LowerTypeTests.cpp revision 309124
1//===-- LowerTypeTests.cpp - type metadata lowering pass ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass lowers type metadata and calls to the llvm.type.test intrinsic.
11// See http://llvm.org/docs/TypeMetadata.html for more information.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/IPO/LowerTypeTests.h"
16#include "llvm/Transforms/IPO.h"
17#include "llvm/ADT/EquivalenceClasses.h"
18#include "llvm/ADT/Statistic.h"
19#include "llvm/ADT/Triple.h"
20#include "llvm/IR/Constant.h"
21#include "llvm/IR/Constants.h"
22#include "llvm/IR/Function.h"
23#include "llvm/IR/GlobalObject.h"
24#include "llvm/IR/GlobalVariable.h"
25#include "llvm/IR/IRBuilder.h"
26#include "llvm/IR/Instructions.h"
27#include "llvm/IR/Intrinsics.h"
28#include "llvm/IR/Module.h"
29#include "llvm/IR/Operator.h"
30#include "llvm/Pass.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Transforms/Utils/BasicBlockUtils.h"
34
35using namespace llvm;
36using namespace lowertypetests;
37
38#define DEBUG_TYPE "lowertypetests"
39
40STATISTIC(ByteArraySizeBits, "Byte array size in bits");
41STATISTIC(ByteArraySizeBytes, "Byte array size in bytes");
42STATISTIC(NumByteArraysCreated, "Number of byte arrays created");
43STATISTIC(NumTypeTestCallsLowered, "Number of type test calls lowered");
44STATISTIC(NumTypeIdDisjointSets, "Number of disjoint sets of type identifiers");
45
46static cl::opt<bool> AvoidReuse(
47    "lowertypetests-avoid-reuse",
48    cl::desc("Try to avoid reuse of byte array addresses using aliases"),
49    cl::Hidden, cl::init(true));
50
51bool BitSetInfo::containsGlobalOffset(uint64_t Offset) const {
52  if (Offset < ByteOffset)
53    return false;
54
55  if ((Offset - ByteOffset) % (uint64_t(1) << AlignLog2) != 0)
56    return false;
57
58  uint64_t BitOffset = (Offset - ByteOffset) >> AlignLog2;
59  if (BitOffset >= BitSize)
60    return false;
61
62  return Bits.count(BitOffset);
63}
64
65bool BitSetInfo::containsValue(
66    const DataLayout &DL,
67    const DenseMap<GlobalObject *, uint64_t> &GlobalLayout, Value *V,
68    uint64_t COffset) const {
69  if (auto GV = dyn_cast<GlobalObject>(V)) {
70    auto I = GlobalLayout.find(GV);
71    if (I == GlobalLayout.end())
72      return false;
73    return containsGlobalOffset(I->second + COffset);
74  }
75
76  if (auto GEP = dyn_cast<GEPOperator>(V)) {
77    APInt APOffset(DL.getPointerSizeInBits(0), 0);
78    bool Result = GEP->accumulateConstantOffset(DL, APOffset);
79    if (!Result)
80      return false;
81    COffset += APOffset.getZExtValue();
82    return containsValue(DL, GlobalLayout, GEP->getPointerOperand(),
83                         COffset);
84  }
85
86  if (auto Op = dyn_cast<Operator>(V)) {
87    if (Op->getOpcode() == Instruction::BitCast)
88      return containsValue(DL, GlobalLayout, Op->getOperand(0), COffset);
89
90    if (Op->getOpcode() == Instruction::Select)
91      return containsValue(DL, GlobalLayout, Op->getOperand(1), COffset) &&
92             containsValue(DL, GlobalLayout, Op->getOperand(2), COffset);
93  }
94
95  return false;
96}
97
98void BitSetInfo::print(raw_ostream &OS) const {
99  OS << "offset " << ByteOffset << " size " << BitSize << " align "
100     << (1 << AlignLog2);
101
102  if (isAllOnes()) {
103    OS << " all-ones\n";
104    return;
105  }
106
107  OS << " { ";
108  for (uint64_t B : Bits)
109    OS << B << ' ';
110  OS << "}\n";
111}
112
113BitSetInfo BitSetBuilder::build() {
114  if (Min > Max)
115    Min = 0;
116
117  // Normalize each offset against the minimum observed offset, and compute
118  // the bitwise OR of each of the offsets. The number of trailing zeros
119  // in the mask gives us the log2 of the alignment of all offsets, which
120  // allows us to compress the bitset by only storing one bit per aligned
121  // address.
122  uint64_t Mask = 0;
123  for (uint64_t &Offset : Offsets) {
124    Offset -= Min;
125    Mask |= Offset;
126  }
127
128  BitSetInfo BSI;
129  BSI.ByteOffset = Min;
130
131  BSI.AlignLog2 = 0;
132  if (Mask != 0)
133    BSI.AlignLog2 = countTrailingZeros(Mask, ZB_Undefined);
134
135  // Build the compressed bitset while normalizing the offsets against the
136  // computed alignment.
137  BSI.BitSize = ((Max - Min) >> BSI.AlignLog2) + 1;
138  for (uint64_t Offset : Offsets) {
139    Offset >>= BSI.AlignLog2;
140    BSI.Bits.insert(Offset);
141  }
142
143  return BSI;
144}
145
146void GlobalLayoutBuilder::addFragment(const std::set<uint64_t> &F) {
147  // Create a new fragment to hold the layout for F.
148  Fragments.emplace_back();
149  std::vector<uint64_t> &Fragment = Fragments.back();
150  uint64_t FragmentIndex = Fragments.size() - 1;
151
152  for (auto ObjIndex : F) {
153    uint64_t OldFragmentIndex = FragmentMap[ObjIndex];
154    if (OldFragmentIndex == 0) {
155      // We haven't seen this object index before, so just add it to the current
156      // fragment.
157      Fragment.push_back(ObjIndex);
158    } else {
159      // This index belongs to an existing fragment. Copy the elements of the
160      // old fragment into this one and clear the old fragment. We don't update
161      // the fragment map just yet, this ensures that any further references to
162      // indices from the old fragment in this fragment do not insert any more
163      // indices.
164      std::vector<uint64_t> &OldFragment = Fragments[OldFragmentIndex];
165      Fragment.insert(Fragment.end(), OldFragment.begin(), OldFragment.end());
166      OldFragment.clear();
167    }
168  }
169
170  // Update the fragment map to point our object indices to this fragment.
171  for (uint64_t ObjIndex : Fragment)
172    FragmentMap[ObjIndex] = FragmentIndex;
173}
174
175void ByteArrayBuilder::allocate(const std::set<uint64_t> &Bits,
176                                uint64_t BitSize, uint64_t &AllocByteOffset,
177                                uint8_t &AllocMask) {
178  // Find the smallest current allocation.
179  unsigned Bit = 0;
180  for (unsigned I = 1; I != BitsPerByte; ++I)
181    if (BitAllocs[I] < BitAllocs[Bit])
182      Bit = I;
183
184  AllocByteOffset = BitAllocs[Bit];
185
186  // Add our size to it.
187  unsigned ReqSize = AllocByteOffset + BitSize;
188  BitAllocs[Bit] = ReqSize;
189  if (Bytes.size() < ReqSize)
190    Bytes.resize(ReqSize);
191
192  // Set our bits.
193  AllocMask = 1 << Bit;
194  for (uint64_t B : Bits)
195    Bytes[AllocByteOffset + B] |= AllocMask;
196}
197
198namespace {
199
200struct ByteArrayInfo {
201  std::set<uint64_t> Bits;
202  uint64_t BitSize;
203  GlobalVariable *ByteArray;
204  Constant *Mask;
205};
206
207struct LowerTypeTests : public ModulePass {
208  static char ID;
209  LowerTypeTests() : ModulePass(ID) {
210    initializeLowerTypeTestsPass(*PassRegistry::getPassRegistry());
211  }
212
213  Module *M;
214
215  bool LinkerSubsectionsViaSymbols;
216  Triple::ArchType Arch;
217  Triple::ObjectFormatType ObjectFormat;
218  IntegerType *Int1Ty;
219  IntegerType *Int8Ty;
220  IntegerType *Int32Ty;
221  Type *Int32PtrTy;
222  IntegerType *Int64Ty;
223  IntegerType *IntPtrTy;
224
225  // Mapping from type identifiers to the call sites that test them.
226  DenseMap<Metadata *, std::vector<CallInst *>> TypeTestCallSites;
227
228  std::vector<ByteArrayInfo> ByteArrayInfos;
229
230  BitSetInfo
231  buildBitSet(Metadata *TypeId,
232              const DenseMap<GlobalObject *, uint64_t> &GlobalLayout);
233  ByteArrayInfo *createByteArray(BitSetInfo &BSI);
234  void allocateByteArrays();
235  Value *createBitSetTest(IRBuilder<> &B, BitSetInfo &BSI, ByteArrayInfo *&BAI,
236                          Value *BitOffset);
237  void
238  lowerTypeTestCalls(ArrayRef<Metadata *> TypeIds, Constant *CombinedGlobalAddr,
239                     const DenseMap<GlobalObject *, uint64_t> &GlobalLayout);
240  Value *
241  lowerBitSetCall(CallInst *CI, BitSetInfo &BSI, ByteArrayInfo *&BAI,
242                  Constant *CombinedGlobal,
243                  const DenseMap<GlobalObject *, uint64_t> &GlobalLayout);
244  void buildBitSetsFromGlobalVariables(ArrayRef<Metadata *> TypeIds,
245                                       ArrayRef<GlobalVariable *> Globals);
246  unsigned getJumpTableEntrySize();
247  Type *getJumpTableEntryType();
248  Constant *createJumpTableEntry(GlobalObject *Src, Function *Dest,
249                                 unsigned Distance);
250  void verifyTypeMDNode(GlobalObject *GO, MDNode *Type);
251  void buildBitSetsFromFunctions(ArrayRef<Metadata *> TypeIds,
252                                 ArrayRef<Function *> Functions);
253  void buildBitSetsFromDisjointSet(ArrayRef<Metadata *> TypeIds,
254                                   ArrayRef<GlobalObject *> Globals);
255  bool lower();
256  bool runOnModule(Module &M) override;
257};
258
259} // anonymous namespace
260
261INITIALIZE_PASS(LowerTypeTests, "lowertypetests", "Lower type metadata", false,
262                false)
263char LowerTypeTests::ID = 0;
264
265ModulePass *llvm::createLowerTypeTestsPass() { return new LowerTypeTests; }
266
267/// Build a bit set for TypeId using the object layouts in
268/// GlobalLayout.
269BitSetInfo LowerTypeTests::buildBitSet(
270    Metadata *TypeId,
271    const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) {
272  BitSetBuilder BSB;
273
274  // Compute the byte offset of each address associated with this type
275  // identifier.
276  SmallVector<MDNode *, 2> Types;
277  for (auto &GlobalAndOffset : GlobalLayout) {
278    Types.clear();
279    GlobalAndOffset.first->getMetadata(LLVMContext::MD_type, Types);
280    for (MDNode *Type : Types) {
281      if (Type->getOperand(1) != TypeId)
282        continue;
283      uint64_t Offset =
284          cast<ConstantInt>(cast<ConstantAsMetadata>(Type->getOperand(0))
285                                ->getValue())->getZExtValue();
286      BSB.addOffset(GlobalAndOffset.second + Offset);
287    }
288  }
289
290  return BSB.build();
291}
292
293/// Build a test that bit BitOffset mod sizeof(Bits)*8 is set in
294/// Bits. This pattern matches to the bt instruction on x86.
295static Value *createMaskedBitTest(IRBuilder<> &B, Value *Bits,
296                                  Value *BitOffset) {
297  auto BitsType = cast<IntegerType>(Bits->getType());
298  unsigned BitWidth = BitsType->getBitWidth();
299
300  BitOffset = B.CreateZExtOrTrunc(BitOffset, BitsType);
301  Value *BitIndex =
302      B.CreateAnd(BitOffset, ConstantInt::get(BitsType, BitWidth - 1));
303  Value *BitMask = B.CreateShl(ConstantInt::get(BitsType, 1), BitIndex);
304  Value *MaskedBits = B.CreateAnd(Bits, BitMask);
305  return B.CreateICmpNE(MaskedBits, ConstantInt::get(BitsType, 0));
306}
307
308ByteArrayInfo *LowerTypeTests::createByteArray(BitSetInfo &BSI) {
309  // Create globals to stand in for byte arrays and masks. These never actually
310  // get initialized, we RAUW and erase them later in allocateByteArrays() once
311  // we know the offset and mask to use.
312  auto ByteArrayGlobal = new GlobalVariable(
313      *M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);
314  auto MaskGlobal = new GlobalVariable(
315      *M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);
316
317  ByteArrayInfos.emplace_back();
318  ByteArrayInfo *BAI = &ByteArrayInfos.back();
319
320  BAI->Bits = BSI.Bits;
321  BAI->BitSize = BSI.BitSize;
322  BAI->ByteArray = ByteArrayGlobal;
323  BAI->Mask = ConstantExpr::getPtrToInt(MaskGlobal, Int8Ty);
324  return BAI;
325}
326
327void LowerTypeTests::allocateByteArrays() {
328  std::stable_sort(ByteArrayInfos.begin(), ByteArrayInfos.end(),
329                   [](const ByteArrayInfo &BAI1, const ByteArrayInfo &BAI2) {
330                     return BAI1.BitSize > BAI2.BitSize;
331                   });
332
333  std::vector<uint64_t> ByteArrayOffsets(ByteArrayInfos.size());
334
335  ByteArrayBuilder BAB;
336  for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
337    ByteArrayInfo *BAI = &ByteArrayInfos[I];
338
339    uint8_t Mask;
340    BAB.allocate(BAI->Bits, BAI->BitSize, ByteArrayOffsets[I], Mask);
341
342    BAI->Mask->replaceAllUsesWith(ConstantInt::get(Int8Ty, Mask));
343    cast<GlobalVariable>(BAI->Mask->getOperand(0))->eraseFromParent();
344  }
345
346  Constant *ByteArrayConst = ConstantDataArray::get(M->getContext(), BAB.Bytes);
347  auto ByteArray =
348      new GlobalVariable(*M, ByteArrayConst->getType(), /*isConstant=*/true,
349                         GlobalValue::PrivateLinkage, ByteArrayConst);
350
351  for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
352    ByteArrayInfo *BAI = &ByteArrayInfos[I];
353
354    Constant *Idxs[] = {ConstantInt::get(IntPtrTy, 0),
355                        ConstantInt::get(IntPtrTy, ByteArrayOffsets[I])};
356    Constant *GEP = ConstantExpr::getInBoundsGetElementPtr(
357        ByteArrayConst->getType(), ByteArray, Idxs);
358
359    // Create an alias instead of RAUW'ing the gep directly. On x86 this ensures
360    // that the pc-relative displacement is folded into the lea instead of the
361    // test instruction getting another displacement.
362    if (LinkerSubsectionsViaSymbols) {
363      BAI->ByteArray->replaceAllUsesWith(GEP);
364    } else {
365      GlobalAlias *Alias = GlobalAlias::create(
366          Int8Ty, 0, GlobalValue::PrivateLinkage, "bits", GEP, M);
367      BAI->ByteArray->replaceAllUsesWith(Alias);
368    }
369    BAI->ByteArray->eraseFromParent();
370  }
371
372  ByteArraySizeBits = BAB.BitAllocs[0] + BAB.BitAllocs[1] + BAB.BitAllocs[2] +
373                      BAB.BitAllocs[3] + BAB.BitAllocs[4] + BAB.BitAllocs[5] +
374                      BAB.BitAllocs[6] + BAB.BitAllocs[7];
375  ByteArraySizeBytes = BAB.Bytes.size();
376}
377
378/// Build a test that bit BitOffset is set in BSI, where
379/// BitSetGlobal is a global containing the bits in BSI.
380Value *LowerTypeTests::createBitSetTest(IRBuilder<> &B, BitSetInfo &BSI,
381                                        ByteArrayInfo *&BAI, Value *BitOffset) {
382  if (BSI.BitSize <= 64) {
383    // If the bit set is sufficiently small, we can avoid a load by bit testing
384    // a constant.
385    IntegerType *BitsTy;
386    if (BSI.BitSize <= 32)
387      BitsTy = Int32Ty;
388    else
389      BitsTy = Int64Ty;
390
391    uint64_t Bits = 0;
392    for (auto Bit : BSI.Bits)
393      Bits |= uint64_t(1) << Bit;
394    Constant *BitsConst = ConstantInt::get(BitsTy, Bits);
395    return createMaskedBitTest(B, BitsConst, BitOffset);
396  } else {
397    if (!BAI) {
398      ++NumByteArraysCreated;
399      BAI = createByteArray(BSI);
400    }
401
402    Constant *ByteArray = BAI->ByteArray;
403    Type *Ty = BAI->ByteArray->getValueType();
404    if (!LinkerSubsectionsViaSymbols && AvoidReuse) {
405      // Each use of the byte array uses a different alias. This makes the
406      // backend less likely to reuse previously computed byte array addresses,
407      // improving the security of the CFI mechanism based on this pass.
408      ByteArray = GlobalAlias::create(BAI->ByteArray->getValueType(), 0,
409                                      GlobalValue::PrivateLinkage, "bits_use",
410                                      ByteArray, M);
411    }
412
413    Value *ByteAddr = B.CreateGEP(Ty, ByteArray, BitOffset);
414    Value *Byte = B.CreateLoad(ByteAddr);
415
416    Value *ByteAndMask = B.CreateAnd(Byte, BAI->Mask);
417    return B.CreateICmpNE(ByteAndMask, ConstantInt::get(Int8Ty, 0));
418  }
419}
420
421/// Lower a llvm.type.test call to its implementation. Returns the value to
422/// replace the call with.
423Value *LowerTypeTests::lowerBitSetCall(
424    CallInst *CI, BitSetInfo &BSI, ByteArrayInfo *&BAI,
425    Constant *CombinedGlobalIntAddr,
426    const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) {
427  Value *Ptr = CI->getArgOperand(0);
428  const DataLayout &DL = M->getDataLayout();
429
430  if (BSI.containsValue(DL, GlobalLayout, Ptr))
431    return ConstantInt::getTrue(M->getContext());
432
433  Constant *OffsetedGlobalAsInt = ConstantExpr::getAdd(
434      CombinedGlobalIntAddr, ConstantInt::get(IntPtrTy, BSI.ByteOffset));
435
436  BasicBlock *InitialBB = CI->getParent();
437
438  IRBuilder<> B(CI);
439
440  Value *PtrAsInt = B.CreatePtrToInt(Ptr, IntPtrTy);
441
442  if (BSI.isSingleOffset())
443    return B.CreateICmpEQ(PtrAsInt, OffsetedGlobalAsInt);
444
445  Value *PtrOffset = B.CreateSub(PtrAsInt, OffsetedGlobalAsInt);
446
447  Value *BitOffset;
448  if (BSI.AlignLog2 == 0) {
449    BitOffset = PtrOffset;
450  } else {
451    // We need to check that the offset both falls within our range and is
452    // suitably aligned. We can check both properties at the same time by
453    // performing a right rotate by log2(alignment) followed by an integer
454    // comparison against the bitset size. The rotate will move the lower
455    // order bits that need to be zero into the higher order bits of the
456    // result, causing the comparison to fail if they are nonzero. The rotate
457    // also conveniently gives us a bit offset to use during the load from
458    // the bitset.
459    Value *OffsetSHR =
460        B.CreateLShr(PtrOffset, ConstantInt::get(IntPtrTy, BSI.AlignLog2));
461    Value *OffsetSHL = B.CreateShl(
462        PtrOffset,
463        ConstantInt::get(IntPtrTy, DL.getPointerSizeInBits(0) - BSI.AlignLog2));
464    BitOffset = B.CreateOr(OffsetSHR, OffsetSHL);
465  }
466
467  Constant *BitSizeConst = ConstantInt::get(IntPtrTy, BSI.BitSize);
468  Value *OffsetInRange = B.CreateICmpULT(BitOffset, BitSizeConst);
469
470  // If the bit set is all ones, testing against it is unnecessary.
471  if (BSI.isAllOnes())
472    return OffsetInRange;
473
474  TerminatorInst *Term = SplitBlockAndInsertIfThen(OffsetInRange, CI, false);
475  IRBuilder<> ThenB(Term);
476
477  // Now that we know that the offset is in range and aligned, load the
478  // appropriate bit from the bitset.
479  Value *Bit = createBitSetTest(ThenB, BSI, BAI, BitOffset);
480
481  // The value we want is 0 if we came directly from the initial block
482  // (having failed the range or alignment checks), or the loaded bit if
483  // we came from the block in which we loaded it.
484  B.SetInsertPoint(CI);
485  PHINode *P = B.CreatePHI(Int1Ty, 2);
486  P->addIncoming(ConstantInt::get(Int1Ty, 0), InitialBB);
487  P->addIncoming(Bit, ThenB.GetInsertBlock());
488  return P;
489}
490
491/// Given a disjoint set of type identifiers and globals, lay out the globals,
492/// build the bit sets and lower the llvm.type.test calls.
493void LowerTypeTests::buildBitSetsFromGlobalVariables(
494    ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalVariable *> Globals) {
495  // Build a new global with the combined contents of the referenced globals.
496  // This global is a struct whose even-indexed elements contain the original
497  // contents of the referenced globals and whose odd-indexed elements contain
498  // any padding required to align the next element to the next power of 2.
499  std::vector<Constant *> GlobalInits;
500  const DataLayout &DL = M->getDataLayout();
501  for (GlobalVariable *G : Globals) {
502    GlobalInits.push_back(G->getInitializer());
503    uint64_t InitSize = DL.getTypeAllocSize(G->getValueType());
504
505    // Compute the amount of padding required.
506    uint64_t Padding = NextPowerOf2(InitSize - 1) - InitSize;
507
508    // Cap at 128 was found experimentally to have a good data/instruction
509    // overhead tradeoff.
510    if (Padding > 128)
511      Padding = alignTo(InitSize, 128) - InitSize;
512
513    GlobalInits.push_back(
514        ConstantAggregateZero::get(ArrayType::get(Int8Ty, Padding)));
515  }
516  if (!GlobalInits.empty())
517    GlobalInits.pop_back();
518  Constant *NewInit = ConstantStruct::getAnon(M->getContext(), GlobalInits);
519  auto *CombinedGlobal =
520      new GlobalVariable(*M, NewInit->getType(), /*isConstant=*/true,
521                         GlobalValue::PrivateLinkage, NewInit);
522
523  StructType *NewTy = cast<StructType>(NewInit->getType());
524  const StructLayout *CombinedGlobalLayout = DL.getStructLayout(NewTy);
525
526  // Compute the offsets of the original globals within the new global.
527  DenseMap<GlobalObject *, uint64_t> GlobalLayout;
528  for (unsigned I = 0; I != Globals.size(); ++I)
529    // Multiply by 2 to account for padding elements.
530    GlobalLayout[Globals[I]] = CombinedGlobalLayout->getElementOffset(I * 2);
531
532  lowerTypeTestCalls(TypeIds, CombinedGlobal, GlobalLayout);
533
534  // Build aliases pointing to offsets into the combined global for each
535  // global from which we built the combined global, and replace references
536  // to the original globals with references to the aliases.
537  for (unsigned I = 0; I != Globals.size(); ++I) {
538    // Multiply by 2 to account for padding elements.
539    Constant *CombinedGlobalIdxs[] = {ConstantInt::get(Int32Ty, 0),
540                                      ConstantInt::get(Int32Ty, I * 2)};
541    Constant *CombinedGlobalElemPtr = ConstantExpr::getGetElementPtr(
542        NewInit->getType(), CombinedGlobal, CombinedGlobalIdxs);
543    if (LinkerSubsectionsViaSymbols) {
544      Globals[I]->replaceAllUsesWith(CombinedGlobalElemPtr);
545    } else {
546      assert(Globals[I]->getType()->getAddressSpace() == 0);
547      GlobalAlias *GAlias = GlobalAlias::create(NewTy->getElementType(I * 2), 0,
548                                                Globals[I]->getLinkage(), "",
549                                                CombinedGlobalElemPtr, M);
550      GAlias->setVisibility(Globals[I]->getVisibility());
551      GAlias->takeName(Globals[I]);
552      Globals[I]->replaceAllUsesWith(GAlias);
553    }
554    Globals[I]->eraseFromParent();
555  }
556}
557
558void LowerTypeTests::lowerTypeTestCalls(
559    ArrayRef<Metadata *> TypeIds, Constant *CombinedGlobalAddr,
560    const DenseMap<GlobalObject *, uint64_t> &GlobalLayout) {
561  Constant *CombinedGlobalIntAddr =
562      ConstantExpr::getPtrToInt(CombinedGlobalAddr, IntPtrTy);
563
564  // For each type identifier in this disjoint set...
565  for (Metadata *TypeId : TypeIds) {
566    // Build the bitset.
567    BitSetInfo BSI = buildBitSet(TypeId, GlobalLayout);
568    DEBUG({
569      if (auto MDS = dyn_cast<MDString>(TypeId))
570        dbgs() << MDS->getString() << ": ";
571      else
572        dbgs() << "<unnamed>: ";
573      BSI.print(dbgs());
574    });
575
576    ByteArrayInfo *BAI = nullptr;
577
578    // Lower each call to llvm.type.test for this type identifier.
579    for (CallInst *CI : TypeTestCallSites[TypeId]) {
580      ++NumTypeTestCallsLowered;
581      Value *Lowered =
582          lowerBitSetCall(CI, BSI, BAI, CombinedGlobalIntAddr, GlobalLayout);
583      CI->replaceAllUsesWith(Lowered);
584      CI->eraseFromParent();
585    }
586  }
587}
588
589void LowerTypeTests::verifyTypeMDNode(GlobalObject *GO, MDNode *Type) {
590  if (Type->getNumOperands() != 2)
591    report_fatal_error(
592        "All operands of type metadata must have 2 elements");
593
594  if (GO->isThreadLocal())
595    report_fatal_error("Bit set element may not be thread-local");
596  if (isa<GlobalVariable>(GO) && GO->hasSection())
597    report_fatal_error(
598        "A member of a type identifier may not have an explicit section");
599
600  if (isa<GlobalVariable>(GO) && GO->isDeclarationForLinker())
601    report_fatal_error(
602        "A global var member of a type identifier must be a definition");
603
604  auto OffsetConstMD = dyn_cast<ConstantAsMetadata>(Type->getOperand(0));
605  if (!OffsetConstMD)
606    report_fatal_error("Type offset must be a constant");
607  auto OffsetInt = dyn_cast<ConstantInt>(OffsetConstMD->getValue());
608  if (!OffsetInt)
609    report_fatal_error("Type offset must be an integer constant");
610}
611
612static const unsigned kX86JumpTableEntrySize = 8;
613
614unsigned LowerTypeTests::getJumpTableEntrySize() {
615  if (Arch != Triple::x86 && Arch != Triple::x86_64)
616    report_fatal_error("Unsupported architecture for jump tables");
617
618  return kX86JumpTableEntrySize;
619}
620
621// Create a constant representing a jump table entry for the target. This
622// consists of an instruction sequence containing a relative branch to Dest. The
623// constant will be laid out at address Src+(Len*Distance) where Len is the
624// target-specific jump table entry size.
625Constant *LowerTypeTests::createJumpTableEntry(GlobalObject *Src,
626                                               Function *Dest,
627                                               unsigned Distance) {
628  if (Arch != Triple::x86 && Arch != Triple::x86_64)
629    report_fatal_error("Unsupported architecture for jump tables");
630
631  const unsigned kJmpPCRel32Code = 0xe9;
632  const unsigned kInt3Code = 0xcc;
633
634  ConstantInt *Jmp = ConstantInt::get(Int8Ty, kJmpPCRel32Code);
635
636  // Build a constant representing the displacement between the constant's
637  // address and Dest. This will resolve to a PC32 relocation referring to Dest.
638  Constant *DestInt = ConstantExpr::getPtrToInt(Dest, IntPtrTy);
639  Constant *SrcInt = ConstantExpr::getPtrToInt(Src, IntPtrTy);
640  Constant *Disp = ConstantExpr::getSub(DestInt, SrcInt);
641  ConstantInt *DispOffset =
642      ConstantInt::get(IntPtrTy, Distance * kX86JumpTableEntrySize + 5);
643  Constant *OffsetedDisp = ConstantExpr::getSub(Disp, DispOffset);
644  OffsetedDisp = ConstantExpr::getTruncOrBitCast(OffsetedDisp, Int32Ty);
645
646  ConstantInt *Int3 = ConstantInt::get(Int8Ty, kInt3Code);
647
648  Constant *Fields[] = {
649      Jmp, OffsetedDisp, Int3, Int3, Int3,
650  };
651  return ConstantStruct::getAnon(Fields, /*Packed=*/true);
652}
653
654Type *LowerTypeTests::getJumpTableEntryType() {
655  if (Arch != Triple::x86 && Arch != Triple::x86_64)
656    report_fatal_error("Unsupported architecture for jump tables");
657
658  return StructType::get(M->getContext(),
659                         {Int8Ty, Int32Ty, Int8Ty, Int8Ty, Int8Ty},
660                         /*Packed=*/true);
661}
662
663/// Given a disjoint set of type identifiers and functions, build a jump table
664/// for the functions, build the bit sets and lower the llvm.type.test calls.
665void LowerTypeTests::buildBitSetsFromFunctions(ArrayRef<Metadata *> TypeIds,
666                                               ArrayRef<Function *> Functions) {
667  // Unlike the global bitset builder, the function bitset builder cannot
668  // re-arrange functions in a particular order and base its calculations on the
669  // layout of the functions' entry points, as we have no idea how large a
670  // particular function will end up being (the size could even depend on what
671  // this pass does!) Instead, we build a jump table, which is a block of code
672  // consisting of one branch instruction for each of the functions in the bit
673  // set that branches to the target function, and redirect any taken function
674  // addresses to the corresponding jump table entry. In the object file's
675  // symbol table, the symbols for the target functions also refer to the jump
676  // table entries, so that addresses taken outside the module will pass any
677  // verification done inside the module.
678  //
679  // In more concrete terms, suppose we have three functions f, g, h which are
680  // of the same type, and a function foo that returns their addresses:
681  //
682  // f:
683  // mov 0, %eax
684  // ret
685  //
686  // g:
687  // mov 1, %eax
688  // ret
689  //
690  // h:
691  // mov 2, %eax
692  // ret
693  //
694  // foo:
695  // mov f, %eax
696  // mov g, %edx
697  // mov h, %ecx
698  // ret
699  //
700  // To create a jump table for these functions, we instruct the LLVM code
701  // generator to output a jump table in the .text section. This is done by
702  // representing the instructions in the jump table as an LLVM constant and
703  // placing them in a global variable in the .text section. The end result will
704  // (conceptually) look like this:
705  //
706  // f:
707  // jmp .Ltmp0 ; 5 bytes
708  // int3       ; 1 byte
709  // int3       ; 1 byte
710  // int3       ; 1 byte
711  //
712  // g:
713  // jmp .Ltmp1 ; 5 bytes
714  // int3       ; 1 byte
715  // int3       ; 1 byte
716  // int3       ; 1 byte
717  //
718  // h:
719  // jmp .Ltmp2 ; 5 bytes
720  // int3       ; 1 byte
721  // int3       ; 1 byte
722  // int3       ; 1 byte
723  //
724  // .Ltmp0:
725  // mov 0, %eax
726  // ret
727  //
728  // .Ltmp1:
729  // mov 1, %eax
730  // ret
731  //
732  // .Ltmp2:
733  // mov 2, %eax
734  // ret
735  //
736  // foo:
737  // mov f, %eax
738  // mov g, %edx
739  // mov h, %ecx
740  // ret
741  //
742  // Because the addresses of f, g, h are evenly spaced at a power of 2, in the
743  // normal case the check can be carried out using the same kind of simple
744  // arithmetic that we normally use for globals.
745
746  assert(!Functions.empty());
747
748  // Build a simple layout based on the regular layout of jump tables.
749  DenseMap<GlobalObject *, uint64_t> GlobalLayout;
750  unsigned EntrySize = getJumpTableEntrySize();
751  for (unsigned I = 0; I != Functions.size(); ++I)
752    GlobalLayout[Functions[I]] = I * EntrySize;
753
754  // Create a constant to hold the jump table.
755  ArrayType *JumpTableType =
756      ArrayType::get(getJumpTableEntryType(), Functions.size());
757  auto JumpTable = new GlobalVariable(*M, JumpTableType,
758                                      /*isConstant=*/true,
759                                      GlobalValue::PrivateLinkage, nullptr);
760  JumpTable->setSection(ObjectFormat == Triple::MachO
761                            ? "__TEXT,__text,regular,pure_instructions"
762                            : ".text");
763  lowerTypeTestCalls(TypeIds, JumpTable, GlobalLayout);
764
765  // Build aliases pointing to offsets into the jump table, and replace
766  // references to the original functions with references to the aliases.
767  for (unsigned I = 0; I != Functions.size(); ++I) {
768    Constant *CombinedGlobalElemPtr = ConstantExpr::getBitCast(
769        ConstantExpr::getGetElementPtr(
770            JumpTableType, JumpTable,
771            ArrayRef<Constant *>{ConstantInt::get(IntPtrTy, 0),
772                                 ConstantInt::get(IntPtrTy, I)}),
773        Functions[I]->getType());
774    if (LinkerSubsectionsViaSymbols || Functions[I]->isDeclarationForLinker()) {
775      Functions[I]->replaceAllUsesWith(CombinedGlobalElemPtr);
776    } else {
777      assert(Functions[I]->getType()->getAddressSpace() == 0);
778      GlobalAlias *GAlias = GlobalAlias::create(Functions[I]->getValueType(), 0,
779                                                Functions[I]->getLinkage(), "",
780                                                CombinedGlobalElemPtr, M);
781      GAlias->setVisibility(Functions[I]->getVisibility());
782      GAlias->takeName(Functions[I]);
783      Functions[I]->replaceAllUsesWith(GAlias);
784    }
785    if (!Functions[I]->isDeclarationForLinker())
786      Functions[I]->setLinkage(GlobalValue::PrivateLinkage);
787  }
788
789  // Build and set the jump table's initializer.
790  std::vector<Constant *> JumpTableEntries;
791  for (unsigned I = 0; I != Functions.size(); ++I)
792    JumpTableEntries.push_back(
793        createJumpTableEntry(JumpTable, Functions[I], I));
794  JumpTable->setInitializer(
795      ConstantArray::get(JumpTableType, JumpTableEntries));
796}
797
798void LowerTypeTests::buildBitSetsFromDisjointSet(
799    ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalObject *> Globals) {
800  llvm::DenseMap<Metadata *, uint64_t> TypeIdIndices;
801  for (unsigned I = 0; I != TypeIds.size(); ++I)
802    TypeIdIndices[TypeIds[I]] = I;
803
804  // For each type identifier, build a set of indices that refer to members of
805  // the type identifier.
806  std::vector<std::set<uint64_t>> TypeMembers(TypeIds.size());
807  SmallVector<MDNode *, 2> Types;
808  unsigned GlobalIndex = 0;
809  for (GlobalObject *GO : Globals) {
810    Types.clear();
811    GO->getMetadata(LLVMContext::MD_type, Types);
812    for (MDNode *Type : Types) {
813      // Type = { offset, type identifier }
814      unsigned TypeIdIndex = TypeIdIndices[Type->getOperand(1)];
815      TypeMembers[TypeIdIndex].insert(GlobalIndex);
816    }
817    GlobalIndex++;
818  }
819
820  // Order the sets of indices by size. The GlobalLayoutBuilder works best
821  // when given small index sets first.
822  std::stable_sort(
823      TypeMembers.begin(), TypeMembers.end(),
824      [](const std::set<uint64_t> &O1, const std::set<uint64_t> &O2) {
825        return O1.size() < O2.size();
826      });
827
828  // Create a GlobalLayoutBuilder and provide it with index sets as layout
829  // fragments. The GlobalLayoutBuilder tries to lay out members of fragments as
830  // close together as possible.
831  GlobalLayoutBuilder GLB(Globals.size());
832  for (auto &&MemSet : TypeMembers)
833    GLB.addFragment(MemSet);
834
835  // Build the bitsets from this disjoint set.
836  if (Globals.empty() || isa<GlobalVariable>(Globals[0])) {
837    // Build a vector of global variables with the computed layout.
838    std::vector<GlobalVariable *> OrderedGVs(Globals.size());
839    auto OGI = OrderedGVs.begin();
840    for (auto &&F : GLB.Fragments) {
841      for (auto &&Offset : F) {
842        auto GV = dyn_cast<GlobalVariable>(Globals[Offset]);
843        if (!GV)
844          report_fatal_error("Type identifier may not contain both global "
845                             "variables and functions");
846        *OGI++ = GV;
847      }
848    }
849
850    buildBitSetsFromGlobalVariables(TypeIds, OrderedGVs);
851  } else {
852    // Build a vector of functions with the computed layout.
853    std::vector<Function *> OrderedFns(Globals.size());
854    auto OFI = OrderedFns.begin();
855    for (auto &&F : GLB.Fragments) {
856      for (auto &&Offset : F) {
857        auto Fn = dyn_cast<Function>(Globals[Offset]);
858        if (!Fn)
859          report_fatal_error("Type identifier may not contain both global "
860                             "variables and functions");
861        *OFI++ = Fn;
862      }
863    }
864
865    buildBitSetsFromFunctions(TypeIds, OrderedFns);
866  }
867}
868
869/// Lower all type tests in this module.
870bool LowerTypeTests::lower() {
871  Function *TypeTestFunc =
872      M->getFunction(Intrinsic::getName(Intrinsic::type_test));
873  if (!TypeTestFunc || TypeTestFunc->use_empty())
874    return false;
875
876  // Equivalence class set containing type identifiers and the globals that
877  // reference them. This is used to partition the set of type identifiers in
878  // the module into disjoint sets.
879  typedef EquivalenceClasses<PointerUnion<GlobalObject *, Metadata *>>
880      GlobalClassesTy;
881  GlobalClassesTy GlobalClasses;
882
883  // Verify the type metadata and build a mapping from type identifiers to their
884  // last observed index in the list of globals. This will be used later to
885  // deterministically order the list of type identifiers.
886  llvm::DenseMap<Metadata *, unsigned> TypeIdIndices;
887  unsigned I = 0;
888  SmallVector<MDNode *, 2> Types;
889  for (GlobalObject &GO : M->global_objects()) {
890    Types.clear();
891    GO.getMetadata(LLVMContext::MD_type, Types);
892    for (MDNode *Type : Types) {
893      verifyTypeMDNode(&GO, Type);
894      TypeIdIndices[cast<MDNode>(Type)->getOperand(1)] = ++I;
895    }
896  }
897
898  for (const Use &U : TypeTestFunc->uses()) {
899    auto CI = cast<CallInst>(U.getUser());
900
901    auto BitSetMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
902    if (!BitSetMDVal)
903      report_fatal_error(
904          "Second argument of llvm.type.test must be metadata");
905    auto BitSet = BitSetMDVal->getMetadata();
906
907    // Add the call site to the list of call sites for this type identifier. We
908    // also use TypeTestCallSites to keep track of whether we have seen this
909    // type identifier before. If we have, we don't need to re-add the
910    // referenced globals to the equivalence class.
911    std::pair<DenseMap<Metadata *, std::vector<CallInst *>>::iterator, bool>
912        Ins = TypeTestCallSites.insert(
913            std::make_pair(BitSet, std::vector<CallInst *>()));
914    Ins.first->second.push_back(CI);
915    if (!Ins.second)
916      continue;
917
918    // Add the type identifier to the equivalence class.
919    GlobalClassesTy::iterator GCI = GlobalClasses.insert(BitSet);
920    GlobalClassesTy::member_iterator CurSet = GlobalClasses.findLeader(GCI);
921
922    // Add the referenced globals to the type identifier's equivalence class.
923    for (GlobalObject &GO : M->global_objects()) {
924      Types.clear();
925      GO.getMetadata(LLVMContext::MD_type, Types);
926      for (MDNode *Type : Types)
927        if (Type->getOperand(1) == BitSet)
928          CurSet = GlobalClasses.unionSets(
929              CurSet, GlobalClasses.findLeader(GlobalClasses.insert(&GO)));
930    }
931  }
932
933  if (GlobalClasses.empty())
934    return false;
935
936  // Build a list of disjoint sets ordered by their maximum global index for
937  // determinism.
938  std::vector<std::pair<GlobalClassesTy::iterator, unsigned>> Sets;
939  for (GlobalClassesTy::iterator I = GlobalClasses.begin(),
940                                 E = GlobalClasses.end();
941       I != E; ++I) {
942    if (!I->isLeader()) continue;
943    ++NumTypeIdDisjointSets;
944
945    unsigned MaxIndex = 0;
946    for (GlobalClassesTy::member_iterator MI = GlobalClasses.member_begin(I);
947         MI != GlobalClasses.member_end(); ++MI) {
948      if ((*MI).is<Metadata *>())
949        MaxIndex = std::max(MaxIndex, TypeIdIndices[MI->get<Metadata *>()]);
950    }
951    Sets.emplace_back(I, MaxIndex);
952  }
953  std::sort(Sets.begin(), Sets.end(),
954            [](const std::pair<GlobalClassesTy::iterator, unsigned> &S1,
955               const std::pair<GlobalClassesTy::iterator, unsigned> &S2) {
956              return S1.second < S2.second;
957            });
958
959  // For each disjoint set we found...
960  for (const auto &S : Sets) {
961    // Build the list of type identifiers in this disjoint set.
962    std::vector<Metadata *> TypeIds;
963    std::vector<GlobalObject *> Globals;
964    for (GlobalClassesTy::member_iterator MI =
965             GlobalClasses.member_begin(S.first);
966         MI != GlobalClasses.member_end(); ++MI) {
967      if ((*MI).is<Metadata *>())
968        TypeIds.push_back(MI->get<Metadata *>());
969      else
970        Globals.push_back(MI->get<GlobalObject *>());
971    }
972
973    // Order type identifiers by global index for determinism. This ordering is
974    // stable as there is a one-to-one mapping between metadata and indices.
975    std::sort(TypeIds.begin(), TypeIds.end(), [&](Metadata *M1, Metadata *M2) {
976      return TypeIdIndices[M1] < TypeIdIndices[M2];
977    });
978
979    // Build bitsets for this disjoint set.
980    buildBitSetsFromDisjointSet(TypeIds, Globals);
981  }
982
983  allocateByteArrays();
984
985  return true;
986}
987
988// Initialization helper shared by the old and the new PM.
989static void init(LowerTypeTests *LTT, Module &M) {
990  LTT->M = &M;
991  const DataLayout &DL = M.getDataLayout();
992  Triple TargetTriple(M.getTargetTriple());
993  LTT->LinkerSubsectionsViaSymbols = TargetTriple.isMacOSX();
994  LTT->Arch = TargetTriple.getArch();
995  LTT->ObjectFormat = TargetTriple.getObjectFormat();
996  LTT->Int1Ty = Type::getInt1Ty(M.getContext());
997  LTT->Int8Ty = Type::getInt8Ty(M.getContext());
998  LTT->Int32Ty = Type::getInt32Ty(M.getContext());
999  LTT->Int32PtrTy = PointerType::getUnqual(LTT->Int32Ty);
1000  LTT->Int64Ty = Type::getInt64Ty(M.getContext());
1001  LTT->IntPtrTy = DL.getIntPtrType(M.getContext(), 0);
1002  LTT->TypeTestCallSites.clear();
1003}
1004
1005bool LowerTypeTests::runOnModule(Module &M) {
1006  if (skipModule(M))
1007    return false;
1008  init(this, M);
1009  return lower();
1010}
1011
1012PreservedAnalyses LowerTypeTestsPass::run(Module &M,
1013                                          AnalysisManager<Module> &AM) {
1014  LowerTypeTests Impl;
1015  init(&Impl, M);
1016  bool Changed = Impl.lower();
1017  if (!Changed)
1018    return PreservedAnalyses::all();
1019  return PreservedAnalyses::none();
1020}
1021