Inliner.cpp revision 360784
1//===- Inliner.cpp - Code common to all inliners --------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the mechanics required to implement inlining without
10// missing any calls and updating the call graph.  The decisions of which calls
11// are profitable to inline are implemented elsewhere.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/IPO/Inliner.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/None.h"
18#include "llvm/ADT/Optional.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SetVector.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/StringRef.h"
25#include "llvm/Analysis/AliasAnalysis.h"
26#include "llvm/Analysis/AssumptionCache.h"
27#include "llvm/Analysis/BasicAliasAnalysis.h"
28#include "llvm/Analysis/BlockFrequencyInfo.h"
29#include "llvm/Analysis/CGSCCPassManager.h"
30#include "llvm/Analysis/CallGraph.h"
31#include "llvm/Analysis/InlineCost.h"
32#include "llvm/Analysis/LazyCallGraph.h"
33#include "llvm/Analysis/OptimizationRemarkEmitter.h"
34#include "llvm/Analysis/ProfileSummaryInfo.h"
35#include "llvm/Analysis/TargetLibraryInfo.h"
36#include "llvm/Analysis/TargetTransformInfo.h"
37#include "llvm/Transforms/Utils/Local.h"
38#include "llvm/IR/Attributes.h"
39#include "llvm/IR/BasicBlock.h"
40#include "llvm/IR/CallSite.h"
41#include "llvm/IR/DataLayout.h"
42#include "llvm/IR/DebugLoc.h"
43#include "llvm/IR/DerivedTypes.h"
44#include "llvm/IR/DiagnosticInfo.h"
45#include "llvm/IR/Function.h"
46#include "llvm/IR/InstIterator.h"
47#include "llvm/IR/Instruction.h"
48#include "llvm/IR/Instructions.h"
49#include "llvm/IR/IntrinsicInst.h"
50#include "llvm/IR/Metadata.h"
51#include "llvm/IR/Module.h"
52#include "llvm/IR/PassManager.h"
53#include "llvm/IR/User.h"
54#include "llvm/IR/Value.h"
55#include "llvm/Pass.h"
56#include "llvm/Support/Casting.h"
57#include "llvm/Support/CommandLine.h"
58#include "llvm/Support/Debug.h"
59#include "llvm/Support/raw_ostream.h"
60#include "llvm/Transforms/Utils/Cloning.h"
61#include "llvm/Transforms/Utils/ImportedFunctionsInliningStatistics.h"
62#include "llvm/Transforms/Utils/ModuleUtils.h"
63#include <algorithm>
64#include <cassert>
65#include <functional>
66#include <sstream>
67#include <tuple>
68#include <utility>
69#include <vector>
70
71using namespace llvm;
72
73#define DEBUG_TYPE "inline"
74
75STATISTIC(NumInlined, "Number of functions inlined");
76STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
77STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
78STATISTIC(NumMergedAllocas, "Number of allocas merged together");
79
80// This weirdly named statistic tracks the number of times that, when attempting
81// to inline a function A into B, we analyze the callers of B in order to see
82// if those would be more profitable and blocked inline steps.
83STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");
84
85/// Flag to disable manual alloca merging.
86///
87/// Merging of allocas was originally done as a stack-size saving technique
88/// prior to LLVM's code generator having support for stack coloring based on
89/// lifetime markers. It is now in the process of being removed. To experiment
90/// with disabling it and relying fully on lifetime marker based stack
91/// coloring, you can pass this flag to LLVM.
92static cl::opt<bool>
93    DisableInlinedAllocaMerging("disable-inlined-alloca-merging",
94                                cl::init(false), cl::Hidden);
95
96namespace {
97
98enum class InlinerFunctionImportStatsOpts {
99  No = 0,
100  Basic = 1,
101  Verbose = 2,
102};
103
104} // end anonymous namespace
105
106static cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats(
107    "inliner-function-import-stats",
108    cl::init(InlinerFunctionImportStatsOpts::No),
109    cl::values(clEnumValN(InlinerFunctionImportStatsOpts::Basic, "basic",
110                          "basic statistics"),
111               clEnumValN(InlinerFunctionImportStatsOpts::Verbose, "verbose",
112                          "printing of statistics for each inlined function")),
113    cl::Hidden, cl::desc("Enable inliner stats for imported functions"));
114
115/// Flag to add inline messages as callsite attributes 'inline-remark'.
116static cl::opt<bool>
117    InlineRemarkAttribute("inline-remark-attribute", cl::init(false),
118                          cl::Hidden,
119                          cl::desc("Enable adding inline-remark attribute to"
120                                   " callsites processed by inliner but decided"
121                                   " to be not inlined"));
122
123LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {}
124
125LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime)
126    : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {}
127
128/// For this class, we declare that we require and preserve the call graph.
129/// If the derived class implements this method, it should
130/// always explicitly call the implementation here.
131void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const {
132  AU.addRequired<AssumptionCacheTracker>();
133  AU.addRequired<ProfileSummaryInfoWrapperPass>();
134  AU.addRequired<TargetLibraryInfoWrapperPass>();
135  getAAResultsAnalysisUsage(AU);
136  CallGraphSCCPass::getAnalysisUsage(AU);
137}
138
139using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>;
140
141/// Look at all of the allocas that we inlined through this call site.  If we
142/// have already inlined other allocas through other calls into this function,
143/// then we know that they have disjoint lifetimes and that we can merge them.
144///
145/// There are many heuristics possible for merging these allocas, and the
146/// different options have different tradeoffs.  One thing that we *really*
147/// don't want to hurt is SRoA: once inlining happens, often allocas are no
148/// longer address taken and so they can be promoted.
149///
150/// Our "solution" for that is to only merge allocas whose outermost type is an
151/// array type.  These are usually not promoted because someone is using a
152/// variable index into them.  These are also often the most important ones to
153/// merge.
154///
155/// A better solution would be to have real memory lifetime markers in the IR
156/// and not have the inliner do any merging of allocas at all.  This would
157/// allow the backend to do proper stack slot coloring of all allocas that
158/// *actually make it to the backend*, which is really what we want.
159///
160/// Because we don't have this information, we do this simple and useful hack.
161static void mergeInlinedArrayAllocas(
162    Function *Caller, InlineFunctionInfo &IFI,
163    InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory) {
164  SmallPtrSet<AllocaInst *, 16> UsedAllocas;
165
166  // When processing our SCC, check to see if CS was inlined from some other
167  // call site.  For example, if we're processing "A" in this code:
168  //   A() { B() }
169  //   B() { x = alloca ... C() }
170  //   C() { y = alloca ... }
171  // Assume that C was not inlined into B initially, and so we're processing A
172  // and decide to inline B into A.  Doing this makes an alloca available for
173  // reuse and makes a callsite (C) available for inlining.  When we process
174  // the C call site we don't want to do any alloca merging between X and Y
175  // because their scopes are not disjoint.  We could make this smarter by
176  // keeping track of the inline history for each alloca in the
177  // InlinedArrayAllocas but this isn't likely to be a significant win.
178  if (InlineHistory != -1) // Only do merging for top-level call sites in SCC.
179    return;
180
181  // Loop over all the allocas we have so far and see if they can be merged with
182  // a previously inlined alloca.  If not, remember that we had it.
183  for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); AllocaNo != e;
184       ++AllocaNo) {
185    AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
186
187    // Don't bother trying to merge array allocations (they will usually be
188    // canonicalized to be an allocation *of* an array), or allocations whose
189    // type is not itself an array (because we're afraid of pessimizing SRoA).
190    ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
191    if (!ATy || AI->isArrayAllocation())
192      continue;
193
194    // Get the list of all available allocas for this array type.
195    std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy];
196
197    // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
198    // that we have to be careful not to reuse the same "available" alloca for
199    // multiple different allocas that we just inlined, we use the 'UsedAllocas'
200    // set to keep track of which "available" allocas are being used by this
201    // function.  Also, AllocasForType can be empty of course!
202    bool MergedAwayAlloca = false;
203    for (AllocaInst *AvailableAlloca : AllocasForType) {
204      unsigned Align1 = AI->getAlignment(),
205               Align2 = AvailableAlloca->getAlignment();
206
207      // The available alloca has to be in the right function, not in some other
208      // function in this SCC.
209      if (AvailableAlloca->getParent() != AI->getParent())
210        continue;
211
212      // If the inlined function already uses this alloca then we can't reuse
213      // it.
214      if (!UsedAllocas.insert(AvailableAlloca).second)
215        continue;
216
217      // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
218      // success!
219      LLVM_DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI
220                        << "\n\t\tINTO: " << *AvailableAlloca << '\n');
221
222      // Move affected dbg.declare calls immediately after the new alloca to
223      // avoid the situation when a dbg.declare precedes its alloca.
224      if (auto *L = LocalAsMetadata::getIfExists(AI))
225        if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
226          for (User *U : MDV->users())
227            if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
228              DDI->moveBefore(AvailableAlloca->getNextNode());
229
230      AI->replaceAllUsesWith(AvailableAlloca);
231
232      if (Align1 != Align2) {
233        if (!Align1 || !Align2) {
234          const DataLayout &DL = Caller->getParent()->getDataLayout();
235          unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType());
236
237          Align1 = Align1 ? Align1 : TypeAlign;
238          Align2 = Align2 ? Align2 : TypeAlign;
239        }
240
241        if (Align1 > Align2)
242          AvailableAlloca->setAlignment(MaybeAlign(AI->getAlignment()));
243      }
244
245      AI->eraseFromParent();
246      MergedAwayAlloca = true;
247      ++NumMergedAllocas;
248      IFI.StaticAllocas[AllocaNo] = nullptr;
249      break;
250    }
251
252    // If we already nuked the alloca, we're done with it.
253    if (MergedAwayAlloca)
254      continue;
255
256    // If we were unable to merge away the alloca either because there are no
257    // allocas of the right type available or because we reused them all
258    // already, remember that this alloca came from an inlined function and mark
259    // it used so we don't reuse it for other allocas from this inline
260    // operation.
261    AllocasForType.push_back(AI);
262    UsedAllocas.insert(AI);
263  }
264}
265
266/// If it is possible to inline the specified call site,
267/// do so and update the CallGraph for this operation.
268///
269/// This function also does some basic book-keeping to update the IR.  The
270/// InlinedArrayAllocas map keeps track of any allocas that are already
271/// available from other functions inlined into the caller.  If we are able to
272/// inline this call site we attempt to reuse already available allocas or add
273/// any new allocas to the set if not possible.
274static InlineResult InlineCallIfPossible(
275    CallSite CS, InlineFunctionInfo &IFI,
276    InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory,
277    bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter,
278    ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
279  Function *Callee = CS.getCalledFunction();
280  Function *Caller = CS.getCaller();
281
282  AAResults &AAR = AARGetter(*Callee);
283
284  // Try to inline the function.  Get the list of static allocas that were
285  // inlined.
286  InlineResult IR = InlineFunction(CS, IFI, &AAR, InsertLifetime);
287  if (!IR)
288    return IR;
289
290  if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
291    ImportedFunctionsStats.recordInline(*Caller, *Callee);
292
293  AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee);
294
295  if (!DisableInlinedAllocaMerging)
296    mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory);
297
298  return IR; // success
299}
300
301/// Return true if inlining of CS can block the caller from being
302/// inlined which is proved to be more beneficial. \p IC is the
303/// estimated inline cost associated with callsite \p CS.
304/// \p TotalSecondaryCost will be set to the estimated cost of inlining the
305/// caller if \p CS is suppressed for inlining.
306static bool
307shouldBeDeferred(Function *Caller, CallSite CS, InlineCost IC,
308                 int &TotalSecondaryCost,
309                 function_ref<InlineCost(CallSite CS)> GetInlineCost) {
310  // For now we only handle local or inline functions.
311  if (!Caller->hasLocalLinkage() && !Caller->hasLinkOnceODRLinkage())
312    return false;
313  // If the cost of inlining CS is non-positive, it is not going to prevent the
314  // caller from being inlined into its callers and hence we don't need to
315  // defer.
316  if (IC.getCost() <= 0)
317    return false;
318  // Try to detect the case where the current inlining candidate caller (call
319  // it B) is a static or linkonce-ODR function and is an inlining candidate
320  // elsewhere, and the current candidate callee (call it C) is large enough
321  // that inlining it into B would make B too big to inline later. In these
322  // circumstances it may be best not to inline C into B, but to inline B into
323  // its callers.
324  //
325  // This only applies to static and linkonce-ODR functions because those are
326  // expected to be available for inlining in the translation units where they
327  // are used. Thus we will always have the opportunity to make local inlining
328  // decisions. Importantly the linkonce-ODR linkage covers inline functions
329  // and templates in C++.
330  //
331  // FIXME: All of this logic should be sunk into getInlineCost. It relies on
332  // the internal implementation of the inline cost metrics rather than
333  // treating them as truly abstract units etc.
334  TotalSecondaryCost = 0;
335  // The candidate cost to be imposed upon the current function.
336  int CandidateCost = IC.getCost() - 1;
337  // If the caller has local linkage and can be inlined to all its callers, we
338  // can apply a huge negative bonus to TotalSecondaryCost.
339  bool ApplyLastCallBonus = Caller->hasLocalLinkage() && !Caller->hasOneUse();
340  // This bool tracks what happens if we DO inline C into B.
341  bool inliningPreventsSomeOuterInline = false;
342  for (User *U : Caller->users()) {
343    // If the caller will not be removed (either because it does not have a
344    // local linkage or because the LastCallToStaticBonus has been already
345    // applied), then we can exit the loop early.
346    if (!ApplyLastCallBonus && TotalSecondaryCost >= IC.getCost())
347      return false;
348    CallSite CS2(U);
349
350    // If this isn't a call to Caller (it could be some other sort
351    // of reference) skip it.  Such references will prevent the caller
352    // from being removed.
353    if (!CS2 || CS2.getCalledFunction() != Caller) {
354      ApplyLastCallBonus = false;
355      continue;
356    }
357
358    InlineCost IC2 = GetInlineCost(CS2);
359    ++NumCallerCallersAnalyzed;
360    if (!IC2) {
361      ApplyLastCallBonus = false;
362      continue;
363    }
364    if (IC2.isAlways())
365      continue;
366
367    // See if inlining of the original callsite would erase the cost delta of
368    // this callsite. We subtract off the penalty for the call instruction,
369    // which we would be deleting.
370    if (IC2.getCostDelta() <= CandidateCost) {
371      inliningPreventsSomeOuterInline = true;
372      TotalSecondaryCost += IC2.getCost();
373    }
374  }
375  // If all outer calls to Caller would get inlined, the cost for the last
376  // one is set very low by getInlineCost, in anticipation that Caller will
377  // be removed entirely.  We did not account for this above unless there
378  // is only one caller of Caller.
379  if (ApplyLastCallBonus)
380    TotalSecondaryCost -= InlineConstants::LastCallToStaticBonus;
381
382  if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost())
383    return true;
384
385  return false;
386}
387
388static std::basic_ostream<char> &operator<<(std::basic_ostream<char> &R,
389                                            const ore::NV &Arg) {
390  return R << Arg.Val;
391}
392
393template <class RemarkT>
394RemarkT &operator<<(RemarkT &&R, const InlineCost &IC) {
395  using namespace ore;
396  if (IC.isAlways()) {
397    R << "(cost=always)";
398  } else if (IC.isNever()) {
399    R << "(cost=never)";
400  } else {
401    R << "(cost=" << ore::NV("Cost", IC.getCost())
402      << ", threshold=" << ore::NV("Threshold", IC.getThreshold()) << ")";
403  }
404  if (const char *Reason = IC.getReason())
405    R << ": " << ore::NV("Reason", Reason);
406  return R;
407}
408
409static std::string inlineCostStr(const InlineCost &IC) {
410  std::stringstream Remark;
411  Remark << IC;
412  return Remark.str();
413}
414
415/// Return the cost only if the inliner should attempt to inline at the given
416/// CallSite. If we return the cost, we will emit an optimisation remark later
417/// using that cost, so we won't do so from this function.
418static Optional<InlineCost>
419shouldInline(CallSite CS, function_ref<InlineCost(CallSite CS)> GetInlineCost,
420             OptimizationRemarkEmitter &ORE) {
421  using namespace ore;
422
423  InlineCost IC = GetInlineCost(CS);
424  Instruction *Call = CS.getInstruction();
425  Function *Callee = CS.getCalledFunction();
426  Function *Caller = CS.getCaller();
427
428  if (IC.isAlways()) {
429    LLVM_DEBUG(dbgs() << "    Inlining " << inlineCostStr(IC)
430                      << ", Call: " << *CS.getInstruction() << "\n");
431    return IC;
432  }
433
434  if (IC.isNever()) {
435    LLVM_DEBUG(dbgs() << "    NOT Inlining " << inlineCostStr(IC)
436                      << ", Call: " << *CS.getInstruction() << "\n");
437    ORE.emit([&]() {
438      return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call)
439             << NV("Callee", Callee) << " not inlined into "
440             << NV("Caller", Caller) << " because it should never be inlined "
441             << IC;
442    });
443    return IC;
444  }
445
446  if (!IC) {
447    LLVM_DEBUG(dbgs() << "    NOT Inlining " << inlineCostStr(IC)
448                      << ", Call: " << *CS.getInstruction() << "\n");
449    ORE.emit([&]() {
450      return OptimizationRemarkMissed(DEBUG_TYPE, "TooCostly", Call)
451             << NV("Callee", Callee) << " not inlined into "
452             << NV("Caller", Caller) << " because too costly to inline " << IC;
453    });
454    return IC;
455  }
456
457  int TotalSecondaryCost = 0;
458  if (shouldBeDeferred(Caller, CS, IC, TotalSecondaryCost, GetInlineCost)) {
459    LLVM_DEBUG(dbgs() << "    NOT Inlining: " << *CS.getInstruction()
460                      << " Cost = " << IC.getCost()
461                      << ", outer Cost = " << TotalSecondaryCost << '\n');
462    ORE.emit([&]() {
463      return OptimizationRemarkMissed(DEBUG_TYPE, "IncreaseCostInOtherContexts",
464                                      Call)
465             << "Not inlining. Cost of inlining " << NV("Callee", Callee)
466             << " increases the cost of inlining " << NV("Caller", Caller)
467             << " in other contexts";
468    });
469
470    // IC does not bool() to false, so get an InlineCost that will.
471    // This will not be inspected to make an error message.
472    return None;
473  }
474
475  LLVM_DEBUG(dbgs() << "    Inlining " << inlineCostStr(IC)
476                    << ", Call: " << *CS.getInstruction() << '\n');
477  return IC;
478}
479
480/// Return true if the specified inline history ID
481/// indicates an inline history that includes the specified function.
482static bool InlineHistoryIncludes(
483    Function *F, int InlineHistoryID,
484    const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
485  while (InlineHistoryID != -1) {
486    assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
487           "Invalid inline history ID");
488    if (InlineHistory[InlineHistoryID].first == F)
489      return true;
490    InlineHistoryID = InlineHistory[InlineHistoryID].second;
491  }
492  return false;
493}
494
495bool LegacyInlinerBase::doInitialization(CallGraph &CG) {
496  if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
497    ImportedFunctionsStats.setModuleInfo(CG.getModule());
498  return false; // No changes to CallGraph.
499}
500
501bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) {
502  if (skipSCC(SCC))
503    return false;
504  return inlineCalls(SCC);
505}
506
507static void emit_inlined_into(OptimizationRemarkEmitter &ORE, DebugLoc &DLoc,
508                              const BasicBlock *Block, const Function &Callee,
509                              const Function &Caller, const InlineCost &IC) {
510  ORE.emit([&]() {
511    bool AlwaysInline = IC.isAlways();
512    StringRef RemarkName = AlwaysInline ? "AlwaysInline" : "Inlined";
513    return OptimizationRemark(DEBUG_TYPE, RemarkName, DLoc, Block)
514           << ore::NV("Callee", &Callee) << " inlined into "
515           << ore::NV("Caller", &Caller) << " with " << IC;
516  });
517}
518
519static void setInlineRemark(CallSite &CS, StringRef message) {
520  if (!InlineRemarkAttribute)
521    return;
522
523  Attribute attr = Attribute::get(CS->getContext(), "inline-remark", message);
524  CS.addAttribute(AttributeList::FunctionIndex, attr);
525}
526
527static bool
528inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG,
529                std::function<AssumptionCache &(Function &)> GetAssumptionCache,
530                ProfileSummaryInfo *PSI,
531                std::function<TargetLibraryInfo &(Function &)> GetTLI,
532                bool InsertLifetime,
533                function_ref<InlineCost(CallSite CS)> GetInlineCost,
534                function_ref<AAResults &(Function &)> AARGetter,
535                ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
536  SmallPtrSet<Function *, 8> SCCFunctions;
537  LLVM_DEBUG(dbgs() << "Inliner visiting SCC:");
538  for (CallGraphNode *Node : SCC) {
539    Function *F = Node->getFunction();
540    if (F)
541      SCCFunctions.insert(F);
542    LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
543  }
544
545  // Scan through and identify all call sites ahead of time so that we only
546  // inline call sites in the original functions, not call sites that result
547  // from inlining other functions.
548  SmallVector<std::pair<CallSite, int>, 16> CallSites;
549
550  // When inlining a callee produces new call sites, we want to keep track of
551  // the fact that they were inlined from the callee.  This allows us to avoid
552  // infinite inlining in some obscure cases.  To represent this, we use an
553  // index into the InlineHistory vector.
554  SmallVector<std::pair<Function *, int>, 8> InlineHistory;
555
556  for (CallGraphNode *Node : SCC) {
557    Function *F = Node->getFunction();
558    if (!F || F->isDeclaration())
559      continue;
560
561    OptimizationRemarkEmitter ORE(F);
562    for (BasicBlock &BB : *F)
563      for (Instruction &I : BB) {
564        CallSite CS(cast<Value>(&I));
565        // If this isn't a call, or it is a call to an intrinsic, it can
566        // never be inlined.
567        if (!CS || isa<IntrinsicInst>(I))
568          continue;
569
570        // If this is a direct call to an external function, we can never inline
571        // it.  If it is an indirect call, inlining may resolve it to be a
572        // direct call, so we keep it.
573        if (Function *Callee = CS.getCalledFunction())
574          if (Callee->isDeclaration()) {
575            using namespace ore;
576
577            setInlineRemark(CS, "unavailable definition");
578            ORE.emit([&]() {
579              return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
580                     << NV("Callee", Callee) << " will not be inlined into "
581                     << NV("Caller", CS.getCaller())
582                     << " because its definition is unavailable"
583                     << setIsVerbose();
584            });
585            continue;
586          }
587
588        CallSites.push_back(std::make_pair(CS, -1));
589      }
590  }
591
592  LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
593
594  // If there are no calls in this function, exit early.
595  if (CallSites.empty())
596    return false;
597
598  // Now that we have all of the call sites, move the ones to functions in the
599  // current SCC to the end of the list.
600  unsigned FirstCallInSCC = CallSites.size();
601  for (unsigned i = 0; i < FirstCallInSCC; ++i)
602    if (Function *F = CallSites[i].first.getCalledFunction())
603      if (SCCFunctions.count(F))
604        std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
605
606  InlinedArrayAllocasTy InlinedArrayAllocas;
607  InlineFunctionInfo InlineInfo(&CG, &GetAssumptionCache, PSI);
608
609  // Now that we have all of the call sites, loop over them and inline them if
610  // it looks profitable to do so.
611  bool Changed = false;
612  bool LocalChange;
613  do {
614    LocalChange = false;
615    // Iterate over the outer loop because inlining functions can cause indirect
616    // calls to become direct calls.
617    // CallSites may be modified inside so ranged for loop can not be used.
618    for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
619      CallSite CS = CallSites[CSi].first;
620
621      Function *Caller = CS.getCaller();
622      Function *Callee = CS.getCalledFunction();
623
624      // We can only inline direct calls to non-declarations.
625      if (!Callee || Callee->isDeclaration())
626        continue;
627
628      Instruction *Instr = CS.getInstruction();
629
630      bool IsTriviallyDead =
631          isInstructionTriviallyDead(Instr, &GetTLI(*Caller));
632
633      int InlineHistoryID;
634      if (!IsTriviallyDead) {
635        // If this call site was obtained by inlining another function, verify
636        // that the include path for the function did not include the callee
637        // itself.  If so, we'd be recursively inlining the same function,
638        // which would provide the same callsites, which would cause us to
639        // infinitely inline.
640        InlineHistoryID = CallSites[CSi].second;
641        if (InlineHistoryID != -1 &&
642            InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) {
643          setInlineRemark(CS, "recursive");
644          continue;
645        }
646      }
647
648      // FIXME for new PM: because of the old PM we currently generate ORE and
649      // in turn BFI on demand.  With the new PM, the ORE dependency should
650      // just become a regular analysis dependency.
651      OptimizationRemarkEmitter ORE(Caller);
652
653      Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE);
654      // If the policy determines that we should inline this function,
655      // delete the call instead.
656      if (!OIC.hasValue()) {
657        setInlineRemark(CS, "deferred");
658        continue;
659      }
660
661      if (!OIC.getValue()) {
662        // shouldInline() call returned a negative inline cost that explains
663        // why this callsite should not be inlined.
664        setInlineRemark(CS, inlineCostStr(*OIC));
665        continue;
666      }
667
668      // If this call site is dead and it is to a readonly function, we should
669      // just delete the call instead of trying to inline it, regardless of
670      // size.  This happens because IPSCCP propagates the result out of the
671      // call and then we're left with the dead call.
672      if (IsTriviallyDead) {
673        LLVM_DEBUG(dbgs() << "    -> Deleting dead call: " << *Instr << "\n");
674        // Update the call graph by deleting the edge from Callee to Caller.
675        setInlineRemark(CS, "trivially dead");
676        CG[Caller]->removeCallEdgeFor(*cast<CallBase>(CS.getInstruction()));
677        Instr->eraseFromParent();
678        ++NumCallsDeleted;
679      } else {
680        // Get DebugLoc to report. CS will be invalid after Inliner.
681        DebugLoc DLoc = CS->getDebugLoc();
682        BasicBlock *Block = CS.getParent();
683
684        // Attempt to inline the function.
685        using namespace ore;
686
687        InlineResult IR = InlineCallIfPossible(
688            CS, InlineInfo, InlinedArrayAllocas, InlineHistoryID,
689            InsertLifetime, AARGetter, ImportedFunctionsStats);
690        if (!IR) {
691          setInlineRemark(CS, std::string(IR) + "; " + inlineCostStr(*OIC));
692          ORE.emit([&]() {
693            return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc,
694                                            Block)
695                   << NV("Callee", Callee) << " will not be inlined into "
696                   << NV("Caller", Caller) << ": " << NV("Reason", IR.message);
697          });
698          continue;
699        }
700        ++NumInlined;
701
702        emit_inlined_into(ORE, DLoc, Block, *Callee, *Caller, *OIC);
703
704        // If inlining this function gave us any new call sites, throw them
705        // onto our worklist to process.  They are useful inline candidates.
706        if (!InlineInfo.InlinedCalls.empty()) {
707          // Create a new inline history entry for this, so that we remember
708          // that these new callsites came about due to inlining Callee.
709          int NewHistoryID = InlineHistory.size();
710          InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
711
712          for (Value *Ptr : InlineInfo.InlinedCalls)
713            CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
714        }
715      }
716
717      // If we inlined or deleted the last possible call site to the function,
718      // delete the function body now.
719      if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
720          // TODO: Can remove if in SCC now.
721          !SCCFunctions.count(Callee) &&
722          // The function may be apparently dead, but if there are indirect
723          // callgraph references to the node, we cannot delete it yet, this
724          // could invalidate the CGSCC iterator.
725          CG[Callee]->getNumReferences() == 0) {
726        LLVM_DEBUG(dbgs() << "    -> Deleting dead function: "
727                          << Callee->getName() << "\n");
728        CallGraphNode *CalleeNode = CG[Callee];
729
730        // Remove any call graph edges from the callee to its callees.
731        CalleeNode->removeAllCalledFunctions();
732
733        // Removing the node for callee from the call graph and delete it.
734        delete CG.removeFunctionFromModule(CalleeNode);
735        ++NumDeleted;
736      }
737
738      // Remove this call site from the list.  If possible, use
739      // swap/pop_back for efficiency, but do not use it if doing so would
740      // move a call site to a function in this SCC before the
741      // 'FirstCallInSCC' barrier.
742      if (SCC.isSingular()) {
743        CallSites[CSi] = CallSites.back();
744        CallSites.pop_back();
745      } else {
746        CallSites.erase(CallSites.begin() + CSi);
747      }
748      --CSi;
749
750      Changed = true;
751      LocalChange = true;
752    }
753  } while (LocalChange);
754
755  return Changed;
756}
757
758bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) {
759  CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
760  ACT = &getAnalysis<AssumptionCacheTracker>();
761  PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
762  auto GetTLI = [&](Function &F) -> TargetLibraryInfo & {
763    return getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
764  };
765  auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
766    return ACT->getAssumptionCache(F);
767  };
768  return inlineCallsImpl(
769      SCC, CG, GetAssumptionCache, PSI, GetTLI, InsertLifetime,
770      [this](CallSite CS) { return getInlineCost(CS); }, LegacyAARGetter(*this),
771      ImportedFunctionsStats);
772}
773
774/// Remove now-dead linkonce functions at the end of
775/// processing to avoid breaking the SCC traversal.
776bool LegacyInlinerBase::doFinalization(CallGraph &CG) {
777  if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
778    ImportedFunctionsStats.dump(InlinerFunctionImportStats ==
779                                InlinerFunctionImportStatsOpts::Verbose);
780  return removeDeadFunctions(CG);
781}
782
783/// Remove dead functions that are not included in DNR (Do Not Remove) list.
784bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG,
785                                            bool AlwaysInlineOnly) {
786  SmallVector<CallGraphNode *, 16> FunctionsToRemove;
787  SmallVector<Function *, 16> DeadFunctionsInComdats;
788
789  auto RemoveCGN = [&](CallGraphNode *CGN) {
790    // Remove any call graph edges from the function to its callees.
791    CGN->removeAllCalledFunctions();
792
793    // Remove any edges from the external node to the function's call graph
794    // node.  These edges might have been made irrelegant due to
795    // optimization of the program.
796    CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
797
798    // Removing the node for callee from the call graph and delete it.
799    FunctionsToRemove.push_back(CGN);
800  };
801
802  // Scan for all of the functions, looking for ones that should now be removed
803  // from the program.  Insert the dead ones in the FunctionsToRemove set.
804  for (const auto &I : CG) {
805    CallGraphNode *CGN = I.second.get();
806    Function *F = CGN->getFunction();
807    if (!F || F->isDeclaration())
808      continue;
809
810    // Handle the case when this function is called and we only want to care
811    // about always-inline functions. This is a bit of a hack to share code
812    // between here and the InlineAlways pass.
813    if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
814      continue;
815
816    // If the only remaining users of the function are dead constants, remove
817    // them.
818    F->removeDeadConstantUsers();
819
820    if (!F->isDefTriviallyDead())
821      continue;
822
823    // It is unsafe to drop a function with discardable linkage from a COMDAT
824    // without also dropping the other members of the COMDAT.
825    // The inliner doesn't visit non-function entities which are in COMDAT
826    // groups so it is unsafe to do so *unless* the linkage is local.
827    if (!F->hasLocalLinkage()) {
828      if (F->hasComdat()) {
829        DeadFunctionsInComdats.push_back(F);
830        continue;
831      }
832    }
833
834    RemoveCGN(CGN);
835  }
836  if (!DeadFunctionsInComdats.empty()) {
837    // Filter out the functions whose comdats remain alive.
838    filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats);
839    // Remove the rest.
840    for (Function *F : DeadFunctionsInComdats)
841      RemoveCGN(CG[F]);
842  }
843
844  if (FunctionsToRemove.empty())
845    return false;
846
847  // Now that we know which functions to delete, do so.  We didn't want to do
848  // this inline, because that would invalidate our CallGraph::iterator
849  // objects. :(
850  //
851  // Note that it doesn't matter that we are iterating over a non-stable order
852  // here to do this, it doesn't matter which order the functions are deleted
853  // in.
854  array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
855  FunctionsToRemove.erase(
856      std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()),
857      FunctionsToRemove.end());
858  for (CallGraphNode *CGN : FunctionsToRemove) {
859    delete CG.removeFunctionFromModule(CGN);
860    ++NumDeleted;
861  }
862  return true;
863}
864
865InlinerPass::~InlinerPass() {
866  if (ImportedFunctionsStats) {
867    assert(InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No);
868    ImportedFunctionsStats->dump(InlinerFunctionImportStats ==
869                                 InlinerFunctionImportStatsOpts::Verbose);
870  }
871}
872
873PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
874                                   CGSCCAnalysisManager &AM, LazyCallGraph &CG,
875                                   CGSCCUpdateResult &UR) {
876  const ModuleAnalysisManager &MAM =
877      AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG).getManager();
878  bool Changed = false;
879
880  assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
881  Module &M = *InitialC.begin()->getFunction().getParent();
882  ProfileSummaryInfo *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(M);
883
884  if (!ImportedFunctionsStats &&
885      InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) {
886    ImportedFunctionsStats =
887        std::make_unique<ImportedFunctionsInliningStatistics>();
888    ImportedFunctionsStats->setModuleInfo(M);
889  }
890
891  // We use a single common worklist for calls across the entire SCC. We
892  // process these in-order and append new calls introduced during inlining to
893  // the end.
894  //
895  // Note that this particular order of processing is actually critical to
896  // avoid very bad behaviors. Consider *highly connected* call graphs where
897  // each function contains a small amonut of code and a couple of calls to
898  // other functions. Because the LLVM inliner is fundamentally a bottom-up
899  // inliner, it can handle gracefully the fact that these all appear to be
900  // reasonable inlining candidates as it will flatten things until they become
901  // too big to inline, and then move on and flatten another batch.
902  //
903  // However, when processing call edges *within* an SCC we cannot rely on this
904  // bottom-up behavior. As a consequence, with heavily connected *SCCs* of
905  // functions we can end up incrementally inlining N calls into each of
906  // N functions because each incremental inlining decision looks good and we
907  // don't have a topological ordering to prevent explosions.
908  //
909  // To compensate for this, we don't process transitive edges made immediate
910  // by inlining until we've done one pass of inlining across the entire SCC.
911  // Large, highly connected SCCs still lead to some amount of code bloat in
912  // this model, but it is uniformly spread across all the functions in the SCC
913  // and eventually they all become too large to inline, rather than
914  // incrementally maknig a single function grow in a super linear fashion.
915  SmallVector<std::pair<CallSite, int>, 16> Calls;
916
917  FunctionAnalysisManager &FAM =
918      AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG)
919          .getManager();
920
921  // Populate the initial list of calls in this SCC.
922  for (auto &N : InitialC) {
923    auto &ORE =
924        FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction());
925    // We want to generally process call sites top-down in order for
926    // simplifications stemming from replacing the call with the returned value
927    // after inlining to be visible to subsequent inlining decisions.
928    // FIXME: Using instructions sequence is a really bad way to do this.
929    // Instead we should do an actual RPO walk of the function body.
930    for (Instruction &I : instructions(N.getFunction()))
931      if (auto CS = CallSite(&I))
932        if (Function *Callee = CS.getCalledFunction()) {
933          if (!Callee->isDeclaration())
934            Calls.push_back({CS, -1});
935          else if (!isa<IntrinsicInst>(I)) {
936            using namespace ore;
937            setInlineRemark(CS, "unavailable definition");
938            ORE.emit([&]() {
939              return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
940                     << NV("Callee", Callee) << " will not be inlined into "
941                     << NV("Caller", CS.getCaller())
942                     << " because its definition is unavailable"
943                     << setIsVerbose();
944            });
945          }
946        }
947  }
948  if (Calls.empty())
949    return PreservedAnalyses::all();
950
951  // Capture updatable variables for the current SCC and RefSCC.
952  auto *C = &InitialC;
953  auto *RC = &C->getOuterRefSCC();
954
955  // When inlining a callee produces new call sites, we want to keep track of
956  // the fact that they were inlined from the callee.  This allows us to avoid
957  // infinite inlining in some obscure cases.  To represent this, we use an
958  // index into the InlineHistory vector.
959  SmallVector<std::pair<Function *, int>, 16> InlineHistory;
960
961  // Track a set vector of inlined callees so that we can augment the caller
962  // with all of their edges in the call graph before pruning out the ones that
963  // got simplified away.
964  SmallSetVector<Function *, 4> InlinedCallees;
965
966  // Track the dead functions to delete once finished with inlining calls. We
967  // defer deleting these to make it easier to handle the call graph updates.
968  SmallVector<Function *, 4> DeadFunctions;
969
970  // Loop forward over all of the calls. Note that we cannot cache the size as
971  // inlining can introduce new calls that need to be processed.
972  for (int i = 0; i < (int)Calls.size(); ++i) {
973    // We expect the calls to typically be batched with sequences of calls that
974    // have the same caller, so we first set up some shared infrastructure for
975    // this caller. We also do any pruning we can at this layer on the caller
976    // alone.
977    Function &F = *Calls[i].first.getCaller();
978    LazyCallGraph::Node &N = *CG.lookup(F);
979    if (CG.lookupSCC(N) != C)
980      continue;
981    if (F.hasOptNone()) {
982      setInlineRemark(Calls[i].first, "optnone attribute");
983      continue;
984    }
985
986    LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n");
987
988    // Get a FunctionAnalysisManager via a proxy for this particular node. We
989    // do this each time we visit a node as the SCC may have changed and as
990    // we're going to mutate this particular function we want to make sure the
991    // proxy is in place to forward any invalidation events. We can use the
992    // manager we get here for looking up results for functions other than this
993    // node however because those functions aren't going to be mutated by this
994    // pass.
995    FunctionAnalysisManager &FAM =
996        AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG)
997            .getManager();
998
999    // Get the remarks emission analysis for the caller.
1000    auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1001
1002    std::function<AssumptionCache &(Function &)> GetAssumptionCache =
1003        [&](Function &F) -> AssumptionCache & {
1004      return FAM.getResult<AssumptionAnalysis>(F);
1005    };
1006    auto GetBFI = [&](Function &F) -> BlockFrequencyInfo & {
1007      return FAM.getResult<BlockFrequencyAnalysis>(F);
1008    };
1009
1010    auto GetInlineCost = [&](CallSite CS) {
1011      Function &Callee = *CS.getCalledFunction();
1012      auto &CalleeTTI = FAM.getResult<TargetIRAnalysis>(Callee);
1013      bool RemarksEnabled =
1014          Callee.getContext().getDiagHandlerPtr()->isMissedOptRemarkEnabled(
1015              DEBUG_TYPE);
1016      return getInlineCost(cast<CallBase>(*CS.getInstruction()), Params,
1017                           CalleeTTI, GetAssumptionCache, {GetBFI}, PSI,
1018                           RemarksEnabled ? &ORE : nullptr);
1019    };
1020
1021    // Now process as many calls as we have within this caller in the sequnece.
1022    // We bail out as soon as the caller has to change so we can update the
1023    // call graph and prepare the context of that new caller.
1024    bool DidInline = false;
1025    for (; i < (int)Calls.size() && Calls[i].first.getCaller() == &F; ++i) {
1026      int InlineHistoryID;
1027      CallSite CS;
1028      std::tie(CS, InlineHistoryID) = Calls[i];
1029      Function &Callee = *CS.getCalledFunction();
1030
1031      if (InlineHistoryID != -1 &&
1032          InlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) {
1033        setInlineRemark(CS, "recursive");
1034        continue;
1035      }
1036
1037      // Check if this inlining may repeat breaking an SCC apart that has
1038      // already been split once before. In that case, inlining here may
1039      // trigger infinite inlining, much like is prevented within the inliner
1040      // itself by the InlineHistory above, but spread across CGSCC iterations
1041      // and thus hidden from the full inline history.
1042      if (CG.lookupSCC(*CG.lookup(Callee)) == C &&
1043          UR.InlinedInternalEdges.count({&N, C})) {
1044        LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
1045                             "previously split out of this SCC by inlining: "
1046                          << F.getName() << " -> " << Callee.getName() << "\n");
1047        setInlineRemark(CS, "recursive SCC split");
1048        continue;
1049      }
1050
1051      Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE);
1052      // Check whether we want to inline this callsite.
1053      if (!OIC.hasValue()) {
1054        setInlineRemark(CS, "deferred");
1055        continue;
1056      }
1057
1058      if (!OIC.getValue()) {
1059        // shouldInline() call returned a negative inline cost that explains
1060        // why this callsite should not be inlined.
1061        setInlineRemark(CS, inlineCostStr(*OIC));
1062        continue;
1063      }
1064
1065      // Setup the data structure used to plumb customization into the
1066      // `InlineFunction` routine.
1067      InlineFunctionInfo IFI(
1068          /*cg=*/nullptr, &GetAssumptionCache, PSI,
1069          &FAM.getResult<BlockFrequencyAnalysis>(*(CS.getCaller())),
1070          &FAM.getResult<BlockFrequencyAnalysis>(Callee));
1071
1072      // Get DebugLoc to report. CS will be invalid after Inliner.
1073      DebugLoc DLoc = CS->getDebugLoc();
1074      BasicBlock *Block = CS.getParent();
1075
1076      using namespace ore;
1077
1078      InlineResult IR = InlineFunction(CS, IFI);
1079      if (!IR) {
1080        setInlineRemark(CS, std::string(IR) + "; " + inlineCostStr(*OIC));
1081        ORE.emit([&]() {
1082          return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, Block)
1083                 << NV("Callee", &Callee) << " will not be inlined into "
1084                 << NV("Caller", &F) << ": " << NV("Reason", IR.message);
1085        });
1086        continue;
1087      }
1088      DidInline = true;
1089      InlinedCallees.insert(&Callee);
1090
1091      ++NumInlined;
1092
1093      emit_inlined_into(ORE, DLoc, Block, Callee, F, *OIC);
1094
1095      // Add any new callsites to defined functions to the worklist.
1096      if (!IFI.InlinedCallSites.empty()) {
1097        int NewHistoryID = InlineHistory.size();
1098        InlineHistory.push_back({&Callee, InlineHistoryID});
1099        for (CallSite &CS : reverse(IFI.InlinedCallSites))
1100          if (Function *NewCallee = CS.getCalledFunction())
1101            if (!NewCallee->isDeclaration())
1102              Calls.push_back({CS, NewHistoryID});
1103      }
1104
1105      if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
1106        ImportedFunctionsStats->recordInline(F, Callee);
1107
1108      // Merge the attributes based on the inlining.
1109      AttributeFuncs::mergeAttributesForInlining(F, Callee);
1110
1111      // For local functions, check whether this makes the callee trivially
1112      // dead. In that case, we can drop the body of the function eagerly
1113      // which may reduce the number of callers of other functions to one,
1114      // changing inline cost thresholds.
1115      if (Callee.hasLocalLinkage()) {
1116        // To check this we also need to nuke any dead constant uses (perhaps
1117        // made dead by this operation on other functions).
1118        Callee.removeDeadConstantUsers();
1119        if (Callee.use_empty() && !CG.isLibFunction(Callee)) {
1120          Calls.erase(
1121              std::remove_if(Calls.begin() + i + 1, Calls.end(),
1122                             [&Callee](const std::pair<CallSite, int> &Call) {
1123                               return Call.first.getCaller() == &Callee;
1124                             }),
1125              Calls.end());
1126          // Clear the body and queue the function itself for deletion when we
1127          // finish inlining and call graph updates.
1128          // Note that after this point, it is an error to do anything other
1129          // than use the callee's address or delete it.
1130          Callee.dropAllReferences();
1131          assert(find(DeadFunctions, &Callee) == DeadFunctions.end() &&
1132                 "Cannot put cause a function to become dead twice!");
1133          DeadFunctions.push_back(&Callee);
1134        }
1135      }
1136    }
1137
1138    // Back the call index up by one to put us in a good position to go around
1139    // the outer loop.
1140    --i;
1141
1142    if (!DidInline)
1143      continue;
1144    Changed = true;
1145
1146    // Add all the inlined callees' edges as ref edges to the caller. These are
1147    // by definition trivial edges as we always have *some* transitive ref edge
1148    // chain. While in some cases these edges are direct calls inside the
1149    // callee, they have to be modeled in the inliner as reference edges as
1150    // there may be a reference edge anywhere along the chain from the current
1151    // caller to the callee that causes the whole thing to appear like
1152    // a (transitive) reference edge that will require promotion to a call edge
1153    // below.
1154    for (Function *InlinedCallee : InlinedCallees) {
1155      LazyCallGraph::Node &CalleeN = *CG.lookup(*InlinedCallee);
1156      for (LazyCallGraph::Edge &E : *CalleeN)
1157        RC->insertTrivialRefEdge(N, E.getNode());
1158    }
1159
1160    // At this point, since we have made changes we have at least removed
1161    // a call instruction. However, in the process we do some incremental
1162    // simplification of the surrounding code. This simplification can
1163    // essentially do all of the same things as a function pass and we can
1164    // re-use the exact same logic for updating the call graph to reflect the
1165    // change.
1166    LazyCallGraph::SCC *OldC = C;
1167    C = &updateCGAndAnalysisManagerForFunctionPass(CG, *C, N, AM, UR);
1168    LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
1169    RC = &C->getOuterRefSCC();
1170
1171    // If this causes an SCC to split apart into multiple smaller SCCs, there
1172    // is a subtle risk we need to prepare for. Other transformations may
1173    // expose an "infinite inlining" opportunity later, and because of the SCC
1174    // mutation, we will revisit this function and potentially re-inline. If we
1175    // do, and that re-inlining also has the potentially to mutate the SCC
1176    // structure, the infinite inlining problem can manifest through infinite
1177    // SCC splits and merges. To avoid this, we capture the originating caller
1178    // node and the SCC containing the call edge. This is a slight over
1179    // approximation of the possible inlining decisions that must be avoided,
1180    // but is relatively efficient to store. We use C != OldC to know when
1181    // a new SCC is generated and the original SCC may be generated via merge
1182    // in later iterations.
1183    //
1184    // It is also possible that even if no new SCC is generated
1185    // (i.e., C == OldC), the original SCC could be split and then merged
1186    // into the same one as itself. and the original SCC will be added into
1187    // UR.CWorklist again, we want to catch such cases too.
1188    //
1189    // FIXME: This seems like a very heavyweight way of retaining the inline
1190    // history, we should look for a more efficient way of tracking it.
1191    if ((C != OldC || UR.CWorklist.count(OldC)) &&
1192        llvm::any_of(InlinedCallees, [&](Function *Callee) {
1193          return CG.lookupSCC(*CG.lookup(*Callee)) == OldC;
1194        })) {
1195      LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
1196                           "retaining this to avoid infinite inlining.\n");
1197      UR.InlinedInternalEdges.insert({&N, OldC});
1198    }
1199    InlinedCallees.clear();
1200  }
1201
1202  // Now that we've finished inlining all of the calls across this SCC, delete
1203  // all of the trivially dead functions, updating the call graph and the CGSCC
1204  // pass manager in the process.
1205  //
1206  // Note that this walks a pointer set which has non-deterministic order but
1207  // that is OK as all we do is delete things and add pointers to unordered
1208  // sets.
1209  for (Function *DeadF : DeadFunctions) {
1210    // Get the necessary information out of the call graph and nuke the
1211    // function there. Also, cclear out any cached analyses.
1212    auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
1213    FunctionAnalysisManager &FAM =
1214        AM.getResult<FunctionAnalysisManagerCGSCCProxy>(DeadC, CG)
1215            .getManager();
1216    FAM.clear(*DeadF, DeadF->getName());
1217    AM.clear(DeadC, DeadC.getName());
1218    auto &DeadRC = DeadC.getOuterRefSCC();
1219    CG.removeDeadFunction(*DeadF);
1220
1221    // Mark the relevant parts of the call graph as invalid so we don't visit
1222    // them.
1223    UR.InvalidatedSCCs.insert(&DeadC);
1224    UR.InvalidatedRefSCCs.insert(&DeadRC);
1225
1226    // And delete the actual function from the module.
1227    M.getFunctionList().erase(DeadF);
1228    ++NumDeleted;
1229  }
1230
1231  if (!Changed)
1232    return PreservedAnalyses::all();
1233
1234  // Even if we change the IR, we update the core CGSCC data structures and so
1235  // can preserve the proxy to the function analysis manager.
1236  PreservedAnalyses PA;
1237  PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1238  return PA;
1239}
1240