155682Smarkm//===- LowerTypeTests.cpp - type metadata lowering pass -------------------===//
2233294Sstas//
3233294Sstas// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4233294Sstas// See https://llvm.org/LICENSE.txt for license information.
555682Smarkm// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6233294Sstas//
755682Smarkm//===----------------------------------------------------------------------===//
8233294Sstas//
9233294Sstas// This pass lowers type metadata and calls to the llvm.type.test intrinsic.
10233294Sstas// It also ensures that globals are properly laid out for the
1155682Smarkm// llvm.icall.branch.funnel intrinsic.
12233294Sstas// See http://llvm.org/docs/TypeMetadata.html for more information.
13233294Sstas//
1455682Smarkm//===----------------------------------------------------------------------===//
15233294Sstas
16233294Sstas#include "llvm/Transforms/IPO/LowerTypeTests.h"
17233294Sstas#include "llvm/ADT/APInt.h"
1855682Smarkm#include "llvm/ADT/ArrayRef.h"
19233294Sstas#include "llvm/ADT/DenseMap.h"
20233294Sstas#include "llvm/ADT/EquivalenceClasses.h"
21233294Sstas#include "llvm/ADT/PointerUnion.h"
22233294Sstas#include "llvm/ADT/SetVector.h"
23233294Sstas#include "llvm/ADT/SmallVector.h"
24233294Sstas#include "llvm/ADT/Statistic.h"
25233294Sstas#include "llvm/ADT/StringRef.h"
26233294Sstas#include "llvm/ADT/TinyPtrVector.h"
27233294Sstas#include "llvm/ADT/Triple.h"
28233294Sstas#include "llvm/Analysis/TypeMetadataUtils.h"
29233294Sstas#include "llvm/Analysis/ValueTracking.h"
30233294Sstas#include "llvm/IR/Attributes.h"
31233294Sstas#include "llvm/IR/BasicBlock.h"
32233294Sstas#include "llvm/IR/Constant.h"
33233294Sstas#include "llvm/IR/Constants.h"
3455682Smarkm#include "llvm/IR/DataLayout.h"
3555682Smarkm#include "llvm/IR/DerivedTypes.h"
3655682Smarkm#include "llvm/IR/Function.h"
37102644Snectar#include "llvm/IR/GlobalAlias.h"
38102644Snectar#include "llvm/IR/GlobalObject.h"
39102644Snectar#include "llvm/IR/GlobalValue.h"
4055682Smarkm#include "llvm/IR/GlobalVariable.h"
41233294Sstas#include "llvm/IR/IRBuilder.h"
42233294Sstas#include "llvm/IR/InlineAsm.h"
43233294Sstas#include "llvm/IR/Instruction.h"
4455682Smarkm#include "llvm/IR/Instructions.h"
4555682Smarkm#include "llvm/IR/Intrinsics.h"
4655682Smarkm#include "llvm/IR/LLVMContext.h"
47233294Sstas#include "llvm/IR/Metadata.h"
48178825Sdfr#include "llvm/IR/Module.h"
49233294Sstas#include "llvm/IR/ModuleSummaryIndex.h"
50102644Snectar#include "llvm/IR/ModuleSummaryIndexYAML.h"
5155682Smarkm#include "llvm/IR/Operator.h"
5255682Smarkm#include "llvm/IR/PassManager.h"
5355682Smarkm#include "llvm/IR/Type.h"
54178825Sdfr#include "llvm/IR/Use.h"
5555682Smarkm#include "llvm/IR/User.h"
5655682Smarkm#include "llvm/IR/Value.h"
57233294Sstas#include "llvm/InitializePasses.h"
58233294Sstas#include "llvm/Pass.h"
59233294Sstas#include "llvm/Support/Allocator.h"
60233294Sstas#include "llvm/Support/Casting.h"
61233294Sstas#include "llvm/Support/CommandLine.h"
62233294Sstas#include "llvm/Support/Debug.h"
63233294Sstas#include "llvm/Support/Error.h"
64233294Sstas#include "llvm/Support/ErrorHandling.h"
65233294Sstas#include "llvm/Support/FileSystem.h"
66233294Sstas#include "llvm/Support/MathExtras.h"
67233294Sstas#include "llvm/Support/MemoryBuffer.h"
68233294Sstas#include "llvm/Support/TrailingObjects.h"
69233294Sstas#include "llvm/Support/YAMLTraits.h"
70233294Sstas#include "llvm/Support/raw_ostream.h"
71233294Sstas#include "llvm/Transforms/IPO.h"
72233294Sstas#include "llvm/Transforms/Utils/BasicBlockUtils.h"
73233294Sstas#include "llvm/Transforms/Utils/ModuleUtils.h"
74233294Sstas#include <algorithm>
75233294Sstas#include <cassert>
76233294Sstas#include <cstdint>
77233294Sstas#include <memory>
78233294Sstas#include <set>
79233294Sstas#include <string>
80233294Sstas#include <system_error>
81233294Sstas#include <utility>
82233294Sstas#include <vector>
83233294Sstas
84233294Sstasusing namespace llvm;
85233294Sstasusing namespace lowertypetests;
86233294Sstas
87233294Sstas#define DEBUG_TYPE "lowertypetests"
88233294Sstas
89233294SstasSTATISTIC(ByteArraySizeBits, "Byte array size in bits");
90233294SstasSTATISTIC(ByteArraySizeBytes, "Byte array size in bytes");
91233294SstasSTATISTIC(NumByteArraysCreated, "Number of byte arrays created");
92233294SstasSTATISTIC(NumTypeTestCallsLowered, "Number of type test calls lowered");
93233294SstasSTATISTIC(NumTypeIdDisjointSets, "Number of disjoint sets of type identifiers");
94233294Sstas
95233294Sstasstatic cl::opt<bool> AvoidReuse(
96233294Sstas    "lowertypetests-avoid-reuse",
97233294Sstas    cl::desc("Try to avoid reuse of byte array addresses using aliases"),
98233294Sstas    cl::Hidden, cl::init(true));
99233294Sstas
100233294Sstasstatic cl::opt<PassSummaryAction> ClSummaryAction(
101233294Sstas    "lowertypetests-summary-action",
102233294Sstas    cl::desc("What to do with the summary when running this pass"),
103233294Sstas    cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
104233294Sstas               clEnumValN(PassSummaryAction::Import, "import",
10555682Smarkm                          "Import typeid resolutions from summary and globals"),
10655682Smarkm               clEnumValN(PassSummaryAction::Export, "export",
10755682Smarkm                          "Export typeid resolutions to summary and globals")),
10855682Smarkm    cl::Hidden);
109178825Sdfr
110178825Sdfrstatic cl::opt<std::string> ClReadSummary(
111178825Sdfr    "lowertypetests-read-summary",
11278527Sassar    cl::desc("Read summary from given YAML file before running pass"),
113233294Sstas    cl::Hidden);
11472445Sassar
115178825Sdfrstatic cl::opt<std::string> ClWriteSummary(
116178825Sdfr    "lowertypetests-write-summary",
117178825Sdfr    cl::desc("Write summary to given YAML file after running pass"),
11872445Sassar    cl::Hidden);
11955682Smarkm
120178825Sdfrbool BitSetInfo::containsGlobalOffset(uint64_t Offset) const {
121178825Sdfr  if (Offset < ByteOffset)
122178825Sdfr    return false;
12355682Smarkm
124178825Sdfr  if ((Offset - ByteOffset) % (uint64_t(1) << AlignLog2) != 0)
12555682Smarkm    return false;
12655682Smarkm
12755682Smarkm  uint64_t BitOffset = (Offset - ByteOffset) >> AlignLog2;
12855682Smarkm  if (BitOffset >= BitSize)
12955682Smarkm    return false;
13055682Smarkm
13155682Smarkm  return Bits.count(BitOffset);
13255682Smarkm}
13355682Smarkm
13455682Smarkmvoid BitSetInfo::print(raw_ostream &OS) const {
13572445Sassar  OS << "offset " << ByteOffset << " size " << BitSize << " align "
136233294Sstas     << (1 << AlignLog2);
137178825Sdfr
138233294Sstas  if (isAllOnes()) {
139178825Sdfr    OS << " all-ones\n";
140178825Sdfr    return;
141233294Sstas  }
142178825Sdfr
143233294Sstas  OS << " { ";
14455682Smarkm  for (uint64_t B : Bits)
14555682Smarkm    OS << B << ' ';
14655682Smarkm  OS << "}\n";
14772445Sassar}
148233294Sstas
149178825SdfrBitSetInfo BitSetBuilder::build() {
150233294Sstas  if (Min > Max)
151233294Sstas    Min = 0;
152178825Sdfr
15355682Smarkm  // Normalize each offset against the minimum observed offset, and compute
154233294Sstas  // the bitwise OR of each of the offsets. The number of trailing zeros
155233294Sstas  // in the mask gives us the log2 of the alignment of all offsets, which
156102644Snectar  // allows us to compress the bitset by only storing one bit per aligned
157102644Snectar  // address.
158233294Sstas  uint64_t Mask = 0;
159233294Sstas  for (uint64_t &Offset : Offsets) {
160233294Sstas    Offset -= Min;
161233294Sstas    Mask |= Offset;
16272445Sassar  }
163233294Sstas
164233294Sstas  BitSetInfo BSI;
165233294Sstas  BSI.ByteOffset = Min;
166178825Sdfr
16755682Smarkm  BSI.AlignLog2 = 0;
16855682Smarkm  if (Mask != 0)
16955682Smarkm    BSI.AlignLog2 = countTrailingZeros(Mask, ZB_Undefined);
170
171  // Build the compressed bitset while normalizing the offsets against the
172  // computed alignment.
173  BSI.BitSize = ((Max - Min) >> BSI.AlignLog2) + 1;
174  for (uint64_t Offset : Offsets) {
175    Offset >>= BSI.AlignLog2;
176    BSI.Bits.insert(Offset);
177  }
178
179  return BSI;
180}
181
182void GlobalLayoutBuilder::addFragment(const std::set<uint64_t> &F) {
183  // Create a new fragment to hold the layout for F.
184  Fragments.emplace_back();
185  std::vector<uint64_t> &Fragment = Fragments.back();
186  uint64_t FragmentIndex = Fragments.size() - 1;
187
188  for (auto ObjIndex : F) {
189    uint64_t OldFragmentIndex = FragmentMap[ObjIndex];
190    if (OldFragmentIndex == 0) {
191      // We haven't seen this object index before, so just add it to the current
192      // fragment.
193      Fragment.push_back(ObjIndex);
194    } else {
195      // This index belongs to an existing fragment. Copy the elements of the
196      // old fragment into this one and clear the old fragment. We don't update
197      // the fragment map just yet, this ensures that any further references to
198      // indices from the old fragment in this fragment do not insert any more
199      // indices.
200      std::vector<uint64_t> &OldFragment = Fragments[OldFragmentIndex];
201      Fragment.insert(Fragment.end(), OldFragment.begin(), OldFragment.end());
202      OldFragment.clear();
203    }
204  }
205
206  // Update the fragment map to point our object indices to this fragment.
207  for (uint64_t ObjIndex : Fragment)
208    FragmentMap[ObjIndex] = FragmentIndex;
209}
210
211void ByteArrayBuilder::allocate(const std::set<uint64_t> &Bits,
212                                uint64_t BitSize, uint64_t &AllocByteOffset,
213                                uint8_t &AllocMask) {
214  // Find the smallest current allocation.
215  unsigned Bit = 0;
216  for (unsigned I = 1; I != BitsPerByte; ++I)
217    if (BitAllocs[I] < BitAllocs[Bit])
218      Bit = I;
219
220  AllocByteOffset = BitAllocs[Bit];
221
222  // Add our size to it.
223  unsigned ReqSize = AllocByteOffset + BitSize;
224  BitAllocs[Bit] = ReqSize;
225  if (Bytes.size() < ReqSize)
226    Bytes.resize(ReqSize);
227
228  // Set our bits.
229  AllocMask = 1 << Bit;
230  for (uint64_t B : Bits)
231    Bytes[AllocByteOffset + B] |= AllocMask;
232}
233
234bool lowertypetests::isJumpTableCanonical(Function *F) {
235  if (F->isDeclarationForLinker())
236    return false;
237  auto *CI = mdconst::extract_or_null<ConstantInt>(
238      F->getParent()->getModuleFlag("CFI Canonical Jump Tables"));
239  if (!CI || CI->getZExtValue() != 0)
240    return true;
241  return F->hasFnAttribute("cfi-canonical-jump-table");
242}
243
244namespace {
245
246struct ByteArrayInfo {
247  std::set<uint64_t> Bits;
248  uint64_t BitSize;
249  GlobalVariable *ByteArray;
250  GlobalVariable *MaskGlobal;
251  uint8_t *MaskPtr = nullptr;
252};
253
254/// A POD-like structure that we use to store a global reference together with
255/// its metadata types. In this pass we frequently need to query the set of
256/// metadata types referenced by a global, which at the IR level is an expensive
257/// operation involving a map lookup; this data structure helps to reduce the
258/// number of times we need to do this lookup.
259class GlobalTypeMember final : TrailingObjects<GlobalTypeMember, MDNode *> {
260  friend TrailingObjects;
261
262  GlobalObject *GO;
263  size_t NTypes;
264
265  // For functions: true if the jump table is canonical. This essentially means
266  // whether the canonical address (i.e. the symbol table entry) of the function
267  // is provided by the local jump table. This is normally the same as whether
268  // the function is defined locally, but if canonical jump tables are disabled
269  // by the user then the jump table never provides a canonical definition.
270  bool IsJumpTableCanonical;
271
272  // For functions: true if this function is either defined or used in a thinlto
273  // module and its jumptable entry needs to be exported to thinlto backends.
274  bool IsExported;
275
276  size_t numTrailingObjects(OverloadToken<MDNode *>) const { return NTypes; }
277
278public:
279  static GlobalTypeMember *create(BumpPtrAllocator &Alloc, GlobalObject *GO,
280                                  bool IsJumpTableCanonical, bool IsExported,
281                                  ArrayRef<MDNode *> Types) {
282    auto *GTM = static_cast<GlobalTypeMember *>(Alloc.Allocate(
283        totalSizeToAlloc<MDNode *>(Types.size()), alignof(GlobalTypeMember)));
284    GTM->GO = GO;
285    GTM->NTypes = Types.size();
286    GTM->IsJumpTableCanonical = IsJumpTableCanonical;
287    GTM->IsExported = IsExported;
288    std::uninitialized_copy(Types.begin(), Types.end(),
289                            GTM->getTrailingObjects<MDNode *>());
290    return GTM;
291  }
292
293  GlobalObject *getGlobal() const {
294    return GO;
295  }
296
297  bool isJumpTableCanonical() const {
298    return IsJumpTableCanonical;
299  }
300
301  bool isExported() const {
302    return IsExported;
303  }
304
305  ArrayRef<MDNode *> types() const {
306    return makeArrayRef(getTrailingObjects<MDNode *>(), NTypes);
307  }
308};
309
310struct ICallBranchFunnel final
311    : TrailingObjects<ICallBranchFunnel, GlobalTypeMember *> {
312  static ICallBranchFunnel *create(BumpPtrAllocator &Alloc, CallInst *CI,
313                                   ArrayRef<GlobalTypeMember *> Targets,
314                                   unsigned UniqueId) {
315    auto *Call = static_cast<ICallBranchFunnel *>(
316        Alloc.Allocate(totalSizeToAlloc<GlobalTypeMember *>(Targets.size()),
317                       alignof(ICallBranchFunnel)));
318    Call->CI = CI;
319    Call->UniqueId = UniqueId;
320    Call->NTargets = Targets.size();
321    std::uninitialized_copy(Targets.begin(), Targets.end(),
322                            Call->getTrailingObjects<GlobalTypeMember *>());
323    return Call;
324  }
325
326  CallInst *CI;
327  ArrayRef<GlobalTypeMember *> targets() const {
328    return makeArrayRef(getTrailingObjects<GlobalTypeMember *>(), NTargets);
329  }
330
331  unsigned UniqueId;
332
333private:
334  size_t NTargets;
335};
336
337struct ScopedSaveAliaseesAndUsed {
338  Module &M;
339  SmallPtrSet<GlobalValue *, 16> Used, CompilerUsed;
340  std::vector<std::pair<GlobalIndirectSymbol *, Function *>> FunctionAliases;
341
342  ScopedSaveAliaseesAndUsed(Module &M) : M(M) {
343    // The users of this class want to replace all function references except
344    // for aliases and llvm.used/llvm.compiler.used with references to a jump
345    // table. We avoid replacing aliases in order to avoid introducing a double
346    // indirection (or an alias pointing to a declaration in ThinLTO mode), and
347    // we avoid replacing llvm.used/llvm.compiler.used because these global
348    // variables describe properties of the global, not the jump table (besides,
349    // offseted references to the jump table in llvm.used are invalid).
350    // Unfortunately, LLVM doesn't have a "RAUW except for these (possibly
351    // indirect) users", so what we do is save the list of globals referenced by
352    // llvm.used/llvm.compiler.used and aliases, erase the used lists, let RAUW
353    // replace the aliasees and then set them back to their original values at
354    // the end.
355    if (GlobalVariable *GV = collectUsedGlobalVariables(M, Used, false))
356      GV->eraseFromParent();
357    if (GlobalVariable *GV = collectUsedGlobalVariables(M, CompilerUsed, true))
358      GV->eraseFromParent();
359
360    for (auto &GIS : concat<GlobalIndirectSymbol>(M.aliases(), M.ifuncs())) {
361      // FIXME: This should look past all aliases not just interposable ones,
362      // see discussion on D65118.
363      if (auto *F =
364              dyn_cast<Function>(GIS.getIndirectSymbol()->stripPointerCasts()))
365        FunctionAliases.push_back({&GIS, F});
366    }
367  }
368
369  ~ScopedSaveAliaseesAndUsed() {
370    appendToUsed(M, std::vector<GlobalValue *>(Used.begin(), Used.end()));
371    appendToCompilerUsed(M, std::vector<GlobalValue *>(CompilerUsed.begin(),
372                                                       CompilerUsed.end()));
373
374    for (auto P : FunctionAliases)
375      P.first->setIndirectSymbol(
376          ConstantExpr::getBitCast(P.second, P.first->getType()));
377  }
378};
379
380class LowerTypeTestsModule {
381  Module &M;
382
383  ModuleSummaryIndex *ExportSummary;
384  const ModuleSummaryIndex *ImportSummary;
385
386  Triple::ArchType Arch;
387  Triple::OSType OS;
388  Triple::ObjectFormatType ObjectFormat;
389
390  IntegerType *Int1Ty = Type::getInt1Ty(M.getContext());
391  IntegerType *Int8Ty = Type::getInt8Ty(M.getContext());
392  PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
393  ArrayType *Int8Arr0Ty = ArrayType::get(Type::getInt8Ty(M.getContext()), 0);
394  IntegerType *Int32Ty = Type::getInt32Ty(M.getContext());
395  PointerType *Int32PtrTy = PointerType::getUnqual(Int32Ty);
396  IntegerType *Int64Ty = Type::getInt64Ty(M.getContext());
397  IntegerType *IntPtrTy = M.getDataLayout().getIntPtrType(M.getContext(), 0);
398
399  // Indirect function call index assignment counter for WebAssembly
400  uint64_t IndirectIndex = 1;
401
402  // Mapping from type identifiers to the call sites that test them, as well as
403  // whether the type identifier needs to be exported to ThinLTO backends as
404  // part of the regular LTO phase of the ThinLTO pipeline (see exportTypeId).
405  struct TypeIdUserInfo {
406    std::vector<CallInst *> CallSites;
407    bool IsExported = false;
408  };
409  DenseMap<Metadata *, TypeIdUserInfo> TypeIdUsers;
410
411  /// This structure describes how to lower type tests for a particular type
412  /// identifier. It is either built directly from the global analysis (during
413  /// regular LTO or the regular LTO phase of ThinLTO), or indirectly using type
414  /// identifier summaries and external symbol references (in ThinLTO backends).
415  struct TypeIdLowering {
416    TypeTestResolution::Kind TheKind = TypeTestResolution::Unsat;
417
418    /// All except Unsat: the start address within the combined global.
419    Constant *OffsetedGlobal;
420
421    /// ByteArray, Inline, AllOnes: log2 of the required global alignment
422    /// relative to the start address.
423    Constant *AlignLog2;
424
425    /// ByteArray, Inline, AllOnes: one less than the size of the memory region
426    /// covering members of this type identifier as a multiple of 2^AlignLog2.
427    Constant *SizeM1;
428
429    /// ByteArray: the byte array to test the address against.
430    Constant *TheByteArray;
431
432    /// ByteArray: the bit mask to apply to bytes loaded from the byte array.
433    Constant *BitMask;
434
435    /// Inline: the bit mask to test the address against.
436    Constant *InlineBits;
437  };
438
439  std::vector<ByteArrayInfo> ByteArrayInfos;
440
441  Function *WeakInitializerFn = nullptr;
442
443  bool shouldExportConstantsAsAbsoluteSymbols();
444  uint8_t *exportTypeId(StringRef TypeId, const TypeIdLowering &TIL);
445  TypeIdLowering importTypeId(StringRef TypeId);
446  void importTypeTest(CallInst *CI);
447  void importFunction(Function *F, bool isJumpTableCanonical,
448                      std::vector<GlobalAlias *> &AliasesToErase);
449
450  BitSetInfo
451  buildBitSet(Metadata *TypeId,
452              const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout);
453  ByteArrayInfo *createByteArray(BitSetInfo &BSI);
454  void allocateByteArrays();
455  Value *createBitSetTest(IRBuilder<> &B, const TypeIdLowering &TIL,
456                          Value *BitOffset);
457  void lowerTypeTestCalls(
458      ArrayRef<Metadata *> TypeIds, Constant *CombinedGlobalAddr,
459      const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout);
460  Value *lowerTypeTestCall(Metadata *TypeId, CallInst *CI,
461                           const TypeIdLowering &TIL);
462
463  void buildBitSetsFromGlobalVariables(ArrayRef<Metadata *> TypeIds,
464                                       ArrayRef<GlobalTypeMember *> Globals);
465  unsigned getJumpTableEntrySize();
466  Type *getJumpTableEntryType();
467  void createJumpTableEntry(raw_ostream &AsmOS, raw_ostream &ConstraintOS,
468                            Triple::ArchType JumpTableArch,
469                            SmallVectorImpl<Value *> &AsmArgs, Function *Dest);
470  void verifyTypeMDNode(GlobalObject *GO, MDNode *Type);
471  void buildBitSetsFromFunctions(ArrayRef<Metadata *> TypeIds,
472                                 ArrayRef<GlobalTypeMember *> Functions);
473  void buildBitSetsFromFunctionsNative(ArrayRef<Metadata *> TypeIds,
474                                       ArrayRef<GlobalTypeMember *> Functions);
475  void buildBitSetsFromFunctionsWASM(ArrayRef<Metadata *> TypeIds,
476                                     ArrayRef<GlobalTypeMember *> Functions);
477  void
478  buildBitSetsFromDisjointSet(ArrayRef<Metadata *> TypeIds,
479                              ArrayRef<GlobalTypeMember *> Globals,
480                              ArrayRef<ICallBranchFunnel *> ICallBranchFunnels);
481
482  void replaceWeakDeclarationWithJumpTablePtr(Function *F, Constant *JT,
483                                              bool IsJumpTableCanonical);
484  void moveInitializerToModuleConstructor(GlobalVariable *GV);
485  void findGlobalVariableUsersOf(Constant *C,
486                                 SmallSetVector<GlobalVariable *, 8> &Out);
487
488  void createJumpTable(Function *F, ArrayRef<GlobalTypeMember *> Functions);
489
490  /// replaceCfiUses - Go through the uses list for this definition
491  /// and make each use point to "V" instead of "this" when the use is outside
492  /// the block. 'This's use list is expected to have at least one element.
493  /// Unlike replaceAllUsesWith this function skips blockaddr and direct call
494  /// uses.
495  void replaceCfiUses(Function *Old, Value *New, bool IsJumpTableCanonical);
496
497  /// replaceDirectCalls - Go through the uses list for this definition and
498  /// replace each use, which is a direct function call.
499  void replaceDirectCalls(Value *Old, Value *New);
500
501public:
502  LowerTypeTestsModule(Module &M, ModuleSummaryIndex *ExportSummary,
503                       const ModuleSummaryIndex *ImportSummary);
504
505  bool lower();
506
507  // Lower the module using the action and summary passed as command line
508  // arguments. For testing purposes only.
509  static bool runForTesting(Module &M);
510};
511
512struct LowerTypeTests : public ModulePass {
513  static char ID;
514
515  bool UseCommandLine = false;
516
517  ModuleSummaryIndex *ExportSummary;
518  const ModuleSummaryIndex *ImportSummary;
519
520  LowerTypeTests() : ModulePass(ID), UseCommandLine(true) {
521    initializeLowerTypeTestsPass(*PassRegistry::getPassRegistry());
522  }
523
524  LowerTypeTests(ModuleSummaryIndex *ExportSummary,
525                 const ModuleSummaryIndex *ImportSummary)
526      : ModulePass(ID), ExportSummary(ExportSummary),
527        ImportSummary(ImportSummary) {
528    initializeLowerTypeTestsPass(*PassRegistry::getPassRegistry());
529  }
530
531  bool runOnModule(Module &M) override {
532    if (UseCommandLine)
533      return LowerTypeTestsModule::runForTesting(M);
534    return LowerTypeTestsModule(M, ExportSummary, ImportSummary).lower();
535  }
536};
537
538} // end anonymous namespace
539
540char LowerTypeTests::ID = 0;
541
542INITIALIZE_PASS(LowerTypeTests, "lowertypetests", "Lower type metadata", false,
543                false)
544
545ModulePass *
546llvm::createLowerTypeTestsPass(ModuleSummaryIndex *ExportSummary,
547                               const ModuleSummaryIndex *ImportSummary) {
548  return new LowerTypeTests(ExportSummary, ImportSummary);
549}
550
551/// Build a bit set for TypeId using the object layouts in
552/// GlobalLayout.
553BitSetInfo LowerTypeTestsModule::buildBitSet(
554    Metadata *TypeId,
555    const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout) {
556  BitSetBuilder BSB;
557
558  // Compute the byte offset of each address associated with this type
559  // identifier.
560  for (auto &GlobalAndOffset : GlobalLayout) {
561    for (MDNode *Type : GlobalAndOffset.first->types()) {
562      if (Type->getOperand(1) != TypeId)
563        continue;
564      uint64_t Offset =
565          cast<ConstantInt>(
566              cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
567              ->getZExtValue();
568      BSB.addOffset(GlobalAndOffset.second + Offset);
569    }
570  }
571
572  return BSB.build();
573}
574
575/// Build a test that bit BitOffset mod sizeof(Bits)*8 is set in
576/// Bits. This pattern matches to the bt instruction on x86.
577static Value *createMaskedBitTest(IRBuilder<> &B, Value *Bits,
578                                  Value *BitOffset) {
579  auto BitsType = cast<IntegerType>(Bits->getType());
580  unsigned BitWidth = BitsType->getBitWidth();
581
582  BitOffset = B.CreateZExtOrTrunc(BitOffset, BitsType);
583  Value *BitIndex =
584      B.CreateAnd(BitOffset, ConstantInt::get(BitsType, BitWidth - 1));
585  Value *BitMask = B.CreateShl(ConstantInt::get(BitsType, 1), BitIndex);
586  Value *MaskedBits = B.CreateAnd(Bits, BitMask);
587  return B.CreateICmpNE(MaskedBits, ConstantInt::get(BitsType, 0));
588}
589
590ByteArrayInfo *LowerTypeTestsModule::createByteArray(BitSetInfo &BSI) {
591  // Create globals to stand in for byte arrays and masks. These never actually
592  // get initialized, we RAUW and erase them later in allocateByteArrays() once
593  // we know the offset and mask to use.
594  auto ByteArrayGlobal = new GlobalVariable(
595      M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);
596  auto MaskGlobal = new GlobalVariable(M, Int8Ty, /*isConstant=*/true,
597                                       GlobalValue::PrivateLinkage, nullptr);
598
599  ByteArrayInfos.emplace_back();
600  ByteArrayInfo *BAI = &ByteArrayInfos.back();
601
602  BAI->Bits = BSI.Bits;
603  BAI->BitSize = BSI.BitSize;
604  BAI->ByteArray = ByteArrayGlobal;
605  BAI->MaskGlobal = MaskGlobal;
606  return BAI;
607}
608
609void LowerTypeTestsModule::allocateByteArrays() {
610  llvm::stable_sort(ByteArrayInfos,
611                    [](const ByteArrayInfo &BAI1, const ByteArrayInfo &BAI2) {
612                      return BAI1.BitSize > BAI2.BitSize;
613                    });
614
615  std::vector<uint64_t> ByteArrayOffsets(ByteArrayInfos.size());
616
617  ByteArrayBuilder BAB;
618  for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
619    ByteArrayInfo *BAI = &ByteArrayInfos[I];
620
621    uint8_t Mask;
622    BAB.allocate(BAI->Bits, BAI->BitSize, ByteArrayOffsets[I], Mask);
623
624    BAI->MaskGlobal->replaceAllUsesWith(
625        ConstantExpr::getIntToPtr(ConstantInt::get(Int8Ty, Mask), Int8PtrTy));
626    BAI->MaskGlobal->eraseFromParent();
627    if (BAI->MaskPtr)
628      *BAI->MaskPtr = Mask;
629  }
630
631  Constant *ByteArrayConst = ConstantDataArray::get(M.getContext(), BAB.Bytes);
632  auto ByteArray =
633      new GlobalVariable(M, ByteArrayConst->getType(), /*isConstant=*/true,
634                         GlobalValue::PrivateLinkage, ByteArrayConst);
635
636  for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
637    ByteArrayInfo *BAI = &ByteArrayInfos[I];
638
639    Constant *Idxs[] = {ConstantInt::get(IntPtrTy, 0),
640                        ConstantInt::get(IntPtrTy, ByteArrayOffsets[I])};
641    Constant *GEP = ConstantExpr::getInBoundsGetElementPtr(
642        ByteArrayConst->getType(), ByteArray, Idxs);
643
644    // Create an alias instead of RAUW'ing the gep directly. On x86 this ensures
645    // that the pc-relative displacement is folded into the lea instead of the
646    // test instruction getting another displacement.
647    GlobalAlias *Alias = GlobalAlias::create(
648        Int8Ty, 0, GlobalValue::PrivateLinkage, "bits", GEP, &M);
649    BAI->ByteArray->replaceAllUsesWith(Alias);
650    BAI->ByteArray->eraseFromParent();
651  }
652
653  ByteArraySizeBits = BAB.BitAllocs[0] + BAB.BitAllocs[1] + BAB.BitAllocs[2] +
654                      BAB.BitAllocs[3] + BAB.BitAllocs[4] + BAB.BitAllocs[5] +
655                      BAB.BitAllocs[6] + BAB.BitAllocs[7];
656  ByteArraySizeBytes = BAB.Bytes.size();
657}
658
659/// Build a test that bit BitOffset is set in the type identifier that was
660/// lowered to TIL, which must be either an Inline or a ByteArray.
661Value *LowerTypeTestsModule::createBitSetTest(IRBuilder<> &B,
662                                              const TypeIdLowering &TIL,
663                                              Value *BitOffset) {
664  if (TIL.TheKind == TypeTestResolution::Inline) {
665    // If the bit set is sufficiently small, we can avoid a load by bit testing
666    // a constant.
667    return createMaskedBitTest(B, TIL.InlineBits, BitOffset);
668  } else {
669    Constant *ByteArray = TIL.TheByteArray;
670    if (AvoidReuse && !ImportSummary) {
671      // Each use of the byte array uses a different alias. This makes the
672      // backend less likely to reuse previously computed byte array addresses,
673      // improving the security of the CFI mechanism based on this pass.
674      // This won't work when importing because TheByteArray is external.
675      ByteArray = GlobalAlias::create(Int8Ty, 0, GlobalValue::PrivateLinkage,
676                                      "bits_use", ByteArray, &M);
677    }
678
679    Value *ByteAddr = B.CreateGEP(Int8Ty, ByteArray, BitOffset);
680    Value *Byte = B.CreateLoad(Int8Ty, ByteAddr);
681
682    Value *ByteAndMask =
683        B.CreateAnd(Byte, ConstantExpr::getPtrToInt(TIL.BitMask, Int8Ty));
684    return B.CreateICmpNE(ByteAndMask, ConstantInt::get(Int8Ty, 0));
685  }
686}
687
688static bool isKnownTypeIdMember(Metadata *TypeId, const DataLayout &DL,
689                                Value *V, uint64_t COffset) {
690  if (auto GV = dyn_cast<GlobalObject>(V)) {
691    SmallVector<MDNode *, 2> Types;
692    GV->getMetadata(LLVMContext::MD_type, Types);
693    for (MDNode *Type : Types) {
694      if (Type->getOperand(1) != TypeId)
695        continue;
696      uint64_t Offset =
697          cast<ConstantInt>(
698              cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
699              ->getZExtValue();
700      if (COffset == Offset)
701        return true;
702    }
703    return false;
704  }
705
706  if (auto GEP = dyn_cast<GEPOperator>(V)) {
707    APInt APOffset(DL.getPointerSizeInBits(0), 0);
708    bool Result = GEP->accumulateConstantOffset(DL, APOffset);
709    if (!Result)
710      return false;
711    COffset += APOffset.getZExtValue();
712    return isKnownTypeIdMember(TypeId, DL, GEP->getPointerOperand(), COffset);
713  }
714
715  if (auto Op = dyn_cast<Operator>(V)) {
716    if (Op->getOpcode() == Instruction::BitCast)
717      return isKnownTypeIdMember(TypeId, DL, Op->getOperand(0), COffset);
718
719    if (Op->getOpcode() == Instruction::Select)
720      return isKnownTypeIdMember(TypeId, DL, Op->getOperand(1), COffset) &&
721             isKnownTypeIdMember(TypeId, DL, Op->getOperand(2), COffset);
722  }
723
724  return false;
725}
726
727/// Lower a llvm.type.test call to its implementation. Returns the value to
728/// replace the call with.
729Value *LowerTypeTestsModule::lowerTypeTestCall(Metadata *TypeId, CallInst *CI,
730                                               const TypeIdLowering &TIL) {
731  if (TIL.TheKind == TypeTestResolution::Unsat)
732    return ConstantInt::getFalse(M.getContext());
733
734  Value *Ptr = CI->getArgOperand(0);
735  const DataLayout &DL = M.getDataLayout();
736  if (isKnownTypeIdMember(TypeId, DL, Ptr, 0))
737    return ConstantInt::getTrue(M.getContext());
738
739  BasicBlock *InitialBB = CI->getParent();
740
741  IRBuilder<> B(CI);
742
743  Value *PtrAsInt = B.CreatePtrToInt(Ptr, IntPtrTy);
744
745  Constant *OffsetedGlobalAsInt =
746      ConstantExpr::getPtrToInt(TIL.OffsetedGlobal, IntPtrTy);
747  if (TIL.TheKind == TypeTestResolution::Single)
748    return B.CreateICmpEQ(PtrAsInt, OffsetedGlobalAsInt);
749
750  Value *PtrOffset = B.CreateSub(PtrAsInt, OffsetedGlobalAsInt);
751
752  // We need to check that the offset both falls within our range and is
753  // suitably aligned. We can check both properties at the same time by
754  // performing a right rotate by log2(alignment) followed by an integer
755  // comparison against the bitset size. The rotate will move the lower
756  // order bits that need to be zero into the higher order bits of the
757  // result, causing the comparison to fail if they are nonzero. The rotate
758  // also conveniently gives us a bit offset to use during the load from
759  // the bitset.
760  Value *OffsetSHR =
761      B.CreateLShr(PtrOffset, ConstantExpr::getZExt(TIL.AlignLog2, IntPtrTy));
762  Value *OffsetSHL = B.CreateShl(
763      PtrOffset, ConstantExpr::getZExt(
764                     ConstantExpr::getSub(
765                         ConstantInt::get(Int8Ty, DL.getPointerSizeInBits(0)),
766                         TIL.AlignLog2),
767                     IntPtrTy));
768  Value *BitOffset = B.CreateOr(OffsetSHR, OffsetSHL);
769
770  Value *OffsetInRange = B.CreateICmpULE(BitOffset, TIL.SizeM1);
771
772  // If the bit set is all ones, testing against it is unnecessary.
773  if (TIL.TheKind == TypeTestResolution::AllOnes)
774    return OffsetInRange;
775
776  // See if the intrinsic is used in the following common pattern:
777  //   br(llvm.type.test(...), thenbb, elsebb)
778  // where nothing happens between the type test and the br.
779  // If so, create slightly simpler IR.
780  if (CI->hasOneUse())
781    if (auto *Br = dyn_cast<BranchInst>(*CI->user_begin()))
782      if (CI->getNextNode() == Br) {
783        BasicBlock *Then = InitialBB->splitBasicBlock(CI->getIterator());
784        BasicBlock *Else = Br->getSuccessor(1);
785        BranchInst *NewBr = BranchInst::Create(Then, Else, OffsetInRange);
786        NewBr->setMetadata(LLVMContext::MD_prof,
787                           Br->getMetadata(LLVMContext::MD_prof));
788        ReplaceInstWithInst(InitialBB->getTerminator(), NewBr);
789
790        // Update phis in Else resulting from InitialBB being split
791        for (auto &Phi : Else->phis())
792          Phi.addIncoming(Phi.getIncomingValueForBlock(Then), InitialBB);
793
794        IRBuilder<> ThenB(CI);
795        return createBitSetTest(ThenB, TIL, BitOffset);
796      }
797
798  IRBuilder<> ThenB(SplitBlockAndInsertIfThen(OffsetInRange, CI, false));
799
800  // Now that we know that the offset is in range and aligned, load the
801  // appropriate bit from the bitset.
802  Value *Bit = createBitSetTest(ThenB, TIL, BitOffset);
803
804  // The value we want is 0 if we came directly from the initial block
805  // (having failed the range or alignment checks), or the loaded bit if
806  // we came from the block in which we loaded it.
807  B.SetInsertPoint(CI);
808  PHINode *P = B.CreatePHI(Int1Ty, 2);
809  P->addIncoming(ConstantInt::get(Int1Ty, 0), InitialBB);
810  P->addIncoming(Bit, ThenB.GetInsertBlock());
811  return P;
812}
813
814/// Given a disjoint set of type identifiers and globals, lay out the globals,
815/// build the bit sets and lower the llvm.type.test calls.
816void LowerTypeTestsModule::buildBitSetsFromGlobalVariables(
817    ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Globals) {
818  // Build a new global with the combined contents of the referenced globals.
819  // This global is a struct whose even-indexed elements contain the original
820  // contents of the referenced globals and whose odd-indexed elements contain
821  // any padding required to align the next element to the next power of 2 plus
822  // any additional padding required to meet its alignment requirements.
823  std::vector<Constant *> GlobalInits;
824  const DataLayout &DL = M.getDataLayout();
825  DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
826  Align MaxAlign;
827  uint64_t CurOffset = 0;
828  uint64_t DesiredPadding = 0;
829  for (GlobalTypeMember *G : Globals) {
830    auto *GV = cast<GlobalVariable>(G->getGlobal());
831    MaybeAlign Alignment(GV->getAlignment());
832    if (!Alignment)
833      Alignment = Align(DL.getABITypeAlignment(GV->getValueType()));
834    MaxAlign = std::max(MaxAlign, *Alignment);
835    uint64_t GVOffset = alignTo(CurOffset + DesiredPadding, *Alignment);
836    GlobalLayout[G] = GVOffset;
837    if (GVOffset != 0) {
838      uint64_t Padding = GVOffset - CurOffset;
839      GlobalInits.push_back(
840          ConstantAggregateZero::get(ArrayType::get(Int8Ty, Padding)));
841    }
842
843    GlobalInits.push_back(GV->getInitializer());
844    uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
845    CurOffset = GVOffset + InitSize;
846
847    // Compute the amount of padding that we'd like for the next element.
848    DesiredPadding = NextPowerOf2(InitSize - 1) - InitSize;
849
850    // Experiments of different caps with Chromium on both x64 and ARM64
851    // have shown that the 32-byte cap generates the smallest binary on
852    // both platforms while different caps yield similar performance.
853    // (see https://lists.llvm.org/pipermail/llvm-dev/2018-July/124694.html)
854    if (DesiredPadding > 32)
855      DesiredPadding = alignTo(InitSize, 32) - InitSize;
856  }
857
858  Constant *NewInit = ConstantStruct::getAnon(M.getContext(), GlobalInits);
859  auto *CombinedGlobal =
860      new GlobalVariable(M, NewInit->getType(), /*isConstant=*/true,
861                         GlobalValue::PrivateLinkage, NewInit);
862  CombinedGlobal->setAlignment(MaxAlign);
863
864  StructType *NewTy = cast<StructType>(NewInit->getType());
865  lowerTypeTestCalls(TypeIds, CombinedGlobal, GlobalLayout);
866
867  // Build aliases pointing to offsets into the combined global for each
868  // global from which we built the combined global, and replace references
869  // to the original globals with references to the aliases.
870  for (unsigned I = 0; I != Globals.size(); ++I) {
871    GlobalVariable *GV = cast<GlobalVariable>(Globals[I]->getGlobal());
872
873    // Multiply by 2 to account for padding elements.
874    Constant *CombinedGlobalIdxs[] = {ConstantInt::get(Int32Ty, 0),
875                                      ConstantInt::get(Int32Ty, I * 2)};
876    Constant *CombinedGlobalElemPtr = ConstantExpr::getGetElementPtr(
877        NewInit->getType(), CombinedGlobal, CombinedGlobalIdxs);
878    assert(GV->getType()->getAddressSpace() == 0);
879    GlobalAlias *GAlias =
880        GlobalAlias::create(NewTy->getElementType(I * 2), 0, GV->getLinkage(),
881                            "", CombinedGlobalElemPtr, &M);
882    GAlias->setVisibility(GV->getVisibility());
883    GAlias->takeName(GV);
884    GV->replaceAllUsesWith(GAlias);
885    GV->eraseFromParent();
886  }
887}
888
889bool LowerTypeTestsModule::shouldExportConstantsAsAbsoluteSymbols() {
890  return (Arch == Triple::x86 || Arch == Triple::x86_64) &&
891         ObjectFormat == Triple::ELF;
892}
893
894/// Export the given type identifier so that ThinLTO backends may import it.
895/// Type identifiers are exported by adding coarse-grained information about how
896/// to test the type identifier to the summary, and creating symbols in the
897/// object file (aliases and absolute symbols) containing fine-grained
898/// information about the type identifier.
899///
900/// Returns a pointer to the location in which to store the bitmask, if
901/// applicable.
902uint8_t *LowerTypeTestsModule::exportTypeId(StringRef TypeId,
903                                            const TypeIdLowering &TIL) {
904  TypeTestResolution &TTRes =
905      ExportSummary->getOrInsertTypeIdSummary(TypeId).TTRes;
906  TTRes.TheKind = TIL.TheKind;
907
908  auto ExportGlobal = [&](StringRef Name, Constant *C) {
909    GlobalAlias *GA =
910        GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
911                            "__typeid_" + TypeId + "_" + Name, C, &M);
912    GA->setVisibility(GlobalValue::HiddenVisibility);
913  };
914
915  auto ExportConstant = [&](StringRef Name, uint64_t &Storage, Constant *C) {
916    if (shouldExportConstantsAsAbsoluteSymbols())
917      ExportGlobal(Name, ConstantExpr::getIntToPtr(C, Int8PtrTy));
918    else
919      Storage = cast<ConstantInt>(C)->getZExtValue();
920  };
921
922  if (TIL.TheKind != TypeTestResolution::Unsat)
923    ExportGlobal("global_addr", TIL.OffsetedGlobal);
924
925  if (TIL.TheKind == TypeTestResolution::ByteArray ||
926      TIL.TheKind == TypeTestResolution::Inline ||
927      TIL.TheKind == TypeTestResolution::AllOnes) {
928    ExportConstant("align", TTRes.AlignLog2, TIL.AlignLog2);
929    ExportConstant("size_m1", TTRes.SizeM1, TIL.SizeM1);
930
931    uint64_t BitSize = cast<ConstantInt>(TIL.SizeM1)->getZExtValue() + 1;
932    if (TIL.TheKind == TypeTestResolution::Inline)
933      TTRes.SizeM1BitWidth = (BitSize <= 32) ? 5 : 6;
934    else
935      TTRes.SizeM1BitWidth = (BitSize <= 128) ? 7 : 32;
936  }
937
938  if (TIL.TheKind == TypeTestResolution::ByteArray) {
939    ExportGlobal("byte_array", TIL.TheByteArray);
940    if (shouldExportConstantsAsAbsoluteSymbols())
941      ExportGlobal("bit_mask", TIL.BitMask);
942    else
943      return &TTRes.BitMask;
944  }
945
946  if (TIL.TheKind == TypeTestResolution::Inline)
947    ExportConstant("inline_bits", TTRes.InlineBits, TIL.InlineBits);
948
949  return nullptr;
950}
951
952LowerTypeTestsModule::TypeIdLowering
953LowerTypeTestsModule::importTypeId(StringRef TypeId) {
954  const TypeIdSummary *TidSummary = ImportSummary->getTypeIdSummary(TypeId);
955  if (!TidSummary)
956    return {}; // Unsat: no globals match this type id.
957  const TypeTestResolution &TTRes = TidSummary->TTRes;
958
959  TypeIdLowering TIL;
960  TIL.TheKind = TTRes.TheKind;
961
962  auto ImportGlobal = [&](StringRef Name) {
963    // Give the global a type of length 0 so that it is not assumed not to alias
964    // with any other global.
965    Constant *C = M.getOrInsertGlobal(("__typeid_" + TypeId + "_" + Name).str(),
966                                      Int8Arr0Ty);
967    if (auto *GV = dyn_cast<GlobalVariable>(C))
968      GV->setVisibility(GlobalValue::HiddenVisibility);
969    C = ConstantExpr::getBitCast(C, Int8PtrTy);
970    return C;
971  };
972
973  auto ImportConstant = [&](StringRef Name, uint64_t Const, unsigned AbsWidth,
974                            Type *Ty) {
975    if (!shouldExportConstantsAsAbsoluteSymbols()) {
976      Constant *C =
977          ConstantInt::get(isa<IntegerType>(Ty) ? Ty : Int64Ty, Const);
978      if (!isa<IntegerType>(Ty))
979        C = ConstantExpr::getIntToPtr(C, Ty);
980      return C;
981    }
982
983    Constant *C = ImportGlobal(Name);
984    auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
985    if (isa<IntegerType>(Ty))
986      C = ConstantExpr::getPtrToInt(C, Ty);
987    if (GV->getMetadata(LLVMContext::MD_absolute_symbol))
988      return C;
989
990    auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
991      auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
992      auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
993      GV->setMetadata(LLVMContext::MD_absolute_symbol,
994                      MDNode::get(M.getContext(), {MinC, MaxC}));
995    };
996    if (AbsWidth == IntPtrTy->getBitWidth())
997      SetAbsRange(~0ull, ~0ull); // Full set.
998    else
999      SetAbsRange(0, 1ull << AbsWidth);
1000    return C;
1001  };
1002
1003  if (TIL.TheKind != TypeTestResolution::Unsat)
1004    TIL.OffsetedGlobal = ImportGlobal("global_addr");
1005
1006  if (TIL.TheKind == TypeTestResolution::ByteArray ||
1007      TIL.TheKind == TypeTestResolution::Inline ||
1008      TIL.TheKind == TypeTestResolution::AllOnes) {
1009    TIL.AlignLog2 = ImportConstant("align", TTRes.AlignLog2, 8, Int8Ty);
1010    TIL.SizeM1 =
1011        ImportConstant("size_m1", TTRes.SizeM1, TTRes.SizeM1BitWidth, IntPtrTy);
1012  }
1013
1014  if (TIL.TheKind == TypeTestResolution::ByteArray) {
1015    TIL.TheByteArray = ImportGlobal("byte_array");
1016    TIL.BitMask = ImportConstant("bit_mask", TTRes.BitMask, 8, Int8PtrTy);
1017  }
1018
1019  if (TIL.TheKind == TypeTestResolution::Inline)
1020    TIL.InlineBits = ImportConstant(
1021        "inline_bits", TTRes.InlineBits, 1 << TTRes.SizeM1BitWidth,
1022        TTRes.SizeM1BitWidth <= 5 ? Int32Ty : Int64Ty);
1023
1024  return TIL;
1025}
1026
1027void LowerTypeTestsModule::importTypeTest(CallInst *CI) {
1028  auto TypeIdMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
1029  if (!TypeIdMDVal)
1030    report_fatal_error("Second argument of llvm.type.test must be metadata");
1031
1032  auto TypeIdStr = dyn_cast<MDString>(TypeIdMDVal->getMetadata());
1033  if (!TypeIdStr)
1034    report_fatal_error(
1035        "Second argument of llvm.type.test must be a metadata string");
1036
1037  TypeIdLowering TIL = importTypeId(TypeIdStr->getString());
1038  Value *Lowered = lowerTypeTestCall(TypeIdStr, CI, TIL);
1039  CI->replaceAllUsesWith(Lowered);
1040  CI->eraseFromParent();
1041}
1042
1043// ThinLTO backend: the function F has a jump table entry; update this module
1044// accordingly. isJumpTableCanonical describes the type of the jump table entry.
1045void LowerTypeTestsModule::importFunction(
1046    Function *F, bool isJumpTableCanonical,
1047    std::vector<GlobalAlias *> &AliasesToErase) {
1048  assert(F->getType()->getAddressSpace() == 0);
1049
1050  GlobalValue::VisibilityTypes Visibility = F->getVisibility();
1051  std::string Name = F->getName();
1052
1053  if (F->isDeclarationForLinker() && isJumpTableCanonical) {
1054    // Non-dso_local functions may be overriden at run time,
1055    // don't short curcuit them
1056    if (F->isDSOLocal()) {
1057      Function *RealF = Function::Create(F->getFunctionType(),
1058                                         GlobalValue::ExternalLinkage,
1059                                         F->getAddressSpace(),
1060                                         Name + ".cfi", &M);
1061      RealF->setVisibility(GlobalVariable::HiddenVisibility);
1062      replaceDirectCalls(F, RealF);
1063    }
1064    return;
1065  }
1066
1067  Function *FDecl;
1068  if (!isJumpTableCanonical) {
1069    // Either a declaration of an external function or a reference to a locally
1070    // defined jump table.
1071    FDecl = Function::Create(F->getFunctionType(), GlobalValue::ExternalLinkage,
1072                             F->getAddressSpace(), Name + ".cfi_jt", &M);
1073    FDecl->setVisibility(GlobalValue::HiddenVisibility);
1074  } else {
1075    F->setName(Name + ".cfi");
1076    F->setLinkage(GlobalValue::ExternalLinkage);
1077    FDecl = Function::Create(F->getFunctionType(), GlobalValue::ExternalLinkage,
1078                             F->getAddressSpace(), Name, &M);
1079    FDecl->setVisibility(Visibility);
1080    Visibility = GlobalValue::HiddenVisibility;
1081
1082    // Delete aliases pointing to this function, they'll be re-created in the
1083    // merged output. Don't do it yet though because ScopedSaveAliaseesAndUsed
1084    // will want to reset the aliasees first.
1085    for (auto &U : F->uses()) {
1086      if (auto *A = dyn_cast<GlobalAlias>(U.getUser())) {
1087        Function *AliasDecl = Function::Create(
1088            F->getFunctionType(), GlobalValue::ExternalLinkage,
1089            F->getAddressSpace(), "", &M);
1090        AliasDecl->takeName(A);
1091        A->replaceAllUsesWith(AliasDecl);
1092        AliasesToErase.push_back(A);
1093      }
1094    }
1095  }
1096
1097  if (F->hasExternalWeakLinkage())
1098    replaceWeakDeclarationWithJumpTablePtr(F, FDecl, isJumpTableCanonical);
1099  else
1100    replaceCfiUses(F, FDecl, isJumpTableCanonical);
1101
1102  // Set visibility late because it's used in replaceCfiUses() to determine
1103  // whether uses need to to be replaced.
1104  F->setVisibility(Visibility);
1105}
1106
1107void LowerTypeTestsModule::lowerTypeTestCalls(
1108    ArrayRef<Metadata *> TypeIds, Constant *CombinedGlobalAddr,
1109    const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout) {
1110  CombinedGlobalAddr = ConstantExpr::getBitCast(CombinedGlobalAddr, Int8PtrTy);
1111
1112  // For each type identifier in this disjoint set...
1113  for (Metadata *TypeId : TypeIds) {
1114    // Build the bitset.
1115    BitSetInfo BSI = buildBitSet(TypeId, GlobalLayout);
1116    LLVM_DEBUG({
1117      if (auto MDS = dyn_cast<MDString>(TypeId))
1118        dbgs() << MDS->getString() << ": ";
1119      else
1120        dbgs() << "<unnamed>: ";
1121      BSI.print(dbgs());
1122    });
1123
1124    ByteArrayInfo *BAI = nullptr;
1125    TypeIdLowering TIL;
1126    TIL.OffsetedGlobal = ConstantExpr::getGetElementPtr(
1127        Int8Ty, CombinedGlobalAddr, ConstantInt::get(IntPtrTy, BSI.ByteOffset)),
1128    TIL.AlignLog2 = ConstantInt::get(Int8Ty, BSI.AlignLog2);
1129    TIL.SizeM1 = ConstantInt::get(IntPtrTy, BSI.BitSize - 1);
1130    if (BSI.isAllOnes()) {
1131      TIL.TheKind = (BSI.BitSize == 1) ? TypeTestResolution::Single
1132                                       : TypeTestResolution::AllOnes;
1133    } else if (BSI.BitSize <= 64) {
1134      TIL.TheKind = TypeTestResolution::Inline;
1135      uint64_t InlineBits = 0;
1136      for (auto Bit : BSI.Bits)
1137        InlineBits |= uint64_t(1) << Bit;
1138      if (InlineBits == 0)
1139        TIL.TheKind = TypeTestResolution::Unsat;
1140      else
1141        TIL.InlineBits = ConstantInt::get(
1142            (BSI.BitSize <= 32) ? Int32Ty : Int64Ty, InlineBits);
1143    } else {
1144      TIL.TheKind = TypeTestResolution::ByteArray;
1145      ++NumByteArraysCreated;
1146      BAI = createByteArray(BSI);
1147      TIL.TheByteArray = BAI->ByteArray;
1148      TIL.BitMask = BAI->MaskGlobal;
1149    }
1150
1151    TypeIdUserInfo &TIUI = TypeIdUsers[TypeId];
1152
1153    if (TIUI.IsExported) {
1154      uint8_t *MaskPtr = exportTypeId(cast<MDString>(TypeId)->getString(), TIL);
1155      if (BAI)
1156        BAI->MaskPtr = MaskPtr;
1157    }
1158
1159    // Lower each call to llvm.type.test for this type identifier.
1160    for (CallInst *CI : TIUI.CallSites) {
1161      ++NumTypeTestCallsLowered;
1162      Value *Lowered = lowerTypeTestCall(TypeId, CI, TIL);
1163      CI->replaceAllUsesWith(Lowered);
1164      CI->eraseFromParent();
1165    }
1166  }
1167}
1168
1169void LowerTypeTestsModule::verifyTypeMDNode(GlobalObject *GO, MDNode *Type) {
1170  if (Type->getNumOperands() != 2)
1171    report_fatal_error("All operands of type metadata must have 2 elements");
1172
1173  if (GO->isThreadLocal())
1174    report_fatal_error("Bit set element may not be thread-local");
1175  if (isa<GlobalVariable>(GO) && GO->hasSection())
1176    report_fatal_error(
1177        "A member of a type identifier may not have an explicit section");
1178
1179  // FIXME: We previously checked that global var member of a type identifier
1180  // must be a definition, but the IR linker may leave type metadata on
1181  // declarations. We should restore this check after fixing PR31759.
1182
1183  auto OffsetConstMD = dyn_cast<ConstantAsMetadata>(Type->getOperand(0));
1184  if (!OffsetConstMD)
1185    report_fatal_error("Type offset must be a constant");
1186  auto OffsetInt = dyn_cast<ConstantInt>(OffsetConstMD->getValue());
1187  if (!OffsetInt)
1188    report_fatal_error("Type offset must be an integer constant");
1189}
1190
1191static const unsigned kX86JumpTableEntrySize = 8;
1192static const unsigned kARMJumpTableEntrySize = 4;
1193
1194unsigned LowerTypeTestsModule::getJumpTableEntrySize() {
1195  switch (Arch) {
1196    case Triple::x86:
1197    case Triple::x86_64:
1198      return kX86JumpTableEntrySize;
1199    case Triple::arm:
1200    case Triple::thumb:
1201    case Triple::aarch64:
1202      return kARMJumpTableEntrySize;
1203    default:
1204      report_fatal_error("Unsupported architecture for jump tables");
1205  }
1206}
1207
1208// Create a jump table entry for the target. This consists of an instruction
1209// sequence containing a relative branch to Dest. Appends inline asm text,
1210// constraints and arguments to AsmOS, ConstraintOS and AsmArgs.
1211void LowerTypeTestsModule::createJumpTableEntry(
1212    raw_ostream &AsmOS, raw_ostream &ConstraintOS,
1213    Triple::ArchType JumpTableArch, SmallVectorImpl<Value *> &AsmArgs,
1214    Function *Dest) {
1215  unsigned ArgIndex = AsmArgs.size();
1216
1217  if (JumpTableArch == Triple::x86 || JumpTableArch == Triple::x86_64) {
1218    AsmOS << "jmp ${" << ArgIndex << ":c}@plt\n";
1219    AsmOS << "int3\nint3\nint3\n";
1220  } else if (JumpTableArch == Triple::arm || JumpTableArch == Triple::aarch64) {
1221    AsmOS << "b $" << ArgIndex << "\n";
1222  } else if (JumpTableArch == Triple::thumb) {
1223    AsmOS << "b.w $" << ArgIndex << "\n";
1224  } else {
1225    report_fatal_error("Unsupported architecture for jump tables");
1226  }
1227
1228  ConstraintOS << (ArgIndex > 0 ? ",s" : "s");
1229  AsmArgs.push_back(Dest);
1230}
1231
1232Type *LowerTypeTestsModule::getJumpTableEntryType() {
1233  return ArrayType::get(Int8Ty, getJumpTableEntrySize());
1234}
1235
1236/// Given a disjoint set of type identifiers and functions, build the bit sets
1237/// and lower the llvm.type.test calls, architecture dependently.
1238void LowerTypeTestsModule::buildBitSetsFromFunctions(
1239    ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
1240  if (Arch == Triple::x86 || Arch == Triple::x86_64 || Arch == Triple::arm ||
1241      Arch == Triple::thumb || Arch == Triple::aarch64)
1242    buildBitSetsFromFunctionsNative(TypeIds, Functions);
1243  else if (Arch == Triple::wasm32 || Arch == Triple::wasm64)
1244    buildBitSetsFromFunctionsWASM(TypeIds, Functions);
1245  else
1246    report_fatal_error("Unsupported architecture for jump tables");
1247}
1248
1249void LowerTypeTestsModule::moveInitializerToModuleConstructor(
1250    GlobalVariable *GV) {
1251  if (WeakInitializerFn == nullptr) {
1252    WeakInitializerFn = Function::Create(
1253        FunctionType::get(Type::getVoidTy(M.getContext()),
1254                          /* IsVarArg */ false),
1255        GlobalValue::InternalLinkage,
1256        M.getDataLayout().getProgramAddressSpace(),
1257        "__cfi_global_var_init", &M);
1258    BasicBlock *BB =
1259        BasicBlock::Create(M.getContext(), "entry", WeakInitializerFn);
1260    ReturnInst::Create(M.getContext(), BB);
1261    WeakInitializerFn->setSection(
1262        ObjectFormat == Triple::MachO
1263            ? "__TEXT,__StaticInit,regular,pure_instructions"
1264            : ".text.startup");
1265    // This code is equivalent to relocation application, and should run at the
1266    // earliest possible time (i.e. with the highest priority).
1267    appendToGlobalCtors(M, WeakInitializerFn, /* Priority */ 0);
1268  }
1269
1270  IRBuilder<> IRB(WeakInitializerFn->getEntryBlock().getTerminator());
1271  GV->setConstant(false);
1272  IRB.CreateAlignedStore(GV->getInitializer(), GV, GV->getAlignment());
1273  GV->setInitializer(Constant::getNullValue(GV->getValueType()));
1274}
1275
1276void LowerTypeTestsModule::findGlobalVariableUsersOf(
1277    Constant *C, SmallSetVector<GlobalVariable *, 8> &Out) {
1278  for (auto *U : C->users()){
1279    if (auto *GV = dyn_cast<GlobalVariable>(U))
1280      Out.insert(GV);
1281    else if (auto *C2 = dyn_cast<Constant>(U))
1282      findGlobalVariableUsersOf(C2, Out);
1283  }
1284}
1285
1286// Replace all uses of F with (F ? JT : 0).
1287void LowerTypeTestsModule::replaceWeakDeclarationWithJumpTablePtr(
1288    Function *F, Constant *JT, bool IsJumpTableCanonical) {
1289  // The target expression can not appear in a constant initializer on most
1290  // (all?) targets. Switch to a runtime initializer.
1291  SmallSetVector<GlobalVariable *, 8> GlobalVarUsers;
1292  findGlobalVariableUsersOf(F, GlobalVarUsers);
1293  for (auto GV : GlobalVarUsers)
1294    moveInitializerToModuleConstructor(GV);
1295
1296  // Can not RAUW F with an expression that uses F. Replace with a temporary
1297  // placeholder first.
1298  Function *PlaceholderFn =
1299      Function::Create(cast<FunctionType>(F->getValueType()),
1300                       GlobalValue::ExternalWeakLinkage,
1301                       F->getAddressSpace(), "", &M);
1302  replaceCfiUses(F, PlaceholderFn, IsJumpTableCanonical);
1303
1304  Constant *Target = ConstantExpr::getSelect(
1305      ConstantExpr::getICmp(CmpInst::ICMP_NE, F,
1306                            Constant::getNullValue(F->getType())),
1307      JT, Constant::getNullValue(F->getType()));
1308  PlaceholderFn->replaceAllUsesWith(Target);
1309  PlaceholderFn->eraseFromParent();
1310}
1311
1312static bool isThumbFunction(Function *F, Triple::ArchType ModuleArch) {
1313  Attribute TFAttr = F->getFnAttribute("target-features");
1314  if (!TFAttr.hasAttribute(Attribute::None)) {
1315    SmallVector<StringRef, 6> Features;
1316    TFAttr.getValueAsString().split(Features, ',');
1317    for (StringRef Feature : Features) {
1318      if (Feature == "-thumb-mode")
1319        return false;
1320      else if (Feature == "+thumb-mode")
1321        return true;
1322    }
1323  }
1324
1325  return ModuleArch == Triple::thumb;
1326}
1327
1328// Each jump table must be either ARM or Thumb as a whole for the bit-test math
1329// to work. Pick one that matches the majority of members to minimize interop
1330// veneers inserted by the linker.
1331static Triple::ArchType
1332selectJumpTableArmEncoding(ArrayRef<GlobalTypeMember *> Functions,
1333                           Triple::ArchType ModuleArch) {
1334  if (ModuleArch != Triple::arm && ModuleArch != Triple::thumb)
1335    return ModuleArch;
1336
1337  unsigned ArmCount = 0, ThumbCount = 0;
1338  for (const auto GTM : Functions) {
1339    if (!GTM->isJumpTableCanonical()) {
1340      // PLT stubs are always ARM.
1341      // FIXME: This is the wrong heuristic for non-canonical jump tables.
1342      ++ArmCount;
1343      continue;
1344    }
1345
1346    Function *F = cast<Function>(GTM->getGlobal());
1347    ++(isThumbFunction(F, ModuleArch) ? ThumbCount : ArmCount);
1348  }
1349
1350  return ArmCount > ThumbCount ? Triple::arm : Triple::thumb;
1351}
1352
1353void LowerTypeTestsModule::createJumpTable(
1354    Function *F, ArrayRef<GlobalTypeMember *> Functions) {
1355  std::string AsmStr, ConstraintStr;
1356  raw_string_ostream AsmOS(AsmStr), ConstraintOS(ConstraintStr);
1357  SmallVector<Value *, 16> AsmArgs;
1358  AsmArgs.reserve(Functions.size() * 2);
1359
1360  Triple::ArchType JumpTableArch = selectJumpTableArmEncoding(Functions, Arch);
1361
1362  for (unsigned I = 0; I != Functions.size(); ++I)
1363    createJumpTableEntry(AsmOS, ConstraintOS, JumpTableArch, AsmArgs,
1364                         cast<Function>(Functions[I]->getGlobal()));
1365
1366  // Align the whole table by entry size.
1367  F->setAlignment(Align(getJumpTableEntrySize()));
1368  // Skip prologue.
1369  // Disabled on win32 due to https://llvm.org/bugs/show_bug.cgi?id=28641#c3.
1370  // Luckily, this function does not get any prologue even without the
1371  // attribute.
1372  if (OS != Triple::Win32)
1373    F->addFnAttr(Attribute::Naked);
1374  if (JumpTableArch == Triple::arm)
1375    F->addFnAttr("target-features", "-thumb-mode");
1376  if (JumpTableArch == Triple::thumb) {
1377    F->addFnAttr("target-features", "+thumb-mode");
1378    // Thumb jump table assembly needs Thumb2. The following attribute is added
1379    // by Clang for -march=armv7.
1380    F->addFnAttr("target-cpu", "cortex-a8");
1381  }
1382  // Make sure we don't emit .eh_frame for this function.
1383  F->addFnAttr(Attribute::NoUnwind);
1384
1385  BasicBlock *BB = BasicBlock::Create(M.getContext(), "entry", F);
1386  IRBuilder<> IRB(BB);
1387
1388  SmallVector<Type *, 16> ArgTypes;
1389  ArgTypes.reserve(AsmArgs.size());
1390  for (const auto &Arg : AsmArgs)
1391    ArgTypes.push_back(Arg->getType());
1392  InlineAsm *JumpTableAsm =
1393      InlineAsm::get(FunctionType::get(IRB.getVoidTy(), ArgTypes, false),
1394                     AsmOS.str(), ConstraintOS.str(),
1395                     /*hasSideEffects=*/true);
1396
1397  IRB.CreateCall(JumpTableAsm, AsmArgs);
1398  IRB.CreateUnreachable();
1399}
1400
1401/// Given a disjoint set of type identifiers and functions, build a jump table
1402/// for the functions, build the bit sets and lower the llvm.type.test calls.
1403void LowerTypeTestsModule::buildBitSetsFromFunctionsNative(
1404    ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
1405  // Unlike the global bitset builder, the function bitset builder cannot
1406  // re-arrange functions in a particular order and base its calculations on the
1407  // layout of the functions' entry points, as we have no idea how large a
1408  // particular function will end up being (the size could even depend on what
1409  // this pass does!) Instead, we build a jump table, which is a block of code
1410  // consisting of one branch instruction for each of the functions in the bit
1411  // set that branches to the target function, and redirect any taken function
1412  // addresses to the corresponding jump table entry. In the object file's
1413  // symbol table, the symbols for the target functions also refer to the jump
1414  // table entries, so that addresses taken outside the module will pass any
1415  // verification done inside the module.
1416  //
1417  // In more concrete terms, suppose we have three functions f, g, h which are
1418  // of the same type, and a function foo that returns their addresses:
1419  //
1420  // f:
1421  // mov 0, %eax
1422  // ret
1423  //
1424  // g:
1425  // mov 1, %eax
1426  // ret
1427  //
1428  // h:
1429  // mov 2, %eax
1430  // ret
1431  //
1432  // foo:
1433  // mov f, %eax
1434  // mov g, %edx
1435  // mov h, %ecx
1436  // ret
1437  //
1438  // We output the jump table as module-level inline asm string. The end result
1439  // will (conceptually) look like this:
1440  //
1441  // f = .cfi.jumptable
1442  // g = .cfi.jumptable + 4
1443  // h = .cfi.jumptable + 8
1444  // .cfi.jumptable:
1445  // jmp f.cfi  ; 5 bytes
1446  // int3       ; 1 byte
1447  // int3       ; 1 byte
1448  // int3       ; 1 byte
1449  // jmp g.cfi  ; 5 bytes
1450  // int3       ; 1 byte
1451  // int3       ; 1 byte
1452  // int3       ; 1 byte
1453  // jmp h.cfi  ; 5 bytes
1454  // int3       ; 1 byte
1455  // int3       ; 1 byte
1456  // int3       ; 1 byte
1457  //
1458  // f.cfi:
1459  // mov 0, %eax
1460  // ret
1461  //
1462  // g.cfi:
1463  // mov 1, %eax
1464  // ret
1465  //
1466  // h.cfi:
1467  // mov 2, %eax
1468  // ret
1469  //
1470  // foo:
1471  // mov f, %eax
1472  // mov g, %edx
1473  // mov h, %ecx
1474  // ret
1475  //
1476  // Because the addresses of f, g, h are evenly spaced at a power of 2, in the
1477  // normal case the check can be carried out using the same kind of simple
1478  // arithmetic that we normally use for globals.
1479
1480  // FIXME: find a better way to represent the jumptable in the IR.
1481  assert(!Functions.empty());
1482
1483  // Build a simple layout based on the regular layout of jump tables.
1484  DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
1485  unsigned EntrySize = getJumpTableEntrySize();
1486  for (unsigned I = 0; I != Functions.size(); ++I)
1487    GlobalLayout[Functions[I]] = I * EntrySize;
1488
1489  Function *JumpTableFn =
1490      Function::Create(FunctionType::get(Type::getVoidTy(M.getContext()),
1491                                         /* IsVarArg */ false),
1492                       GlobalValue::PrivateLinkage,
1493                       M.getDataLayout().getProgramAddressSpace(),
1494                       ".cfi.jumptable", &M);
1495  ArrayType *JumpTableType =
1496      ArrayType::get(getJumpTableEntryType(), Functions.size());
1497  auto JumpTable =
1498      ConstantExpr::getPointerCast(JumpTableFn, JumpTableType->getPointerTo(0));
1499
1500  lowerTypeTestCalls(TypeIds, JumpTable, GlobalLayout);
1501
1502  {
1503    ScopedSaveAliaseesAndUsed S(M);
1504
1505    // Build aliases pointing to offsets into the jump table, and replace
1506    // references to the original functions with references to the aliases.
1507    for (unsigned I = 0; I != Functions.size(); ++I) {
1508      Function *F = cast<Function>(Functions[I]->getGlobal());
1509      bool IsJumpTableCanonical = Functions[I]->isJumpTableCanonical();
1510
1511      Constant *CombinedGlobalElemPtr = ConstantExpr::getBitCast(
1512          ConstantExpr::getInBoundsGetElementPtr(
1513              JumpTableType, JumpTable,
1514              ArrayRef<Constant *>{ConstantInt::get(IntPtrTy, 0),
1515                                   ConstantInt::get(IntPtrTy, I)}),
1516          F->getType());
1517      if (Functions[I]->isExported()) {
1518        if (IsJumpTableCanonical) {
1519          ExportSummary->cfiFunctionDefs().insert(F->getName());
1520        } else {
1521          GlobalAlias *JtAlias = GlobalAlias::create(
1522              F->getValueType(), 0, GlobalValue::ExternalLinkage,
1523              F->getName() + ".cfi_jt", CombinedGlobalElemPtr, &M);
1524          JtAlias->setVisibility(GlobalValue::HiddenVisibility);
1525          ExportSummary->cfiFunctionDecls().insert(F->getName());
1526        }
1527      }
1528      if (!IsJumpTableCanonical) {
1529        if (F->hasExternalWeakLinkage())
1530          replaceWeakDeclarationWithJumpTablePtr(F, CombinedGlobalElemPtr,
1531                                                 IsJumpTableCanonical);
1532        else
1533          replaceCfiUses(F, CombinedGlobalElemPtr, IsJumpTableCanonical);
1534      } else {
1535        assert(F->getType()->getAddressSpace() == 0);
1536
1537        GlobalAlias *FAlias =
1538            GlobalAlias::create(F->getValueType(), 0, F->getLinkage(), "",
1539                                CombinedGlobalElemPtr, &M);
1540        FAlias->setVisibility(F->getVisibility());
1541        FAlias->takeName(F);
1542        if (FAlias->hasName())
1543          F->setName(FAlias->getName() + ".cfi");
1544        replaceCfiUses(F, FAlias, IsJumpTableCanonical);
1545        if (!F->hasLocalLinkage())
1546          F->setVisibility(GlobalVariable::HiddenVisibility);
1547      }
1548    }
1549  }
1550
1551  createJumpTable(JumpTableFn, Functions);
1552}
1553
1554/// Assign a dummy layout using an incrementing counter, tag each function
1555/// with its index represented as metadata, and lower each type test to an
1556/// integer range comparison. During generation of the indirect function call
1557/// table in the backend, it will assign the given indexes.
1558/// Note: Dynamic linking is not supported, as the WebAssembly ABI has not yet
1559/// been finalized.
1560void LowerTypeTestsModule::buildBitSetsFromFunctionsWASM(
1561    ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
1562  assert(!Functions.empty());
1563
1564  // Build consecutive monotonic integer ranges for each call target set
1565  DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
1566
1567  for (GlobalTypeMember *GTM : Functions) {
1568    Function *F = cast<Function>(GTM->getGlobal());
1569
1570    // Skip functions that are not address taken, to avoid bloating the table
1571    if (!F->hasAddressTaken())
1572      continue;
1573
1574    // Store metadata with the index for each function
1575    MDNode *MD = MDNode::get(F->getContext(),
1576                             ArrayRef<Metadata *>(ConstantAsMetadata::get(
1577                                 ConstantInt::get(Int64Ty, IndirectIndex))));
1578    F->setMetadata("wasm.index", MD);
1579
1580    // Assign the counter value
1581    GlobalLayout[GTM] = IndirectIndex++;
1582  }
1583
1584  // The indirect function table index space starts at zero, so pass a NULL
1585  // pointer as the subtracted "jump table" offset.
1586  lowerTypeTestCalls(TypeIds, ConstantPointerNull::get(Int32PtrTy),
1587                     GlobalLayout);
1588}
1589
1590void LowerTypeTestsModule::buildBitSetsFromDisjointSet(
1591    ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Globals,
1592    ArrayRef<ICallBranchFunnel *> ICallBranchFunnels) {
1593  DenseMap<Metadata *, uint64_t> TypeIdIndices;
1594  for (unsigned I = 0; I != TypeIds.size(); ++I)
1595    TypeIdIndices[TypeIds[I]] = I;
1596
1597  // For each type identifier, build a set of indices that refer to members of
1598  // the type identifier.
1599  std::vector<std::set<uint64_t>> TypeMembers(TypeIds.size());
1600  unsigned GlobalIndex = 0;
1601  DenseMap<GlobalTypeMember *, uint64_t> GlobalIndices;
1602  for (GlobalTypeMember *GTM : Globals) {
1603    for (MDNode *Type : GTM->types()) {
1604      // Type = { offset, type identifier }
1605      auto I = TypeIdIndices.find(Type->getOperand(1));
1606      if (I != TypeIdIndices.end())
1607        TypeMembers[I->second].insert(GlobalIndex);
1608    }
1609    GlobalIndices[GTM] = GlobalIndex;
1610    GlobalIndex++;
1611  }
1612
1613  for (ICallBranchFunnel *JT : ICallBranchFunnels) {
1614    TypeMembers.emplace_back();
1615    std::set<uint64_t> &TMSet = TypeMembers.back();
1616    for (GlobalTypeMember *T : JT->targets())
1617      TMSet.insert(GlobalIndices[T]);
1618  }
1619
1620  // Order the sets of indices by size. The GlobalLayoutBuilder works best
1621  // when given small index sets first.
1622  llvm::stable_sort(TypeMembers, [](const std::set<uint64_t> &O1,
1623                                    const std::set<uint64_t> &O2) {
1624    return O1.size() < O2.size();
1625  });
1626
1627  // Create a GlobalLayoutBuilder and provide it with index sets as layout
1628  // fragments. The GlobalLayoutBuilder tries to lay out members of fragments as
1629  // close together as possible.
1630  GlobalLayoutBuilder GLB(Globals.size());
1631  for (auto &&MemSet : TypeMembers)
1632    GLB.addFragment(MemSet);
1633
1634  // Build a vector of globals with the computed layout.
1635  bool IsGlobalSet =
1636      Globals.empty() || isa<GlobalVariable>(Globals[0]->getGlobal());
1637  std::vector<GlobalTypeMember *> OrderedGTMs(Globals.size());
1638  auto OGTMI = OrderedGTMs.begin();
1639  for (auto &&F : GLB.Fragments) {
1640    for (auto &&Offset : F) {
1641      if (IsGlobalSet != isa<GlobalVariable>(Globals[Offset]->getGlobal()))
1642        report_fatal_error("Type identifier may not contain both global "
1643                           "variables and functions");
1644      *OGTMI++ = Globals[Offset];
1645    }
1646  }
1647
1648  // Build the bitsets from this disjoint set.
1649  if (IsGlobalSet)
1650    buildBitSetsFromGlobalVariables(TypeIds, OrderedGTMs);
1651  else
1652    buildBitSetsFromFunctions(TypeIds, OrderedGTMs);
1653}
1654
1655/// Lower all type tests in this module.
1656LowerTypeTestsModule::LowerTypeTestsModule(
1657    Module &M, ModuleSummaryIndex *ExportSummary,
1658    const ModuleSummaryIndex *ImportSummary)
1659    : M(M), ExportSummary(ExportSummary), ImportSummary(ImportSummary) {
1660  assert(!(ExportSummary && ImportSummary));
1661  Triple TargetTriple(M.getTargetTriple());
1662  Arch = TargetTriple.getArch();
1663  OS = TargetTriple.getOS();
1664  ObjectFormat = TargetTriple.getObjectFormat();
1665}
1666
1667bool LowerTypeTestsModule::runForTesting(Module &M) {
1668  ModuleSummaryIndex Summary(/*HaveGVs=*/false);
1669
1670  // Handle the command-line summary arguments. This code is for testing
1671  // purposes only, so we handle errors directly.
1672  if (!ClReadSummary.empty()) {
1673    ExitOnError ExitOnErr("-lowertypetests-read-summary: " + ClReadSummary +
1674                          ": ");
1675    auto ReadSummaryFile =
1676        ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
1677
1678    yaml::Input In(ReadSummaryFile->getBuffer());
1679    In >> Summary;
1680    ExitOnErr(errorCodeToError(In.error()));
1681  }
1682
1683  bool Changed =
1684      LowerTypeTestsModule(
1685          M, ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr,
1686          ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr)
1687          .lower();
1688
1689  if (!ClWriteSummary.empty()) {
1690    ExitOnError ExitOnErr("-lowertypetests-write-summary: " + ClWriteSummary +
1691                          ": ");
1692    std::error_code EC;
1693    raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_Text);
1694    ExitOnErr(errorCodeToError(EC));
1695
1696    yaml::Output Out(OS);
1697    Out << Summary;
1698  }
1699
1700  return Changed;
1701}
1702
1703static bool isDirectCall(Use& U) {
1704  auto *Usr = dyn_cast<CallInst>(U.getUser());
1705  if (Usr) {
1706    CallSite CS(Usr);
1707    if (CS.isCallee(&U))
1708      return true;
1709  }
1710  return false;
1711}
1712
1713void LowerTypeTestsModule::replaceCfiUses(Function *Old, Value *New,
1714                                          bool IsJumpTableCanonical) {
1715  SmallSetVector<Constant *, 4> Constants;
1716  auto UI = Old->use_begin(), E = Old->use_end();
1717  for (; UI != E;) {
1718    Use &U = *UI;
1719    ++UI;
1720
1721    // Skip block addresses
1722    if (isa<BlockAddress>(U.getUser()))
1723      continue;
1724
1725    // Skip direct calls to externally defined or non-dso_local functions
1726    if (isDirectCall(U) && (Old->isDSOLocal() || !IsJumpTableCanonical))
1727      continue;
1728
1729    // Must handle Constants specially, we cannot call replaceUsesOfWith on a
1730    // constant because they are uniqued.
1731    if (auto *C = dyn_cast<Constant>(U.getUser())) {
1732      if (!isa<GlobalValue>(C)) {
1733        // Save unique users to avoid processing operand replacement
1734        // more than once.
1735        Constants.insert(C);
1736        continue;
1737      }
1738    }
1739
1740    U.set(New);
1741  }
1742
1743  // Process operand replacement of saved constants.
1744  for (auto *C : Constants)
1745    C->handleOperandChange(Old, New);
1746}
1747
1748void LowerTypeTestsModule::replaceDirectCalls(Value *Old, Value *New) {
1749  Old->replaceUsesWithIf(New, [](Use &U) { return isDirectCall(U); });
1750}
1751
1752bool LowerTypeTestsModule::lower() {
1753  // If only some of the modules were split, we cannot correctly perform
1754  // this transformation. We already checked for the presense of type tests
1755  // with partially split modules during the thin link, and would have emitted
1756  // an error if any were found, so here we can simply return.
1757  if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
1758      (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
1759    return false;
1760
1761  Function *TypeTestFunc =
1762      M.getFunction(Intrinsic::getName(Intrinsic::type_test));
1763  Function *ICallBranchFunnelFunc =
1764      M.getFunction(Intrinsic::getName(Intrinsic::icall_branch_funnel));
1765  if ((!TypeTestFunc || TypeTestFunc->use_empty()) &&
1766      (!ICallBranchFunnelFunc || ICallBranchFunnelFunc->use_empty()) &&
1767      !ExportSummary && !ImportSummary)
1768    return false;
1769
1770  if (ImportSummary) {
1771    if (TypeTestFunc) {
1772      for (auto UI = TypeTestFunc->use_begin(), UE = TypeTestFunc->use_end();
1773           UI != UE;) {
1774        auto *CI = cast<CallInst>((*UI++).getUser());
1775        importTypeTest(CI);
1776      }
1777    }
1778
1779    if (ICallBranchFunnelFunc && !ICallBranchFunnelFunc->use_empty())
1780      report_fatal_error(
1781          "unexpected call to llvm.icall.branch.funnel during import phase");
1782
1783    SmallVector<Function *, 8> Defs;
1784    SmallVector<Function *, 8> Decls;
1785    for (auto &F : M) {
1786      // CFI functions are either external, or promoted. A local function may
1787      // have the same name, but it's not the one we are looking for.
1788      if (F.hasLocalLinkage())
1789        continue;
1790      if (ImportSummary->cfiFunctionDefs().count(F.getName()))
1791        Defs.push_back(&F);
1792      else if (ImportSummary->cfiFunctionDecls().count(F.getName()))
1793        Decls.push_back(&F);
1794    }
1795
1796    std::vector<GlobalAlias *> AliasesToErase;
1797    {
1798      ScopedSaveAliaseesAndUsed S(M);
1799      for (auto F : Defs)
1800        importFunction(F, /*isJumpTableCanonical*/ true, AliasesToErase);
1801      for (auto F : Decls)
1802        importFunction(F, /*isJumpTableCanonical*/ false, AliasesToErase);
1803    }
1804    for (GlobalAlias *GA : AliasesToErase)
1805      GA->eraseFromParent();
1806
1807    return true;
1808  }
1809
1810  // Equivalence class set containing type identifiers and the globals that
1811  // reference them. This is used to partition the set of type identifiers in
1812  // the module into disjoint sets.
1813  using GlobalClassesTy = EquivalenceClasses<
1814      PointerUnion<GlobalTypeMember *, Metadata *, ICallBranchFunnel *>>;
1815  GlobalClassesTy GlobalClasses;
1816
1817  // Verify the type metadata and build a few data structures to let us
1818  // efficiently enumerate the type identifiers associated with a global:
1819  // a list of GlobalTypeMembers (a GlobalObject stored alongside a vector
1820  // of associated type metadata) and a mapping from type identifiers to their
1821  // list of GlobalTypeMembers and last observed index in the list of globals.
1822  // The indices will be used later to deterministically order the list of type
1823  // identifiers.
1824  BumpPtrAllocator Alloc;
1825  struct TIInfo {
1826    unsigned UniqueId;
1827    std::vector<GlobalTypeMember *> RefGlobals;
1828  };
1829  DenseMap<Metadata *, TIInfo> TypeIdInfo;
1830  unsigned CurUniqueId = 0;
1831  SmallVector<MDNode *, 2> Types;
1832
1833  // Cross-DSO CFI emits jumptable entries for exported functions as well as
1834  // address taken functions in case they are address taken in other modules.
1835  const bool CrossDsoCfi = M.getModuleFlag("Cross-DSO CFI") != nullptr;
1836
1837  struct ExportedFunctionInfo {
1838    CfiFunctionLinkage Linkage;
1839    MDNode *FuncMD; // {name, linkage, type[, type...]}
1840  };
1841  DenseMap<StringRef, ExportedFunctionInfo> ExportedFunctions;
1842  if (ExportSummary) {
1843    // A set of all functions that are address taken by a live global object.
1844    DenseSet<GlobalValue::GUID> AddressTaken;
1845    for (auto &I : *ExportSummary)
1846      for (auto &GVS : I.second.SummaryList)
1847        if (GVS->isLive())
1848          for (auto &Ref : GVS->refs())
1849            AddressTaken.insert(Ref.getGUID());
1850
1851    NamedMDNode *CfiFunctionsMD = M.getNamedMetadata("cfi.functions");
1852    if (CfiFunctionsMD) {
1853      for (auto FuncMD : CfiFunctionsMD->operands()) {
1854        assert(FuncMD->getNumOperands() >= 2);
1855        StringRef FunctionName =
1856            cast<MDString>(FuncMD->getOperand(0))->getString();
1857        CfiFunctionLinkage Linkage = static_cast<CfiFunctionLinkage>(
1858            cast<ConstantAsMetadata>(FuncMD->getOperand(1))
1859                ->getValue()
1860                ->getUniqueInteger()
1861                .getZExtValue());
1862        const GlobalValue::GUID GUID = GlobalValue::getGUID(
1863                GlobalValue::dropLLVMManglingEscape(FunctionName));
1864        // Do not emit jumptable entries for functions that are not-live and
1865        // have no live references (and are not exported with cross-DSO CFI.)
1866        if (!ExportSummary->isGUIDLive(GUID))
1867          continue;
1868        if (!AddressTaken.count(GUID)) {
1869          if (!CrossDsoCfi || Linkage != CFL_Definition)
1870            continue;
1871
1872          bool Exported = false;
1873          if (auto VI = ExportSummary->getValueInfo(GUID))
1874            for (auto &GVS : VI.getSummaryList())
1875              if (GVS->isLive() && !GlobalValue::isLocalLinkage(GVS->linkage()))
1876                Exported = true;
1877
1878          if (!Exported)
1879            continue;
1880        }
1881        auto P = ExportedFunctions.insert({FunctionName, {Linkage, FuncMD}});
1882        if (!P.second && P.first->second.Linkage != CFL_Definition)
1883          P.first->second = {Linkage, FuncMD};
1884      }
1885
1886      for (const auto &P : ExportedFunctions) {
1887        StringRef FunctionName = P.first;
1888        CfiFunctionLinkage Linkage = P.second.Linkage;
1889        MDNode *FuncMD = P.second.FuncMD;
1890        Function *F = M.getFunction(FunctionName);
1891        if (F && F->hasLocalLinkage()) {
1892          // Locally defined function that happens to have the same name as a
1893          // function defined in a ThinLTO module. Rename it to move it out of
1894          // the way of the external reference that we're about to create.
1895          // Note that setName will find a unique name for the function, so even
1896          // if there is an existing function with the suffix there won't be a
1897          // name collision.
1898          F->setName(F->getName() + ".1");
1899          F = nullptr;
1900        }
1901
1902        if (!F)
1903          F = Function::Create(
1904              FunctionType::get(Type::getVoidTy(M.getContext()), false),
1905              GlobalVariable::ExternalLinkage,
1906              M.getDataLayout().getProgramAddressSpace(), FunctionName, &M);
1907
1908        // If the function is available_externally, remove its definition so
1909        // that it is handled the same way as a declaration. Later we will try
1910        // to create an alias using this function's linkage, which will fail if
1911        // the linkage is available_externally. This will also result in us
1912        // following the code path below to replace the type metadata.
1913        if (F->hasAvailableExternallyLinkage()) {
1914          F->setLinkage(GlobalValue::ExternalLinkage);
1915          F->deleteBody();
1916          F->setComdat(nullptr);
1917          F->clearMetadata();
1918        }
1919
1920        // Update the linkage for extern_weak declarations when a definition
1921        // exists.
1922        if (Linkage == CFL_Definition && F->hasExternalWeakLinkage())
1923          F->setLinkage(GlobalValue::ExternalLinkage);
1924
1925        // If the function in the full LTO module is a declaration, replace its
1926        // type metadata with the type metadata we found in cfi.functions. That
1927        // metadata is presumed to be more accurate than the metadata attached
1928        // to the declaration.
1929        if (F->isDeclaration()) {
1930          if (Linkage == CFL_WeakDeclaration)
1931            F->setLinkage(GlobalValue::ExternalWeakLinkage);
1932
1933          F->eraseMetadata(LLVMContext::MD_type);
1934          for (unsigned I = 2; I < FuncMD->getNumOperands(); ++I)
1935            F->addMetadata(LLVMContext::MD_type,
1936                           *cast<MDNode>(FuncMD->getOperand(I).get()));
1937        }
1938      }
1939    }
1940  }
1941
1942  DenseMap<GlobalObject *, GlobalTypeMember *> GlobalTypeMembers;
1943  for (GlobalObject &GO : M.global_objects()) {
1944    if (isa<GlobalVariable>(GO) && GO.isDeclarationForLinker())
1945      continue;
1946
1947    Types.clear();
1948    GO.getMetadata(LLVMContext::MD_type, Types);
1949
1950    bool IsJumpTableCanonical = false;
1951    bool IsExported = false;
1952    if (Function *F = dyn_cast<Function>(&GO)) {
1953      IsJumpTableCanonical = isJumpTableCanonical(F);
1954      if (ExportedFunctions.count(F->getName())) {
1955        IsJumpTableCanonical |=
1956            ExportedFunctions[F->getName()].Linkage == CFL_Definition;
1957        IsExported = true;
1958      // TODO: The logic here checks only that the function is address taken,
1959      // not that the address takers are live. This can be updated to check
1960      // their liveness and emit fewer jumptable entries once monolithic LTO
1961      // builds also emit summaries.
1962      } else if (!F->hasAddressTaken()) {
1963        if (!CrossDsoCfi || !IsJumpTableCanonical || F->hasLocalLinkage())
1964          continue;
1965      }
1966    }
1967
1968    auto *GTM = GlobalTypeMember::create(Alloc, &GO, IsJumpTableCanonical,
1969                                         IsExported, Types);
1970    GlobalTypeMembers[&GO] = GTM;
1971    for (MDNode *Type : Types) {
1972      verifyTypeMDNode(&GO, Type);
1973      auto &Info = TypeIdInfo[Type->getOperand(1)];
1974      Info.UniqueId = ++CurUniqueId;
1975      Info.RefGlobals.push_back(GTM);
1976    }
1977  }
1978
1979  auto AddTypeIdUse = [&](Metadata *TypeId) -> TypeIdUserInfo & {
1980    // Add the call site to the list of call sites for this type identifier. We
1981    // also use TypeIdUsers to keep track of whether we have seen this type
1982    // identifier before. If we have, we don't need to re-add the referenced
1983    // globals to the equivalence class.
1984    auto Ins = TypeIdUsers.insert({TypeId, {}});
1985    if (Ins.second) {
1986      // Add the type identifier to the equivalence class.
1987      GlobalClassesTy::iterator GCI = GlobalClasses.insert(TypeId);
1988      GlobalClassesTy::member_iterator CurSet = GlobalClasses.findLeader(GCI);
1989
1990      // Add the referenced globals to the type identifier's equivalence class.
1991      for (GlobalTypeMember *GTM : TypeIdInfo[TypeId].RefGlobals)
1992        CurSet = GlobalClasses.unionSets(
1993            CurSet, GlobalClasses.findLeader(GlobalClasses.insert(GTM)));
1994    }
1995
1996    return Ins.first->second;
1997  };
1998
1999  if (TypeTestFunc) {
2000    for (const Use &U : TypeTestFunc->uses()) {
2001      auto CI = cast<CallInst>(U.getUser());
2002
2003      auto TypeIdMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
2004      if (!TypeIdMDVal)
2005        report_fatal_error("Second argument of llvm.type.test must be metadata");
2006      auto TypeId = TypeIdMDVal->getMetadata();
2007      AddTypeIdUse(TypeId).CallSites.push_back(CI);
2008    }
2009  }
2010
2011  if (ICallBranchFunnelFunc) {
2012    for (const Use &U : ICallBranchFunnelFunc->uses()) {
2013      if (Arch != Triple::x86_64)
2014        report_fatal_error(
2015            "llvm.icall.branch.funnel not supported on this target");
2016
2017      auto CI = cast<CallInst>(U.getUser());
2018
2019      std::vector<GlobalTypeMember *> Targets;
2020      if (CI->getNumArgOperands() % 2 != 1)
2021        report_fatal_error("number of arguments should be odd");
2022
2023      GlobalClassesTy::member_iterator CurSet;
2024      for (unsigned I = 1; I != CI->getNumArgOperands(); I += 2) {
2025        int64_t Offset;
2026        auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
2027            CI->getOperand(I), Offset, M.getDataLayout()));
2028        if (!Base)
2029          report_fatal_error(
2030              "Expected branch funnel operand to be global value");
2031
2032        GlobalTypeMember *GTM = GlobalTypeMembers[Base];
2033        Targets.push_back(GTM);
2034        GlobalClassesTy::member_iterator NewSet =
2035            GlobalClasses.findLeader(GlobalClasses.insert(GTM));
2036        if (I == 1)
2037          CurSet = NewSet;
2038        else
2039          CurSet = GlobalClasses.unionSets(CurSet, NewSet);
2040      }
2041
2042      GlobalClasses.unionSets(
2043          CurSet, GlobalClasses.findLeader(
2044                      GlobalClasses.insert(ICallBranchFunnel::create(
2045                          Alloc, CI, Targets, ++CurUniqueId))));
2046    }
2047  }
2048
2049  if (ExportSummary) {
2050    DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
2051    for (auto &P : TypeIdInfo) {
2052      if (auto *TypeId = dyn_cast<MDString>(P.first))
2053        MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
2054            TypeId);
2055    }
2056
2057    for (auto &P : *ExportSummary) {
2058      for (auto &S : P.second.SummaryList) {
2059        if (!ExportSummary->isGlobalValueLive(S.get()))
2060          continue;
2061        if (auto *FS = dyn_cast<FunctionSummary>(S->getBaseObject()))
2062          for (GlobalValue::GUID G : FS->type_tests())
2063            for (Metadata *MD : MetadataByGUID[G])
2064              AddTypeIdUse(MD).IsExported = true;
2065      }
2066    }
2067  }
2068
2069  if (GlobalClasses.empty())
2070    return false;
2071
2072  // Build a list of disjoint sets ordered by their maximum global index for
2073  // determinism.
2074  std::vector<std::pair<GlobalClassesTy::iterator, unsigned>> Sets;
2075  for (GlobalClassesTy::iterator I = GlobalClasses.begin(),
2076                                 E = GlobalClasses.end();
2077       I != E; ++I) {
2078    if (!I->isLeader())
2079      continue;
2080    ++NumTypeIdDisjointSets;
2081
2082    unsigned MaxUniqueId = 0;
2083    for (GlobalClassesTy::member_iterator MI = GlobalClasses.member_begin(I);
2084         MI != GlobalClasses.member_end(); ++MI) {
2085      if (auto *MD = MI->dyn_cast<Metadata *>())
2086        MaxUniqueId = std::max(MaxUniqueId, TypeIdInfo[MD].UniqueId);
2087      else if (auto *BF = MI->dyn_cast<ICallBranchFunnel *>())
2088        MaxUniqueId = std::max(MaxUniqueId, BF->UniqueId);
2089    }
2090    Sets.emplace_back(I, MaxUniqueId);
2091  }
2092  llvm::sort(Sets,
2093             [](const std::pair<GlobalClassesTy::iterator, unsigned> &S1,
2094                const std::pair<GlobalClassesTy::iterator, unsigned> &S2) {
2095               return S1.second < S2.second;
2096             });
2097
2098  // For each disjoint set we found...
2099  for (const auto &S : Sets) {
2100    // Build the list of type identifiers in this disjoint set.
2101    std::vector<Metadata *> TypeIds;
2102    std::vector<GlobalTypeMember *> Globals;
2103    std::vector<ICallBranchFunnel *> ICallBranchFunnels;
2104    for (GlobalClassesTy::member_iterator MI =
2105             GlobalClasses.member_begin(S.first);
2106         MI != GlobalClasses.member_end(); ++MI) {
2107      if (MI->is<Metadata *>())
2108        TypeIds.push_back(MI->get<Metadata *>());
2109      else if (MI->is<GlobalTypeMember *>())
2110        Globals.push_back(MI->get<GlobalTypeMember *>());
2111      else
2112        ICallBranchFunnels.push_back(MI->get<ICallBranchFunnel *>());
2113    }
2114
2115    // Order type identifiers by unique ID for determinism. This ordering is
2116    // stable as there is a one-to-one mapping between metadata and unique IDs.
2117    llvm::sort(TypeIds, [&](Metadata *M1, Metadata *M2) {
2118      return TypeIdInfo[M1].UniqueId < TypeIdInfo[M2].UniqueId;
2119    });
2120
2121    // Same for the branch funnels.
2122    llvm::sort(ICallBranchFunnels,
2123               [&](ICallBranchFunnel *F1, ICallBranchFunnel *F2) {
2124                 return F1->UniqueId < F2->UniqueId;
2125               });
2126
2127    // Build bitsets for this disjoint set.
2128    buildBitSetsFromDisjointSet(TypeIds, Globals, ICallBranchFunnels);
2129  }
2130
2131  allocateByteArrays();
2132
2133  // Parse alias data to replace stand-in function declarations for aliases
2134  // with an alias to the intended target.
2135  if (ExportSummary) {
2136    if (NamedMDNode *AliasesMD = M.getNamedMetadata("aliases")) {
2137      for (auto AliasMD : AliasesMD->operands()) {
2138        assert(AliasMD->getNumOperands() >= 4);
2139        StringRef AliasName =
2140            cast<MDString>(AliasMD->getOperand(0))->getString();
2141        StringRef Aliasee = cast<MDString>(AliasMD->getOperand(1))->getString();
2142
2143        if (!ExportedFunctions.count(Aliasee) ||
2144            ExportedFunctions[Aliasee].Linkage != CFL_Definition ||
2145            !M.getNamedAlias(Aliasee))
2146          continue;
2147
2148        GlobalValue::VisibilityTypes Visibility =
2149            static_cast<GlobalValue::VisibilityTypes>(
2150                cast<ConstantAsMetadata>(AliasMD->getOperand(2))
2151                    ->getValue()
2152                    ->getUniqueInteger()
2153                    .getZExtValue());
2154        bool Weak =
2155            static_cast<bool>(cast<ConstantAsMetadata>(AliasMD->getOperand(3))
2156                                  ->getValue()
2157                                  ->getUniqueInteger()
2158                                  .getZExtValue());
2159
2160        auto *Alias = GlobalAlias::create("", M.getNamedAlias(Aliasee));
2161        Alias->setVisibility(Visibility);
2162        if (Weak)
2163          Alias->setLinkage(GlobalValue::WeakAnyLinkage);
2164
2165        if (auto *F = M.getFunction(AliasName)) {
2166          Alias->takeName(F);
2167          F->replaceAllUsesWith(Alias);
2168          F->eraseFromParent();
2169        } else {
2170          Alias->setName(AliasName);
2171        }
2172      }
2173    }
2174  }
2175
2176  // Emit .symver directives for exported functions, if they exist.
2177  if (ExportSummary) {
2178    if (NamedMDNode *SymversMD = M.getNamedMetadata("symvers")) {
2179      for (auto Symver : SymversMD->operands()) {
2180        assert(Symver->getNumOperands() >= 2);
2181        StringRef SymbolName =
2182            cast<MDString>(Symver->getOperand(0))->getString();
2183        StringRef Alias = cast<MDString>(Symver->getOperand(1))->getString();
2184
2185        if (!ExportedFunctions.count(SymbolName))
2186          continue;
2187
2188        M.appendModuleInlineAsm(
2189            (llvm::Twine(".symver ") + SymbolName + ", " + Alias).str());
2190      }
2191    }
2192  }
2193
2194  return true;
2195}
2196
2197PreservedAnalyses LowerTypeTestsPass::run(Module &M,
2198                                          ModuleAnalysisManager &AM) {
2199  bool Changed = LowerTypeTestsModule(M, ExportSummary, ImportSummary).lower();
2200  if (!Changed)
2201    return PreservedAnalyses::all();
2202  return PreservedAnalyses::none();
2203}
2204