XCoreISelLowering.cpp revision 309124
11556Srgrimes//===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
21556Srgrimes//
31556Srgrimes//                     The LLVM Compiler Infrastructure
41556Srgrimes//
51556Srgrimes// This file is distributed under the University of Illinois Open Source
61556Srgrimes// License. See LICENSE.TXT for details.
71556Srgrimes//
81556Srgrimes//===----------------------------------------------------------------------===//
91556Srgrimes//
101556Srgrimes// This file implements the XCoreTargetLowering class.
111556Srgrimes//
121556Srgrimes//===----------------------------------------------------------------------===//
131556Srgrimes
141556Srgrimes#include "XCoreISelLowering.h"
151556Srgrimes#include "XCore.h"
161556Srgrimes#include "XCoreMachineFunctionInfo.h"
171556Srgrimes#include "XCoreSubtarget.h"
181556Srgrimes#include "XCoreTargetMachine.h"
191556Srgrimes#include "XCoreTargetObjectFile.h"
201556Srgrimes#include "llvm/CodeGen/CallingConvLower.h"
211556Srgrimes#include "llvm/CodeGen/MachineFrameInfo.h"
221556Srgrimes#include "llvm/CodeGen/MachineFunction.h"
231556Srgrimes#include "llvm/CodeGen/MachineInstrBuilder.h"
241556Srgrimes#include "llvm/CodeGen/MachineJumpTableInfo.h"
251556Srgrimes#include "llvm/CodeGen/MachineRegisterInfo.h"
261556Srgrimes#include "llvm/CodeGen/SelectionDAGISel.h"
271556Srgrimes#include "llvm/CodeGen/ValueTypes.h"
281556Srgrimes#include "llvm/IR/CallingConv.h"
291556Srgrimes#include "llvm/IR/Constants.h"
301556Srgrimes#include "llvm/IR/DerivedTypes.h"
311556Srgrimes#include "llvm/IR/Function.h"
321556Srgrimes#include "llvm/IR/GlobalAlias.h"
331556Srgrimes#include "llvm/IR/GlobalVariable.h"
341556Srgrimes#include "llvm/IR/Intrinsics.h"
351556Srgrimes#include "llvm/Support/Debug.h"
361556Srgrimes#include "llvm/Support/ErrorHandling.h"
371556Srgrimes#include "llvm/Support/raw_ostream.h"
381556Srgrimes#include <algorithm>
3935773Scharnier
4036007Scharnierusing namespace llvm;
4135773Scharnier
4235773Scharnier#define DEBUG_TYPE "xcore-lower"
4350471Speter
441556Srgrimesconst char *XCoreTargetLowering::
451556SrgrimesgetTargetNodeName(unsigned Opcode) const
4636007Scharnier{
471556Srgrimes  switch ((XCoreISD::NodeType)Opcode)
481556Srgrimes  {
491556Srgrimes    case XCoreISD::FIRST_NUMBER      : break;
5051137Sgreen    case XCoreISD::BL                : return "XCoreISD::BL";
511556Srgrimes    case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
521556Srgrimes    case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
531556Srgrimes    case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
541556Srgrimes    case XCoreISD::LDWSP             : return "XCoreISD::LDWSP";
551556Srgrimes    case XCoreISD::STWSP             : return "XCoreISD::STWSP";
561556Srgrimes    case XCoreISD::RETSP             : return "XCoreISD::RETSP";
571556Srgrimes    case XCoreISD::LADD              : return "XCoreISD::LADD";
581556Srgrimes    case XCoreISD::LSUB              : return "XCoreISD::LSUB";
591556Srgrimes    case XCoreISD::LMUL              : return "XCoreISD::LMUL";
601556Srgrimes    case XCoreISD::MACCU             : return "XCoreISD::MACCU";
611556Srgrimes    case XCoreISD::MACCS             : return "XCoreISD::MACCS";
621556Srgrimes    case XCoreISD::CRC8              : return "XCoreISD::CRC8";
6390108Simp    case XCoreISD::BR_JT             : return "XCoreISD::BR_JT";
641556Srgrimes    case XCoreISD::BR_JT32           : return "XCoreISD::BR_JT32";
6551208Sgreen    case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
6651208Sgreen    case XCoreISD::EH_RETURN         : return "XCoreISD::EH_RETURN";
6748026Sgreen    case XCoreISD::MEMBARRIER        : return "XCoreISD::MEMBARRIER";
6851208Sgreen  }
691556Srgrimes  return nullptr;
7051249Sgreen}
7151249Sgreen
7251137SgreenXCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM,
7351208Sgreen                                         const XCoreSubtarget &Subtarget)
7451208Sgreen    : TargetLowering(TM), TM(TM), Subtarget(Subtarget) {
751556Srgrimes
761556Srgrimes  // Set up the register classes.
771556Srgrimes  addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
781556Srgrimes
7967451Sgreen  // Compute derived properties from the register classes
8067451Sgreen  computeRegisterProperties(Subtarget.getRegisterInfo());
8167451Sgreen
8267451Sgreen  setStackPointerRegisterToSaveRestore(XCore::SP);
831556Srgrimes
841556Srgrimes  setSchedulingPreference(Sched::Source);
851556Srgrimes
861556Srgrimes  // Use i32 for setcc operations results (slt, sgt, ...).
871556Srgrimes  setBooleanContents(ZeroOrOneBooleanContent);
881556Srgrimes  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
891556Srgrimes
901556Srgrimes  // XCore does not have the NodeTypes below.
911556Srgrimes  setOperationAction(ISD::BR_CC,     MVT::i32,   Expand);
921556Srgrimes  setOperationAction(ISD::SELECT_CC, MVT::i32,   Expand);
931556Srgrimes  setOperationAction(ISD::ADDC, MVT::i32, Expand);
941556Srgrimes  setOperationAction(ISD::ADDE, MVT::i32, Expand);
951556Srgrimes  setOperationAction(ISD::SUBC, MVT::i32, Expand);
961556Srgrimes  setOperationAction(ISD::SUBE, MVT::i32, Expand);
971556Srgrimes
981556Srgrimes  // 64bit
991556Srgrimes  setOperationAction(ISD::ADD, MVT::i64, Custom);
1001556Srgrimes  setOperationAction(ISD::SUB, MVT::i64, Custom);
1011556Srgrimes  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
1021556Srgrimes  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
1031556Srgrimes  setOperationAction(ISD::MULHS, MVT::i32, Expand);
1041556Srgrimes  setOperationAction(ISD::MULHU, MVT::i32, Expand);
1051556Srgrimes  setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
1061556Srgrimes  setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
1071556Srgrimes  setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
1081556Srgrimes
1091556Srgrimes  // Bit Manipulation
1101556Srgrimes  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1111556Srgrimes  setOperationAction(ISD::ROTL , MVT::i32, Expand);
1121556Srgrimes  setOperationAction(ISD::ROTR , MVT::i32, Expand);
1131556Srgrimes
1141556Srgrimes  setOperationAction(ISD::TRAP, MVT::Other, Legal);
1151556Srgrimes
1161556Srgrimes  // Jump tables.
1171556Srgrimes  setOperationAction(ISD::BR_JT, MVT::Other, Custom);
1181556Srgrimes
1191556Srgrimes  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
1201556Srgrimes  setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
1211556Srgrimes
1221556Srgrimes  // Conversion of i64 -> double produces constantpool nodes
1231556Srgrimes  setOperationAction(ISD::ConstantPool, MVT::i32,   Custom);
1241556Srgrimes
1251556Srgrimes  // Loads
12690108Simp  for (MVT VT : MVT::integer_valuetypes()) {
1271556Srgrimes    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
1281556Srgrimes    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
12948026Sgreen    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
13048026Sgreen
1311556Srgrimes    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
13251249Sgreen    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand);
13351249Sgreen  }
13451249Sgreen
13551249Sgreen  // Custom expand misaligned loads / stores.
13651249Sgreen  setOperationAction(ISD::LOAD, MVT::i32, Custom);
13762311Sgreen  setOperationAction(ISD::STORE, MVT::i32, Custom);
13851137Sgreen
13951335Sgreen  // Varargs
14051208Sgreen  setOperationAction(ISD::VAEND, MVT::Other, Expand);
1411556Srgrimes  setOperationAction(ISD::VACOPY, MVT::Other, Expand);
1421556Srgrimes  setOperationAction(ISD::VAARG, MVT::Other, Custom);
1431556Srgrimes  setOperationAction(ISD::VASTART, MVT::Other, Custom);
1441556Srgrimes
14567451Sgreen  // Dynamic stack
14667451Sgreen  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
14767451Sgreen  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
14867451Sgreen  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
1491556Srgrimes
1501556Srgrimes  // Exception handling
1511556Srgrimes  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
1521556Srgrimes  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
1531556Srgrimes
15448026Sgreen  // Atomic operations
1551556Srgrimes  // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
1561556Srgrimes  // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
1571556Srgrimes  setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
1581556Srgrimes  setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1591556Srgrimes  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1601556Srgrimes
1611556Srgrimes  // TRAMPOLINE is custom lowered.
1621556Srgrimes  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
1631556Srgrimes  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
16448026Sgreen
1651556Srgrimes  // We want to custom lower some of our intrinsics.
1661556Srgrimes  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1671556Srgrimes
1681556Srgrimes  MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
1691556Srgrimes  MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
1701556Srgrimes    = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
1711556Srgrimes
1721556Srgrimes  // We have target-specific dag combine patterns for the following nodes:
1731556Srgrimes  setTargetDAGCombine(ISD::STORE);
1741556Srgrimes  setTargetDAGCombine(ISD::ADD);
1751556Srgrimes  setTargetDAGCombine(ISD::INTRINSIC_VOID);
1761556Srgrimes  setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
17762311Sgreen
17862311Sgreen  setMinFunctionAlignment(1);
17962311Sgreen  setPrefFunctionAlignment(2);
1801556Srgrimes}
18162311Sgreen
18262311Sgreenbool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
18362311Sgreen  if (Val.getOpcode() != ISD::LOAD)
1841556Srgrimes    return false;
1851556Srgrimes
1861556Srgrimes  EVT VT1 = Val.getValueType();
187  if (!VT1.isSimple() || !VT1.isInteger() ||
188      !VT2.isSimple() || !VT2.isInteger())
189    return false;
190
191  switch (VT1.getSimpleVT().SimpleTy) {
192  default: break;
193  case MVT::i8:
194    return true;
195  }
196
197  return false;
198}
199
200SDValue XCoreTargetLowering::
201LowerOperation(SDValue Op, SelectionDAG &DAG) const {
202  switch (Op.getOpcode())
203  {
204  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
205  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
206  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
207  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
208  case ISD::BR_JT:              return LowerBR_JT(Op, DAG);
209  case ISD::LOAD:               return LowerLOAD(Op, DAG);
210  case ISD::STORE:              return LowerSTORE(Op, DAG);
211  case ISD::VAARG:              return LowerVAARG(Op, DAG);
212  case ISD::VASTART:            return LowerVASTART(Op, DAG);
213  case ISD::SMUL_LOHI:          return LowerSMUL_LOHI(Op, DAG);
214  case ISD::UMUL_LOHI:          return LowerUMUL_LOHI(Op, DAG);
215  // FIXME: Remove these when LegalizeDAGTypes lands.
216  case ISD::ADD:
217  case ISD::SUB:                return ExpandADDSUB(Op.getNode(), DAG);
218  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
219  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
220  case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
221  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
222  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
223  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
224  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
225  case ISD::ATOMIC_LOAD:        return LowerATOMIC_LOAD(Op, DAG);
226  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op, DAG);
227  default:
228    llvm_unreachable("unimplemented operand");
229  }
230}
231
232/// ReplaceNodeResults - Replace the results of node with an illegal result
233/// type with new values built out of custom code.
234void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
235                                             SmallVectorImpl<SDValue>&Results,
236                                             SelectionDAG &DAG) const {
237  switch (N->getOpcode()) {
238  default:
239    llvm_unreachable("Don't know how to custom expand this!");
240  case ISD::ADD:
241  case ISD::SUB:
242    Results.push_back(ExpandADDSUB(N, DAG));
243    return;
244  }
245}
246
247//===----------------------------------------------------------------------===//
248//  Misc Lower Operation implementation
249//===----------------------------------------------------------------------===//
250
251SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
252                                                     const GlobalValue *GV,
253                                                     SelectionDAG &DAG) const {
254  // FIXME there is no actual debug info here
255  SDLoc dl(GA);
256
257  if (GV->getValueType()->isFunctionTy())
258    return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
259
260  const auto *GVar = dyn_cast<GlobalVariable>(GV);
261  if ((GV->hasSection() && GV->getSection().startswith(".cp.")) ||
262      (GVar && GVar->isConstant() && GV->hasLocalLinkage()))
263    return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
264
265  return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
266}
267
268static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
269  if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
270    return true;
271
272  Type *ObjType = GV->getValueType();
273  if (!ObjType->isSized())
274    return false;
275
276  auto &DL = GV->getParent()->getDataLayout();
277  unsigned ObjSize = DL.getTypeAllocSize(ObjType);
278  return ObjSize < CodeModelLargeSize && ObjSize != 0;
279}
280
281SDValue XCoreTargetLowering::
282LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
283{
284  const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
285  const GlobalValue *GV = GN->getGlobal();
286  SDLoc DL(GN);
287  int64_t Offset = GN->getOffset();
288  if (IsSmallObject(GV, *this)) {
289    // We can only fold positive offsets that are a multiple of the word size.
290    int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
291    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
292    GA = getGlobalAddressWrapper(GA, GV, DAG);
293    // Handle the rest of the offset.
294    if (Offset != FoldedOffset) {
295      SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, DL, MVT::i32);
296      GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
297    }
298    return GA;
299  } else {
300    // Ideally we would not fold in offset with an index <= 11.
301    Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
302    Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
303    Ty = Type::getInt32Ty(*DAG.getContext());
304    Constant *Idx = ConstantInt::get(Ty, Offset);
305    Constant *GAI = ConstantExpr::getGetElementPtr(
306        Type::getInt8Ty(*DAG.getContext()), GA, Idx);
307    SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
308    return DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL,
309                       DAG.getEntryNode(), CP, MachinePointerInfo());
310  }
311}
312
313SDValue XCoreTargetLowering::
314LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
315{
316  SDLoc DL(Op);
317  auto PtrVT = getPointerTy(DAG.getDataLayout());
318  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
319  SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
320
321  return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, PtrVT, Result);
322}
323
324SDValue XCoreTargetLowering::
325LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
326{
327  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
328  // FIXME there isn't really debug info here
329  SDLoc dl(CP);
330  EVT PtrVT = Op.getValueType();
331  SDValue Res;
332  if (CP->isMachineConstantPoolEntry()) {
333    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
334                                    CP->getAlignment(), CP->getOffset());
335  } else {
336    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
337                                    CP->getAlignment(), CP->getOffset());
338  }
339  return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
340}
341
342unsigned XCoreTargetLowering::getJumpTableEncoding() const {
343  return MachineJumpTableInfo::EK_Inline;
344}
345
346SDValue XCoreTargetLowering::
347LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
348{
349  SDValue Chain = Op.getOperand(0);
350  SDValue Table = Op.getOperand(1);
351  SDValue Index = Op.getOperand(2);
352  SDLoc dl(Op);
353  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
354  unsigned JTI = JT->getIndex();
355  MachineFunction &MF = DAG.getMachineFunction();
356  const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
357  SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
358
359  unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
360  if (NumEntries <= 32) {
361    return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
362  }
363  assert((NumEntries >> 31) == 0);
364  SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
365                                    DAG.getConstant(1, dl, MVT::i32));
366  return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
367                     ScaledIndex);
368}
369
370SDValue XCoreTargetLowering::lowerLoadWordFromAlignedBasePlusOffset(
371    const SDLoc &DL, SDValue Chain, SDValue Base, int64_t Offset,
372    SelectionDAG &DAG) const {
373  auto PtrVT = getPointerTy(DAG.getDataLayout());
374  if ((Offset & 0x3) == 0) {
375    return DAG.getLoad(PtrVT, DL, Chain, Base, MachinePointerInfo());
376  }
377  // Lower to pair of consecutive word aligned loads plus some bit shifting.
378  int32_t HighOffset = alignTo(Offset, 4);
379  int32_t LowOffset = HighOffset - 4;
380  SDValue LowAddr, HighAddr;
381  if (GlobalAddressSDNode *GASD =
382        dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
383    LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
384                                   LowOffset);
385    HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
386                                    HighOffset);
387  } else {
388    LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
389                          DAG.getConstant(LowOffset, DL, MVT::i32));
390    HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
391                           DAG.getConstant(HighOffset, DL, MVT::i32));
392  }
393  SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, DL, MVT::i32);
394  SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, DL, MVT::i32);
395
396  SDValue Low = DAG.getLoad(PtrVT, DL, Chain, LowAddr, MachinePointerInfo());
397  SDValue High = DAG.getLoad(PtrVT, DL, Chain, HighAddr, MachinePointerInfo());
398  SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
399  SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
400  SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
401  Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
402                      High.getValue(1));
403  SDValue Ops[] = { Result, Chain };
404  return DAG.getMergeValues(Ops, DL);
405}
406
407static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
408{
409  APInt KnownZero, KnownOne;
410  DAG.computeKnownBits(Value, KnownZero, KnownOne);
411  return KnownZero.countTrailingOnes() >= 2;
412}
413
414SDValue XCoreTargetLowering::
415LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
416  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
417  LoadSDNode *LD = cast<LoadSDNode>(Op);
418  assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
419         "Unexpected extension type");
420  assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
421  if (allowsMisalignedMemoryAccesses(LD->getMemoryVT(),
422                                     LD->getAddressSpace(),
423                                     LD->getAlignment()))
424    return SDValue();
425
426  auto &TD = DAG.getDataLayout();
427  unsigned ABIAlignment = TD.getABITypeAlignment(
428      LD->getMemoryVT().getTypeForEVT(*DAG.getContext()));
429  // Leave aligned load alone.
430  if (LD->getAlignment() >= ABIAlignment)
431    return SDValue();
432
433  SDValue Chain = LD->getChain();
434  SDValue BasePtr = LD->getBasePtr();
435  SDLoc DL(Op);
436
437  if (!LD->isVolatile()) {
438    const GlobalValue *GV;
439    int64_t Offset = 0;
440    if (DAG.isBaseWithConstantOffset(BasePtr) &&
441        isWordAligned(BasePtr->getOperand(0), DAG)) {
442      SDValue NewBasePtr = BasePtr->getOperand(0);
443      Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
444      return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
445                                                    Offset, DAG);
446    }
447    if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
448        MinAlign(GV->getAlignment(), 4) == 4) {
449      SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
450                                                BasePtr->getValueType(0));
451      return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
452                                                    Offset, DAG);
453    }
454  }
455
456  if (LD->getAlignment() == 2) {
457    SDValue Low =
458        DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain, BasePtr,
459                       LD->getPointerInfo(), MVT::i16,
460                       /* Alignment = */ 2, LD->getMemOperand()->getFlags());
461    SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
462                                   DAG.getConstant(2, DL, MVT::i32));
463    SDValue High =
464        DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, HighAddr,
465                       LD->getPointerInfo().getWithOffset(2), MVT::i16,
466                       /* Alignment = */ 2, LD->getMemOperand()->getFlags());
467    SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
468                                      DAG.getConstant(16, DL, MVT::i32));
469    SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
470    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
471                             High.getValue(1));
472    SDValue Ops[] = { Result, Chain };
473    return DAG.getMergeValues(Ops, DL);
474  }
475
476  // Lower to a call to __misaligned_load(BasePtr).
477  Type *IntPtrTy = TD.getIntPtrType(*DAG.getContext());
478  TargetLowering::ArgListTy Args;
479  TargetLowering::ArgListEntry Entry;
480
481  Entry.Ty = IntPtrTy;
482  Entry.Node = BasePtr;
483  Args.push_back(Entry);
484
485  TargetLowering::CallLoweringInfo CLI(DAG);
486  CLI.setDebugLoc(DL).setChain(Chain).setCallee(
487      CallingConv::C, IntPtrTy,
488      DAG.getExternalSymbol("__misaligned_load",
489                            getPointerTy(DAG.getDataLayout())),
490      std::move(Args));
491
492  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
493  SDValue Ops[] = { CallResult.first, CallResult.second };
494  return DAG.getMergeValues(Ops, DL);
495}
496
497SDValue XCoreTargetLowering::
498LowerSTORE(SDValue Op, SelectionDAG &DAG) const
499{
500  StoreSDNode *ST = cast<StoreSDNode>(Op);
501  assert(!ST->isTruncatingStore() && "Unexpected store type");
502  assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
503  if (allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
504                                     ST->getAddressSpace(),
505                                     ST->getAlignment())) {
506    return SDValue();
507  }
508  unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(
509      ST->getMemoryVT().getTypeForEVT(*DAG.getContext()));
510  // Leave aligned store alone.
511  if (ST->getAlignment() >= ABIAlignment) {
512    return SDValue();
513  }
514  SDValue Chain = ST->getChain();
515  SDValue BasePtr = ST->getBasePtr();
516  SDValue Value = ST->getValue();
517  SDLoc dl(Op);
518
519  if (ST->getAlignment() == 2) {
520    SDValue Low = Value;
521    SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
522                                      DAG.getConstant(16, dl, MVT::i32));
523    SDValue StoreLow = DAG.getTruncStore(
524        Chain, dl, Low, BasePtr, ST->getPointerInfo(), MVT::i16,
525        /* Alignment = */ 2, ST->getMemOperand()->getFlags());
526    SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
527                                   DAG.getConstant(2, dl, MVT::i32));
528    SDValue StoreHigh = DAG.getTruncStore(
529        Chain, dl, High, HighAddr, ST->getPointerInfo().getWithOffset(2),
530        MVT::i16, /* Alignment = */ 2, ST->getMemOperand()->getFlags());
531    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
532  }
533
534  // Lower to a call to __misaligned_store(BasePtr, Value).
535  Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
536  TargetLowering::ArgListTy Args;
537  TargetLowering::ArgListEntry Entry;
538
539  Entry.Ty = IntPtrTy;
540  Entry.Node = BasePtr;
541  Args.push_back(Entry);
542
543  Entry.Node = Value;
544  Args.push_back(Entry);
545
546  TargetLowering::CallLoweringInfo CLI(DAG);
547  CLI.setDebugLoc(dl).setChain(Chain).setCallee(
548      CallingConv::C, Type::getVoidTy(*DAG.getContext()),
549      DAG.getExternalSymbol("__misaligned_store",
550                            getPointerTy(DAG.getDataLayout())),
551      std::move(Args));
552
553  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
554  return CallResult.second;
555}
556
557SDValue XCoreTargetLowering::
558LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
559{
560  assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
561         "Unexpected operand to lower!");
562  SDLoc dl(Op);
563  SDValue LHS = Op.getOperand(0);
564  SDValue RHS = Op.getOperand(1);
565  SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
566  SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
567                           DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
568                           LHS, RHS);
569  SDValue Lo(Hi.getNode(), 1);
570  SDValue Ops[] = { Lo, Hi };
571  return DAG.getMergeValues(Ops, dl);
572}
573
574SDValue XCoreTargetLowering::
575LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
576{
577  assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
578         "Unexpected operand to lower!");
579  SDLoc dl(Op);
580  SDValue LHS = Op.getOperand(0);
581  SDValue RHS = Op.getOperand(1);
582  SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
583  SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
584                           DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
585                           Zero, Zero);
586  SDValue Lo(Hi.getNode(), 1);
587  SDValue Ops[] = { Lo, Hi };
588  return DAG.getMergeValues(Ops, dl);
589}
590
591/// isADDADDMUL - Return whether Op is in a form that is equivalent to
592/// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
593/// each intermediate result in the calculation must also have a single use.
594/// If the Op is in the correct form the constituent parts are written to Mul0,
595/// Mul1, Addend0 and Addend1.
596static bool
597isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
598            SDValue &Addend1, bool requireIntermediatesHaveOneUse)
599{
600  if (Op.getOpcode() != ISD::ADD)
601    return false;
602  SDValue N0 = Op.getOperand(0);
603  SDValue N1 = Op.getOperand(1);
604  SDValue AddOp;
605  SDValue OtherOp;
606  if (N0.getOpcode() == ISD::ADD) {
607    AddOp = N0;
608    OtherOp = N1;
609  } else if (N1.getOpcode() == ISD::ADD) {
610    AddOp = N1;
611    OtherOp = N0;
612  } else {
613    return false;
614  }
615  if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
616    return false;
617  if (OtherOp.getOpcode() == ISD::MUL) {
618    // add(add(a,b),mul(x,y))
619    if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
620      return false;
621    Mul0 = OtherOp.getOperand(0);
622    Mul1 = OtherOp.getOperand(1);
623    Addend0 = AddOp.getOperand(0);
624    Addend1 = AddOp.getOperand(1);
625    return true;
626  }
627  if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
628    // add(add(mul(x,y),a),b)
629    if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
630      return false;
631    Mul0 = AddOp.getOperand(0).getOperand(0);
632    Mul1 = AddOp.getOperand(0).getOperand(1);
633    Addend0 = AddOp.getOperand(1);
634    Addend1 = OtherOp;
635    return true;
636  }
637  if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
638    // add(add(a,mul(x,y)),b)
639    if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
640      return false;
641    Mul0 = AddOp.getOperand(1).getOperand(0);
642    Mul1 = AddOp.getOperand(1).getOperand(1);
643    Addend0 = AddOp.getOperand(0);
644    Addend1 = OtherOp;
645    return true;
646  }
647  return false;
648}
649
650SDValue XCoreTargetLowering::
651TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
652{
653  SDValue Mul;
654  SDValue Other;
655  if (N->getOperand(0).getOpcode() == ISD::MUL) {
656    Mul = N->getOperand(0);
657    Other = N->getOperand(1);
658  } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
659    Mul = N->getOperand(1);
660    Other = N->getOperand(0);
661  } else {
662    return SDValue();
663  }
664  SDLoc dl(N);
665  SDValue LL, RL, AddendL, AddendH;
666  LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
667                   Mul.getOperand(0), DAG.getConstant(0, dl, MVT::i32));
668  RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
669                   Mul.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
670  AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
671                        Other, DAG.getConstant(0, dl, MVT::i32));
672  AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
673                        Other, DAG.getConstant(1, dl, MVT::i32));
674  APInt HighMask = APInt::getHighBitsSet(64, 32);
675  unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
676  unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
677  if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
678      DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
679    // The inputs are both zero-extended.
680    SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
681                             DAG.getVTList(MVT::i32, MVT::i32), AddendH,
682                             AddendL, LL, RL);
683    SDValue Lo(Hi.getNode(), 1);
684    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
685  }
686  if (LHSSB > 32 && RHSSB > 32) {
687    // The inputs are both sign-extended.
688    SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
689                             DAG.getVTList(MVT::i32, MVT::i32), AddendH,
690                             AddendL, LL, RL);
691    SDValue Lo(Hi.getNode(), 1);
692    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
693  }
694  SDValue LH, RH;
695  LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
696                   Mul.getOperand(0), DAG.getConstant(1, dl, MVT::i32));
697  RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
698                   Mul.getOperand(1), DAG.getConstant(1, dl, MVT::i32));
699  SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
700                           DAG.getVTList(MVT::i32, MVT::i32), AddendH,
701                           AddendL, LL, RL);
702  SDValue Lo(Hi.getNode(), 1);
703  RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
704  LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
705  Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
706  Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
707  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
708}
709
710SDValue XCoreTargetLowering::
711ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
712{
713  assert(N->getValueType(0) == MVT::i64 &&
714         (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
715        "Unknown operand to lower!");
716
717  if (N->getOpcode() == ISD::ADD)
718    if (SDValue Result = TryExpandADDWithMul(N, DAG))
719      return Result;
720
721  SDLoc dl(N);
722
723  // Extract components
724  SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
725                             N->getOperand(0),
726                             DAG.getConstant(0, dl, MVT::i32));
727  SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
728                             N->getOperand(0),
729                             DAG.getConstant(1, dl, MVT::i32));
730  SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
731                             N->getOperand(1),
732                             DAG.getConstant(0, dl, MVT::i32));
733  SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
734                             N->getOperand(1),
735                             DAG.getConstant(1, dl, MVT::i32));
736
737  // Expand
738  unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
739                                                   XCoreISD::LSUB;
740  SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
741  SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
742                           LHSL, RHSL, Zero);
743  SDValue Carry(Lo.getNode(), 1);
744
745  SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
746                           LHSH, RHSH, Carry);
747  SDValue Ignored(Hi.getNode(), 1);
748  // Merge the pieces
749  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
750}
751
752SDValue XCoreTargetLowering::
753LowerVAARG(SDValue Op, SelectionDAG &DAG) const
754{
755  // Whist llvm does not support aggregate varargs we can ignore
756  // the possibility of the ValueType being an implicit byVal vararg.
757  SDNode *Node = Op.getNode();
758  EVT VT = Node->getValueType(0); // not an aggregate
759  SDValue InChain = Node->getOperand(0);
760  SDValue VAListPtr = Node->getOperand(1);
761  EVT PtrVT = VAListPtr.getValueType();
762  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
763  SDLoc dl(Node);
764  SDValue VAList =
765      DAG.getLoad(PtrVT, dl, InChain, VAListPtr, MachinePointerInfo(SV));
766  // Increment the pointer, VAList, to the next vararg
767  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
768                                DAG.getIntPtrConstant(VT.getSizeInBits() / 8,
769                                                      dl));
770  // Store the incremented VAList to the legalized pointer
771  InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
772                         MachinePointerInfo(SV));
773  // Load the actual argument out of the pointer VAList
774  return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo());
775}
776
777SDValue XCoreTargetLowering::
778LowerVASTART(SDValue Op, SelectionDAG &DAG) const
779{
780  SDLoc dl(Op);
781  // vastart stores the address of the VarArgsFrameIndex slot into the
782  // memory location argument
783  MachineFunction &MF = DAG.getMachineFunction();
784  XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
785  SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
786  return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
787                      MachinePointerInfo());
788}
789
790SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
791                                            SelectionDAG &DAG) const {
792  // This nodes represent llvm.frameaddress on the DAG.
793  // It takes one operand, the index of the frame address to return.
794  // An index of zero corresponds to the current function's frame address.
795  // An index of one to the parent's frame address, and so on.
796  // Depths > 0 not supported yet!
797  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
798    return SDValue();
799
800  MachineFunction &MF = DAG.getMachineFunction();
801  const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
802  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
803                            RegInfo->getFrameRegister(MF), MVT::i32);
804}
805
806SDValue XCoreTargetLowering::
807LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
808  // This nodes represent llvm.returnaddress on the DAG.
809  // It takes one operand, the index of the return address to return.
810  // An index of zero corresponds to the current function's return address.
811  // An index of one to the parent's return address, and so on.
812  // Depths > 0 not supported yet!
813  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
814    return SDValue();
815
816  MachineFunction &MF = DAG.getMachineFunction();
817  XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
818  int FI = XFI->createLRSpillSlot(MF);
819  SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
820  return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
821                     DAG.getEntryNode(), FIN,
822                     MachinePointerInfo::getFixedStack(MF, FI));
823}
824
825SDValue XCoreTargetLowering::
826LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
827  // This node represents offset from frame pointer to first on-stack argument.
828  // This is needed for correct stack adjustment during unwind.
829  // However, we don't know the offset until after the frame has be finalised.
830  // This is done during the XCoreFTAOElim pass.
831  return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
832}
833
834SDValue XCoreTargetLowering::
835LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
836  // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
837  // This node represents 'eh_return' gcc dwarf builtin, which is used to
838  // return from exception. The general meaning is: adjust stack by OFFSET and
839  // pass execution to HANDLER.
840  MachineFunction &MF = DAG.getMachineFunction();
841  SDValue Chain     = Op.getOperand(0);
842  SDValue Offset    = Op.getOperand(1);
843  SDValue Handler   = Op.getOperand(2);
844  SDLoc dl(Op);
845
846  // Absolute SP = (FP + FrameToArgs) + Offset
847  const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
848  SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
849                            RegInfo->getFrameRegister(MF), MVT::i32);
850  SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
851                                    MVT::i32);
852  Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
853  Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
854
855  // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
856  // which leaves 2 caller saved registers, R2 & R3 for us to use.
857  unsigned StackReg = XCore::R2;
858  unsigned HandlerReg = XCore::R3;
859
860  SDValue OutChains[] = {
861    DAG.getCopyToReg(Chain, dl, StackReg, Stack),
862    DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
863  };
864
865  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
866
867  return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
868                     DAG.getRegister(StackReg, MVT::i32),
869                     DAG.getRegister(HandlerReg, MVT::i32));
870
871}
872
873SDValue XCoreTargetLowering::
874LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
875  return Op.getOperand(0);
876}
877
878SDValue XCoreTargetLowering::
879LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
880  SDValue Chain = Op.getOperand(0);
881  SDValue Trmp = Op.getOperand(1); // trampoline
882  SDValue FPtr = Op.getOperand(2); // nested function
883  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
884
885  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
886
887  // .align 4
888  // LDAPF_u10 r11, nest
889  // LDW_2rus r11, r11[0]
890  // STWSP_ru6 r11, sp[0]
891  // LDAPF_u10 r11, fptr
892  // LDW_2rus r11, r11[0]
893  // BAU_1r r11
894  // nest:
895  // .word nest
896  // fptr:
897  // .word fptr
898  SDValue OutChains[5];
899
900  SDValue Addr = Trmp;
901
902  SDLoc dl(Op);
903  OutChains[0] =
904      DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, dl, MVT::i32), Addr,
905                   MachinePointerInfo(TrmpAddr));
906
907  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
908                     DAG.getConstant(4, dl, MVT::i32));
909  OutChains[1] =
910      DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, dl, MVT::i32), Addr,
911                   MachinePointerInfo(TrmpAddr, 4));
912
913  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
914                     DAG.getConstant(8, dl, MVT::i32));
915  OutChains[2] =
916      DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, dl, MVT::i32), Addr,
917                   MachinePointerInfo(TrmpAddr, 8));
918
919  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
920                     DAG.getConstant(12, dl, MVT::i32));
921  OutChains[3] =
922      DAG.getStore(Chain, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 12));
923
924  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
925                     DAG.getConstant(16, dl, MVT::i32));
926  OutChains[4] =
927      DAG.getStore(Chain, dl, FPtr, Addr, MachinePointerInfo(TrmpAddr, 16));
928
929  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
930}
931
932SDValue XCoreTargetLowering::
933LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
934  SDLoc DL(Op);
935  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
936  switch (IntNo) {
937    case Intrinsic::xcore_crc8:
938      EVT VT = Op.getValueType();
939      SDValue Data =
940        DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
941                    Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
942      SDValue Crc(Data.getNode(), 1);
943      SDValue Results[] = { Crc, Data };
944      return DAG.getMergeValues(Results, DL);
945  }
946  return SDValue();
947}
948
949SDValue XCoreTargetLowering::
950LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
951  SDLoc DL(Op);
952  return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
953}
954
955SDValue XCoreTargetLowering::
956LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
957  AtomicSDNode *N = cast<AtomicSDNode>(Op);
958  assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
959  assert((N->getOrdering() == AtomicOrdering::Unordered ||
960          N->getOrdering() == AtomicOrdering::Monotonic) &&
961         "setInsertFencesForAtomic(true) expects unordered / monotonic");
962  if (N->getMemoryVT() == MVT::i32) {
963    if (N->getAlignment() < 4)
964      report_fatal_error("atomic load must be aligned");
965    return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
966                       N->getChain(), N->getBasePtr(), N->getPointerInfo(),
967                       N->getAlignment(), N->getMemOperand()->getFlags(),
968                       N->getAAInfo(), N->getRanges());
969  }
970  if (N->getMemoryVT() == MVT::i16) {
971    if (N->getAlignment() < 2)
972      report_fatal_error("atomic load must be aligned");
973    return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
974                          N->getBasePtr(), N->getPointerInfo(), MVT::i16,
975                          N->getAlignment(), N->getMemOperand()->getFlags(),
976                          N->getAAInfo());
977  }
978  if (N->getMemoryVT() == MVT::i8)
979    return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
980                          N->getBasePtr(), N->getPointerInfo(), MVT::i8,
981                          N->getAlignment(), N->getMemOperand()->getFlags(),
982                          N->getAAInfo());
983  return SDValue();
984}
985
986SDValue XCoreTargetLowering::
987LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
988  AtomicSDNode *N = cast<AtomicSDNode>(Op);
989  assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
990  assert((N->getOrdering() == AtomicOrdering::Unordered ||
991          N->getOrdering() == AtomicOrdering::Monotonic) &&
992         "setInsertFencesForAtomic(true) expects unordered / monotonic");
993  if (N->getMemoryVT() == MVT::i32) {
994    if (N->getAlignment() < 4)
995      report_fatal_error("atomic store must be aligned");
996    return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(), N->getBasePtr(),
997                        N->getPointerInfo(), N->getAlignment(),
998                        N->getMemOperand()->getFlags(), N->getAAInfo());
999  }
1000  if (N->getMemoryVT() == MVT::i16) {
1001    if (N->getAlignment() < 2)
1002      report_fatal_error("atomic store must be aligned");
1003    return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
1004                             N->getBasePtr(), N->getPointerInfo(), MVT::i16,
1005                             N->getAlignment(), N->getMemOperand()->getFlags(),
1006                             N->getAAInfo());
1007  }
1008  if (N->getMemoryVT() == MVT::i8)
1009    return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
1010                             N->getBasePtr(), N->getPointerInfo(), MVT::i8,
1011                             N->getAlignment(), N->getMemOperand()->getFlags(),
1012                             N->getAAInfo());
1013  return SDValue();
1014}
1015
1016//===----------------------------------------------------------------------===//
1017//                      Calling Convention Implementation
1018//===----------------------------------------------------------------------===//
1019
1020#include "XCoreGenCallingConv.inc"
1021
1022//===----------------------------------------------------------------------===//
1023//                  Call Calling Convention Implementation
1024//===----------------------------------------------------------------------===//
1025
1026/// XCore call implementation
1027SDValue
1028XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1029                               SmallVectorImpl<SDValue> &InVals) const {
1030  SelectionDAG &DAG                     = CLI.DAG;
1031  SDLoc &dl                             = CLI.DL;
1032  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1033  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1034  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1035  SDValue Chain                         = CLI.Chain;
1036  SDValue Callee                        = CLI.Callee;
1037  bool &isTailCall                      = CLI.IsTailCall;
1038  CallingConv::ID CallConv              = CLI.CallConv;
1039  bool isVarArg                         = CLI.IsVarArg;
1040
1041  // XCore target does not yet support tail call optimization.
1042  isTailCall = false;
1043
1044  // For now, only CallingConv::C implemented
1045  switch (CallConv)
1046  {
1047    default:
1048      llvm_unreachable("Unsupported calling convention");
1049    case CallingConv::Fast:
1050    case CallingConv::C:
1051      return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
1052                            Outs, OutVals, Ins, dl, DAG, InVals);
1053  }
1054}
1055
1056/// LowerCallResult - Lower the result values of a call into the
1057/// appropriate copies out of appropriate physical registers / memory locations.
1058static SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
1059                               const SmallVectorImpl<CCValAssign> &RVLocs,
1060                               const SDLoc &dl, SelectionDAG &DAG,
1061                               SmallVectorImpl<SDValue> &InVals) {
1062  SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
1063  // Copy results out of physical registers.
1064  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1065    const CCValAssign &VA = RVLocs[i];
1066    if (VA.isRegLoc()) {
1067      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
1068                                 InFlag).getValue(1);
1069      InFlag = Chain.getValue(2);
1070      InVals.push_back(Chain.getValue(0));
1071    } else {
1072      assert(VA.isMemLoc());
1073      ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
1074                                             InVals.size()));
1075      // Reserve space for this result.
1076      InVals.push_back(SDValue());
1077    }
1078  }
1079
1080  // Copy results out of memory.
1081  SmallVector<SDValue, 4> MemOpChains;
1082  for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
1083    int offset = ResultMemLocs[i].first;
1084    unsigned index = ResultMemLocs[i].second;
1085    SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
1086    SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, dl, MVT::i32) };
1087    SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
1088    InVals[index] = load;
1089    MemOpChains.push_back(load.getValue(1));
1090  }
1091
1092  // Transform all loads nodes into one single node because
1093  // all load nodes are independent of each other.
1094  if (!MemOpChains.empty())
1095    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1096
1097  return Chain;
1098}
1099
1100/// LowerCCCCallTo - functions arguments are copied from virtual
1101/// regs to (physical regs)/(stack frame), CALLSEQ_START and
1102/// CALLSEQ_END are emitted.
1103/// TODO: isTailCall, sret.
1104SDValue XCoreTargetLowering::LowerCCCCallTo(
1105    SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
1106    bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
1107    const SmallVectorImpl<SDValue> &OutVals,
1108    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1109    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1110
1111  // Analyze operands of the call, assigning locations to each operand.
1112  SmallVector<CCValAssign, 16> ArgLocs;
1113  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1114                 *DAG.getContext());
1115
1116  // The ABI dictates there should be one stack slot available to the callee
1117  // on function entry (for saving lr).
1118  CCInfo.AllocateStack(4, 4);
1119
1120  CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
1121
1122  SmallVector<CCValAssign, 16> RVLocs;
1123  // Analyze return values to determine the number of bytes of stack required.
1124  CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1125                    *DAG.getContext());
1126  RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4);
1127  RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
1128
1129  // Get a count of how many bytes are to be pushed on the stack.
1130  unsigned NumBytes = RetCCInfo.getNextStackOffset();
1131  auto PtrVT = getPointerTy(DAG.getDataLayout());
1132
1133  Chain = DAG.getCALLSEQ_START(Chain,
1134                               DAG.getConstant(NumBytes, dl, PtrVT, true), dl);
1135
1136  SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
1137  SmallVector<SDValue, 12> MemOpChains;
1138
1139  // Walk the register/memloc assignments, inserting copies/loads.
1140  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1141    CCValAssign &VA = ArgLocs[i];
1142    SDValue Arg = OutVals[i];
1143
1144    // Promote the value if needed.
1145    switch (VA.getLocInfo()) {
1146      default: llvm_unreachable("Unknown loc info!");
1147      case CCValAssign::Full: break;
1148      case CCValAssign::SExt:
1149        Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1150        break;
1151      case CCValAssign::ZExt:
1152        Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1153        break;
1154      case CCValAssign::AExt:
1155        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1156        break;
1157    }
1158
1159    // Arguments that can be passed on register must be kept at
1160    // RegsToPass vector
1161    if (VA.isRegLoc()) {
1162      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1163    } else {
1164      assert(VA.isMemLoc());
1165
1166      int Offset = VA.getLocMemOffset();
1167
1168      MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
1169                                        Chain, Arg,
1170                                        DAG.getConstant(Offset/4, dl,
1171                                                        MVT::i32)));
1172    }
1173  }
1174
1175  // Transform all store nodes into one single node because
1176  // all store nodes are independent of each other.
1177  if (!MemOpChains.empty())
1178    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1179
1180  // Build a sequence of copy-to-reg nodes chained together with token
1181  // chain and flag operands which copy the outgoing args into registers.
1182  // The InFlag in necessary since all emitted instructions must be
1183  // stuck together.
1184  SDValue InFlag;
1185  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1186    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1187                             RegsToPass[i].second, InFlag);
1188    InFlag = Chain.getValue(1);
1189  }
1190
1191  // If the callee is a GlobalAddress node (quite common, every direct call is)
1192  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1193  // Likewise ExternalSymbol -> TargetExternalSymbol.
1194  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1195    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
1196  else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1197    Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
1198
1199  // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
1200  //             = Chain, Callee, Reg#1, Reg#2, ...
1201  //
1202  // Returns a chain & a flag for retval copy to use.
1203  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1204  SmallVector<SDValue, 8> Ops;
1205  Ops.push_back(Chain);
1206  Ops.push_back(Callee);
1207
1208  // Add argument registers to the end of the list so that they are
1209  // known live into the call.
1210  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1211    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1212                                  RegsToPass[i].second.getValueType()));
1213
1214  if (InFlag.getNode())
1215    Ops.push_back(InFlag);
1216
1217  Chain  = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
1218  InFlag = Chain.getValue(1);
1219
1220  // Create the CALLSEQ_END node.
1221  Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true),
1222                             DAG.getConstant(0, dl, PtrVT, true), InFlag, dl);
1223  InFlag = Chain.getValue(1);
1224
1225  // Handle result values, copying them out of physregs into vregs that we
1226  // return.
1227  return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
1228}
1229
1230//===----------------------------------------------------------------------===//
1231//             Formal Arguments Calling Convention Implementation
1232//===----------------------------------------------------------------------===//
1233
1234namespace {
1235  struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
1236}
1237
1238/// XCore formal arguments implementation
1239SDValue XCoreTargetLowering::LowerFormalArguments(
1240    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1241    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1242    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1243  switch (CallConv)
1244  {
1245    default:
1246      llvm_unreachable("Unsupported calling convention");
1247    case CallingConv::C:
1248    case CallingConv::Fast:
1249      return LowerCCCArguments(Chain, CallConv, isVarArg,
1250                               Ins, dl, DAG, InVals);
1251  }
1252}
1253
1254/// LowerCCCArguments - transform physical registers into
1255/// virtual registers and generate load operations for
1256/// arguments places on the stack.
1257/// TODO: sret
1258SDValue XCoreTargetLowering::LowerCCCArguments(
1259    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1260    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1261    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1262  MachineFunction &MF = DAG.getMachineFunction();
1263  MachineFrameInfo *MFI = MF.getFrameInfo();
1264  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1265  XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1266
1267  // Assign locations to all of the incoming arguments.
1268  SmallVector<CCValAssign, 16> ArgLocs;
1269  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1270                 *DAG.getContext());
1271
1272  CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
1273
1274  unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
1275
1276  unsigned LRSaveSize = StackSlotSize;
1277
1278  if (!isVarArg)
1279    XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
1280
1281  // All getCopyFromReg ops must precede any getMemcpys to prevent the
1282  // scheduler clobbering a register before it has been copied.
1283  // The stages are:
1284  // 1. CopyFromReg (and load) arg & vararg registers.
1285  // 2. Chain CopyFromReg nodes into a TokenFactor.
1286  // 3. Memcpy 'byVal' args & push final InVals.
1287  // 4. Chain mem ops nodes into a TokenFactor.
1288  SmallVector<SDValue, 4> CFRegNode;
1289  SmallVector<ArgDataPair, 4> ArgData;
1290  SmallVector<SDValue, 4> MemOps;
1291
1292  // 1a. CopyFromReg (and load) arg registers.
1293  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1294
1295    CCValAssign &VA = ArgLocs[i];
1296    SDValue ArgIn;
1297
1298    if (VA.isRegLoc()) {
1299      // Arguments passed in registers
1300      EVT RegVT = VA.getLocVT();
1301      switch (RegVT.getSimpleVT().SimpleTy) {
1302      default:
1303        {
1304#ifndef NDEBUG
1305          errs() << "LowerFormalArguments Unhandled argument type: "
1306                 << RegVT.getEVTString() << "\n";
1307#endif
1308          llvm_unreachable(nullptr);
1309        }
1310      case MVT::i32:
1311        unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1312        RegInfo.addLiveIn(VA.getLocReg(), VReg);
1313        ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
1314        CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
1315      }
1316    } else {
1317      // sanity check
1318      assert(VA.isMemLoc());
1319      // Load the argument to a virtual register
1320      unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
1321      if (ObjSize > StackSlotSize) {
1322        errs() << "LowerFormalArguments Unhandled argument type: "
1323               << EVT(VA.getLocVT()).getEVTString()
1324               << "\n";
1325      }
1326      // Create the frame index object for this incoming parameter...
1327      int FI = MFI->CreateFixedObject(ObjSize,
1328                                      LRSaveSize + VA.getLocMemOffset(),
1329                                      true);
1330
1331      // Create the SelectionDAG nodes corresponding to a load
1332      //from this parameter
1333      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1334      ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1335                          MachinePointerInfo::getFixedStack(MF, FI));
1336    }
1337    const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
1338    ArgData.push_back(ADP);
1339  }
1340
1341  // 1b. CopyFromReg vararg registers.
1342  if (isVarArg) {
1343    // Argument registers
1344    static const MCPhysReg ArgRegs[] = {
1345      XCore::R0, XCore::R1, XCore::R2, XCore::R3
1346    };
1347    XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1348    unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs);
1349    if (FirstVAReg < array_lengthof(ArgRegs)) {
1350      int offset = 0;
1351      // Save remaining registers, storing higher register numbers at a higher
1352      // address
1353      for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
1354        // Create a stack slot
1355        int FI = MFI->CreateFixedObject(4, offset, true);
1356        if (i == (int)FirstVAReg) {
1357          XFI->setVarArgsFrameIndex(FI);
1358        }
1359        offset -= StackSlotSize;
1360        SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1361        // Move argument from phys reg -> virt reg
1362        unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1363        RegInfo.addLiveIn(ArgRegs[i], VReg);
1364        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1365        CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
1366        // Move argument from virt reg -> stack
1367        SDValue Store =
1368            DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
1369        MemOps.push_back(Store);
1370      }
1371    } else {
1372      // This will point to the next argument passed via stack.
1373      XFI->setVarArgsFrameIndex(
1374        MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
1375                               true));
1376    }
1377  }
1378
1379  // 2. chain CopyFromReg nodes into a TokenFactor.
1380  if (!CFRegNode.empty())
1381    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
1382
1383  // 3. Memcpy 'byVal' args & push final InVals.
1384  // Aggregates passed "byVal" need to be copied by the callee.
1385  // The callee will use a pointer to this copy, rather than the original
1386  // pointer.
1387  for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
1388                                                    ArgDE = ArgData.end();
1389       ArgDI != ArgDE; ++ArgDI) {
1390    if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
1391      unsigned Size = ArgDI->Flags.getByValSize();
1392      unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign());
1393      // Create a new object on the stack and copy the pointee into it.
1394      int FI = MFI->CreateStackObject(Size, Align, false);
1395      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1396      InVals.push_back(FIN);
1397      MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV,
1398                                     DAG.getConstant(Size, dl, MVT::i32),
1399                                     Align, false, false, false,
1400                                     MachinePointerInfo(),
1401                                     MachinePointerInfo()));
1402    } else {
1403      InVals.push_back(ArgDI->SDV);
1404    }
1405  }
1406
1407  // 4, chain mem ops nodes into a TokenFactor.
1408  if (!MemOps.empty()) {
1409    MemOps.push_back(Chain);
1410    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
1411  }
1412
1413  return Chain;
1414}
1415
1416//===----------------------------------------------------------------------===//
1417//               Return Value Calling Convention Implementation
1418//===----------------------------------------------------------------------===//
1419
1420bool XCoreTargetLowering::
1421CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1422               bool isVarArg,
1423               const SmallVectorImpl<ISD::OutputArg> &Outs,
1424               LLVMContext &Context) const {
1425  SmallVector<CCValAssign, 16> RVLocs;
1426  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1427  if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
1428    return false;
1429  if (CCInfo.getNextStackOffset() != 0 && isVarArg)
1430    return false;
1431  return true;
1432}
1433
1434SDValue
1435XCoreTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1436                                 bool isVarArg,
1437                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
1438                                 const SmallVectorImpl<SDValue> &OutVals,
1439                                 const SDLoc &dl, SelectionDAG &DAG) const {
1440
1441  XCoreFunctionInfo *XFI =
1442    DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
1443  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1444
1445  // CCValAssign - represent the assignment of
1446  // the return value to a location
1447  SmallVector<CCValAssign, 16> RVLocs;
1448
1449  // CCState - Info about the registers and stack slot.
1450  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1451                 *DAG.getContext());
1452
1453  // Analyze return values.
1454  if (!isVarArg)
1455    CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4);
1456
1457  CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
1458
1459  SDValue Flag;
1460  SmallVector<SDValue, 4> RetOps(1, Chain);
1461
1462  // Return on XCore is always a "retsp 0"
1463  RetOps.push_back(DAG.getConstant(0, dl, MVT::i32));
1464
1465  SmallVector<SDValue, 4> MemOpChains;
1466  // Handle return values that must be copied to memory.
1467  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1468    CCValAssign &VA = RVLocs[i];
1469    if (VA.isRegLoc())
1470      continue;
1471    assert(VA.isMemLoc());
1472    if (isVarArg) {
1473      report_fatal_error("Can't return value from vararg function in memory");
1474    }
1475
1476    int Offset = VA.getLocMemOffset();
1477    unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
1478    // Create the frame index object for the memory location.
1479    int FI = MFI->CreateFixedObject(ObjSize, Offset, false);
1480
1481    // Create a SelectionDAG node corresponding to a store
1482    // to this memory location.
1483    SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1484    MemOpChains.push_back(DAG.getStore(
1485        Chain, dl, OutVals[i], FIN,
1486        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
1487  }
1488
1489  // Transform all store nodes into one single node because
1490  // all stores are independent of each other.
1491  if (!MemOpChains.empty())
1492    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1493
1494  // Now handle return values copied to registers.
1495  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1496    CCValAssign &VA = RVLocs[i];
1497    if (!VA.isRegLoc())
1498      continue;
1499    // Copy the result values into the output registers.
1500    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1501
1502    // guarantee that all emitted copies are
1503    // stuck together, avoiding something bad
1504    Flag = Chain.getValue(1);
1505    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1506  }
1507
1508  RetOps[0] = Chain;  // Update chain.
1509
1510  // Add the flag if we have it.
1511  if (Flag.getNode())
1512    RetOps.push_back(Flag);
1513
1514  return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
1515}
1516
1517//===----------------------------------------------------------------------===//
1518//  Other Lowering Code
1519//===----------------------------------------------------------------------===//
1520
1521MachineBasicBlock *
1522XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1523                                                 MachineBasicBlock *BB) const {
1524  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1525  DebugLoc dl = MI.getDebugLoc();
1526  assert((MI.getOpcode() == XCore::SELECT_CC) &&
1527         "Unexpected instr type to insert");
1528
1529  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1530  // control-flow pattern.  The incoming instruction knows the destination vreg
1531  // to set, the condition code register to branch on, the true/false values to
1532  // select between, and a branch opcode to use.
1533  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1534  MachineFunction::iterator It = ++BB->getIterator();
1535
1536  //  thisMBB:
1537  //  ...
1538  //   TrueVal = ...
1539  //   cmpTY ccX, r1, r2
1540  //   bCC copy1MBB
1541  //   fallthrough --> copy0MBB
1542  MachineBasicBlock *thisMBB = BB;
1543  MachineFunction *F = BB->getParent();
1544  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1545  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
1546  F->insert(It, copy0MBB);
1547  F->insert(It, sinkMBB);
1548
1549  // Transfer the remainder of BB and its successor edges to sinkMBB.
1550  sinkMBB->splice(sinkMBB->begin(), BB,
1551                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1552  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1553
1554  // Next, add the true and fallthrough blocks as its successors.
1555  BB->addSuccessor(copy0MBB);
1556  BB->addSuccessor(sinkMBB);
1557
1558  BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
1559      .addReg(MI.getOperand(1).getReg())
1560      .addMBB(sinkMBB);
1561
1562  //  copy0MBB:
1563  //   %FalseValue = ...
1564  //   # fallthrough to sinkMBB
1565  BB = copy0MBB;
1566
1567  // Update machine-CFG edges
1568  BB->addSuccessor(sinkMBB);
1569
1570  //  sinkMBB:
1571  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1572  //  ...
1573  BB = sinkMBB;
1574  BuildMI(*BB, BB->begin(), dl, TII.get(XCore::PHI), MI.getOperand(0).getReg())
1575      .addReg(MI.getOperand(3).getReg())
1576      .addMBB(copy0MBB)
1577      .addReg(MI.getOperand(2).getReg())
1578      .addMBB(thisMBB);
1579
1580  MI.eraseFromParent(); // The pseudo instruction is gone now.
1581  return BB;
1582}
1583
1584//===----------------------------------------------------------------------===//
1585// Target Optimization Hooks
1586//===----------------------------------------------------------------------===//
1587
1588SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
1589                                             DAGCombinerInfo &DCI) const {
1590  SelectionDAG &DAG = DCI.DAG;
1591  SDLoc dl(N);
1592  switch (N->getOpcode()) {
1593  default: break;
1594  case ISD::INTRINSIC_VOID:
1595    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
1596    case Intrinsic::xcore_outt:
1597    case Intrinsic::xcore_outct:
1598    case Intrinsic::xcore_chkct: {
1599      SDValue OutVal = N->getOperand(3);
1600      // These instructions ignore the high bits.
1601      if (OutVal.hasOneUse()) {
1602        unsigned BitWidth = OutVal.getValueSizeInBits();
1603        APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
1604        APInt KnownZero, KnownOne;
1605        TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1606                                              !DCI.isBeforeLegalizeOps());
1607        const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1608        if (TLO.ShrinkDemandedConstant(OutVal, DemandedMask) ||
1609            TLI.SimplifyDemandedBits(OutVal, DemandedMask, KnownZero, KnownOne,
1610                                     TLO))
1611          DCI.CommitTargetLoweringOpt(TLO);
1612      }
1613      break;
1614    }
1615    case Intrinsic::xcore_setpt: {
1616      SDValue Time = N->getOperand(3);
1617      // This instruction ignores the high bits.
1618      if (Time.hasOneUse()) {
1619        unsigned BitWidth = Time.getValueSizeInBits();
1620        APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
1621        APInt KnownZero, KnownOne;
1622        TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1623                                              !DCI.isBeforeLegalizeOps());
1624        const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1625        if (TLO.ShrinkDemandedConstant(Time, DemandedMask) ||
1626            TLI.SimplifyDemandedBits(Time, DemandedMask, KnownZero, KnownOne,
1627                                     TLO))
1628          DCI.CommitTargetLoweringOpt(TLO);
1629      }
1630      break;
1631    }
1632    }
1633    break;
1634  case XCoreISD::LADD: {
1635    SDValue N0 = N->getOperand(0);
1636    SDValue N1 = N->getOperand(1);
1637    SDValue N2 = N->getOperand(2);
1638    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1639    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1640    EVT VT = N0.getValueType();
1641
1642    // canonicalize constant to RHS
1643    if (N0C && !N1C)
1644      return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
1645
1646    // fold (ladd 0, 0, x) -> 0, x & 1
1647    if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1648      SDValue Carry = DAG.getConstant(0, dl, VT);
1649      SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
1650                                   DAG.getConstant(1, dl, VT));
1651      SDValue Ops[] = { Result, Carry };
1652      return DAG.getMergeValues(Ops, dl);
1653    }
1654
1655    // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
1656    // low bit set
1657    if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1658      APInt KnownZero, KnownOne;
1659      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1660                                         VT.getSizeInBits() - 1);
1661      DAG.computeKnownBits(N2, KnownZero, KnownOne);
1662      if ((KnownZero & Mask) == Mask) {
1663        SDValue Carry = DAG.getConstant(0, dl, VT);
1664        SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
1665        SDValue Ops[] = { Result, Carry };
1666        return DAG.getMergeValues(Ops, dl);
1667      }
1668    }
1669  }
1670  break;
1671  case XCoreISD::LSUB: {
1672    SDValue N0 = N->getOperand(0);
1673    SDValue N1 = N->getOperand(1);
1674    SDValue N2 = N->getOperand(2);
1675    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1676    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1677    EVT VT = N0.getValueType();
1678
1679    // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
1680    if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1681      APInt KnownZero, KnownOne;
1682      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1683                                         VT.getSizeInBits() - 1);
1684      DAG.computeKnownBits(N2, KnownZero, KnownOne);
1685      if ((KnownZero & Mask) == Mask) {
1686        SDValue Borrow = N2;
1687        SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
1688                                     DAG.getConstant(0, dl, VT), N2);
1689        SDValue Ops[] = { Result, Borrow };
1690        return DAG.getMergeValues(Ops, dl);
1691      }
1692    }
1693
1694    // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
1695    // low bit set
1696    if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1697      APInt KnownZero, KnownOne;
1698      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1699                                         VT.getSizeInBits() - 1);
1700      DAG.computeKnownBits(N2, KnownZero, KnownOne);
1701      if ((KnownZero & Mask) == Mask) {
1702        SDValue Borrow = DAG.getConstant(0, dl, VT);
1703        SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
1704        SDValue Ops[] = { Result, Borrow };
1705        return DAG.getMergeValues(Ops, dl);
1706      }
1707    }
1708  }
1709  break;
1710  case XCoreISD::LMUL: {
1711    SDValue N0 = N->getOperand(0);
1712    SDValue N1 = N->getOperand(1);
1713    SDValue N2 = N->getOperand(2);
1714    SDValue N3 = N->getOperand(3);
1715    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1716    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1717    EVT VT = N0.getValueType();
1718    // Canonicalize multiplicative constant to RHS. If both multiplicative
1719    // operands are constant canonicalize smallest to RHS.
1720    if ((N0C && !N1C) ||
1721        (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
1722      return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
1723                         N1, N0, N2, N3);
1724
1725    // lmul(x, 0, a, b)
1726    if (N1C && N1C->isNullValue()) {
1727      // If the high result is unused fold to add(a, b)
1728      if (N->hasNUsesOfValue(0, 0)) {
1729        SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
1730        SDValue Ops[] = { Lo, Lo };
1731        return DAG.getMergeValues(Ops, dl);
1732      }
1733      // Otherwise fold to ladd(a, b, 0)
1734      SDValue Result =
1735        DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
1736      SDValue Carry(Result.getNode(), 1);
1737      SDValue Ops[] = { Carry, Result };
1738      return DAG.getMergeValues(Ops, dl);
1739    }
1740  }
1741  break;
1742  case ISD::ADD: {
1743    // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
1744    // lmul(x, y, a, b). The high result of lmul will be ignored.
1745    // This is only profitable if the intermediate results are unused
1746    // elsewhere.
1747    SDValue Mul0, Mul1, Addend0, Addend1;
1748    if (N->getValueType(0) == MVT::i32 &&
1749        isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
1750      SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
1751                                    DAG.getVTList(MVT::i32, MVT::i32), Mul0,
1752                                    Mul1, Addend0, Addend1);
1753      SDValue Result(Ignored.getNode(), 1);
1754      return Result;
1755    }
1756    APInt HighMask = APInt::getHighBitsSet(64, 32);
1757    // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
1758    // lmul(x, y, a, b) if all operands are zero-extended. We do this
1759    // before type legalization as it is messy to match the operands after
1760    // that.
1761    if (N->getValueType(0) == MVT::i64 &&
1762        isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
1763        DAG.MaskedValueIsZero(Mul0, HighMask) &&
1764        DAG.MaskedValueIsZero(Mul1, HighMask) &&
1765        DAG.MaskedValueIsZero(Addend0, HighMask) &&
1766        DAG.MaskedValueIsZero(Addend1, HighMask)) {
1767      SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1768                                  Mul0, DAG.getConstant(0, dl, MVT::i32));
1769      SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1770                                  Mul1, DAG.getConstant(0, dl, MVT::i32));
1771      SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1772                                     Addend0, DAG.getConstant(0, dl, MVT::i32));
1773      SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1774                                     Addend1, DAG.getConstant(0, dl, MVT::i32));
1775      SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
1776                               DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
1777                               Addend0L, Addend1L);
1778      SDValue Lo(Hi.getNode(), 1);
1779      return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
1780    }
1781  }
1782  break;
1783  case ISD::STORE: {
1784    // Replace unaligned store of unaligned load with memmove.
1785    StoreSDNode *ST  = cast<StoreSDNode>(N);
1786    if (!DCI.isBeforeLegalize() ||
1787        allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
1788                                       ST->getAddressSpace(),
1789                                       ST->getAlignment()) ||
1790        ST->isVolatile() || ST->isIndexed()) {
1791      break;
1792    }
1793    SDValue Chain = ST->getChain();
1794
1795    unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
1796    assert((StoreBits % 8) == 0 &&
1797           "Store size in bits must be a multiple of 8");
1798    unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(
1799        ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext()));
1800    unsigned Alignment = ST->getAlignment();
1801    if (Alignment >= ABIAlignment) {
1802      break;
1803    }
1804
1805    if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
1806      if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
1807        LD->getAlignment() == Alignment &&
1808        !LD->isVolatile() && !LD->isIndexed() &&
1809        Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
1810        bool isTail = isInTailCallPosition(DAG, ST, Chain);
1811        return DAG.getMemmove(Chain, dl, ST->getBasePtr(),
1812                              LD->getBasePtr(),
1813                              DAG.getConstant(StoreBits/8, dl, MVT::i32),
1814                              Alignment, false, isTail, ST->getPointerInfo(),
1815                              LD->getPointerInfo());
1816      }
1817    }
1818    break;
1819  }
1820  }
1821  return SDValue();
1822}
1823
1824void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1825                                                        APInt &KnownZero,
1826                                                        APInt &KnownOne,
1827                                                        const SelectionDAG &DAG,
1828                                                        unsigned Depth) const {
1829  KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
1830  switch (Op.getOpcode()) {
1831  default: break;
1832  case XCoreISD::LADD:
1833  case XCoreISD::LSUB:
1834    if (Op.getResNo() == 1) {
1835      // Top bits of carry / borrow are clear.
1836      KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1837                                        KnownZero.getBitWidth() - 1);
1838    }
1839    break;
1840  case ISD::INTRINSIC_W_CHAIN:
1841    {
1842      unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1843      switch (IntNo) {
1844      case Intrinsic::xcore_getts:
1845        // High bits are known to be zero.
1846        KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1847                                          KnownZero.getBitWidth() - 16);
1848        break;
1849      case Intrinsic::xcore_int:
1850      case Intrinsic::xcore_inct:
1851        // High bits are known to be zero.
1852        KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1853                                          KnownZero.getBitWidth() - 8);
1854        break;
1855      case Intrinsic::xcore_testct:
1856        // Result is either 0 or 1.
1857        KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1858                                          KnownZero.getBitWidth() - 1);
1859        break;
1860      case Intrinsic::xcore_testwct:
1861        // Result is in the range 0 - 4.
1862        KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1863                                          KnownZero.getBitWidth() - 3);
1864        break;
1865      }
1866    }
1867    break;
1868  }
1869}
1870
1871//===----------------------------------------------------------------------===//
1872//  Addressing mode description hooks
1873//===----------------------------------------------------------------------===//
1874
1875static inline bool isImmUs(int64_t val)
1876{
1877  return (val >= 0 && val <= 11);
1878}
1879
1880static inline bool isImmUs2(int64_t val)
1881{
1882  return (val%2 == 0 && isImmUs(val/2));
1883}
1884
1885static inline bool isImmUs4(int64_t val)
1886{
1887  return (val%4 == 0 && isImmUs(val/4));
1888}
1889
1890/// isLegalAddressingMode - Return true if the addressing mode represented
1891/// by AM is legal for this target, for a load/store of the specified type.
1892bool XCoreTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1893                                                const AddrMode &AM, Type *Ty,
1894                                                unsigned AS) const {
1895  if (Ty->getTypeID() == Type::VoidTyID)
1896    return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
1897
1898  unsigned Size = DL.getTypeAllocSize(Ty);
1899  if (AM.BaseGV) {
1900    return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
1901                 AM.BaseOffs%4 == 0;
1902  }
1903
1904  switch (Size) {
1905  case 1:
1906    // reg + imm
1907    if (AM.Scale == 0) {
1908      return isImmUs(AM.BaseOffs);
1909    }
1910    // reg + reg
1911    return AM.Scale == 1 && AM.BaseOffs == 0;
1912  case 2:
1913  case 3:
1914    // reg + imm
1915    if (AM.Scale == 0) {
1916      return isImmUs2(AM.BaseOffs);
1917    }
1918    // reg + reg<<1
1919    return AM.Scale == 2 && AM.BaseOffs == 0;
1920  default:
1921    // reg + imm
1922    if (AM.Scale == 0) {
1923      return isImmUs4(AM.BaseOffs);
1924    }
1925    // reg + reg<<2
1926    return AM.Scale == 4 && AM.BaseOffs == 0;
1927  }
1928}
1929
1930//===----------------------------------------------------------------------===//
1931//                           XCore Inline Assembly Support
1932//===----------------------------------------------------------------------===//
1933
1934std::pair<unsigned, const TargetRegisterClass *>
1935XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1936                                                  StringRef Constraint,
1937                                                  MVT VT) const {
1938  if (Constraint.size() == 1) {
1939    switch (Constraint[0]) {
1940    default : break;
1941    case 'r':
1942      return std::make_pair(0U, &XCore::GRRegsRegClass);
1943    }
1944  }
1945  // Use the default implementation in TargetLowering to convert the register
1946  // constraint into a member of a register class.
1947  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1948}
1949