DeadArgumentElimination.cpp revision 194178
1//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass deletes dead arguments from internal functions.  Dead argument
11// elimination removes arguments which are directly dead, as well as arguments
12// only passed into function calls as dead arguments of other functions.  This
13// pass also deletes dead return values in a similar way.
14//
15// This pass is often useful as a cleanup pass to run after aggressive
16// interprocedural passes, which add possibly-dead arguments or return values.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "deadargelim"
21#include "llvm/Transforms/IPO.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constant.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/Module.h"
28#include "llvm/Pass.h"
29#include "llvm/Support/CallSite.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/ADT/StringExtras.h"
34#include "llvm/Support/Compiler.h"
35#include <map>
36#include <set>
37using namespace llvm;
38
39STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
40STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
41
42namespace {
43  /// DAE - The dead argument elimination pass.
44  ///
45  class VISIBILITY_HIDDEN DAE : public ModulePass {
46  public:
47
48    /// Struct that represents (part of) either a return value or a function
49    /// argument.  Used so that arguments and return values can be used
50    /// interchangably.
51    struct RetOrArg {
52      RetOrArg(const Function* F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
53               IsArg(IsArg) {}
54      const Function *F;
55      unsigned Idx;
56      bool IsArg;
57
58      /// Make RetOrArg comparable, so we can put it into a map.
59      bool operator<(const RetOrArg &O) const {
60        if (F != O.F)
61          return F < O.F;
62        else if (Idx != O.Idx)
63          return Idx < O.Idx;
64        else
65          return IsArg < O.IsArg;
66      }
67
68      /// Make RetOrArg comparable, so we can easily iterate the multimap.
69      bool operator==(const RetOrArg &O) const {
70        return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
71      }
72
73      std::string getDescription() const {
74        return std::string((IsArg ? "Argument #" : "Return value #"))
75               + utostr(Idx) + " of function " + F->getName();
76      }
77    };
78
79    /// Liveness enum - During our initial pass over the program, we determine
80    /// that things are either alive or maybe alive. We don't mark anything
81    /// explicitly dead (even if we know they are), since anything not alive
82    /// with no registered uses (in Uses) will never be marked alive and will
83    /// thus become dead in the end.
84    enum Liveness { Live, MaybeLive };
85
86    /// Convenience wrapper
87    RetOrArg CreateRet(const Function *F, unsigned Idx) {
88      return RetOrArg(F, Idx, false);
89    }
90    /// Convenience wrapper
91    RetOrArg CreateArg(const Function *F, unsigned Idx) {
92      return RetOrArg(F, Idx, true);
93    }
94
95    typedef std::multimap<RetOrArg, RetOrArg> UseMap;
96    /// This maps a return value or argument to any MaybeLive return values or
97    /// arguments it uses. This allows the MaybeLive values to be marked live
98    /// when any of its users is marked live.
99    /// For example (indices are left out for clarity):
100    ///  - Uses[ret F] = ret G
101    ///    This means that F calls G, and F returns the value returned by G.
102    ///  - Uses[arg F] = ret G
103    ///    This means that some function calls G and passes its result as an
104    ///    argument to F.
105    ///  - Uses[ret F] = arg F
106    ///    This means that F returns one of its own arguments.
107    ///  - Uses[arg F] = arg G
108    ///    This means that G calls F and passes one of its own (G's) arguments
109    ///    directly to F.
110    UseMap Uses;
111
112    typedef std::set<RetOrArg> LiveSet;
113    typedef std::set<const Function*> LiveFuncSet;
114
115    /// This set contains all values that have been determined to be live.
116    LiveSet LiveValues;
117    /// This set contains all values that are cannot be changed in any way.
118    LiveFuncSet LiveFunctions;
119
120    typedef SmallVector<RetOrArg, 5> UseVector;
121
122  public:
123    static char ID; // Pass identification, replacement for typeid
124    DAE() : ModulePass(&ID) {}
125    bool runOnModule(Module &M);
126
127    virtual bool ShouldHackArguments() const { return false; }
128
129  private:
130    Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
131    Liveness SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
132                       unsigned RetValNum = 0);
133    Liveness SurveyUses(Value *V, UseVector &MaybeLiveUses);
134
135    void SurveyFunction(Function &F);
136    void MarkValue(const RetOrArg &RA, Liveness L,
137                   const UseVector &MaybeLiveUses);
138    void MarkLive(const RetOrArg &RA);
139    void MarkLive(const Function &F);
140    void PropagateLiveness(const RetOrArg &RA);
141    bool RemoveDeadStuffFromFunction(Function *F);
142    bool DeleteDeadVarargs(Function &Fn);
143  };
144}
145
146
147char DAE::ID = 0;
148static RegisterPass<DAE>
149X("deadargelim", "Dead Argument Elimination");
150
151namespace {
152  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
153  /// deletes arguments to functions which are external.  This is only for use
154  /// by bugpoint.
155  struct DAH : public DAE {
156    static char ID;
157    virtual bool ShouldHackArguments() const { return true; }
158  };
159}
160
161char DAH::ID = 0;
162static RegisterPass<DAH>
163Y("deadarghaX0r", "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)");
164
165/// createDeadArgEliminationPass - This pass removes arguments from functions
166/// which are not used by the body of the function.
167///
168ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
169ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
170
171/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
172/// llvm.vastart is never called, the varargs list is dead for the function.
173bool DAE::DeleteDeadVarargs(Function &Fn) {
174  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
175  if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
176
177  // Ensure that the function is only directly called.
178  if (Fn.hasAddressTaken())
179    return false;
180
181  // Okay, we know we can transform this function if safe.  Scan its body
182  // looking for calls to llvm.vastart.
183  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
184    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
185      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
186        if (II->getIntrinsicID() == Intrinsic::vastart)
187          return false;
188      }
189    }
190  }
191
192  // If we get here, there are no calls to llvm.vastart in the function body,
193  // remove the "..." and adjust all the calls.
194
195  // Start by computing a new prototype for the function, which is the same as
196  // the old function, but doesn't have isVarArg set.
197  const FunctionType *FTy = Fn.getFunctionType();
198  std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
199  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false);
200  unsigned NumArgs = Params.size();
201
202  // Create the new function body and insert it into the module...
203  Function *NF = Function::Create(NFTy, Fn.getLinkage());
204  NF->copyAttributesFrom(&Fn);
205  Fn.getParent()->getFunctionList().insert(&Fn, NF);
206  NF->takeName(&Fn);
207
208  // Loop over all of the callers of the function, transforming the call sites
209  // to pass in a smaller number of arguments into the new function.
210  //
211  std::vector<Value*> Args;
212  while (!Fn.use_empty()) {
213    CallSite CS = CallSite::get(Fn.use_back());
214    Instruction *Call = CS.getInstruction();
215
216    // Pass all the same arguments.
217    Args.assign(CS.arg_begin(), CS.arg_begin()+NumArgs);
218
219    // Drop any attributes that were on the vararg arguments.
220    AttrListPtr PAL = CS.getAttributes();
221    if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
222      SmallVector<AttributeWithIndex, 8> AttributesVec;
223      for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
224        AttributesVec.push_back(PAL.getSlot(i));
225      if (Attributes FnAttrs = PAL.getFnAttributes())
226        AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
227      PAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
228    }
229
230    Instruction *New;
231    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
232      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
233                               Args.begin(), Args.end(), "", Call);
234      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
235      cast<InvokeInst>(New)->setAttributes(PAL);
236    } else {
237      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
238      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
239      cast<CallInst>(New)->setAttributes(PAL);
240      if (cast<CallInst>(Call)->isTailCall())
241        cast<CallInst>(New)->setTailCall();
242    }
243    Args.clear();
244
245    if (!Call->use_empty())
246      Call->replaceAllUsesWith(New);
247
248    New->takeName(Call);
249
250    // Finally, remove the old call from the program, reducing the use-count of
251    // F.
252    Call->eraseFromParent();
253  }
254
255  // Since we have now created the new function, splice the body of the old
256  // function right into the new function, leaving the old rotting hulk of the
257  // function empty.
258  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
259
260  // Loop over the argument list, transfering uses of the old arguments over to
261  // the new arguments, also transfering over the names as well.  While we're at
262  // it, remove the dead arguments from the DeadArguments list.
263  //
264  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
265       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
266    // Move the name and users over to the new version.
267    I->replaceAllUsesWith(I2);
268    I2->takeName(I);
269  }
270
271  // Finally, nuke the old function.
272  Fn.eraseFromParent();
273  return true;
274}
275
276/// Convenience function that returns the number of return values. It returns 0
277/// for void functions and 1 for functions not returning a struct. It returns
278/// the number of struct elements for functions returning a struct.
279static unsigned NumRetVals(const Function *F) {
280  if (F->getReturnType() == Type::VoidTy)
281    return 0;
282  else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
283    return STy->getNumElements();
284  else
285    return 1;
286}
287
288/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
289/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
290/// liveness of Use.
291DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
292  // We're live if our use or its Function is already marked as live.
293  if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
294    return Live;
295
296  // We're maybe live otherwise, but remember that we must become live if
297  // Use becomes live.
298  MaybeLiveUses.push_back(Use);
299  return MaybeLive;
300}
301
302
303/// SurveyUse - This looks at a single use of an argument or return value
304/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
305/// if it causes the used value to become MaybeAlive.
306///
307/// RetValNum is the return value number to use when this use is used in a
308/// return instruction. This is used in the recursion, you should always leave
309/// it at 0.
310DAE::Liveness DAE::SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
311                             unsigned RetValNum) {
312    Value *V = *U;
313    if (ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
314      // The value is returned from a function. It's only live when the
315      // function's return value is live. We use RetValNum here, for the case
316      // that U is really a use of an insertvalue instruction that uses the
317      // orginal Use.
318      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
319      // We might be live, depending on the liveness of Use.
320      return MarkIfNotLive(Use, MaybeLiveUses);
321    }
322    if (InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
323      if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
324          && IV->hasIndices())
325        // The use we are examining is inserted into an aggregate. Our liveness
326        // depends on all uses of that aggregate, but if it is used as a return
327        // value, only index at which we were inserted counts.
328        RetValNum = *IV->idx_begin();
329
330      // Note that if we are used as the aggregate operand to the insertvalue,
331      // we don't change RetValNum, but do survey all our uses.
332
333      Liveness Result = MaybeLive;
334      for (Value::use_iterator I = IV->use_begin(),
335           E = V->use_end(); I != E; ++I) {
336        Result = SurveyUse(I, MaybeLiveUses, RetValNum);
337        if (Result == Live)
338          break;
339      }
340      return Result;
341    }
342    CallSite CS = CallSite::get(V);
343    if (CS.getInstruction()) {
344      Function *F = CS.getCalledFunction();
345      if (F) {
346        // Used in a direct call.
347
348        // Find the argument number. We know for sure that this use is an
349        // argument, since if it was the function argument this would be an
350        // indirect call and the we know can't be looking at a value of the
351        // label type (for the invoke instruction).
352        unsigned ArgNo = CS.getArgumentNo(U.getOperandNo());
353
354        if (ArgNo >= F->getFunctionType()->getNumParams())
355          // The value is passed in through a vararg! Must be live.
356          return Live;
357
358        assert(CS.getArgument(ArgNo)
359               == CS.getInstruction()->getOperand(U.getOperandNo())
360               && "Argument is not where we expected it");
361
362        // Value passed to a normal call. It's only live when the corresponding
363        // argument to the called function turns out live.
364        RetOrArg Use = CreateArg(F, ArgNo);
365        return MarkIfNotLive(Use, MaybeLiveUses);
366      }
367    }
368    // Used in any other way? Value must be live.
369    return Live;
370}
371
372/// SurveyUses - This looks at all the uses of the given value
373/// Returns the Liveness deduced from the uses of this value.
374///
375/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
376/// the result is Live, MaybeLiveUses might be modified but its content should
377/// be ignored (since it might not be complete).
378DAE::Liveness DAE::SurveyUses(Value *V, UseVector &MaybeLiveUses) {
379  // Assume it's dead (which will only hold if there are no uses at all..).
380  Liveness Result = MaybeLive;
381  // Check each use.
382  for (Value::use_iterator I = V->use_begin(),
383       E = V->use_end(); I != E; ++I) {
384    Result = SurveyUse(I, MaybeLiveUses);
385    if (Result == Live)
386      break;
387  }
388  return Result;
389}
390
391// SurveyFunction - This performs the initial survey of the specified function,
392// checking out whether or not it uses any of its incoming arguments or whether
393// any callers use the return value.  This fills in the LiveValues set and Uses
394// map.
395//
396// We consider arguments of non-internal functions to be intrinsically alive as
397// well as arguments to functions which have their "address taken".
398//
399void DAE::SurveyFunction(Function &F) {
400  unsigned RetCount = NumRetVals(&F);
401  // Assume all return values are dead
402  typedef SmallVector<Liveness, 5> RetVals;
403  RetVals RetValLiveness(RetCount, MaybeLive);
404
405  typedef SmallVector<UseVector, 5> RetUses;
406  // These vectors map each return value to the uses that make it MaybeLive, so
407  // we can add those to the Uses map if the return value really turns out to be
408  // MaybeLive. Initialized to a list of RetCount empty lists.
409  RetUses MaybeLiveRetUses(RetCount);
410
411  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
412    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
413      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
414          != F.getFunctionType()->getReturnType()) {
415        // We don't support old style multiple return values.
416        MarkLive(F);
417        return;
418      }
419
420  if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
421    MarkLive(F);
422    return;
423  }
424
425  DOUT << "DAE - Inspecting callers for fn: " << F.getName() << "\n";
426  // Keep track of the number of live retvals, so we can skip checks once all
427  // of them turn out to be live.
428  unsigned NumLiveRetVals = 0;
429  const Type *STy = dyn_cast<StructType>(F.getReturnType());
430  // Loop all uses of the function.
431  for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) {
432    // If the function is PASSED IN as an argument, its address has been
433    // taken.
434    CallSite CS = CallSite::get(*I);
435    if (!CS.getInstruction() || !CS.isCallee(I)) {
436      MarkLive(F);
437      return;
438    }
439
440    // If this use is anything other than a call site, the function is alive.
441    Instruction *TheCall = CS.getInstruction();
442    if (!TheCall) {   // Not a direct call site?
443      MarkLive(F);
444      return;
445    }
446
447    // If we end up here, we are looking at a direct call to our function.
448
449    // Now, check how our return value(s) is/are used in this caller. Don't
450    // bother checking return values if all of them are live already.
451    if (NumLiveRetVals != RetCount) {
452      if (STy) {
453        // Check all uses of the return value.
454        for (Value::use_iterator I = TheCall->use_begin(),
455             E = TheCall->use_end(); I != E; ++I) {
456          ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
457          if (Ext && Ext->hasIndices()) {
458            // This use uses a part of our return value, survey the uses of
459            // that part and store the results for this index only.
460            unsigned Idx = *Ext->idx_begin();
461            if (RetValLiveness[Idx] != Live) {
462              RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
463              if (RetValLiveness[Idx] == Live)
464                NumLiveRetVals++;
465            }
466          } else {
467            // Used by something else than extractvalue. Mark all return
468            // values as live.
469            for (unsigned i = 0; i != RetCount; ++i )
470              RetValLiveness[i] = Live;
471            NumLiveRetVals = RetCount;
472            break;
473          }
474        }
475      } else {
476        // Single return value
477        RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
478        if (RetValLiveness[0] == Live)
479          NumLiveRetVals = RetCount;
480      }
481    }
482  }
483
484  // Now we've inspected all callers, record the liveness of our return values.
485  for (unsigned i = 0; i != RetCount; ++i)
486    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
487
488  DOUT << "DAE - Inspecting args for fn: " << F.getName() << "\n";
489
490  // Now, check all of our arguments.
491  unsigned i = 0;
492  UseVector MaybeLiveArgUses;
493  for (Function::arg_iterator AI = F.arg_begin(),
494       E = F.arg_end(); AI != E; ++AI, ++i) {
495    // See what the effect of this use is (recording any uses that cause
496    // MaybeLive in MaybeLiveArgUses).
497    Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
498    // Mark the result.
499    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
500    // Clear the vector again for the next iteration.
501    MaybeLiveArgUses.clear();
502  }
503}
504
505/// MarkValue - This function marks the liveness of RA depending on L. If L is
506/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
507/// such that RA will be marked live if any use in MaybeLiveUses gets marked
508/// live later on.
509void DAE::MarkValue(const RetOrArg &RA, Liveness L,
510                    const UseVector &MaybeLiveUses) {
511  switch (L) {
512    case Live: MarkLive(RA); break;
513    case MaybeLive:
514    {
515      // Note any uses of this value, so this return value can be
516      // marked live whenever one of the uses becomes live.
517      for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
518           UE = MaybeLiveUses.end(); UI != UE; ++UI)
519        Uses.insert(std::make_pair(*UI, RA));
520      break;
521    }
522  }
523}
524
525/// MarkLive - Mark the given Function as alive, meaning that it cannot be
526/// changed in any way. Additionally,
527/// mark any values that are used as this function's parameters or by its return
528/// values (according to Uses) live as well.
529void DAE::MarkLive(const Function &F) {
530    DOUT << "DAE - Intrinsically live fn: " << F.getName() << "\n";
531    // Mark the function as live.
532    LiveFunctions.insert(&F);
533    // Mark all arguments as live.
534    for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
535      PropagateLiveness(CreateArg(&F, i));
536    // Mark all return values as live.
537    for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
538      PropagateLiveness(CreateRet(&F, i));
539}
540
541/// MarkLive - Mark the given return value or argument as live. Additionally,
542/// mark any values that are used by this value (according to Uses) live as
543/// well.
544void DAE::MarkLive(const RetOrArg &RA) {
545  if (LiveFunctions.count(RA.F))
546    return; // Function was already marked Live.
547
548  if (!LiveValues.insert(RA).second)
549    return; // We were already marked Live.
550
551  DOUT << "DAE - Marking " << RA.getDescription() << " live\n";
552  PropagateLiveness(RA);
553}
554
555/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
556/// to any other values it uses (according to Uses).
557void DAE::PropagateLiveness(const RetOrArg &RA) {
558  // We don't use upper_bound (or equal_range) here, because our recursive call
559  // to ourselves is likely to cause the upper_bound (which is the first value
560  // not belonging to RA) to become erased and the iterator invalidated.
561  UseMap::iterator Begin = Uses.lower_bound(RA);
562  UseMap::iterator E = Uses.end();
563  UseMap::iterator I;
564  for (I = Begin; I != E && I->first == RA; ++I)
565    MarkLive(I->second);
566
567  // Erase RA from the Uses map (from the lower bound to wherever we ended up
568  // after the loop).
569  Uses.erase(Begin, I);
570}
571
572// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
573// that are not in LiveValues. Transform the function and all of the callees of
574// the function to not have these arguments and return values.
575//
576bool DAE::RemoveDeadStuffFromFunction(Function *F) {
577  // Don't modify fully live functions
578  if (LiveFunctions.count(F))
579    return false;
580
581  // Start by computing a new prototype for the function, which is the same as
582  // the old function, but has fewer arguments and a different return type.
583  const FunctionType *FTy = F->getFunctionType();
584  std::vector<const Type*> Params;
585
586  // Set up to build a new list of parameter attributes.
587  SmallVector<AttributeWithIndex, 8> AttributesVec;
588  const AttrListPtr &PAL = F->getAttributes();
589
590  // The existing function return attributes.
591  Attributes RAttrs = PAL.getRetAttributes();
592  Attributes FnAttrs = PAL.getFnAttributes();
593
594  // Find out the new return value.
595
596  const Type *RetTy = FTy->getReturnType();
597  const Type *NRetTy = NULL;
598  unsigned RetCount = NumRetVals(F);
599  // -1 means unused, other numbers are the new index
600  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
601  std::vector<const Type*> RetTypes;
602  if (RetTy == Type::VoidTy) {
603    NRetTy = Type::VoidTy;
604  } else {
605    const StructType *STy = dyn_cast<StructType>(RetTy);
606    if (STy)
607      // Look at each of the original return values individually.
608      for (unsigned i = 0; i != RetCount; ++i) {
609        RetOrArg Ret = CreateRet(F, i);
610        if (LiveValues.erase(Ret)) {
611          RetTypes.push_back(STy->getElementType(i));
612          NewRetIdxs[i] = RetTypes.size() - 1;
613        } else {
614          ++NumRetValsEliminated;
615          DOUT << "DAE - Removing return value " << i << " from "
616               << F->getNameStart() << "\n";
617        }
618      }
619    else
620      // We used to return a single value.
621      if (LiveValues.erase(CreateRet(F, 0))) {
622        RetTypes.push_back(RetTy);
623        NewRetIdxs[0] = 0;
624      } else {
625        DOUT << "DAE - Removing return value from " << F->getNameStart()
626             << "\n";
627        ++NumRetValsEliminated;
628      }
629    if (RetTypes.size() > 1)
630      // More than one return type? Return a struct with them. Also, if we used
631      // to return a struct and didn't change the number of return values,
632      // return a struct again. This prevents changing {something} into
633      // something and {} into void.
634      // Make the new struct packed if we used to return a packed struct
635      // already.
636      NRetTy = StructType::get(RetTypes, STy->isPacked());
637    else if (RetTypes.size() == 1)
638      // One return type? Just a simple value then, but only if we didn't use to
639      // return a struct with that simple value before.
640      NRetTy = RetTypes.front();
641    else if (RetTypes.size() == 0)
642      // No return types? Make it void, but only if we didn't use to return {}.
643      NRetTy = Type::VoidTy;
644  }
645
646  assert(NRetTy && "No new return type found?");
647
648  // Remove any incompatible attributes, but only if we removed all return
649  // values. Otherwise, ensure that we don't have any conflicting attributes
650  // here. Currently, this should not be possible, but special handling might be
651  // required when new return value attributes are added.
652  if (NRetTy == Type::VoidTy)
653    RAttrs &= ~Attribute::typeIncompatible(NRetTy);
654  else
655    assert((RAttrs & Attribute::typeIncompatible(NRetTy)) == 0
656           && "Return attributes no longer compatible?");
657
658  if (RAttrs)
659    AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
660
661  // Remember which arguments are still alive.
662  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
663  // Construct the new parameter list from non-dead arguments. Also construct
664  // a new set of parameter attributes to correspond. Skip the first parameter
665  // attribute, since that belongs to the return value.
666  unsigned i = 0;
667  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
668       I != E; ++I, ++i) {
669    RetOrArg Arg = CreateArg(F, i);
670    if (LiveValues.erase(Arg)) {
671      Params.push_back(I->getType());
672      ArgAlive[i] = true;
673
674      // Get the original parameter attributes (skipping the first one, that is
675      // for the return value.
676      if (Attributes Attrs = PAL.getParamAttributes(i + 1))
677        AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs));
678    } else {
679      ++NumArgumentsEliminated;
680      DOUT << "DAE - Removing argument " << i << " (" << I->getNameStart()
681           << ") from " << F->getNameStart() << "\n";
682    }
683  }
684
685  if (FnAttrs != Attribute::None)
686    AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
687
688  // Reconstruct the AttributesList based on the vector we constructed.
689  AttrListPtr NewPAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
690
691  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
692  // have zero fixed arguments.
693  //
694  // Note that we apply this hack for a vararg fuction that does not have any
695  // arguments anymore, but did have them before (so don't bother fixing
696  // functions that were already broken wrt CWriter).
697  bool ExtraArgHack = false;
698  if (Params.empty() && FTy->isVarArg() && FTy->getNumParams() != 0) {
699    ExtraArgHack = true;
700    Params.push_back(Type::Int32Ty);
701  }
702
703  // Create the new function type based on the recomputed parameters.
704  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
705
706  // No change?
707  if (NFTy == FTy)
708    return false;
709
710  // Create the new function body and insert it into the module...
711  Function *NF = Function::Create(NFTy, F->getLinkage());
712  NF->copyAttributesFrom(F);
713  NF->setAttributes(NewPAL);
714  // Insert the new function before the old function, so we won't be processing
715  // it again.
716  F->getParent()->getFunctionList().insert(F, NF);
717  NF->takeName(F);
718
719  // Loop over all of the callers of the function, transforming the call sites
720  // to pass in a smaller number of arguments into the new function.
721  //
722  std::vector<Value*> Args;
723  while (!F->use_empty()) {
724    CallSite CS = CallSite::get(F->use_back());
725    Instruction *Call = CS.getInstruction();
726
727    AttributesVec.clear();
728    const AttrListPtr &CallPAL = CS.getAttributes();
729
730    // The call return attributes.
731    Attributes RAttrs = CallPAL.getRetAttributes();
732    Attributes FnAttrs = CallPAL.getFnAttributes();
733    // Adjust in case the function was changed to return void.
734    RAttrs &= ~Attribute::typeIncompatible(NF->getReturnType());
735    if (RAttrs)
736      AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
737
738    // Declare these outside of the loops, so we can reuse them for the second
739    // loop, which loops the varargs.
740    CallSite::arg_iterator I = CS.arg_begin();
741    unsigned i = 0;
742    // Loop over those operands, corresponding to the normal arguments to the
743    // original function, and add those that are still alive.
744    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
745      if (ArgAlive[i]) {
746        Args.push_back(*I);
747        // Get original parameter attributes, but skip return attributes.
748        if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
749          AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
750      }
751
752    if (ExtraArgHack)
753      Args.push_back(UndefValue::get(Type::Int32Ty));
754
755    // Push any varargs arguments on the list. Don't forget their attributes.
756    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
757      Args.push_back(*I);
758      if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
759        AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
760    }
761
762    if (FnAttrs != Attribute::None)
763      AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
764
765    // Reconstruct the AttributesList based on the vector we constructed.
766    AttrListPtr NewCallPAL = AttrListPtr::get(AttributesVec.begin(),
767                                              AttributesVec.end());
768
769    Instruction *New;
770    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
771      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
772                               Args.begin(), Args.end(), "", Call);
773      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
774      cast<InvokeInst>(New)->setAttributes(NewCallPAL);
775    } else {
776      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
777      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
778      cast<CallInst>(New)->setAttributes(NewCallPAL);
779      if (cast<CallInst>(Call)->isTailCall())
780        cast<CallInst>(New)->setTailCall();
781    }
782    Args.clear();
783
784    if (!Call->use_empty()) {
785      if (New->getType() == Call->getType()) {
786        // Return type not changed? Just replace users then.
787        Call->replaceAllUsesWith(New);
788        New->takeName(Call);
789      } else if (New->getType() == Type::VoidTy) {
790        // Our return value has uses, but they will get removed later on.
791        // Replace by null for now.
792        Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
793      } else {
794        assert(isa<StructType>(RetTy) &&
795               "Return type changed, but not into a void. The old return type"
796               " must have been a struct!");
797        Instruction *InsertPt = Call;
798        if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
799          BasicBlock::iterator IP = II->getNormalDest()->begin();
800          while (isa<PHINode>(IP)) ++IP;
801          InsertPt = IP;
802        }
803
804        // We used to return a struct. Instead of doing smart stuff with all the
805        // uses of this struct, we will just rebuild it using
806        // extract/insertvalue chaining and let instcombine clean that up.
807        //
808        // Start out building up our return value from undef
809        Value *RetVal = llvm::UndefValue::get(RetTy);
810        for (unsigned i = 0; i != RetCount; ++i)
811          if (NewRetIdxs[i] != -1) {
812            Value *V;
813            if (RetTypes.size() > 1)
814              // We are still returning a struct, so extract the value from our
815              // return value
816              V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
817                                           InsertPt);
818            else
819              // We are now returning a single element, so just insert that
820              V = New;
821            // Insert the value at the old position
822            RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
823          }
824        // Now, replace all uses of the old call instruction with the return
825        // struct we built
826        Call->replaceAllUsesWith(RetVal);
827        New->takeName(Call);
828      }
829    }
830
831    // Finally, remove the old call from the program, reducing the use-count of
832    // F.
833    Call->eraseFromParent();
834  }
835
836  // Since we have now created the new function, splice the body of the old
837  // function right into the new function, leaving the old rotting hulk of the
838  // function empty.
839  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
840
841  // Loop over the argument list, transfering uses of the old arguments over to
842  // the new arguments, also transfering over the names as well.
843  i = 0;
844  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
845       I2 = NF->arg_begin(); I != E; ++I, ++i)
846    if (ArgAlive[i]) {
847      // If this is a live argument, move the name and users over to the new
848      // version.
849      I->replaceAllUsesWith(I2);
850      I2->takeName(I);
851      ++I2;
852    } else {
853      // If this argument is dead, replace any uses of it with null constants
854      // (these are guaranteed to become unused later on).
855      I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
856    }
857
858  // If we change the return value of the function we must rewrite any return
859  // instructions.  Check this now.
860  if (F->getReturnType() != NF->getReturnType())
861    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
862      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
863        Value *RetVal;
864
865        if (NFTy->getReturnType() == Type::VoidTy) {
866          RetVal = 0;
867        } else {
868          assert (isa<StructType>(RetTy));
869          // The original return value was a struct, insert
870          // extractvalue/insertvalue chains to extract only the values we need
871          // to return and insert them into our new result.
872          // This does generate messy code, but we'll let it to instcombine to
873          // clean that up.
874          Value *OldRet = RI->getOperand(0);
875          // Start out building up our return value from undef
876          RetVal = llvm::UndefValue::get(NRetTy);
877          for (unsigned i = 0; i != RetCount; ++i)
878            if (NewRetIdxs[i] != -1) {
879              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
880                                                              "oldret", RI);
881              if (RetTypes.size() > 1) {
882                // We're still returning a struct, so reinsert the value into
883                // our new return value at the new index
884
885                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
886                                                 "newret", RI);
887              } else {
888                // We are now only returning a simple value, so just return the
889                // extracted value.
890                RetVal = EV;
891              }
892            }
893        }
894        // Replace the return instruction with one returning the new return
895        // value (possibly 0 if we became void).
896        ReturnInst::Create(RetVal, RI);
897        BB->getInstList().erase(RI);
898      }
899
900  // Now that the old function is dead, delete it.
901  F->eraseFromParent();
902
903  return true;
904}
905
906bool DAE::runOnModule(Module &M) {
907  bool Changed = false;
908
909  // First pass: Do a simple check to see if any functions can have their "..."
910  // removed.  We can do this if they never call va_start.  This loop cannot be
911  // fused with the next loop, because deleting a function invalidates
912  // information computed while surveying other functions.
913  DOUT << "DAE - Deleting dead varargs\n";
914  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
915    Function &F = *I++;
916    if (F.getFunctionType()->isVarArg())
917      Changed |= DeleteDeadVarargs(F);
918  }
919
920  // Second phase:loop through the module, determining which arguments are live.
921  // We assume all arguments are dead unless proven otherwise (allowing us to
922  // determine that dead arguments passed into recursive functions are dead).
923  //
924  DOUT << "DAE - Determining liveness\n";
925  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
926    SurveyFunction(*I);
927
928  // Now, remove all dead arguments and return values from each function in
929  // turn
930  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
931    // Increment now, because the function will probably get removed (ie
932    // replaced by a new one).
933    Function *F = I++;
934    Changed |= RemoveDeadStuffFromFunction(F);
935  }
936  return Changed;
937}
938