1//===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the XCoreTargetLowering class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "XCoreISelLowering.h"
14#include "XCore.h"
15#include "XCoreMachineFunctionInfo.h"
16#include "XCoreSubtarget.h"
17#include "XCoreTargetMachine.h"
18#include "XCoreTargetObjectFile.h"
19#include "llvm/CodeGen/CallingConvLower.h"
20#include "llvm/CodeGen/MachineFrameInfo.h"
21#include "llvm/CodeGen/MachineFunction.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineJumpTableInfo.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/SelectionDAGISel.h"
26#include "llvm/CodeGen/ValueTypes.h"
27#include "llvm/IR/CallingConv.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/GlobalAlias.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/IR/Intrinsics.h"
34#include "llvm/IR/IntrinsicsXCore.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/KnownBits.h"
38#include "llvm/Support/raw_ostream.h"
39#include <algorithm>
40
41using namespace llvm;
42
43#define DEBUG_TYPE "xcore-lower"
44
45const char *XCoreTargetLowering::
46getTargetNodeName(unsigned Opcode) const
47{
48  switch ((XCoreISD::NodeType)Opcode)
49  {
50    case XCoreISD::FIRST_NUMBER      : break;
51    case XCoreISD::BL                : return "XCoreISD::BL";
52    case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
53    case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
54    case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
55    case XCoreISD::LDWSP             : return "XCoreISD::LDWSP";
56    case XCoreISD::STWSP             : return "XCoreISD::STWSP";
57    case XCoreISD::RETSP             : return "XCoreISD::RETSP";
58    case XCoreISD::LADD              : return "XCoreISD::LADD";
59    case XCoreISD::LSUB              : return "XCoreISD::LSUB";
60    case XCoreISD::LMUL              : return "XCoreISD::LMUL";
61    case XCoreISD::MACCU             : return "XCoreISD::MACCU";
62    case XCoreISD::MACCS             : return "XCoreISD::MACCS";
63    case XCoreISD::CRC8              : return "XCoreISD::CRC8";
64    case XCoreISD::BR_JT             : return "XCoreISD::BR_JT";
65    case XCoreISD::BR_JT32           : return "XCoreISD::BR_JT32";
66    case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
67    case XCoreISD::EH_RETURN         : return "XCoreISD::EH_RETURN";
68    case XCoreISD::MEMBARRIER        : return "XCoreISD::MEMBARRIER";
69  }
70  return nullptr;
71}
72
73XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM,
74                                         const XCoreSubtarget &Subtarget)
75    : TargetLowering(TM), TM(TM), Subtarget(Subtarget) {
76
77  // Set up the register classes.
78  addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
79
80  // Compute derived properties from the register classes
81  computeRegisterProperties(Subtarget.getRegisterInfo());
82
83  setStackPointerRegisterToSaveRestore(XCore::SP);
84
85  setSchedulingPreference(Sched::Source);
86
87  // Use i32 for setcc operations results (slt, sgt, ...).
88  setBooleanContents(ZeroOrOneBooleanContent);
89  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
90
91  // XCore does not have the NodeTypes below.
92  setOperationAction(ISD::BR_CC,     MVT::i32,   Expand);
93  setOperationAction(ISD::SELECT_CC, MVT::i32,   Expand);
94
95  // 64bit
96  setOperationAction(ISD::ADD, MVT::i64, Custom);
97  setOperationAction(ISD::SUB, MVT::i64, Custom);
98  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
99  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
100  setOperationAction(ISD::MULHS, MVT::i32, Expand);
101  setOperationAction(ISD::MULHU, MVT::i32, Expand);
102  setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
103  setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
104  setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
105
106  // Bit Manipulation
107  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
108  setOperationAction(ISD::ROTL , MVT::i32, Expand);
109  setOperationAction(ISD::ROTR , MVT::i32, Expand);
110
111  setOperationAction(ISD::TRAP, MVT::Other, Legal);
112
113  // Jump tables.
114  setOperationAction(ISD::BR_JT, MVT::Other, Custom);
115
116  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
117  setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
118
119  // Conversion of i64 -> double produces constantpool nodes
120  setOperationAction(ISD::ConstantPool, MVT::i32,   Custom);
121
122  // Loads
123  for (MVT VT : MVT::integer_valuetypes()) {
124    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
125    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
126    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
127
128    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
129    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand);
130  }
131
132  // Custom expand misaligned loads / stores.
133  setOperationAction(ISD::LOAD, MVT::i32, Custom);
134  setOperationAction(ISD::STORE, MVT::i32, Custom);
135
136  // Varargs
137  setOperationAction(ISD::VAEND, MVT::Other, Expand);
138  setOperationAction(ISD::VACOPY, MVT::Other, Expand);
139  setOperationAction(ISD::VAARG, MVT::Other, Custom);
140  setOperationAction(ISD::VASTART, MVT::Other, Custom);
141
142  // Dynamic stack
143  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
144  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
145  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
146
147  // Exception handling
148  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
149  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
150
151  // Atomic operations
152  // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
153  // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
154  setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
155  setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
156  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
157
158  // TRAMPOLINE is custom lowered.
159  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
160  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
161
162  // We want to custom lower some of our intrinsics.
163  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
164
165  MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
166  MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
167    = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
168
169  // We have target-specific dag combine patterns for the following nodes:
170  setTargetDAGCombine(ISD::STORE);
171  setTargetDAGCombine(ISD::ADD);
172  setTargetDAGCombine(ISD::INTRINSIC_VOID);
173  setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
174
175  setMinFunctionAlignment(Align(2));
176  setPrefFunctionAlignment(Align(4));
177}
178
179bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
180  if (Val.getOpcode() != ISD::LOAD)
181    return false;
182
183  EVT VT1 = Val.getValueType();
184  if (!VT1.isSimple() || !VT1.isInteger() ||
185      !VT2.isSimple() || !VT2.isInteger())
186    return false;
187
188  switch (VT1.getSimpleVT().SimpleTy) {
189  default: break;
190  case MVT::i8:
191    return true;
192  }
193
194  return false;
195}
196
197SDValue XCoreTargetLowering::
198LowerOperation(SDValue Op, SelectionDAG &DAG) const {
199  switch (Op.getOpcode())
200  {
201  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
202  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
203  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
204  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
205  case ISD::BR_JT:              return LowerBR_JT(Op, DAG);
206  case ISD::LOAD:               return LowerLOAD(Op, DAG);
207  case ISD::STORE:              return LowerSTORE(Op, DAG);
208  case ISD::VAARG:              return LowerVAARG(Op, DAG);
209  case ISD::VASTART:            return LowerVASTART(Op, DAG);
210  case ISD::SMUL_LOHI:          return LowerSMUL_LOHI(Op, DAG);
211  case ISD::UMUL_LOHI:          return LowerUMUL_LOHI(Op, DAG);
212  // FIXME: Remove these when LegalizeDAGTypes lands.
213  case ISD::ADD:
214  case ISD::SUB:                return ExpandADDSUB(Op.getNode(), DAG);
215  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
216  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
217  case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
218  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
219  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
220  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
221  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
222  case ISD::ATOMIC_LOAD:        return LowerATOMIC_LOAD(Op, DAG);
223  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op, DAG);
224  default:
225    llvm_unreachable("unimplemented operand");
226  }
227}
228
229/// ReplaceNodeResults - Replace the results of node with an illegal result
230/// type with new values built out of custom code.
231void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
232                                             SmallVectorImpl<SDValue>&Results,
233                                             SelectionDAG &DAG) const {
234  switch (N->getOpcode()) {
235  default:
236    llvm_unreachable("Don't know how to custom expand this!");
237  case ISD::ADD:
238  case ISD::SUB:
239    Results.push_back(ExpandADDSUB(N, DAG));
240    return;
241  }
242}
243
244//===----------------------------------------------------------------------===//
245//  Misc Lower Operation implementation
246//===----------------------------------------------------------------------===//
247
248SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
249                                                     const GlobalValue *GV,
250                                                     SelectionDAG &DAG) const {
251  // FIXME there is no actual debug info here
252  SDLoc dl(GA);
253
254  if (GV->getValueType()->isFunctionTy())
255    return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
256
257  const auto *GVar = dyn_cast<GlobalVariable>(GV);
258  if ((GV->hasSection() && GV->getSection().startswith(".cp.")) ||
259      (GVar && GVar->isConstant() && GV->hasLocalLinkage()))
260    return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
261
262  return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
263}
264
265static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
266  if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
267    return true;
268
269  Type *ObjType = GV->getValueType();
270  if (!ObjType->isSized())
271    return false;
272
273  auto &DL = GV->getParent()->getDataLayout();
274  unsigned ObjSize = DL.getTypeAllocSize(ObjType);
275  return ObjSize < CodeModelLargeSize && ObjSize != 0;
276}
277
278SDValue XCoreTargetLowering::
279LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
280{
281  const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
282  const GlobalValue *GV = GN->getGlobal();
283  SDLoc DL(GN);
284  int64_t Offset = GN->getOffset();
285  if (IsSmallObject(GV, *this)) {
286    // We can only fold positive offsets that are a multiple of the word size.
287    int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
288    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
289    GA = getGlobalAddressWrapper(GA, GV, DAG);
290    // Handle the rest of the offset.
291    if (Offset != FoldedOffset) {
292      SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, DL, MVT::i32);
293      GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
294    }
295    return GA;
296  } else {
297    // Ideally we would not fold in offset with an index <= 11.
298    Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
299    Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
300    Ty = Type::getInt32Ty(*DAG.getContext());
301    Constant *Idx = ConstantInt::get(Ty, Offset);
302    Constant *GAI = ConstantExpr::getGetElementPtr(
303        Type::getInt8Ty(*DAG.getContext()), GA, Idx);
304    SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
305    return DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL,
306                       DAG.getEntryNode(), CP, MachinePointerInfo());
307  }
308}
309
310SDValue XCoreTargetLowering::
311LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
312{
313  SDLoc DL(Op);
314  auto PtrVT = getPointerTy(DAG.getDataLayout());
315  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
316  SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
317
318  return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, PtrVT, Result);
319}
320
321SDValue XCoreTargetLowering::
322LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
323{
324  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
325  // FIXME there isn't really debug info here
326  SDLoc dl(CP);
327  EVT PtrVT = Op.getValueType();
328  SDValue Res;
329  if (CP->isMachineConstantPoolEntry()) {
330    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
331                                    CP->getAlignment(), CP->getOffset());
332  } else {
333    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
334                                    CP->getAlignment(), CP->getOffset());
335  }
336  return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
337}
338
339unsigned XCoreTargetLowering::getJumpTableEncoding() const {
340  return MachineJumpTableInfo::EK_Inline;
341}
342
343SDValue XCoreTargetLowering::
344LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
345{
346  SDValue Chain = Op.getOperand(0);
347  SDValue Table = Op.getOperand(1);
348  SDValue Index = Op.getOperand(2);
349  SDLoc dl(Op);
350  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
351  unsigned JTI = JT->getIndex();
352  MachineFunction &MF = DAG.getMachineFunction();
353  const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
354  SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
355
356  unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
357  if (NumEntries <= 32) {
358    return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
359  }
360  assert((NumEntries >> 31) == 0);
361  SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
362                                    DAG.getConstant(1, dl, MVT::i32));
363  return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
364                     ScaledIndex);
365}
366
367SDValue XCoreTargetLowering::lowerLoadWordFromAlignedBasePlusOffset(
368    const SDLoc &DL, SDValue Chain, SDValue Base, int64_t Offset,
369    SelectionDAG &DAG) const {
370  auto PtrVT = getPointerTy(DAG.getDataLayout());
371  if ((Offset & 0x3) == 0) {
372    return DAG.getLoad(PtrVT, DL, Chain, Base, MachinePointerInfo());
373  }
374  // Lower to pair of consecutive word aligned loads plus some bit shifting.
375  int32_t HighOffset = alignTo(Offset, 4);
376  int32_t LowOffset = HighOffset - 4;
377  SDValue LowAddr, HighAddr;
378  if (GlobalAddressSDNode *GASD =
379        dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
380    LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
381                                   LowOffset);
382    HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
383                                    HighOffset);
384  } else {
385    LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
386                          DAG.getConstant(LowOffset, DL, MVT::i32));
387    HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
388                           DAG.getConstant(HighOffset, DL, MVT::i32));
389  }
390  SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, DL, MVT::i32);
391  SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, DL, MVT::i32);
392
393  SDValue Low = DAG.getLoad(PtrVT, DL, Chain, LowAddr, MachinePointerInfo());
394  SDValue High = DAG.getLoad(PtrVT, DL, Chain, HighAddr, MachinePointerInfo());
395  SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
396  SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
397  SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
398  Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
399                      High.getValue(1));
400  SDValue Ops[] = { Result, Chain };
401  return DAG.getMergeValues(Ops, DL);
402}
403
404static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
405{
406  KnownBits Known = DAG.computeKnownBits(Value);
407  return Known.countMinTrailingZeros() >= 2;
408}
409
410SDValue XCoreTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
411  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
412  LLVMContext &Context = *DAG.getContext();
413  LoadSDNode *LD = cast<LoadSDNode>(Op);
414  assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
415         "Unexpected extension type");
416  assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
417
418  if (allowsMemoryAccessForAlignment(Context, DAG.getDataLayout(),
419                                     LD->getMemoryVT(), *LD->getMemOperand()))
420    return SDValue();
421
422  SDValue Chain = LD->getChain();
423  SDValue BasePtr = LD->getBasePtr();
424  SDLoc DL(Op);
425
426  if (!LD->isVolatile()) {
427    const GlobalValue *GV;
428    int64_t Offset = 0;
429    if (DAG.isBaseWithConstantOffset(BasePtr) &&
430        isWordAligned(BasePtr->getOperand(0), DAG)) {
431      SDValue NewBasePtr = BasePtr->getOperand(0);
432      Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
433      return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
434                                                    Offset, DAG);
435    }
436    if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
437        MinAlign(GV->getAlignment(), 4) == 4) {
438      SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
439                                                BasePtr->getValueType(0));
440      return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
441                                                    Offset, DAG);
442    }
443  }
444
445  if (LD->getAlignment() == 2) {
446    SDValue Low =
447        DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain, BasePtr,
448                       LD->getPointerInfo(), MVT::i16,
449                       /* Alignment = */ 2, LD->getMemOperand()->getFlags());
450    SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
451                                   DAG.getConstant(2, DL, MVT::i32));
452    SDValue High =
453        DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, HighAddr,
454                       LD->getPointerInfo().getWithOffset(2), MVT::i16,
455                       /* Alignment = */ 2, LD->getMemOperand()->getFlags());
456    SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
457                                      DAG.getConstant(16, DL, MVT::i32));
458    SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
459    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
460                             High.getValue(1));
461    SDValue Ops[] = { Result, Chain };
462    return DAG.getMergeValues(Ops, DL);
463  }
464
465  // Lower to a call to __misaligned_load(BasePtr).
466  Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(Context);
467  TargetLowering::ArgListTy Args;
468  TargetLowering::ArgListEntry Entry;
469
470  Entry.Ty = IntPtrTy;
471  Entry.Node = BasePtr;
472  Args.push_back(Entry);
473
474  TargetLowering::CallLoweringInfo CLI(DAG);
475  CLI.setDebugLoc(DL).setChain(Chain).setLibCallee(
476      CallingConv::C, IntPtrTy,
477      DAG.getExternalSymbol("__misaligned_load",
478                            getPointerTy(DAG.getDataLayout())),
479      std::move(Args));
480
481  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
482  SDValue Ops[] = { CallResult.first, CallResult.second };
483  return DAG.getMergeValues(Ops, DL);
484}
485
486SDValue XCoreTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
487  LLVMContext &Context = *DAG.getContext();
488  StoreSDNode *ST = cast<StoreSDNode>(Op);
489  assert(!ST->isTruncatingStore() && "Unexpected store type");
490  assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
491
492  if (allowsMemoryAccessForAlignment(Context, DAG.getDataLayout(),
493                                     ST->getMemoryVT(), *ST->getMemOperand()))
494    return SDValue();
495
496  SDValue Chain = ST->getChain();
497  SDValue BasePtr = ST->getBasePtr();
498  SDValue Value = ST->getValue();
499  SDLoc dl(Op);
500
501  if (ST->getAlignment() == 2) {
502    SDValue Low = Value;
503    SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
504                               DAG.getConstant(16, dl, MVT::i32));
505    SDValue StoreLow = DAG.getTruncStore(
506        Chain, dl, Low, BasePtr, ST->getPointerInfo(), MVT::i16,
507        /* Alignment = */ 2, ST->getMemOperand()->getFlags());
508    SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
509                                   DAG.getConstant(2, dl, MVT::i32));
510    SDValue StoreHigh = DAG.getTruncStore(
511        Chain, dl, High, HighAddr, ST->getPointerInfo().getWithOffset(2),
512        MVT::i16, /* Alignment = */ 2, ST->getMemOperand()->getFlags());
513    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
514  }
515
516  // Lower to a call to __misaligned_store(BasePtr, Value).
517  Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(Context);
518  TargetLowering::ArgListTy Args;
519  TargetLowering::ArgListEntry Entry;
520
521  Entry.Ty = IntPtrTy;
522  Entry.Node = BasePtr;
523  Args.push_back(Entry);
524
525  Entry.Node = Value;
526  Args.push_back(Entry);
527
528  TargetLowering::CallLoweringInfo CLI(DAG);
529  CLI.setDebugLoc(dl).setChain(Chain).setCallee(
530      CallingConv::C, Type::getVoidTy(Context),
531      DAG.getExternalSymbol("__misaligned_store",
532                            getPointerTy(DAG.getDataLayout())),
533      std::move(Args));
534
535  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
536  return CallResult.second;
537}
538
539SDValue XCoreTargetLowering::
540LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
541{
542  assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
543         "Unexpected operand to lower!");
544  SDLoc dl(Op);
545  SDValue LHS = Op.getOperand(0);
546  SDValue RHS = Op.getOperand(1);
547  SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
548  SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
549                           DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
550                           LHS, RHS);
551  SDValue Lo(Hi.getNode(), 1);
552  SDValue Ops[] = { Lo, Hi };
553  return DAG.getMergeValues(Ops, dl);
554}
555
556SDValue XCoreTargetLowering::
557LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
558{
559  assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
560         "Unexpected operand to lower!");
561  SDLoc dl(Op);
562  SDValue LHS = Op.getOperand(0);
563  SDValue RHS = Op.getOperand(1);
564  SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
565  SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
566                           DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
567                           Zero, Zero);
568  SDValue Lo(Hi.getNode(), 1);
569  SDValue Ops[] = { Lo, Hi };
570  return DAG.getMergeValues(Ops, dl);
571}
572
573/// isADDADDMUL - Return whether Op is in a form that is equivalent to
574/// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
575/// each intermediate result in the calculation must also have a single use.
576/// If the Op is in the correct form the constituent parts are written to Mul0,
577/// Mul1, Addend0 and Addend1.
578static bool
579isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
580            SDValue &Addend1, bool requireIntermediatesHaveOneUse)
581{
582  if (Op.getOpcode() != ISD::ADD)
583    return false;
584  SDValue N0 = Op.getOperand(0);
585  SDValue N1 = Op.getOperand(1);
586  SDValue AddOp;
587  SDValue OtherOp;
588  if (N0.getOpcode() == ISD::ADD) {
589    AddOp = N0;
590    OtherOp = N1;
591  } else if (N1.getOpcode() == ISD::ADD) {
592    AddOp = N1;
593    OtherOp = N0;
594  } else {
595    return false;
596  }
597  if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
598    return false;
599  if (OtherOp.getOpcode() == ISD::MUL) {
600    // add(add(a,b),mul(x,y))
601    if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
602      return false;
603    Mul0 = OtherOp.getOperand(0);
604    Mul1 = OtherOp.getOperand(1);
605    Addend0 = AddOp.getOperand(0);
606    Addend1 = AddOp.getOperand(1);
607    return true;
608  }
609  if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
610    // add(add(mul(x,y),a),b)
611    if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
612      return false;
613    Mul0 = AddOp.getOperand(0).getOperand(0);
614    Mul1 = AddOp.getOperand(0).getOperand(1);
615    Addend0 = AddOp.getOperand(1);
616    Addend1 = OtherOp;
617    return true;
618  }
619  if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
620    // add(add(a,mul(x,y)),b)
621    if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
622      return false;
623    Mul0 = AddOp.getOperand(1).getOperand(0);
624    Mul1 = AddOp.getOperand(1).getOperand(1);
625    Addend0 = AddOp.getOperand(0);
626    Addend1 = OtherOp;
627    return true;
628  }
629  return false;
630}
631
632SDValue XCoreTargetLowering::
633TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
634{
635  SDValue Mul;
636  SDValue Other;
637  if (N->getOperand(0).getOpcode() == ISD::MUL) {
638    Mul = N->getOperand(0);
639    Other = N->getOperand(1);
640  } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
641    Mul = N->getOperand(1);
642    Other = N->getOperand(0);
643  } else {
644    return SDValue();
645  }
646  SDLoc dl(N);
647  SDValue LL, RL, AddendL, AddendH;
648  LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
649                   Mul.getOperand(0), DAG.getConstant(0, dl, MVT::i32));
650  RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
651                   Mul.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
652  AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
653                        Other, DAG.getConstant(0, dl, MVT::i32));
654  AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
655                        Other, DAG.getConstant(1, dl, MVT::i32));
656  APInt HighMask = APInt::getHighBitsSet(64, 32);
657  unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
658  unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
659  if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
660      DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
661    // The inputs are both zero-extended.
662    SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
663                             DAG.getVTList(MVT::i32, MVT::i32), AddendH,
664                             AddendL, LL, RL);
665    SDValue Lo(Hi.getNode(), 1);
666    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
667  }
668  if (LHSSB > 32 && RHSSB > 32) {
669    // The inputs are both sign-extended.
670    SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
671                             DAG.getVTList(MVT::i32, MVT::i32), AddendH,
672                             AddendL, LL, RL);
673    SDValue Lo(Hi.getNode(), 1);
674    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
675  }
676  SDValue LH, RH;
677  LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
678                   Mul.getOperand(0), DAG.getConstant(1, dl, MVT::i32));
679  RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
680                   Mul.getOperand(1), DAG.getConstant(1, dl, MVT::i32));
681  SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
682                           DAG.getVTList(MVT::i32, MVT::i32), AddendH,
683                           AddendL, LL, RL);
684  SDValue Lo(Hi.getNode(), 1);
685  RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
686  LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
687  Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
688  Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
689  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
690}
691
692SDValue XCoreTargetLowering::
693ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
694{
695  assert(N->getValueType(0) == MVT::i64 &&
696         (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
697        "Unknown operand to lower!");
698
699  if (N->getOpcode() == ISD::ADD)
700    if (SDValue Result = TryExpandADDWithMul(N, DAG))
701      return Result;
702
703  SDLoc dl(N);
704
705  // Extract components
706  SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
707                             N->getOperand(0),
708                             DAG.getConstant(0, dl, MVT::i32));
709  SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
710                             N->getOperand(0),
711                             DAG.getConstant(1, dl, MVT::i32));
712  SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
713                             N->getOperand(1),
714                             DAG.getConstant(0, dl, MVT::i32));
715  SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
716                             N->getOperand(1),
717                             DAG.getConstant(1, dl, MVT::i32));
718
719  // Expand
720  unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
721                                                   XCoreISD::LSUB;
722  SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
723  SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
724                           LHSL, RHSL, Zero);
725  SDValue Carry(Lo.getNode(), 1);
726
727  SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
728                           LHSH, RHSH, Carry);
729  SDValue Ignored(Hi.getNode(), 1);
730  // Merge the pieces
731  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
732}
733
734SDValue XCoreTargetLowering::
735LowerVAARG(SDValue Op, SelectionDAG &DAG) const
736{
737  // Whist llvm does not support aggregate varargs we can ignore
738  // the possibility of the ValueType being an implicit byVal vararg.
739  SDNode *Node = Op.getNode();
740  EVT VT = Node->getValueType(0); // not an aggregate
741  SDValue InChain = Node->getOperand(0);
742  SDValue VAListPtr = Node->getOperand(1);
743  EVT PtrVT = VAListPtr.getValueType();
744  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
745  SDLoc dl(Node);
746  SDValue VAList =
747      DAG.getLoad(PtrVT, dl, InChain, VAListPtr, MachinePointerInfo(SV));
748  // Increment the pointer, VAList, to the next vararg
749  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
750                                DAG.getIntPtrConstant(VT.getSizeInBits() / 8,
751                                                      dl));
752  // Store the incremented VAList to the legalized pointer
753  InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
754                         MachinePointerInfo(SV));
755  // Load the actual argument out of the pointer VAList
756  return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo());
757}
758
759SDValue XCoreTargetLowering::
760LowerVASTART(SDValue Op, SelectionDAG &DAG) const
761{
762  SDLoc dl(Op);
763  // vastart stores the address of the VarArgsFrameIndex slot into the
764  // memory location argument
765  MachineFunction &MF = DAG.getMachineFunction();
766  XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
767  SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
768  return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
769                      MachinePointerInfo());
770}
771
772SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
773                                            SelectionDAG &DAG) const {
774  // This nodes represent llvm.frameaddress on the DAG.
775  // It takes one operand, the index of the frame address to return.
776  // An index of zero corresponds to the current function's frame address.
777  // An index of one to the parent's frame address, and so on.
778  // Depths > 0 not supported yet!
779  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
780    return SDValue();
781
782  MachineFunction &MF = DAG.getMachineFunction();
783  const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
784  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
785                            RegInfo->getFrameRegister(MF), MVT::i32);
786}
787
788SDValue XCoreTargetLowering::
789LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
790  // This nodes represent llvm.returnaddress on the DAG.
791  // It takes one operand, the index of the return address to return.
792  // An index of zero corresponds to the current function's return address.
793  // An index of one to the parent's return address, and so on.
794  // Depths > 0 not supported yet!
795  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
796    return SDValue();
797
798  MachineFunction &MF = DAG.getMachineFunction();
799  XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
800  int FI = XFI->createLRSpillSlot(MF);
801  SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
802  return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
803                     DAG.getEntryNode(), FIN,
804                     MachinePointerInfo::getFixedStack(MF, FI));
805}
806
807SDValue XCoreTargetLowering::
808LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
809  // This node represents offset from frame pointer to first on-stack argument.
810  // This is needed for correct stack adjustment during unwind.
811  // However, we don't know the offset until after the frame has be finalised.
812  // This is done during the XCoreFTAOElim pass.
813  return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
814}
815
816SDValue XCoreTargetLowering::
817LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
818  // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
819  // This node represents 'eh_return' gcc dwarf builtin, which is used to
820  // return from exception. The general meaning is: adjust stack by OFFSET and
821  // pass execution to HANDLER.
822  MachineFunction &MF = DAG.getMachineFunction();
823  SDValue Chain     = Op.getOperand(0);
824  SDValue Offset    = Op.getOperand(1);
825  SDValue Handler   = Op.getOperand(2);
826  SDLoc dl(Op);
827
828  // Absolute SP = (FP + FrameToArgs) + Offset
829  const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
830  SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
831                            RegInfo->getFrameRegister(MF), MVT::i32);
832  SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
833                                    MVT::i32);
834  Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
835  Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
836
837  // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
838  // which leaves 2 caller saved registers, R2 & R3 for us to use.
839  unsigned StackReg = XCore::R2;
840  unsigned HandlerReg = XCore::R3;
841
842  SDValue OutChains[] = {
843    DAG.getCopyToReg(Chain, dl, StackReg, Stack),
844    DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
845  };
846
847  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
848
849  return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
850                     DAG.getRegister(StackReg, MVT::i32),
851                     DAG.getRegister(HandlerReg, MVT::i32));
852
853}
854
855SDValue XCoreTargetLowering::
856LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
857  return Op.getOperand(0);
858}
859
860SDValue XCoreTargetLowering::
861LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
862  SDValue Chain = Op.getOperand(0);
863  SDValue Trmp = Op.getOperand(1); // trampoline
864  SDValue FPtr = Op.getOperand(2); // nested function
865  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
866
867  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
868
869  // .align 4
870  // LDAPF_u10 r11, nest
871  // LDW_2rus r11, r11[0]
872  // STWSP_ru6 r11, sp[0]
873  // LDAPF_u10 r11, fptr
874  // LDW_2rus r11, r11[0]
875  // BAU_1r r11
876  // nest:
877  // .word nest
878  // fptr:
879  // .word fptr
880  SDValue OutChains[5];
881
882  SDValue Addr = Trmp;
883
884  SDLoc dl(Op);
885  OutChains[0] =
886      DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, dl, MVT::i32), Addr,
887                   MachinePointerInfo(TrmpAddr));
888
889  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
890                     DAG.getConstant(4, dl, MVT::i32));
891  OutChains[1] =
892      DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, dl, MVT::i32), Addr,
893                   MachinePointerInfo(TrmpAddr, 4));
894
895  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
896                     DAG.getConstant(8, dl, MVT::i32));
897  OutChains[2] =
898      DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, dl, MVT::i32), Addr,
899                   MachinePointerInfo(TrmpAddr, 8));
900
901  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
902                     DAG.getConstant(12, dl, MVT::i32));
903  OutChains[3] =
904      DAG.getStore(Chain, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 12));
905
906  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
907                     DAG.getConstant(16, dl, MVT::i32));
908  OutChains[4] =
909      DAG.getStore(Chain, dl, FPtr, Addr, MachinePointerInfo(TrmpAddr, 16));
910
911  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
912}
913
914SDValue XCoreTargetLowering::
915LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
916  SDLoc DL(Op);
917  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
918  switch (IntNo) {
919    case Intrinsic::xcore_crc8:
920      EVT VT = Op.getValueType();
921      SDValue Data =
922        DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
923                    Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
924      SDValue Crc(Data.getNode(), 1);
925      SDValue Results[] = { Crc, Data };
926      return DAG.getMergeValues(Results, DL);
927  }
928  return SDValue();
929}
930
931SDValue XCoreTargetLowering::
932LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
933  SDLoc DL(Op);
934  return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
935}
936
937SDValue XCoreTargetLowering::
938LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
939  AtomicSDNode *N = cast<AtomicSDNode>(Op);
940  assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
941  assert((N->getOrdering() == AtomicOrdering::Unordered ||
942          N->getOrdering() == AtomicOrdering::Monotonic) &&
943         "setInsertFencesForAtomic(true) expects unordered / monotonic");
944  if (N->getMemoryVT() == MVT::i32) {
945    if (N->getAlignment() < 4)
946      report_fatal_error("atomic load must be aligned");
947    return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
948                       N->getChain(), N->getBasePtr(), N->getPointerInfo(),
949                       N->getAlignment(), N->getMemOperand()->getFlags(),
950                       N->getAAInfo(), N->getRanges());
951  }
952  if (N->getMemoryVT() == MVT::i16) {
953    if (N->getAlignment() < 2)
954      report_fatal_error("atomic load must be aligned");
955    return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
956                          N->getBasePtr(), N->getPointerInfo(), MVT::i16,
957                          N->getAlignment(), N->getMemOperand()->getFlags(),
958                          N->getAAInfo());
959  }
960  if (N->getMemoryVT() == MVT::i8)
961    return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
962                          N->getBasePtr(), N->getPointerInfo(), MVT::i8,
963                          N->getAlignment(), N->getMemOperand()->getFlags(),
964                          N->getAAInfo());
965  return SDValue();
966}
967
968SDValue XCoreTargetLowering::
969LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
970  AtomicSDNode *N = cast<AtomicSDNode>(Op);
971  assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
972  assert((N->getOrdering() == AtomicOrdering::Unordered ||
973          N->getOrdering() == AtomicOrdering::Monotonic) &&
974         "setInsertFencesForAtomic(true) expects unordered / monotonic");
975  if (N->getMemoryVT() == MVT::i32) {
976    if (N->getAlignment() < 4)
977      report_fatal_error("atomic store must be aligned");
978    return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(), N->getBasePtr(),
979                        N->getPointerInfo(), N->getAlignment(),
980                        N->getMemOperand()->getFlags(), N->getAAInfo());
981  }
982  if (N->getMemoryVT() == MVT::i16) {
983    if (N->getAlignment() < 2)
984      report_fatal_error("atomic store must be aligned");
985    return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
986                             N->getBasePtr(), N->getPointerInfo(), MVT::i16,
987                             N->getAlignment(), N->getMemOperand()->getFlags(),
988                             N->getAAInfo());
989  }
990  if (N->getMemoryVT() == MVT::i8)
991    return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
992                             N->getBasePtr(), N->getPointerInfo(), MVT::i8,
993                             N->getAlignment(), N->getMemOperand()->getFlags(),
994                             N->getAAInfo());
995  return SDValue();
996}
997
998MachineMemOperand::Flags
999XCoreTargetLowering::getMMOFlags(const Instruction &I) const {
1000  // Because of how we convert atomic_load and atomic_store to normal loads and
1001  // stores in the DAG, we need to ensure that the MMOs are marked volatile
1002  // since DAGCombine hasn't been updated to account for atomic, but non
1003  // volatile loads.  (See D57601)
1004  if (auto *SI = dyn_cast<StoreInst>(&I))
1005    if (SI->isAtomic())
1006      return MachineMemOperand::MOVolatile;
1007  if (auto *LI = dyn_cast<LoadInst>(&I))
1008    if (LI->isAtomic())
1009      return MachineMemOperand::MOVolatile;
1010  if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
1011    if (AI->isAtomic())
1012      return MachineMemOperand::MOVolatile;
1013  if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
1014    if (AI->isAtomic())
1015      return MachineMemOperand::MOVolatile;
1016  return MachineMemOperand::MONone;
1017}
1018
1019//===----------------------------------------------------------------------===//
1020//                      Calling Convention Implementation
1021//===----------------------------------------------------------------------===//
1022
1023#include "XCoreGenCallingConv.inc"
1024
1025//===----------------------------------------------------------------------===//
1026//                  Call Calling Convention Implementation
1027//===----------------------------------------------------------------------===//
1028
1029/// XCore call implementation
1030SDValue
1031XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1032                               SmallVectorImpl<SDValue> &InVals) const {
1033  SelectionDAG &DAG                     = CLI.DAG;
1034  SDLoc &dl                             = CLI.DL;
1035  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1036  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1037  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1038  SDValue Chain                         = CLI.Chain;
1039  SDValue Callee                        = CLI.Callee;
1040  bool &isTailCall                      = CLI.IsTailCall;
1041  CallingConv::ID CallConv              = CLI.CallConv;
1042  bool isVarArg                         = CLI.IsVarArg;
1043
1044  // XCore target does not yet support tail call optimization.
1045  isTailCall = false;
1046
1047  // For now, only CallingConv::C implemented
1048  switch (CallConv)
1049  {
1050    default:
1051      report_fatal_error("Unsupported calling convention");
1052    case CallingConv::Fast:
1053    case CallingConv::C:
1054      return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
1055                            Outs, OutVals, Ins, dl, DAG, InVals);
1056  }
1057}
1058
1059/// LowerCallResult - Lower the result values of a call into the
1060/// appropriate copies out of appropriate physical registers / memory locations.
1061static SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
1062                               const SmallVectorImpl<CCValAssign> &RVLocs,
1063                               const SDLoc &dl, SelectionDAG &DAG,
1064                               SmallVectorImpl<SDValue> &InVals) {
1065  SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
1066  // Copy results out of physical registers.
1067  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1068    const CCValAssign &VA = RVLocs[i];
1069    if (VA.isRegLoc()) {
1070      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
1071                                 InFlag).getValue(1);
1072      InFlag = Chain.getValue(2);
1073      InVals.push_back(Chain.getValue(0));
1074    } else {
1075      assert(VA.isMemLoc());
1076      ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
1077                                             InVals.size()));
1078      // Reserve space for this result.
1079      InVals.push_back(SDValue());
1080    }
1081  }
1082
1083  // Copy results out of memory.
1084  SmallVector<SDValue, 4> MemOpChains;
1085  for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
1086    int offset = ResultMemLocs[i].first;
1087    unsigned index = ResultMemLocs[i].second;
1088    SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
1089    SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, dl, MVT::i32) };
1090    SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
1091    InVals[index] = load;
1092    MemOpChains.push_back(load.getValue(1));
1093  }
1094
1095  // Transform all loads nodes into one single node because
1096  // all load nodes are independent of each other.
1097  if (!MemOpChains.empty())
1098    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1099
1100  return Chain;
1101}
1102
1103/// LowerCCCCallTo - functions arguments are copied from virtual
1104/// regs to (physical regs)/(stack frame), CALLSEQ_START and
1105/// CALLSEQ_END are emitted.
1106/// TODO: isTailCall, sret.
1107SDValue XCoreTargetLowering::LowerCCCCallTo(
1108    SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
1109    bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
1110    const SmallVectorImpl<SDValue> &OutVals,
1111    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1112    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1113
1114  // Analyze operands of the call, assigning locations to each operand.
1115  SmallVector<CCValAssign, 16> ArgLocs;
1116  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1117                 *DAG.getContext());
1118
1119  // The ABI dictates there should be one stack slot available to the callee
1120  // on function entry (for saving lr).
1121  CCInfo.AllocateStack(4, 4);
1122
1123  CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
1124
1125  SmallVector<CCValAssign, 16> RVLocs;
1126  // Analyze return values to determine the number of bytes of stack required.
1127  CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1128                    *DAG.getContext());
1129  RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4);
1130  RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
1131
1132  // Get a count of how many bytes are to be pushed on the stack.
1133  unsigned NumBytes = RetCCInfo.getNextStackOffset();
1134  auto PtrVT = getPointerTy(DAG.getDataLayout());
1135
1136  Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
1137
1138  SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
1139  SmallVector<SDValue, 12> MemOpChains;
1140
1141  // Walk the register/memloc assignments, inserting copies/loads.
1142  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1143    CCValAssign &VA = ArgLocs[i];
1144    SDValue Arg = OutVals[i];
1145
1146    // Promote the value if needed.
1147    switch (VA.getLocInfo()) {
1148      default: llvm_unreachable("Unknown loc info!");
1149      case CCValAssign::Full: break;
1150      case CCValAssign::SExt:
1151        Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1152        break;
1153      case CCValAssign::ZExt:
1154        Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1155        break;
1156      case CCValAssign::AExt:
1157        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1158        break;
1159    }
1160
1161    // Arguments that can be passed on register must be kept at
1162    // RegsToPass vector
1163    if (VA.isRegLoc()) {
1164      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1165    } else {
1166      assert(VA.isMemLoc());
1167
1168      int Offset = VA.getLocMemOffset();
1169
1170      MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
1171                                        Chain, Arg,
1172                                        DAG.getConstant(Offset/4, dl,
1173                                                        MVT::i32)));
1174    }
1175  }
1176
1177  // Transform all store nodes into one single node because
1178  // all store nodes are independent of each other.
1179  if (!MemOpChains.empty())
1180    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1181
1182  // Build a sequence of copy-to-reg nodes chained together with token
1183  // chain and flag operands which copy the outgoing args into registers.
1184  // The InFlag in necessary since all emitted instructions must be
1185  // stuck together.
1186  SDValue InFlag;
1187  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1188    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1189                             RegsToPass[i].second, InFlag);
1190    InFlag = Chain.getValue(1);
1191  }
1192
1193  // If the callee is a GlobalAddress node (quite common, every direct call is)
1194  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1195  // Likewise ExternalSymbol -> TargetExternalSymbol.
1196  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1197    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
1198  else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1199    Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
1200
1201  // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
1202  //             = Chain, Callee, Reg#1, Reg#2, ...
1203  //
1204  // Returns a chain & a flag for retval copy to use.
1205  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1206  SmallVector<SDValue, 8> Ops;
1207  Ops.push_back(Chain);
1208  Ops.push_back(Callee);
1209
1210  // Add argument registers to the end of the list so that they are
1211  // known live into the call.
1212  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1213    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1214                                  RegsToPass[i].second.getValueType()));
1215
1216  if (InFlag.getNode())
1217    Ops.push_back(InFlag);
1218
1219  Chain  = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
1220  InFlag = Chain.getValue(1);
1221
1222  // Create the CALLSEQ_END node.
1223  Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true),
1224                             DAG.getConstant(0, dl, PtrVT, true), InFlag, dl);
1225  InFlag = Chain.getValue(1);
1226
1227  // Handle result values, copying them out of physregs into vregs that we
1228  // return.
1229  return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
1230}
1231
1232//===----------------------------------------------------------------------===//
1233//             Formal Arguments Calling Convention Implementation
1234//===----------------------------------------------------------------------===//
1235
1236namespace {
1237  struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
1238}
1239
1240/// XCore formal arguments implementation
1241SDValue XCoreTargetLowering::LowerFormalArguments(
1242    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1243    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1244    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1245  switch (CallConv)
1246  {
1247    default:
1248      report_fatal_error("Unsupported calling convention");
1249    case CallingConv::C:
1250    case CallingConv::Fast:
1251      return LowerCCCArguments(Chain, CallConv, isVarArg,
1252                               Ins, dl, DAG, InVals);
1253  }
1254}
1255
1256/// LowerCCCArguments - transform physical registers into
1257/// virtual registers and generate load operations for
1258/// arguments places on the stack.
1259/// TODO: sret
1260SDValue XCoreTargetLowering::LowerCCCArguments(
1261    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1262    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1263    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1264  MachineFunction &MF = DAG.getMachineFunction();
1265  MachineFrameInfo &MFI = MF.getFrameInfo();
1266  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1267  XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1268
1269  // Assign locations to all of the incoming arguments.
1270  SmallVector<CCValAssign, 16> ArgLocs;
1271  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1272                 *DAG.getContext());
1273
1274  CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
1275
1276  unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
1277
1278  unsigned LRSaveSize = StackSlotSize;
1279
1280  if (!isVarArg)
1281    XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
1282
1283  // All getCopyFromReg ops must precede any getMemcpys to prevent the
1284  // scheduler clobbering a register before it has been copied.
1285  // The stages are:
1286  // 1. CopyFromReg (and load) arg & vararg registers.
1287  // 2. Chain CopyFromReg nodes into a TokenFactor.
1288  // 3. Memcpy 'byVal' args & push final InVals.
1289  // 4. Chain mem ops nodes into a TokenFactor.
1290  SmallVector<SDValue, 4> CFRegNode;
1291  SmallVector<ArgDataPair, 4> ArgData;
1292  SmallVector<SDValue, 4> MemOps;
1293
1294  // 1a. CopyFromReg (and load) arg registers.
1295  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1296
1297    CCValAssign &VA = ArgLocs[i];
1298    SDValue ArgIn;
1299
1300    if (VA.isRegLoc()) {
1301      // Arguments passed in registers
1302      EVT RegVT = VA.getLocVT();
1303      switch (RegVT.getSimpleVT().SimpleTy) {
1304      default:
1305        {
1306#ifndef NDEBUG
1307          errs() << "LowerFormalArguments Unhandled argument type: "
1308                 << RegVT.getEVTString() << "\n";
1309#endif
1310          llvm_unreachable(nullptr);
1311        }
1312      case MVT::i32:
1313        Register VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1314        RegInfo.addLiveIn(VA.getLocReg(), VReg);
1315        ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
1316        CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
1317      }
1318    } else {
1319      // sanity check
1320      assert(VA.isMemLoc());
1321      // Load the argument to a virtual register
1322      unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
1323      if (ObjSize > StackSlotSize) {
1324        errs() << "LowerFormalArguments Unhandled argument type: "
1325               << EVT(VA.getLocVT()).getEVTString()
1326               << "\n";
1327      }
1328      // Create the frame index object for this incoming parameter...
1329      int FI = MFI.CreateFixedObject(ObjSize,
1330                                     LRSaveSize + VA.getLocMemOffset(),
1331                                     true);
1332
1333      // Create the SelectionDAG nodes corresponding to a load
1334      //from this parameter
1335      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1336      ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1337                          MachinePointerInfo::getFixedStack(MF, FI));
1338    }
1339    const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
1340    ArgData.push_back(ADP);
1341  }
1342
1343  // 1b. CopyFromReg vararg registers.
1344  if (isVarArg) {
1345    // Argument registers
1346    static const MCPhysReg ArgRegs[] = {
1347      XCore::R0, XCore::R1, XCore::R2, XCore::R3
1348    };
1349    XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1350    unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs);
1351    if (FirstVAReg < array_lengthof(ArgRegs)) {
1352      int offset = 0;
1353      // Save remaining registers, storing higher register numbers at a higher
1354      // address
1355      for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
1356        // Create a stack slot
1357        int FI = MFI.CreateFixedObject(4, offset, true);
1358        if (i == (int)FirstVAReg) {
1359          XFI->setVarArgsFrameIndex(FI);
1360        }
1361        offset -= StackSlotSize;
1362        SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1363        // Move argument from phys reg -> virt reg
1364        Register VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1365        RegInfo.addLiveIn(ArgRegs[i], VReg);
1366        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1367        CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
1368        // Move argument from virt reg -> stack
1369        SDValue Store =
1370            DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
1371        MemOps.push_back(Store);
1372      }
1373    } else {
1374      // This will point to the next argument passed via stack.
1375      XFI->setVarArgsFrameIndex(
1376        MFI.CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
1377                              true));
1378    }
1379  }
1380
1381  // 2. chain CopyFromReg nodes into a TokenFactor.
1382  if (!CFRegNode.empty())
1383    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
1384
1385  // 3. Memcpy 'byVal' args & push final InVals.
1386  // Aggregates passed "byVal" need to be copied by the callee.
1387  // The callee will use a pointer to this copy, rather than the original
1388  // pointer.
1389  for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
1390                                                    ArgDE = ArgData.end();
1391       ArgDI != ArgDE; ++ArgDI) {
1392    if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
1393      unsigned Size = ArgDI->Flags.getByValSize();
1394      unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign());
1395      // Create a new object on the stack and copy the pointee into it.
1396      int FI = MFI.CreateStackObject(Size, Align, false);
1397      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1398      InVals.push_back(FIN);
1399      MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV,
1400                                     DAG.getConstant(Size, dl, MVT::i32),
1401                                     Align, false, false, false,
1402                                     MachinePointerInfo(),
1403                                     MachinePointerInfo()));
1404    } else {
1405      InVals.push_back(ArgDI->SDV);
1406    }
1407  }
1408
1409  // 4, chain mem ops nodes into a TokenFactor.
1410  if (!MemOps.empty()) {
1411    MemOps.push_back(Chain);
1412    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
1413  }
1414
1415  return Chain;
1416}
1417
1418//===----------------------------------------------------------------------===//
1419//               Return Value Calling Convention Implementation
1420//===----------------------------------------------------------------------===//
1421
1422bool XCoreTargetLowering::
1423CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1424               bool isVarArg,
1425               const SmallVectorImpl<ISD::OutputArg> &Outs,
1426               LLVMContext &Context) const {
1427  SmallVector<CCValAssign, 16> RVLocs;
1428  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1429  if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
1430    return false;
1431  if (CCInfo.getNextStackOffset() != 0 && isVarArg)
1432    return false;
1433  return true;
1434}
1435
1436SDValue
1437XCoreTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1438                                 bool isVarArg,
1439                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
1440                                 const SmallVectorImpl<SDValue> &OutVals,
1441                                 const SDLoc &dl, SelectionDAG &DAG) const {
1442
1443  XCoreFunctionInfo *XFI =
1444    DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
1445  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1446
1447  // CCValAssign - represent the assignment of
1448  // the return value to a location
1449  SmallVector<CCValAssign, 16> RVLocs;
1450
1451  // CCState - Info about the registers and stack slot.
1452  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1453                 *DAG.getContext());
1454
1455  // Analyze return values.
1456  if (!isVarArg)
1457    CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4);
1458
1459  CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
1460
1461  SDValue Flag;
1462  SmallVector<SDValue, 4> RetOps(1, Chain);
1463
1464  // Return on XCore is always a "retsp 0"
1465  RetOps.push_back(DAG.getConstant(0, dl, MVT::i32));
1466
1467  SmallVector<SDValue, 4> MemOpChains;
1468  // Handle return values that must be copied to memory.
1469  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1470    CCValAssign &VA = RVLocs[i];
1471    if (VA.isRegLoc())
1472      continue;
1473    assert(VA.isMemLoc());
1474    if (isVarArg) {
1475      report_fatal_error("Can't return value from vararg function in memory");
1476    }
1477
1478    int Offset = VA.getLocMemOffset();
1479    unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
1480    // Create the frame index object for the memory location.
1481    int FI = MFI.CreateFixedObject(ObjSize, Offset, false);
1482
1483    // Create a SelectionDAG node corresponding to a store
1484    // to this memory location.
1485    SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1486    MemOpChains.push_back(DAG.getStore(
1487        Chain, dl, OutVals[i], FIN,
1488        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
1489  }
1490
1491  // Transform all store nodes into one single node because
1492  // all stores are independent of each other.
1493  if (!MemOpChains.empty())
1494    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1495
1496  // Now handle return values copied to registers.
1497  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1498    CCValAssign &VA = RVLocs[i];
1499    if (!VA.isRegLoc())
1500      continue;
1501    // Copy the result values into the output registers.
1502    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1503
1504    // guarantee that all emitted copies are
1505    // stuck together, avoiding something bad
1506    Flag = Chain.getValue(1);
1507    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1508  }
1509
1510  RetOps[0] = Chain;  // Update chain.
1511
1512  // Add the flag if we have it.
1513  if (Flag.getNode())
1514    RetOps.push_back(Flag);
1515
1516  return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
1517}
1518
1519//===----------------------------------------------------------------------===//
1520//  Other Lowering Code
1521//===----------------------------------------------------------------------===//
1522
1523MachineBasicBlock *
1524XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1525                                                 MachineBasicBlock *BB) const {
1526  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1527  DebugLoc dl = MI.getDebugLoc();
1528  assert((MI.getOpcode() == XCore::SELECT_CC) &&
1529         "Unexpected instr type to insert");
1530
1531  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1532  // control-flow pattern.  The incoming instruction knows the destination vreg
1533  // to set, the condition code register to branch on, the true/false values to
1534  // select between, and a branch opcode to use.
1535  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1536  MachineFunction::iterator It = ++BB->getIterator();
1537
1538  //  thisMBB:
1539  //  ...
1540  //   TrueVal = ...
1541  //   cmpTY ccX, r1, r2
1542  //   bCC copy1MBB
1543  //   fallthrough --> copy0MBB
1544  MachineBasicBlock *thisMBB = BB;
1545  MachineFunction *F = BB->getParent();
1546  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1547  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
1548  F->insert(It, copy0MBB);
1549  F->insert(It, sinkMBB);
1550
1551  // Transfer the remainder of BB and its successor edges to sinkMBB.
1552  sinkMBB->splice(sinkMBB->begin(), BB,
1553                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1554  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1555
1556  // Next, add the true and fallthrough blocks as its successors.
1557  BB->addSuccessor(copy0MBB);
1558  BB->addSuccessor(sinkMBB);
1559
1560  BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
1561      .addReg(MI.getOperand(1).getReg())
1562      .addMBB(sinkMBB);
1563
1564  //  copy0MBB:
1565  //   %FalseValue = ...
1566  //   # fallthrough to sinkMBB
1567  BB = copy0MBB;
1568
1569  // Update machine-CFG edges
1570  BB->addSuccessor(sinkMBB);
1571
1572  //  sinkMBB:
1573  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1574  //  ...
1575  BB = sinkMBB;
1576  BuildMI(*BB, BB->begin(), dl, TII.get(XCore::PHI), MI.getOperand(0).getReg())
1577      .addReg(MI.getOperand(3).getReg())
1578      .addMBB(copy0MBB)
1579      .addReg(MI.getOperand(2).getReg())
1580      .addMBB(thisMBB);
1581
1582  MI.eraseFromParent(); // The pseudo instruction is gone now.
1583  return BB;
1584}
1585
1586//===----------------------------------------------------------------------===//
1587// Target Optimization Hooks
1588//===----------------------------------------------------------------------===//
1589
1590SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
1591                                             DAGCombinerInfo &DCI) const {
1592  SelectionDAG &DAG = DCI.DAG;
1593  SDLoc dl(N);
1594  switch (N->getOpcode()) {
1595  default: break;
1596  case ISD::INTRINSIC_VOID:
1597    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
1598    case Intrinsic::xcore_outt:
1599    case Intrinsic::xcore_outct:
1600    case Intrinsic::xcore_chkct: {
1601      SDValue OutVal = N->getOperand(3);
1602      // These instructions ignore the high bits.
1603      if (OutVal.hasOneUse()) {
1604        unsigned BitWidth = OutVal.getValueSizeInBits();
1605        APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
1606        KnownBits Known;
1607        TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1608                                              !DCI.isBeforeLegalizeOps());
1609        const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1610        if (TLI.ShrinkDemandedConstant(OutVal, DemandedMask, TLO) ||
1611            TLI.SimplifyDemandedBits(OutVal, DemandedMask, Known, TLO))
1612          DCI.CommitTargetLoweringOpt(TLO);
1613      }
1614      break;
1615    }
1616    case Intrinsic::xcore_setpt: {
1617      SDValue Time = N->getOperand(3);
1618      // This instruction ignores the high bits.
1619      if (Time.hasOneUse()) {
1620        unsigned BitWidth = Time.getValueSizeInBits();
1621        APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
1622        KnownBits Known;
1623        TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1624                                              !DCI.isBeforeLegalizeOps());
1625        const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1626        if (TLI.ShrinkDemandedConstant(Time, DemandedMask, TLO) ||
1627            TLI.SimplifyDemandedBits(Time, DemandedMask, Known, TLO))
1628          DCI.CommitTargetLoweringOpt(TLO);
1629      }
1630      break;
1631    }
1632    }
1633    break;
1634  case XCoreISD::LADD: {
1635    SDValue N0 = N->getOperand(0);
1636    SDValue N1 = N->getOperand(1);
1637    SDValue N2 = N->getOperand(2);
1638    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1639    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1640    EVT VT = N0.getValueType();
1641
1642    // canonicalize constant to RHS
1643    if (N0C && !N1C)
1644      return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
1645
1646    // fold (ladd 0, 0, x) -> 0, x & 1
1647    if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1648      SDValue Carry = DAG.getConstant(0, dl, VT);
1649      SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
1650                                   DAG.getConstant(1, dl, VT));
1651      SDValue Ops[] = { Result, Carry };
1652      return DAG.getMergeValues(Ops, dl);
1653    }
1654
1655    // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
1656    // low bit set
1657    if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1658      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1659                                         VT.getSizeInBits() - 1);
1660      KnownBits Known = DAG.computeKnownBits(N2);
1661      if ((Known.Zero & Mask) == Mask) {
1662        SDValue Carry = DAG.getConstant(0, dl, VT);
1663        SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
1664        SDValue Ops[] = { Result, Carry };
1665        return DAG.getMergeValues(Ops, dl);
1666      }
1667    }
1668  }
1669  break;
1670  case XCoreISD::LSUB: {
1671    SDValue N0 = N->getOperand(0);
1672    SDValue N1 = N->getOperand(1);
1673    SDValue N2 = N->getOperand(2);
1674    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1675    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1676    EVT VT = N0.getValueType();
1677
1678    // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
1679    if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1680      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1681                                         VT.getSizeInBits() - 1);
1682      KnownBits Known = DAG.computeKnownBits(N2);
1683      if ((Known.Zero & Mask) == Mask) {
1684        SDValue Borrow = N2;
1685        SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
1686                                     DAG.getConstant(0, dl, VT), N2);
1687        SDValue Ops[] = { Result, Borrow };
1688        return DAG.getMergeValues(Ops, dl);
1689      }
1690    }
1691
1692    // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
1693    // low bit set
1694    if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1695      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1696                                         VT.getSizeInBits() - 1);
1697      KnownBits Known = DAG.computeKnownBits(N2);
1698      if ((Known.Zero & Mask) == Mask) {
1699        SDValue Borrow = DAG.getConstant(0, dl, VT);
1700        SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
1701        SDValue Ops[] = { Result, Borrow };
1702        return DAG.getMergeValues(Ops, dl);
1703      }
1704    }
1705  }
1706  break;
1707  case XCoreISD::LMUL: {
1708    SDValue N0 = N->getOperand(0);
1709    SDValue N1 = N->getOperand(1);
1710    SDValue N2 = N->getOperand(2);
1711    SDValue N3 = N->getOperand(3);
1712    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1713    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1714    EVT VT = N0.getValueType();
1715    // Canonicalize multiplicative constant to RHS. If both multiplicative
1716    // operands are constant canonicalize smallest to RHS.
1717    if ((N0C && !N1C) ||
1718        (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
1719      return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
1720                         N1, N0, N2, N3);
1721
1722    // lmul(x, 0, a, b)
1723    if (N1C && N1C->isNullValue()) {
1724      // If the high result is unused fold to add(a, b)
1725      if (N->hasNUsesOfValue(0, 0)) {
1726        SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
1727        SDValue Ops[] = { Lo, Lo };
1728        return DAG.getMergeValues(Ops, dl);
1729      }
1730      // Otherwise fold to ladd(a, b, 0)
1731      SDValue Result =
1732        DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
1733      SDValue Carry(Result.getNode(), 1);
1734      SDValue Ops[] = { Carry, Result };
1735      return DAG.getMergeValues(Ops, dl);
1736    }
1737  }
1738  break;
1739  case ISD::ADD: {
1740    // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
1741    // lmul(x, y, a, b). The high result of lmul will be ignored.
1742    // This is only profitable if the intermediate results are unused
1743    // elsewhere.
1744    SDValue Mul0, Mul1, Addend0, Addend1;
1745    if (N->getValueType(0) == MVT::i32 &&
1746        isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
1747      SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
1748                                    DAG.getVTList(MVT::i32, MVT::i32), Mul0,
1749                                    Mul1, Addend0, Addend1);
1750      SDValue Result(Ignored.getNode(), 1);
1751      return Result;
1752    }
1753    APInt HighMask = APInt::getHighBitsSet(64, 32);
1754    // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
1755    // lmul(x, y, a, b) if all operands are zero-extended. We do this
1756    // before type legalization as it is messy to match the operands after
1757    // that.
1758    if (N->getValueType(0) == MVT::i64 &&
1759        isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
1760        DAG.MaskedValueIsZero(Mul0, HighMask) &&
1761        DAG.MaskedValueIsZero(Mul1, HighMask) &&
1762        DAG.MaskedValueIsZero(Addend0, HighMask) &&
1763        DAG.MaskedValueIsZero(Addend1, HighMask)) {
1764      SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1765                                  Mul0, DAG.getConstant(0, dl, MVT::i32));
1766      SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1767                                  Mul1, DAG.getConstant(0, dl, MVT::i32));
1768      SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1769                                     Addend0, DAG.getConstant(0, dl, MVT::i32));
1770      SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1771                                     Addend1, DAG.getConstant(0, dl, MVT::i32));
1772      SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
1773                               DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
1774                               Addend0L, Addend1L);
1775      SDValue Lo(Hi.getNode(), 1);
1776      return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
1777    }
1778  }
1779  break;
1780  case ISD::STORE: {
1781    // Replace unaligned store of unaligned load with memmove.
1782    StoreSDNode *ST = cast<StoreSDNode>(N);
1783    if (!DCI.isBeforeLegalize() ||
1784        allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
1785                                       ST->getMemoryVT(),
1786                                       *ST->getMemOperand()) ||
1787        ST->isVolatile() || ST->isIndexed()) {
1788      break;
1789    }
1790    SDValue Chain = ST->getChain();
1791
1792    unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
1793    assert((StoreBits % 8) == 0 &&
1794           "Store size in bits must be a multiple of 8");
1795    unsigned Alignment = ST->getAlignment();
1796
1797    if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
1798      if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
1799        LD->getAlignment() == Alignment &&
1800        !LD->isVolatile() && !LD->isIndexed() &&
1801        Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
1802        bool isTail = isInTailCallPosition(DAG, ST, Chain);
1803        return DAG.getMemmove(Chain, dl, ST->getBasePtr(),
1804                              LD->getBasePtr(),
1805                              DAG.getConstant(StoreBits/8, dl, MVT::i32),
1806                              Alignment, false, isTail, ST->getPointerInfo(),
1807                              LD->getPointerInfo());
1808      }
1809    }
1810    break;
1811  }
1812  }
1813  return SDValue();
1814}
1815
1816void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1817                                                        KnownBits &Known,
1818                                                        const APInt &DemandedElts,
1819                                                        const SelectionDAG &DAG,
1820                                                        unsigned Depth) const {
1821  Known.resetAll();
1822  switch (Op.getOpcode()) {
1823  default: break;
1824  case XCoreISD::LADD:
1825  case XCoreISD::LSUB:
1826    if (Op.getResNo() == 1) {
1827      // Top bits of carry / borrow are clear.
1828      Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1829                                         Known.getBitWidth() - 1);
1830    }
1831    break;
1832  case ISD::INTRINSIC_W_CHAIN:
1833    {
1834      unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1835      switch (IntNo) {
1836      case Intrinsic::xcore_getts:
1837        // High bits are known to be zero.
1838        Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1839                                           Known.getBitWidth() - 16);
1840        break;
1841      case Intrinsic::xcore_int:
1842      case Intrinsic::xcore_inct:
1843        // High bits are known to be zero.
1844        Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1845                                           Known.getBitWidth() - 8);
1846        break;
1847      case Intrinsic::xcore_testct:
1848        // Result is either 0 or 1.
1849        Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1850                                           Known.getBitWidth() - 1);
1851        break;
1852      case Intrinsic::xcore_testwct:
1853        // Result is in the range 0 - 4.
1854        Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1855                                           Known.getBitWidth() - 3);
1856        break;
1857      }
1858    }
1859    break;
1860  }
1861}
1862
1863//===----------------------------------------------------------------------===//
1864//  Addressing mode description hooks
1865//===----------------------------------------------------------------------===//
1866
1867static inline bool isImmUs(int64_t val)
1868{
1869  return (val >= 0 && val <= 11);
1870}
1871
1872static inline bool isImmUs2(int64_t val)
1873{
1874  return (val%2 == 0 && isImmUs(val/2));
1875}
1876
1877static inline bool isImmUs4(int64_t val)
1878{
1879  return (val%4 == 0 && isImmUs(val/4));
1880}
1881
1882/// isLegalAddressingMode - Return true if the addressing mode represented
1883/// by AM is legal for this target, for a load/store of the specified type.
1884bool XCoreTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1885                                                const AddrMode &AM, Type *Ty,
1886                                                unsigned AS,
1887                                                Instruction *I) const {
1888  if (Ty->getTypeID() == Type::VoidTyID)
1889    return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
1890
1891  unsigned Size = DL.getTypeAllocSize(Ty);
1892  if (AM.BaseGV) {
1893    return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
1894                 AM.BaseOffs%4 == 0;
1895  }
1896
1897  switch (Size) {
1898  case 1:
1899    // reg + imm
1900    if (AM.Scale == 0) {
1901      return isImmUs(AM.BaseOffs);
1902    }
1903    // reg + reg
1904    return AM.Scale == 1 && AM.BaseOffs == 0;
1905  case 2:
1906  case 3:
1907    // reg + imm
1908    if (AM.Scale == 0) {
1909      return isImmUs2(AM.BaseOffs);
1910    }
1911    // reg + reg<<1
1912    return AM.Scale == 2 && AM.BaseOffs == 0;
1913  default:
1914    // reg + imm
1915    if (AM.Scale == 0) {
1916      return isImmUs4(AM.BaseOffs);
1917    }
1918    // reg + reg<<2
1919    return AM.Scale == 4 && AM.BaseOffs == 0;
1920  }
1921}
1922
1923//===----------------------------------------------------------------------===//
1924//                           XCore Inline Assembly Support
1925//===----------------------------------------------------------------------===//
1926
1927std::pair<unsigned, const TargetRegisterClass *>
1928XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1929                                                  StringRef Constraint,
1930                                                  MVT VT) const {
1931  if (Constraint.size() == 1) {
1932    switch (Constraint[0]) {
1933    default : break;
1934    case 'r':
1935      return std::make_pair(0U, &XCore::GRRegsRegClass);
1936    }
1937  }
1938  // Use the default implementation in TargetLowering to convert the register
1939  // constraint into a member of a register class.
1940  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1941}
1942