X86TargetMachine.cpp revision 363496
1146890Speter//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
2146890Speter//
3146890Speter// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4146890Speter// See https://llvm.org/LICENSE.txt for license information.
5146890Speter// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6146890Speter//
7146890Speter//===----------------------------------------------------------------------===//
8146890Speter//
9146891Speter// This file defines the X86 specific subclass of TargetMachine.
10179574Speter//
11179574Speter//===----------------------------------------------------------------------===//
12179574Speter
13179574Speter#include "X86TargetMachine.h"
14244822Speter#include "MCTargetDesc/X86MCTargetDesc.h"
15255635Strasz#include "TargetInfo/X86TargetInfo.h"
16255635Strasz#include "X86.h"
17255635Strasz#include "X86CallLowering.h"
18255635Strasz#include "X86LegalizerInfo.h"
19#include "X86MacroFusion.h"
20#include "X86Subtarget.h"
21#include "X86TargetObjectFile.h"
22#include "X86TargetTransformInfo.h"
23#include "llvm/ADT/Optional.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/ADT/StringRef.h"
27#include "llvm/ADT/Triple.h"
28#include "llvm/Analysis/TargetTransformInfo.h"
29#include "llvm/CodeGen/ExecutionDomainFix.h"
30#include "llvm/CodeGen/GlobalISel/CallLowering.h"
31#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
32#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
33#include "llvm/CodeGen/GlobalISel/Legalizer.h"
34#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
35#include "llvm/CodeGen/MachineScheduler.h"
36#include "llvm/CodeGen/Passes.h"
37#include "llvm/CodeGen/TargetPassConfig.h"
38#include "llvm/IR/Attributes.h"
39#include "llvm/IR/DataLayout.h"
40#include "llvm/IR/Function.h"
41#include "llvm/MC/MCAsmInfo.h"
42#include "llvm/Pass.h"
43#include "llvm/Support/CodeGen.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/TargetRegistry.h"
47#include "llvm/Target/TargetLoweringObjectFile.h"
48#include "llvm/Target/TargetOptions.h"
49#include "llvm/Transforms/CFGuard.h"
50#include <memory>
51#include <string>
52
53using namespace llvm;
54
55static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
56                               cl::desc("Enable the machine combiner pass"),
57                               cl::init(true), cl::Hidden);
58
59static cl::opt<bool> EnableCondBrFoldingPass("x86-condbr-folding",
60                               cl::desc("Enable the conditional branch "
61                                        "folding pass"),
62                               cl::init(false), cl::Hidden);
63
64extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() {
65  // Register the target.
66  RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
67  RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());
68
69  PassRegistry &PR = *PassRegistry::getPassRegistry();
70  initializeGlobalISel(PR);
71  initializeWinEHStatePassPass(PR);
72  initializeFixupBWInstPassPass(PR);
73  initializeEvexToVexInstPassPass(PR);
74  initializeFixupLEAPassPass(PR);
75  initializeFPSPass(PR);
76  initializeX86CallFrameOptimizationPass(PR);
77  initializeX86CmovConverterPassPass(PR);
78  initializeX86ExpandPseudoPass(PR);
79  initializeX86ExecutionDomainFixPass(PR);
80  initializeX86DomainReassignmentPass(PR);
81  initializeX86AvoidSFBPassPass(PR);
82  initializeX86SpeculativeLoadHardeningPassPass(PR);
83  initializeX86FlagsCopyLoweringPassPass(PR);
84  initializeX86CondBrFoldingPassPass(PR);
85  initializeX86LoadValueInjectionLoadHardeningPassPass(PR);
86  initializeX86LoadValueInjectionRetHardeningPassPass(PR);
87  initializeX86OptimizeLEAPassPass(PR);
88}
89
90static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
91  if (TT.isOSBinFormatMachO()) {
92    if (TT.getArch() == Triple::x86_64)
93      return std::make_unique<X86_64MachoTargetObjectFile>();
94    return std::make_unique<TargetLoweringObjectFileMachO>();
95  }
96
97  if (TT.isOSFreeBSD())
98    return std::make_unique<X86FreeBSDTargetObjectFile>();
99  if (TT.isOSLinux() || TT.isOSNaCl() || TT.isOSIAMCU())
100    return std::make_unique<X86LinuxNaClTargetObjectFile>();
101  if (TT.isOSSolaris())
102    return std::make_unique<X86SolarisTargetObjectFile>();
103  if (TT.isOSFuchsia())
104    return std::make_unique<X86FuchsiaTargetObjectFile>();
105  if (TT.isOSBinFormatELF())
106    return std::make_unique<X86ELFTargetObjectFile>();
107  if (TT.isOSBinFormatCOFF())
108    return std::make_unique<TargetLoweringObjectFileCOFF>();
109  llvm_unreachable("unknown subtarget type");
110}
111
112static std::string computeDataLayout(const Triple &TT) {
113  // X86 is little endian
114  std::string Ret = "e";
115
116  Ret += DataLayout::getManglingComponent(TT);
117  // X86 and x32 have 32 bit pointers.
118  if ((TT.isArch64Bit() &&
119       (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
120      !TT.isArch64Bit())
121    Ret += "-p:32:32";
122
123  // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers.
124  Ret += "-p270:32:32-p271:32:32-p272:64:64";
125
126  // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
127  if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
128    Ret += "-i64:64";
129  else if (TT.isOSIAMCU())
130    Ret += "-i64:32-f64:32";
131  else
132    Ret += "-f64:32:64";
133
134  // Some ABIs align long double to 128 bits, others to 32.
135  if (TT.isOSNaCl() || TT.isOSIAMCU())
136    ; // No f80
137  else if (TT.isArch64Bit() || TT.isOSDarwin())
138    Ret += "-f80:128";
139  else
140    Ret += "-f80:32";
141
142  if (TT.isOSIAMCU())
143    Ret += "-f128:32";
144
145  // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
146  if (TT.isArch64Bit())
147    Ret += "-n8:16:32:64";
148  else
149    Ret += "-n8:16:32";
150
151  // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
152  if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
153    Ret += "-a:0:32-S32";
154  else
155    Ret += "-S128";
156
157  return Ret;
158}
159
160static Reloc::Model getEffectiveRelocModel(const Triple &TT,
161                                           bool JIT,
162                                           Optional<Reloc::Model> RM) {
163  bool is64Bit = TT.getArch() == Triple::x86_64;
164  if (!RM.hasValue()) {
165    // JIT codegen should use static relocations by default, since it's
166    // typically executed in process and not relocatable.
167    if (JIT)
168      return Reloc::Static;
169
170    // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
171    // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
172    // use static relocation model by default.
173    if (TT.isOSDarwin()) {
174      if (is64Bit)
175        return Reloc::PIC_;
176      return Reloc::DynamicNoPIC;
177    }
178    if (TT.isOSWindows() && is64Bit)
179      return Reloc::PIC_;
180    return Reloc::Static;
181  }
182
183  // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC
184  // is defined as a model for code which may be used in static or dynamic
185  // executables but not necessarily a shared library. On X86-32 we just
186  // compile in -static mode, in x86-64 we use PIC.
187  if (*RM == Reloc::DynamicNoPIC) {
188    if (is64Bit)
189      return Reloc::PIC_;
190    if (!TT.isOSDarwin())
191      return Reloc::Static;
192  }
193
194  // If we are on Darwin, disallow static relocation model in X86-64 mode, since
195  // the Mach-O file format doesn't support it.
196  if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
197    return Reloc::PIC_;
198
199  return *RM;
200}
201
202static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM,
203                                                 bool JIT, bool Is64Bit) {
204  if (CM) {
205    if (*CM == CodeModel::Tiny)
206      report_fatal_error("Target does not support the tiny CodeModel", false);
207    return *CM;
208  }
209  if (JIT)
210    return Is64Bit ? CodeModel::Large : CodeModel::Small;
211  return CodeModel::Small;
212}
213
214/// Create an X86 target.
215///
216X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
217                                   StringRef CPU, StringRef FS,
218                                   const TargetOptions &Options,
219                                   Optional<Reloc::Model> RM,
220                                   Optional<CodeModel::Model> CM,
221                                   CodeGenOpt::Level OL, bool JIT)
222    : LLVMTargetMachine(
223          T, computeDataLayout(TT), TT, CPU, FS, Options,
224          getEffectiveRelocModel(TT, JIT, RM),
225          getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64),
226          OL),
227      TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) {
228  // On PS4, the "return address" of a 'noreturn' call must still be within
229  // the calling function, and TrapUnreachable is an easy way to get that.
230  if (TT.isPS4() || TT.isOSBinFormatMachO()) {
231    this->Options.TrapUnreachable = true;
232    this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO();
233  }
234
235  setMachineOutliner(true);
236
237  initAsmInfo();
238}
239
240X86TargetMachine::~X86TargetMachine() = default;
241
242const X86Subtarget *
243X86TargetMachine::getSubtargetImpl(const Function &F) const {
244  Attribute CPUAttr = F.getFnAttribute("target-cpu");
245  Attribute FSAttr = F.getFnAttribute("target-features");
246
247  StringRef CPU = !CPUAttr.hasAttribute(Attribute::None)
248                      ? CPUAttr.getValueAsString()
249                      : (StringRef)TargetCPU;
250  StringRef FS = !FSAttr.hasAttribute(Attribute::None)
251                     ? FSAttr.getValueAsString()
252                     : (StringRef)TargetFS;
253
254  SmallString<512> Key;
255  Key.reserve(CPU.size() + FS.size());
256  Key += CPU;
257  Key += FS;
258
259  // FIXME: This is related to the code below to reset the target options,
260  // we need to know whether or not the soft float flag is set on the
261  // function before we can generate a subtarget. We also need to use
262  // it as a key for the subtarget since that can be the only difference
263  // between two functions.
264  bool SoftFloat =
265      F.getFnAttribute("use-soft-float").getValueAsString() == "true";
266  // If the soft float attribute is set on the function turn on the soft float
267  // subtarget feature.
268  if (SoftFloat)
269    Key += FS.empty() ? "+soft-float" : ",+soft-float";
270
271  // Keep track of the key width after all features are added so we can extract
272  // the feature string out later.
273  unsigned CPUFSWidth = Key.size();
274
275  // Extract prefer-vector-width attribute.
276  unsigned PreferVectorWidthOverride = 0;
277  if (F.hasFnAttribute("prefer-vector-width")) {
278    StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString();
279    unsigned Width;
280    if (!Val.getAsInteger(0, Width)) {
281      Key += ",prefer-vector-width=";
282      Key += Val;
283      PreferVectorWidthOverride = Width;
284    }
285  }
286
287  // Extract min-legal-vector-width attribute.
288  unsigned RequiredVectorWidth = UINT32_MAX;
289  if (F.hasFnAttribute("min-legal-vector-width")) {
290    StringRef Val =
291        F.getFnAttribute("min-legal-vector-width").getValueAsString();
292    unsigned Width;
293    if (!Val.getAsInteger(0, Width)) {
294      Key += ",min-legal-vector-width=";
295      Key += Val;
296      RequiredVectorWidth = Width;
297    }
298  }
299
300  // Extracted here so that we make sure there is backing for the StringRef. If
301  // we assigned earlier, its possible the SmallString reallocated leaving a
302  // dangling StringRef.
303  FS = Key.slice(CPU.size(), CPUFSWidth);
304
305  auto &I = SubtargetMap[Key];
306  if (!I) {
307    // This needs to be done before we create a new subtarget since any
308    // creation will depend on the TM and the code generation flags on the
309    // function that reside in TargetOptions.
310    resetTargetOptions(F);
311    I = std::make_unique<X86Subtarget>(
312        TargetTriple, CPU, FS, *this,
313        MaybeAlign(Options.StackAlignmentOverride), PreferVectorWidthOverride,
314        RequiredVectorWidth);
315  }
316  return I.get();
317}
318
319//===----------------------------------------------------------------------===//
320// Command line options for x86
321//===----------------------------------------------------------------------===//
322static cl::opt<bool>
323UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
324  cl::desc("Minimize AVX to SSE transition penalty"),
325  cl::init(true));
326
327//===----------------------------------------------------------------------===//
328// X86 TTI query.
329//===----------------------------------------------------------------------===//
330
331TargetTransformInfo
332X86TargetMachine::getTargetTransformInfo(const Function &F) {
333  return TargetTransformInfo(X86TTIImpl(this, F));
334}
335
336//===----------------------------------------------------------------------===//
337// Pass Pipeline Configuration
338//===----------------------------------------------------------------------===//
339
340namespace {
341
342/// X86 Code Generator Pass Configuration Options.
343class X86PassConfig : public TargetPassConfig {
344public:
345  X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
346    : TargetPassConfig(TM, PM) {}
347
348  X86TargetMachine &getX86TargetMachine() const {
349    return getTM<X86TargetMachine>();
350  }
351
352  ScheduleDAGInstrs *
353  createMachineScheduler(MachineSchedContext *C) const override {
354    ScheduleDAGMILive *DAG = createGenericSchedLive(C);
355    DAG->addMutation(createX86MacroFusionDAGMutation());
356    return DAG;
357  }
358
359  ScheduleDAGInstrs *
360  createPostMachineScheduler(MachineSchedContext *C) const override {
361    ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
362    DAG->addMutation(createX86MacroFusionDAGMutation());
363    return DAG;
364  }
365
366  void addIRPasses() override;
367  bool addInstSelector() override;
368  bool addIRTranslator() override;
369  bool addLegalizeMachineIR() override;
370  bool addRegBankSelect() override;
371  bool addGlobalInstructionSelect() override;
372  bool addILPOpts() override;
373  bool addPreISel() override;
374  void addMachineSSAOptimization() override;
375  void addPreRegAlloc() override;
376  void addPostRegAlloc() override;
377  void addPreEmitPass() override;
378  void addPreEmitPass2() override;
379  void addPreSched2() override;
380
381  std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
382};
383
384class X86ExecutionDomainFix : public ExecutionDomainFix {
385public:
386  static char ID;
387  X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
388  StringRef getPassName() const override {
389    return "X86 Execution Dependency Fix";
390  }
391};
392char X86ExecutionDomainFix::ID;
393
394} // end anonymous namespace
395
396INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
397  "X86 Execution Domain Fix", false, false)
398INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
399INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
400  "X86 Execution Domain Fix", false, false)
401
402TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
403  return new X86PassConfig(*this, PM);
404}
405
406void X86PassConfig::addIRPasses() {
407  addPass(createAtomicExpandPass());
408
409  TargetPassConfig::addIRPasses();
410
411  if (TM->getOptLevel() != CodeGenOpt::None)
412    addPass(createInterleavedAccessPass());
413
414  // Add passes that handle indirect branch removal and insertion of a retpoline
415  // thunk. These will be a no-op unless a function subtarget has the retpoline
416  // feature enabled.
417  addPass(createIndirectBrExpandPass());
418
419  // Add Control Flow Guard checks.
420  const Triple &TT = TM->getTargetTriple();
421  if (TT.isOSWindows()) {
422    if (TT.getArch() == Triple::x86_64) {
423      addPass(createCFGuardDispatchPass());
424    } else {
425      addPass(createCFGuardCheckPass());
426    }
427  }
428}
429
430bool X86PassConfig::addInstSelector() {
431  // Install an instruction selector.
432  addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
433
434  // For ELF, cleanup any local-dynamic TLS accesses.
435  if (TM->getTargetTriple().isOSBinFormatELF() &&
436      getOptLevel() != CodeGenOpt::None)
437    addPass(createCleanupLocalDynamicTLSPass());
438
439  addPass(createX86GlobalBaseRegPass());
440  return false;
441}
442
443bool X86PassConfig::addIRTranslator() {
444  addPass(new IRTranslator());
445  return false;
446}
447
448bool X86PassConfig::addLegalizeMachineIR() {
449  addPass(new Legalizer());
450  return false;
451}
452
453bool X86PassConfig::addRegBankSelect() {
454  addPass(new RegBankSelect());
455  return false;
456}
457
458bool X86PassConfig::addGlobalInstructionSelect() {
459  addPass(new InstructionSelect());
460  return false;
461}
462
463bool X86PassConfig::addILPOpts() {
464  if (EnableCondBrFoldingPass)
465    addPass(createX86CondBrFolding());
466  addPass(&EarlyIfConverterID);
467  if (EnableMachineCombinerPass)
468    addPass(&MachineCombinerID);
469  addPass(createX86CmovConverterPass());
470  return true;
471}
472
473bool X86PassConfig::addPreISel() {
474  // Only add this pass for 32-bit x86 Windows.
475  const Triple &TT = TM->getTargetTriple();
476  if (TT.isOSWindows() && TT.getArch() == Triple::x86)
477    addPass(createX86WinEHStatePass());
478  return true;
479}
480
481void X86PassConfig::addPreRegAlloc() {
482  if (getOptLevel() != CodeGenOpt::None) {
483    addPass(&LiveRangeShrinkID);
484    addPass(createX86FixupSetCC());
485    addPass(createX86OptimizeLEAs());
486    addPass(createX86CallFrameOptimization());
487    addPass(createX86AvoidStoreForwardingBlocks());
488  }
489
490  addPass(createX86SpeculativeLoadHardeningPass());
491  addPass(createX86FlagsCopyLoweringPass());
492  addPass(createX86WinAllocaExpander());
493}
494void X86PassConfig::addMachineSSAOptimization() {
495  addPass(createX86DomainReassignmentPass());
496  TargetPassConfig::addMachineSSAOptimization();
497}
498
499void X86PassConfig::addPostRegAlloc() {
500  addPass(createX86FloatingPointStackifierPass());
501  if (getOptLevel() != CodeGenOpt::None)
502    addPass(createX86LoadValueInjectionLoadHardeningPass());
503  else
504    addPass(createX86LoadValueInjectionLoadHardeningUnoptimizedPass());
505}
506
507void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }
508
509void X86PassConfig::addPreEmitPass() {
510  if (getOptLevel() != CodeGenOpt::None) {
511    addPass(new X86ExecutionDomainFix());
512    addPass(createBreakFalseDeps());
513  }
514
515  addPass(createX86IndirectBranchTrackingPass());
516
517  if (UseVZeroUpper)
518    addPass(createX86IssueVZeroUpperPass());
519
520  if (getOptLevel() != CodeGenOpt::None) {
521    addPass(createX86FixupBWInsts());
522    addPass(createX86PadShortFunctions());
523    addPass(createX86FixupLEAs());
524    addPass(createX86EvexToVexInsts());
525  }
526  addPass(createX86DiscriminateMemOpsPass());
527  addPass(createX86InsertPrefetchPass());
528}
529
530void X86PassConfig::addPreEmitPass2() {
531  const Triple &TT = TM->getTargetTriple();
532  const MCAsmInfo *MAI = TM->getMCAsmInfo();
533
534  addPass(createX86IndirectThunksPass());
535
536  // Insert extra int3 instructions after trailing call instructions to avoid
537  // issues in the unwinder.
538  if (TT.isOSWindows() && TT.getArch() == Triple::x86_64)
539    addPass(createX86AvoidTrailingCallPass());
540
541  // Verify basic block incoming and outgoing cfa offset and register values and
542  // correct CFA calculation rule where needed by inserting appropriate CFI
543  // instructions.
544  if (!TT.isOSDarwin() &&
545      (!TT.isOSWindows() ||
546       MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI))
547    addPass(createCFIInstrInserter());
548  // Identify valid longjmp targets for Windows Control Flow Guard.
549  if (TT.isOSWindows())
550    addPass(createCFGuardLongjmpPass());
551  addPass(createX86LoadValueInjectionRetHardeningPass());
552}
553
554std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const {
555  return getStandardCSEConfigForOpt(TM->getOptLevel());
556}
557