X86OptimizeLEAs.cpp revision 360784
1//===- X86OptimizeLEAs.cpp - optimize usage of LEA instructions -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the pass that performs some optimizations with LEA
10// instructions in order to improve performance and code size.
11// Currently, it does two things:
12// 1) If there are two LEA instructions calculating addresses which only differ
13//    by displacement inside a basic block, one of them is removed.
14// 2) Address calculations in load and store instructions are replaced by
15//    existing LEA def registers where possible.
16//
17//===----------------------------------------------------------------------===//
18
19#include "MCTargetDesc/X86BaseInfo.h"
20#include "X86.h"
21#include "X86InstrInfo.h"
22#include "X86Subtarget.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/DenseMapInfo.h"
25#include "llvm/ADT/Hashing.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/Analysis/ProfileSummaryInfo.h"
29#include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
30#include "llvm/CodeGen/MachineBasicBlock.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineFunctionPass.h"
33#include "llvm/CodeGen/MachineInstr.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineOperand.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/MachineSizeOpts.h"
38#include "llvm/CodeGen/TargetOpcodes.h"
39#include "llvm/CodeGen/TargetRegisterInfo.h"
40#include "llvm/IR/DebugInfoMetadata.h"
41#include "llvm/IR/DebugLoc.h"
42#include "llvm/IR/Function.h"
43#include "llvm/MC/MCInstrDesc.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/raw_ostream.h"
49#include <cassert>
50#include <cstdint>
51#include <iterator>
52
53using namespace llvm;
54
55#define DEBUG_TYPE "x86-optimize-LEAs"
56
57static cl::opt<bool>
58    DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden,
59                     cl::desc("X86: Disable LEA optimizations."),
60                     cl::init(false));
61
62STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions");
63STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed");
64
65/// Returns true if two machine operands are identical and they are not
66/// physical registers.
67static inline bool isIdenticalOp(const MachineOperand &MO1,
68                                 const MachineOperand &MO2);
69
70/// Returns true if two address displacement operands are of the same
71/// type and use the same symbol/index/address regardless of the offset.
72static bool isSimilarDispOp(const MachineOperand &MO1,
73                            const MachineOperand &MO2);
74
75/// Returns true if the instruction is LEA.
76static inline bool isLEA(const MachineInstr &MI);
77
78namespace {
79
80/// A key based on instruction's memory operands.
81class MemOpKey {
82public:
83  MemOpKey(const MachineOperand *Base, const MachineOperand *Scale,
84           const MachineOperand *Index, const MachineOperand *Segment,
85           const MachineOperand *Disp)
86      : Disp(Disp) {
87    Operands[0] = Base;
88    Operands[1] = Scale;
89    Operands[2] = Index;
90    Operands[3] = Segment;
91  }
92
93  bool operator==(const MemOpKey &Other) const {
94    // Addresses' bases, scales, indices and segments must be identical.
95    for (int i = 0; i < 4; ++i)
96      if (!isIdenticalOp(*Operands[i], *Other.Operands[i]))
97        return false;
98
99    // Addresses' displacements don't have to be exactly the same. It only
100    // matters that they use the same symbol/index/address. Immediates' or
101    // offsets' differences will be taken care of during instruction
102    // substitution.
103    return isSimilarDispOp(*Disp, *Other.Disp);
104  }
105
106  // Address' base, scale, index and segment operands.
107  const MachineOperand *Operands[4];
108
109  // Address' displacement operand.
110  const MachineOperand *Disp;
111};
112
113} // end anonymous namespace
114
115/// Provide DenseMapInfo for MemOpKey.
116namespace llvm {
117
118template <> struct DenseMapInfo<MemOpKey> {
119  using PtrInfo = DenseMapInfo<const MachineOperand *>;
120
121  static inline MemOpKey getEmptyKey() {
122    return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
123                    PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
124                    PtrInfo::getEmptyKey());
125  }
126
127  static inline MemOpKey getTombstoneKey() {
128    return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
129                    PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
130                    PtrInfo::getTombstoneKey());
131  }
132
133  static unsigned getHashValue(const MemOpKey &Val) {
134    // Checking any field of MemOpKey is enough to determine if the key is
135    // empty or tombstone.
136    assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key");
137    assert(Val.Disp != PtrInfo::getTombstoneKey() &&
138           "Cannot hash the tombstone key");
139
140    hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1],
141                                  *Val.Operands[2], *Val.Operands[3]);
142
143    // If the address displacement is an immediate, it should not affect the
144    // hash so that memory operands which differ only be immediate displacement
145    // would have the same hash. If the address displacement is something else,
146    // we should reflect symbol/index/address in the hash.
147    switch (Val.Disp->getType()) {
148    case MachineOperand::MO_Immediate:
149      break;
150    case MachineOperand::MO_ConstantPoolIndex:
151    case MachineOperand::MO_JumpTableIndex:
152      Hash = hash_combine(Hash, Val.Disp->getIndex());
153      break;
154    case MachineOperand::MO_ExternalSymbol:
155      Hash = hash_combine(Hash, Val.Disp->getSymbolName());
156      break;
157    case MachineOperand::MO_GlobalAddress:
158      Hash = hash_combine(Hash, Val.Disp->getGlobal());
159      break;
160    case MachineOperand::MO_BlockAddress:
161      Hash = hash_combine(Hash, Val.Disp->getBlockAddress());
162      break;
163    case MachineOperand::MO_MCSymbol:
164      Hash = hash_combine(Hash, Val.Disp->getMCSymbol());
165      break;
166    case MachineOperand::MO_MachineBasicBlock:
167      Hash = hash_combine(Hash, Val.Disp->getMBB());
168      break;
169    default:
170      llvm_unreachable("Invalid address displacement operand");
171    }
172
173    return (unsigned)Hash;
174  }
175
176  static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) {
177    // Checking any field of MemOpKey is enough to determine if the key is
178    // empty or tombstone.
179    if (RHS.Disp == PtrInfo::getEmptyKey())
180      return LHS.Disp == PtrInfo::getEmptyKey();
181    if (RHS.Disp == PtrInfo::getTombstoneKey())
182      return LHS.Disp == PtrInfo::getTombstoneKey();
183    return LHS == RHS;
184  }
185};
186
187} // end namespace llvm
188
189/// Returns a hash table key based on memory operands of \p MI. The
190/// number of the first memory operand of \p MI is specified through \p N.
191static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) {
192  assert((isLEA(MI) || MI.mayLoadOrStore()) &&
193         "The instruction must be a LEA, a load or a store");
194  return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg),
195                  &MI.getOperand(N + X86::AddrScaleAmt),
196                  &MI.getOperand(N + X86::AddrIndexReg),
197                  &MI.getOperand(N + X86::AddrSegmentReg),
198                  &MI.getOperand(N + X86::AddrDisp));
199}
200
201static inline bool isIdenticalOp(const MachineOperand &MO1,
202                                 const MachineOperand &MO2) {
203  return MO1.isIdenticalTo(MO2) &&
204         (!MO1.isReg() || !Register::isPhysicalRegister(MO1.getReg()));
205}
206
207#ifndef NDEBUG
208static bool isValidDispOp(const MachineOperand &MO) {
209  return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() ||
210         MO.isGlobal() || MO.isBlockAddress() || MO.isMCSymbol() || MO.isMBB();
211}
212#endif
213
214static bool isSimilarDispOp(const MachineOperand &MO1,
215                            const MachineOperand &MO2) {
216  assert(isValidDispOp(MO1) && isValidDispOp(MO2) &&
217         "Address displacement operand is not valid");
218  return (MO1.isImm() && MO2.isImm()) ||
219         (MO1.isCPI() && MO2.isCPI() && MO1.getIndex() == MO2.getIndex()) ||
220         (MO1.isJTI() && MO2.isJTI() && MO1.getIndex() == MO2.getIndex()) ||
221         (MO1.isSymbol() && MO2.isSymbol() &&
222          MO1.getSymbolName() == MO2.getSymbolName()) ||
223         (MO1.isGlobal() && MO2.isGlobal() &&
224          MO1.getGlobal() == MO2.getGlobal()) ||
225         (MO1.isBlockAddress() && MO2.isBlockAddress() &&
226          MO1.getBlockAddress() == MO2.getBlockAddress()) ||
227         (MO1.isMCSymbol() && MO2.isMCSymbol() &&
228          MO1.getMCSymbol() == MO2.getMCSymbol()) ||
229         (MO1.isMBB() && MO2.isMBB() && MO1.getMBB() == MO2.getMBB());
230}
231
232static inline bool isLEA(const MachineInstr &MI) {
233  unsigned Opcode = MI.getOpcode();
234  return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
235         Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
236}
237
238namespace {
239
240class X86OptimizeLEAPass : public MachineFunctionPass {
241public:
242  X86OptimizeLEAPass() : MachineFunctionPass(ID) {}
243
244  StringRef getPassName() const override { return "X86 LEA Optimize"; }
245
246  /// Loop over all of the basic blocks, replacing address
247  /// calculations in load and store instructions, if it's already
248  /// been calculated by LEA. Also, remove redundant LEAs.
249  bool runOnMachineFunction(MachineFunction &MF) override;
250
251  static char ID;
252
253  void getAnalysisUsage(AnalysisUsage &AU) const override {
254    AU.addRequired<ProfileSummaryInfoWrapperPass>();
255    AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
256    MachineFunctionPass::getAnalysisUsage(AU);
257  }
258
259private:
260  using MemOpMap = DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>>;
261
262  /// Returns a distance between two instructions inside one basic block.
263  /// Negative result means, that instructions occur in reverse order.
264  int calcInstrDist(const MachineInstr &First, const MachineInstr &Last);
265
266  /// Choose the best \p LEA instruction from the \p List to replace
267  /// address calculation in \p MI instruction. Return the address displacement
268  /// and the distance between \p MI and the chosen \p BestLEA in
269  /// \p AddrDispShift and \p Dist.
270  bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
271                     const MachineInstr &MI, MachineInstr *&BestLEA,
272                     int64_t &AddrDispShift, int &Dist);
273
274  /// Returns the difference between addresses' displacements of \p MI1
275  /// and \p MI2. The numbers of the first memory operands for the instructions
276  /// are specified through \p N1 and \p N2.
277  int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1,
278                           const MachineInstr &MI2, unsigned N2) const;
279
280  /// Returns true if the \p Last LEA instruction can be replaced by the
281  /// \p First. The difference between displacements of the addresses calculated
282  /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper
283  /// replacement of the \p Last LEA's uses with the \p First's def register.
284  bool isReplaceable(const MachineInstr &First, const MachineInstr &Last,
285                     int64_t &AddrDispShift) const;
286
287  /// Find all LEA instructions in the basic block. Also, assign position
288  /// numbers to all instructions in the basic block to speed up calculation of
289  /// distance between them.
290  void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs);
291
292  /// Removes redundant address calculations.
293  bool removeRedundantAddrCalc(MemOpMap &LEAs);
294
295  /// Replace debug value MI with a new debug value instruction using register
296  /// VReg with an appropriate offset and DIExpression to incorporate the
297  /// address displacement AddrDispShift. Return new debug value instruction.
298  MachineInstr *replaceDebugValue(MachineInstr &MI, unsigned VReg,
299                                  int64_t AddrDispShift);
300
301  /// Removes LEAs which calculate similar addresses.
302  bool removeRedundantLEAs(MemOpMap &LEAs);
303
304  DenseMap<const MachineInstr *, unsigned> InstrPos;
305
306  MachineRegisterInfo *MRI = nullptr;
307  const X86InstrInfo *TII = nullptr;
308  const X86RegisterInfo *TRI = nullptr;
309};
310
311} // end anonymous namespace
312
313char X86OptimizeLEAPass::ID = 0;
314
315FunctionPass *llvm::createX86OptimizeLEAs() { return new X86OptimizeLEAPass(); }
316INITIALIZE_PASS(X86OptimizeLEAPass, DEBUG_TYPE, "X86 optimize LEA pass", false,
317                false)
318
319int X86OptimizeLEAPass::calcInstrDist(const MachineInstr &First,
320                                      const MachineInstr &Last) {
321  // Both instructions must be in the same basic block and they must be
322  // presented in InstrPos.
323  assert(Last.getParent() == First.getParent() &&
324         "Instructions are in different basic blocks");
325  assert(InstrPos.find(&First) != InstrPos.end() &&
326         InstrPos.find(&Last) != InstrPos.end() &&
327         "Instructions' positions are undefined");
328
329  return InstrPos[&Last] - InstrPos[&First];
330}
331
332// Find the best LEA instruction in the List to replace address recalculation in
333// MI. Such LEA must meet these requirements:
334// 1) The address calculated by the LEA differs only by the displacement from
335//    the address used in MI.
336// 2) The register class of the definition of the LEA is compatible with the
337//    register class of the address base register of MI.
338// 3) Displacement of the new memory operand should fit in 1 byte if possible.
339// 4) The LEA should be as close to MI as possible, and prior to it if
340//    possible.
341bool X86OptimizeLEAPass::chooseBestLEA(
342    const SmallVectorImpl<MachineInstr *> &List, const MachineInstr &MI,
343    MachineInstr *&BestLEA, int64_t &AddrDispShift, int &Dist) {
344  const MachineFunction *MF = MI.getParent()->getParent();
345  const MCInstrDesc &Desc = MI.getDesc();
346  int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) +
347                X86II::getOperandBias(Desc);
348
349  BestLEA = nullptr;
350
351  // Loop over all LEA instructions.
352  for (auto DefMI : List) {
353    // Get new address displacement.
354    int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1);
355
356    // Make sure address displacement fits 4 bytes.
357    if (!isInt<32>(AddrDispShiftTemp))
358      continue;
359
360    // Check that LEA def register can be used as MI address base. Some
361    // instructions can use a limited set of registers as address base, for
362    // example MOV8mr_NOREX. We could constrain the register class of the LEA
363    // def to suit MI, however since this case is very rare and hard to
364    // reproduce in a test it's just more reliable to skip the LEA.
365    if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) !=
366        MRI->getRegClass(DefMI->getOperand(0).getReg()))
367      continue;
368
369    // Choose the closest LEA instruction from the list, prior to MI if
370    // possible. Note that we took into account resulting address displacement
371    // as well. Also note that the list is sorted by the order in which the LEAs
372    // occur, so the break condition is pretty simple.
373    int DistTemp = calcInstrDist(*DefMI, MI);
374    assert(DistTemp != 0 &&
375           "The distance between two different instructions cannot be zero");
376    if (DistTemp > 0 || BestLEA == nullptr) {
377      // Do not update return LEA, if the current one provides a displacement
378      // which fits in 1 byte, while the new candidate does not.
379      if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) &&
380          isInt<8>(AddrDispShift))
381        continue;
382
383      BestLEA = DefMI;
384      AddrDispShift = AddrDispShiftTemp;
385      Dist = DistTemp;
386    }
387
388    // FIXME: Maybe we should not always stop at the first LEA after MI.
389    if (DistTemp < 0)
390      break;
391  }
392
393  return BestLEA != nullptr;
394}
395
396// Get the difference between the addresses' displacements of the two
397// instructions \p MI1 and \p MI2. The numbers of the first memory operands are
398// passed through \p N1 and \p N2.
399int64_t X86OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1,
400                                             unsigned N1,
401                                             const MachineInstr &MI2,
402                                             unsigned N2) const {
403  const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp);
404  const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp);
405
406  assert(isSimilarDispOp(Op1, Op2) &&
407         "Address displacement operands are not compatible");
408
409  // After the assert above we can be sure that both operands are of the same
410  // valid type and use the same symbol/index/address, thus displacement shift
411  // calculation is rather simple.
412  if (Op1.isJTI())
413    return 0;
414  return Op1.isImm() ? Op1.getImm() - Op2.getImm()
415                     : Op1.getOffset() - Op2.getOffset();
416}
417
418// Check that the Last LEA can be replaced by the First LEA. To be so,
419// these requirements must be met:
420// 1) Addresses calculated by LEAs differ only by displacement.
421// 2) Def registers of LEAs belong to the same class.
422// 3) All uses of the Last LEA def register are replaceable, thus the
423//    register is used only as address base.
424bool X86OptimizeLEAPass::isReplaceable(const MachineInstr &First,
425                                       const MachineInstr &Last,
426                                       int64_t &AddrDispShift) const {
427  assert(isLEA(First) && isLEA(Last) &&
428         "The function works only with LEA instructions");
429
430  // Make sure that LEA def registers belong to the same class. There may be
431  // instructions (like MOV8mr_NOREX) which allow a limited set of registers to
432  // be used as their operands, so we must be sure that replacing one LEA
433  // with another won't lead to putting a wrong register in the instruction.
434  if (MRI->getRegClass(First.getOperand(0).getReg()) !=
435      MRI->getRegClass(Last.getOperand(0).getReg()))
436    return false;
437
438  // Get new address displacement.
439  AddrDispShift = getAddrDispShift(Last, 1, First, 1);
440
441  // Loop over all uses of the Last LEA to check that its def register is
442  // used only as address base for memory accesses. If so, it can be
443  // replaced, otherwise - no.
444  for (auto &MO : MRI->use_nodbg_operands(Last.getOperand(0).getReg())) {
445    MachineInstr &MI = *MO.getParent();
446
447    // Get the number of the first memory operand.
448    const MCInstrDesc &Desc = MI.getDesc();
449    int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
450
451    // If the use instruction has no memory operand - the LEA is not
452    // replaceable.
453    if (MemOpNo < 0)
454      return false;
455
456    MemOpNo += X86II::getOperandBias(Desc);
457
458    // If the address base of the use instruction is not the LEA def register -
459    // the LEA is not replaceable.
460    if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO))
461      return false;
462
463    // If the LEA def register is used as any other operand of the use
464    // instruction - the LEA is not replaceable.
465    for (unsigned i = 0; i < MI.getNumOperands(); i++)
466      if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) &&
467          isIdenticalOp(MI.getOperand(i), MO))
468        return false;
469
470    // Check that the new address displacement will fit 4 bytes.
471    if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() &&
472        !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() +
473                   AddrDispShift))
474      return false;
475  }
476
477  return true;
478}
479
480void X86OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB,
481                                  MemOpMap &LEAs) {
482  unsigned Pos = 0;
483  for (auto &MI : MBB) {
484    // Assign the position number to the instruction. Note that we are going to
485    // move some instructions during the optimization however there will never
486    // be a need to move two instructions before any selected instruction. So to
487    // avoid multiple positions' updates during moves we just increase position
488    // counter by two leaving a free space for instructions which will be moved.
489    InstrPos[&MI] = Pos += 2;
490
491    if (isLEA(MI))
492      LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI));
493  }
494}
495
496// Try to find load and store instructions which recalculate addresses already
497// calculated by some LEA and replace their memory operands with its def
498// register.
499bool X86OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) {
500  bool Changed = false;
501
502  assert(!LEAs.empty());
503  MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent();
504
505  // Process all instructions in basic block.
506  for (auto I = MBB->begin(), E = MBB->end(); I != E;) {
507    MachineInstr &MI = *I++;
508
509    // Instruction must be load or store.
510    if (!MI.mayLoadOrStore())
511      continue;
512
513    // Get the number of the first memory operand.
514    const MCInstrDesc &Desc = MI.getDesc();
515    int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
516
517    // If instruction has no memory operand - skip it.
518    if (MemOpNo < 0)
519      continue;
520
521    MemOpNo += X86II::getOperandBias(Desc);
522
523    // Do not call chooseBestLEA if there was no matching LEA
524    auto Insns = LEAs.find(getMemOpKey(MI, MemOpNo));
525    if (Insns == LEAs.end())
526      continue;
527
528    // Get the best LEA instruction to replace address calculation.
529    MachineInstr *DefMI;
530    int64_t AddrDispShift;
531    int Dist;
532    if (!chooseBestLEA(Insns->second, MI, DefMI, AddrDispShift, Dist))
533      continue;
534
535    // If LEA occurs before current instruction, we can freely replace
536    // the instruction. If LEA occurs after, we can lift LEA above the
537    // instruction and this way to be able to replace it. Since LEA and the
538    // instruction have similar memory operands (thus, the same def
539    // instructions for these operands), we can always do that, without
540    // worries of using registers before their defs.
541    if (Dist < 0) {
542      DefMI->removeFromParent();
543      MBB->insert(MachineBasicBlock::iterator(&MI), DefMI);
544      InstrPos[DefMI] = InstrPos[&MI] - 1;
545
546      // Make sure the instructions' position numbers are sane.
547      assert(((InstrPos[DefMI] == 1 &&
548               MachineBasicBlock::iterator(DefMI) == MBB->begin()) ||
549              InstrPos[DefMI] >
550                  InstrPos[&*std::prev(MachineBasicBlock::iterator(DefMI))]) &&
551             "Instruction positioning is broken");
552    }
553
554    // Since we can possibly extend register lifetime, clear kill flags.
555    MRI->clearKillFlags(DefMI->getOperand(0).getReg());
556
557    ++NumSubstLEAs;
558    LLVM_DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump(););
559
560    // Change instruction operands.
561    MI.getOperand(MemOpNo + X86::AddrBaseReg)
562        .ChangeToRegister(DefMI->getOperand(0).getReg(), false);
563    MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1);
564    MI.getOperand(MemOpNo + X86::AddrIndexReg)
565        .ChangeToRegister(X86::NoRegister, false);
566    MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift);
567    MI.getOperand(MemOpNo + X86::AddrSegmentReg)
568        .ChangeToRegister(X86::NoRegister, false);
569
570    LLVM_DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump(););
571
572    Changed = true;
573  }
574
575  return Changed;
576}
577
578MachineInstr *X86OptimizeLEAPass::replaceDebugValue(MachineInstr &MI,
579                                                    unsigned VReg,
580                                                    int64_t AddrDispShift) {
581  DIExpression *Expr = const_cast<DIExpression *>(MI.getDebugExpression());
582  if (AddrDispShift != 0)
583    Expr = DIExpression::prepend(Expr, DIExpression::StackValue, AddrDispShift);
584
585  // Replace DBG_VALUE instruction with modified version.
586  MachineBasicBlock *MBB = MI.getParent();
587  DebugLoc DL = MI.getDebugLoc();
588  bool IsIndirect = MI.isIndirectDebugValue();
589  const MDNode *Var = MI.getDebugVariable();
590  if (IsIndirect)
591    assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
592  return BuildMI(*MBB, MBB->erase(&MI), DL, TII->get(TargetOpcode::DBG_VALUE),
593                 IsIndirect, VReg, Var, Expr);
594}
595
596// Try to find similar LEAs in the list and replace one with another.
597bool X86OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) {
598  bool Changed = false;
599
600  // Loop over all entries in the table.
601  for (auto &E : LEAs) {
602    auto &List = E.second;
603
604    // Loop over all LEA pairs.
605    auto I1 = List.begin();
606    while (I1 != List.end()) {
607      MachineInstr &First = **I1;
608      auto I2 = std::next(I1);
609      while (I2 != List.end()) {
610        MachineInstr &Last = **I2;
611        int64_t AddrDispShift;
612
613        // LEAs should be in occurrence order in the list, so we can freely
614        // replace later LEAs with earlier ones.
615        assert(calcInstrDist(First, Last) > 0 &&
616               "LEAs must be in occurrence order in the list");
617
618        // Check that the Last LEA instruction can be replaced by the First.
619        if (!isReplaceable(First, Last, AddrDispShift)) {
620          ++I2;
621          continue;
622        }
623
624        // Loop over all uses of the Last LEA and update their operands. Note
625        // that the correctness of this has already been checked in the
626        // isReplaceable function.
627        Register FirstVReg = First.getOperand(0).getReg();
628        Register LastVReg = Last.getOperand(0).getReg();
629        for (auto UI = MRI->use_begin(LastVReg), UE = MRI->use_end();
630             UI != UE;) {
631          MachineOperand &MO = *UI++;
632          MachineInstr &MI = *MO.getParent();
633
634          if (MI.isDebugValue()) {
635            // Replace DBG_VALUE instruction with modified version using the
636            // register from the replacing LEA and the address displacement
637            // between the LEA instructions.
638            replaceDebugValue(MI, FirstVReg, AddrDispShift);
639            continue;
640          }
641
642          // Get the number of the first memory operand.
643          const MCInstrDesc &Desc = MI.getDesc();
644          int MemOpNo =
645              X86II::getMemoryOperandNo(Desc.TSFlags) +
646              X86II::getOperandBias(Desc);
647
648          // Update address base.
649          MO.setReg(FirstVReg);
650
651          // Update address disp.
652          MachineOperand &Op = MI.getOperand(MemOpNo + X86::AddrDisp);
653          if (Op.isImm())
654            Op.setImm(Op.getImm() + AddrDispShift);
655          else if (!Op.isJTI())
656            Op.setOffset(Op.getOffset() + AddrDispShift);
657        }
658
659        // Since we can possibly extend register lifetime, clear kill flags.
660        MRI->clearKillFlags(FirstVReg);
661
662        ++NumRedundantLEAs;
663        LLVM_DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: ";
664                   Last.dump(););
665
666        // By this moment, all of the Last LEA's uses must be replaced. So we
667        // can freely remove it.
668        assert(MRI->use_empty(LastVReg) &&
669               "The LEA's def register must have no uses");
670        Last.eraseFromParent();
671
672        // Erase removed LEA from the list.
673        I2 = List.erase(I2);
674
675        Changed = true;
676      }
677      ++I1;
678    }
679  }
680
681  return Changed;
682}
683
684bool X86OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) {
685  bool Changed = false;
686
687  if (DisableX86LEAOpt || skipFunction(MF.getFunction()))
688    return false;
689
690  MRI = &MF.getRegInfo();
691  TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
692  TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
693  auto *PSI =
694      &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
695  auto *MBFI = (PSI && PSI->hasProfileSummary()) ?
696               &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() :
697               nullptr;
698
699  // Process all basic blocks.
700  for (auto &MBB : MF) {
701    MemOpMap LEAs;
702    InstrPos.clear();
703
704    // Find all LEA instructions in basic block.
705    findLEAs(MBB, LEAs);
706
707    // If current basic block has no LEAs, move on to the next one.
708    if (LEAs.empty())
709      continue;
710
711    // Remove redundant LEA instructions.
712    Changed |= removeRedundantLEAs(LEAs);
713
714    // Remove redundant address calculations. Do it only for -Os/-Oz since only
715    // a code size gain is expected from this part of the pass.
716    bool OptForSize = MF.getFunction().hasOptSize() ||
717                      llvm::shouldOptimizeForSize(&MBB, PSI, MBFI);
718    if (OptForSize)
719      Changed |= removeRedundantAddrCalc(LEAs);
720  }
721
722  return Changed;
723}
724