.getFastMathFlags(),
1872                                  SQ.getWithInstruction(&I)))
1873    return replaceInstUsesWith(I, V);
1874
1875  if (Instruction *X = foldFNegIntoConstant(I))
1876    return X;
1877
1878  Value *X, *Y;
1879
1880  // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
1881  if (I.hasNoSignedZeros() &&
1882      match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y)))))
1883    return BinaryOperator::CreateFSubFMF(Y, X, &I);
1884
1885  return nullptr;
1886}
1887
1888Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
1889  if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1),
1890                                  I.getFastMathFlags(),
1891                                  SQ.getWithInstruction(&I)))
1892    return replaceInstUsesWith(I, V);
1893
1894  if (Instruction *X = foldVectorBinop(I))
1895    return X;
1896
1897  // Subtraction from -0.0 is the canonical form of fneg.
1898  // fsub nsz 0, X ==> fsub nsz -0.0, X
1899  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1900  if (I.hasNoSignedZeros() && match(Op0, m_PosZeroFP()))
1901    return BinaryOperator::CreateFNegFMF(Op1, &I);
1902
1903  if (Instruction *X = foldFNegIntoConstant(I))
1904    return X;
1905
1906  Value *X, *Y;
1907  Constant *C;
1908
1909  // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
1910  // Canonicalize to fadd to make analysis easier.
1911  // This can also help codegen because fadd is commutative.
1912  // Note that if this fsub was really an fneg, the fadd with -0.0 will get
1913  // killed later. We still limit that particular transform with 'hasOneUse'
1914  // because an fneg is assumed better/cheaper than a generic fsub.
1915  if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) {
1916    if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
1917      Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
1918      return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
1919    }
1920  }
1921
1922  if (isa<Constant>(Op0))
1923    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1924      if (Instruction *NV = FoldOpIntoSelect(I, SI))
1925        return NV;
1926
1927  // X - C --> X + (-C)
1928  // But don't transform constant expressions because there's an inverse fold
1929  // for X + (-Y) --> X - Y.
1930  if (match(Op1, m_Constant(C)) && !isa<ConstantExpr>(Op1))
1931    return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I);
1932
1933  // X - (-Y) --> X + Y
1934  if (match(Op1, m_FNeg(m_Value(Y))))
1935    return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
1936
1937  // Similar to above, but look through a cast of the negated value:
1938  // X - (fptrunc(-Y)) --> X + fptrunc(Y)
1939  Type *Ty = I.getType();
1940  if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
1941    return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
1942
1943  // X - (fpext(-Y)) --> X + fpext(Y)
1944  if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
1945    return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
1946
1947  // Handle special cases for FSub with selects feeding the operation
1948  if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
1949    return replaceInstUsesWith(I, V);
1950
1951  if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1952    // (Y - X) - Y --> -X
1953    if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
1954      return BinaryOperator::CreateFNegFMF(X, &I);
1955
1956    // Y - (X + Y) --> -X
1957    // Y - (Y + X) --> -X
1958    if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
1959      return BinaryOperator::CreateFNegFMF(X, &I);
1960
1961    // (X * C) - X --> X * (C - 1.0)
1962    if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
1963      Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0));
1964      return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
1965    }
1966    // X - (X * C) --> X * (1.0 - C)
1967    if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
1968      Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C);
1969      return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
1970    }
1971
1972    if (Instruction *F = factorizeFAddFSub(I, Builder))
1973      return F;
1974
1975    // TODO: This performs reassociative folds for FP ops. Some fraction of the
1976    // functionality has been subsumed by simple pattern matching here and in
1977    // InstSimplify. We should let a dedicated reassociation pass handle more
1978    // complex pattern matching and remove this from InstCombine.
1979    if (Value *V = FAddCombine(Builder).simplify(&I))
1980      return replaceInstUsesWith(I, V);
1981  }
1982
1983  return nullptr;
1984}
1985