DeadArgumentElimination.cpp revision 207618
1//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass deletes dead arguments from internal functions.  Dead argument
11// elimination removes arguments which are directly dead, as well as arguments
12// only passed into function calls as dead arguments of other functions.  This
13// pass also deletes dead return values in a similar way.
14//
15// This pass is often useful as a cleanup pass to run after aggressive
16// interprocedural passes, which add possibly-dead arguments or return values.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "deadargelim"
21#include "llvm/Transforms/IPO.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constant.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/Pass.h"
30#include "llvm/Support/CallSite.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/StringExtras.h"
36#include <map>
37#include <set>
38using namespace llvm;
39
40STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
41STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
42
43namespace {
44  /// DAE - The dead argument elimination pass.
45  ///
46  class DAE : public ModulePass {
47  public:
48
49    /// Struct that represents (part of) either a return value or a function
50    /// argument.  Used so that arguments and return values can be used
51    /// interchangably.
52    struct RetOrArg {
53      RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
54               IsArg(IsArg) {}
55      const Function *F;
56      unsigned Idx;
57      bool IsArg;
58
59      /// Make RetOrArg comparable, so we can put it into a map.
60      bool operator<(const RetOrArg &O) const {
61        if (F != O.F)
62          return F < O.F;
63        else if (Idx != O.Idx)
64          return Idx < O.Idx;
65        else
66          return IsArg < O.IsArg;
67      }
68
69      /// Make RetOrArg comparable, so we can easily iterate the multimap.
70      bool operator==(const RetOrArg &O) const {
71        return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
72      }
73
74      std::string getDescription() const {
75        return std::string((IsArg ? "Argument #" : "Return value #"))
76               + utostr(Idx) + " of function " + F->getNameStr();
77      }
78    };
79
80    /// Liveness enum - During our initial pass over the program, we determine
81    /// that things are either alive or maybe alive. We don't mark anything
82    /// explicitly dead (even if we know they are), since anything not alive
83    /// with no registered uses (in Uses) will never be marked alive and will
84    /// thus become dead in the end.
85    enum Liveness { Live, MaybeLive };
86
87    /// Convenience wrapper
88    RetOrArg CreateRet(const Function *F, unsigned Idx) {
89      return RetOrArg(F, Idx, false);
90    }
91    /// Convenience wrapper
92    RetOrArg CreateArg(const Function *F, unsigned Idx) {
93      return RetOrArg(F, Idx, true);
94    }
95
96    typedef std::multimap<RetOrArg, RetOrArg> UseMap;
97    /// This maps a return value or argument to any MaybeLive return values or
98    /// arguments it uses. This allows the MaybeLive values to be marked live
99    /// when any of its users is marked live.
100    /// For example (indices are left out for clarity):
101    ///  - Uses[ret F] = ret G
102    ///    This means that F calls G, and F returns the value returned by G.
103    ///  - Uses[arg F] = ret G
104    ///    This means that some function calls G and passes its result as an
105    ///    argument to F.
106    ///  - Uses[ret F] = arg F
107    ///    This means that F returns one of its own arguments.
108    ///  - Uses[arg F] = arg G
109    ///    This means that G calls F and passes one of its own (G's) arguments
110    ///    directly to F.
111    UseMap Uses;
112
113    typedef std::set<RetOrArg> LiveSet;
114    typedef std::set<const Function*> LiveFuncSet;
115
116    /// This set contains all values that have been determined to be live.
117    LiveSet LiveValues;
118    /// This set contains all values that are cannot be changed in any way.
119    LiveFuncSet LiveFunctions;
120
121    typedef SmallVector<RetOrArg, 5> UseVector;
122
123  public:
124    static char ID; // Pass identification, replacement for typeid
125    DAE() : ModulePass(&ID) {}
126    bool runOnModule(Module &M);
127
128    virtual bool ShouldHackArguments() const { return false; }
129
130  private:
131    Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
132    Liveness SurveyUse(Value::const_use_iterator U, UseVector &MaybeLiveUses,
133                       unsigned RetValNum = 0);
134    Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
135
136    void SurveyFunction(const Function &F);
137    void MarkValue(const RetOrArg &RA, Liveness L,
138                   const UseVector &MaybeLiveUses);
139    void MarkLive(const RetOrArg &RA);
140    void MarkLive(const Function &F);
141    void PropagateLiveness(const RetOrArg &RA);
142    bool RemoveDeadStuffFromFunction(Function *F);
143    bool DeleteDeadVarargs(Function &Fn);
144  };
145}
146
147
148char DAE::ID = 0;
149static RegisterPass<DAE>
150X("deadargelim", "Dead Argument Elimination");
151
152namespace {
153  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
154  /// deletes arguments to functions which are external.  This is only for use
155  /// by bugpoint.
156  struct DAH : public DAE {
157    static char ID;
158    virtual bool ShouldHackArguments() const { return true; }
159  };
160}
161
162char DAH::ID = 0;
163static RegisterPass<DAH>
164Y("deadarghaX0r", "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)");
165
166/// createDeadArgEliminationPass - This pass removes arguments from functions
167/// which are not used by the body of the function.
168///
169ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
170ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
171
172/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
173/// llvm.vastart is never called, the varargs list is dead for the function.
174bool DAE::DeleteDeadVarargs(Function &Fn) {
175  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
176  if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
177
178  // Ensure that the function is only directly called.
179  if (Fn.hasAddressTaken())
180    return false;
181
182  // Okay, we know we can transform this function if safe.  Scan its body
183  // looking for calls to llvm.vastart.
184  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
185    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
186      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
187        if (II->getIntrinsicID() == Intrinsic::vastart)
188          return false;
189      }
190    }
191  }
192
193  // If we get here, there are no calls to llvm.vastart in the function body,
194  // remove the "..." and adjust all the calls.
195
196  // Start by computing a new prototype for the function, which is the same as
197  // the old function, but doesn't have isVarArg set.
198  const FunctionType *FTy = Fn.getFunctionType();
199
200  std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
201  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
202                                                Params, false);
203  unsigned NumArgs = Params.size();
204
205  // Create the new function body and insert it into the module...
206  Function *NF = Function::Create(NFTy, Fn.getLinkage());
207  NF->copyAttributesFrom(&Fn);
208  Fn.getParent()->getFunctionList().insert(&Fn, NF);
209  NF->takeName(&Fn);
210
211  // Loop over all of the callers of the function, transforming the call sites
212  // to pass in a smaller number of arguments into the new function.
213  //
214  std::vector<Value*> Args;
215  while (!Fn.use_empty()) {
216    CallSite CS = CallSite::get(Fn.use_back());
217    Instruction *Call = CS.getInstruction();
218
219    // Pass all the same arguments.
220    Args.assign(CS.arg_begin(), CS.arg_begin()+NumArgs);
221
222    // Drop any attributes that were on the vararg arguments.
223    AttrListPtr PAL = CS.getAttributes();
224    if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
225      SmallVector<AttributeWithIndex, 8> AttributesVec;
226      for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
227        AttributesVec.push_back(PAL.getSlot(i));
228      if (Attributes FnAttrs = PAL.getFnAttributes())
229        AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
230      PAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
231    }
232
233    Instruction *New;
234    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
235      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
236                               Args.begin(), Args.end(), "", Call);
237      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
238      cast<InvokeInst>(New)->setAttributes(PAL);
239    } else {
240      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
241      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
242      cast<CallInst>(New)->setAttributes(PAL);
243      if (cast<CallInst>(Call)->isTailCall())
244        cast<CallInst>(New)->setTailCall();
245    }
246    if (MDNode *N = Call->getDbgMetadata())
247      New->setDbgMetadata(N);
248
249    Args.clear();
250
251    if (!Call->use_empty())
252      Call->replaceAllUsesWith(New);
253
254    New->takeName(Call);
255
256    // Finally, remove the old call from the program, reducing the use-count of
257    // F.
258    Call->eraseFromParent();
259  }
260
261  // Since we have now created the new function, splice the body of the old
262  // function right into the new function, leaving the old rotting hulk of the
263  // function empty.
264  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
265
266  // Loop over the argument list, transfering uses of the old arguments over to
267  // the new arguments, also transfering over the names as well.  While we're at
268  // it, remove the dead arguments from the DeadArguments list.
269  //
270  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
271       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
272    // Move the name and users over to the new version.
273    I->replaceAllUsesWith(I2);
274    I2->takeName(I);
275  }
276
277  // Finally, nuke the old function.
278  Fn.eraseFromParent();
279  return true;
280}
281
282/// Convenience function that returns the number of return values. It returns 0
283/// for void functions and 1 for functions not returning a struct. It returns
284/// the number of struct elements for functions returning a struct.
285static unsigned NumRetVals(const Function *F) {
286  if (F->getReturnType()->isVoidTy())
287    return 0;
288  else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
289    return STy->getNumElements();
290  else
291    return 1;
292}
293
294/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
295/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
296/// liveness of Use.
297DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
298  // We're live if our use or its Function is already marked as live.
299  if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
300    return Live;
301
302  // We're maybe live otherwise, but remember that we must become live if
303  // Use becomes live.
304  MaybeLiveUses.push_back(Use);
305  return MaybeLive;
306}
307
308
309/// SurveyUse - This looks at a single use of an argument or return value
310/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
311/// if it causes the used value to become MaybeLive.
312///
313/// RetValNum is the return value number to use when this use is used in a
314/// return instruction. This is used in the recursion, you should always leave
315/// it at 0.
316DAE::Liveness DAE::SurveyUse(Value::const_use_iterator U,
317                             UseVector &MaybeLiveUses, unsigned RetValNum) {
318    const User *V = *U;
319    if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
320      // The value is returned from a function. It's only live when the
321      // function's return value is live. We use RetValNum here, for the case
322      // that U is really a use of an insertvalue instruction that uses the
323      // orginal Use.
324      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
325      // We might be live, depending on the liveness of Use.
326      return MarkIfNotLive(Use, MaybeLiveUses);
327    }
328    if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
329      if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
330          && IV->hasIndices())
331        // The use we are examining is inserted into an aggregate. Our liveness
332        // depends on all uses of that aggregate, but if it is used as a return
333        // value, only index at which we were inserted counts.
334        RetValNum = *IV->idx_begin();
335
336      // Note that if we are used as the aggregate operand to the insertvalue,
337      // we don't change RetValNum, but do survey all our uses.
338
339      Liveness Result = MaybeLive;
340      for (Value::const_use_iterator I = IV->use_begin(),
341           E = V->use_end(); I != E; ++I) {
342        Result = SurveyUse(I, MaybeLiveUses, RetValNum);
343        if (Result == Live)
344          break;
345      }
346      return Result;
347    }
348
349    if (ImmutableCallSite CS = V) {
350      const Function *F = CS.getCalledFunction();
351      if (F) {
352        // Used in a direct call.
353
354        // Find the argument number. We know for sure that this use is an
355        // argument, since if it was the function argument this would be an
356        // indirect call and the we know can't be looking at a value of the
357        // label type (for the invoke instruction).
358        unsigned ArgNo = CS.getArgumentNo(U);
359
360        if (ArgNo >= F->getFunctionType()->getNumParams())
361          // The value is passed in through a vararg! Must be live.
362          return Live;
363
364        assert(CS.getArgument(ArgNo)
365               == CS->getOperand(U.getOperandNo())
366               && "Argument is not where we expected it");
367
368        // Value passed to a normal call. It's only live when the corresponding
369        // argument to the called function turns out live.
370        RetOrArg Use = CreateArg(F, ArgNo);
371        return MarkIfNotLive(Use, MaybeLiveUses);
372      }
373    }
374    // Used in any other way? Value must be live.
375    return Live;
376}
377
378/// SurveyUses - This looks at all the uses of the given value
379/// Returns the Liveness deduced from the uses of this value.
380///
381/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
382/// the result is Live, MaybeLiveUses might be modified but its content should
383/// be ignored (since it might not be complete).
384DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
385  // Assume it's dead (which will only hold if there are no uses at all..).
386  Liveness Result = MaybeLive;
387  // Check each use.
388  for (Value::const_use_iterator I = V->use_begin(),
389       E = V->use_end(); I != E; ++I) {
390    Result = SurveyUse(I, MaybeLiveUses);
391    if (Result == Live)
392      break;
393  }
394  return Result;
395}
396
397// SurveyFunction - This performs the initial survey of the specified function,
398// checking out whether or not it uses any of its incoming arguments or whether
399// any callers use the return value.  This fills in the LiveValues set and Uses
400// map.
401//
402// We consider arguments of non-internal functions to be intrinsically alive as
403// well as arguments to functions which have their "address taken".
404//
405void DAE::SurveyFunction(const Function &F) {
406  unsigned RetCount = NumRetVals(&F);
407  // Assume all return values are dead
408  typedef SmallVector<Liveness, 5> RetVals;
409  RetVals RetValLiveness(RetCount, MaybeLive);
410
411  typedef SmallVector<UseVector, 5> RetUses;
412  // These vectors map each return value to the uses that make it MaybeLive, so
413  // we can add those to the Uses map if the return value really turns out to be
414  // MaybeLive. Initialized to a list of RetCount empty lists.
415  RetUses MaybeLiveRetUses(RetCount);
416
417  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
418    if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
419      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
420          != F.getFunctionType()->getReturnType()) {
421        // We don't support old style multiple return values.
422        MarkLive(F);
423        return;
424      }
425
426  if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
427    MarkLive(F);
428    return;
429  }
430
431  DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
432  // Keep track of the number of live retvals, so we can skip checks once all
433  // of them turn out to be live.
434  unsigned NumLiveRetVals = 0;
435  const Type *STy = dyn_cast<StructType>(F.getReturnType());
436  // Loop all uses of the function.
437  for (Value::const_use_iterator I = F.use_begin(), E = F.use_end();
438       I != E; ++I) {
439    // If the function is PASSED IN as an argument, its address has been
440    // taken.
441    ImmutableCallSite CS(*I);
442    if (!CS || !CS.isCallee(I)) {
443      MarkLive(F);
444      return;
445    }
446
447    // If this use is anything other than a call site, the function is alive.
448    const Instruction *TheCall = CS.getInstruction();
449    if (!TheCall) {   // Not a direct call site?
450      MarkLive(F);
451      return;
452    }
453
454    // If we end up here, we are looking at a direct call to our function.
455
456    // Now, check how our return value(s) is/are used in this caller. Don't
457    // bother checking return values if all of them are live already.
458    if (NumLiveRetVals != RetCount) {
459      if (STy) {
460        // Check all uses of the return value.
461        for (Value::const_use_iterator I = TheCall->use_begin(),
462             E = TheCall->use_end(); I != E; ++I) {
463          const ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
464          if (Ext && Ext->hasIndices()) {
465            // This use uses a part of our return value, survey the uses of
466            // that part and store the results for this index only.
467            unsigned Idx = *Ext->idx_begin();
468            if (RetValLiveness[Idx] != Live) {
469              RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
470              if (RetValLiveness[Idx] == Live)
471                NumLiveRetVals++;
472            }
473          } else {
474            // Used by something else than extractvalue. Mark all return
475            // values as live.
476            for (unsigned i = 0; i != RetCount; ++i )
477              RetValLiveness[i] = Live;
478            NumLiveRetVals = RetCount;
479            break;
480          }
481        }
482      } else {
483        // Single return value
484        RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
485        if (RetValLiveness[0] == Live)
486          NumLiveRetVals = RetCount;
487      }
488    }
489  }
490
491  // Now we've inspected all callers, record the liveness of our return values.
492  for (unsigned i = 0; i != RetCount; ++i)
493    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
494
495  DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
496
497  // Now, check all of our arguments.
498  unsigned i = 0;
499  UseVector MaybeLiveArgUses;
500  for (Function::const_arg_iterator AI = F.arg_begin(),
501       E = F.arg_end(); AI != E; ++AI, ++i) {
502    // See what the effect of this use is (recording any uses that cause
503    // MaybeLive in MaybeLiveArgUses).
504    Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
505    // Mark the result.
506    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
507    // Clear the vector again for the next iteration.
508    MaybeLiveArgUses.clear();
509  }
510}
511
512/// MarkValue - This function marks the liveness of RA depending on L. If L is
513/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
514/// such that RA will be marked live if any use in MaybeLiveUses gets marked
515/// live later on.
516void DAE::MarkValue(const RetOrArg &RA, Liveness L,
517                    const UseVector &MaybeLiveUses) {
518  switch (L) {
519    case Live: MarkLive(RA); break;
520    case MaybeLive:
521    {
522      // Note any uses of this value, so this return value can be
523      // marked live whenever one of the uses becomes live.
524      for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
525           UE = MaybeLiveUses.end(); UI != UE; ++UI)
526        Uses.insert(std::make_pair(*UI, RA));
527      break;
528    }
529  }
530}
531
532/// MarkLive - Mark the given Function as alive, meaning that it cannot be
533/// changed in any way. Additionally,
534/// mark any values that are used as this function's parameters or by its return
535/// values (according to Uses) live as well.
536void DAE::MarkLive(const Function &F) {
537  DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
538    // Mark the function as live.
539    LiveFunctions.insert(&F);
540    // Mark all arguments as live.
541    for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
542      PropagateLiveness(CreateArg(&F, i));
543    // Mark all return values as live.
544    for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
545      PropagateLiveness(CreateRet(&F, i));
546}
547
548/// MarkLive - Mark the given return value or argument as live. Additionally,
549/// mark any values that are used by this value (according to Uses) live as
550/// well.
551void DAE::MarkLive(const RetOrArg &RA) {
552  if (LiveFunctions.count(RA.F))
553    return; // Function was already marked Live.
554
555  if (!LiveValues.insert(RA).second)
556    return; // We were already marked Live.
557
558  DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
559  PropagateLiveness(RA);
560}
561
562/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
563/// to any other values it uses (according to Uses).
564void DAE::PropagateLiveness(const RetOrArg &RA) {
565  // We don't use upper_bound (or equal_range) here, because our recursive call
566  // to ourselves is likely to cause the upper_bound (which is the first value
567  // not belonging to RA) to become erased and the iterator invalidated.
568  UseMap::iterator Begin = Uses.lower_bound(RA);
569  UseMap::iterator E = Uses.end();
570  UseMap::iterator I;
571  for (I = Begin; I != E && I->first == RA; ++I)
572    MarkLive(I->second);
573
574  // Erase RA from the Uses map (from the lower bound to wherever we ended up
575  // after the loop).
576  Uses.erase(Begin, I);
577}
578
579// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
580// that are not in LiveValues. Transform the function and all of the callees of
581// the function to not have these arguments and return values.
582//
583bool DAE::RemoveDeadStuffFromFunction(Function *F) {
584  // Don't modify fully live functions
585  if (LiveFunctions.count(F))
586    return false;
587
588  // Start by computing a new prototype for the function, which is the same as
589  // the old function, but has fewer arguments and a different return type.
590  const FunctionType *FTy = F->getFunctionType();
591  std::vector<const Type*> Params;
592
593  // Set up to build a new list of parameter attributes.
594  SmallVector<AttributeWithIndex, 8> AttributesVec;
595  const AttrListPtr &PAL = F->getAttributes();
596
597  // The existing function return attributes.
598  Attributes RAttrs = PAL.getRetAttributes();
599  Attributes FnAttrs = PAL.getFnAttributes();
600
601  // Find out the new return value.
602
603  const Type *RetTy = FTy->getReturnType();
604  const Type *NRetTy = NULL;
605  unsigned RetCount = NumRetVals(F);
606
607  // -1 means unused, other numbers are the new index
608  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
609  std::vector<const Type*> RetTypes;
610  if (RetTy->isVoidTy()) {
611    NRetTy = RetTy;
612  } else {
613    const StructType *STy = dyn_cast<StructType>(RetTy);
614    if (STy)
615      // Look at each of the original return values individually.
616      for (unsigned i = 0; i != RetCount; ++i) {
617        RetOrArg Ret = CreateRet(F, i);
618        if (LiveValues.erase(Ret)) {
619          RetTypes.push_back(STy->getElementType(i));
620          NewRetIdxs[i] = RetTypes.size() - 1;
621        } else {
622          ++NumRetValsEliminated;
623          DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
624                << F->getName() << "\n");
625        }
626      }
627    else
628      // We used to return a single value.
629      if (LiveValues.erase(CreateRet(F, 0))) {
630        RetTypes.push_back(RetTy);
631        NewRetIdxs[0] = 0;
632      } else {
633        DEBUG(dbgs() << "DAE - Removing return value from " << F->getName()
634              << "\n");
635        ++NumRetValsEliminated;
636      }
637    if (RetTypes.size() > 1)
638      // More than one return type? Return a struct with them. Also, if we used
639      // to return a struct and didn't change the number of return values,
640      // return a struct again. This prevents changing {something} into
641      // something and {} into void.
642      // Make the new struct packed if we used to return a packed struct
643      // already.
644      NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
645    else if (RetTypes.size() == 1)
646      // One return type? Just a simple value then, but only if we didn't use to
647      // return a struct with that simple value before.
648      NRetTy = RetTypes.front();
649    else if (RetTypes.size() == 0)
650      // No return types? Make it void, but only if we didn't use to return {}.
651      NRetTy = Type::getVoidTy(F->getContext());
652  }
653
654  assert(NRetTy && "No new return type found?");
655
656  // Remove any incompatible attributes, but only if we removed all return
657  // values. Otherwise, ensure that we don't have any conflicting attributes
658  // here. Currently, this should not be possible, but special handling might be
659  // required when new return value attributes are added.
660  if (NRetTy->isVoidTy())
661    RAttrs &= ~Attribute::typeIncompatible(NRetTy);
662  else
663    assert((RAttrs & Attribute::typeIncompatible(NRetTy)) == 0
664           && "Return attributes no longer compatible?");
665
666  if (RAttrs)
667    AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
668
669  // Remember which arguments are still alive.
670  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
671  // Construct the new parameter list from non-dead arguments. Also construct
672  // a new set of parameter attributes to correspond. Skip the first parameter
673  // attribute, since that belongs to the return value.
674  unsigned i = 0;
675  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
676       I != E; ++I, ++i) {
677    RetOrArg Arg = CreateArg(F, i);
678    if (LiveValues.erase(Arg)) {
679      Params.push_back(I->getType());
680      ArgAlive[i] = true;
681
682      // Get the original parameter attributes (skipping the first one, that is
683      // for the return value.
684      if (Attributes Attrs = PAL.getParamAttributes(i + 1))
685        AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs));
686    } else {
687      ++NumArgumentsEliminated;
688      DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
689            << ") from " << F->getName() << "\n");
690    }
691  }
692
693  if (FnAttrs != Attribute::None)
694    AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
695
696  // Reconstruct the AttributesList based on the vector we constructed.
697  AttrListPtr NewPAL = AttrListPtr::get(AttributesVec.begin(),
698                                        AttributesVec.end());
699
700  // Create the new function type based on the recomputed parameters.
701  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
702
703  // No change?
704  if (NFTy == FTy)
705    return false;
706
707  // Create the new function body and insert it into the module...
708  Function *NF = Function::Create(NFTy, F->getLinkage());
709  NF->copyAttributesFrom(F);
710  NF->setAttributes(NewPAL);
711  // Insert the new function before the old function, so we won't be processing
712  // it again.
713  F->getParent()->getFunctionList().insert(F, NF);
714  NF->takeName(F);
715
716  // Loop over all of the callers of the function, transforming the call sites
717  // to pass in a smaller number of arguments into the new function.
718  //
719  std::vector<Value*> Args;
720  while (!F->use_empty()) {
721    CallSite CS = CallSite::get(F->use_back());
722    Instruction *Call = CS.getInstruction();
723
724    AttributesVec.clear();
725    const AttrListPtr &CallPAL = CS.getAttributes();
726
727    // The call return attributes.
728    Attributes RAttrs = CallPAL.getRetAttributes();
729    Attributes FnAttrs = CallPAL.getFnAttributes();
730    // Adjust in case the function was changed to return void.
731    RAttrs &= ~Attribute::typeIncompatible(NF->getReturnType());
732    if (RAttrs)
733      AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
734
735    // Declare these outside of the loops, so we can reuse them for the second
736    // loop, which loops the varargs.
737    CallSite::arg_iterator I = CS.arg_begin();
738    unsigned i = 0;
739    // Loop over those operands, corresponding to the normal arguments to the
740    // original function, and add those that are still alive.
741    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
742      if (ArgAlive[i]) {
743        Args.push_back(*I);
744        // Get original parameter attributes, but skip return attributes.
745        if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
746          AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
747      }
748
749    // Push any varargs arguments on the list. Don't forget their attributes.
750    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
751      Args.push_back(*I);
752      if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
753        AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
754    }
755
756    if (FnAttrs != Attribute::None)
757      AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
758
759    // Reconstruct the AttributesList based on the vector we constructed.
760    AttrListPtr NewCallPAL = AttrListPtr::get(AttributesVec.begin(),
761                                              AttributesVec.end());
762
763    Instruction *New;
764    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
765      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
766                               Args.begin(), Args.end(), "", Call);
767      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
768      cast<InvokeInst>(New)->setAttributes(NewCallPAL);
769    } else {
770      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
771      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
772      cast<CallInst>(New)->setAttributes(NewCallPAL);
773      if (cast<CallInst>(Call)->isTailCall())
774        cast<CallInst>(New)->setTailCall();
775    }
776    if (MDNode *N = Call->getDbgMetadata())
777      New->setDbgMetadata(N);
778
779    Args.clear();
780
781    if (!Call->use_empty()) {
782      if (New->getType() == Call->getType()) {
783        // Return type not changed? Just replace users then.
784        Call->replaceAllUsesWith(New);
785        New->takeName(Call);
786      } else if (New->getType()->isVoidTy()) {
787        // Our return value has uses, but they will get removed later on.
788        // Replace by null for now.
789        Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
790      } else {
791        assert(RetTy->isStructTy() &&
792               "Return type changed, but not into a void. The old return type"
793               " must have been a struct!");
794        Instruction *InsertPt = Call;
795        if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
796          BasicBlock::iterator IP = II->getNormalDest()->begin();
797          while (isa<PHINode>(IP)) ++IP;
798          InsertPt = IP;
799        }
800
801        // We used to return a struct. Instead of doing smart stuff with all the
802        // uses of this struct, we will just rebuild it using
803        // extract/insertvalue chaining and let instcombine clean that up.
804        //
805        // Start out building up our return value from undef
806        Value *RetVal = UndefValue::get(RetTy);
807        for (unsigned i = 0; i != RetCount; ++i)
808          if (NewRetIdxs[i] != -1) {
809            Value *V;
810            if (RetTypes.size() > 1)
811              // We are still returning a struct, so extract the value from our
812              // return value
813              V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
814                                           InsertPt);
815            else
816              // We are now returning a single element, so just insert that
817              V = New;
818            // Insert the value at the old position
819            RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
820          }
821        // Now, replace all uses of the old call instruction with the return
822        // struct we built
823        Call->replaceAllUsesWith(RetVal);
824        New->takeName(Call);
825      }
826    }
827
828    // Finally, remove the old call from the program, reducing the use-count of
829    // F.
830    Call->eraseFromParent();
831  }
832
833  // Since we have now created the new function, splice the body of the old
834  // function right into the new function, leaving the old rotting hulk of the
835  // function empty.
836  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
837
838  // Loop over the argument list, transfering uses of the old arguments over to
839  // the new arguments, also transfering over the names as well.
840  i = 0;
841  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
842       I2 = NF->arg_begin(); I != E; ++I, ++i)
843    if (ArgAlive[i]) {
844      // If this is a live argument, move the name and users over to the new
845      // version.
846      I->replaceAllUsesWith(I2);
847      I2->takeName(I);
848      ++I2;
849    } else {
850      // If this argument is dead, replace any uses of it with null constants
851      // (these are guaranteed to become unused later on).
852      I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
853    }
854
855  // If we change the return value of the function we must rewrite any return
856  // instructions.  Check this now.
857  if (F->getReturnType() != NF->getReturnType())
858    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
859      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
860        Value *RetVal;
861
862        if (NFTy->getReturnType() == Type::getVoidTy(F->getContext())) {
863          RetVal = 0;
864        } else {
865          assert (RetTy->isStructTy());
866          // The original return value was a struct, insert
867          // extractvalue/insertvalue chains to extract only the values we need
868          // to return and insert them into our new result.
869          // This does generate messy code, but we'll let it to instcombine to
870          // clean that up.
871          Value *OldRet = RI->getOperand(0);
872          // Start out building up our return value from undef
873          RetVal = UndefValue::get(NRetTy);
874          for (unsigned i = 0; i != RetCount; ++i)
875            if (NewRetIdxs[i] != -1) {
876              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
877                                                              "oldret", RI);
878              if (RetTypes.size() > 1) {
879                // We're still returning a struct, so reinsert the value into
880                // our new return value at the new index
881
882                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
883                                                 "newret", RI);
884              } else {
885                // We are now only returning a simple value, so just return the
886                // extracted value.
887                RetVal = EV;
888              }
889            }
890        }
891        // Replace the return instruction with one returning the new return
892        // value (possibly 0 if we became void).
893        ReturnInst::Create(F->getContext(), RetVal, RI);
894        BB->getInstList().erase(RI);
895      }
896
897  // Now that the old function is dead, delete it.
898  F->eraseFromParent();
899
900  return true;
901}
902
903bool DAE::runOnModule(Module &M) {
904  bool Changed = false;
905
906  // First pass: Do a simple check to see if any functions can have their "..."
907  // removed.  We can do this if they never call va_start.  This loop cannot be
908  // fused with the next loop, because deleting a function invalidates
909  // information computed while surveying other functions.
910  DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
911  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
912    Function &F = *I++;
913    if (F.getFunctionType()->isVarArg())
914      Changed |= DeleteDeadVarargs(F);
915  }
916
917  // Second phase:loop through the module, determining which arguments are live.
918  // We assume all arguments are dead unless proven otherwise (allowing us to
919  // determine that dead arguments passed into recursive functions are dead).
920  //
921  DEBUG(dbgs() << "DAE - Determining liveness\n");
922  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
923    SurveyFunction(*I);
924
925  // Now, remove all dead arguments and return values from each function in
926  // turn.
927  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
928    // Increment now, because the function will probably get removed (ie.
929    // replaced by a new one).
930    Function *F = I++;
931    Changed |= RemoveDeadStuffFromFunction(F);
932  }
933  return Changed;
934}
935