X86InstrInfo.cpp revision 363496
1//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the X86 implementation of the TargetInstrInfo class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "X86InstrInfo.h"
14#include "X86.h"
15#include "X86InstrBuilder.h"
16#include "X86InstrFoldTables.h"
17#include "X86MachineFunctionInfo.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/Sequence.h"
22#include "llvm/CodeGen/LivePhysRegs.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineDominators.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/StackMaps.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/DebugInfoMetadata.h"
34#include "llvm/MC/MCAsmInfo.h"
35#include "llvm/MC/MCExpr.h"
36#include "llvm/MC/MCInst.h"
37#include "llvm/Support/CommandLine.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Support/raw_ostream.h"
41#include "llvm/Target/TargetOptions.h"
42
43using namespace llvm;
44
45#define DEBUG_TYPE "x86-instr-info"
46
47#define GET_INSTRINFO_CTOR_DTOR
48#include "X86GenInstrInfo.inc"
49
50static cl::opt<bool>
51    NoFusing("disable-spill-fusing",
52             cl::desc("Disable fusing of spill code into instructions"),
53             cl::Hidden);
54static cl::opt<bool>
55PrintFailedFusing("print-failed-fuse-candidates",
56                  cl::desc("Print instructions that the allocator wants to"
57                           " fuse, but the X86 backend currently can't"),
58                  cl::Hidden);
59static cl::opt<bool>
60ReMatPICStubLoad("remat-pic-stub-load",
61                 cl::desc("Re-materialize load from stub in PIC mode"),
62                 cl::init(false), cl::Hidden);
63static cl::opt<unsigned>
64PartialRegUpdateClearance("partial-reg-update-clearance",
65                          cl::desc("Clearance between two register writes "
66                                   "for inserting XOR to avoid partial "
67                                   "register update"),
68                          cl::init(64), cl::Hidden);
69static cl::opt<unsigned>
70UndefRegClearance("undef-reg-clearance",
71                  cl::desc("How many idle instructions we would like before "
72                           "certain undef register reads"),
73                  cl::init(128), cl::Hidden);
74
75
76// Pin the vtable to this file.
77void X86InstrInfo::anchor() {}
78
79X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
80    : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
81                                               : X86::ADJCALLSTACKDOWN32),
82                      (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
83                                               : X86::ADJCALLSTACKUP32),
84                      X86::CATCHRET,
85                      (STI.is64Bit() ? X86::RETQ : X86::RETL)),
86      Subtarget(STI), RI(STI.getTargetTriple()) {
87}
88
89bool
90X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
91                                    unsigned &SrcReg, unsigned &DstReg,
92                                    unsigned &SubIdx) const {
93  switch (MI.getOpcode()) {
94  default: break;
95  case X86::MOVSX16rr8:
96  case X86::MOVZX16rr8:
97  case X86::MOVSX32rr8:
98  case X86::MOVZX32rr8:
99  case X86::MOVSX64rr8:
100    if (!Subtarget.is64Bit())
101      // It's not always legal to reference the low 8-bit of the larger
102      // register in 32-bit mode.
103      return false;
104    LLVM_FALLTHROUGH;
105  case X86::MOVSX32rr16:
106  case X86::MOVZX32rr16:
107  case X86::MOVSX64rr16:
108  case X86::MOVSX64rr32: {
109    if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
110      // Be conservative.
111      return false;
112    SrcReg = MI.getOperand(1).getReg();
113    DstReg = MI.getOperand(0).getReg();
114    switch (MI.getOpcode()) {
115    default: llvm_unreachable("Unreachable!");
116    case X86::MOVSX16rr8:
117    case X86::MOVZX16rr8:
118    case X86::MOVSX32rr8:
119    case X86::MOVZX32rr8:
120    case X86::MOVSX64rr8:
121      SubIdx = X86::sub_8bit;
122      break;
123    case X86::MOVSX32rr16:
124    case X86::MOVZX32rr16:
125    case X86::MOVSX64rr16:
126      SubIdx = X86::sub_16bit;
127      break;
128    case X86::MOVSX64rr32:
129      SubIdx = X86::sub_32bit;
130      break;
131    }
132    return true;
133  }
134  }
135  return false;
136}
137
138int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
139  const MachineFunction *MF = MI.getParent()->getParent();
140  const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
141
142  if (isFrameInstr(MI)) {
143    unsigned StackAlign = TFI->getStackAlignment();
144    int SPAdj = alignTo(getFrameSize(MI), StackAlign);
145    SPAdj -= getFrameAdjustment(MI);
146    if (!isFrameSetup(MI))
147      SPAdj = -SPAdj;
148    return SPAdj;
149  }
150
151  // To know whether a call adjusts the stack, we need information
152  // that is bound to the following ADJCALLSTACKUP pseudo.
153  // Look for the next ADJCALLSTACKUP that follows the call.
154  if (MI.isCall()) {
155    const MachineBasicBlock *MBB = MI.getParent();
156    auto I = ++MachineBasicBlock::const_iterator(MI);
157    for (auto E = MBB->end(); I != E; ++I) {
158      if (I->getOpcode() == getCallFrameDestroyOpcode() ||
159          I->isCall())
160        break;
161    }
162
163    // If we could not find a frame destroy opcode, then it has already
164    // been simplified, so we don't care.
165    if (I->getOpcode() != getCallFrameDestroyOpcode())
166      return 0;
167
168    return -(I->getOperand(1).getImm());
169  }
170
171  // Currently handle only PUSHes we can reasonably expect to see
172  // in call sequences
173  switch (MI.getOpcode()) {
174  default:
175    return 0;
176  case X86::PUSH32i8:
177  case X86::PUSH32r:
178  case X86::PUSH32rmm:
179  case X86::PUSH32rmr:
180  case X86::PUSHi32:
181    return 4;
182  case X86::PUSH64i8:
183  case X86::PUSH64r:
184  case X86::PUSH64rmm:
185  case X86::PUSH64rmr:
186  case X86::PUSH64i32:
187    return 8;
188  }
189}
190
191/// Return true and the FrameIndex if the specified
192/// operand and follow operands form a reference to the stack frame.
193bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
194                                  int &FrameIndex) const {
195  if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
196      MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
197      MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
198      MI.getOperand(Op + X86::AddrDisp).isImm() &&
199      MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
200      MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
201      MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
202    FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
203    return true;
204  }
205  return false;
206}
207
208static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
209  switch (Opcode) {
210  default:
211    return false;
212  case X86::MOV8rm:
213  case X86::KMOVBkm:
214    MemBytes = 1;
215    return true;
216  case X86::MOV16rm:
217  case X86::KMOVWkm:
218    MemBytes = 2;
219    return true;
220  case X86::MOV32rm:
221  case X86::MOVSSrm:
222  case X86::MOVSSrm_alt:
223  case X86::VMOVSSrm:
224  case X86::VMOVSSrm_alt:
225  case X86::VMOVSSZrm:
226  case X86::VMOVSSZrm_alt:
227  case X86::KMOVDkm:
228    MemBytes = 4;
229    return true;
230  case X86::MOV64rm:
231  case X86::LD_Fp64m:
232  case X86::MOVSDrm:
233  case X86::MOVSDrm_alt:
234  case X86::VMOVSDrm:
235  case X86::VMOVSDrm_alt:
236  case X86::VMOVSDZrm:
237  case X86::VMOVSDZrm_alt:
238  case X86::MMX_MOVD64rm:
239  case X86::MMX_MOVQ64rm:
240  case X86::KMOVQkm:
241    MemBytes = 8;
242    return true;
243  case X86::MOVAPSrm:
244  case X86::MOVUPSrm:
245  case X86::MOVAPDrm:
246  case X86::MOVUPDrm:
247  case X86::MOVDQArm:
248  case X86::MOVDQUrm:
249  case X86::VMOVAPSrm:
250  case X86::VMOVUPSrm:
251  case X86::VMOVAPDrm:
252  case X86::VMOVUPDrm:
253  case X86::VMOVDQArm:
254  case X86::VMOVDQUrm:
255  case X86::VMOVAPSZ128rm:
256  case X86::VMOVUPSZ128rm:
257  case X86::VMOVAPSZ128rm_NOVLX:
258  case X86::VMOVUPSZ128rm_NOVLX:
259  case X86::VMOVAPDZ128rm:
260  case X86::VMOVUPDZ128rm:
261  case X86::VMOVDQU8Z128rm:
262  case X86::VMOVDQU16Z128rm:
263  case X86::VMOVDQA32Z128rm:
264  case X86::VMOVDQU32Z128rm:
265  case X86::VMOVDQA64Z128rm:
266  case X86::VMOVDQU64Z128rm:
267    MemBytes = 16;
268    return true;
269  case X86::VMOVAPSYrm:
270  case X86::VMOVUPSYrm:
271  case X86::VMOVAPDYrm:
272  case X86::VMOVUPDYrm:
273  case X86::VMOVDQAYrm:
274  case X86::VMOVDQUYrm:
275  case X86::VMOVAPSZ256rm:
276  case X86::VMOVUPSZ256rm:
277  case X86::VMOVAPSZ256rm_NOVLX:
278  case X86::VMOVUPSZ256rm_NOVLX:
279  case X86::VMOVAPDZ256rm:
280  case X86::VMOVUPDZ256rm:
281  case X86::VMOVDQU8Z256rm:
282  case X86::VMOVDQU16Z256rm:
283  case X86::VMOVDQA32Z256rm:
284  case X86::VMOVDQU32Z256rm:
285  case X86::VMOVDQA64Z256rm:
286  case X86::VMOVDQU64Z256rm:
287    MemBytes = 32;
288    return true;
289  case X86::VMOVAPSZrm:
290  case X86::VMOVUPSZrm:
291  case X86::VMOVAPDZrm:
292  case X86::VMOVUPDZrm:
293  case X86::VMOVDQU8Zrm:
294  case X86::VMOVDQU16Zrm:
295  case X86::VMOVDQA32Zrm:
296  case X86::VMOVDQU32Zrm:
297  case X86::VMOVDQA64Zrm:
298  case X86::VMOVDQU64Zrm:
299    MemBytes = 64;
300    return true;
301  }
302}
303
304static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
305  switch (Opcode) {
306  default:
307    return false;
308  case X86::MOV8mr:
309  case X86::KMOVBmk:
310    MemBytes = 1;
311    return true;
312  case X86::MOV16mr:
313  case X86::KMOVWmk:
314    MemBytes = 2;
315    return true;
316  case X86::MOV32mr:
317  case X86::MOVSSmr:
318  case X86::VMOVSSmr:
319  case X86::VMOVSSZmr:
320  case X86::KMOVDmk:
321    MemBytes = 4;
322    return true;
323  case X86::MOV64mr:
324  case X86::ST_FpP64m:
325  case X86::MOVSDmr:
326  case X86::VMOVSDmr:
327  case X86::VMOVSDZmr:
328  case X86::MMX_MOVD64mr:
329  case X86::MMX_MOVQ64mr:
330  case X86::MMX_MOVNTQmr:
331  case X86::KMOVQmk:
332    MemBytes = 8;
333    return true;
334  case X86::MOVAPSmr:
335  case X86::MOVUPSmr:
336  case X86::MOVAPDmr:
337  case X86::MOVUPDmr:
338  case X86::MOVDQAmr:
339  case X86::MOVDQUmr:
340  case X86::VMOVAPSmr:
341  case X86::VMOVUPSmr:
342  case X86::VMOVAPDmr:
343  case X86::VMOVUPDmr:
344  case X86::VMOVDQAmr:
345  case X86::VMOVDQUmr:
346  case X86::VMOVUPSZ128mr:
347  case X86::VMOVAPSZ128mr:
348  case X86::VMOVUPSZ128mr_NOVLX:
349  case X86::VMOVAPSZ128mr_NOVLX:
350  case X86::VMOVUPDZ128mr:
351  case X86::VMOVAPDZ128mr:
352  case X86::VMOVDQA32Z128mr:
353  case X86::VMOVDQU32Z128mr:
354  case X86::VMOVDQA64Z128mr:
355  case X86::VMOVDQU64Z128mr:
356  case X86::VMOVDQU8Z128mr:
357  case X86::VMOVDQU16Z128mr:
358    MemBytes = 16;
359    return true;
360  case X86::VMOVUPSYmr:
361  case X86::VMOVAPSYmr:
362  case X86::VMOVUPDYmr:
363  case X86::VMOVAPDYmr:
364  case X86::VMOVDQUYmr:
365  case X86::VMOVDQAYmr:
366  case X86::VMOVUPSZ256mr:
367  case X86::VMOVAPSZ256mr:
368  case X86::VMOVUPSZ256mr_NOVLX:
369  case X86::VMOVAPSZ256mr_NOVLX:
370  case X86::VMOVUPDZ256mr:
371  case X86::VMOVAPDZ256mr:
372  case X86::VMOVDQU8Z256mr:
373  case X86::VMOVDQU16Z256mr:
374  case X86::VMOVDQA32Z256mr:
375  case X86::VMOVDQU32Z256mr:
376  case X86::VMOVDQA64Z256mr:
377  case X86::VMOVDQU64Z256mr:
378    MemBytes = 32;
379    return true;
380  case X86::VMOVUPSZmr:
381  case X86::VMOVAPSZmr:
382  case X86::VMOVUPDZmr:
383  case X86::VMOVAPDZmr:
384  case X86::VMOVDQU8Zmr:
385  case X86::VMOVDQU16Zmr:
386  case X86::VMOVDQA32Zmr:
387  case X86::VMOVDQU32Zmr:
388  case X86::VMOVDQA64Zmr:
389  case X86::VMOVDQU64Zmr:
390    MemBytes = 64;
391    return true;
392  }
393  return false;
394}
395
396unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
397                                           int &FrameIndex) const {
398  unsigned Dummy;
399  return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
400}
401
402unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
403                                           int &FrameIndex,
404                                           unsigned &MemBytes) const {
405  if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
406    if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
407      return MI.getOperand(0).getReg();
408  return 0;
409}
410
411unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
412                                                 int &FrameIndex) const {
413  unsigned Dummy;
414  if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
415    unsigned Reg;
416    if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
417      return Reg;
418    // Check for post-frame index elimination operations
419    SmallVector<const MachineMemOperand *, 1> Accesses;
420    if (hasLoadFromStackSlot(MI, Accesses)) {
421      FrameIndex =
422          cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
423              ->getFrameIndex();
424      return 1;
425    }
426  }
427  return 0;
428}
429
430unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
431                                          int &FrameIndex) const {
432  unsigned Dummy;
433  return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
434}
435
436unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
437                                          int &FrameIndex,
438                                          unsigned &MemBytes) const {
439  if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
440    if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
441        isFrameOperand(MI, 0, FrameIndex))
442      return MI.getOperand(X86::AddrNumOperands).getReg();
443  return 0;
444}
445
446unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
447                                                int &FrameIndex) const {
448  unsigned Dummy;
449  if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
450    unsigned Reg;
451    if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
452      return Reg;
453    // Check for post-frame index elimination operations
454    SmallVector<const MachineMemOperand *, 1> Accesses;
455    if (hasStoreToStackSlot(MI, Accesses)) {
456      FrameIndex =
457          cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
458              ->getFrameIndex();
459      return 1;
460    }
461  }
462  return 0;
463}
464
465/// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
466static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
467  // Don't waste compile time scanning use-def chains of physregs.
468  if (!Register::isVirtualRegister(BaseReg))
469    return false;
470  bool isPICBase = false;
471  for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
472         E = MRI.def_instr_end(); I != E; ++I) {
473    MachineInstr *DefMI = &*I;
474    if (DefMI->getOpcode() != X86::MOVPC32r)
475      return false;
476    assert(!isPICBase && "More than one PIC base?");
477    isPICBase = true;
478  }
479  return isPICBase;
480}
481
482bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
483                                                     AAResults *AA) const {
484  switch (MI.getOpcode()) {
485  default:
486    // This function should only be called for opcodes with the ReMaterializable
487    // flag set.
488    llvm_unreachable("Unknown rematerializable operation!");
489    break;
490
491  case X86::LOAD_STACK_GUARD:
492  case X86::AVX1_SETALLONES:
493  case X86::AVX2_SETALLONES:
494  case X86::AVX512_128_SET0:
495  case X86::AVX512_256_SET0:
496  case X86::AVX512_512_SET0:
497  case X86::AVX512_512_SETALLONES:
498  case X86::AVX512_FsFLD0SD:
499  case X86::AVX512_FsFLD0SS:
500  case X86::AVX512_FsFLD0F128:
501  case X86::AVX_SET0:
502  case X86::FsFLD0SD:
503  case X86::FsFLD0SS:
504  case X86::FsFLD0F128:
505  case X86::KSET0D:
506  case X86::KSET0Q:
507  case X86::KSET0W:
508  case X86::KSET1D:
509  case X86::KSET1Q:
510  case X86::KSET1W:
511  case X86::MMX_SET0:
512  case X86::MOV32ImmSExti8:
513  case X86::MOV32r0:
514  case X86::MOV32r1:
515  case X86::MOV32r_1:
516  case X86::MOV32ri64:
517  case X86::MOV64ImmSExti8:
518  case X86::V_SET0:
519  case X86::V_SETALLONES:
520  case X86::MOV16ri:
521  case X86::MOV32ri:
522  case X86::MOV64ri:
523  case X86::MOV64ri32:
524  case X86::MOV8ri:
525    return true;
526
527  case X86::MOV8rm:
528  case X86::MOV8rm_NOREX:
529  case X86::MOV16rm:
530  case X86::MOV32rm:
531  case X86::MOV64rm:
532  case X86::MOVSSrm:
533  case X86::MOVSSrm_alt:
534  case X86::MOVSDrm:
535  case X86::MOVSDrm_alt:
536  case X86::MOVAPSrm:
537  case X86::MOVUPSrm:
538  case X86::MOVAPDrm:
539  case X86::MOVUPDrm:
540  case X86::MOVDQArm:
541  case X86::MOVDQUrm:
542  case X86::VMOVSSrm:
543  case X86::VMOVSSrm_alt:
544  case X86::VMOVSDrm:
545  case X86::VMOVSDrm_alt:
546  case X86::VMOVAPSrm:
547  case X86::VMOVUPSrm:
548  case X86::VMOVAPDrm:
549  case X86::VMOVUPDrm:
550  case X86::VMOVDQArm:
551  case X86::VMOVDQUrm:
552  case X86::VMOVAPSYrm:
553  case X86::VMOVUPSYrm:
554  case X86::VMOVAPDYrm:
555  case X86::VMOVUPDYrm:
556  case X86::VMOVDQAYrm:
557  case X86::VMOVDQUYrm:
558  case X86::MMX_MOVD64rm:
559  case X86::MMX_MOVQ64rm:
560  // AVX-512
561  case X86::VMOVSSZrm:
562  case X86::VMOVSSZrm_alt:
563  case X86::VMOVSDZrm:
564  case X86::VMOVSDZrm_alt:
565  case X86::VMOVAPDZ128rm:
566  case X86::VMOVAPDZ256rm:
567  case X86::VMOVAPDZrm:
568  case X86::VMOVAPSZ128rm:
569  case X86::VMOVAPSZ256rm:
570  case X86::VMOVAPSZ128rm_NOVLX:
571  case X86::VMOVAPSZ256rm_NOVLX:
572  case X86::VMOVAPSZrm:
573  case X86::VMOVDQA32Z128rm:
574  case X86::VMOVDQA32Z256rm:
575  case X86::VMOVDQA32Zrm:
576  case X86::VMOVDQA64Z128rm:
577  case X86::VMOVDQA64Z256rm:
578  case X86::VMOVDQA64Zrm:
579  case X86::VMOVDQU16Z128rm:
580  case X86::VMOVDQU16Z256rm:
581  case X86::VMOVDQU16Zrm:
582  case X86::VMOVDQU32Z128rm:
583  case X86::VMOVDQU32Z256rm:
584  case X86::VMOVDQU32Zrm:
585  case X86::VMOVDQU64Z128rm:
586  case X86::VMOVDQU64Z256rm:
587  case X86::VMOVDQU64Zrm:
588  case X86::VMOVDQU8Z128rm:
589  case X86::VMOVDQU8Z256rm:
590  case X86::VMOVDQU8Zrm:
591  case X86::VMOVUPDZ128rm:
592  case X86::VMOVUPDZ256rm:
593  case X86::VMOVUPDZrm:
594  case X86::VMOVUPSZ128rm:
595  case X86::VMOVUPSZ256rm:
596  case X86::VMOVUPSZ128rm_NOVLX:
597  case X86::VMOVUPSZ256rm_NOVLX:
598  case X86::VMOVUPSZrm: {
599    // Loads from constant pools are trivially rematerializable.
600    if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
601        MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
602        MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
603        MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
604        MI.isDereferenceableInvariantLoad(AA)) {
605      Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
606      if (BaseReg == 0 || BaseReg == X86::RIP)
607        return true;
608      // Allow re-materialization of PIC load.
609      if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
610        return false;
611      const MachineFunction &MF = *MI.getParent()->getParent();
612      const MachineRegisterInfo &MRI = MF.getRegInfo();
613      return regIsPICBase(BaseReg, MRI);
614    }
615    return false;
616  }
617
618  case X86::LEA32r:
619  case X86::LEA64r: {
620    if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
621        MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
622        MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
623        !MI.getOperand(1 + X86::AddrDisp).isReg()) {
624      // lea fi#, lea GV, etc. are all rematerializable.
625      if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
626        return true;
627      Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
628      if (BaseReg == 0)
629        return true;
630      // Allow re-materialization of lea PICBase + x.
631      const MachineFunction &MF = *MI.getParent()->getParent();
632      const MachineRegisterInfo &MRI = MF.getRegInfo();
633      return regIsPICBase(BaseReg, MRI);
634    }
635    return false;
636  }
637  }
638}
639
640void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
641                                 MachineBasicBlock::iterator I,
642                                 unsigned DestReg, unsigned SubIdx,
643                                 const MachineInstr &Orig,
644                                 const TargetRegisterInfo &TRI) const {
645  bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
646  if (ClobbersEFLAGS && !isSafeToClobberEFLAGS(MBB, I)) {
647    // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
648    // effects.
649    int Value;
650    switch (Orig.getOpcode()) {
651    case X86::MOV32r0:  Value = 0; break;
652    case X86::MOV32r1:  Value = 1; break;
653    case X86::MOV32r_1: Value = -1; break;
654    default:
655      llvm_unreachable("Unexpected instruction!");
656    }
657
658    const DebugLoc &DL = Orig.getDebugLoc();
659    BuildMI(MBB, I, DL, get(X86::MOV32ri))
660        .add(Orig.getOperand(0))
661        .addImm(Value);
662  } else {
663    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
664    MBB.insert(I, MI);
665  }
666
667  MachineInstr &NewMI = *std::prev(I);
668  NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
669}
670
671/// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
672bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
673  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
674    MachineOperand &MO = MI.getOperand(i);
675    if (MO.isReg() && MO.isDef() &&
676        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
677      return true;
678    }
679  }
680  return false;
681}
682
683/// Check whether the shift count for a machine operand is non-zero.
684inline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
685                                              unsigned ShiftAmtOperandIdx) {
686  // The shift count is six bits with the REX.W prefix and five bits without.
687  unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
688  unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
689  return Imm & ShiftCountMask;
690}
691
692/// Check whether the given shift count is appropriate
693/// can be represented by a LEA instruction.
694inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
695  // Left shift instructions can be transformed into load-effective-address
696  // instructions if we can encode them appropriately.
697  // A LEA instruction utilizes a SIB byte to encode its scale factor.
698  // The SIB.scale field is two bits wide which means that we can encode any
699  // shift amount less than 4.
700  return ShAmt < 4 && ShAmt > 0;
701}
702
703bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
704                                  unsigned Opc, bool AllowSP, Register &NewSrc,
705                                  bool &isKill, MachineOperand &ImplicitOp,
706                                  LiveVariables *LV) const {
707  MachineFunction &MF = *MI.getParent()->getParent();
708  const TargetRegisterClass *RC;
709  if (AllowSP) {
710    RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
711  } else {
712    RC = Opc != X86::LEA32r ?
713      &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
714  }
715  Register SrcReg = Src.getReg();
716
717  // For both LEA64 and LEA32 the register already has essentially the right
718  // type (32-bit or 64-bit) we may just need to forbid SP.
719  if (Opc != X86::LEA64_32r) {
720    NewSrc = SrcReg;
721    isKill = Src.isKill();
722    assert(!Src.isUndef() && "Undef op doesn't need optimization");
723
724    if (Register::isVirtualRegister(NewSrc) &&
725        !MF.getRegInfo().constrainRegClass(NewSrc, RC))
726      return false;
727
728    return true;
729  }
730
731  // This is for an LEA64_32r and incoming registers are 32-bit. One way or
732  // another we need to add 64-bit registers to the final MI.
733  if (Register::isPhysicalRegister(SrcReg)) {
734    ImplicitOp = Src;
735    ImplicitOp.setImplicit();
736
737    NewSrc = getX86SubSuperRegister(Src.getReg(), 64);
738    isKill = Src.isKill();
739    assert(!Src.isUndef() && "Undef op doesn't need optimization");
740  } else {
741    // Virtual register of the wrong class, we have to create a temporary 64-bit
742    // vreg to feed into the LEA.
743    NewSrc = MF.getRegInfo().createVirtualRegister(RC);
744    MachineInstr *Copy =
745        BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
746            .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
747            .add(Src);
748
749    // Which is obviously going to be dead after we're done with it.
750    isKill = true;
751
752    if (LV)
753      LV->replaceKillInstruction(SrcReg, MI, *Copy);
754  }
755
756  // We've set all the parameters without issue.
757  return true;
758}
759
760MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(
761    unsigned MIOpc, MachineFunction::iterator &MFI, MachineInstr &MI,
762    LiveVariables *LV, bool Is8BitOp) const {
763  // We handle 8-bit adds and various 16-bit opcodes in the switch below.
764  MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
765  assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits(
766              *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
767         "Unexpected type for LEA transform");
768
769  // TODO: For a 32-bit target, we need to adjust the LEA variables with
770  // something like this:
771  //   Opcode = X86::LEA32r;
772  //   InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
773  //   OutRegLEA =
774  //       Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
775  //                : RegInfo.createVirtualRegister(&X86::GR32RegClass);
776  if (!Subtarget.is64Bit())
777    return nullptr;
778
779  unsigned Opcode = X86::LEA64_32r;
780  Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
781  Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
782
783  // Build and insert into an implicit UNDEF value. This is OK because
784  // we will be shifting and then extracting the lower 8/16-bits.
785  // This has the potential to cause partial register stall. e.g.
786  //   movw    (%rbp,%rcx,2), %dx
787  //   leal    -65(%rdx), %esi
788  // But testing has shown this *does* help performance in 64-bit mode (at
789  // least on modern x86 machines).
790  MachineBasicBlock::iterator MBBI = MI.getIterator();
791  Register Dest = MI.getOperand(0).getReg();
792  Register Src = MI.getOperand(1).getReg();
793  bool IsDead = MI.getOperand(0).isDead();
794  bool IsKill = MI.getOperand(1).isKill();
795  unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
796  assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization");
797  BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
798  MachineInstr *InsMI =
799      BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
800          .addReg(InRegLEA, RegState::Define, SubReg)
801          .addReg(Src, getKillRegState(IsKill));
802
803  MachineInstrBuilder MIB =
804      BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
805  switch (MIOpc) {
806  default: llvm_unreachable("Unreachable!");
807  case X86::SHL8ri:
808  case X86::SHL16ri: {
809    unsigned ShAmt = MI.getOperand(2).getImm();
810    MIB.addReg(0).addImm(1ULL << ShAmt)
811       .addReg(InRegLEA, RegState::Kill).addImm(0).addReg(0);
812    break;
813  }
814  case X86::INC8r:
815  case X86::INC16r:
816    addRegOffset(MIB, InRegLEA, true, 1);
817    break;
818  case X86::DEC8r:
819  case X86::DEC16r:
820    addRegOffset(MIB, InRegLEA, true, -1);
821    break;
822  case X86::ADD8ri:
823  case X86::ADD8ri_DB:
824  case X86::ADD16ri:
825  case X86::ADD16ri8:
826  case X86::ADD16ri_DB:
827  case X86::ADD16ri8_DB:
828    addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
829    break;
830  case X86::ADD8rr:
831  case X86::ADD8rr_DB:
832  case X86::ADD16rr:
833  case X86::ADD16rr_DB: {
834    Register Src2 = MI.getOperand(2).getReg();
835    bool IsKill2 = MI.getOperand(2).isKill();
836    assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization");
837    unsigned InRegLEA2 = 0;
838    MachineInstr *InsMI2 = nullptr;
839    if (Src == Src2) {
840      // ADD8rr/ADD16rr killed %reg1028, %reg1028
841      // just a single insert_subreg.
842      addRegReg(MIB, InRegLEA, true, InRegLEA, false);
843    } else {
844      if (Subtarget.is64Bit())
845        InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
846      else
847        InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
848      // Build and insert into an implicit UNDEF value. This is OK because
849      // we will be shifting and then extracting the lower 8/16-bits.
850      BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA2);
851      InsMI2 = BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
852                   .addReg(InRegLEA2, RegState::Define, SubReg)
853                   .addReg(Src2, getKillRegState(IsKill2));
854      addRegReg(MIB, InRegLEA, true, InRegLEA2, true);
855    }
856    if (LV && IsKill2 && InsMI2)
857      LV->replaceKillInstruction(Src2, MI, *InsMI2);
858    break;
859  }
860  }
861
862  MachineInstr *NewMI = MIB;
863  MachineInstr *ExtMI =
864      BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
865          .addReg(Dest, RegState::Define | getDeadRegState(IsDead))
866          .addReg(OutRegLEA, RegState::Kill, SubReg);
867
868  if (LV) {
869    // Update live variables.
870    LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
871    LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
872    if (IsKill)
873      LV->replaceKillInstruction(Src, MI, *InsMI);
874    if (IsDead)
875      LV->replaceKillInstruction(Dest, MI, *ExtMI);
876  }
877
878  return ExtMI;
879}
880
881/// This method must be implemented by targets that
882/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
883/// may be able to convert a two-address instruction into a true
884/// three-address instruction on demand.  This allows the X86 target (for
885/// example) to convert ADD and SHL instructions into LEA instructions if they
886/// would require register copies due to two-addressness.
887///
888/// This method returns a null pointer if the transformation cannot be
889/// performed, otherwise it returns the new instruction.
890///
891MachineInstr *
892X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
893                                    MachineInstr &MI, LiveVariables *LV) const {
894  // The following opcodes also sets the condition code register(s). Only
895  // convert them to equivalent lea if the condition code register def's
896  // are dead!
897  if (hasLiveCondCodeDef(MI))
898    return nullptr;
899
900  MachineFunction &MF = *MI.getParent()->getParent();
901  // All instructions input are two-addr instructions.  Get the known operands.
902  const MachineOperand &Dest = MI.getOperand(0);
903  const MachineOperand &Src = MI.getOperand(1);
904
905  // Ideally, operations with undef should be folded before we get here, but we
906  // can't guarantee it. Bail out because optimizing undefs is a waste of time.
907  // Without this, we have to forward undef state to new register operands to
908  // avoid machine verifier errors.
909  if (Src.isUndef())
910    return nullptr;
911  if (MI.getNumOperands() > 2)
912    if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
913      return nullptr;
914
915  MachineInstr *NewMI = nullptr;
916  bool Is64Bit = Subtarget.is64Bit();
917
918  bool Is8BitOp = false;
919  unsigned MIOpc = MI.getOpcode();
920  switch (MIOpc) {
921  default: llvm_unreachable("Unreachable!");
922  case X86::SHL64ri: {
923    assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
924    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
925    if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
926
927    // LEA can't handle RSP.
928    if (Register::isVirtualRegister(Src.getReg()) &&
929        !MF.getRegInfo().constrainRegClass(Src.getReg(),
930                                           &X86::GR64_NOSPRegClass))
931      return nullptr;
932
933    NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
934                .add(Dest)
935                .addReg(0)
936                .addImm(1ULL << ShAmt)
937                .add(Src)
938                .addImm(0)
939                .addReg(0);
940    break;
941  }
942  case X86::SHL32ri: {
943    assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
944    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
945    if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
946
947    unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
948
949    // LEA can't handle ESP.
950    bool isKill;
951    Register SrcReg;
952    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
953    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
954                        SrcReg, isKill, ImplicitOp, LV))
955      return nullptr;
956
957    MachineInstrBuilder MIB =
958        BuildMI(MF, MI.getDebugLoc(), get(Opc))
959            .add(Dest)
960            .addReg(0)
961            .addImm(1ULL << ShAmt)
962            .addReg(SrcReg, getKillRegState(isKill))
963            .addImm(0)
964            .addReg(0);
965    if (ImplicitOp.getReg() != 0)
966      MIB.add(ImplicitOp);
967    NewMI = MIB;
968
969    break;
970  }
971  case X86::SHL8ri:
972    Is8BitOp = true;
973    LLVM_FALLTHROUGH;
974  case X86::SHL16ri: {
975    assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
976    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
977    if (!isTruncatedShiftCountForLEA(ShAmt))
978      return nullptr;
979    return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
980  }
981  case X86::INC64r:
982  case X86::INC32r: {
983    assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
984    unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r :
985        (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
986    bool isKill;
987    Register SrcReg;
988    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
989    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill,
990                        ImplicitOp, LV))
991      return nullptr;
992
993    MachineInstrBuilder MIB =
994        BuildMI(MF, MI.getDebugLoc(), get(Opc))
995            .add(Dest)
996            .addReg(SrcReg, getKillRegState(isKill));
997    if (ImplicitOp.getReg() != 0)
998      MIB.add(ImplicitOp);
999
1000    NewMI = addOffset(MIB, 1);
1001    break;
1002  }
1003  case X86::DEC64r:
1004  case X86::DEC32r: {
1005    assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
1006    unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1007        : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1008
1009    bool isKill;
1010    Register SrcReg;
1011    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1012    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill,
1013                        ImplicitOp, LV))
1014      return nullptr;
1015
1016    MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1017                                  .add(Dest)
1018                                  .addReg(SrcReg, getKillRegState(isKill));
1019    if (ImplicitOp.getReg() != 0)
1020      MIB.add(ImplicitOp);
1021
1022    NewMI = addOffset(MIB, -1);
1023
1024    break;
1025  }
1026  case X86::DEC8r:
1027  case X86::INC8r:
1028    Is8BitOp = true;
1029    LLVM_FALLTHROUGH;
1030  case X86::DEC16r:
1031  case X86::INC16r:
1032    return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1033  case X86::ADD64rr:
1034  case X86::ADD64rr_DB:
1035  case X86::ADD32rr:
1036  case X86::ADD32rr_DB: {
1037    assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1038    unsigned Opc;
1039    if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
1040      Opc = X86::LEA64r;
1041    else
1042      Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1043
1044    bool isKill;
1045    Register SrcReg;
1046    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1047    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1048                        SrcReg, isKill, ImplicitOp, LV))
1049      return nullptr;
1050
1051    const MachineOperand &Src2 = MI.getOperand(2);
1052    bool isKill2;
1053    Register SrcReg2;
1054    MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
1055    if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
1056                        SrcReg2, isKill2, ImplicitOp2, LV))
1057      return nullptr;
1058
1059    MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
1060    if (ImplicitOp.getReg() != 0)
1061      MIB.add(ImplicitOp);
1062    if (ImplicitOp2.getReg() != 0)
1063      MIB.add(ImplicitOp2);
1064
1065    NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
1066    if (LV && Src2.isKill())
1067      LV->replaceKillInstruction(SrcReg2, MI, *NewMI);
1068    break;
1069  }
1070  case X86::ADD8rr:
1071  case X86::ADD8rr_DB:
1072    Is8BitOp = true;
1073    LLVM_FALLTHROUGH;
1074  case X86::ADD16rr:
1075  case X86::ADD16rr_DB:
1076    return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1077  case X86::ADD64ri32:
1078  case X86::ADD64ri8:
1079  case X86::ADD64ri32_DB:
1080  case X86::ADD64ri8_DB:
1081    assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1082    NewMI = addOffset(
1083        BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
1084        MI.getOperand(2));
1085    break;
1086  case X86::ADD32ri:
1087  case X86::ADD32ri8:
1088  case X86::ADD32ri_DB:
1089  case X86::ADD32ri8_DB: {
1090    assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1091    unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1092
1093    bool isKill;
1094    Register SrcReg;
1095    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1096    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1097                        SrcReg, isKill, ImplicitOp, LV))
1098      return nullptr;
1099
1100    MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1101                                  .add(Dest)
1102                                  .addReg(SrcReg, getKillRegState(isKill));
1103    if (ImplicitOp.getReg() != 0)
1104      MIB.add(ImplicitOp);
1105
1106    NewMI = addOffset(MIB, MI.getOperand(2));
1107    break;
1108  }
1109  case X86::ADD8ri:
1110  case X86::ADD8ri_DB:
1111    Is8BitOp = true;
1112    LLVM_FALLTHROUGH;
1113  case X86::ADD16ri:
1114  case X86::ADD16ri8:
1115  case X86::ADD16ri_DB:
1116  case X86::ADD16ri8_DB:
1117    return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1118  case X86::SUB8ri:
1119  case X86::SUB16ri8:
1120  case X86::SUB16ri:
1121    /// FIXME: Support these similar to ADD8ri/ADD16ri*.
1122    return nullptr;
1123  case X86::SUB32ri8:
1124  case X86::SUB32ri: {
1125    if (!MI.getOperand(2).isImm())
1126      return nullptr;
1127    int64_t Imm = MI.getOperand(2).getImm();
1128    if (!isInt<32>(-Imm))
1129      return nullptr;
1130
1131    assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1132    unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1133
1134    bool isKill;
1135    Register SrcReg;
1136    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1137    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1138                        SrcReg, isKill, ImplicitOp, LV))
1139      return nullptr;
1140
1141    MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1142                                  .add(Dest)
1143                                  .addReg(SrcReg, getKillRegState(isKill));
1144    if (ImplicitOp.getReg() != 0)
1145      MIB.add(ImplicitOp);
1146
1147    NewMI = addOffset(MIB, -Imm);
1148    break;
1149  }
1150
1151  case X86::SUB64ri8:
1152  case X86::SUB64ri32: {
1153    if (!MI.getOperand(2).isImm())
1154      return nullptr;
1155    int64_t Imm = MI.getOperand(2).getImm();
1156    if (!isInt<32>(-Imm))
1157      return nullptr;
1158
1159    assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!");
1160
1161    MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(),
1162                                      get(X86::LEA64r)).add(Dest).add(Src);
1163    NewMI = addOffset(MIB, -Imm);
1164    break;
1165  }
1166
1167  case X86::VMOVDQU8Z128rmk:
1168  case X86::VMOVDQU8Z256rmk:
1169  case X86::VMOVDQU8Zrmk:
1170  case X86::VMOVDQU16Z128rmk:
1171  case X86::VMOVDQU16Z256rmk:
1172  case X86::VMOVDQU16Zrmk:
1173  case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
1174  case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
1175  case X86::VMOVDQU32Zrmk:    case X86::VMOVDQA32Zrmk:
1176  case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
1177  case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
1178  case X86::VMOVDQU64Zrmk:    case X86::VMOVDQA64Zrmk:
1179  case X86::VMOVUPDZ128rmk:   case X86::VMOVAPDZ128rmk:
1180  case X86::VMOVUPDZ256rmk:   case X86::VMOVAPDZ256rmk:
1181  case X86::VMOVUPDZrmk:      case X86::VMOVAPDZrmk:
1182  case X86::VMOVUPSZ128rmk:   case X86::VMOVAPSZ128rmk:
1183  case X86::VMOVUPSZ256rmk:   case X86::VMOVAPSZ256rmk:
1184  case X86::VMOVUPSZrmk:      case X86::VMOVAPSZrmk:
1185  case X86::VBROADCASTSDZ256mk:
1186  case X86::VBROADCASTSDZmk:
1187  case X86::VBROADCASTSSZ128mk:
1188  case X86::VBROADCASTSSZ256mk:
1189  case X86::VBROADCASTSSZmk:
1190  case X86::VPBROADCASTDZ128mk:
1191  case X86::VPBROADCASTDZ256mk:
1192  case X86::VPBROADCASTDZmk:
1193  case X86::VPBROADCASTQZ128mk:
1194  case X86::VPBROADCASTQZ256mk:
1195  case X86::VPBROADCASTQZmk: {
1196    unsigned Opc;
1197    switch (MIOpc) {
1198    default: llvm_unreachable("Unreachable!");
1199    case X86::VMOVDQU8Z128rmk:    Opc = X86::VPBLENDMBZ128rmk; break;
1200    case X86::VMOVDQU8Z256rmk:    Opc = X86::VPBLENDMBZ256rmk; break;
1201    case X86::VMOVDQU8Zrmk:       Opc = X86::VPBLENDMBZrmk;    break;
1202    case X86::VMOVDQU16Z128rmk:   Opc = X86::VPBLENDMWZ128rmk; break;
1203    case X86::VMOVDQU16Z256rmk:   Opc = X86::VPBLENDMWZ256rmk; break;
1204    case X86::VMOVDQU16Zrmk:      Opc = X86::VPBLENDMWZrmk;    break;
1205    case X86::VMOVDQU32Z128rmk:   Opc = X86::VPBLENDMDZ128rmk; break;
1206    case X86::VMOVDQU32Z256rmk:   Opc = X86::VPBLENDMDZ256rmk; break;
1207    case X86::VMOVDQU32Zrmk:      Opc = X86::VPBLENDMDZrmk;    break;
1208    case X86::VMOVDQU64Z128rmk:   Opc = X86::VPBLENDMQZ128rmk; break;
1209    case X86::VMOVDQU64Z256rmk:   Opc = X86::VPBLENDMQZ256rmk; break;
1210    case X86::VMOVDQU64Zrmk:      Opc = X86::VPBLENDMQZrmk;    break;
1211    case X86::VMOVUPDZ128rmk:     Opc = X86::VBLENDMPDZ128rmk; break;
1212    case X86::VMOVUPDZ256rmk:     Opc = X86::VBLENDMPDZ256rmk; break;
1213    case X86::VMOVUPDZrmk:        Opc = X86::VBLENDMPDZrmk;    break;
1214    case X86::VMOVUPSZ128rmk:     Opc = X86::VBLENDMPSZ128rmk; break;
1215    case X86::VMOVUPSZ256rmk:     Opc = X86::VBLENDMPSZ256rmk; break;
1216    case X86::VMOVUPSZrmk:        Opc = X86::VBLENDMPSZrmk;    break;
1217    case X86::VMOVDQA32Z128rmk:   Opc = X86::VPBLENDMDZ128rmk; break;
1218    case X86::VMOVDQA32Z256rmk:   Opc = X86::VPBLENDMDZ256rmk; break;
1219    case X86::VMOVDQA32Zrmk:      Opc = X86::VPBLENDMDZrmk;    break;
1220    case X86::VMOVDQA64Z128rmk:   Opc = X86::VPBLENDMQZ128rmk; break;
1221    case X86::VMOVDQA64Z256rmk:   Opc = X86::VPBLENDMQZ256rmk; break;
1222    case X86::VMOVDQA64Zrmk:      Opc = X86::VPBLENDMQZrmk;    break;
1223    case X86::VMOVAPDZ128rmk:     Opc = X86::VBLENDMPDZ128rmk; break;
1224    case X86::VMOVAPDZ256rmk:     Opc = X86::VBLENDMPDZ256rmk; break;
1225    case X86::VMOVAPDZrmk:        Opc = X86::VBLENDMPDZrmk;    break;
1226    case X86::VMOVAPSZ128rmk:     Opc = X86::VBLENDMPSZ128rmk; break;
1227    case X86::VMOVAPSZ256rmk:     Opc = X86::VBLENDMPSZ256rmk; break;
1228    case X86::VMOVAPSZrmk:        Opc = X86::VBLENDMPSZrmk;    break;
1229    case X86::VBROADCASTSDZ256mk: Opc = X86::VBLENDMPDZ256rmbk; break;
1230    case X86::VBROADCASTSDZmk:    Opc = X86::VBLENDMPDZrmbk;    break;
1231    case X86::VBROADCASTSSZ128mk: Opc = X86::VBLENDMPSZ128rmbk; break;
1232    case X86::VBROADCASTSSZ256mk: Opc = X86::VBLENDMPSZ256rmbk; break;
1233    case X86::VBROADCASTSSZmk:    Opc = X86::VBLENDMPSZrmbk;    break;
1234    case X86::VPBROADCASTDZ128mk: Opc = X86::VPBLENDMDZ128rmbk; break;
1235    case X86::VPBROADCASTDZ256mk: Opc = X86::VPBLENDMDZ256rmbk; break;
1236    case X86::VPBROADCASTDZmk:    Opc = X86::VPBLENDMDZrmbk;    break;
1237    case X86::VPBROADCASTQZ128mk: Opc = X86::VPBLENDMQZ128rmbk; break;
1238    case X86::VPBROADCASTQZ256mk: Opc = X86::VPBLENDMQZ256rmbk; break;
1239    case X86::VPBROADCASTQZmk:    Opc = X86::VPBLENDMQZrmbk;    break;
1240    }
1241
1242    NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1243              .add(Dest)
1244              .add(MI.getOperand(2))
1245              .add(Src)
1246              .add(MI.getOperand(3))
1247              .add(MI.getOperand(4))
1248              .add(MI.getOperand(5))
1249              .add(MI.getOperand(6))
1250              .add(MI.getOperand(7));
1251    break;
1252  }
1253
1254  case X86::VMOVDQU8Z128rrk:
1255  case X86::VMOVDQU8Z256rrk:
1256  case X86::VMOVDQU8Zrrk:
1257  case X86::VMOVDQU16Z128rrk:
1258  case X86::VMOVDQU16Z256rrk:
1259  case X86::VMOVDQU16Zrrk:
1260  case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
1261  case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
1262  case X86::VMOVDQU32Zrrk:    case X86::VMOVDQA32Zrrk:
1263  case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
1264  case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
1265  case X86::VMOVDQU64Zrrk:    case X86::VMOVDQA64Zrrk:
1266  case X86::VMOVUPDZ128rrk:   case X86::VMOVAPDZ128rrk:
1267  case X86::VMOVUPDZ256rrk:   case X86::VMOVAPDZ256rrk:
1268  case X86::VMOVUPDZrrk:      case X86::VMOVAPDZrrk:
1269  case X86::VMOVUPSZ128rrk:   case X86::VMOVAPSZ128rrk:
1270  case X86::VMOVUPSZ256rrk:   case X86::VMOVAPSZ256rrk:
1271  case X86::VMOVUPSZrrk:      case X86::VMOVAPSZrrk: {
1272    unsigned Opc;
1273    switch (MIOpc) {
1274    default: llvm_unreachable("Unreachable!");
1275    case X86::VMOVDQU8Z128rrk:  Opc = X86::VPBLENDMBZ128rrk; break;
1276    case X86::VMOVDQU8Z256rrk:  Opc = X86::VPBLENDMBZ256rrk; break;
1277    case X86::VMOVDQU8Zrrk:     Opc = X86::VPBLENDMBZrrk;    break;
1278    case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
1279    case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
1280    case X86::VMOVDQU16Zrrk:    Opc = X86::VPBLENDMWZrrk;    break;
1281    case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1282    case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1283    case X86::VMOVDQU32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break;
1284    case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1285    case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1286    case X86::VMOVDQU64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break;
1287    case X86::VMOVUPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break;
1288    case X86::VMOVUPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break;
1289    case X86::VMOVUPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break;
1290    case X86::VMOVUPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break;
1291    case X86::VMOVUPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break;
1292    case X86::VMOVUPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break;
1293    case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1294    case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1295    case X86::VMOVDQA32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break;
1296    case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1297    case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1298    case X86::VMOVDQA64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break;
1299    case X86::VMOVAPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break;
1300    case X86::VMOVAPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break;
1301    case X86::VMOVAPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break;
1302    case X86::VMOVAPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break;
1303    case X86::VMOVAPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break;
1304    case X86::VMOVAPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break;
1305    }
1306
1307    NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1308              .add(Dest)
1309              .add(MI.getOperand(2))
1310              .add(Src)
1311              .add(MI.getOperand(3));
1312    break;
1313  }
1314  }
1315
1316  if (!NewMI) return nullptr;
1317
1318  if (LV) {  // Update live variables
1319    if (Src.isKill())
1320      LV->replaceKillInstruction(Src.getReg(), MI, *NewMI);
1321    if (Dest.isDead())
1322      LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI);
1323  }
1324
1325  MFI->insert(MI.getIterator(), NewMI); // Insert the new inst
1326  return NewMI;
1327}
1328
1329/// This determines which of three possible cases of a three source commute
1330/// the source indexes correspond to taking into account any mask operands.
1331/// All prevents commuting a passthru operand. Returns -1 if the commute isn't
1332/// possible.
1333/// Case 0 - Possible to commute the first and second operands.
1334/// Case 1 - Possible to commute the first and third operands.
1335/// Case 2 - Possible to commute the second and third operands.
1336static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
1337                                       unsigned SrcOpIdx2) {
1338  // Put the lowest index to SrcOpIdx1 to simplify the checks below.
1339  if (SrcOpIdx1 > SrcOpIdx2)
1340    std::swap(SrcOpIdx1, SrcOpIdx2);
1341
1342  unsigned Op1 = 1, Op2 = 2, Op3 = 3;
1343  if (X86II::isKMasked(TSFlags)) {
1344    Op2++;
1345    Op3++;
1346  }
1347
1348  if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
1349    return 0;
1350  if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
1351    return 1;
1352  if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
1353    return 2;
1354  llvm_unreachable("Unknown three src commute case.");
1355}
1356
1357unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
1358    const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
1359    const X86InstrFMA3Group &FMA3Group) const {
1360
1361  unsigned Opc = MI.getOpcode();
1362
1363  // TODO: Commuting the 1st operand of FMA*_Int requires some additional
1364  // analysis. The commute optimization is legal only if all users of FMA*_Int
1365  // use only the lowest element of the FMA*_Int instruction. Such analysis are
1366  // not implemented yet. So, just return 0 in that case.
1367  // When such analysis are available this place will be the right place for
1368  // calling it.
1369  assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&
1370         "Intrinsic instructions can't commute operand 1");
1371
1372  // Determine which case this commute is or if it can't be done.
1373  unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1374                                         SrcOpIdx2);
1375  assert(Case < 3 && "Unexpected case number!");
1376
1377  // Define the FMA forms mapping array that helps to map input FMA form
1378  // to output FMA form to preserve the operation semantics after
1379  // commuting the operands.
1380  const unsigned Form132Index = 0;
1381  const unsigned Form213Index = 1;
1382  const unsigned Form231Index = 2;
1383  static const unsigned FormMapping[][3] = {
1384    // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
1385    // FMA132 A, C, b; ==> FMA231 C, A, b;
1386    // FMA213 B, A, c; ==> FMA213 A, B, c;
1387    // FMA231 C, A, b; ==> FMA132 A, C, b;
1388    { Form231Index, Form213Index, Form132Index },
1389    // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
1390    // FMA132 A, c, B; ==> FMA132 B, c, A;
1391    // FMA213 B, a, C; ==> FMA231 C, a, B;
1392    // FMA231 C, a, B; ==> FMA213 B, a, C;
1393    { Form132Index, Form231Index, Form213Index },
1394    // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
1395    // FMA132 a, C, B; ==> FMA213 a, B, C;
1396    // FMA213 b, A, C; ==> FMA132 b, C, A;
1397    // FMA231 c, A, B; ==> FMA231 c, B, A;
1398    { Form213Index, Form132Index, Form231Index }
1399  };
1400
1401  unsigned FMAForms[3];
1402  FMAForms[0] = FMA3Group.get132Opcode();
1403  FMAForms[1] = FMA3Group.get213Opcode();
1404  FMAForms[2] = FMA3Group.get231Opcode();
1405  unsigned FormIndex;
1406  for (FormIndex = 0; FormIndex < 3; FormIndex++)
1407    if (Opc == FMAForms[FormIndex])
1408      break;
1409
1410  // Everything is ready, just adjust the FMA opcode and return it.
1411  FormIndex = FormMapping[Case][FormIndex];
1412  return FMAForms[FormIndex];
1413}
1414
1415static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
1416                             unsigned SrcOpIdx2) {
1417  // Determine which case this commute is or if it can't be done.
1418  unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1419                                         SrcOpIdx2);
1420  assert(Case < 3 && "Unexpected case value!");
1421
1422  // For each case we need to swap two pairs of bits in the final immediate.
1423  static const uint8_t SwapMasks[3][4] = {
1424    { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
1425    { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
1426    { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
1427  };
1428
1429  uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
1430  // Clear out the bits we are swapping.
1431  uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
1432                           SwapMasks[Case][2] | SwapMasks[Case][3]);
1433  // If the immediate had a bit of the pair set, then set the opposite bit.
1434  if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
1435  if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
1436  if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
1437  if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
1438  MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
1439}
1440
1441// Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
1442// commuted.
1443static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
1444#define VPERM_CASES(Suffix) \
1445  case X86::VPERMI2##Suffix##128rr:    case X86::VPERMT2##Suffix##128rr:    \
1446  case X86::VPERMI2##Suffix##256rr:    case X86::VPERMT2##Suffix##256rr:    \
1447  case X86::VPERMI2##Suffix##rr:       case X86::VPERMT2##Suffix##rr:       \
1448  case X86::VPERMI2##Suffix##128rm:    case X86::VPERMT2##Suffix##128rm:    \
1449  case X86::VPERMI2##Suffix##256rm:    case X86::VPERMT2##Suffix##256rm:    \
1450  case X86::VPERMI2##Suffix##rm:       case X86::VPERMT2##Suffix##rm:       \
1451  case X86::VPERMI2##Suffix##128rrkz:  case X86::VPERMT2##Suffix##128rrkz:  \
1452  case X86::VPERMI2##Suffix##256rrkz:  case X86::VPERMT2##Suffix##256rrkz:  \
1453  case X86::VPERMI2##Suffix##rrkz:     case X86::VPERMT2##Suffix##rrkz:     \
1454  case X86::VPERMI2##Suffix##128rmkz:  case X86::VPERMT2##Suffix##128rmkz:  \
1455  case X86::VPERMI2##Suffix##256rmkz:  case X86::VPERMT2##Suffix##256rmkz:  \
1456  case X86::VPERMI2##Suffix##rmkz:     case X86::VPERMT2##Suffix##rmkz:
1457
1458#define VPERM_CASES_BROADCAST(Suffix) \
1459  VPERM_CASES(Suffix) \
1460  case X86::VPERMI2##Suffix##128rmb:   case X86::VPERMT2##Suffix##128rmb:   \
1461  case X86::VPERMI2##Suffix##256rmb:   case X86::VPERMT2##Suffix##256rmb:   \
1462  case X86::VPERMI2##Suffix##rmb:      case X86::VPERMT2##Suffix##rmb:      \
1463  case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
1464  case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
1465  case X86::VPERMI2##Suffix##rmbkz:    case X86::VPERMT2##Suffix##rmbkz:
1466
1467  switch (Opcode) {
1468  default: return false;
1469  VPERM_CASES(B)
1470  VPERM_CASES_BROADCAST(D)
1471  VPERM_CASES_BROADCAST(PD)
1472  VPERM_CASES_BROADCAST(PS)
1473  VPERM_CASES_BROADCAST(Q)
1474  VPERM_CASES(W)
1475    return true;
1476  }
1477#undef VPERM_CASES_BROADCAST
1478#undef VPERM_CASES
1479}
1480
1481// Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
1482// from the I opcode to the T opcode and vice versa.
1483static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
1484#define VPERM_CASES(Orig, New) \
1485  case X86::Orig##128rr:    return X86::New##128rr;   \
1486  case X86::Orig##128rrkz:  return X86::New##128rrkz; \
1487  case X86::Orig##128rm:    return X86::New##128rm;   \
1488  case X86::Orig##128rmkz:  return X86::New##128rmkz; \
1489  case X86::Orig##256rr:    return X86::New##256rr;   \
1490  case X86::Orig##256rrkz:  return X86::New##256rrkz; \
1491  case X86::Orig##256rm:    return X86::New##256rm;   \
1492  case X86::Orig##256rmkz:  return X86::New##256rmkz; \
1493  case X86::Orig##rr:       return X86::New##rr;      \
1494  case X86::Orig##rrkz:     return X86::New##rrkz;    \
1495  case X86::Orig##rm:       return X86::New##rm;      \
1496  case X86::Orig##rmkz:     return X86::New##rmkz;
1497
1498#define VPERM_CASES_BROADCAST(Orig, New) \
1499  VPERM_CASES(Orig, New) \
1500  case X86::Orig##128rmb:   return X86::New##128rmb;   \
1501  case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
1502  case X86::Orig##256rmb:   return X86::New##256rmb;   \
1503  case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
1504  case X86::Orig##rmb:      return X86::New##rmb;      \
1505  case X86::Orig##rmbkz:    return X86::New##rmbkz;
1506
1507  switch (Opcode) {
1508  VPERM_CASES(VPERMI2B, VPERMT2B)
1509  VPERM_CASES_BROADCAST(VPERMI2D,  VPERMT2D)
1510  VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
1511  VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
1512  VPERM_CASES_BROADCAST(VPERMI2Q,  VPERMT2Q)
1513  VPERM_CASES(VPERMI2W, VPERMT2W)
1514  VPERM_CASES(VPERMT2B, VPERMI2B)
1515  VPERM_CASES_BROADCAST(VPERMT2D,  VPERMI2D)
1516  VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
1517  VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
1518  VPERM_CASES_BROADCAST(VPERMT2Q,  VPERMI2Q)
1519  VPERM_CASES(VPERMT2W, VPERMI2W)
1520  }
1521
1522  llvm_unreachable("Unreachable!");
1523#undef VPERM_CASES_BROADCAST
1524#undef VPERM_CASES
1525}
1526
1527MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
1528                                                   unsigned OpIdx1,
1529                                                   unsigned OpIdx2) const {
1530  auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
1531    if (NewMI)
1532      return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
1533    return MI;
1534  };
1535
1536  switch (MI.getOpcode()) {
1537  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1538  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1539  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1540  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1541  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1542  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1543    unsigned Opc;
1544    unsigned Size;
1545    switch (MI.getOpcode()) {
1546    default: llvm_unreachable("Unreachable!");
1547    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1548    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1549    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1550    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1551    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1552    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1553    }
1554    unsigned Amt = MI.getOperand(3).getImm();
1555    auto &WorkingMI = cloneIfNew(MI);
1556    WorkingMI.setDesc(get(Opc));
1557    WorkingMI.getOperand(3).setImm(Size - Amt);
1558    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1559                                                   OpIdx1, OpIdx2);
1560  }
1561  case X86::PFSUBrr:
1562  case X86::PFSUBRrr: {
1563    // PFSUB  x, y: x = x - y
1564    // PFSUBR x, y: x = y - x
1565    unsigned Opc =
1566        (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr);
1567    auto &WorkingMI = cloneIfNew(MI);
1568    WorkingMI.setDesc(get(Opc));
1569    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1570                                                   OpIdx1, OpIdx2);
1571  }
1572  case X86::BLENDPDrri:
1573  case X86::BLENDPSrri:
1574  case X86::VBLENDPDrri:
1575  case X86::VBLENDPSrri:
1576    // If we're optimizing for size, try to use MOVSD/MOVSS.
1577    if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
1578      unsigned Mask, Opc;
1579      switch (MI.getOpcode()) {
1580      default: llvm_unreachable("Unreachable!");
1581      case X86::BLENDPDrri:  Opc = X86::MOVSDrr;  Mask = 0x03; break;
1582      case X86::BLENDPSrri:  Opc = X86::MOVSSrr;  Mask = 0x0F; break;
1583      case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break;
1584      case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break;
1585      }
1586      if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
1587        auto &WorkingMI = cloneIfNew(MI);
1588        WorkingMI.setDesc(get(Opc));
1589        WorkingMI.RemoveOperand(3);
1590        return TargetInstrInfo::commuteInstructionImpl(WorkingMI,
1591                                                       /*NewMI=*/false,
1592                                                       OpIdx1, OpIdx2);
1593      }
1594    }
1595    LLVM_FALLTHROUGH;
1596  case X86::PBLENDWrri:
1597  case X86::VBLENDPDYrri:
1598  case X86::VBLENDPSYrri:
1599  case X86::VPBLENDDrri:
1600  case X86::VPBLENDWrri:
1601  case X86::VPBLENDDYrri:
1602  case X86::VPBLENDWYrri:{
1603    int8_t Mask;
1604    switch (MI.getOpcode()) {
1605    default: llvm_unreachable("Unreachable!");
1606    case X86::BLENDPDrri:    Mask = (int8_t)0x03; break;
1607    case X86::BLENDPSrri:    Mask = (int8_t)0x0F; break;
1608    case X86::PBLENDWrri:    Mask = (int8_t)0xFF; break;
1609    case X86::VBLENDPDrri:   Mask = (int8_t)0x03; break;
1610    case X86::VBLENDPSrri:   Mask = (int8_t)0x0F; break;
1611    case X86::VBLENDPDYrri:  Mask = (int8_t)0x0F; break;
1612    case X86::VBLENDPSYrri:  Mask = (int8_t)0xFF; break;
1613    case X86::VPBLENDDrri:   Mask = (int8_t)0x0F; break;
1614    case X86::VPBLENDWrri:   Mask = (int8_t)0xFF; break;
1615    case X86::VPBLENDDYrri:  Mask = (int8_t)0xFF; break;
1616    case X86::VPBLENDWYrri:  Mask = (int8_t)0xFF; break;
1617    }
1618    // Only the least significant bits of Imm are used.
1619    // Using int8_t to ensure it will be sign extended to the int64_t that
1620    // setImm takes in order to match isel behavior.
1621    int8_t Imm = MI.getOperand(3).getImm() & Mask;
1622    auto &WorkingMI = cloneIfNew(MI);
1623    WorkingMI.getOperand(3).setImm(Mask ^ Imm);
1624    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1625                                                   OpIdx1, OpIdx2);
1626  }
1627  case X86::INSERTPSrr:
1628  case X86::VINSERTPSrr:
1629  case X86::VINSERTPSZrr: {
1630    unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
1631    unsigned ZMask = Imm & 15;
1632    unsigned DstIdx = (Imm >> 4) & 3;
1633    unsigned SrcIdx = (Imm >> 6) & 3;
1634
1635    // We can commute insertps if we zero 2 of the elements, the insertion is
1636    // "inline" and we don't override the insertion with a zero.
1637    if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
1638        countPopulation(ZMask) == 2) {
1639      unsigned AltIdx = findFirstSet((ZMask | (1 << DstIdx)) ^ 15);
1640      assert(AltIdx < 4 && "Illegal insertion index");
1641      unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
1642      auto &WorkingMI = cloneIfNew(MI);
1643      WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm);
1644      return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1645                                                     OpIdx1, OpIdx2);
1646    }
1647    return nullptr;
1648  }
1649  case X86::MOVSDrr:
1650  case X86::MOVSSrr:
1651  case X86::VMOVSDrr:
1652  case X86::VMOVSSrr:{
1653    // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
1654    if (Subtarget.hasSSE41()) {
1655      unsigned Mask, Opc;
1656      switch (MI.getOpcode()) {
1657      default: llvm_unreachable("Unreachable!");
1658      case X86::MOVSDrr:  Opc = X86::BLENDPDrri;  Mask = 0x02; break;
1659      case X86::MOVSSrr:  Opc = X86::BLENDPSrri;  Mask = 0x0E; break;
1660      case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
1661      case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
1662      }
1663
1664      auto &WorkingMI = cloneIfNew(MI);
1665      WorkingMI.setDesc(get(Opc));
1666      WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
1667      return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1668                                                     OpIdx1, OpIdx2);
1669    }
1670
1671    // Convert to SHUFPD.
1672    assert(MI.getOpcode() == X86::MOVSDrr &&
1673           "Can only commute MOVSDrr without SSE4.1");
1674
1675    auto &WorkingMI = cloneIfNew(MI);
1676    WorkingMI.setDesc(get(X86::SHUFPDrri));
1677    WorkingMI.addOperand(MachineOperand::CreateImm(0x02));
1678    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1679                                                   OpIdx1, OpIdx2);
1680  }
1681  case X86::SHUFPDrri: {
1682    // Commute to MOVSD.
1683    assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
1684    auto &WorkingMI = cloneIfNew(MI);
1685    WorkingMI.setDesc(get(X86::MOVSDrr));
1686    WorkingMI.RemoveOperand(3);
1687    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1688                                                   OpIdx1, OpIdx2);
1689  }
1690  case X86::PCLMULQDQrr:
1691  case X86::VPCLMULQDQrr:
1692  case X86::VPCLMULQDQYrr:
1693  case X86::VPCLMULQDQZrr:
1694  case X86::VPCLMULQDQZ128rr:
1695  case X86::VPCLMULQDQZ256rr: {
1696    // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
1697    // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
1698    unsigned Imm = MI.getOperand(3).getImm();
1699    unsigned Src1Hi = Imm & 0x01;
1700    unsigned Src2Hi = Imm & 0x10;
1701    auto &WorkingMI = cloneIfNew(MI);
1702    WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
1703    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1704                                                   OpIdx1, OpIdx2);
1705  }
1706  case X86::VPCMPBZ128rri:  case X86::VPCMPUBZ128rri:
1707  case X86::VPCMPBZ256rri:  case X86::VPCMPUBZ256rri:
1708  case X86::VPCMPBZrri:     case X86::VPCMPUBZrri:
1709  case X86::VPCMPDZ128rri:  case X86::VPCMPUDZ128rri:
1710  case X86::VPCMPDZ256rri:  case X86::VPCMPUDZ256rri:
1711  case X86::VPCMPDZrri:     case X86::VPCMPUDZrri:
1712  case X86::VPCMPQZ128rri:  case X86::VPCMPUQZ128rri:
1713  case X86::VPCMPQZ256rri:  case X86::VPCMPUQZ256rri:
1714  case X86::VPCMPQZrri:     case X86::VPCMPUQZrri:
1715  case X86::VPCMPWZ128rri:  case X86::VPCMPUWZ128rri:
1716  case X86::VPCMPWZ256rri:  case X86::VPCMPUWZ256rri:
1717  case X86::VPCMPWZrri:     case X86::VPCMPUWZrri:
1718  case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik:
1719  case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik:
1720  case X86::VPCMPBZrrik:    case X86::VPCMPUBZrrik:
1721  case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik:
1722  case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik:
1723  case X86::VPCMPDZrrik:    case X86::VPCMPUDZrrik:
1724  case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik:
1725  case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik:
1726  case X86::VPCMPQZrrik:    case X86::VPCMPUQZrrik:
1727  case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik:
1728  case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik:
1729  case X86::VPCMPWZrrik:    case X86::VPCMPUWZrrik: {
1730    // Flip comparison mode immediate (if necessary).
1731    unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7;
1732    Imm = X86::getSwappedVPCMPImm(Imm);
1733    auto &WorkingMI = cloneIfNew(MI);
1734    WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm);
1735    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1736                                                   OpIdx1, OpIdx2);
1737  }
1738  case X86::VPCOMBri: case X86::VPCOMUBri:
1739  case X86::VPCOMDri: case X86::VPCOMUDri:
1740  case X86::VPCOMQri: case X86::VPCOMUQri:
1741  case X86::VPCOMWri: case X86::VPCOMUWri: {
1742    // Flip comparison mode immediate (if necessary).
1743    unsigned Imm = MI.getOperand(3).getImm() & 0x7;
1744    Imm = X86::getSwappedVPCOMImm(Imm);
1745    auto &WorkingMI = cloneIfNew(MI);
1746    WorkingMI.getOperand(3).setImm(Imm);
1747    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1748                                                   OpIdx1, OpIdx2);
1749  }
1750  case X86::VCMPSDZrr:
1751  case X86::VCMPSSZrr:
1752  case X86::VCMPPDZrri:
1753  case X86::VCMPPSZrri:
1754  case X86::VCMPPDZ128rri:
1755  case X86::VCMPPSZ128rri:
1756  case X86::VCMPPDZ256rri:
1757  case X86::VCMPPSZ256rri:
1758  case X86::VCMPPDZrrik:
1759  case X86::VCMPPSZrrik:
1760  case X86::VCMPPDZ128rrik:
1761  case X86::VCMPPSZ128rrik:
1762  case X86::VCMPPDZ256rrik:
1763  case X86::VCMPPSZ256rrik: {
1764    unsigned Imm =
1765                MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f;
1766    Imm = X86::getSwappedVCMPImm(Imm);
1767    auto &WorkingMI = cloneIfNew(MI);
1768    WorkingMI.getOperand(MI.getNumExplicitOperands() - 1).setImm(Imm);
1769    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1770                                                   OpIdx1, OpIdx2);
1771  }
1772  case X86::VPERM2F128rr:
1773  case X86::VPERM2I128rr: {
1774    // Flip permute source immediate.
1775    // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
1776    // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
1777    int8_t Imm = MI.getOperand(3).getImm() & 0xFF;
1778    auto &WorkingMI = cloneIfNew(MI);
1779    WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
1780    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1781                                                   OpIdx1, OpIdx2);
1782  }
1783  case X86::MOVHLPSrr:
1784  case X86::UNPCKHPDrr:
1785  case X86::VMOVHLPSrr:
1786  case X86::VUNPCKHPDrr:
1787  case X86::VMOVHLPSZrr:
1788  case X86::VUNPCKHPDZ128rr: {
1789    assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
1790
1791    unsigned Opc = MI.getOpcode();
1792    switch (Opc) {
1793    default: llvm_unreachable("Unreachable!");
1794    case X86::MOVHLPSrr:       Opc = X86::UNPCKHPDrr;      break;
1795    case X86::UNPCKHPDrr:      Opc = X86::MOVHLPSrr;       break;
1796    case X86::VMOVHLPSrr:      Opc = X86::VUNPCKHPDrr;     break;
1797    case X86::VUNPCKHPDrr:     Opc = X86::VMOVHLPSrr;      break;
1798    case X86::VMOVHLPSZrr:     Opc = X86::VUNPCKHPDZ128rr; break;
1799    case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr;     break;
1800    }
1801    auto &WorkingMI = cloneIfNew(MI);
1802    WorkingMI.setDesc(get(Opc));
1803    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1804                                                   OpIdx1, OpIdx2);
1805  }
1806  case X86::CMOV16rr:  case X86::CMOV32rr:  case X86::CMOV64rr: {
1807    auto &WorkingMI = cloneIfNew(MI);
1808    unsigned OpNo = MI.getDesc().getNumOperands() - 1;
1809    X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
1810    WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC));
1811    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1812                                                   OpIdx1, OpIdx2);
1813  }
1814  case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi:
1815  case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi:
1816  case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi:
1817  case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi:
1818  case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi:
1819  case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi:
1820  case X86::VPTERNLOGDZrrik:
1821  case X86::VPTERNLOGDZ128rrik:
1822  case X86::VPTERNLOGDZ256rrik:
1823  case X86::VPTERNLOGQZrrik:
1824  case X86::VPTERNLOGQZ128rrik:
1825  case X86::VPTERNLOGQZ256rrik:
1826  case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz:
1827  case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
1828  case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
1829  case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz:
1830  case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
1831  case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
1832  case X86::VPTERNLOGDZ128rmbi:
1833  case X86::VPTERNLOGDZ256rmbi:
1834  case X86::VPTERNLOGDZrmbi:
1835  case X86::VPTERNLOGQZ128rmbi:
1836  case X86::VPTERNLOGQZ256rmbi:
1837  case X86::VPTERNLOGQZrmbi:
1838  case X86::VPTERNLOGDZ128rmbikz:
1839  case X86::VPTERNLOGDZ256rmbikz:
1840  case X86::VPTERNLOGDZrmbikz:
1841  case X86::VPTERNLOGQZ128rmbikz:
1842  case X86::VPTERNLOGQZ256rmbikz:
1843  case X86::VPTERNLOGQZrmbikz: {
1844    auto &WorkingMI = cloneIfNew(MI);
1845    commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2);
1846    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1847                                                   OpIdx1, OpIdx2);
1848  }
1849  default: {
1850    if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
1851      unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
1852      auto &WorkingMI = cloneIfNew(MI);
1853      WorkingMI.setDesc(get(Opc));
1854      return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1855                                                     OpIdx1, OpIdx2);
1856    }
1857
1858    const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
1859                                                      MI.getDesc().TSFlags);
1860    if (FMA3Group) {
1861      unsigned Opc =
1862        getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
1863      auto &WorkingMI = cloneIfNew(MI);
1864      WorkingMI.setDesc(get(Opc));
1865      return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1866                                                     OpIdx1, OpIdx2);
1867    }
1868
1869    return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
1870  }
1871  }
1872}
1873
1874bool
1875X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
1876                                            unsigned &SrcOpIdx1,
1877                                            unsigned &SrcOpIdx2,
1878                                            bool IsIntrinsic) const {
1879  uint64_t TSFlags = MI.getDesc().TSFlags;
1880
1881  unsigned FirstCommutableVecOp = 1;
1882  unsigned LastCommutableVecOp = 3;
1883  unsigned KMaskOp = -1U;
1884  if (X86II::isKMasked(TSFlags)) {
1885    // For k-zero-masked operations it is Ok to commute the first vector
1886    // operand.
1887    // For regular k-masked operations a conservative choice is done as the
1888    // elements of the first vector operand, for which the corresponding bit
1889    // in the k-mask operand is set to 0, are copied to the result of the
1890    // instruction.
1891    // TODO/FIXME: The commute still may be legal if it is known that the
1892    // k-mask operand is set to either all ones or all zeroes.
1893    // It is also Ok to commute the 1st operand if all users of MI use only
1894    // the elements enabled by the k-mask operand. For example,
1895    //   v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
1896    //                                                     : v1[i];
1897    //   VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
1898    //                                  // Ok, to commute v1 in FMADD213PSZrk.
1899
1900    // The k-mask operand has index = 2 for masked and zero-masked operations.
1901    KMaskOp = 2;
1902
1903    // The operand with index = 1 is used as a source for those elements for
1904    // which the corresponding bit in the k-mask is set to 0.
1905    if (X86II::isKMergeMasked(TSFlags))
1906      FirstCommutableVecOp = 3;
1907
1908    LastCommutableVecOp++;
1909  } else if (IsIntrinsic) {
1910    // Commuting the first operand of an intrinsic instruction isn't possible
1911    // unless we can prove that only the lowest element of the result is used.
1912    FirstCommutableVecOp = 2;
1913  }
1914
1915  if (isMem(MI, LastCommutableVecOp))
1916    LastCommutableVecOp--;
1917
1918  // Only the first RegOpsNum operands are commutable.
1919  // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
1920  // that the operand is not specified/fixed.
1921  if (SrcOpIdx1 != CommuteAnyOperandIndex &&
1922      (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
1923       SrcOpIdx1 == KMaskOp))
1924    return false;
1925  if (SrcOpIdx2 != CommuteAnyOperandIndex &&
1926      (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
1927       SrcOpIdx2 == KMaskOp))
1928    return false;
1929
1930  // Look for two different register operands assumed to be commutable
1931  // regardless of the FMA opcode. The FMA opcode is adjusted later.
1932  if (SrcOpIdx1 == CommuteAnyOperandIndex ||
1933      SrcOpIdx2 == CommuteAnyOperandIndex) {
1934    unsigned CommutableOpIdx2 = SrcOpIdx2;
1935
1936    // At least one of operands to be commuted is not specified and
1937    // this method is free to choose appropriate commutable operands.
1938    if (SrcOpIdx1 == SrcOpIdx2)
1939      // Both of operands are not fixed. By default set one of commutable
1940      // operands to the last register operand of the instruction.
1941      CommutableOpIdx2 = LastCommutableVecOp;
1942    else if (SrcOpIdx2 == CommuteAnyOperandIndex)
1943      // Only one of operands is not fixed.
1944      CommutableOpIdx2 = SrcOpIdx1;
1945
1946    // CommutableOpIdx2 is well defined now. Let's choose another commutable
1947    // operand and assign its index to CommutableOpIdx1.
1948    Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
1949
1950    unsigned CommutableOpIdx1;
1951    for (CommutableOpIdx1 = LastCommutableVecOp;
1952         CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
1953      // Just ignore and skip the k-mask operand.
1954      if (CommutableOpIdx1 == KMaskOp)
1955        continue;
1956
1957      // The commuted operands must have different registers.
1958      // Otherwise, the commute transformation does not change anything and
1959      // is useless then.
1960      if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
1961        break;
1962    }
1963
1964    // No appropriate commutable operands were found.
1965    if (CommutableOpIdx1 < FirstCommutableVecOp)
1966      return false;
1967
1968    // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
1969    // to return those values.
1970    if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
1971                              CommutableOpIdx1, CommutableOpIdx2))
1972      return false;
1973  }
1974
1975  return true;
1976}
1977
1978bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI,
1979                                         unsigned &SrcOpIdx1,
1980                                         unsigned &SrcOpIdx2) const {
1981  const MCInstrDesc &Desc = MI.getDesc();
1982  if (!Desc.isCommutable())
1983    return false;
1984
1985  switch (MI.getOpcode()) {
1986  case X86::CMPSDrr:
1987  case X86::CMPSSrr:
1988  case X86::CMPPDrri:
1989  case X86::CMPPSrri:
1990  case X86::VCMPSDrr:
1991  case X86::VCMPSSrr:
1992  case X86::VCMPPDrri:
1993  case X86::VCMPPSrri:
1994  case X86::VCMPPDYrri:
1995  case X86::VCMPPSYrri:
1996  case X86::VCMPSDZrr:
1997  case X86::VCMPSSZrr:
1998  case X86::VCMPPDZrri:
1999  case X86::VCMPPSZrri:
2000  case X86::VCMPPDZ128rri:
2001  case X86::VCMPPSZ128rri:
2002  case X86::VCMPPDZ256rri:
2003  case X86::VCMPPSZ256rri:
2004  case X86::VCMPPDZrrik:
2005  case X86::VCMPPSZrrik:
2006  case X86::VCMPPDZ128rrik:
2007  case X86::VCMPPSZ128rrik:
2008  case X86::VCMPPDZ256rrik:
2009  case X86::VCMPPSZ256rrik: {
2010    unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0;
2011
2012    // Float comparison can be safely commuted for
2013    // Ordered/Unordered/Equal/NotEqual tests
2014    unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7;
2015    switch (Imm) {
2016    default:
2017      // EVEX versions can be commuted.
2018      if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX)
2019        break;
2020      return false;
2021    case 0x00: // EQUAL
2022    case 0x03: // UNORDERED
2023    case 0x04: // NOT EQUAL
2024    case 0x07: // ORDERED
2025      break;
2026    }
2027
2028    // The indices of the commutable operands are 1 and 2 (or 2 and 3
2029    // when masked).
2030    // Assign them to the returned operand indices here.
2031    return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
2032                                2 + OpOffset);
2033  }
2034  case X86::MOVSSrr:
2035    // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
2036    // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
2037    // AVX implies sse4.1.
2038    if (Subtarget.hasSSE41())
2039      return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2040    return false;
2041  case X86::SHUFPDrri:
2042    // We can commute this to MOVSD.
2043    if (MI.getOperand(3).getImm() == 0x02)
2044      return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2045    return false;
2046  case X86::MOVHLPSrr:
2047  case X86::UNPCKHPDrr:
2048  case X86::VMOVHLPSrr:
2049  case X86::VUNPCKHPDrr:
2050  case X86::VMOVHLPSZrr:
2051  case X86::VUNPCKHPDZ128rr:
2052    if (Subtarget.hasSSE2())
2053      return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2054    return false;
2055  case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi:
2056  case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi:
2057  case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi:
2058  case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi:
2059  case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi:
2060  case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi:
2061  case X86::VPTERNLOGDZrrik:
2062  case X86::VPTERNLOGDZ128rrik:
2063  case X86::VPTERNLOGDZ256rrik:
2064  case X86::VPTERNLOGQZrrik:
2065  case X86::VPTERNLOGQZ128rrik:
2066  case X86::VPTERNLOGQZ256rrik:
2067  case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz:
2068  case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
2069  case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
2070  case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz:
2071  case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
2072  case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
2073  case X86::VPTERNLOGDZ128rmbi:
2074  case X86::VPTERNLOGDZ256rmbi:
2075  case X86::VPTERNLOGDZrmbi:
2076  case X86::VPTERNLOGQZ128rmbi:
2077  case X86::VPTERNLOGQZ256rmbi:
2078  case X86::VPTERNLOGQZrmbi:
2079  case X86::VPTERNLOGDZ128rmbikz:
2080  case X86::VPTERNLOGDZ256rmbikz:
2081  case X86::VPTERNLOGDZrmbikz:
2082  case X86::VPTERNLOGQZ128rmbikz:
2083  case X86::VPTERNLOGQZ256rmbikz:
2084  case X86::VPTERNLOGQZrmbikz:
2085    return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2086  case X86::VPDPWSSDZ128r:
2087  case X86::VPDPWSSDZ128rk:
2088  case X86::VPDPWSSDZ128rkz:
2089  case X86::VPDPWSSDZ256r:
2090  case X86::VPDPWSSDZ256rk:
2091  case X86::VPDPWSSDZ256rkz:
2092  case X86::VPDPWSSDZr:
2093  case X86::VPDPWSSDZrk:
2094  case X86::VPDPWSSDZrkz:
2095  case X86::VPDPWSSDSZ128r:
2096  case X86::VPDPWSSDSZ128rk:
2097  case X86::VPDPWSSDSZ128rkz:
2098  case X86::VPDPWSSDSZ256r:
2099  case X86::VPDPWSSDSZ256rk:
2100  case X86::VPDPWSSDSZ256rkz:
2101  case X86::VPDPWSSDSZr:
2102  case X86::VPDPWSSDSZrk:
2103  case X86::VPDPWSSDSZrkz:
2104  case X86::VPMADD52HUQZ128r:
2105  case X86::VPMADD52HUQZ128rk:
2106  case X86::VPMADD52HUQZ128rkz:
2107  case X86::VPMADD52HUQZ256r:
2108  case X86::VPMADD52HUQZ256rk:
2109  case X86::VPMADD52HUQZ256rkz:
2110  case X86::VPMADD52HUQZr:
2111  case X86::VPMADD52HUQZrk:
2112  case X86::VPMADD52HUQZrkz:
2113  case X86::VPMADD52LUQZ128r:
2114  case X86::VPMADD52LUQZ128rk:
2115  case X86::VPMADD52LUQZ128rkz:
2116  case X86::VPMADD52LUQZ256r:
2117  case X86::VPMADD52LUQZ256rk:
2118  case X86::VPMADD52LUQZ256rkz:
2119  case X86::VPMADD52LUQZr:
2120  case X86::VPMADD52LUQZrk:
2121  case X86::VPMADD52LUQZrkz: {
2122    unsigned CommutableOpIdx1 = 2;
2123    unsigned CommutableOpIdx2 = 3;
2124    if (X86II::isKMasked(Desc.TSFlags)) {
2125      // Skip the mask register.
2126      ++CommutableOpIdx1;
2127      ++CommutableOpIdx2;
2128    }
2129    if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2130                              CommutableOpIdx1, CommutableOpIdx2))
2131      return false;
2132    if (!MI.getOperand(SrcOpIdx1).isReg() ||
2133        !MI.getOperand(SrcOpIdx2).isReg())
2134      // No idea.
2135      return false;
2136    return true;
2137  }
2138
2139  default:
2140    const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2141                                                      MI.getDesc().TSFlags);
2142    if (FMA3Group)
2143      return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
2144                                           FMA3Group->isIntrinsic());
2145
2146    // Handled masked instructions since we need to skip over the mask input
2147    // and the preserved input.
2148    if (X86II::isKMasked(Desc.TSFlags)) {
2149      // First assume that the first input is the mask operand and skip past it.
2150      unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
2151      unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
2152      // Check if the first input is tied. If there isn't one then we only
2153      // need to skip the mask operand which we did above.
2154      if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
2155                                             MCOI::TIED_TO) != -1)) {
2156        // If this is zero masking instruction with a tied operand, we need to
2157        // move the first index back to the first input since this must
2158        // be a 3 input instruction and we want the first two non-mask inputs.
2159        // Otherwise this is a 2 input instruction with a preserved input and
2160        // mask, so we need to move the indices to skip one more input.
2161        if (X86II::isKMergeMasked(Desc.TSFlags)) {
2162          ++CommutableOpIdx1;
2163          ++CommutableOpIdx2;
2164        } else {
2165          --CommutableOpIdx1;
2166        }
2167      }
2168
2169      if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2170                                CommutableOpIdx1, CommutableOpIdx2))
2171        return false;
2172
2173      if (!MI.getOperand(SrcOpIdx1).isReg() ||
2174          !MI.getOperand(SrcOpIdx2).isReg())
2175        // No idea.
2176        return false;
2177      return true;
2178    }
2179
2180    return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2181  }
2182  return false;
2183}
2184
2185X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) {
2186  switch (MI.getOpcode()) {
2187  default: return X86::COND_INVALID;
2188  case X86::JCC_1:
2189    return static_cast<X86::CondCode>(
2190        MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2191  }
2192}
2193
2194/// Return condition code of a SETCC opcode.
2195X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) {
2196  switch (MI.getOpcode()) {
2197  default: return X86::COND_INVALID;
2198  case X86::SETCCr: case X86::SETCCm:
2199    return static_cast<X86::CondCode>(
2200        MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2201  }
2202}
2203
2204/// Return condition code of a CMov opcode.
2205X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) {
2206  switch (MI.getOpcode()) {
2207  default: return X86::COND_INVALID;
2208  case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr:
2209  case X86::CMOV16rm: case X86::CMOV32rm: case X86::CMOV64rm:
2210    return static_cast<X86::CondCode>(
2211        MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2212  }
2213}
2214
2215/// Return the inverse of the specified condition,
2216/// e.g. turning COND_E to COND_NE.
2217X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2218  switch (CC) {
2219  default: llvm_unreachable("Illegal condition code!");
2220  case X86::COND_E:  return X86::COND_NE;
2221  case X86::COND_NE: return X86::COND_E;
2222  case X86::COND_L:  return X86::COND_GE;
2223  case X86::COND_LE: return X86::COND_G;
2224  case X86::COND_G:  return X86::COND_LE;
2225  case X86::COND_GE: return X86::COND_L;
2226  case X86::COND_B:  return X86::COND_AE;
2227  case X86::COND_BE: return X86::COND_A;
2228  case X86::COND_A:  return X86::COND_BE;
2229  case X86::COND_AE: return X86::COND_B;
2230  case X86::COND_S:  return X86::COND_NS;
2231  case X86::COND_NS: return X86::COND_S;
2232  case X86::COND_P:  return X86::COND_NP;
2233  case X86::COND_NP: return X86::COND_P;
2234  case X86::COND_O:  return X86::COND_NO;
2235  case X86::COND_NO: return X86::COND_O;
2236  case X86::COND_NE_OR_P:  return X86::COND_E_AND_NP;
2237  case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
2238  }
2239}
2240
2241/// Assuming the flags are set by MI(a,b), return the condition code if we
2242/// modify the instructions such that flags are set by MI(b,a).
2243static X86::CondCode getSwappedCondition(X86::CondCode CC) {
2244  switch (CC) {
2245  default: return X86::COND_INVALID;
2246  case X86::COND_E:  return X86::COND_E;
2247  case X86::COND_NE: return X86::COND_NE;
2248  case X86::COND_L:  return X86::COND_G;
2249  case X86::COND_LE: return X86::COND_GE;
2250  case X86::COND_G:  return X86::COND_L;
2251  case X86::COND_GE: return X86::COND_LE;
2252  case X86::COND_B:  return X86::COND_A;
2253  case X86::COND_BE: return X86::COND_AE;
2254  case X86::COND_A:  return X86::COND_B;
2255  case X86::COND_AE: return X86::COND_BE;
2256  }
2257}
2258
2259std::pair<X86::CondCode, bool>
2260X86::getX86ConditionCode(CmpInst::Predicate Predicate) {
2261  X86::CondCode CC = X86::COND_INVALID;
2262  bool NeedSwap = false;
2263  switch (Predicate) {
2264  default: break;
2265  // Floating-point Predicates
2266  case CmpInst::FCMP_UEQ: CC = X86::COND_E;       break;
2267  case CmpInst::FCMP_OLT: NeedSwap = true;        LLVM_FALLTHROUGH;
2268  case CmpInst::FCMP_OGT: CC = X86::COND_A;       break;
2269  case CmpInst::FCMP_OLE: NeedSwap = true;        LLVM_FALLTHROUGH;
2270  case CmpInst::FCMP_OGE: CC = X86::COND_AE;      break;
2271  case CmpInst::FCMP_UGT: NeedSwap = true;        LLVM_FALLTHROUGH;
2272  case CmpInst::FCMP_ULT: CC = X86::COND_B;       break;
2273  case CmpInst::FCMP_UGE: NeedSwap = true;        LLVM_FALLTHROUGH;
2274  case CmpInst::FCMP_ULE: CC = X86::COND_BE;      break;
2275  case CmpInst::FCMP_ONE: CC = X86::COND_NE;      break;
2276  case CmpInst::FCMP_UNO: CC = X86::COND_P;       break;
2277  case CmpInst::FCMP_ORD: CC = X86::COND_NP;      break;
2278  case CmpInst::FCMP_OEQ:                         LLVM_FALLTHROUGH;
2279  case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
2280
2281  // Integer Predicates
2282  case CmpInst::ICMP_EQ:  CC = X86::COND_E;       break;
2283  case CmpInst::ICMP_NE:  CC = X86::COND_NE;      break;
2284  case CmpInst::ICMP_UGT: CC = X86::COND_A;       break;
2285  case CmpInst::ICMP_UGE: CC = X86::COND_AE;      break;
2286  case CmpInst::ICMP_ULT: CC = X86::COND_B;       break;
2287  case CmpInst::ICMP_ULE: CC = X86::COND_BE;      break;
2288  case CmpInst::ICMP_SGT: CC = X86::COND_G;       break;
2289  case CmpInst::ICMP_SGE: CC = X86::COND_GE;      break;
2290  case CmpInst::ICMP_SLT: CC = X86::COND_L;       break;
2291  case CmpInst::ICMP_SLE: CC = X86::COND_LE;      break;
2292  }
2293
2294  return std::make_pair(CC, NeedSwap);
2295}
2296
2297/// Return a setcc opcode based on whether it has memory operand.
2298unsigned X86::getSETOpc(bool HasMemoryOperand) {
2299  return HasMemoryOperand ? X86::SETCCr : X86::SETCCm;
2300}
2301
2302/// Return a cmov opcode for the given register size in bytes, and operand type.
2303unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) {
2304  switch(RegBytes) {
2305  default: llvm_unreachable("Illegal register size!");
2306  case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr;
2307  case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr;
2308  case 8: return HasMemoryOperand ? X86::CMOV64rm : X86::CMOV64rr;
2309  }
2310}
2311
2312/// Get the VPCMP immediate for the given condition.
2313unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
2314  switch (CC) {
2315  default: llvm_unreachable("Unexpected SETCC condition");
2316  case ISD::SETNE:  return 4;
2317  case ISD::SETEQ:  return 0;
2318  case ISD::SETULT:
2319  case ISD::SETLT: return 1;
2320  case ISD::SETUGT:
2321  case ISD::SETGT: return 6;
2322  case ISD::SETUGE:
2323  case ISD::SETGE: return 5;
2324  case ISD::SETULE:
2325  case ISD::SETLE: return 2;
2326  }
2327}
2328
2329/// Get the VPCMP immediate if the operands are swapped.
2330unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
2331  switch (Imm) {
2332  default: llvm_unreachable("Unreachable!");
2333  case 0x01: Imm = 0x06; break; // LT  -> NLE
2334  case 0x02: Imm = 0x05; break; // LE  -> NLT
2335  case 0x05: Imm = 0x02; break; // NLT -> LE
2336  case 0x06: Imm = 0x01; break; // NLE -> LT
2337  case 0x00: // EQ
2338  case 0x03: // FALSE
2339  case 0x04: // NE
2340  case 0x07: // TRUE
2341    break;
2342  }
2343
2344  return Imm;
2345}
2346
2347/// Get the VPCOM immediate if the operands are swapped.
2348unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
2349  switch (Imm) {
2350  default: llvm_unreachable("Unreachable!");
2351  case 0x00: Imm = 0x02; break; // LT -> GT
2352  case 0x01: Imm = 0x03; break; // LE -> GE
2353  case 0x02: Imm = 0x00; break; // GT -> LT
2354  case 0x03: Imm = 0x01; break; // GE -> LE
2355  case 0x04: // EQ
2356  case 0x05: // NE
2357  case 0x06: // FALSE
2358  case 0x07: // TRUE
2359    break;
2360  }
2361
2362  return Imm;
2363}
2364
2365/// Get the VCMP immediate if the operands are swapped.
2366unsigned X86::getSwappedVCMPImm(unsigned Imm) {
2367  // Only need the lower 2 bits to distinquish.
2368  switch (Imm & 0x3) {
2369  default: llvm_unreachable("Unreachable!");
2370  case 0x00: case 0x03:
2371    // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
2372    break;
2373  case 0x01: case 0x02:
2374    // Need to toggle bits 3:0. Bit 4 stays the same.
2375    Imm ^= 0xf;
2376    break;
2377  }
2378
2379  return Imm;
2380}
2381
2382bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
2383  if (!MI.isTerminator()) return false;
2384
2385  // Conditional branch is a special case.
2386  if (MI.isBranch() && !MI.isBarrier())
2387    return true;
2388  if (!MI.isPredicable())
2389    return true;
2390  return !isPredicated(MI);
2391}
2392
2393bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
2394  switch (MI.getOpcode()) {
2395  case X86::TCRETURNdi:
2396  case X86::TCRETURNri:
2397  case X86::TCRETURNmi:
2398  case X86::TCRETURNdi64:
2399  case X86::TCRETURNri64:
2400  case X86::TCRETURNmi64:
2401    return true;
2402  default:
2403    return false;
2404  }
2405}
2406
2407bool X86InstrInfo::canMakeTailCallConditional(
2408    SmallVectorImpl<MachineOperand> &BranchCond,
2409    const MachineInstr &TailCall) const {
2410  if (TailCall.getOpcode() != X86::TCRETURNdi &&
2411      TailCall.getOpcode() != X86::TCRETURNdi64) {
2412    // Only direct calls can be done with a conditional branch.
2413    return false;
2414  }
2415
2416  const MachineFunction *MF = TailCall.getParent()->getParent();
2417  if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
2418    // Conditional tail calls confuse the Win64 unwinder.
2419    return false;
2420  }
2421
2422  assert(BranchCond.size() == 1);
2423  if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
2424    // Can't make a conditional tail call with this condition.
2425    return false;
2426  }
2427
2428  const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
2429  if (X86FI->getTCReturnAddrDelta() != 0 ||
2430      TailCall.getOperand(1).getImm() != 0) {
2431    // A conditional tail call cannot do any stack adjustment.
2432    return false;
2433  }
2434
2435  return true;
2436}
2437
2438void X86InstrInfo::replaceBranchWithTailCall(
2439    MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
2440    const MachineInstr &TailCall) const {
2441  assert(canMakeTailCallConditional(BranchCond, TailCall));
2442
2443  MachineBasicBlock::iterator I = MBB.end();
2444  while (I != MBB.begin()) {
2445    --I;
2446    if (I->isDebugInstr())
2447      continue;
2448    if (!I->isBranch())
2449      assert(0 && "Can't find the branch to replace!");
2450
2451    X86::CondCode CC = X86::getCondFromBranch(*I);
2452    assert(BranchCond.size() == 1);
2453    if (CC != BranchCond[0].getImm())
2454      continue;
2455
2456    break;
2457  }
2458
2459  unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
2460                                                         : X86::TCRETURNdi64cc;
2461
2462  auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
2463  MIB->addOperand(TailCall.getOperand(0)); // Destination.
2464  MIB.addImm(0); // Stack offset (not used).
2465  MIB->addOperand(BranchCond[0]); // Condition.
2466  MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
2467
2468  // Add implicit uses and defs of all live regs potentially clobbered by the
2469  // call. This way they still appear live across the call.
2470  LivePhysRegs LiveRegs(getRegisterInfo());
2471  LiveRegs.addLiveOuts(MBB);
2472  SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
2473  LiveRegs.stepForward(*MIB, Clobbers);
2474  for (const auto &C : Clobbers) {
2475    MIB.addReg(C.first, RegState::Implicit);
2476    MIB.addReg(C.first, RegState::Implicit | RegState::Define);
2477  }
2478
2479  I->eraseFromParent();
2480}
2481
2482// Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
2483// not be a fallthrough MBB now due to layout changes). Return nullptr if the
2484// fallthrough MBB cannot be identified.
2485static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
2486                                            MachineBasicBlock *TBB) {
2487  // Look for non-EHPad successors other than TBB. If we find exactly one, it
2488  // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
2489  // and fallthrough MBB. If we find more than one, we cannot identify the
2490  // fallthrough MBB and should return nullptr.
2491  MachineBasicBlock *FallthroughBB = nullptr;
2492  for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) {
2493    if ((*SI)->isEHPad() || (*SI == TBB && FallthroughBB))
2494      continue;
2495    // Return a nullptr if we found more than one fallthrough successor.
2496    if (FallthroughBB && FallthroughBB != TBB)
2497      return nullptr;
2498    FallthroughBB = *SI;
2499  }
2500  return FallthroughBB;
2501}
2502
2503bool X86InstrInfo::AnalyzeBranchImpl(
2504    MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
2505    SmallVectorImpl<MachineOperand> &Cond,
2506    SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
2507
2508  // Start from the bottom of the block and work up, examining the
2509  // terminator instructions.
2510  MachineBasicBlock::iterator I = MBB.end();
2511  MachineBasicBlock::iterator UnCondBrIter = MBB.end();
2512  while (I != MBB.begin()) {
2513    --I;
2514    if (I->isDebugInstr())
2515      continue;
2516
2517    // Working from the bottom, when we see a non-terminator instruction, we're
2518    // done.
2519    if (!isUnpredicatedTerminator(*I))
2520      break;
2521
2522    // A terminator that isn't a branch can't easily be handled by this
2523    // analysis.
2524    if (!I->isBranch())
2525      return true;
2526
2527    // Handle unconditional branches.
2528    if (I->getOpcode() == X86::JMP_1) {
2529      UnCondBrIter = I;
2530
2531      if (!AllowModify) {
2532        TBB = I->getOperand(0).getMBB();
2533        continue;
2534      }
2535
2536      // If the block has any instructions after a JMP, delete them.
2537      while (std::next(I) != MBB.end())
2538        std::next(I)->eraseFromParent();
2539
2540      Cond.clear();
2541      FBB = nullptr;
2542
2543      // Delete the JMP if it's equivalent to a fall-through.
2544      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
2545        TBB = nullptr;
2546        I->eraseFromParent();
2547        I = MBB.end();
2548        UnCondBrIter = MBB.end();
2549        continue;
2550      }
2551
2552      // TBB is used to indicate the unconditional destination.
2553      TBB = I->getOperand(0).getMBB();
2554      continue;
2555    }
2556
2557    // Handle conditional branches.
2558    X86::CondCode BranchCode = X86::getCondFromBranch(*I);
2559    if (BranchCode == X86::COND_INVALID)
2560      return true;  // Can't handle indirect branch.
2561
2562    // In practice we should never have an undef eflags operand, if we do
2563    // abort here as we are not prepared to preserve the flag.
2564    if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef())
2565      return true;
2566
2567    // Working from the bottom, handle the first conditional branch.
2568    if (Cond.empty()) {
2569      MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
2570      if (AllowModify && UnCondBrIter != MBB.end() &&
2571          MBB.isLayoutSuccessor(TargetBB)) {
2572        // If we can modify the code and it ends in something like:
2573        //
2574        //     jCC L1
2575        //     jmp L2
2576        //   L1:
2577        //     ...
2578        //   L2:
2579        //
2580        // Then we can change this to:
2581        //
2582        //     jnCC L2
2583        //   L1:
2584        //     ...
2585        //   L2:
2586        //
2587        // Which is a bit more efficient.
2588        // We conditionally jump to the fall-through block.
2589        BranchCode = GetOppositeBranchCondition(BranchCode);
2590        MachineBasicBlock::iterator OldInst = I;
2591
2592        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JCC_1))
2593          .addMBB(UnCondBrIter->getOperand(0).getMBB())
2594          .addImm(BranchCode);
2595        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
2596          .addMBB(TargetBB);
2597
2598        OldInst->eraseFromParent();
2599        UnCondBrIter->eraseFromParent();
2600
2601        // Restart the analysis.
2602        UnCondBrIter = MBB.end();
2603        I = MBB.end();
2604        continue;
2605      }
2606
2607      FBB = TBB;
2608      TBB = I->getOperand(0).getMBB();
2609      Cond.push_back(MachineOperand::CreateImm(BranchCode));
2610      CondBranches.push_back(&*I);
2611      continue;
2612    }
2613
2614    // Handle subsequent conditional branches. Only handle the case where all
2615    // conditional branches branch to the same destination and their condition
2616    // opcodes fit one of the special multi-branch idioms.
2617    assert(Cond.size() == 1);
2618    assert(TBB);
2619
2620    // If the conditions are the same, we can leave them alone.
2621    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
2622    auto NewTBB = I->getOperand(0).getMBB();
2623    if (OldBranchCode == BranchCode && TBB == NewTBB)
2624      continue;
2625
2626    // If they differ, see if they fit one of the known patterns. Theoretically,
2627    // we could handle more patterns here, but we shouldn't expect to see them
2628    // if instruction selection has done a reasonable job.
2629    if (TBB == NewTBB &&
2630               ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
2631                (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
2632      BranchCode = X86::COND_NE_OR_P;
2633    } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
2634               (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
2635      if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
2636        return true;
2637
2638      // X86::COND_E_AND_NP usually has two different branch destinations.
2639      //
2640      // JP B1
2641      // JE B2
2642      // JMP B1
2643      // B1:
2644      // B2:
2645      //
2646      // Here this condition branches to B2 only if NP && E. It has another
2647      // equivalent form:
2648      //
2649      // JNE B1
2650      // JNP B2
2651      // JMP B1
2652      // B1:
2653      // B2:
2654      //
2655      // Similarly it branches to B2 only if E && NP. That is why this condition
2656      // is named with COND_E_AND_NP.
2657      BranchCode = X86::COND_E_AND_NP;
2658    } else
2659      return true;
2660
2661    // Update the MachineOperand.
2662    Cond[0].setImm(BranchCode);
2663    CondBranches.push_back(&*I);
2664  }
2665
2666  return false;
2667}
2668
2669bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
2670                                 MachineBasicBlock *&TBB,
2671                                 MachineBasicBlock *&FBB,
2672                                 SmallVectorImpl<MachineOperand> &Cond,
2673                                 bool AllowModify) const {
2674  SmallVector<MachineInstr *, 4> CondBranches;
2675  return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
2676}
2677
2678bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
2679                                          MachineBranchPredicate &MBP,
2680                                          bool AllowModify) const {
2681  using namespace std::placeholders;
2682
2683  SmallVector<MachineOperand, 4> Cond;
2684  SmallVector<MachineInstr *, 4> CondBranches;
2685  if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
2686                        AllowModify))
2687    return true;
2688
2689  if (Cond.size() != 1)
2690    return true;
2691
2692  assert(MBP.TrueDest && "expected!");
2693
2694  if (!MBP.FalseDest)
2695    MBP.FalseDest = MBB.getNextNode();
2696
2697  const TargetRegisterInfo *TRI = &getRegisterInfo();
2698
2699  MachineInstr *ConditionDef = nullptr;
2700  bool SingleUseCondition = true;
2701
2702  for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) {
2703    if (I->modifiesRegister(X86::EFLAGS, TRI)) {
2704      ConditionDef = &*I;
2705      break;
2706    }
2707
2708    if (I->readsRegister(X86::EFLAGS, TRI))
2709      SingleUseCondition = false;
2710  }
2711
2712  if (!ConditionDef)
2713    return true;
2714
2715  if (SingleUseCondition) {
2716    for (auto *Succ : MBB.successors())
2717      if (Succ->isLiveIn(X86::EFLAGS))
2718        SingleUseCondition = false;
2719  }
2720
2721  MBP.ConditionDef = ConditionDef;
2722  MBP.SingleUseCondition = SingleUseCondition;
2723
2724  // Currently we only recognize the simple pattern:
2725  //
2726  //   test %reg, %reg
2727  //   je %label
2728  //
2729  const unsigned TestOpcode =
2730      Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
2731
2732  if (ConditionDef->getOpcode() == TestOpcode &&
2733      ConditionDef->getNumOperands() == 3 &&
2734      ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
2735      (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
2736    MBP.LHS = ConditionDef->getOperand(0);
2737    MBP.RHS = MachineOperand::CreateImm(0);
2738    MBP.Predicate = Cond[0].getImm() == X86::COND_NE
2739                        ? MachineBranchPredicate::PRED_NE
2740                        : MachineBranchPredicate::PRED_EQ;
2741    return false;
2742  }
2743
2744  return true;
2745}
2746
2747unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
2748                                    int *BytesRemoved) const {
2749  assert(!BytesRemoved && "code size not handled");
2750
2751  MachineBasicBlock::iterator I = MBB.end();
2752  unsigned Count = 0;
2753
2754  while (I != MBB.begin()) {
2755    --I;
2756    if (I->isDebugInstr())
2757      continue;
2758    if (I->getOpcode() != X86::JMP_1 &&
2759        X86::getCondFromBranch(*I) == X86::COND_INVALID)
2760      break;
2761    // Remove the branch.
2762    I->eraseFromParent();
2763    I = MBB.end();
2764    ++Count;
2765  }
2766
2767  return Count;
2768}
2769
2770unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
2771                                    MachineBasicBlock *TBB,
2772                                    MachineBasicBlock *FBB,
2773                                    ArrayRef<MachineOperand> Cond,
2774                                    const DebugLoc &DL,
2775                                    int *BytesAdded) const {
2776  // Shouldn't be a fall through.
2777  assert(TBB && "insertBranch must not be told to insert a fallthrough");
2778  assert((Cond.size() == 1 || Cond.size() == 0) &&
2779         "X86 branch conditions have one component!");
2780  assert(!BytesAdded && "code size not handled");
2781
2782  if (Cond.empty()) {
2783    // Unconditional branch?
2784    assert(!FBB && "Unconditional branch with multiple successors!");
2785    BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
2786    return 1;
2787  }
2788
2789  // If FBB is null, it is implied to be a fall-through block.
2790  bool FallThru = FBB == nullptr;
2791
2792  // Conditional branch.
2793  unsigned Count = 0;
2794  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
2795  switch (CC) {
2796  case X86::COND_NE_OR_P:
2797    // Synthesize NE_OR_P with two branches.
2798    BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
2799    ++Count;
2800    BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
2801    ++Count;
2802    break;
2803  case X86::COND_E_AND_NP:
2804    // Use the next block of MBB as FBB if it is null.
2805    if (FBB == nullptr) {
2806      FBB = getFallThroughMBB(&MBB, TBB);
2807      assert(FBB && "MBB cannot be the last block in function when the false "
2808                    "body is a fall-through.");
2809    }
2810    // Synthesize COND_E_AND_NP with two branches.
2811    BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
2812    ++Count;
2813    BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
2814    ++Count;
2815    break;
2816  default: {
2817    BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
2818    ++Count;
2819  }
2820  }
2821  if (!FallThru) {
2822    // Two-way Conditional branch. Insert the second branch.
2823    BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
2824    ++Count;
2825  }
2826  return Count;
2827}
2828
2829bool X86InstrInfo::
2830canInsertSelect(const MachineBasicBlock &MBB,
2831                ArrayRef<MachineOperand> Cond,
2832                unsigned TrueReg, unsigned FalseReg,
2833                int &CondCycles, int &TrueCycles, int &FalseCycles) const {
2834  // Not all subtargets have cmov instructions.
2835  if (!Subtarget.hasCMov())
2836    return false;
2837  if (Cond.size() != 1)
2838    return false;
2839  // We cannot do the composite conditions, at least not in SSA form.
2840  if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
2841    return false;
2842
2843  // Check register classes.
2844  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2845  const TargetRegisterClass *RC =
2846    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
2847  if (!RC)
2848    return false;
2849
2850  // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
2851  if (X86::GR16RegClass.hasSubClassEq(RC) ||
2852      X86::GR32RegClass.hasSubClassEq(RC) ||
2853      X86::GR64RegClass.hasSubClassEq(RC)) {
2854    // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
2855    // Bridge. Probably Ivy Bridge as well.
2856    CondCycles = 2;
2857    TrueCycles = 2;
2858    FalseCycles = 2;
2859    return true;
2860  }
2861
2862  // Can't do vectors.
2863  return false;
2864}
2865
2866void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
2867                                MachineBasicBlock::iterator I,
2868                                const DebugLoc &DL, unsigned DstReg,
2869                                ArrayRef<MachineOperand> Cond, unsigned TrueReg,
2870                                unsigned FalseReg) const {
2871  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2872  const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
2873  const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
2874  assert(Cond.size() == 1 && "Invalid Cond array");
2875  unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
2876                                    false /*HasMemoryOperand*/);
2877  BuildMI(MBB, I, DL, get(Opc), DstReg)
2878      .addReg(FalseReg)
2879      .addReg(TrueReg)
2880      .addImm(Cond[0].getImm());
2881}
2882
2883/// Test if the given register is a physical h register.
2884static bool isHReg(unsigned Reg) {
2885  return X86::GR8_ABCD_HRegClass.contains(Reg);
2886}
2887
2888// Try and copy between VR128/VR64 and GR64 registers.
2889static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
2890                                        const X86Subtarget &Subtarget) {
2891  bool HasAVX = Subtarget.hasAVX();
2892  bool HasAVX512 = Subtarget.hasAVX512();
2893
2894  // SrcReg(MaskReg) -> DestReg(GR64)
2895  // SrcReg(MaskReg) -> DestReg(GR32)
2896
2897  // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2898  if (X86::VK16RegClass.contains(SrcReg)) {
2899    if (X86::GR64RegClass.contains(DestReg)) {
2900      assert(Subtarget.hasBWI());
2901      return X86::KMOVQrk;
2902    }
2903    if (X86::GR32RegClass.contains(DestReg))
2904      return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
2905  }
2906
2907  // SrcReg(GR64) -> DestReg(MaskReg)
2908  // SrcReg(GR32) -> DestReg(MaskReg)
2909
2910  // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2911  if (X86::VK16RegClass.contains(DestReg)) {
2912    if (X86::GR64RegClass.contains(SrcReg)) {
2913      assert(Subtarget.hasBWI());
2914      return X86::KMOVQkr;
2915    }
2916    if (X86::GR32RegClass.contains(SrcReg))
2917      return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
2918  }
2919
2920
2921  // SrcReg(VR128) -> DestReg(GR64)
2922  // SrcReg(VR64)  -> DestReg(GR64)
2923  // SrcReg(GR64)  -> DestReg(VR128)
2924  // SrcReg(GR64)  -> DestReg(VR64)
2925
2926  if (X86::GR64RegClass.contains(DestReg)) {
2927    if (X86::VR128XRegClass.contains(SrcReg))
2928      // Copy from a VR128 register to a GR64 register.
2929      return HasAVX512 ? X86::VMOVPQIto64Zrr :
2930             HasAVX    ? X86::VMOVPQIto64rr  :
2931                         X86::MOVPQIto64rr;
2932    if (X86::VR64RegClass.contains(SrcReg))
2933      // Copy from a VR64 register to a GR64 register.
2934      return X86::MMX_MOVD64from64rr;
2935  } else if (X86::GR64RegClass.contains(SrcReg)) {
2936    // Copy from a GR64 register to a VR128 register.
2937    if (X86::VR128XRegClass.contains(DestReg))
2938      return HasAVX512 ? X86::VMOV64toPQIZrr :
2939             HasAVX    ? X86::VMOV64toPQIrr  :
2940                         X86::MOV64toPQIrr;
2941    // Copy from a GR64 register to a VR64 register.
2942    if (X86::VR64RegClass.contains(DestReg))
2943      return X86::MMX_MOVD64to64rr;
2944  }
2945
2946  // SrcReg(VR128) -> DestReg(GR32)
2947  // SrcReg(GR32)  -> DestReg(VR128)
2948
2949  if (X86::GR32RegClass.contains(DestReg) &&
2950      X86::VR128XRegClass.contains(SrcReg))
2951    // Copy from a VR128 register to a GR32 register.
2952    return HasAVX512 ? X86::VMOVPDI2DIZrr :
2953           HasAVX    ? X86::VMOVPDI2DIrr  :
2954                       X86::MOVPDI2DIrr;
2955
2956  if (X86::VR128XRegClass.contains(DestReg) &&
2957      X86::GR32RegClass.contains(SrcReg))
2958    // Copy from a VR128 register to a VR128 register.
2959    return HasAVX512 ? X86::VMOVDI2PDIZrr :
2960           HasAVX    ? X86::VMOVDI2PDIrr  :
2961                       X86::MOVDI2PDIrr;
2962  return 0;
2963}
2964
2965void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
2966                               MachineBasicBlock::iterator MI,
2967                               const DebugLoc &DL, MCRegister DestReg,
2968                               MCRegister SrcReg, bool KillSrc) const {
2969  // First deal with the normal symmetric copies.
2970  bool HasAVX = Subtarget.hasAVX();
2971  bool HasVLX = Subtarget.hasVLX();
2972  unsigned Opc = 0;
2973  if (X86::GR64RegClass.contains(DestReg, SrcReg))
2974    Opc = X86::MOV64rr;
2975  else if (X86::GR32RegClass.contains(DestReg, SrcReg))
2976    Opc = X86::MOV32rr;
2977  else if (X86::GR16RegClass.contains(DestReg, SrcReg))
2978    Opc = X86::MOV16rr;
2979  else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
2980    // Copying to or from a physical H register on x86-64 requires a NOREX
2981    // move.  Otherwise use a normal move.
2982    if ((isHReg(DestReg) || isHReg(SrcReg)) &&
2983        Subtarget.is64Bit()) {
2984      Opc = X86::MOV8rr_NOREX;
2985      // Both operands must be encodable without an REX prefix.
2986      assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
2987             "8-bit H register can not be copied outside GR8_NOREX");
2988    } else
2989      Opc = X86::MOV8rr;
2990  }
2991  else if (X86::VR64RegClass.contains(DestReg, SrcReg))
2992    Opc = X86::MMX_MOVQ64rr;
2993  else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
2994    if (HasVLX)
2995      Opc = X86::VMOVAPSZ128rr;
2996    else if (X86::VR128RegClass.contains(DestReg, SrcReg))
2997      Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
2998    else {
2999      // If this an extended register and we don't have VLX we need to use a
3000      // 512-bit move.
3001      Opc = X86::VMOVAPSZrr;
3002      const TargetRegisterInfo *TRI = &getRegisterInfo();
3003      DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
3004                                         &X86::VR512RegClass);
3005      SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
3006                                        &X86::VR512RegClass);
3007    }
3008  } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
3009    if (HasVLX)
3010      Opc = X86::VMOVAPSZ256rr;
3011    else if (X86::VR256RegClass.contains(DestReg, SrcReg))
3012      Opc = X86::VMOVAPSYrr;
3013    else {
3014      // If this an extended register and we don't have VLX we need to use a
3015      // 512-bit move.
3016      Opc = X86::VMOVAPSZrr;
3017      const TargetRegisterInfo *TRI = &getRegisterInfo();
3018      DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
3019                                         &X86::VR512RegClass);
3020      SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
3021                                        &X86::VR512RegClass);
3022    }
3023  } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
3024    Opc = X86::VMOVAPSZrr;
3025  // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3026  else if (X86::VK16RegClass.contains(DestReg, SrcReg))
3027    Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
3028  if (!Opc)
3029    Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
3030
3031  if (Opc) {
3032    BuildMI(MBB, MI, DL, get(Opc), DestReg)
3033      .addReg(SrcReg, getKillRegState(KillSrc));
3034    return;
3035  }
3036
3037  if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
3038    // FIXME: We use a fatal error here because historically LLVM has tried
3039    // lower some of these physreg copies and we want to ensure we get
3040    // reasonable bug reports if someone encounters a case no other testing
3041    // found. This path should be removed after the LLVM 7 release.
3042    report_fatal_error("Unable to copy EFLAGS physical register!");
3043  }
3044
3045  LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
3046                    << RI.getName(DestReg) << '\n');
3047  report_fatal_error("Cannot emit physreg copy instruction");
3048}
3049
3050Optional<DestSourcePair>
3051X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
3052  if (MI.isMoveReg())
3053    return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
3054  return None;
3055}
3056
3057static unsigned getLoadStoreRegOpcode(unsigned Reg,
3058                                      const TargetRegisterClass *RC,
3059                                      bool isStackAligned,
3060                                      const X86Subtarget &STI,
3061                                      bool load) {
3062  bool HasAVX = STI.hasAVX();
3063  bool HasAVX512 = STI.hasAVX512();
3064  bool HasVLX = STI.hasVLX();
3065
3066  switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
3067  default:
3068    llvm_unreachable("Unknown spill size");
3069  case 1:
3070    assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
3071    if (STI.is64Bit())
3072      // Copying to or from a physical H register on x86-64 requires a NOREX
3073      // move.  Otherwise use a normal move.
3074      if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
3075        return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
3076    return load ? X86::MOV8rm : X86::MOV8mr;
3077  case 2:
3078    if (X86::VK16RegClass.hasSubClassEq(RC))
3079      return load ? X86::KMOVWkm : X86::KMOVWmk;
3080    assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
3081    return load ? X86::MOV16rm : X86::MOV16mr;
3082  case 4:
3083    if (X86::GR32RegClass.hasSubClassEq(RC))
3084      return load ? X86::MOV32rm : X86::MOV32mr;
3085    if (X86::FR32XRegClass.hasSubClassEq(RC))
3086      return load ?
3087        (HasAVX512 ? X86::VMOVSSZrm_alt :
3088         HasAVX    ? X86::VMOVSSrm_alt :
3089                     X86::MOVSSrm_alt) :
3090        (HasAVX512 ? X86::VMOVSSZmr :
3091         HasAVX    ? X86::VMOVSSmr :
3092                     X86::MOVSSmr);
3093    if (X86::RFP32RegClass.hasSubClassEq(RC))
3094      return load ? X86::LD_Fp32m : X86::ST_Fp32m;
3095    if (X86::VK32RegClass.hasSubClassEq(RC)) {
3096      assert(STI.hasBWI() && "KMOVD requires BWI");
3097      return load ? X86::KMOVDkm : X86::KMOVDmk;
3098    }
3099    // All of these mask pair classes have the same spill size, the same kind
3100    // of kmov instructions can be used with all of them.
3101    if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
3102        X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
3103        X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
3104        X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
3105        X86::VK16PAIRRegClass.hasSubClassEq(RC))
3106      return load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
3107    llvm_unreachable("Unknown 4-byte regclass");
3108  case 8:
3109    if (X86::GR64RegClass.hasSubClassEq(RC))
3110      return load ? X86::MOV64rm : X86::MOV64mr;
3111    if (X86::FR64XRegClass.hasSubClassEq(RC))
3112      return load ?
3113        (HasAVX512 ? X86::VMOVSDZrm_alt :
3114         HasAVX    ? X86::VMOVSDrm_alt :
3115                     X86::MOVSDrm_alt) :
3116        (HasAVX512 ? X86::VMOVSDZmr :
3117         HasAVX    ? X86::VMOVSDmr :
3118                     X86::MOVSDmr);
3119    if (X86::VR64RegClass.hasSubClassEq(RC))
3120      return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
3121    if (X86::RFP64RegClass.hasSubClassEq(RC))
3122      return load ? X86::LD_Fp64m : X86::ST_Fp64m;
3123    if (X86::VK64RegClass.hasSubClassEq(RC)) {
3124      assert(STI.hasBWI() && "KMOVQ requires BWI");
3125      return load ? X86::KMOVQkm : X86::KMOVQmk;
3126    }
3127    llvm_unreachable("Unknown 8-byte regclass");
3128  case 10:
3129    assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
3130    return load ? X86::LD_Fp80m : X86::ST_FpP80m;
3131  case 16: {
3132    if (X86::VR128XRegClass.hasSubClassEq(RC)) {
3133      // If stack is realigned we can use aligned stores.
3134      if (isStackAligned)
3135        return load ?
3136          (HasVLX    ? X86::VMOVAPSZ128rm :
3137           HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
3138           HasAVX    ? X86::VMOVAPSrm :
3139                       X86::MOVAPSrm):
3140          (HasVLX    ? X86::VMOVAPSZ128mr :
3141           HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
3142           HasAVX    ? X86::VMOVAPSmr :
3143                       X86::MOVAPSmr);
3144      else
3145        return load ?
3146          (HasVLX    ? X86::VMOVUPSZ128rm :
3147           HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
3148           HasAVX    ? X86::VMOVUPSrm :
3149                       X86::MOVUPSrm):
3150          (HasVLX    ? X86::VMOVUPSZ128mr :
3151           HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
3152           HasAVX    ? X86::VMOVUPSmr :
3153                       X86::MOVUPSmr);
3154    }
3155    if (X86::BNDRRegClass.hasSubClassEq(RC)) {
3156      if (STI.is64Bit())
3157        return load ? X86::BNDMOV64rm : X86::BNDMOV64mr;
3158      else
3159        return load ? X86::BNDMOV32rm : X86::BNDMOV32mr;
3160    }
3161    llvm_unreachable("Unknown 16-byte regclass");
3162  }
3163  case 32:
3164    assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
3165    // If stack is realigned we can use aligned stores.
3166    if (isStackAligned)
3167      return load ?
3168        (HasVLX    ? X86::VMOVAPSZ256rm :
3169         HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
3170                     X86::VMOVAPSYrm) :
3171        (HasVLX    ? X86::VMOVAPSZ256mr :
3172         HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
3173                     X86::VMOVAPSYmr);
3174    else
3175      return load ?
3176        (HasVLX    ? X86::VMOVUPSZ256rm :
3177         HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
3178                     X86::VMOVUPSYrm) :
3179        (HasVLX    ? X86::VMOVUPSZ256mr :
3180         HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
3181                     X86::VMOVUPSYmr);
3182  case 64:
3183    assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
3184    assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
3185    if (isStackAligned)
3186      return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3187    else
3188      return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3189  }
3190}
3191
3192bool X86InstrInfo::getMemOperandWithOffset(
3193    const MachineInstr &MemOp, const MachineOperand *&BaseOp, int64_t &Offset,
3194    const TargetRegisterInfo *TRI) const {
3195  const MCInstrDesc &Desc = MemOp.getDesc();
3196  int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3197  if (MemRefBegin < 0)
3198    return false;
3199
3200  MemRefBegin += X86II::getOperandBias(Desc);
3201
3202  BaseOp = &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
3203  if (!BaseOp->isReg()) // Can be an MO_FrameIndex
3204    return false;
3205
3206  if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
3207    return false;
3208
3209  if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
3210      X86::NoRegister)
3211    return false;
3212
3213  const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
3214
3215  // Displacement can be symbolic
3216  if (!DispMO.isImm())
3217    return false;
3218
3219  Offset = DispMO.getImm();
3220
3221  if (!BaseOp->isReg())
3222    return false;
3223
3224  return true;
3225}
3226
3227static unsigned getStoreRegOpcode(unsigned SrcReg,
3228                                  const TargetRegisterClass *RC,
3229                                  bool isStackAligned,
3230                                  const X86Subtarget &STI) {
3231  return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false);
3232}
3233
3234
3235static unsigned getLoadRegOpcode(unsigned DestReg,
3236                                 const TargetRegisterClass *RC,
3237                                 bool isStackAligned,
3238                                 const X86Subtarget &STI) {
3239  return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true);
3240}
3241
3242void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3243                                       MachineBasicBlock::iterator MI,
3244                                       unsigned SrcReg, bool isKill, int FrameIdx,
3245                                       const TargetRegisterClass *RC,
3246                                       const TargetRegisterInfo *TRI) const {
3247  const MachineFunction &MF = *MBB.getParent();
3248  assert(MF.getFrameInfo().getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
3249         "Stack slot too small for store");
3250  unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3251  bool isAligned =
3252      (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
3253      RI.canRealignStack(MF);
3254  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3255  addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3256    .addReg(SrcReg, getKillRegState(isKill));
3257}
3258
3259void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
3260                                        MachineBasicBlock::iterator MI,
3261                                        unsigned DestReg, int FrameIdx,
3262                                        const TargetRegisterClass *RC,
3263                                        const TargetRegisterInfo *TRI) const {
3264  const MachineFunction &MF = *MBB.getParent();
3265  unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3266  bool isAligned =
3267      (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
3268      RI.canRealignStack(MF);
3269  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
3270  addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg), FrameIdx);
3271}
3272
3273bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
3274                                  unsigned &SrcReg2, int &CmpMask,
3275                                  int &CmpValue) const {
3276  switch (MI.getOpcode()) {
3277  default: break;
3278  case X86::CMP64ri32:
3279  case X86::CMP64ri8:
3280  case X86::CMP32ri:
3281  case X86::CMP32ri8:
3282  case X86::CMP16ri:
3283  case X86::CMP16ri8:
3284  case X86::CMP8ri:
3285    SrcReg = MI.getOperand(0).getReg();
3286    SrcReg2 = 0;
3287    if (MI.getOperand(1).isImm()) {
3288      CmpMask = ~0;
3289      CmpValue = MI.getOperand(1).getImm();
3290    } else {
3291      CmpMask = CmpValue = 0;
3292    }
3293    return true;
3294  // A SUB can be used to perform comparison.
3295  case X86::SUB64rm:
3296  case X86::SUB32rm:
3297  case X86::SUB16rm:
3298  case X86::SUB8rm:
3299    SrcReg = MI.getOperand(1).getReg();
3300    SrcReg2 = 0;
3301    CmpMask = 0;
3302    CmpValue = 0;
3303    return true;
3304  case X86::SUB64rr:
3305  case X86::SUB32rr:
3306  case X86::SUB16rr:
3307  case X86::SUB8rr:
3308    SrcReg = MI.getOperand(1).getReg();
3309    SrcReg2 = MI.getOperand(2).getReg();
3310    CmpMask = 0;
3311    CmpValue = 0;
3312    return true;
3313  case X86::SUB64ri32:
3314  case X86::SUB64ri8:
3315  case X86::SUB32ri:
3316  case X86::SUB32ri8:
3317  case X86::SUB16ri:
3318  case X86::SUB16ri8:
3319  case X86::SUB8ri:
3320    SrcReg = MI.getOperand(1).getReg();
3321    SrcReg2 = 0;
3322    if (MI.getOperand(2).isImm()) {
3323      CmpMask = ~0;
3324      CmpValue = MI.getOperand(2).getImm();
3325    } else {
3326      CmpMask = CmpValue = 0;
3327    }
3328    return true;
3329  case X86::CMP64rr:
3330  case X86::CMP32rr:
3331  case X86::CMP16rr:
3332  case X86::CMP8rr:
3333    SrcReg = MI.getOperand(0).getReg();
3334    SrcReg2 = MI.getOperand(1).getReg();
3335    CmpMask = 0;
3336    CmpValue = 0;
3337    return true;
3338  case X86::TEST8rr:
3339  case X86::TEST16rr:
3340  case X86::TEST32rr:
3341  case X86::TEST64rr:
3342    SrcReg = MI.getOperand(0).getReg();
3343    if (MI.getOperand(1).getReg() != SrcReg)
3344      return false;
3345    // Compare against zero.
3346    SrcReg2 = 0;
3347    CmpMask = ~0;
3348    CmpValue = 0;
3349    return true;
3350  }
3351  return false;
3352}
3353
3354/// Check whether the first instruction, whose only
3355/// purpose is to update flags, can be made redundant.
3356/// CMPrr can be made redundant by SUBrr if the operands are the same.
3357/// This function can be extended later on.
3358/// SrcReg, SrcRegs: register operands for FlagI.
3359/// ImmValue: immediate for FlagI if it takes an immediate.
3360inline static bool isRedundantFlagInstr(const MachineInstr &FlagI,
3361                                        unsigned SrcReg, unsigned SrcReg2,
3362                                        int ImmMask, int ImmValue,
3363                                        const MachineInstr &OI) {
3364  if (((FlagI.getOpcode() == X86::CMP64rr && OI.getOpcode() == X86::SUB64rr) ||
3365       (FlagI.getOpcode() == X86::CMP32rr && OI.getOpcode() == X86::SUB32rr) ||
3366       (FlagI.getOpcode() == X86::CMP16rr && OI.getOpcode() == X86::SUB16rr) ||
3367       (FlagI.getOpcode() == X86::CMP8rr && OI.getOpcode() == X86::SUB8rr)) &&
3368      ((OI.getOperand(1).getReg() == SrcReg &&
3369        OI.getOperand(2).getReg() == SrcReg2) ||
3370       (OI.getOperand(1).getReg() == SrcReg2 &&
3371        OI.getOperand(2).getReg() == SrcReg)))
3372    return true;
3373
3374  if (ImmMask != 0 &&
3375      ((FlagI.getOpcode() == X86::CMP64ri32 &&
3376        OI.getOpcode() == X86::SUB64ri32) ||
3377       (FlagI.getOpcode() == X86::CMP64ri8 &&
3378        OI.getOpcode() == X86::SUB64ri8) ||
3379       (FlagI.getOpcode() == X86::CMP32ri && OI.getOpcode() == X86::SUB32ri) ||
3380       (FlagI.getOpcode() == X86::CMP32ri8 &&
3381        OI.getOpcode() == X86::SUB32ri8) ||
3382       (FlagI.getOpcode() == X86::CMP16ri && OI.getOpcode() == X86::SUB16ri) ||
3383       (FlagI.getOpcode() == X86::CMP16ri8 &&
3384        OI.getOpcode() == X86::SUB16ri8) ||
3385       (FlagI.getOpcode() == X86::CMP8ri && OI.getOpcode() == X86::SUB8ri)) &&
3386      OI.getOperand(1).getReg() == SrcReg &&
3387      OI.getOperand(2).getImm() == ImmValue)
3388    return true;
3389  return false;
3390}
3391
3392/// Check whether the definition can be converted
3393/// to remove a comparison against zero.
3394inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag) {
3395  NoSignFlag = false;
3396
3397  switch (MI.getOpcode()) {
3398  default: return false;
3399
3400  // The shift instructions only modify ZF if their shift count is non-zero.
3401  // N.B.: The processor truncates the shift count depending on the encoding.
3402  case X86::SAR8ri:    case X86::SAR16ri:  case X86::SAR32ri:case X86::SAR64ri:
3403  case X86::SHR8ri:    case X86::SHR16ri:  case X86::SHR32ri:case X86::SHR64ri:
3404     return getTruncatedShiftCount(MI, 2) != 0;
3405
3406  // Some left shift instructions can be turned into LEA instructions but only
3407  // if their flags aren't used. Avoid transforming such instructions.
3408  case X86::SHL8ri:    case X86::SHL16ri:  case X86::SHL32ri:case X86::SHL64ri:{
3409    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
3410    if (isTruncatedShiftCountForLEA(ShAmt)) return false;
3411    return ShAmt != 0;
3412  }
3413
3414  case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
3415  case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
3416     return getTruncatedShiftCount(MI, 3) != 0;
3417
3418  case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
3419  case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
3420  case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
3421  case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm:
3422  case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm:
3423  case X86::DEC64r:    case X86::DEC32r:   case X86::DEC16r: case X86::DEC8r:
3424  case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
3425  case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8:
3426  case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr:
3427  case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm:
3428  case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm:
3429  case X86::INC64r:    case X86::INC32r:   case X86::INC16r: case X86::INC8r:
3430  case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
3431  case X86::AND32ri8:  case X86::AND16ri:  case X86::AND16ri8:
3432  case X86::AND8ri:    case X86::AND64rr:  case X86::AND32rr:
3433  case X86::AND16rr:   case X86::AND8rr:   case X86::AND64rm:
3434  case X86::AND32rm:   case X86::AND16rm:  case X86::AND8rm:
3435  case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
3436  case X86::XOR32ri8:  case X86::XOR16ri:  case X86::XOR16ri8:
3437  case X86::XOR8ri:    case X86::XOR64rr:  case X86::XOR32rr:
3438  case X86::XOR16rr:   case X86::XOR8rr:   case X86::XOR64rm:
3439  case X86::XOR32rm:   case X86::XOR16rm:  case X86::XOR8rm:
3440  case X86::OR64ri32:  case X86::OR64ri8:  case X86::OR32ri:
3441  case X86::OR32ri8:   case X86::OR16ri:   case X86::OR16ri8:
3442  case X86::OR8ri:     case X86::OR64rr:   case X86::OR32rr:
3443  case X86::OR16rr:    case X86::OR8rr:    case X86::OR64rm:
3444  case X86::OR32rm:    case X86::OR16rm:   case X86::OR8rm:
3445  case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri:
3446  case X86::ADC32ri8:  case X86::ADC16ri:  case X86::ADC16ri8:
3447  case X86::ADC8ri:    case X86::ADC64rr:  case X86::ADC32rr:
3448  case X86::ADC16rr:   case X86::ADC8rr:   case X86::ADC64rm:
3449  case X86::ADC32rm:   case X86::ADC16rm:  case X86::ADC8rm:
3450  case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri:
3451  case X86::SBB32ri8:  case X86::SBB16ri:  case X86::SBB16ri8:
3452  case X86::SBB8ri:    case X86::SBB64rr:  case X86::SBB32rr:
3453  case X86::SBB16rr:   case X86::SBB8rr:   case X86::SBB64rm:
3454  case X86::SBB32rm:   case X86::SBB16rm:  case X86::SBB8rm:
3455  case X86::NEG8r:     case X86::NEG16r:   case X86::NEG32r: case X86::NEG64r:
3456  case X86::SAR8r1:    case X86::SAR16r1:  case X86::SAR32r1:case X86::SAR64r1:
3457  case X86::SHR8r1:    case X86::SHR16r1:  case X86::SHR32r1:case X86::SHR64r1:
3458  case X86::SHL8r1:    case X86::SHL16r1:  case X86::SHL32r1:case X86::SHL64r1:
3459  case X86::ANDN32rr:  case X86::ANDN32rm:
3460  case X86::ANDN64rr:  case X86::ANDN64rm:
3461  case X86::BLSI32rr:  case X86::BLSI32rm:
3462  case X86::BLSI64rr:  case X86::BLSI64rm:
3463  case X86::BLSMSK32rr:case X86::BLSMSK32rm:
3464  case X86::BLSMSK64rr:case X86::BLSMSK64rm:
3465  case X86::BLSR32rr:  case X86::BLSR32rm:
3466  case X86::BLSR64rr:  case X86::BLSR64rm:
3467  case X86::BZHI32rr:  case X86::BZHI32rm:
3468  case X86::BZHI64rr:  case X86::BZHI64rm:
3469  case X86::LZCNT16rr: case X86::LZCNT16rm:
3470  case X86::LZCNT32rr: case X86::LZCNT32rm:
3471  case X86::LZCNT64rr: case X86::LZCNT64rm:
3472  case X86::POPCNT16rr:case X86::POPCNT16rm:
3473  case X86::POPCNT32rr:case X86::POPCNT32rm:
3474  case X86::POPCNT64rr:case X86::POPCNT64rm:
3475  case X86::TZCNT16rr: case X86::TZCNT16rm:
3476  case X86::TZCNT32rr: case X86::TZCNT32rm:
3477  case X86::TZCNT64rr: case X86::TZCNT64rm:
3478  case X86::BLCFILL32rr: case X86::BLCFILL32rm:
3479  case X86::BLCFILL64rr: case X86::BLCFILL64rm:
3480  case X86::BLCI32rr:    case X86::BLCI32rm:
3481  case X86::BLCI64rr:    case X86::BLCI64rm:
3482  case X86::BLCIC32rr:   case X86::BLCIC32rm:
3483  case X86::BLCIC64rr:   case X86::BLCIC64rm:
3484  case X86::BLCMSK32rr:  case X86::BLCMSK32rm:
3485  case X86::BLCMSK64rr:  case X86::BLCMSK64rm:
3486  case X86::BLCS32rr:    case X86::BLCS32rm:
3487  case X86::BLCS64rr:    case X86::BLCS64rm:
3488  case X86::BLSFILL32rr: case X86::BLSFILL32rm:
3489  case X86::BLSFILL64rr: case X86::BLSFILL64rm:
3490  case X86::BLSIC32rr:   case X86::BLSIC32rm:
3491  case X86::BLSIC64rr:   case X86::BLSIC64rm:
3492  case X86::T1MSKC32rr:  case X86::T1MSKC32rm:
3493  case X86::T1MSKC64rr:  case X86::T1MSKC64rm:
3494  case X86::TZMSK32rr:   case X86::TZMSK32rm:
3495  case X86::TZMSK64rr:   case X86::TZMSK64rm:
3496    return true;
3497  case X86::BEXTR32rr:   case X86::BEXTR64rr:
3498  case X86::BEXTR32rm:   case X86::BEXTR64rm:
3499  case X86::BEXTRI32ri:  case X86::BEXTRI32mi:
3500  case X86::BEXTRI64ri:  case X86::BEXTRI64mi:
3501    // BEXTR doesn't update the sign flag so we can't use it.
3502    NoSignFlag = true;
3503    return true;
3504  }
3505}
3506
3507/// Check whether the use can be converted to remove a comparison against zero.
3508static X86::CondCode isUseDefConvertible(const MachineInstr &MI) {
3509  switch (MI.getOpcode()) {
3510  default: return X86::COND_INVALID;
3511  case X86::NEG8r:
3512  case X86::NEG16r:
3513  case X86::NEG32r:
3514  case X86::NEG64r:
3515    return X86::COND_AE;
3516  case X86::LZCNT16rr:
3517  case X86::LZCNT32rr:
3518  case X86::LZCNT64rr:
3519    return X86::COND_B;
3520  case X86::POPCNT16rr:
3521  case X86::POPCNT32rr:
3522  case X86::POPCNT64rr:
3523    return X86::COND_E;
3524  case X86::TZCNT16rr:
3525  case X86::TZCNT32rr:
3526  case X86::TZCNT64rr:
3527    return X86::COND_B;
3528  case X86::BSF16rr:
3529  case X86::BSF32rr:
3530  case X86::BSF64rr:
3531  case X86::BSR16rr:
3532  case X86::BSR32rr:
3533  case X86::BSR64rr:
3534    return X86::COND_E;
3535  case X86::BLSI32rr:
3536  case X86::BLSI64rr:
3537    return X86::COND_AE;
3538  case X86::BLSR32rr:
3539  case X86::BLSR64rr:
3540  case X86::BLSMSK32rr:
3541  case X86::BLSMSK64rr:
3542    return X86::COND_B;
3543  // TODO: TBM instructions.
3544  }
3545}
3546
3547/// Check if there exists an earlier instruction that
3548/// operates on the same source operands and sets flags in the same way as
3549/// Compare; remove Compare if possible.
3550bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
3551                                        unsigned SrcReg2, int CmpMask,
3552                                        int CmpValue,
3553                                        const MachineRegisterInfo *MRI) const {
3554  // Check whether we can replace SUB with CMP.
3555  switch (CmpInstr.getOpcode()) {
3556  default: break;
3557  case X86::SUB64ri32:
3558  case X86::SUB64ri8:
3559  case X86::SUB32ri:
3560  case X86::SUB32ri8:
3561  case X86::SUB16ri:
3562  case X86::SUB16ri8:
3563  case X86::SUB8ri:
3564  case X86::SUB64rm:
3565  case X86::SUB32rm:
3566  case X86::SUB16rm:
3567  case X86::SUB8rm:
3568  case X86::SUB64rr:
3569  case X86::SUB32rr:
3570  case X86::SUB16rr:
3571  case X86::SUB8rr: {
3572    if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
3573      return false;
3574    // There is no use of the destination register, we can replace SUB with CMP.
3575    unsigned NewOpcode = 0;
3576    switch (CmpInstr.getOpcode()) {
3577    default: llvm_unreachable("Unreachable!");
3578    case X86::SUB64rm:   NewOpcode = X86::CMP64rm;   break;
3579    case X86::SUB32rm:   NewOpcode = X86::CMP32rm;   break;
3580    case X86::SUB16rm:   NewOpcode = X86::CMP16rm;   break;
3581    case X86::SUB8rm:    NewOpcode = X86::CMP8rm;    break;
3582    case X86::SUB64rr:   NewOpcode = X86::CMP64rr;   break;
3583    case X86::SUB32rr:   NewOpcode = X86::CMP32rr;   break;
3584    case X86::SUB16rr:   NewOpcode = X86::CMP16rr;   break;
3585    case X86::SUB8rr:    NewOpcode = X86::CMP8rr;    break;
3586    case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
3587    case X86::SUB64ri8:  NewOpcode = X86::CMP64ri8;  break;
3588    case X86::SUB32ri:   NewOpcode = X86::CMP32ri;   break;
3589    case X86::SUB32ri8:  NewOpcode = X86::CMP32ri8;  break;
3590    case X86::SUB16ri:   NewOpcode = X86::CMP16ri;   break;
3591    case X86::SUB16ri8:  NewOpcode = X86::CMP16ri8;  break;
3592    case X86::SUB8ri:    NewOpcode = X86::CMP8ri;    break;
3593    }
3594    CmpInstr.setDesc(get(NewOpcode));
3595    CmpInstr.RemoveOperand(0);
3596    // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
3597    if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
3598        NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
3599      return false;
3600  }
3601  }
3602
3603  // Get the unique definition of SrcReg.
3604  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3605  if (!MI) return false;
3606
3607  // CmpInstr is the first instruction of the BB.
3608  MachineBasicBlock::iterator I = CmpInstr, Def = MI;
3609
3610  // If we are comparing against zero, check whether we can use MI to update
3611  // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
3612  bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
3613  if (IsCmpZero && MI->getParent() != CmpInstr.getParent())
3614    return false;
3615
3616  // If we have a use of the source register between the def and our compare
3617  // instruction we can eliminate the compare iff the use sets EFLAGS in the
3618  // right way.
3619  bool ShouldUpdateCC = false;
3620  bool NoSignFlag = false;
3621  X86::CondCode NewCC = X86::COND_INVALID;
3622  if (IsCmpZero && !isDefConvertible(*MI, NoSignFlag)) {
3623    // Scan forward from the use until we hit the use we're looking for or the
3624    // compare instruction.
3625    for (MachineBasicBlock::iterator J = MI;; ++J) {
3626      // Do we have a convertible instruction?
3627      NewCC = isUseDefConvertible(*J);
3628      if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
3629          J->getOperand(1).getReg() == SrcReg) {
3630        assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
3631        ShouldUpdateCC = true; // Update CC later on.
3632        // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
3633        // with the new def.
3634        Def = J;
3635        MI = &*Def;
3636        break;
3637      }
3638
3639      if (J == I)
3640        return false;
3641    }
3642  }
3643
3644  // We are searching for an earlier instruction that can make CmpInstr
3645  // redundant and that instruction will be saved in Sub.
3646  MachineInstr *Sub = nullptr;
3647  const TargetRegisterInfo *TRI = &getRegisterInfo();
3648
3649  // We iterate backward, starting from the instruction before CmpInstr and
3650  // stop when reaching the definition of a source register or done with the BB.
3651  // RI points to the instruction before CmpInstr.
3652  // If the definition is in this basic block, RE points to the definition;
3653  // otherwise, RE is the rend of the basic block.
3654  MachineBasicBlock::reverse_iterator
3655      RI = ++I.getReverse(),
3656      RE = CmpInstr.getParent() == MI->getParent()
3657               ? Def.getReverse() /* points to MI */
3658               : CmpInstr.getParent()->rend();
3659  MachineInstr *Movr0Inst = nullptr;
3660  for (; RI != RE; ++RI) {
3661    MachineInstr &Instr = *RI;
3662    // Check whether CmpInstr can be made redundant by the current instruction.
3663    if (!IsCmpZero && isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask,
3664                                           CmpValue, Instr)) {
3665      Sub = &Instr;
3666      break;
3667    }
3668
3669    if (Instr.modifiesRegister(X86::EFLAGS, TRI) ||
3670        Instr.readsRegister(X86::EFLAGS, TRI)) {
3671      // This instruction modifies or uses EFLAGS.
3672
3673      // MOV32r0 etc. are implemented with xor which clobbers condition code.
3674      // They are safe to move up, if the definition to EFLAGS is dead and
3675      // earlier instructions do not read or write EFLAGS.
3676      if (!Movr0Inst && Instr.getOpcode() == X86::MOV32r0 &&
3677          Instr.registerDefIsDead(X86::EFLAGS, TRI)) {
3678        Movr0Inst = &Instr;
3679        continue;
3680      }
3681
3682      // We can't remove CmpInstr.
3683      return false;
3684    }
3685  }
3686
3687  // Return false if no candidates exist.
3688  if (!IsCmpZero && !Sub)
3689    return false;
3690
3691  bool IsSwapped =
3692      (SrcReg2 != 0 && Sub && Sub->getOperand(1).getReg() == SrcReg2 &&
3693       Sub->getOperand(2).getReg() == SrcReg);
3694
3695  // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
3696  // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
3697  // If we are done with the basic block, we need to check whether EFLAGS is
3698  // live-out.
3699  bool IsSafe = false;
3700  SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate;
3701  MachineBasicBlock::iterator E = CmpInstr.getParent()->end();
3702  for (++I; I != E; ++I) {
3703    const MachineInstr &Instr = *I;
3704    bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
3705    bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
3706    // We should check the usage if this instruction uses and updates EFLAGS.
3707    if (!UseEFLAGS && ModifyEFLAGS) {
3708      // It is safe to remove CmpInstr if EFLAGS is updated again.
3709      IsSafe = true;
3710      break;
3711    }
3712    if (!UseEFLAGS && !ModifyEFLAGS)
3713      continue;
3714
3715    // EFLAGS is used by this instruction.
3716    X86::CondCode OldCC = X86::COND_INVALID;
3717    if (IsCmpZero || IsSwapped) {
3718      // We decode the condition code from opcode.
3719      if (Instr.isBranch())
3720        OldCC = X86::getCondFromBranch(Instr);
3721      else {
3722        OldCC = X86::getCondFromSETCC(Instr);
3723        if (OldCC == X86::COND_INVALID)
3724          OldCC = X86::getCondFromCMov(Instr);
3725      }
3726      if (OldCC == X86::COND_INVALID) return false;
3727    }
3728    X86::CondCode ReplacementCC = X86::COND_INVALID;
3729    if (IsCmpZero) {
3730      switch (OldCC) {
3731      default: break;
3732      case X86::COND_A: case X86::COND_AE:
3733      case X86::COND_B: case X86::COND_BE:
3734      case X86::COND_G: case X86::COND_GE:
3735      case X86::COND_L: case X86::COND_LE:
3736      case X86::COND_O: case X86::COND_NO:
3737        // CF and OF are used, we can't perform this optimization.
3738        return false;
3739      case X86::COND_S: case X86::COND_NS:
3740        // If SF is used, but the instruction doesn't update the SF, then we
3741        // can't do the optimization.
3742        if (NoSignFlag)
3743          return false;
3744        break;
3745      }
3746
3747      // If we're updating the condition code check if we have to reverse the
3748      // condition.
3749      if (ShouldUpdateCC)
3750        switch (OldCC) {
3751        default:
3752          return false;
3753        case X86::COND_E:
3754          ReplacementCC = NewCC;
3755          break;
3756        case X86::COND_NE:
3757          ReplacementCC = GetOppositeBranchCondition(NewCC);
3758          break;
3759        }
3760    } else if (IsSwapped) {
3761      // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
3762      // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3763      // We swap the condition code and synthesize the new opcode.
3764      ReplacementCC = getSwappedCondition(OldCC);
3765      if (ReplacementCC == X86::COND_INVALID) return false;
3766    }
3767
3768    if ((ShouldUpdateCC || IsSwapped) && ReplacementCC != OldCC) {
3769      // Push the MachineInstr to OpsToUpdate.
3770      // If it is safe to remove CmpInstr, the condition code of these
3771      // instructions will be modified.
3772      OpsToUpdate.push_back(std::make_pair(&*I, ReplacementCC));
3773    }
3774    if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
3775      // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
3776      IsSafe = true;
3777      break;
3778    }
3779  }
3780
3781  // If EFLAGS is not killed nor re-defined, we should check whether it is
3782  // live-out. If it is live-out, do not optimize.
3783  if ((IsCmpZero || IsSwapped) && !IsSafe) {
3784    MachineBasicBlock *MBB = CmpInstr.getParent();
3785    for (MachineBasicBlock *Successor : MBB->successors())
3786      if (Successor->isLiveIn(X86::EFLAGS))
3787        return false;
3788  }
3789
3790  // The instruction to be updated is either Sub or MI.
3791  Sub = IsCmpZero ? MI : Sub;
3792  // Move Movr0Inst to the appropriate place before Sub.
3793  if (Movr0Inst) {
3794    // Look backwards until we find a def that doesn't use the current EFLAGS.
3795    Def = Sub;
3796    MachineBasicBlock::reverse_iterator InsertI = Def.getReverse(),
3797                                        InsertE = Sub->getParent()->rend();
3798    for (; InsertI != InsertE; ++InsertI) {
3799      MachineInstr *Instr = &*InsertI;
3800      if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
3801          Instr->modifiesRegister(X86::EFLAGS, TRI)) {
3802        Sub->getParent()->remove(Movr0Inst);
3803        Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
3804                                   Movr0Inst);
3805        break;
3806      }
3807    }
3808    if (InsertI == InsertE)
3809      return false;
3810  }
3811
3812  // Make sure Sub instruction defines EFLAGS and mark the def live.
3813  MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS);
3814  assert(FlagDef && "Unable to locate a def EFLAGS operand");
3815  FlagDef->setIsDead(false);
3816
3817  CmpInstr.eraseFromParent();
3818
3819  // Modify the condition code of instructions in OpsToUpdate.
3820  for (auto &Op : OpsToUpdate) {
3821    Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
3822        .setImm(Op.second);
3823  }
3824  return true;
3825}
3826
3827/// Try to remove the load by folding it to a register
3828/// operand at the use. We fold the load instructions if load defines a virtual
3829/// register, the virtual register is used once in the same BB, and the
3830/// instructions in-between do not load or store, and have no side effects.
3831MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
3832                                              const MachineRegisterInfo *MRI,
3833                                              unsigned &FoldAsLoadDefReg,
3834                                              MachineInstr *&DefMI) const {
3835  // Check whether we can move DefMI here.
3836  DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
3837  assert(DefMI);
3838  bool SawStore = false;
3839  if (!DefMI->isSafeToMove(nullptr, SawStore))
3840    return nullptr;
3841
3842  // Collect information about virtual register operands of MI.
3843  SmallVector<unsigned, 1> SrcOperandIds;
3844  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
3845    MachineOperand &MO = MI.getOperand(i);
3846    if (!MO.isReg())
3847      continue;
3848    Register Reg = MO.getReg();
3849    if (Reg != FoldAsLoadDefReg)
3850      continue;
3851    // Do not fold if we have a subreg use or a def.
3852    if (MO.getSubReg() || MO.isDef())
3853      return nullptr;
3854    SrcOperandIds.push_back(i);
3855  }
3856  if (SrcOperandIds.empty())
3857    return nullptr;
3858
3859  // Check whether we can fold the def into SrcOperandId.
3860  if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
3861    FoldAsLoadDefReg = 0;
3862    return FoldMI;
3863  }
3864
3865  return nullptr;
3866}
3867
3868/// Expand a single-def pseudo instruction to a two-addr
3869/// instruction with two undef reads of the register being defined.
3870/// This is used for mapping:
3871///   %xmm4 = V_SET0
3872/// to:
3873///   %xmm4 = PXORrr undef %xmm4, undef %xmm4
3874///
3875static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
3876                             const MCInstrDesc &Desc) {
3877  assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
3878  Register Reg = MIB->getOperand(0).getReg();
3879  MIB->setDesc(Desc);
3880
3881  // MachineInstr::addOperand() will insert explicit operands before any
3882  // implicit operands.
3883  MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
3884  // But we don't trust that.
3885  assert(MIB->getOperand(1).getReg() == Reg &&
3886         MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
3887  return true;
3888}
3889
3890/// Expand a single-def pseudo instruction to a two-addr
3891/// instruction with two %k0 reads.
3892/// This is used for mapping:
3893///   %k4 = K_SET1
3894/// to:
3895///   %k4 = KXNORrr %k0, %k0
3896static bool Expand2AddrKreg(MachineInstrBuilder &MIB,
3897                            const MCInstrDesc &Desc, unsigned Reg) {
3898  assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
3899  MIB->setDesc(Desc);
3900  MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
3901  return true;
3902}
3903
3904static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
3905                          bool MinusOne) {
3906  MachineBasicBlock &MBB = *MIB->getParent();
3907  DebugLoc DL = MIB->getDebugLoc();
3908  Register Reg = MIB->getOperand(0).getReg();
3909
3910  // Insert the XOR.
3911  BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
3912      .addReg(Reg, RegState::Undef)
3913      .addReg(Reg, RegState::Undef);
3914
3915  // Turn the pseudo into an INC or DEC.
3916  MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
3917  MIB.addReg(Reg);
3918
3919  return true;
3920}
3921
3922static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
3923                               const TargetInstrInfo &TII,
3924                               const X86Subtarget &Subtarget) {
3925  MachineBasicBlock &MBB = *MIB->getParent();
3926  DebugLoc DL = MIB->getDebugLoc();
3927  int64_t Imm = MIB->getOperand(1).getImm();
3928  assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
3929  MachineBasicBlock::iterator I = MIB.getInstr();
3930
3931  int StackAdjustment;
3932
3933  if (Subtarget.is64Bit()) {
3934    assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
3935           MIB->getOpcode() == X86::MOV32ImmSExti8);
3936
3937    // Can't use push/pop lowering if the function might write to the red zone.
3938    X86MachineFunctionInfo *X86FI =
3939        MBB.getParent()->getInfo<X86MachineFunctionInfo>();
3940    if (X86FI->getUsesRedZone()) {
3941      MIB->setDesc(TII.get(MIB->getOpcode() ==
3942                           X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
3943      return true;
3944    }
3945
3946    // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
3947    // widen the register if necessary.
3948    StackAdjustment = 8;
3949    BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm);
3950    MIB->setDesc(TII.get(X86::POP64r));
3951    MIB->getOperand(0)
3952        .setReg(getX86SubSuperRegister(MIB->getOperand(0).getReg(), 64));
3953  } else {
3954    assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
3955    StackAdjustment = 4;
3956    BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm);
3957    MIB->setDesc(TII.get(X86::POP32r));
3958  }
3959  MIB->RemoveOperand(1);
3960  MIB->addImplicitDefUseOperands(*MBB.getParent());
3961
3962  // Build CFI if necessary.
3963  MachineFunction &MF = *MBB.getParent();
3964  const X86FrameLowering *TFL = Subtarget.getFrameLowering();
3965  bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
3966  bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
3967  bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
3968  if (EmitCFI) {
3969    TFL->BuildCFI(MBB, I, DL,
3970        MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
3971    TFL->BuildCFI(MBB, std::next(I), DL,
3972        MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
3973  }
3974
3975  return true;
3976}
3977
3978// LoadStackGuard has so far only been implemented for 64-bit MachO. Different
3979// code sequence is needed for other targets.
3980static void expandLoadStackGuard(MachineInstrBuilder &MIB,
3981                                 const TargetInstrInfo &TII) {
3982  MachineBasicBlock &MBB = *MIB->getParent();
3983  DebugLoc DL = MIB->getDebugLoc();
3984  Register Reg = MIB->getOperand(0).getReg();
3985  const GlobalValue *GV =
3986      cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
3987  auto Flags = MachineMemOperand::MOLoad |
3988               MachineMemOperand::MODereferenceable |
3989               MachineMemOperand::MOInvariant;
3990  MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
3991      MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, 8);
3992  MachineBasicBlock::iterator I = MIB.getInstr();
3993
3994  BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
3995      .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
3996      .addMemOperand(MMO);
3997  MIB->setDebugLoc(DL);
3998  MIB->setDesc(TII.get(X86::MOV64rm));
3999  MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
4000}
4001
4002static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
4003  MachineBasicBlock &MBB = *MIB->getParent();
4004  MachineFunction &MF = *MBB.getParent();
4005  const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
4006  const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
4007  unsigned XorOp =
4008      MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
4009  MIB->setDesc(TII.get(XorOp));
4010  MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
4011  return true;
4012}
4013
4014// This is used to handle spills for 128/256-bit registers when we have AVX512,
4015// but not VLX. If it uses an extended register we need to use an instruction
4016// that loads the lower 128/256-bit, but is available with only AVX512F.
4017static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
4018                            const TargetRegisterInfo *TRI,
4019                            const MCInstrDesc &LoadDesc,
4020                            const MCInstrDesc &BroadcastDesc,
4021                            unsigned SubIdx) {
4022  Register DestReg = MIB->getOperand(0).getReg();
4023  // Check if DestReg is XMM16-31 or YMM16-31.
4024  if (TRI->getEncodingValue(DestReg) < 16) {
4025    // We can use a normal VEX encoded load.
4026    MIB->setDesc(LoadDesc);
4027  } else {
4028    // Use a 128/256-bit VBROADCAST instruction.
4029    MIB->setDesc(BroadcastDesc);
4030    // Change the destination to a 512-bit register.
4031    DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
4032    MIB->getOperand(0).setReg(DestReg);
4033  }
4034  return true;
4035}
4036
4037// This is used to handle spills for 128/256-bit registers when we have AVX512,
4038// but not VLX. If it uses an extended register we need to use an instruction
4039// that stores the lower 128/256-bit, but is available with only AVX512F.
4040static bool expandNOVLXStore(MachineInstrBuilder &MIB,
4041                             const TargetRegisterInfo *TRI,
4042                             const MCInstrDesc &StoreDesc,
4043                             const MCInstrDesc &ExtractDesc,
4044                             unsigned SubIdx) {
4045  Register SrcReg = MIB->getOperand(X86::AddrNumOperands).getReg();
4046  // Check if DestReg is XMM16-31 or YMM16-31.
4047  if (TRI->getEncodingValue(SrcReg) < 16) {
4048    // We can use a normal VEX encoded store.
4049    MIB->setDesc(StoreDesc);
4050  } else {
4051    // Use a VEXTRACTF instruction.
4052    MIB->setDesc(ExtractDesc);
4053    // Change the destination to a 512-bit register.
4054    SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
4055    MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
4056    MIB.addImm(0x0); // Append immediate to extract from the lower bits.
4057  }
4058
4059  return true;
4060}
4061
4062static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) {
4063  MIB->setDesc(Desc);
4064  int64_t ShiftAmt = MIB->getOperand(2).getImm();
4065  // Temporarily remove the immediate so we can add another source register.
4066  MIB->RemoveOperand(2);
4067  // Add the register. Don't copy the kill flag if there is one.
4068  MIB.addReg(MIB->getOperand(1).getReg(),
4069             getUndefRegState(MIB->getOperand(1).isUndef()));
4070  // Add back the immediate.
4071  MIB.addImm(ShiftAmt);
4072  return true;
4073}
4074
4075bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
4076  bool HasAVX = Subtarget.hasAVX();
4077  MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4078  switch (MI.getOpcode()) {
4079  case X86::MOV32r0:
4080    return Expand2AddrUndef(MIB, get(X86::XOR32rr));
4081  case X86::MOV32r1:
4082    return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
4083  case X86::MOV32r_1:
4084    return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
4085  case X86::MOV32ImmSExti8:
4086  case X86::MOV64ImmSExti8:
4087    return ExpandMOVImmSExti8(MIB, *this, Subtarget);
4088  case X86::SETB_C8r:
4089    return Expand2AddrUndef(MIB, get(X86::SBB8rr));
4090  case X86::SETB_C16r:
4091    return Expand2AddrUndef(MIB, get(X86::SBB16rr));
4092  case X86::SETB_C32r:
4093    return Expand2AddrUndef(MIB, get(X86::SBB32rr));
4094  case X86::SETB_C64r:
4095    return Expand2AddrUndef(MIB, get(X86::SBB64rr));
4096  case X86::MMX_SET0:
4097    return Expand2AddrUndef(MIB, get(X86::MMX_PXORirr));
4098  case X86::V_SET0:
4099  case X86::FsFLD0SS:
4100  case X86::FsFLD0SD:
4101  case X86::FsFLD0F128:
4102    return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
4103  case X86::AVX_SET0: {
4104    assert(HasAVX && "AVX not supported");
4105    const TargetRegisterInfo *TRI = &getRegisterInfo();
4106    Register SrcReg = MIB->getOperand(0).getReg();
4107    Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4108    MIB->getOperand(0).setReg(XReg);
4109    Expand2AddrUndef(MIB, get(X86::VXORPSrr));
4110    MIB.addReg(SrcReg, RegState::ImplicitDefine);
4111    return true;
4112  }
4113  case X86::AVX512_128_SET0:
4114  case X86::AVX512_FsFLD0SS:
4115  case X86::AVX512_FsFLD0SD:
4116  case X86::AVX512_FsFLD0F128: {
4117    bool HasVLX = Subtarget.hasVLX();
4118    Register SrcReg = MIB->getOperand(0).getReg();
4119    const TargetRegisterInfo *TRI = &getRegisterInfo();
4120    if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
4121      return Expand2AddrUndef(MIB,
4122                              get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4123    // Extended register without VLX. Use a larger XOR.
4124    SrcReg =
4125        TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
4126    MIB->getOperand(0).setReg(SrcReg);
4127    return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4128  }
4129  case X86::AVX512_256_SET0:
4130  case X86::AVX512_512_SET0: {
4131    bool HasVLX = Subtarget.hasVLX();
4132    Register SrcReg = MIB->getOperand(0).getReg();
4133    const TargetRegisterInfo *TRI = &getRegisterInfo();
4134    if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
4135      Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4136      MIB->getOperand(0).setReg(XReg);
4137      Expand2AddrUndef(MIB,
4138                       get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4139      MIB.addReg(SrcReg, RegState::ImplicitDefine);
4140      return true;
4141    }
4142    if (MI.getOpcode() == X86::AVX512_256_SET0) {
4143      // No VLX so we must reference a zmm.
4144      unsigned ZReg =
4145        TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
4146      MIB->getOperand(0).setReg(ZReg);
4147    }
4148    return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4149  }
4150  case X86::V_SETALLONES:
4151    return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
4152  case X86::AVX2_SETALLONES:
4153    return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
4154  case X86::AVX1_SETALLONES: {
4155    Register Reg = MIB->getOperand(0).getReg();
4156    // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
4157    MIB->setDesc(get(X86::VCMPPSYrri));
4158    MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
4159    return true;
4160  }
4161  case X86::AVX512_512_SETALLONES: {
4162    Register Reg = MIB->getOperand(0).getReg();
4163    MIB->setDesc(get(X86::VPTERNLOGDZrri));
4164    // VPTERNLOGD needs 3 register inputs and an immediate.
4165    // 0xff will return 1s for any input.
4166    MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
4167       .addReg(Reg, RegState::Undef).addImm(0xff);
4168    return true;
4169  }
4170  case X86::AVX512_512_SEXT_MASK_32:
4171  case X86::AVX512_512_SEXT_MASK_64: {
4172    Register Reg = MIB->getOperand(0).getReg();
4173    Register MaskReg = MIB->getOperand(1).getReg();
4174    unsigned MaskState = getRegState(MIB->getOperand(1));
4175    unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ?
4176                   X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz;
4177    MI.RemoveOperand(1);
4178    MIB->setDesc(get(Opc));
4179    // VPTERNLOG needs 3 register inputs and an immediate.
4180    // 0xff will return 1s for any input.
4181    MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState)
4182       .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff);
4183    return true;
4184  }
4185  case X86::VMOVAPSZ128rm_NOVLX:
4186    return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
4187                           get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4188  case X86::VMOVUPSZ128rm_NOVLX:
4189    return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
4190                           get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4191  case X86::VMOVAPSZ256rm_NOVLX:
4192    return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
4193                           get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4194  case X86::VMOVUPSZ256rm_NOVLX:
4195    return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
4196                           get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4197  case X86::VMOVAPSZ128mr_NOVLX:
4198    return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
4199                            get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4200  case X86::VMOVUPSZ128mr_NOVLX:
4201    return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
4202                            get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4203  case X86::VMOVAPSZ256mr_NOVLX:
4204    return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
4205                            get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
4206  case X86::VMOVUPSZ256mr_NOVLX:
4207    return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
4208                            get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
4209  case X86::MOV32ri64: {
4210    Register Reg = MIB->getOperand(0).getReg();
4211    Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
4212    MI.setDesc(get(X86::MOV32ri));
4213    MIB->getOperand(0).setReg(Reg32);
4214    MIB.addReg(Reg, RegState::ImplicitDefine);
4215    return true;
4216  }
4217
4218  // KNL does not recognize dependency-breaking idioms for mask registers,
4219  // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
4220  // Using %k0 as the undef input register is a performance heuristic based
4221  // on the assumption that %k0 is used less frequently than the other mask
4222  // registers, since it is not usable as a write mask.
4223  // FIXME: A more advanced approach would be to choose the best input mask
4224  // register based on context.
4225  case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
4226  case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
4227  case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
4228  case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
4229  case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
4230  case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
4231  case TargetOpcode::LOAD_STACK_GUARD:
4232    expandLoadStackGuard(MIB, *this);
4233    return true;
4234  case X86::XOR64_FP:
4235  case X86::XOR32_FP:
4236    return expandXorFP(MIB, *this);
4237  case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8));
4238  case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8));
4239  case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8));
4240  case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8));
4241  case X86::ADD8rr_DB:    MIB->setDesc(get(X86::OR8rr));    break;
4242  case X86::ADD16rr_DB:   MIB->setDesc(get(X86::OR16rr));   break;
4243  case X86::ADD32rr_DB:   MIB->setDesc(get(X86::OR32rr));   break;
4244  case X86::ADD64rr_DB:   MIB->setDesc(get(X86::OR64rr));   break;
4245  case X86::ADD8ri_DB:    MIB->setDesc(get(X86::OR8ri));    break;
4246  case X86::ADD16ri_DB:   MIB->setDesc(get(X86::OR16ri));   break;
4247  case X86::ADD32ri_DB:   MIB->setDesc(get(X86::OR32ri));   break;
4248  case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break;
4249  case X86::ADD16ri8_DB:  MIB->setDesc(get(X86::OR16ri8));  break;
4250  case X86::ADD32ri8_DB:  MIB->setDesc(get(X86::OR32ri8));  break;
4251  case X86::ADD64ri8_DB:  MIB->setDesc(get(X86::OR64ri8));  break;
4252  }
4253  return false;
4254}
4255
4256/// Return true for all instructions that only update
4257/// the first 32 or 64-bits of the destination register and leave the rest
4258/// unmodified. This can be used to avoid folding loads if the instructions
4259/// only update part of the destination register, and the non-updated part is
4260/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
4261/// instructions breaks the partial register dependency and it can improve
4262/// performance. e.g.:
4263///
4264///   movss (%rdi), %xmm0
4265///   cvtss2sd %xmm0, %xmm0
4266///
4267/// Instead of
4268///   cvtss2sd (%rdi), %xmm0
4269///
4270/// FIXME: This should be turned into a TSFlags.
4271///
4272static bool hasPartialRegUpdate(unsigned Opcode,
4273                                const X86Subtarget &Subtarget,
4274                                bool ForLoadFold = false) {
4275  switch (Opcode) {
4276  case X86::CVTSI2SSrr:
4277  case X86::CVTSI2SSrm:
4278  case X86::CVTSI642SSrr:
4279  case X86::CVTSI642SSrm:
4280  case X86::CVTSI2SDrr:
4281  case X86::CVTSI2SDrm:
4282  case X86::CVTSI642SDrr:
4283  case X86::CVTSI642SDrm:
4284    // Load folding won't effect the undef register update since the input is
4285    // a GPR.
4286    return !ForLoadFold;
4287  case X86::CVTSD2SSrr:
4288  case X86::CVTSD2SSrm:
4289  case X86::CVTSS2SDrr:
4290  case X86::CVTSS2SDrm:
4291  case X86::MOVHPDrm:
4292  case X86::MOVHPSrm:
4293  case X86::MOVLPDrm:
4294  case X86::MOVLPSrm:
4295  case X86::RCPSSr:
4296  case X86::RCPSSm:
4297  case X86::RCPSSr_Int:
4298  case X86::RCPSSm_Int:
4299  case X86::ROUNDSDr:
4300  case X86::ROUNDSDm:
4301  case X86::ROUNDSSr:
4302  case X86::ROUNDSSm:
4303  case X86::RSQRTSSr:
4304  case X86::RSQRTSSm:
4305  case X86::RSQRTSSr_Int:
4306  case X86::RSQRTSSm_Int:
4307  case X86::SQRTSSr:
4308  case X86::SQRTSSm:
4309  case X86::SQRTSSr_Int:
4310  case X86::SQRTSSm_Int:
4311  case X86::SQRTSDr:
4312  case X86::SQRTSDm:
4313  case X86::SQRTSDr_Int:
4314  case X86::SQRTSDm_Int:
4315    return true;
4316  // GPR
4317  case X86::POPCNT32rm:
4318  case X86::POPCNT32rr:
4319  case X86::POPCNT64rm:
4320  case X86::POPCNT64rr:
4321    return Subtarget.hasPOPCNTFalseDeps();
4322  case X86::LZCNT32rm:
4323  case X86::LZCNT32rr:
4324  case X86::LZCNT64rm:
4325  case X86::LZCNT64rr:
4326  case X86::TZCNT32rm:
4327  case X86::TZCNT32rr:
4328  case X86::TZCNT64rm:
4329  case X86::TZCNT64rr:
4330    return Subtarget.hasLZCNTFalseDeps();
4331  }
4332
4333  return false;
4334}
4335
4336/// Inform the BreakFalseDeps pass how many idle
4337/// instructions we would like before a partial register update.
4338unsigned X86InstrInfo::getPartialRegUpdateClearance(
4339    const MachineInstr &MI, unsigned OpNum,
4340    const TargetRegisterInfo *TRI) const {
4341  if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
4342    return 0;
4343
4344  // If MI is marked as reading Reg, the partial register update is wanted.
4345  const MachineOperand &MO = MI.getOperand(0);
4346  Register Reg = MO.getReg();
4347  if (Register::isVirtualRegister(Reg)) {
4348    if (MO.readsReg() || MI.readsVirtualRegister(Reg))
4349      return 0;
4350  } else {
4351    if (MI.readsRegister(Reg, TRI))
4352      return 0;
4353  }
4354
4355  // If any instructions in the clearance range are reading Reg, insert a
4356  // dependency breaking instruction, which is inexpensive and is likely to
4357  // be hidden in other instruction's cycles.
4358  return PartialRegUpdateClearance;
4359}
4360
4361// Return true for any instruction the copies the high bits of the first source
4362// operand into the unused high bits of the destination operand.
4363static bool hasUndefRegUpdate(unsigned Opcode, unsigned &OpNum,
4364                              bool ForLoadFold = false) {
4365  // Set the OpNum parameter to the first source operand.
4366  OpNum = 1;
4367  switch (Opcode) {
4368  case X86::VCVTSI2SSrr:
4369  case X86::VCVTSI2SSrm:
4370  case X86::VCVTSI2SSrr_Int:
4371  case X86::VCVTSI2SSrm_Int:
4372  case X86::VCVTSI642SSrr:
4373  case X86::VCVTSI642SSrm:
4374  case X86::VCVTSI642SSrr_Int:
4375  case X86::VCVTSI642SSrm_Int:
4376  case X86::VCVTSI2SDrr:
4377  case X86::VCVTSI2SDrm:
4378  case X86::VCVTSI2SDrr_Int:
4379  case X86::VCVTSI2SDrm_Int:
4380  case X86::VCVTSI642SDrr:
4381  case X86::VCVTSI642SDrm:
4382  case X86::VCVTSI642SDrr_Int:
4383  case X86::VCVTSI642SDrm_Int:
4384  // AVX-512
4385  case X86::VCVTSI2SSZrr:
4386  case X86::VCVTSI2SSZrm:
4387  case X86::VCVTSI2SSZrr_Int:
4388  case X86::VCVTSI2SSZrrb_Int:
4389  case X86::VCVTSI2SSZrm_Int:
4390  case X86::VCVTSI642SSZrr:
4391  case X86::VCVTSI642SSZrm:
4392  case X86::VCVTSI642SSZrr_Int:
4393  case X86::VCVTSI642SSZrrb_Int:
4394  case X86::VCVTSI642SSZrm_Int:
4395  case X86::VCVTSI2SDZrr:
4396  case X86::VCVTSI2SDZrm:
4397  case X86::VCVTSI2SDZrr_Int:
4398  case X86::VCVTSI2SDZrm_Int:
4399  case X86::VCVTSI642SDZrr:
4400  case X86::VCVTSI642SDZrm:
4401  case X86::VCVTSI642SDZrr_Int:
4402  case X86::VCVTSI642SDZrrb_Int:
4403  case X86::VCVTSI642SDZrm_Int:
4404  case X86::VCVTUSI2SSZrr:
4405  case X86::VCVTUSI2SSZrm:
4406  case X86::VCVTUSI2SSZrr_Int:
4407  case X86::VCVTUSI2SSZrrb_Int:
4408  case X86::VCVTUSI2SSZrm_Int:
4409  case X86::VCVTUSI642SSZrr:
4410  case X86::VCVTUSI642SSZrm:
4411  case X86::VCVTUSI642SSZrr_Int:
4412  case X86::VCVTUSI642SSZrrb_Int:
4413  case X86::VCVTUSI642SSZrm_Int:
4414  case X86::VCVTUSI2SDZrr:
4415  case X86::VCVTUSI2SDZrm:
4416  case X86::VCVTUSI2SDZrr_Int:
4417  case X86::VCVTUSI2SDZrm_Int:
4418  case X86::VCVTUSI642SDZrr:
4419  case X86::VCVTUSI642SDZrm:
4420  case X86::VCVTUSI642SDZrr_Int:
4421  case X86::VCVTUSI642SDZrrb_Int:
4422  case X86::VCVTUSI642SDZrm_Int:
4423    // Load folding won't effect the undef register update since the input is
4424    // a GPR.
4425    return !ForLoadFold;
4426  case X86::VCVTSD2SSrr:
4427  case X86::VCVTSD2SSrm:
4428  case X86::VCVTSD2SSrr_Int:
4429  case X86::VCVTSD2SSrm_Int:
4430  case X86::VCVTSS2SDrr:
4431  case X86::VCVTSS2SDrm:
4432  case X86::VCVTSS2SDrr_Int:
4433  case X86::VCVTSS2SDrm_Int:
4434  case X86::VRCPSSr:
4435  case X86::VRCPSSr_Int:
4436  case X86::VRCPSSm:
4437  case X86::VRCPSSm_Int:
4438  case X86::VROUNDSDr:
4439  case X86::VROUNDSDm:
4440  case X86::VROUNDSDr_Int:
4441  case X86::VROUNDSDm_Int:
4442  case X86::VROUNDSSr:
4443  case X86::VROUNDSSm:
4444  case X86::VROUNDSSr_Int:
4445  case X86::VROUNDSSm_Int:
4446  case X86::VRSQRTSSr:
4447  case X86::VRSQRTSSr_Int:
4448  case X86::VRSQRTSSm:
4449  case X86::VRSQRTSSm_Int:
4450  case X86::VSQRTSSr:
4451  case X86::VSQRTSSr_Int:
4452  case X86::VSQRTSSm:
4453  case X86::VSQRTSSm_Int:
4454  case X86::VSQRTSDr:
4455  case X86::VSQRTSDr_Int:
4456  case X86::VSQRTSDm:
4457  case X86::VSQRTSDm_Int:
4458  // AVX-512
4459  case X86::VCVTSD2SSZrr:
4460  case X86::VCVTSD2SSZrr_Int:
4461  case X86::VCVTSD2SSZrrb_Int:
4462  case X86::VCVTSD2SSZrm:
4463  case X86::VCVTSD2SSZrm_Int:
4464  case X86::VCVTSS2SDZrr:
4465  case X86::VCVTSS2SDZrr_Int:
4466  case X86::VCVTSS2SDZrrb_Int:
4467  case X86::VCVTSS2SDZrm:
4468  case X86::VCVTSS2SDZrm_Int:
4469  case X86::VGETEXPSDZr:
4470  case X86::VGETEXPSDZrb:
4471  case X86::VGETEXPSDZm:
4472  case X86::VGETEXPSSZr:
4473  case X86::VGETEXPSSZrb:
4474  case X86::VGETEXPSSZm:
4475  case X86::VGETMANTSDZrri:
4476  case X86::VGETMANTSDZrrib:
4477  case X86::VGETMANTSDZrmi:
4478  case X86::VGETMANTSSZrri:
4479  case X86::VGETMANTSSZrrib:
4480  case X86::VGETMANTSSZrmi:
4481  case X86::VRNDSCALESDZr:
4482  case X86::VRNDSCALESDZr_Int:
4483  case X86::VRNDSCALESDZrb_Int:
4484  case X86::VRNDSCALESDZm:
4485  case X86::VRNDSCALESDZm_Int:
4486  case X86::VRNDSCALESSZr:
4487  case X86::VRNDSCALESSZr_Int:
4488  case X86::VRNDSCALESSZrb_Int:
4489  case X86::VRNDSCALESSZm:
4490  case X86::VRNDSCALESSZm_Int:
4491  case X86::VRCP14SDZrr:
4492  case X86::VRCP14SDZrm:
4493  case X86::VRCP14SSZrr:
4494  case X86::VRCP14SSZrm:
4495  case X86::VRCP28SDZr:
4496  case X86::VRCP28SDZrb:
4497  case X86::VRCP28SDZm:
4498  case X86::VRCP28SSZr:
4499  case X86::VRCP28SSZrb:
4500  case X86::VRCP28SSZm:
4501  case X86::VREDUCESSZrmi:
4502  case X86::VREDUCESSZrri:
4503  case X86::VREDUCESSZrrib:
4504  case X86::VRSQRT14SDZrr:
4505  case X86::VRSQRT14SDZrm:
4506  case X86::VRSQRT14SSZrr:
4507  case X86::VRSQRT14SSZrm:
4508  case X86::VRSQRT28SDZr:
4509  case X86::VRSQRT28SDZrb:
4510  case X86::VRSQRT28SDZm:
4511  case X86::VRSQRT28SSZr:
4512  case X86::VRSQRT28SSZrb:
4513  case X86::VRSQRT28SSZm:
4514  case X86::VSQRTSSZr:
4515  case X86::VSQRTSSZr_Int:
4516  case X86::VSQRTSSZrb_Int:
4517  case X86::VSQRTSSZm:
4518  case X86::VSQRTSSZm_Int:
4519  case X86::VSQRTSDZr:
4520  case X86::VSQRTSDZr_Int:
4521  case X86::VSQRTSDZrb_Int:
4522  case X86::VSQRTSDZm:
4523  case X86::VSQRTSDZm_Int:
4524    return true;
4525  case X86::VMOVSSZrrk:
4526  case X86::VMOVSDZrrk:
4527    OpNum = 3;
4528    return true;
4529  case X86::VMOVSSZrrkz:
4530  case X86::VMOVSDZrrkz:
4531    OpNum = 2;
4532    return true;
4533  }
4534
4535  return false;
4536}
4537
4538/// Inform the BreakFalseDeps pass how many idle instructions we would like
4539/// before certain undef register reads.
4540///
4541/// This catches the VCVTSI2SD family of instructions:
4542///
4543/// vcvtsi2sdq %rax, undef %xmm0, %xmm14
4544///
4545/// We should to be careful *not* to catch VXOR idioms which are presumably
4546/// handled specially in the pipeline:
4547///
4548/// vxorps undef %xmm1, undef %xmm1, %xmm1
4549///
4550/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
4551/// high bits that are passed-through are not live.
4552unsigned
4553X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
4554                                   const TargetRegisterInfo *TRI) const {
4555  if (!hasUndefRegUpdate(MI.getOpcode(), OpNum))
4556    return 0;
4557
4558  const MachineOperand &MO = MI.getOperand(OpNum);
4559  if (MO.isUndef() && Register::isPhysicalRegister(MO.getReg())) {
4560    return UndefRegClearance;
4561  }
4562  return 0;
4563}
4564
4565void X86InstrInfo::breakPartialRegDependency(
4566    MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
4567  Register Reg = MI.getOperand(OpNum).getReg();
4568  // If MI kills this register, the false dependence is already broken.
4569  if (MI.killsRegister(Reg, TRI))
4570    return;
4571
4572  if (X86::VR128RegClass.contains(Reg)) {
4573    // These instructions are all floating point domain, so xorps is the best
4574    // choice.
4575    unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
4576    BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
4577        .addReg(Reg, RegState::Undef)
4578        .addReg(Reg, RegState::Undef);
4579    MI.addRegisterKilled(Reg, TRI, true);
4580  } else if (X86::VR256RegClass.contains(Reg)) {
4581    // Use vxorps to clear the full ymm register.
4582    // It wants to read and write the xmm sub-register.
4583    Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
4584    BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
4585        .addReg(XReg, RegState::Undef)
4586        .addReg(XReg, RegState::Undef)
4587        .addReg(Reg, RegState::ImplicitDefine);
4588    MI.addRegisterKilled(Reg, TRI, true);
4589  } else if (X86::GR64RegClass.contains(Reg)) {
4590    // Using XOR32rr because it has shorter encoding and zeros up the upper bits
4591    // as well.
4592    Register XReg = TRI->getSubReg(Reg, X86::sub_32bit);
4593    BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
4594        .addReg(XReg, RegState::Undef)
4595        .addReg(XReg, RegState::Undef)
4596        .addReg(Reg, RegState::ImplicitDefine);
4597    MI.addRegisterKilled(Reg, TRI, true);
4598  } else if (X86::GR32RegClass.contains(Reg)) {
4599    BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
4600        .addReg(Reg, RegState::Undef)
4601        .addReg(Reg, RegState::Undef);
4602    MI.addRegisterKilled(Reg, TRI, true);
4603  }
4604}
4605
4606static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
4607                        int PtrOffset = 0) {
4608  unsigned NumAddrOps = MOs.size();
4609
4610  if (NumAddrOps < 4) {
4611    // FrameIndex only - add an immediate offset (whether its zero or not).
4612    for (unsigned i = 0; i != NumAddrOps; ++i)
4613      MIB.add(MOs[i]);
4614    addOffset(MIB, PtrOffset);
4615  } else {
4616    // General Memory Addressing - we need to add any offset to an existing
4617    // offset.
4618    assert(MOs.size() == 5 && "Unexpected memory operand list length");
4619    for (unsigned i = 0; i != NumAddrOps; ++i) {
4620      const MachineOperand &MO = MOs[i];
4621      if (i == 3 && PtrOffset != 0) {
4622        MIB.addDisp(MO, PtrOffset);
4623      } else {
4624        MIB.add(MO);
4625      }
4626    }
4627  }
4628}
4629
4630static void updateOperandRegConstraints(MachineFunction &MF,
4631                                        MachineInstr &NewMI,
4632                                        const TargetInstrInfo &TII) {
4633  MachineRegisterInfo &MRI = MF.getRegInfo();
4634  const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
4635
4636  for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
4637    MachineOperand &MO = NewMI.getOperand(Idx);
4638    // We only need to update constraints on virtual register operands.
4639    if (!MO.isReg())
4640      continue;
4641    Register Reg = MO.getReg();
4642    if (!Register::isVirtualRegister(Reg))
4643      continue;
4644
4645    auto *NewRC = MRI.constrainRegClass(
4646        Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
4647    if (!NewRC) {
4648      LLVM_DEBUG(
4649          dbgs() << "WARNING: Unable to update register constraint for operand "
4650                 << Idx << " of instruction:\n";
4651          NewMI.dump(); dbgs() << "\n");
4652    }
4653  }
4654}
4655
4656static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
4657                                     ArrayRef<MachineOperand> MOs,
4658                                     MachineBasicBlock::iterator InsertPt,
4659                                     MachineInstr &MI,
4660                                     const TargetInstrInfo &TII) {
4661  // Create the base instruction with the memory operand as the first part.
4662  // Omit the implicit operands, something BuildMI can't do.
4663  MachineInstr *NewMI =
4664      MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
4665  MachineInstrBuilder MIB(MF, NewMI);
4666  addOperands(MIB, MOs);
4667
4668  // Loop over the rest of the ri operands, converting them over.
4669  unsigned NumOps = MI.getDesc().getNumOperands() - 2;
4670  for (unsigned i = 0; i != NumOps; ++i) {
4671    MachineOperand &MO = MI.getOperand(i + 2);
4672    MIB.add(MO);
4673  }
4674  for (unsigned i = NumOps + 2, e = MI.getNumOperands(); i != e; ++i) {
4675    MachineOperand &MO = MI.getOperand(i);
4676    MIB.add(MO);
4677  }
4678
4679  updateOperandRegConstraints(MF, *NewMI, TII);
4680
4681  MachineBasicBlock *MBB = InsertPt->getParent();
4682  MBB->insert(InsertPt, NewMI);
4683
4684  return MIB;
4685}
4686
4687static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
4688                              unsigned OpNo, ArrayRef<MachineOperand> MOs,
4689                              MachineBasicBlock::iterator InsertPt,
4690                              MachineInstr &MI, const TargetInstrInfo &TII,
4691                              int PtrOffset = 0) {
4692  // Omit the implicit operands, something BuildMI can't do.
4693  MachineInstr *NewMI =
4694      MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
4695  MachineInstrBuilder MIB(MF, NewMI);
4696
4697  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
4698    MachineOperand &MO = MI.getOperand(i);
4699    if (i == OpNo) {
4700      assert(MO.isReg() && "Expected to fold into reg operand!");
4701      addOperands(MIB, MOs, PtrOffset);
4702    } else {
4703      MIB.add(MO);
4704    }
4705  }
4706
4707  updateOperandRegConstraints(MF, *NewMI, TII);
4708
4709  // Copy the NoFPExcept flag from the instruction we're fusing.
4710  if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
4711    NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept);
4712
4713  MachineBasicBlock *MBB = InsertPt->getParent();
4714  MBB->insert(InsertPt, NewMI);
4715
4716  return MIB;
4717}
4718
4719static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
4720                                ArrayRef<MachineOperand> MOs,
4721                                MachineBasicBlock::iterator InsertPt,
4722                                MachineInstr &MI) {
4723  MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
4724                                    MI.getDebugLoc(), TII.get(Opcode));
4725  addOperands(MIB, MOs);
4726  return MIB.addImm(0);
4727}
4728
4729MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
4730    MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
4731    ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
4732    unsigned Size, unsigned Align) const {
4733  switch (MI.getOpcode()) {
4734  case X86::INSERTPSrr:
4735  case X86::VINSERTPSrr:
4736  case X86::VINSERTPSZrr:
4737    // Attempt to convert the load of inserted vector into a fold load
4738    // of a single float.
4739    if (OpNum == 2) {
4740      unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
4741      unsigned ZMask = Imm & 15;
4742      unsigned DstIdx = (Imm >> 4) & 3;
4743      unsigned SrcIdx = (Imm >> 6) & 3;
4744
4745      const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4746      const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4747      unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4748      if ((Size == 0 || Size >= 16) && RCSize >= 16 && 4 <= Align) {
4749        int PtrOffset = SrcIdx * 4;
4750        unsigned NewImm = (DstIdx << 4) | ZMask;
4751        unsigned NewOpCode =
4752            (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm :
4753            (MI.getOpcode() == X86::VINSERTPSrr)  ? X86::VINSERTPSrm  :
4754                                                    X86::INSERTPSrm;
4755        MachineInstr *NewMI =
4756            FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
4757        NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
4758        return NewMI;
4759      }
4760    }
4761    break;
4762  case X86::MOVHLPSrr:
4763  case X86::VMOVHLPSrr:
4764  case X86::VMOVHLPSZrr:
4765    // Move the upper 64-bits of the second operand to the lower 64-bits.
4766    // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
4767    // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
4768    if (OpNum == 2) {
4769      const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4770      const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4771      unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4772      if ((Size == 0 || Size >= 16) && RCSize >= 16 && 8 <= Align) {
4773        unsigned NewOpCode =
4774            (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm :
4775            (MI.getOpcode() == X86::VMOVHLPSrr)  ? X86::VMOVLPSrm     :
4776                                                   X86::MOVLPSrm;
4777        MachineInstr *NewMI =
4778            FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
4779        return NewMI;
4780      }
4781    }
4782    break;
4783  case X86::UNPCKLPDrr:
4784    // If we won't be able to fold this to the memory form of UNPCKL, use
4785    // MOVHPD instead. Done as custom because we can't have this in the load
4786    // table twice.
4787    if (OpNum == 2) {
4788      const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4789      const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4790      unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4791      if ((Size == 0 || Size >= 16) && RCSize >= 16 && Align < 16) {
4792        MachineInstr *NewMI =
4793            FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this);
4794        return NewMI;
4795      }
4796    }
4797    break;
4798  }
4799
4800  return nullptr;
4801}
4802
4803static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF,
4804                                               MachineInstr &MI) {
4805  unsigned Ignored;
4806  if (!hasUndefRegUpdate(MI.getOpcode(), Ignored, /*ForLoadFold*/true) ||
4807      !MI.getOperand(1).isReg())
4808    return false;
4809
4810  // The are two cases we need to handle depending on where in the pipeline
4811  // the folding attempt is being made.
4812  // -Register has the undef flag set.
4813  // -Register is produced by the IMPLICIT_DEF instruction.
4814
4815  if (MI.getOperand(1).isUndef())
4816    return true;
4817
4818  MachineRegisterInfo &RegInfo = MF.getRegInfo();
4819  MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
4820  return VRegDef && VRegDef->isImplicitDef();
4821}
4822
4823
4824MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
4825    MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
4826    ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
4827    unsigned Size, unsigned Align, bool AllowCommute) const {
4828  bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
4829  bool isTwoAddrFold = false;
4830
4831  // For CPUs that favor the register form of a call or push,
4832  // do not fold loads into calls or pushes, unless optimizing for size
4833  // aggressively.
4834  if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
4835      (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
4836       MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
4837       MI.getOpcode() == X86::PUSH64r))
4838    return nullptr;
4839
4840  // Avoid partial and undef register update stalls unless optimizing for size.
4841  if (!MF.getFunction().hasOptSize() &&
4842      (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
4843       shouldPreventUndefRegUpdateMemFold(MF, MI)))
4844    return nullptr;
4845
4846  unsigned NumOps = MI.getDesc().getNumOperands();
4847  bool isTwoAddr =
4848      NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
4849
4850  // FIXME: AsmPrinter doesn't know how to handle
4851  // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
4852  if (MI.getOpcode() == X86::ADD32ri &&
4853      MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
4854    return nullptr;
4855
4856  // GOTTPOFF relocation loads can only be folded into add instructions.
4857  // FIXME: Need to exclude other relocations that only support specific
4858  // instructions.
4859  if (MOs.size() == X86::AddrNumOperands &&
4860      MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
4861      MI.getOpcode() != X86::ADD64rr)
4862    return nullptr;
4863
4864  MachineInstr *NewMI = nullptr;
4865
4866  // Attempt to fold any custom cases we have.
4867  if (MachineInstr *CustomMI =
4868          foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt, Size, Align))
4869    return CustomMI;
4870
4871  const X86MemoryFoldTableEntry *I = nullptr;
4872
4873  // Folding a memory location into the two-address part of a two-address
4874  // instruction is different than folding it other places.  It requires
4875  // replacing the *two* registers with the memory location.
4876  if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
4877      MI.getOperand(1).isReg() &&
4878      MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
4879    I = lookupTwoAddrFoldTable(MI.getOpcode());
4880    isTwoAddrFold = true;
4881  } else {
4882    if (OpNum == 0) {
4883      if (MI.getOpcode() == X86::MOV32r0) {
4884        NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
4885        if (NewMI)
4886          return NewMI;
4887      }
4888    }
4889
4890    I = lookupFoldTable(MI.getOpcode(), OpNum);
4891  }
4892
4893  if (I != nullptr) {
4894    unsigned Opcode = I->DstOp;
4895    unsigned MinAlign = (I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
4896    MinAlign = MinAlign ? 1 << (MinAlign - 1) : 0;
4897    if (Align < MinAlign)
4898      return nullptr;
4899    bool NarrowToMOV32rm = false;
4900    if (Size) {
4901      const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4902      const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum,
4903                                                  &RI, MF);
4904      unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4905      if (Size < RCSize) {
4906        // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
4907        // Check if it's safe to fold the load. If the size of the object is
4908        // narrower than the load width, then it's not.
4909        if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
4910          return nullptr;
4911        // If this is a 64-bit load, but the spill slot is 32, then we can do
4912        // a 32-bit load which is implicitly zero-extended. This likely is
4913        // due to live interval analysis remat'ing a load from stack slot.
4914        if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
4915          return nullptr;
4916        Opcode = X86::MOV32rm;
4917        NarrowToMOV32rm = true;
4918      }
4919    }
4920
4921    if (isTwoAddrFold)
4922      NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
4923    else
4924      NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
4925
4926    if (NarrowToMOV32rm) {
4927      // If this is the special case where we use a MOV32rm to load a 32-bit
4928      // value and zero-extend the top bits. Change the destination register
4929      // to a 32-bit one.
4930      Register DstReg = NewMI->getOperand(0).getReg();
4931      if (Register::isPhysicalRegister(DstReg))
4932        NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
4933      else
4934        NewMI->getOperand(0).setSubReg(X86::sub_32bit);
4935    }
4936    return NewMI;
4937  }
4938
4939  // If the instruction and target operand are commutable, commute the
4940  // instruction and try again.
4941  if (AllowCommute) {
4942    unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
4943    if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
4944      bool HasDef = MI.getDesc().getNumDefs();
4945      Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
4946      Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
4947      Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
4948      bool Tied1 =
4949          0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
4950      bool Tied2 =
4951          0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
4952
4953      // If either of the commutable operands are tied to the destination
4954      // then we can not commute + fold.
4955      if ((HasDef && Reg0 == Reg1 && Tied1) ||
4956          (HasDef && Reg0 == Reg2 && Tied2))
4957        return nullptr;
4958
4959      MachineInstr *CommutedMI =
4960          commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
4961      if (!CommutedMI) {
4962        // Unable to commute.
4963        return nullptr;
4964      }
4965      if (CommutedMI != &MI) {
4966        // New instruction. We can't fold from this.
4967        CommutedMI->eraseFromParent();
4968        return nullptr;
4969      }
4970
4971      // Attempt to fold with the commuted version of the instruction.
4972      NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt,
4973                                    Size, Align, /*AllowCommute=*/false);
4974      if (NewMI)
4975        return NewMI;
4976
4977      // Folding failed again - undo the commute before returning.
4978      MachineInstr *UncommutedMI =
4979          commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
4980      if (!UncommutedMI) {
4981        // Unable to commute.
4982        return nullptr;
4983      }
4984      if (UncommutedMI != &MI) {
4985        // New instruction. It doesn't need to be kept.
4986        UncommutedMI->eraseFromParent();
4987        return nullptr;
4988      }
4989
4990      // Return here to prevent duplicate fuse failure report.
4991      return nullptr;
4992    }
4993  }
4994
4995  // No fusion
4996  if (PrintFailedFusing && !MI.isCopy())
4997    dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
4998  return nullptr;
4999}
5000
5001MachineInstr *
5002X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
5003                                    ArrayRef<unsigned> Ops,
5004                                    MachineBasicBlock::iterator InsertPt,
5005                                    int FrameIndex, LiveIntervals *LIS,
5006                                    VirtRegMap *VRM) const {
5007  // Check switch flag
5008  if (NoFusing)
5009    return nullptr;
5010
5011  // Avoid partial and undef register update stalls unless optimizing for size.
5012  if (!MF.getFunction().hasOptSize() &&
5013      (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
5014       shouldPreventUndefRegUpdateMemFold(MF, MI)))
5015    return nullptr;
5016
5017  // Don't fold subreg spills, or reloads that use a high subreg.
5018  for (auto Op : Ops) {
5019    MachineOperand &MO = MI.getOperand(Op);
5020    auto SubReg = MO.getSubReg();
5021    if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
5022      return nullptr;
5023  }
5024
5025  const MachineFrameInfo &MFI = MF.getFrameInfo();
5026  unsigned Size = MFI.getObjectSize(FrameIndex);
5027  unsigned Alignment = MFI.getObjectAlignment(FrameIndex);
5028  // If the function stack isn't realigned we don't want to fold instructions
5029  // that need increased alignment.
5030  if (!RI.needsStackRealignment(MF))
5031    Alignment =
5032        std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment());
5033  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5034    unsigned NewOpc = 0;
5035    unsigned RCSize = 0;
5036    switch (MI.getOpcode()) {
5037    default: return nullptr;
5038    case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
5039    case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
5040    case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
5041    case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
5042    }
5043    // Check if it's safe to fold the load. If the size of the object is
5044    // narrower than the load width, then it's not.
5045    if (Size < RCSize)
5046      return nullptr;
5047    // Change to CMPXXri r, 0 first.
5048    MI.setDesc(get(NewOpc));
5049    MI.getOperand(1).ChangeToImmediate(0);
5050  } else if (Ops.size() != 1)
5051    return nullptr;
5052
5053  return foldMemoryOperandImpl(MF, MI, Ops[0],
5054                               MachineOperand::CreateFI(FrameIndex), InsertPt,
5055                               Size, Alignment, /*AllowCommute=*/true);
5056}
5057
5058/// Check if \p LoadMI is a partial register load that we can't fold into \p MI
5059/// because the latter uses contents that wouldn't be defined in the folded
5060/// version.  For instance, this transformation isn't legal:
5061///   movss (%rdi), %xmm0
5062///   addps %xmm0, %xmm0
5063/// ->
5064///   addps (%rdi), %xmm0
5065///
5066/// But this one is:
5067///   movss (%rdi), %xmm0
5068///   addss %xmm0, %xmm0
5069/// ->
5070///   addss (%rdi), %xmm0
5071///
5072static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
5073                                             const MachineInstr &UserMI,
5074                                             const MachineFunction &MF) {
5075  unsigned Opc = LoadMI.getOpcode();
5076  unsigned UserOpc = UserMI.getOpcode();
5077  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5078  const TargetRegisterClass *RC =
5079      MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
5080  unsigned RegSize = TRI.getRegSizeInBits(*RC);
5081
5082  if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm ||
5083       Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt ||
5084       Opc == X86::VMOVSSZrm_alt) &&
5085      RegSize > 32) {
5086    // These instructions only load 32 bits, we can't fold them if the
5087    // destination register is wider than 32 bits (4 bytes), and its user
5088    // instruction isn't scalar (SS).
5089    switch (UserOpc) {
5090    case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int:
5091    case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int:
5092    case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int:
5093    case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int:
5094    case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int:
5095    case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int:
5096    case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int:
5097    case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz:
5098    case X86::VCMPSSZrr_Intk:
5099    case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz:
5100    case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz:
5101    case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz:
5102    case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz:
5103    case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz:
5104    case X86::VFMADDSS4rr_Int:   case X86::VFNMADDSS4rr_Int:
5105    case X86::VFMSUBSS4rr_Int:   case X86::VFNMSUBSS4rr_Int:
5106    case X86::VFMADD132SSr_Int:  case X86::VFNMADD132SSr_Int:
5107    case X86::VFMADD213SSr_Int:  case X86::VFNMADD213SSr_Int:
5108    case X86::VFMADD231SSr_Int:  case X86::VFNMADD231SSr_Int:
5109    case X86::VFMSUB132SSr_Int:  case X86::VFNMSUB132SSr_Int:
5110    case X86::VFMSUB213SSr_Int:  case X86::VFNMSUB213SSr_Int:
5111    case X86::VFMSUB231SSr_Int:  case X86::VFNMSUB231SSr_Int:
5112    case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int:
5113    case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int:
5114    case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int:
5115    case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int:
5116    case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int:
5117    case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int:
5118    case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk:
5119    case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk:
5120    case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk:
5121    case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk:
5122    case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk:
5123    case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk:
5124    case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz:
5125    case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz:
5126    case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz:
5127    case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz:
5128    case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz:
5129    case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz:
5130      return false;
5131    default:
5132      return true;
5133    }
5134  }
5135
5136  if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm ||
5137       Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt ||
5138       Opc == X86::VMOVSDZrm_alt) &&
5139      RegSize > 64) {
5140    // These instructions only load 64 bits, we can't fold them if the
5141    // destination register is wider than 64 bits (8 bytes), and its user
5142    // instruction isn't scalar (SD).
5143    switch (UserOpc) {
5144    case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int:
5145    case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int:
5146    case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int:
5147    case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int:
5148    case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int:
5149    case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int:
5150    case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int:
5151    case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz:
5152    case X86::VCMPSDZrr_Intk:
5153    case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz:
5154    case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz:
5155    case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz:
5156    case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz:
5157    case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz:
5158    case X86::VFMADDSD4rr_Int:   case X86::VFNMADDSD4rr_Int:
5159    case X86::VFMSUBSD4rr_Int:   case X86::VFNMSUBSD4rr_Int:
5160    case X86::VFMADD132SDr_Int:  case X86::VFNMADD132SDr_Int:
5161    case X86::VFMADD213SDr_Int:  case X86::VFNMADD213SDr_Int:
5162    case X86::VFMADD231SDr_Int:  case X86::VFNMADD231SDr_Int:
5163    case X86::VFMSUB132SDr_Int:  case X86::VFNMSUB132SDr_Int:
5164    case X86::VFMSUB213SDr_Int:  case X86::VFNMSUB213SDr_Int:
5165    case X86::VFMSUB231SDr_Int:  case X86::VFNMSUB231SDr_Int:
5166    case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int:
5167    case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int:
5168    case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int:
5169    case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int:
5170    case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int:
5171    case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int:
5172    case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk:
5173    case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk:
5174    case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk:
5175    case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk:
5176    case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk:
5177    case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk:
5178    case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz:
5179    case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz:
5180    case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz:
5181    case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz:
5182    case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz:
5183    case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz:
5184      return false;
5185    default:
5186      return true;
5187    }
5188  }
5189
5190  return false;
5191}
5192
5193MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
5194    MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
5195    MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
5196    LiveIntervals *LIS) const {
5197
5198  // TODO: Support the case where LoadMI loads a wide register, but MI
5199  // only uses a subreg.
5200  for (auto Op : Ops) {
5201    if (MI.getOperand(Op).getSubReg())
5202      return nullptr;
5203  }
5204
5205  // If loading from a FrameIndex, fold directly from the FrameIndex.
5206  unsigned NumOps = LoadMI.getDesc().getNumOperands();
5207  int FrameIndex;
5208  if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
5209    if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
5210      return nullptr;
5211    return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
5212  }
5213
5214  // Check switch flag
5215  if (NoFusing) return nullptr;
5216
5217  // Avoid partial and undef register update stalls unless optimizing for size.
5218  if (!MF.getFunction().hasOptSize() &&
5219      (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
5220       shouldPreventUndefRegUpdateMemFold(MF, MI)))
5221    return nullptr;
5222
5223  // Determine the alignment of the load.
5224  unsigned Alignment = 0;
5225  if (LoadMI.hasOneMemOperand())
5226    Alignment = (*LoadMI.memoperands_begin())->getAlignment();
5227  else
5228    switch (LoadMI.getOpcode()) {
5229    case X86::AVX512_512_SET0:
5230    case X86::AVX512_512_SETALLONES:
5231      Alignment = 64;
5232      break;
5233    case X86::AVX2_SETALLONES:
5234    case X86::AVX1_SETALLONES:
5235    case X86::AVX_SET0:
5236    case X86::AVX512_256_SET0:
5237      Alignment = 32;
5238      break;
5239    case X86::V_SET0:
5240    case X86::V_SETALLONES:
5241    case X86::AVX512_128_SET0:
5242    case X86::FsFLD0F128:
5243    case X86::AVX512_FsFLD0F128:
5244      Alignment = 16;
5245      break;
5246    case X86::MMX_SET0:
5247    case X86::FsFLD0SD:
5248    case X86::AVX512_FsFLD0SD:
5249      Alignment = 8;
5250      break;
5251    case X86::FsFLD0SS:
5252    case X86::AVX512_FsFLD0SS:
5253      Alignment = 4;
5254      break;
5255    default:
5256      return nullptr;
5257    }
5258  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5259    unsigned NewOpc = 0;
5260    switch (MI.getOpcode()) {
5261    default: return nullptr;
5262    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
5263    case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
5264    case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
5265    case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
5266    }
5267    // Change to CMPXXri r, 0 first.
5268    MI.setDesc(get(NewOpc));
5269    MI.getOperand(1).ChangeToImmediate(0);
5270  } else if (Ops.size() != 1)
5271    return nullptr;
5272
5273  // Make sure the subregisters match.
5274  // Otherwise we risk changing the size of the load.
5275  if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
5276    return nullptr;
5277
5278  SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
5279  switch (LoadMI.getOpcode()) {
5280  case X86::MMX_SET0:
5281  case X86::V_SET0:
5282  case X86::V_SETALLONES:
5283  case X86::AVX2_SETALLONES:
5284  case X86::AVX1_SETALLONES:
5285  case X86::AVX_SET0:
5286  case X86::AVX512_128_SET0:
5287  case X86::AVX512_256_SET0:
5288  case X86::AVX512_512_SET0:
5289  case X86::AVX512_512_SETALLONES:
5290  case X86::FsFLD0SD:
5291  case X86::AVX512_FsFLD0SD:
5292  case X86::FsFLD0SS:
5293  case X86::AVX512_FsFLD0SS:
5294  case X86::FsFLD0F128:
5295  case X86::AVX512_FsFLD0F128: {
5296    // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
5297    // Create a constant-pool entry and operands to load from it.
5298
5299    // Medium and large mode can't fold loads this way.
5300    if (MF.getTarget().getCodeModel() != CodeModel::Small &&
5301        MF.getTarget().getCodeModel() != CodeModel::Kernel)
5302      return nullptr;
5303
5304    // x86-32 PIC requires a PIC base register for constant pools.
5305    unsigned PICBase = 0;
5306    if (MF.getTarget().isPositionIndependent()) {
5307      if (Subtarget.is64Bit())
5308        PICBase = X86::RIP;
5309      else
5310        // FIXME: PICBase = getGlobalBaseReg(&MF);
5311        // This doesn't work for several reasons.
5312        // 1. GlobalBaseReg may have been spilled.
5313        // 2. It may not be live at MI.
5314        return nullptr;
5315    }
5316
5317    // Create a constant-pool entry.
5318    MachineConstantPool &MCP = *MF.getConstantPool();
5319    Type *Ty;
5320    unsigned Opc = LoadMI.getOpcode();
5321    if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
5322      Ty = Type::getFloatTy(MF.getFunction().getContext());
5323    else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
5324      Ty = Type::getDoubleTy(MF.getFunction().getContext());
5325    else if (Opc == X86::FsFLD0F128 || Opc == X86::AVX512_FsFLD0F128)
5326      Ty = Type::getFP128Ty(MF.getFunction().getContext());
5327    else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
5328      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),16);
5329    else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
5330             Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES)
5331      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 8);
5332    else if (Opc == X86::MMX_SET0)
5333      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 2);
5334    else
5335      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 4);
5336
5337    bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
5338                      Opc == X86::AVX512_512_SETALLONES ||
5339                      Opc == X86::AVX1_SETALLONES);
5340    const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
5341                                    Constant::getNullValue(Ty);
5342    unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
5343
5344    // Create operands to load from the constant pool entry.
5345    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
5346    MOs.push_back(MachineOperand::CreateImm(1));
5347    MOs.push_back(MachineOperand::CreateReg(0, false));
5348    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
5349    MOs.push_back(MachineOperand::CreateReg(0, false));
5350    break;
5351  }
5352  default: {
5353    if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
5354      return nullptr;
5355
5356    // Folding a normal load. Just copy the load's address operands.
5357    MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
5358               LoadMI.operands_begin() + NumOps);
5359    break;
5360  }
5361  }
5362  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
5363                               /*Size=*/0, Alignment, /*AllowCommute=*/true);
5364}
5365
5366static SmallVector<MachineMemOperand *, 2>
5367extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
5368  SmallVector<MachineMemOperand *, 2> LoadMMOs;
5369
5370  for (MachineMemOperand *MMO : MMOs) {
5371    if (!MMO->isLoad())
5372      continue;
5373
5374    if (!MMO->isStore()) {
5375      // Reuse the MMO.
5376      LoadMMOs.push_back(MMO);
5377    } else {
5378      // Clone the MMO and unset the store flag.
5379      LoadMMOs.push_back(MF.getMachineMemOperand(
5380          MMO, MMO->getFlags() & ~MachineMemOperand::MOStore));
5381    }
5382  }
5383
5384  return LoadMMOs;
5385}
5386
5387static SmallVector<MachineMemOperand *, 2>
5388extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
5389  SmallVector<MachineMemOperand *, 2> StoreMMOs;
5390
5391  for (MachineMemOperand *MMO : MMOs) {
5392    if (!MMO->isStore())
5393      continue;
5394
5395    if (!MMO->isLoad()) {
5396      // Reuse the MMO.
5397      StoreMMOs.push_back(MMO);
5398    } else {
5399      // Clone the MMO and unset the load flag.
5400      StoreMMOs.push_back(MF.getMachineMemOperand(
5401          MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad));
5402    }
5403  }
5404
5405  return StoreMMOs;
5406}
5407
5408static unsigned getBroadcastOpcode(const X86MemoryFoldTableEntry *I,
5409                                   const TargetRegisterClass *RC,
5410                                   const X86Subtarget &STI) {
5411  assert(STI.hasAVX512() && "Expected at least AVX512!");
5412  unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC);
5413  assert((SpillSize == 64 || STI.hasVLX()) &&
5414         "Can't broadcast less than 64 bytes without AVX512VL!");
5415
5416  switch (I->Flags & TB_BCAST_MASK) {
5417  default: llvm_unreachable("Unexpected broadcast type!");
5418  case TB_BCAST_D:
5419    switch (SpillSize) {
5420    default: llvm_unreachable("Unknown spill size");
5421    case 16: return X86::VPBROADCASTDZ128m;
5422    case 32: return X86::VPBROADCASTDZ256m;
5423    case 64: return X86::VPBROADCASTDZm;
5424    }
5425    break;
5426  case TB_BCAST_Q:
5427    switch (SpillSize) {
5428    default: llvm_unreachable("Unknown spill size");
5429    case 16: return X86::VPBROADCASTQZ128m;
5430    case 32: return X86::VPBROADCASTQZ256m;
5431    case 64: return X86::VPBROADCASTQZm;
5432    }
5433    break;
5434  case TB_BCAST_SS:
5435    switch (SpillSize) {
5436    default: llvm_unreachable("Unknown spill size");
5437    case 16: return X86::VBROADCASTSSZ128m;
5438    case 32: return X86::VBROADCASTSSZ256m;
5439    case 64: return X86::VBROADCASTSSZm;
5440    }
5441    break;
5442  case TB_BCAST_SD:
5443    switch (SpillSize) {
5444    default: llvm_unreachable("Unknown spill size");
5445    case 16: return X86::VMOVDDUPZ128rm;
5446    case 32: return X86::VBROADCASTSDZ256m;
5447    case 64: return X86::VBROADCASTSDZm;
5448    }
5449    break;
5450  }
5451}
5452
5453bool X86InstrInfo::unfoldMemoryOperand(
5454    MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
5455    bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
5456  const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
5457  if (I == nullptr)
5458    return false;
5459  unsigned Opc = I->DstOp;
5460  unsigned Index = I->Flags & TB_INDEX_MASK;
5461  bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5462  bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5463  bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
5464  if (UnfoldLoad && !FoldedLoad)
5465    return false;
5466  UnfoldLoad &= FoldedLoad;
5467  if (UnfoldStore && !FoldedStore)
5468    return false;
5469  UnfoldStore &= FoldedStore;
5470
5471  const MCInstrDesc &MCID = get(Opc);
5472
5473  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
5474  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5475  // TODO: Check if 32-byte or greater accesses are slow too?
5476  if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
5477      Subtarget.isUnalignedMem16Slow())
5478    // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
5479    // conservatively assume the address is unaligned. That's bad for
5480    // performance.
5481    return false;
5482  SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
5483  SmallVector<MachineOperand,2> BeforeOps;
5484  SmallVector<MachineOperand,2> AfterOps;
5485  SmallVector<MachineOperand,4> ImpOps;
5486  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
5487    MachineOperand &Op = MI.getOperand(i);
5488    if (i >= Index && i < Index + X86::AddrNumOperands)
5489      AddrOps.push_back(Op);
5490    else if (Op.isReg() && Op.isImplicit())
5491      ImpOps.push_back(Op);
5492    else if (i < Index)
5493      BeforeOps.push_back(Op);
5494    else if (i > Index)
5495      AfterOps.push_back(Op);
5496  }
5497
5498  // Emit the load or broadcast instruction.
5499  if (UnfoldLoad) {
5500    auto MMOs = extractLoadMMOs(MI.memoperands(), MF);
5501
5502    unsigned Opc;
5503    if (FoldedBCast) {
5504      Opc = getBroadcastOpcode(I, RC, Subtarget);
5505    } else {
5506      unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
5507      bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
5508      Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget);
5509    }
5510
5511    DebugLoc DL;
5512    MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg);
5513    for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
5514      MIB.add(AddrOps[i]);
5515    MIB.setMemRefs(MMOs);
5516    NewMIs.push_back(MIB);
5517
5518    if (UnfoldStore) {
5519      // Address operands cannot be marked isKill.
5520      for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
5521        MachineOperand &MO = NewMIs[0]->getOperand(i);
5522        if (MO.isReg())
5523          MO.setIsKill(false);
5524      }
5525    }
5526  }
5527
5528  // Emit the data processing instruction.
5529  MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
5530  MachineInstrBuilder MIB(MF, DataMI);
5531
5532  if (FoldedStore)
5533    MIB.addReg(Reg, RegState::Define);
5534  for (MachineOperand &BeforeOp : BeforeOps)
5535    MIB.add(BeforeOp);
5536  if (FoldedLoad)
5537    MIB.addReg(Reg);
5538  for (MachineOperand &AfterOp : AfterOps)
5539    MIB.add(AfterOp);
5540  for (MachineOperand &ImpOp : ImpOps) {
5541    MIB.addReg(ImpOp.getReg(),
5542               getDefRegState(ImpOp.isDef()) |
5543               RegState::Implicit |
5544               getKillRegState(ImpOp.isKill()) |
5545               getDeadRegState(ImpOp.isDead()) |
5546               getUndefRegState(ImpOp.isUndef()));
5547  }
5548  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5549  switch (DataMI->getOpcode()) {
5550  default: break;
5551  case X86::CMP64ri32:
5552  case X86::CMP64ri8:
5553  case X86::CMP32ri:
5554  case X86::CMP32ri8:
5555  case X86::CMP16ri:
5556  case X86::CMP16ri8:
5557  case X86::CMP8ri: {
5558    MachineOperand &MO0 = DataMI->getOperand(0);
5559    MachineOperand &MO1 = DataMI->getOperand(1);
5560    if (MO1.getImm() == 0) {
5561      unsigned NewOpc;
5562      switch (DataMI->getOpcode()) {
5563      default: llvm_unreachable("Unreachable!");
5564      case X86::CMP64ri8:
5565      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
5566      case X86::CMP32ri8:
5567      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
5568      case X86::CMP16ri8:
5569      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
5570      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
5571      }
5572      DataMI->setDesc(get(NewOpc));
5573      MO1.ChangeToRegister(MO0.getReg(), false);
5574    }
5575  }
5576  }
5577  NewMIs.push_back(DataMI);
5578
5579  // Emit the store instruction.
5580  if (UnfoldStore) {
5581    const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
5582    auto MMOs = extractStoreMMOs(MI.memoperands(), MF);
5583    unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16);
5584    bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
5585    unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget);
5586    DebugLoc DL;
5587    MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
5588    for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
5589      MIB.add(AddrOps[i]);
5590    MIB.addReg(Reg, RegState::Kill);
5591    MIB.setMemRefs(MMOs);
5592    NewMIs.push_back(MIB);
5593  }
5594
5595  return true;
5596}
5597
5598bool
5599X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
5600                                  SmallVectorImpl<SDNode*> &NewNodes) const {
5601  if (!N->isMachineOpcode())
5602    return false;
5603
5604  const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
5605  if (I == nullptr)
5606    return false;
5607  unsigned Opc = I->DstOp;
5608  unsigned Index = I->Flags & TB_INDEX_MASK;
5609  bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5610  bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5611  bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
5612  const MCInstrDesc &MCID = get(Opc);
5613  MachineFunction &MF = DAG.getMachineFunction();
5614  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5615  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
5616  unsigned NumDefs = MCID.NumDefs;
5617  std::vector<SDValue> AddrOps;
5618  std::vector<SDValue> BeforeOps;
5619  std::vector<SDValue> AfterOps;
5620  SDLoc dl(N);
5621  unsigned NumOps = N->getNumOperands();
5622  for (unsigned i = 0; i != NumOps-1; ++i) {
5623    SDValue Op = N->getOperand(i);
5624    if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
5625      AddrOps.push_back(Op);
5626    else if (i < Index-NumDefs)
5627      BeforeOps.push_back(Op);
5628    else if (i > Index-NumDefs)
5629      AfterOps.push_back(Op);
5630  }
5631  SDValue Chain = N->getOperand(NumOps-1);
5632  AddrOps.push_back(Chain);
5633
5634  // Emit the load instruction.
5635  SDNode *Load = nullptr;
5636  if (FoldedLoad) {
5637    EVT VT = *TRI.legalclasstypes_begin(*RC);
5638    auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
5639    if (MMOs.empty() && RC == &X86::VR128RegClass &&
5640        Subtarget.isUnalignedMem16Slow())
5641      // Do not introduce a slow unaligned load.
5642      return false;
5643    // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
5644    // memory access is slow above.
5645
5646    unsigned Opc;
5647    if (FoldedBCast) {
5648      Opc = getBroadcastOpcode(I, RC, Subtarget);
5649    } else {
5650      unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
5651      bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
5652      Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget);
5653    }
5654
5655    Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps);
5656    NewNodes.push_back(Load);
5657
5658    // Preserve memory reference information.
5659    DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs);
5660  }
5661
5662  // Emit the data processing instruction.
5663  std::vector<EVT> VTs;
5664  const TargetRegisterClass *DstRC = nullptr;
5665  if (MCID.getNumDefs() > 0) {
5666    DstRC = getRegClass(MCID, 0, &RI, MF);
5667    VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
5668  }
5669  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
5670    EVT VT = N->getValueType(i);
5671    if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
5672      VTs.push_back(VT);
5673  }
5674  if (Load)
5675    BeforeOps.push_back(SDValue(Load, 0));
5676  BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end());
5677  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5678  switch (Opc) {
5679    default: break;
5680    case X86::CMP64ri32:
5681    case X86::CMP64ri8:
5682    case X86::CMP32ri:
5683    case X86::CMP32ri8:
5684    case X86::CMP16ri:
5685    case X86::CMP16ri8:
5686    case X86::CMP8ri:
5687      if (isNullConstant(BeforeOps[1])) {
5688        switch (Opc) {
5689          default: llvm_unreachable("Unreachable!");
5690          case X86::CMP64ri8:
5691          case X86::CMP64ri32: Opc = X86::TEST64rr; break;
5692          case X86::CMP32ri8:
5693          case X86::CMP32ri:   Opc = X86::TEST32rr; break;
5694          case X86::CMP16ri8:
5695          case X86::CMP16ri:   Opc = X86::TEST16rr; break;
5696          case X86::CMP8ri:    Opc = X86::TEST8rr; break;
5697        }
5698        BeforeOps[1] = BeforeOps[0];
5699      }
5700  }
5701  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
5702  NewNodes.push_back(NewNode);
5703
5704  // Emit the store instruction.
5705  if (FoldedStore) {
5706    AddrOps.pop_back();
5707    AddrOps.push_back(SDValue(NewNode, 0));
5708    AddrOps.push_back(Chain);
5709    auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
5710    if (MMOs.empty() && RC == &X86::VR128RegClass &&
5711        Subtarget.isUnalignedMem16Slow())
5712      // Do not introduce a slow unaligned store.
5713      return false;
5714    // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
5715    // memory access is slow above.
5716    unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
5717    bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
5718    SDNode *Store =
5719        DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
5720                           dl, MVT::Other, AddrOps);
5721    NewNodes.push_back(Store);
5722
5723    // Preserve memory reference information.
5724    DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs);
5725  }
5726
5727  return true;
5728}
5729
5730unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
5731                                      bool UnfoldLoad, bool UnfoldStore,
5732                                      unsigned *LoadRegIndex) const {
5733  const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc);
5734  if (I == nullptr)
5735    return 0;
5736  bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5737  bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5738  if (UnfoldLoad && !FoldedLoad)
5739    return 0;
5740  if (UnfoldStore && !FoldedStore)
5741    return 0;
5742  if (LoadRegIndex)
5743    *LoadRegIndex = I->Flags & TB_INDEX_MASK;
5744  return I->DstOp;
5745}
5746
5747bool
5748X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
5749                                     int64_t &Offset1, int64_t &Offset2) const {
5750  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
5751    return false;
5752  unsigned Opc1 = Load1->getMachineOpcode();
5753  unsigned Opc2 = Load2->getMachineOpcode();
5754  switch (Opc1) {
5755  default: return false;
5756  case X86::MOV8rm:
5757  case X86::MOV16rm:
5758  case X86::MOV32rm:
5759  case X86::MOV64rm:
5760  case X86::LD_Fp32m:
5761  case X86::LD_Fp64m:
5762  case X86::LD_Fp80m:
5763  case X86::MOVSSrm:
5764  case X86::MOVSSrm_alt:
5765  case X86::MOVSDrm:
5766  case X86::MOVSDrm_alt:
5767  case X86::MMX_MOVD64rm:
5768  case X86::MMX_MOVQ64rm:
5769  case X86::MOVAPSrm:
5770  case X86::MOVUPSrm:
5771  case X86::MOVAPDrm:
5772  case X86::MOVUPDrm:
5773  case X86::MOVDQArm:
5774  case X86::MOVDQUrm:
5775  // AVX load instructions
5776  case X86::VMOVSSrm:
5777  case X86::VMOVSSrm_alt:
5778  case X86::VMOVSDrm:
5779  case X86::VMOVSDrm_alt:
5780  case X86::VMOVAPSrm:
5781  case X86::VMOVUPSrm:
5782  case X86::VMOVAPDrm:
5783  case X86::VMOVUPDrm:
5784  case X86::VMOVDQArm:
5785  case X86::VMOVDQUrm:
5786  case X86::VMOVAPSYrm:
5787  case X86::VMOVUPSYrm:
5788  case X86::VMOVAPDYrm:
5789  case X86::VMOVUPDYrm:
5790  case X86::VMOVDQAYrm:
5791  case X86::VMOVDQUYrm:
5792  // AVX512 load instructions
5793  case X86::VMOVSSZrm:
5794  case X86::VMOVSSZrm_alt:
5795  case X86::VMOVSDZrm:
5796  case X86::VMOVSDZrm_alt:
5797  case X86::VMOVAPSZ128rm:
5798  case X86::VMOVUPSZ128rm:
5799  case X86::VMOVAPSZ128rm_NOVLX:
5800  case X86::VMOVUPSZ128rm_NOVLX:
5801  case X86::VMOVAPDZ128rm:
5802  case X86::VMOVUPDZ128rm:
5803  case X86::VMOVDQU8Z128rm:
5804  case X86::VMOVDQU16Z128rm:
5805  case X86::VMOVDQA32Z128rm:
5806  case X86::VMOVDQU32Z128rm:
5807  case X86::VMOVDQA64Z128rm:
5808  case X86::VMOVDQU64Z128rm:
5809  case X86::VMOVAPSZ256rm:
5810  case X86::VMOVUPSZ256rm:
5811  case X86::VMOVAPSZ256rm_NOVLX:
5812  case X86::VMOVUPSZ256rm_NOVLX:
5813  case X86::VMOVAPDZ256rm:
5814  case X86::VMOVUPDZ256rm:
5815  case X86::VMOVDQU8Z256rm:
5816  case X86::VMOVDQU16Z256rm:
5817  case X86::VMOVDQA32Z256rm:
5818  case X86::VMOVDQU32Z256rm:
5819  case X86::VMOVDQA64Z256rm:
5820  case X86::VMOVDQU64Z256rm:
5821  case X86::VMOVAPSZrm:
5822  case X86::VMOVUPSZrm:
5823  case X86::VMOVAPDZrm:
5824  case X86::VMOVUPDZrm:
5825  case X86::VMOVDQU8Zrm:
5826  case X86::VMOVDQU16Zrm:
5827  case X86::VMOVDQA32Zrm:
5828  case X86::VMOVDQU32Zrm:
5829  case X86::VMOVDQA64Zrm:
5830  case X86::VMOVDQU64Zrm:
5831  case X86::KMOVBkm:
5832  case X86::KMOVWkm:
5833  case X86::KMOVDkm:
5834  case X86::KMOVQkm:
5835    break;
5836  }
5837  switch (Opc2) {
5838  default: return false;
5839  case X86::MOV8rm:
5840  case X86::MOV16rm:
5841  case X86::MOV32rm:
5842  case X86::MOV64rm:
5843  case X86::LD_Fp32m:
5844  case X86::LD_Fp64m:
5845  case X86::LD_Fp80m:
5846  case X86::MOVSSrm:
5847  case X86::MOVSSrm_alt:
5848  case X86::MOVSDrm:
5849  case X86::MOVSDrm_alt:
5850  case X86::MMX_MOVD64rm:
5851  case X86::MMX_MOVQ64rm:
5852  case X86::MOVAPSrm:
5853  case X86::MOVUPSrm:
5854  case X86::MOVAPDrm:
5855  case X86::MOVUPDrm:
5856  case X86::MOVDQArm:
5857  case X86::MOVDQUrm:
5858  // AVX load instructions
5859  case X86::VMOVSSrm:
5860  case X86::VMOVSSrm_alt:
5861  case X86::VMOVSDrm:
5862  case X86::VMOVSDrm_alt:
5863  case X86::VMOVAPSrm:
5864  case X86::VMOVUPSrm:
5865  case X86::VMOVAPDrm:
5866  case X86::VMOVUPDrm:
5867  case X86::VMOVDQArm:
5868  case X86::VMOVDQUrm:
5869  case X86::VMOVAPSYrm:
5870  case X86::VMOVUPSYrm:
5871  case X86::VMOVAPDYrm:
5872  case X86::VMOVUPDYrm:
5873  case X86::VMOVDQAYrm:
5874  case X86::VMOVDQUYrm:
5875  // AVX512 load instructions
5876  case X86::VMOVSSZrm:
5877  case X86::VMOVSSZrm_alt:
5878  case X86::VMOVSDZrm:
5879  case X86::VMOVSDZrm_alt:
5880  case X86::VMOVAPSZ128rm:
5881  case X86::VMOVUPSZ128rm:
5882  case X86::VMOVAPSZ128rm_NOVLX:
5883  case X86::VMOVUPSZ128rm_NOVLX:
5884  case X86::VMOVAPDZ128rm:
5885  case X86::VMOVUPDZ128rm:
5886  case X86::VMOVDQU8Z128rm:
5887  case X86::VMOVDQU16Z128rm:
5888  case X86::VMOVDQA32Z128rm:
5889  case X86::VMOVDQU32Z128rm:
5890  case X86::VMOVDQA64Z128rm:
5891  case X86::VMOVDQU64Z128rm:
5892  case X86::VMOVAPSZ256rm:
5893  case X86::VMOVUPSZ256rm:
5894  case X86::VMOVAPSZ256rm_NOVLX:
5895  case X86::VMOVUPSZ256rm_NOVLX:
5896  case X86::VMOVAPDZ256rm:
5897  case X86::VMOVUPDZ256rm:
5898  case X86::VMOVDQU8Z256rm:
5899  case X86::VMOVDQU16Z256rm:
5900  case X86::VMOVDQA32Z256rm:
5901  case X86::VMOVDQU32Z256rm:
5902  case X86::VMOVDQA64Z256rm:
5903  case X86::VMOVDQU64Z256rm:
5904  case X86::VMOVAPSZrm:
5905  case X86::VMOVUPSZrm:
5906  case X86::VMOVAPDZrm:
5907  case X86::VMOVUPDZrm:
5908  case X86::VMOVDQU8Zrm:
5909  case X86::VMOVDQU16Zrm:
5910  case X86::VMOVDQA32Zrm:
5911  case X86::VMOVDQU32Zrm:
5912  case X86::VMOVDQA64Zrm:
5913  case X86::VMOVDQU64Zrm:
5914  case X86::KMOVBkm:
5915  case X86::KMOVWkm:
5916  case X86::KMOVDkm:
5917  case X86::KMOVQkm:
5918    break;
5919  }
5920
5921  // Lambda to check if both the loads have the same value for an operand index.
5922  auto HasSameOp = [&](int I) {
5923    return Load1->getOperand(I) == Load2->getOperand(I);
5924  };
5925
5926  // All operands except the displacement should match.
5927  if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
5928      !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
5929    return false;
5930
5931  // Chain Operand must be the same.
5932  if (!HasSameOp(5))
5933    return false;
5934
5935  // Now let's examine if the displacements are constants.
5936  auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
5937  auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
5938  if (!Disp1 || !Disp2)
5939    return false;
5940
5941  Offset1 = Disp1->getSExtValue();
5942  Offset2 = Disp2->getSExtValue();
5943  return true;
5944}
5945
5946bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
5947                                           int64_t Offset1, int64_t Offset2,
5948                                           unsigned NumLoads) const {
5949  assert(Offset2 > Offset1);
5950  if ((Offset2 - Offset1) / 8 > 64)
5951    return false;
5952
5953  unsigned Opc1 = Load1->getMachineOpcode();
5954  unsigned Opc2 = Load2->getMachineOpcode();
5955  if (Opc1 != Opc2)
5956    return false;  // FIXME: overly conservative?
5957
5958  switch (Opc1) {
5959  default: break;
5960  case X86::LD_Fp32m:
5961  case X86::LD_Fp64m:
5962  case X86::LD_Fp80m:
5963  case X86::MMX_MOVD64rm:
5964  case X86::MMX_MOVQ64rm:
5965    return false;
5966  }
5967
5968  EVT VT = Load1->getValueType(0);
5969  switch (VT.getSimpleVT().SimpleTy) {
5970  default:
5971    // XMM registers. In 64-bit mode we can be a bit more aggressive since we
5972    // have 16 of them to play with.
5973    if (Subtarget.is64Bit()) {
5974      if (NumLoads >= 3)
5975        return false;
5976    } else if (NumLoads) {
5977      return false;
5978    }
5979    break;
5980  case MVT::i8:
5981  case MVT::i16:
5982  case MVT::i32:
5983  case MVT::i64:
5984  case MVT::f32:
5985  case MVT::f64:
5986    if (NumLoads)
5987      return false;
5988    break;
5989  }
5990
5991  return true;
5992}
5993
5994bool X86InstrInfo::
5995reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
5996  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
5997  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
5998  Cond[0].setImm(GetOppositeBranchCondition(CC));
5999  return false;
6000}
6001
6002bool X86InstrInfo::
6003isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
6004  // FIXME: Return false for x87 stack register classes for now. We can't
6005  // allow any loads of these registers before FpGet_ST0_80.
6006  return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
6007           RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
6008           RC == &X86::RFP80RegClass);
6009}
6010
6011/// Return a virtual register initialized with the
6012/// the global base register value. Output instructions required to
6013/// initialize the register in the function entry block, if necessary.
6014///
6015/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
6016///
6017unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
6018  assert((!Subtarget.is64Bit() ||
6019          MF->getTarget().getCodeModel() == CodeModel::Medium ||
6020          MF->getTarget().getCodeModel() == CodeModel::Large) &&
6021         "X86-64 PIC uses RIP relative addressing");
6022
6023  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
6024  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
6025  if (GlobalBaseReg != 0)
6026    return GlobalBaseReg;
6027
6028  // Create the register. The code to initialize it is inserted
6029  // later, by the CGBR pass (below).
6030  MachineRegisterInfo &RegInfo = MF->getRegInfo();
6031  GlobalBaseReg = RegInfo.createVirtualRegister(
6032      Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
6033  X86FI->setGlobalBaseReg(GlobalBaseReg);
6034  return GlobalBaseReg;
6035}
6036
6037// These are the replaceable SSE instructions. Some of these have Int variants
6038// that we don't include here. We don't want to replace instructions selected
6039// by intrinsics.
6040static const uint16_t ReplaceableInstrs[][3] = {
6041  //PackedSingle     PackedDouble    PackedInt
6042  { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
6043  { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
6044  { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
6045  { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
6046  { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
6047  { X86::MOVLPSmr,   X86::MOVLPDmr,  X86::MOVPQI2QImr },
6048  { X86::MOVSDmr,    X86::MOVSDmr,   X86::MOVPQI2QImr },
6049  { X86::MOVSSmr,    X86::MOVSSmr,   X86::MOVPDI2DImr },
6050  { X86::MOVSDrm,    X86::MOVSDrm,   X86::MOVQI2PQIrm },
6051  { X86::MOVSDrm_alt,X86::MOVSDrm_alt,X86::MOVQI2PQIrm },
6052  { X86::MOVSSrm,    X86::MOVSSrm,   X86::MOVDI2PDIrm },
6053  { X86::MOVSSrm_alt,X86::MOVSSrm_alt,X86::MOVDI2PDIrm },
6054  { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
6055  { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
6056  { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
6057  { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
6058  { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
6059  { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
6060  { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
6061  { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
6062  { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
6063  { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm },
6064  { X86::MOVLHPSrr,  X86::UNPCKLPDrr, X86::PUNPCKLQDQrr },
6065  { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm },
6066  { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr },
6067  { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm },
6068  { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr },
6069  { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm },
6070  { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr },
6071  { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr },
6072  { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr },
6073  // AVX 128-bit support
6074  { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
6075  { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
6076  { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
6077  { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
6078  { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
6079  { X86::VMOVLPSmr,  X86::VMOVLPDmr,  X86::VMOVPQI2QImr },
6080  { X86::VMOVSDmr,   X86::VMOVSDmr,   X86::VMOVPQI2QImr },
6081  { X86::VMOVSSmr,   X86::VMOVSSmr,   X86::VMOVPDI2DImr },
6082  { X86::VMOVSDrm,   X86::VMOVSDrm,   X86::VMOVQI2PQIrm },
6083  { X86::VMOVSDrm_alt,X86::VMOVSDrm_alt,X86::VMOVQI2PQIrm },
6084  { X86::VMOVSSrm,   X86::VMOVSSrm,   X86::VMOVDI2PDIrm },
6085  { X86::VMOVSSrm_alt,X86::VMOVSSrm_alt,X86::VMOVDI2PDIrm },
6086  { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
6087  { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
6088  { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
6089  { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
6090  { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
6091  { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
6092  { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
6093  { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
6094  { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
6095  { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm },
6096  { X86::VMOVLHPSrr,  X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr },
6097  { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm },
6098  { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr },
6099  { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm },
6100  { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr },
6101  { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm },
6102  { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr },
6103  { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr },
6104  { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr },
6105  // AVX 256-bit support
6106  { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
6107  { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
6108  { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
6109  { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
6110  { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
6111  { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr },
6112  { X86::VPERMPSYrm,   X86::VPERMPSYrm,   X86::VPERMDYrm },
6113  { X86::VPERMPSYrr,   X86::VPERMPSYrr,   X86::VPERMDYrr },
6114  { X86::VPERMPDYmi,   X86::VPERMPDYmi,   X86::VPERMQYmi },
6115  { X86::VPERMPDYri,   X86::VPERMPDYri,   X86::VPERMQYri },
6116  // AVX512 support
6117  { X86::VMOVLPSZ128mr,  X86::VMOVLPDZ128mr,  X86::VMOVPQI2QIZmr  },
6118  { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
6119  { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr },
6120  { X86::VMOVNTPSZmr,    X86::VMOVNTPDZmr,    X86::VMOVNTDQZmr    },
6121  { X86::VMOVSDZmr,      X86::VMOVSDZmr,      X86::VMOVPQI2QIZmr  },
6122  { X86::VMOVSSZmr,      X86::VMOVSSZmr,      X86::VMOVPDI2DIZmr  },
6123  { X86::VMOVSDZrm,      X86::VMOVSDZrm,      X86::VMOVQI2PQIZrm  },
6124  { X86::VMOVSDZrm_alt,  X86::VMOVSDZrm_alt,  X86::VMOVQI2PQIZrm  },
6125  { X86::VMOVSSZrm,      X86::VMOVSSZrm,      X86::VMOVDI2PDIZrm  },
6126  { X86::VMOVSSZrm_alt,  X86::VMOVSSZrm_alt,  X86::VMOVDI2PDIZrm  },
6127  { X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128r, X86::VPBROADCASTDZ128r },
6128  { X86::VBROADCASTSSZ128m, X86::VBROADCASTSSZ128m, X86::VPBROADCASTDZ128m },
6129  { X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256r, X86::VPBROADCASTDZ256r },
6130  { X86::VBROADCASTSSZ256m, X86::VBROADCASTSSZ256m, X86::VPBROADCASTDZ256m },
6131  { X86::VBROADCASTSSZr,    X86::VBROADCASTSSZr,    X86::VPBROADCASTDZr },
6132  { X86::VBROADCASTSSZm,    X86::VBROADCASTSSZm,    X86::VPBROADCASTDZm },
6133  { X86::VMOVDDUPZ128rr,    X86::VMOVDDUPZ128rr,    X86::VPBROADCASTQZ128r },
6134  { X86::VMOVDDUPZ128rm,    X86::VMOVDDUPZ128rm,    X86::VPBROADCASTQZ128m },
6135  { X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256r, X86::VPBROADCASTQZ256r },
6136  { X86::VBROADCASTSDZ256m, X86::VBROADCASTSDZ256m, X86::VPBROADCASTQZ256m },
6137  { X86::VBROADCASTSDZr,    X86::VBROADCASTSDZr,    X86::VPBROADCASTQZr },
6138  { X86::VBROADCASTSDZm,    X86::VBROADCASTSDZm,    X86::VPBROADCASTQZm },
6139  { X86::VINSERTF32x4Zrr,   X86::VINSERTF32x4Zrr,   X86::VINSERTI32x4Zrr },
6140  { X86::VINSERTF32x4Zrm,   X86::VINSERTF32x4Zrm,   X86::VINSERTI32x4Zrm },
6141  { X86::VINSERTF32x8Zrr,   X86::VINSERTF32x8Zrr,   X86::VINSERTI32x8Zrr },
6142  { X86::VINSERTF32x8Zrm,   X86::VINSERTF32x8Zrm,   X86::VINSERTI32x8Zrm },
6143  { X86::VINSERTF64x2Zrr,   X86::VINSERTF64x2Zrr,   X86::VINSERTI64x2Zrr },
6144  { X86::VINSERTF64x2Zrm,   X86::VINSERTF64x2Zrm,   X86::VINSERTI64x2Zrm },
6145  { X86::VINSERTF64x4Zrr,   X86::VINSERTF64x4Zrr,   X86::VINSERTI64x4Zrr },
6146  { X86::VINSERTF64x4Zrm,   X86::VINSERTF64x4Zrm,   X86::VINSERTI64x4Zrm },
6147  { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr },
6148  { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm },
6149  { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr },
6150  { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm },
6151  { X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTI32x4Zrr },
6152  { X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTI32x4Zmr },
6153  { X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTI32x8Zrr },
6154  { X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTI32x8Zmr },
6155  { X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTI64x2Zrr },
6156  { X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTI64x2Zmr },
6157  { X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTI64x4Zrr },
6158  { X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTI64x4Zmr },
6159  { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr },
6160  { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr },
6161  { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr },
6162  { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr },
6163  { X86::VPERMILPSmi,        X86::VPERMILPSmi,        X86::VPSHUFDmi },
6164  { X86::VPERMILPSri,        X86::VPERMILPSri,        X86::VPSHUFDri },
6165  { X86::VPERMILPSZ128mi,    X86::VPERMILPSZ128mi,    X86::VPSHUFDZ128mi },
6166  { X86::VPERMILPSZ128ri,    X86::VPERMILPSZ128ri,    X86::VPSHUFDZ128ri },
6167  { X86::VPERMILPSZ256mi,    X86::VPERMILPSZ256mi,    X86::VPSHUFDZ256mi },
6168  { X86::VPERMILPSZ256ri,    X86::VPERMILPSZ256ri,    X86::VPSHUFDZ256ri },
6169  { X86::VPERMILPSZmi,       X86::VPERMILPSZmi,       X86::VPSHUFDZmi },
6170  { X86::VPERMILPSZri,       X86::VPERMILPSZri,       X86::VPSHUFDZri },
6171  { X86::VPERMPSZ256rm,      X86::VPERMPSZ256rm,      X86::VPERMDZ256rm },
6172  { X86::VPERMPSZ256rr,      X86::VPERMPSZ256rr,      X86::VPERMDZ256rr },
6173  { X86::VPERMPDZ256mi,      X86::VPERMPDZ256mi,      X86::VPERMQZ256mi },
6174  { X86::VPERMPDZ256ri,      X86::VPERMPDZ256ri,      X86::VPERMQZ256ri },
6175  { X86::VPERMPDZ256rm,      X86::VPERMPDZ256rm,      X86::VPERMQZ256rm },
6176  { X86::VPERMPDZ256rr,      X86::VPERMPDZ256rr,      X86::VPERMQZ256rr },
6177  { X86::VPERMPSZrm,         X86::VPERMPSZrm,         X86::VPERMDZrm },
6178  { X86::VPERMPSZrr,         X86::VPERMPSZrr,         X86::VPERMDZrr },
6179  { X86::VPERMPDZmi,         X86::VPERMPDZmi,         X86::VPERMQZmi },
6180  { X86::VPERMPDZri,         X86::VPERMPDZri,         X86::VPERMQZri },
6181  { X86::VPERMPDZrm,         X86::VPERMPDZrm,         X86::VPERMQZrm },
6182  { X86::VPERMPDZrr,         X86::VPERMPDZrr,         X86::VPERMQZrr },
6183  { X86::VUNPCKLPDZ256rm,    X86::VUNPCKLPDZ256rm,    X86::VPUNPCKLQDQZ256rm },
6184  { X86::VUNPCKLPDZ256rr,    X86::VUNPCKLPDZ256rr,    X86::VPUNPCKLQDQZ256rr },
6185  { X86::VUNPCKHPDZ256rm,    X86::VUNPCKHPDZ256rm,    X86::VPUNPCKHQDQZ256rm },
6186  { X86::VUNPCKHPDZ256rr,    X86::VUNPCKHPDZ256rr,    X86::VPUNPCKHQDQZ256rr },
6187  { X86::VUNPCKLPSZ256rm,    X86::VUNPCKLPSZ256rm,    X86::VPUNPCKLDQZ256rm },
6188  { X86::VUNPCKLPSZ256rr,    X86::VUNPCKLPSZ256rr,    X86::VPUNPCKLDQZ256rr },
6189  { X86::VUNPCKHPSZ256rm,    X86::VUNPCKHPSZ256rm,    X86::VPUNPCKHDQZ256rm },
6190  { X86::VUNPCKHPSZ256rr,    X86::VUNPCKHPSZ256rr,    X86::VPUNPCKHDQZ256rr },
6191  { X86::VUNPCKLPDZ128rm,    X86::VUNPCKLPDZ128rm,    X86::VPUNPCKLQDQZ128rm },
6192  { X86::VMOVLHPSZrr,        X86::VUNPCKLPDZ128rr,    X86::VPUNPCKLQDQZ128rr },
6193  { X86::VUNPCKHPDZ128rm,    X86::VUNPCKHPDZ128rm,    X86::VPUNPCKHQDQZ128rm },
6194  { X86::VUNPCKHPDZ128rr,    X86::VUNPCKHPDZ128rr,    X86::VPUNPCKHQDQZ128rr },
6195  { X86::VUNPCKLPSZ128rm,    X86::VUNPCKLPSZ128rm,    X86::VPUNPCKLDQZ128rm },
6196  { X86::VUNPCKLPSZ128rr,    X86::VUNPCKLPSZ128rr,    X86::VPUNPCKLDQZ128rr },
6197  { X86::VUNPCKHPSZ128rm,    X86::VUNPCKHPSZ128rm,    X86::VPUNPCKHDQZ128rm },
6198  { X86::VUNPCKHPSZ128rr,    X86::VUNPCKHPSZ128rr,    X86::VPUNPCKHDQZ128rr },
6199  { X86::VUNPCKLPDZrm,       X86::VUNPCKLPDZrm,       X86::VPUNPCKLQDQZrm },
6200  { X86::VUNPCKLPDZrr,       X86::VUNPCKLPDZrr,       X86::VPUNPCKLQDQZrr },
6201  { X86::VUNPCKHPDZrm,       X86::VUNPCKHPDZrm,       X86::VPUNPCKHQDQZrm },
6202  { X86::VUNPCKHPDZrr,       X86::VUNPCKHPDZrr,       X86::VPUNPCKHQDQZrr },
6203  { X86::VUNPCKLPSZrm,       X86::VUNPCKLPSZrm,       X86::VPUNPCKLDQZrm },
6204  { X86::VUNPCKLPSZrr,       X86::VUNPCKLPSZrr,       X86::VPUNPCKLDQZrr },
6205  { X86::VUNPCKHPSZrm,       X86::VUNPCKHPSZrm,       X86::VPUNPCKHDQZrm },
6206  { X86::VUNPCKHPSZrr,       X86::VUNPCKHPSZrr,       X86::VPUNPCKHDQZrr },
6207  { X86::VEXTRACTPSZmr,      X86::VEXTRACTPSZmr,      X86::VPEXTRDZmr },
6208  { X86::VEXTRACTPSZrr,      X86::VEXTRACTPSZrr,      X86::VPEXTRDZrr },
6209};
6210
6211static const uint16_t ReplaceableInstrsAVX2[][3] = {
6212  //PackedSingle       PackedDouble       PackedInt
6213  { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
6214  { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
6215  { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
6216  { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
6217  { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
6218  { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
6219  { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
6220  { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
6221  { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
6222  { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr },
6223  { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
6224  { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
6225  { X86::VMOVDDUPrm,     X86::VMOVDDUPrm,     X86::VPBROADCASTQrm},
6226  { X86::VMOVDDUPrr,     X86::VMOVDDUPrr,     X86::VPBROADCASTQrr},
6227  { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
6228  { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
6229  { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
6230  { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm},
6231  { X86::VBROADCASTF128,  X86::VBROADCASTF128,  X86::VBROADCASTI128 },
6232  { X86::VBLENDPSYrri,    X86::VBLENDPSYrri,    X86::VPBLENDDYrri },
6233  { X86::VBLENDPSYrmi,    X86::VBLENDPSYrmi,    X86::VPBLENDDYrmi },
6234  { X86::VPERMILPSYmi,    X86::VPERMILPSYmi,    X86::VPSHUFDYmi },
6235  { X86::VPERMILPSYri,    X86::VPERMILPSYri,    X86::VPSHUFDYri },
6236  { X86::VUNPCKLPDYrm,    X86::VUNPCKLPDYrm,    X86::VPUNPCKLQDQYrm },
6237  { X86::VUNPCKLPDYrr,    X86::VUNPCKLPDYrr,    X86::VPUNPCKLQDQYrr },
6238  { X86::VUNPCKHPDYrm,    X86::VUNPCKHPDYrm,    X86::VPUNPCKHQDQYrm },
6239  { X86::VUNPCKHPDYrr,    X86::VUNPCKHPDYrr,    X86::VPUNPCKHQDQYrr },
6240  { X86::VUNPCKLPSYrm,    X86::VUNPCKLPSYrm,    X86::VPUNPCKLDQYrm },
6241  { X86::VUNPCKLPSYrr,    X86::VUNPCKLPSYrr,    X86::VPUNPCKLDQYrr },
6242  { X86::VUNPCKHPSYrm,    X86::VUNPCKHPSYrm,    X86::VPUNPCKHDQYrm },
6243  { X86::VUNPCKHPSYrr,    X86::VUNPCKHPSYrr,    X86::VPUNPCKHDQYrr },
6244};
6245
6246static const uint16_t ReplaceableInstrsFP[][3] = {
6247  //PackedSingle         PackedDouble
6248  { X86::MOVLPSrm,       X86::MOVLPDrm,      X86::INSTRUCTION_LIST_END },
6249  { X86::MOVHPSrm,       X86::MOVHPDrm,      X86::INSTRUCTION_LIST_END },
6250  { X86::MOVHPSmr,       X86::MOVHPDmr,      X86::INSTRUCTION_LIST_END },
6251  { X86::VMOVLPSrm,      X86::VMOVLPDrm,     X86::INSTRUCTION_LIST_END },
6252  { X86::VMOVHPSrm,      X86::VMOVHPDrm,     X86::INSTRUCTION_LIST_END },
6253  { X86::VMOVHPSmr,      X86::VMOVHPDmr,     X86::INSTRUCTION_LIST_END },
6254  { X86::VMOVLPSZ128rm,  X86::VMOVLPDZ128rm, X86::INSTRUCTION_LIST_END },
6255  { X86::VMOVHPSZ128rm,  X86::VMOVHPDZ128rm, X86::INSTRUCTION_LIST_END },
6256  { X86::VMOVHPSZ128mr,  X86::VMOVHPDZ128mr, X86::INSTRUCTION_LIST_END },
6257};
6258
6259static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = {
6260  //PackedSingle       PackedDouble       PackedInt
6261  { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
6262  { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
6263  { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
6264  { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
6265};
6266
6267static const uint16_t ReplaceableInstrsAVX512[][4] = {
6268  // Two integer columns for 64-bit and 32-bit elements.
6269  //PackedSingle        PackedDouble        PackedInt             PackedInt
6270  { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr  },
6271  { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm  },
6272  { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr  },
6273  { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr  },
6274  { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm  },
6275  { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr  },
6276  { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm  },
6277  { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr  },
6278  { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr  },
6279  { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm  },
6280  { X86::VMOVAPSZmr,    X86::VMOVAPDZmr,    X86::VMOVDQA64Zmr,    X86::VMOVDQA32Zmr     },
6281  { X86::VMOVAPSZrm,    X86::VMOVAPDZrm,    X86::VMOVDQA64Zrm,    X86::VMOVDQA32Zrm     },
6282  { X86::VMOVAPSZrr,    X86::VMOVAPDZrr,    X86::VMOVDQA64Zrr,    X86::VMOVDQA32Zrr     },
6283  { X86::VMOVUPSZmr,    X86::VMOVUPDZmr,    X86::VMOVDQU64Zmr,    X86::VMOVDQU32Zmr     },
6284  { X86::VMOVUPSZrm,    X86::VMOVUPDZrm,    X86::VMOVDQU64Zrm,    X86::VMOVDQU32Zrm     },
6285};
6286
6287static const uint16_t ReplaceableInstrsAVX512DQ[][4] = {
6288  // Two integer columns for 64-bit and 32-bit elements.
6289  //PackedSingle        PackedDouble        PackedInt           PackedInt
6290  { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
6291  { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
6292  { X86::VANDPSZ128rm,  X86::VANDPDZ128rm,  X86::VPANDQZ128rm,  X86::VPANDDZ128rm  },
6293  { X86::VANDPSZ128rr,  X86::VANDPDZ128rr,  X86::VPANDQZ128rr,  X86::VPANDDZ128rr  },
6294  { X86::VORPSZ128rm,   X86::VORPDZ128rm,   X86::VPORQZ128rm,   X86::VPORDZ128rm   },
6295  { X86::VORPSZ128rr,   X86::VORPDZ128rr,   X86::VPORQZ128rr,   X86::VPORDZ128rr   },
6296  { X86::VXORPSZ128rm,  X86::VXORPDZ128rm,  X86::VPXORQZ128rm,  X86::VPXORDZ128rm  },
6297  { X86::VXORPSZ128rr,  X86::VXORPDZ128rr,  X86::VPXORQZ128rr,  X86::VPXORDZ128rr  },
6298  { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
6299  { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
6300  { X86::VANDPSZ256rm,  X86::VANDPDZ256rm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  },
6301  { X86::VANDPSZ256rr,  X86::VANDPDZ256rr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  },
6302  { X86::VORPSZ256rm,   X86::VORPDZ256rm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   },
6303  { X86::VORPSZ256rr,   X86::VORPDZ256rr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   },
6304  { X86::VXORPSZ256rm,  X86::VXORPDZ256rm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  },
6305  { X86::VXORPSZ256rr,  X86::VXORPDZ256rr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  },
6306  { X86::VANDNPSZrm,    X86::VANDNPDZrm,    X86::VPANDNQZrm,    X86::VPANDNDZrm    },
6307  { X86::VANDNPSZrr,    X86::VANDNPDZrr,    X86::VPANDNQZrr,    X86::VPANDNDZrr    },
6308  { X86::VANDPSZrm,     X86::VANDPDZrm,     X86::VPANDQZrm,     X86::VPANDDZrm     },
6309  { X86::VANDPSZrr,     X86::VANDPDZrr,     X86::VPANDQZrr,     X86::VPANDDZrr     },
6310  { X86::VORPSZrm,      X86::VORPDZrm,      X86::VPORQZrm,      X86::VPORDZrm      },
6311  { X86::VORPSZrr,      X86::VORPDZrr,      X86::VPORQZrr,      X86::VPORDZrr      },
6312  { X86::VXORPSZrm,     X86::VXORPDZrm,     X86::VPXORQZrm,     X86::VPXORDZrm     },
6313  { X86::VXORPSZrr,     X86::VXORPDZrr,     X86::VPXORQZrr,     X86::VPXORDZrr     },
6314};
6315
6316static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = {
6317  // Two integer columns for 64-bit and 32-bit elements.
6318  //PackedSingle          PackedDouble
6319  //PackedInt             PackedInt
6320  { X86::VANDNPSZ128rmk,  X86::VANDNPDZ128rmk,
6321    X86::VPANDNQZ128rmk,  X86::VPANDNDZ128rmk  },
6322  { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz,
6323    X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz },
6324  { X86::VANDNPSZ128rrk,  X86::VANDNPDZ128rrk,
6325    X86::VPANDNQZ128rrk,  X86::VPANDNDZ128rrk  },
6326  { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz,
6327    X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz },
6328  { X86::VANDPSZ128rmk,   X86::VANDPDZ128rmk,
6329    X86::VPANDQZ128rmk,   X86::VPANDDZ128rmk   },
6330  { X86::VANDPSZ128rmkz,  X86::VANDPDZ128rmkz,
6331    X86::VPANDQZ128rmkz,  X86::VPANDDZ128rmkz  },
6332  { X86::VANDPSZ128rrk,   X86::VANDPDZ128rrk,
6333    X86::VPANDQZ128rrk,   X86::VPANDDZ128rrk   },
6334  { X86::VANDPSZ128rrkz,  X86::VANDPDZ128rrkz,
6335    X86::VPANDQZ128rrkz,  X86::VPANDDZ128rrkz  },
6336  { X86::VORPSZ128rmk,    X86::VORPDZ128rmk,
6337    X86::VPORQZ128rmk,    X86::VPORDZ128rmk    },
6338  { X86::VORPSZ128rmkz,   X86::VORPDZ128rmkz,
6339    X86::VPORQZ128rmkz,   X86::VPORDZ128rmkz   },
6340  { X86::VORPSZ128rrk,    X86::VORPDZ128rrk,
6341    X86::VPORQZ128rrk,    X86::VPORDZ128rrk    },
6342  { X86::VORPSZ128rrkz,   X86::VORPDZ128rrkz,
6343    X86::VPORQZ128rrkz,   X86::VPORDZ128rrkz   },
6344  { X86::VXORPSZ128rmk,   X86::VXORPDZ128rmk,
6345    X86::VPXORQZ128rmk,   X86::VPXORDZ128rmk   },
6346  { X86::VXORPSZ128rmkz,  X86::VXORPDZ128rmkz,
6347    X86::VPXORQZ128rmkz,  X86::VPXORDZ128rmkz  },
6348  { X86::VXORPSZ128rrk,   X86::VXORPDZ128rrk,
6349    X86::VPXORQZ128rrk,   X86::VPXORDZ128rrk   },
6350  { X86::VXORPSZ128rrkz,  X86::VXORPDZ128rrkz,
6351    X86::VPXORQZ128rrkz,  X86::VPXORDZ128rrkz  },
6352  { X86::VANDNPSZ256rmk,  X86::VANDNPDZ256rmk,
6353    X86::VPANDNQZ256rmk,  X86::VPANDNDZ256rmk  },
6354  { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz,
6355    X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz },
6356  { X86::VANDNPSZ256rrk,  X86::VANDNPDZ256rrk,
6357    X86::VPANDNQZ256rrk,  X86::VPANDNDZ256rrk  },
6358  { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz,
6359    X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz },
6360  { X86::VANDPSZ256rmk,   X86::VANDPDZ256rmk,
6361    X86::VPANDQZ256rmk,   X86::VPANDDZ256rmk   },
6362  { X86::VANDPSZ256rmkz,  X86::VANDPDZ256rmkz,
6363    X86::VPANDQZ256rmkz,  X86::VPANDDZ256rmkz  },
6364  { X86::VANDPSZ256rrk,   X86::VANDPDZ256rrk,
6365    X86::VPANDQZ256rrk,   X86::VPANDDZ256rrk   },
6366  { X86::VANDPSZ256rrkz,  X86::VANDPDZ256rrkz,
6367    X86::VPANDQZ256rrkz,  X86::VPANDDZ256rrkz  },
6368  { X86::VORPSZ256rmk,    X86::VORPDZ256rmk,
6369    X86::VPORQZ256rmk,    X86::VPORDZ256rmk    },
6370  { X86::VORPSZ256rmkz,   X86::VORPDZ256rmkz,
6371    X86::VPORQZ256rmkz,   X86::VPORDZ256rmkz   },
6372  { X86::VORPSZ256rrk,    X86::VORPDZ256rrk,
6373    X86::VPORQZ256rrk,    X86::VPORDZ256rrk    },
6374  { X86::VORPSZ256rrkz,   X86::VORPDZ256rrkz,
6375    X86::VPORQZ256rrkz,   X86::VPORDZ256rrkz   },
6376  { X86::VXORPSZ256rmk,   X86::VXORPDZ256rmk,
6377    X86::VPXORQZ256rmk,   X86::VPXORDZ256rmk   },
6378  { X86::VXORPSZ256rmkz,  X86::VXORPDZ256rmkz,
6379    X86::VPXORQZ256rmkz,  X86::VPXORDZ256rmkz  },
6380  { X86::VXORPSZ256rrk,   X86::VXORPDZ256rrk,
6381    X86::VPXORQZ256rrk,   X86::VPXORDZ256rrk   },
6382  { X86::VXORPSZ256rrkz,  X86::VXORPDZ256rrkz,
6383    X86::VPXORQZ256rrkz,  X86::VPXORDZ256rrkz  },
6384  { X86::VANDNPSZrmk,     X86::VANDNPDZrmk,
6385    X86::VPANDNQZrmk,     X86::VPANDNDZrmk     },
6386  { X86::VANDNPSZrmkz,    X86::VANDNPDZrmkz,
6387    X86::VPANDNQZrmkz,    X86::VPANDNDZrmkz    },
6388  { X86::VANDNPSZrrk,     X86::VANDNPDZrrk,
6389    X86::VPANDNQZrrk,     X86::VPANDNDZrrk     },
6390  { X86::VANDNPSZrrkz,    X86::VANDNPDZrrkz,
6391    X86::VPANDNQZrrkz,    X86::VPANDNDZrrkz    },
6392  { X86::VANDPSZrmk,      X86::VANDPDZrmk,
6393    X86::VPANDQZrmk,      X86::VPANDDZrmk      },
6394  { X86::VANDPSZrmkz,     X86::VANDPDZrmkz,
6395    X86::VPANDQZrmkz,     X86::VPANDDZrmkz     },
6396  { X86::VANDPSZrrk,      X86::VANDPDZrrk,
6397    X86::VPANDQZrrk,      X86::VPANDDZrrk      },
6398  { X86::VANDPSZrrkz,     X86::VANDPDZrrkz,
6399    X86::VPANDQZrrkz,     X86::VPANDDZrrkz     },
6400  { X86::VORPSZrmk,       X86::VORPDZrmk,
6401    X86::VPORQZrmk,       X86::VPORDZrmk       },
6402  { X86::VORPSZrmkz,      X86::VORPDZrmkz,
6403    X86::VPORQZrmkz,      X86::VPORDZrmkz      },
6404  { X86::VORPSZrrk,       X86::VORPDZrrk,
6405    X86::VPORQZrrk,       X86::VPORDZrrk       },
6406  { X86::VORPSZrrkz,      X86::VORPDZrrkz,
6407    X86::VPORQZrrkz,      X86::VPORDZrrkz      },
6408  { X86::VXORPSZrmk,      X86::VXORPDZrmk,
6409    X86::VPXORQZrmk,      X86::VPXORDZrmk      },
6410  { X86::VXORPSZrmkz,     X86::VXORPDZrmkz,
6411    X86::VPXORQZrmkz,     X86::VPXORDZrmkz     },
6412  { X86::VXORPSZrrk,      X86::VXORPDZrrk,
6413    X86::VPXORQZrrk,      X86::VPXORDZrrk      },
6414  { X86::VXORPSZrrkz,     X86::VXORPDZrrkz,
6415    X86::VPXORQZrrkz,     X86::VPXORDZrrkz     },
6416  // Broadcast loads can be handled the same as masked operations to avoid
6417  // changing element size.
6418  { X86::VANDNPSZ128rmb,  X86::VANDNPDZ128rmb,
6419    X86::VPANDNQZ128rmb,  X86::VPANDNDZ128rmb  },
6420  { X86::VANDPSZ128rmb,   X86::VANDPDZ128rmb,
6421    X86::VPANDQZ128rmb,   X86::VPANDDZ128rmb   },
6422  { X86::VORPSZ128rmb,    X86::VORPDZ128rmb,
6423    X86::VPORQZ128rmb,    X86::VPORDZ128rmb    },
6424  { X86::VXORPSZ128rmb,   X86::VXORPDZ128rmb,
6425    X86::VPXORQZ128rmb,   X86::VPXORDZ128rmb   },
6426  { X86::VANDNPSZ256rmb,  X86::VANDNPDZ256rmb,
6427    X86::VPANDNQZ256rmb,  X86::VPANDNDZ256rmb  },
6428  { X86::VANDPSZ256rmb,   X86::VANDPDZ256rmb,
6429    X86::VPANDQZ256rmb,   X86::VPANDDZ256rmb   },
6430  { X86::VORPSZ256rmb,    X86::VORPDZ256rmb,
6431    X86::VPORQZ256rmb,    X86::VPORDZ256rmb    },
6432  { X86::VXORPSZ256rmb,   X86::VXORPDZ256rmb,
6433    X86::VPXORQZ256rmb,   X86::VPXORDZ256rmb   },
6434  { X86::VANDNPSZrmb,     X86::VANDNPDZrmb,
6435    X86::VPANDNQZrmb,     X86::VPANDNDZrmb     },
6436  { X86::VANDPSZrmb,      X86::VANDPDZrmb,
6437    X86::VPANDQZrmb,      X86::VPANDDZrmb      },
6438  { X86::VANDPSZrmb,      X86::VANDPDZrmb,
6439    X86::VPANDQZrmb,      X86::VPANDDZrmb      },
6440  { X86::VORPSZrmb,       X86::VORPDZrmb,
6441    X86::VPORQZrmb,       X86::VPORDZrmb       },
6442  { X86::VXORPSZrmb,      X86::VXORPDZrmb,
6443    X86::VPXORQZrmb,      X86::VPXORDZrmb      },
6444  { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk,
6445    X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk },
6446  { X86::VANDPSZ128rmbk,  X86::VANDPDZ128rmbk,
6447    X86::VPANDQZ128rmbk,  X86::VPANDDZ128rmbk  },
6448  { X86::VORPSZ128rmbk,   X86::VORPDZ128rmbk,
6449    X86::VPORQZ128rmbk,   X86::VPORDZ128rmbk   },
6450  { X86::VXORPSZ128rmbk,  X86::VXORPDZ128rmbk,
6451    X86::VPXORQZ128rmbk,  X86::VPXORDZ128rmbk  },
6452  { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk,
6453    X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk },
6454  { X86::VANDPSZ256rmbk,  X86::VANDPDZ256rmbk,
6455    X86::VPANDQZ256rmbk,  X86::VPANDDZ256rmbk  },
6456  { X86::VORPSZ256rmbk,   X86::VORPDZ256rmbk,
6457    X86::VPORQZ256rmbk,   X86::VPORDZ256rmbk   },
6458  { X86::VXORPSZ256rmbk,  X86::VXORPDZ256rmbk,
6459    X86::VPXORQZ256rmbk,  X86::VPXORDZ256rmbk  },
6460  { X86::VANDNPSZrmbk,    X86::VANDNPDZrmbk,
6461    X86::VPANDNQZrmbk,    X86::VPANDNDZrmbk    },
6462  { X86::VANDPSZrmbk,     X86::VANDPDZrmbk,
6463    X86::VPANDQZrmbk,     X86::VPANDDZrmbk     },
6464  { X86::VANDPSZrmbk,     X86::VANDPDZrmbk,
6465    X86::VPANDQZrmbk,     X86::VPANDDZrmbk     },
6466  { X86::VORPSZrmbk,      X86::VORPDZrmbk,
6467    X86::VPORQZrmbk,      X86::VPORDZrmbk      },
6468  { X86::VXORPSZrmbk,     X86::VXORPDZrmbk,
6469    X86::VPXORQZrmbk,     X86::VPXORDZrmbk     },
6470  { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz,
6471    X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz},
6472  { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz,
6473    X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz },
6474  { X86::VORPSZ128rmbkz,  X86::VORPDZ128rmbkz,
6475    X86::VPORQZ128rmbkz,  X86::VPORDZ128rmbkz  },
6476  { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz,
6477    X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz },
6478  { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz,
6479    X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz},
6480  { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz,
6481    X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz },
6482  { X86::VORPSZ256rmbkz,  X86::VORPDZ256rmbkz,
6483    X86::VPORQZ256rmbkz,  X86::VPORDZ256rmbkz  },
6484  { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz,
6485    X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz },
6486  { X86::VANDNPSZrmbkz,   X86::VANDNPDZrmbkz,
6487    X86::VPANDNQZrmbkz,   X86::VPANDNDZrmbkz   },
6488  { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz,
6489    X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    },
6490  { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz,
6491    X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    },
6492  { X86::VORPSZrmbkz,     X86::VORPDZrmbkz,
6493    X86::VPORQZrmbkz,     X86::VPORDZrmbkz     },
6494  { X86::VXORPSZrmbkz,    X86::VXORPDZrmbkz,
6495    X86::VPXORQZrmbkz,    X86::VPXORDZrmbkz    },
6496};
6497
6498// NOTE: These should only be used by the custom domain methods.
6499static const uint16_t ReplaceableBlendInstrs[][3] = {
6500  //PackedSingle             PackedDouble             PackedInt
6501  { X86::BLENDPSrmi,         X86::BLENDPDrmi,         X86::PBLENDWrmi   },
6502  { X86::BLENDPSrri,         X86::BLENDPDrri,         X86::PBLENDWrri   },
6503  { X86::VBLENDPSrmi,        X86::VBLENDPDrmi,        X86::VPBLENDWrmi  },
6504  { X86::VBLENDPSrri,        X86::VBLENDPDrri,        X86::VPBLENDWrri  },
6505  { X86::VBLENDPSYrmi,       X86::VBLENDPDYrmi,       X86::VPBLENDWYrmi },
6506  { X86::VBLENDPSYrri,       X86::VBLENDPDYrri,       X86::VPBLENDWYrri },
6507};
6508static const uint16_t ReplaceableBlendAVX2Instrs[][3] = {
6509  //PackedSingle             PackedDouble             PackedInt
6510  { X86::VBLENDPSrmi,        X86::VBLENDPDrmi,        X86::VPBLENDDrmi  },
6511  { X86::VBLENDPSrri,        X86::VBLENDPDrri,        X86::VPBLENDDrri  },
6512  { X86::VBLENDPSYrmi,       X86::VBLENDPDYrmi,       X86::VPBLENDDYrmi },
6513  { X86::VBLENDPSYrri,       X86::VBLENDPDYrri,       X86::VPBLENDDYrri },
6514};
6515
6516// Special table for changing EVEX logic instructions to VEX.
6517// TODO: Should we run EVEX->VEX earlier?
6518static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = {
6519  // Two integer columns for 64-bit and 32-bit elements.
6520  //PackedSingle     PackedDouble     PackedInt           PackedInt
6521  { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
6522  { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
6523  { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDQZ128rm,  X86::VPANDDZ128rm  },
6524  { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDQZ128rr,  X86::VPANDDZ128rr  },
6525  { X86::VORPSrm,    X86::VORPDrm,    X86::VPORQZ128rm,   X86::VPORDZ128rm   },
6526  { X86::VORPSrr,    X86::VORPDrr,    X86::VPORQZ128rr,   X86::VPORDZ128rr   },
6527  { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORQZ128rm,  X86::VPXORDZ128rm  },
6528  { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORQZ128rr,  X86::VPXORDZ128rr  },
6529  { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
6530  { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
6531  { X86::VANDPSYrm,  X86::VANDPDYrm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  },
6532  { X86::VANDPSYrr,  X86::VANDPDYrr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  },
6533  { X86::VORPSYrm,   X86::VORPDYrm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   },
6534  { X86::VORPSYrr,   X86::VORPDYrr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   },
6535  { X86::VXORPSYrm,  X86::VXORPDYrm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  },
6536  { X86::VXORPSYrr,  X86::VXORPDYrr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  },
6537};
6538
6539// FIXME: Some shuffle and unpack instructions have equivalents in different
6540// domains, but they require a bit more work than just switching opcodes.
6541
6542static const uint16_t *lookup(unsigned opcode, unsigned domain,
6543                              ArrayRef<uint16_t[3]> Table) {
6544  for (const uint16_t (&Row)[3] : Table)
6545    if (Row[domain-1] == opcode)
6546      return Row;
6547  return nullptr;
6548}
6549
6550static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
6551                                    ArrayRef<uint16_t[4]> Table) {
6552  // If this is the integer domain make sure to check both integer columns.
6553  for (const uint16_t (&Row)[4] : Table)
6554    if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode))
6555      return Row;
6556  return nullptr;
6557}
6558
6559// Helper to attempt to widen/narrow blend masks.
6560static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
6561                            unsigned NewWidth, unsigned *pNewMask = nullptr) {
6562  assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
6563         "Illegal blend mask scale");
6564  unsigned NewMask = 0;
6565
6566  if ((OldWidth % NewWidth) == 0) {
6567    unsigned Scale = OldWidth / NewWidth;
6568    unsigned SubMask = (1u << Scale) - 1;
6569    for (unsigned i = 0; i != NewWidth; ++i) {
6570      unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
6571      if (Sub == SubMask)
6572        NewMask |= (1u << i);
6573      else if (Sub != 0x0)
6574        return false;
6575    }
6576  } else {
6577    unsigned Scale = NewWidth / OldWidth;
6578    unsigned SubMask = (1u << Scale) - 1;
6579    for (unsigned i = 0; i != OldWidth; ++i) {
6580      if (OldMask & (1 << i)) {
6581        NewMask |= (SubMask << (i * Scale));
6582      }
6583    }
6584  }
6585
6586  if (pNewMask)
6587    *pNewMask = NewMask;
6588  return true;
6589}
6590
6591uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
6592  unsigned Opcode = MI.getOpcode();
6593  unsigned NumOperands = MI.getDesc().getNumOperands();
6594
6595  auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
6596    uint16_t validDomains = 0;
6597    if (MI.getOperand(NumOperands - 1).isImm()) {
6598      unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
6599      if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
6600        validDomains |= 0x2; // PackedSingle
6601      if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
6602        validDomains |= 0x4; // PackedDouble
6603      if (!Is256 || Subtarget.hasAVX2())
6604        validDomains |= 0x8; // PackedInt
6605    }
6606    return validDomains;
6607  };
6608
6609  switch (Opcode) {
6610  case X86::BLENDPDrmi:
6611  case X86::BLENDPDrri:
6612  case X86::VBLENDPDrmi:
6613  case X86::VBLENDPDrri:
6614    return GetBlendDomains(2, false);
6615  case X86::VBLENDPDYrmi:
6616  case X86::VBLENDPDYrri:
6617    return GetBlendDomains(4, true);
6618  case X86::BLENDPSrmi:
6619  case X86::BLENDPSrri:
6620  case X86::VBLENDPSrmi:
6621  case X86::VBLENDPSrri:
6622  case X86::VPBLENDDrmi:
6623  case X86::VPBLENDDrri:
6624    return GetBlendDomains(4, false);
6625  case X86::VBLENDPSYrmi:
6626  case X86::VBLENDPSYrri:
6627  case X86::VPBLENDDYrmi:
6628  case X86::VPBLENDDYrri:
6629    return GetBlendDomains(8, true);
6630  case X86::PBLENDWrmi:
6631  case X86::PBLENDWrri:
6632  case X86::VPBLENDWrmi:
6633  case X86::VPBLENDWrri:
6634  // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
6635  case X86::VPBLENDWYrmi:
6636  case X86::VPBLENDWYrri:
6637    return GetBlendDomains(8, false);
6638  case X86::VPANDDZ128rr:  case X86::VPANDDZ128rm:
6639  case X86::VPANDDZ256rr:  case X86::VPANDDZ256rm:
6640  case X86::VPANDQZ128rr:  case X86::VPANDQZ128rm:
6641  case X86::VPANDQZ256rr:  case X86::VPANDQZ256rm:
6642  case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
6643  case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
6644  case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
6645  case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
6646  case X86::VPORDZ128rr:   case X86::VPORDZ128rm:
6647  case X86::VPORDZ256rr:   case X86::VPORDZ256rm:
6648  case X86::VPORQZ128rr:   case X86::VPORQZ128rm:
6649  case X86::VPORQZ256rr:   case X86::VPORQZ256rm:
6650  case X86::VPXORDZ128rr:  case X86::VPXORDZ128rm:
6651  case X86::VPXORDZ256rr:  case X86::VPXORDZ256rm:
6652  case X86::VPXORQZ128rr:  case X86::VPXORQZ128rm:
6653  case X86::VPXORQZ256rr:  case X86::VPXORQZ256rm:
6654    // If we don't have DQI see if we can still switch from an EVEX integer
6655    // instruction to a VEX floating point instruction.
6656    if (Subtarget.hasDQI())
6657      return 0;
6658
6659    if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
6660      return 0;
6661    if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
6662      return 0;
6663    // Register forms will have 3 operands. Memory form will have more.
6664    if (NumOperands == 3 &&
6665        RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
6666      return 0;
6667
6668    // All domains are valid.
6669    return 0xe;
6670  case X86::MOVHLPSrr:
6671    // We can swap domains when both inputs are the same register.
6672    // FIXME: This doesn't catch all the cases we would like. If the input
6673    // register isn't KILLed by the instruction, the two address instruction
6674    // pass puts a COPY on one input. The other input uses the original
6675    // register. This prevents the same physical register from being used by
6676    // both inputs.
6677    if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
6678        MI.getOperand(0).getSubReg() == 0 &&
6679        MI.getOperand(1).getSubReg() == 0 &&
6680        MI.getOperand(2).getSubReg() == 0)
6681      return 0x6;
6682    return 0;
6683  case X86::SHUFPDrri:
6684    return 0x6;
6685  }
6686  return 0;
6687}
6688
6689bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
6690                                            unsigned Domain) const {
6691  assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
6692  uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6693  assert(dom && "Not an SSE instruction");
6694
6695  unsigned Opcode = MI.getOpcode();
6696  unsigned NumOperands = MI.getDesc().getNumOperands();
6697
6698  auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
6699    if (MI.getOperand(NumOperands - 1).isImm()) {
6700      unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
6701      Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
6702      unsigned NewImm = Imm;
6703
6704      const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs);
6705      if (!table)
6706        table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
6707
6708      if (Domain == 1) { // PackedSingle
6709        AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
6710      } else if (Domain == 2) { // PackedDouble
6711        AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
6712      } else if (Domain == 3) { // PackedInt
6713        if (Subtarget.hasAVX2()) {
6714          // If we are already VPBLENDW use that, else use VPBLENDD.
6715          if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
6716            table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
6717            AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
6718          }
6719        } else {
6720          assert(!Is256 && "128-bit vector expected");
6721          AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
6722        }
6723      }
6724
6725      assert(table && table[Domain - 1] && "Unknown domain op");
6726      MI.setDesc(get(table[Domain - 1]));
6727      MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
6728    }
6729    return true;
6730  };
6731
6732  switch (Opcode) {
6733  case X86::BLENDPDrmi:
6734  case X86::BLENDPDrri:
6735  case X86::VBLENDPDrmi:
6736  case X86::VBLENDPDrri:
6737    return SetBlendDomain(2, false);
6738  case X86::VBLENDPDYrmi:
6739  case X86::VBLENDPDYrri:
6740    return SetBlendDomain(4, true);
6741  case X86::BLENDPSrmi:
6742  case X86::BLENDPSrri:
6743  case X86::VBLENDPSrmi:
6744  case X86::VBLENDPSrri:
6745  case X86::VPBLENDDrmi:
6746  case X86::VPBLENDDrri:
6747    return SetBlendDomain(4, false);
6748  case X86::VBLENDPSYrmi:
6749  case X86::VBLENDPSYrri:
6750  case X86::VPBLENDDYrmi:
6751  case X86::VPBLENDDYrri:
6752    return SetBlendDomain(8, true);
6753  case X86::PBLENDWrmi:
6754  case X86::PBLENDWrri:
6755  case X86::VPBLENDWrmi:
6756  case X86::VPBLENDWrri:
6757    return SetBlendDomain(8, false);
6758  case X86::VPBLENDWYrmi:
6759  case X86::VPBLENDWYrri:
6760    return SetBlendDomain(16, true);
6761  case X86::VPANDDZ128rr:  case X86::VPANDDZ128rm:
6762  case X86::VPANDDZ256rr:  case X86::VPANDDZ256rm:
6763  case X86::VPANDQZ128rr:  case X86::VPANDQZ128rm:
6764  case X86::VPANDQZ256rr:  case X86::VPANDQZ256rm:
6765  case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
6766  case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
6767  case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
6768  case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
6769  case X86::VPORDZ128rr:   case X86::VPORDZ128rm:
6770  case X86::VPORDZ256rr:   case X86::VPORDZ256rm:
6771  case X86::VPORQZ128rr:   case X86::VPORQZ128rm:
6772  case X86::VPORQZ256rr:   case X86::VPORQZ256rm:
6773  case X86::VPXORDZ128rr:  case X86::VPXORDZ128rm:
6774  case X86::VPXORDZ256rr:  case X86::VPXORDZ256rm:
6775  case X86::VPXORQZ128rr:  case X86::VPXORQZ128rm:
6776  case X86::VPXORQZ256rr:  case X86::VPXORQZ256rm: {
6777    // Without DQI, convert EVEX instructions to VEX instructions.
6778    if (Subtarget.hasDQI())
6779      return false;
6780
6781    const uint16_t *table = lookupAVX512(MI.getOpcode(), dom,
6782                                         ReplaceableCustomAVX512LogicInstrs);
6783    assert(table && "Instruction not found in table?");
6784    // Don't change integer Q instructions to D instructions and
6785    // use D intructions if we started with a PS instruction.
6786    if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6787      Domain = 4;
6788    MI.setDesc(get(table[Domain - 1]));
6789    return true;
6790  }
6791  case X86::UNPCKHPDrr:
6792  case X86::MOVHLPSrr:
6793    // We just need to commute the instruction which will switch the domains.
6794    if (Domain != dom && Domain != 3 &&
6795        MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
6796        MI.getOperand(0).getSubReg() == 0 &&
6797        MI.getOperand(1).getSubReg() == 0 &&
6798        MI.getOperand(2).getSubReg() == 0) {
6799      commuteInstruction(MI, false);
6800      return true;
6801    }
6802    // We must always return true for MOVHLPSrr.
6803    if (Opcode == X86::MOVHLPSrr)
6804      return true;
6805    break;
6806  case X86::SHUFPDrri: {
6807    if (Domain == 1) {
6808      unsigned Imm = MI.getOperand(3).getImm();
6809      unsigned NewImm = 0x44;
6810      if (Imm & 1) NewImm |= 0x0a;
6811      if (Imm & 2) NewImm |= 0xa0;
6812      MI.getOperand(3).setImm(NewImm);
6813      MI.setDesc(get(X86::SHUFPSrri));
6814    }
6815    return true;
6816  }
6817  }
6818  return false;
6819}
6820
6821std::pair<uint16_t, uint16_t>
6822X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
6823  uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6824  unsigned opcode = MI.getOpcode();
6825  uint16_t validDomains = 0;
6826  if (domain) {
6827    // Attempt to match for custom instructions.
6828    validDomains = getExecutionDomainCustom(MI);
6829    if (validDomains)
6830      return std::make_pair(domain, validDomains);
6831
6832    if (lookup(opcode, domain, ReplaceableInstrs)) {
6833      validDomains = 0xe;
6834    } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
6835      validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
6836    } else if (lookup(opcode, domain, ReplaceableInstrsFP)) {
6837      validDomains = 0x6;
6838    } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
6839      // Insert/extract instructions should only effect domain if AVX2
6840      // is enabled.
6841      if (!Subtarget.hasAVX2())
6842        return std::make_pair(0, 0);
6843      validDomains = 0xe;
6844    } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
6845      validDomains = 0xe;
6846    } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain,
6847                                                  ReplaceableInstrsAVX512DQ)) {
6848      validDomains = 0xe;
6849    } else if (Subtarget.hasDQI()) {
6850      if (const uint16_t *table = lookupAVX512(opcode, domain,
6851                                             ReplaceableInstrsAVX512DQMasked)) {
6852        if (domain == 1 || (domain == 3 && table[3] == opcode))
6853          validDomains = 0xa;
6854        else
6855          validDomains = 0xc;
6856      }
6857    }
6858  }
6859  return std::make_pair(domain, validDomains);
6860}
6861
6862void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
6863  assert(Domain>0 && Domain<4 && "Invalid execution domain");
6864  uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6865  assert(dom && "Not an SSE instruction");
6866
6867  // Attempt to match for custom instructions.
6868  if (setExecutionDomainCustom(MI, Domain))
6869    return;
6870
6871  const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
6872  if (!table) { // try the other table
6873    assert((Subtarget.hasAVX2() || Domain < 3) &&
6874           "256-bit vector operations only available in AVX2");
6875    table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
6876  }
6877  if (!table) { // try the FP table
6878    table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP);
6879    assert((!table || Domain < 3) &&
6880           "Can only select PackedSingle or PackedDouble");
6881  }
6882  if (!table) { // try the other table
6883    assert(Subtarget.hasAVX2() &&
6884           "256-bit insert/extract only available in AVX2");
6885    table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
6886  }
6887  if (!table) { // try the AVX512 table
6888    assert(Subtarget.hasAVX512() && "Requires AVX-512");
6889    table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
6890    // Don't change integer Q instructions to D instructions.
6891    if (table && Domain == 3 && table[3] == MI.getOpcode())
6892      Domain = 4;
6893  }
6894  if (!table) { // try the AVX512DQ table
6895    assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
6896    table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
6897    // Don't change integer Q instructions to D instructions and
6898    // use D intructions if we started with a PS instruction.
6899    if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6900      Domain = 4;
6901  }
6902  if (!table) { // try the AVX512DQMasked table
6903    assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
6904    table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
6905    if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6906      Domain = 4;
6907  }
6908  assert(table && "Cannot change domain");
6909  MI.setDesc(get(table[Domain - 1]));
6910}
6911
6912/// Return the noop instruction to use for a noop.
6913void X86InstrInfo::getNoop(MCInst &NopInst) const {
6914  NopInst.setOpcode(X86::NOOP);
6915}
6916
6917bool X86InstrInfo::isHighLatencyDef(int opc) const {
6918  switch (opc) {
6919  default: return false;
6920  case X86::DIVPDrm:
6921  case X86::DIVPDrr:
6922  case X86::DIVPSrm:
6923  case X86::DIVPSrr:
6924  case X86::DIVSDrm:
6925  case X86::DIVSDrm_Int:
6926  case X86::DIVSDrr:
6927  case X86::DIVSDrr_Int:
6928  case X86::DIVSSrm:
6929  case X86::DIVSSrm_Int:
6930  case X86::DIVSSrr:
6931  case X86::DIVSSrr_Int:
6932  case X86::SQRTPDm:
6933  case X86::SQRTPDr:
6934  case X86::SQRTPSm:
6935  case X86::SQRTPSr:
6936  case X86::SQRTSDm:
6937  case X86::SQRTSDm_Int:
6938  case X86::SQRTSDr:
6939  case X86::SQRTSDr_Int:
6940  case X86::SQRTSSm:
6941  case X86::SQRTSSm_Int:
6942  case X86::SQRTSSr:
6943  case X86::SQRTSSr_Int:
6944  // AVX instructions with high latency
6945  case X86::VDIVPDrm:
6946  case X86::VDIVPDrr:
6947  case X86::VDIVPDYrm:
6948  case X86::VDIVPDYrr:
6949  case X86::VDIVPSrm:
6950  case X86::VDIVPSrr:
6951  case X86::VDIVPSYrm:
6952  case X86::VDIVPSYrr:
6953  case X86::VDIVSDrm:
6954  case X86::VDIVSDrm_Int:
6955  case X86::VDIVSDrr:
6956  case X86::VDIVSDrr_Int:
6957  case X86::VDIVSSrm:
6958  case X86::VDIVSSrm_Int:
6959  case X86::VDIVSSrr:
6960  case X86::VDIVSSrr_Int:
6961  case X86::VSQRTPDm:
6962  case X86::VSQRTPDr:
6963  case X86::VSQRTPDYm:
6964  case X86::VSQRTPDYr:
6965  case X86::VSQRTPSm:
6966  case X86::VSQRTPSr:
6967  case X86::VSQRTPSYm:
6968  case X86::VSQRTPSYr:
6969  case X86::VSQRTSDm:
6970  case X86::VSQRTSDm_Int:
6971  case X86::VSQRTSDr:
6972  case X86::VSQRTSDr_Int:
6973  case X86::VSQRTSSm:
6974  case X86::VSQRTSSm_Int:
6975  case X86::VSQRTSSr:
6976  case X86::VSQRTSSr_Int:
6977  // AVX512 instructions with high latency
6978  case X86::VDIVPDZ128rm:
6979  case X86::VDIVPDZ128rmb:
6980  case X86::VDIVPDZ128rmbk:
6981  case X86::VDIVPDZ128rmbkz:
6982  case X86::VDIVPDZ128rmk:
6983  case X86::VDIVPDZ128rmkz:
6984  case X86::VDIVPDZ128rr:
6985  case X86::VDIVPDZ128rrk:
6986  case X86::VDIVPDZ128rrkz:
6987  case X86::VDIVPDZ256rm:
6988  case X86::VDIVPDZ256rmb:
6989  case X86::VDIVPDZ256rmbk:
6990  case X86::VDIVPDZ256rmbkz:
6991  case X86::VDIVPDZ256rmk:
6992  case X86::VDIVPDZ256rmkz:
6993  case X86::VDIVPDZ256rr:
6994  case X86::VDIVPDZ256rrk:
6995  case X86::VDIVPDZ256rrkz:
6996  case X86::VDIVPDZrrb:
6997  case X86::VDIVPDZrrbk:
6998  case X86::VDIVPDZrrbkz:
6999  case X86::VDIVPDZrm:
7000  case X86::VDIVPDZrmb:
7001  case X86::VDIVPDZrmbk:
7002  case X86::VDIVPDZrmbkz:
7003  case X86::VDIVPDZrmk:
7004  case X86::VDIVPDZrmkz:
7005  case X86::VDIVPDZrr:
7006  case X86::VDIVPDZrrk:
7007  case X86::VDIVPDZrrkz:
7008  case X86::VDIVPSZ128rm:
7009  case X86::VDIVPSZ128rmb:
7010  case X86::VDIVPSZ128rmbk:
7011  case X86::VDIVPSZ128rmbkz:
7012  case X86::VDIVPSZ128rmk:
7013  case X86::VDIVPSZ128rmkz:
7014  case X86::VDIVPSZ128rr:
7015  case X86::VDIVPSZ128rrk:
7016  case X86::VDIVPSZ128rrkz:
7017  case X86::VDIVPSZ256rm:
7018  case X86::VDIVPSZ256rmb:
7019  case X86::VDIVPSZ256rmbk:
7020  case X86::VDIVPSZ256rmbkz:
7021  case X86::VDIVPSZ256rmk:
7022  case X86::VDIVPSZ256rmkz:
7023  case X86::VDIVPSZ256rr:
7024  case X86::VDIVPSZ256rrk:
7025  case X86::VDIVPSZ256rrkz:
7026  case X86::VDIVPSZrrb:
7027  case X86::VDIVPSZrrbk:
7028  case X86::VDIVPSZrrbkz:
7029  case X86::VDIVPSZrm:
7030  case X86::VDIVPSZrmb:
7031  case X86::VDIVPSZrmbk:
7032  case X86::VDIVPSZrmbkz:
7033  case X86::VDIVPSZrmk:
7034  case X86::VDIVPSZrmkz:
7035  case X86::VDIVPSZrr:
7036  case X86::VDIVPSZrrk:
7037  case X86::VDIVPSZrrkz:
7038  case X86::VDIVSDZrm:
7039  case X86::VDIVSDZrr:
7040  case X86::VDIVSDZrm_Int:
7041  case X86::VDIVSDZrm_Intk:
7042  case X86::VDIVSDZrm_Intkz:
7043  case X86::VDIVSDZrr_Int:
7044  case X86::VDIVSDZrr_Intk:
7045  case X86::VDIVSDZrr_Intkz:
7046  case X86::VDIVSDZrrb_Int:
7047  case X86::VDIVSDZrrb_Intk:
7048  case X86::VDIVSDZrrb_Intkz:
7049  case X86::VDIVSSZrm:
7050  case X86::VDIVSSZrr:
7051  case X86::VDIVSSZrm_Int:
7052  case X86::VDIVSSZrm_Intk:
7053  case X86::VDIVSSZrm_Intkz:
7054  case X86::VDIVSSZrr_Int:
7055  case X86::VDIVSSZrr_Intk:
7056  case X86::VDIVSSZrr_Intkz:
7057  case X86::VDIVSSZrrb_Int:
7058  case X86::VDIVSSZrrb_Intk:
7059  case X86::VDIVSSZrrb_Intkz:
7060  case X86::VSQRTPDZ128m:
7061  case X86::VSQRTPDZ128mb:
7062  case X86::VSQRTPDZ128mbk:
7063  case X86::VSQRTPDZ128mbkz:
7064  case X86::VSQRTPDZ128mk:
7065  case X86::VSQRTPDZ128mkz:
7066  case X86::VSQRTPDZ128r:
7067  case X86::VSQRTPDZ128rk:
7068  case X86::VSQRTPDZ128rkz:
7069  case X86::VSQRTPDZ256m:
7070  case X86::VSQRTPDZ256mb:
7071  case X86::VSQRTPDZ256mbk:
7072  case X86::VSQRTPDZ256mbkz:
7073  case X86::VSQRTPDZ256mk:
7074  case X86::VSQRTPDZ256mkz:
7075  case X86::VSQRTPDZ256r:
7076  case X86::VSQRTPDZ256rk:
7077  case X86::VSQRTPDZ256rkz:
7078  case X86::VSQRTPDZm:
7079  case X86::VSQRTPDZmb:
7080  case X86::VSQRTPDZmbk:
7081  case X86::VSQRTPDZmbkz:
7082  case X86::VSQRTPDZmk:
7083  case X86::VSQRTPDZmkz:
7084  case X86::VSQRTPDZr:
7085  case X86::VSQRTPDZrb:
7086  case X86::VSQRTPDZrbk:
7087  case X86::VSQRTPDZrbkz:
7088  case X86::VSQRTPDZrk:
7089  case X86::VSQRTPDZrkz:
7090  case X86::VSQRTPSZ128m:
7091  case X86::VSQRTPSZ128mb:
7092  case X86::VSQRTPSZ128mbk:
7093  case X86::VSQRTPSZ128mbkz:
7094  case X86::VSQRTPSZ128mk:
7095  case X86::VSQRTPSZ128mkz:
7096  case X86::VSQRTPSZ128r:
7097  case X86::VSQRTPSZ128rk:
7098  case X86::VSQRTPSZ128rkz:
7099  case X86::VSQRTPSZ256m:
7100  case X86::VSQRTPSZ256mb:
7101  case X86::VSQRTPSZ256mbk:
7102  case X86::VSQRTPSZ256mbkz:
7103  case X86::VSQRTPSZ256mk:
7104  case X86::VSQRTPSZ256mkz:
7105  case X86::VSQRTPSZ256r:
7106  case X86::VSQRTPSZ256rk:
7107  case X86::VSQRTPSZ256rkz:
7108  case X86::VSQRTPSZm:
7109  case X86::VSQRTPSZmb:
7110  case X86::VSQRTPSZmbk:
7111  case X86::VSQRTPSZmbkz:
7112  case X86::VSQRTPSZmk:
7113  case X86::VSQRTPSZmkz:
7114  case X86::VSQRTPSZr:
7115  case X86::VSQRTPSZrb:
7116  case X86::VSQRTPSZrbk:
7117  case X86::VSQRTPSZrbkz:
7118  case X86::VSQRTPSZrk:
7119  case X86::VSQRTPSZrkz:
7120  case X86::VSQRTSDZm:
7121  case X86::VSQRTSDZm_Int:
7122  case X86::VSQRTSDZm_Intk:
7123  case X86::VSQRTSDZm_Intkz:
7124  case X86::VSQRTSDZr:
7125  case X86::VSQRTSDZr_Int:
7126  case X86::VSQRTSDZr_Intk:
7127  case X86::VSQRTSDZr_Intkz:
7128  case X86::VSQRTSDZrb_Int:
7129  case X86::VSQRTSDZrb_Intk:
7130  case X86::VSQRTSDZrb_Intkz:
7131  case X86::VSQRTSSZm:
7132  case X86::VSQRTSSZm_Int:
7133  case X86::VSQRTSSZm_Intk:
7134  case X86::VSQRTSSZm_Intkz:
7135  case X86::VSQRTSSZr:
7136  case X86::VSQRTSSZr_Int:
7137  case X86::VSQRTSSZr_Intk:
7138  case X86::VSQRTSSZr_Intkz:
7139  case X86::VSQRTSSZrb_Int:
7140  case X86::VSQRTSSZrb_Intk:
7141  case X86::VSQRTSSZrb_Intkz:
7142
7143  case X86::VGATHERDPDYrm:
7144  case X86::VGATHERDPDZ128rm:
7145  case X86::VGATHERDPDZ256rm:
7146  case X86::VGATHERDPDZrm:
7147  case X86::VGATHERDPDrm:
7148  case X86::VGATHERDPSYrm:
7149  case X86::VGATHERDPSZ128rm:
7150  case X86::VGATHERDPSZ256rm:
7151  case X86::VGATHERDPSZrm:
7152  case X86::VGATHERDPSrm:
7153  case X86::VGATHERPF0DPDm:
7154  case X86::VGATHERPF0DPSm:
7155  case X86::VGATHERPF0QPDm:
7156  case X86::VGATHERPF0QPSm:
7157  case X86::VGATHERPF1DPDm:
7158  case X86::VGATHERPF1DPSm:
7159  case X86::VGATHERPF1QPDm:
7160  case X86::VGATHERPF1QPSm:
7161  case X86::VGATHERQPDYrm:
7162  case X86::VGATHERQPDZ128rm:
7163  case X86::VGATHERQPDZ256rm:
7164  case X86::VGATHERQPDZrm:
7165  case X86::VGATHERQPDrm:
7166  case X86::VGATHERQPSYrm:
7167  case X86::VGATHERQPSZ128rm:
7168  case X86::VGATHERQPSZ256rm:
7169  case X86::VGATHERQPSZrm:
7170  case X86::VGATHERQPSrm:
7171  case X86::VPGATHERDDYrm:
7172  case X86::VPGATHERDDZ128rm:
7173  case X86::VPGATHERDDZ256rm:
7174  case X86::VPGATHERDDZrm:
7175  case X86::VPGATHERDDrm:
7176  case X86::VPGATHERDQYrm:
7177  case X86::VPGATHERDQZ128rm:
7178  case X86::VPGATHERDQZ256rm:
7179  case X86::VPGATHERDQZrm:
7180  case X86::VPGATHERDQrm:
7181  case X86::VPGATHERQDYrm:
7182  case X86::VPGATHERQDZ128rm:
7183  case X86::VPGATHERQDZ256rm:
7184  case X86::VPGATHERQDZrm:
7185  case X86::VPGATHERQDrm:
7186  case X86::VPGATHERQQYrm:
7187  case X86::VPGATHERQQZ128rm:
7188  case X86::VPGATHERQQZ256rm:
7189  case X86::VPGATHERQQZrm:
7190  case X86::VPGATHERQQrm:
7191  case X86::VSCATTERDPDZ128mr:
7192  case X86::VSCATTERDPDZ256mr:
7193  case X86::VSCATTERDPDZmr:
7194  case X86::VSCATTERDPSZ128mr:
7195  case X86::VSCATTERDPSZ256mr:
7196  case X86::VSCATTERDPSZmr:
7197  case X86::VSCATTERPF0DPDm:
7198  case X86::VSCATTERPF0DPSm:
7199  case X86::VSCATTERPF0QPDm:
7200  case X86::VSCATTERPF0QPSm:
7201  case X86::VSCATTERPF1DPDm:
7202  case X86::VSCATTERPF1DPSm:
7203  case X86::VSCATTERPF1QPDm:
7204  case X86::VSCATTERPF1QPSm:
7205  case X86::VSCATTERQPDZ128mr:
7206  case X86::VSCATTERQPDZ256mr:
7207  case X86::VSCATTERQPDZmr:
7208  case X86::VSCATTERQPSZ128mr:
7209  case X86::VSCATTERQPSZ256mr:
7210  case X86::VSCATTERQPSZmr:
7211  case X86::VPSCATTERDDZ128mr:
7212  case X86::VPSCATTERDDZ256mr:
7213  case X86::VPSCATTERDDZmr:
7214  case X86::VPSCATTERDQZ128mr:
7215  case X86::VPSCATTERDQZ256mr:
7216  case X86::VPSCATTERDQZmr:
7217  case X86::VPSCATTERQDZ128mr:
7218  case X86::VPSCATTERQDZ256mr:
7219  case X86::VPSCATTERQDZmr:
7220  case X86::VPSCATTERQQZ128mr:
7221  case X86::VPSCATTERQQZ256mr:
7222  case X86::VPSCATTERQQZmr:
7223    return true;
7224  }
7225}
7226
7227bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
7228                                         const MachineRegisterInfo *MRI,
7229                                         const MachineInstr &DefMI,
7230                                         unsigned DefIdx,
7231                                         const MachineInstr &UseMI,
7232                                         unsigned UseIdx) const {
7233  return isHighLatencyDef(DefMI.getOpcode());
7234}
7235
7236bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
7237                                           const MachineBasicBlock *MBB) const {
7238  assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 &&
7239         Inst.getNumDefs() <= 2 && "Reassociation needs binary operators");
7240
7241  // Integer binary math/logic instructions have a third source operand:
7242  // the EFLAGS register. That operand must be both defined here and never
7243  // used; ie, it must be dead. If the EFLAGS operand is live, then we can
7244  // not change anything because rearranging the operands could affect other
7245  // instructions that depend on the exact status flags (zero, sign, etc.)
7246  // that are set by using these particular operands with this operation.
7247  const MachineOperand *FlagDef = Inst.findRegisterDefOperand(X86::EFLAGS);
7248  assert((Inst.getNumDefs() == 1 || FlagDef) &&
7249         "Implicit def isn't flags?");
7250  if (FlagDef && !FlagDef->isDead())
7251    return false;
7252
7253  return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
7254}
7255
7256// TODO: There are many more machine instruction opcodes to match:
7257//       1. Other data types (integer, vectors)
7258//       2. Other math / logic operations (xor, or)
7259//       3. Other forms of the same operation (intrinsics and other variants)
7260bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
7261  switch (Inst.getOpcode()) {
7262  case X86::AND8rr:
7263  case X86::AND16rr:
7264  case X86::AND32rr:
7265  case X86::AND64rr:
7266  case X86::OR8rr:
7267  case X86::OR16rr:
7268  case X86::OR32rr:
7269  case X86::OR64rr:
7270  case X86::XOR8rr:
7271  case X86::XOR16rr:
7272  case X86::XOR32rr:
7273  case X86::XOR64rr:
7274  case X86::IMUL16rr:
7275  case X86::IMUL32rr:
7276  case X86::IMUL64rr:
7277  case X86::PANDrr:
7278  case X86::PORrr:
7279  case X86::PXORrr:
7280  case X86::ANDPDrr:
7281  case X86::ANDPSrr:
7282  case X86::ORPDrr:
7283  case X86::ORPSrr:
7284  case X86::XORPDrr:
7285  case X86::XORPSrr:
7286  case X86::PADDBrr:
7287  case X86::PADDWrr:
7288  case X86::PADDDrr:
7289  case X86::PADDQrr:
7290  case X86::PMULLWrr:
7291  case X86::PMULLDrr:
7292  case X86::PMAXSBrr:
7293  case X86::PMAXSDrr:
7294  case X86::PMAXSWrr:
7295  case X86::PMAXUBrr:
7296  case X86::PMAXUDrr:
7297  case X86::PMAXUWrr:
7298  case X86::PMINSBrr:
7299  case X86::PMINSDrr:
7300  case X86::PMINSWrr:
7301  case X86::PMINUBrr:
7302  case X86::PMINUDrr:
7303  case X86::PMINUWrr:
7304  case X86::VPANDrr:
7305  case X86::VPANDYrr:
7306  case X86::VPANDDZ128rr:
7307  case X86::VPANDDZ256rr:
7308  case X86::VPANDDZrr:
7309  case X86::VPANDQZ128rr:
7310  case X86::VPANDQZ256rr:
7311  case X86::VPANDQZrr:
7312  case X86::VPORrr:
7313  case X86::VPORYrr:
7314  case X86::VPORDZ128rr:
7315  case X86::VPORDZ256rr:
7316  case X86::VPORDZrr:
7317  case X86::VPORQZ128rr:
7318  case X86::VPORQZ256rr:
7319  case X86::VPORQZrr:
7320  case X86::VPXORrr:
7321  case X86::VPXORYrr:
7322  case X86::VPXORDZ128rr:
7323  case X86::VPXORDZ256rr:
7324  case X86::VPXORDZrr:
7325  case X86::VPXORQZ128rr:
7326  case X86::VPXORQZ256rr:
7327  case X86::VPXORQZrr:
7328  case X86::VANDPDrr:
7329  case X86::VANDPSrr:
7330  case X86::VANDPDYrr:
7331  case X86::VANDPSYrr:
7332  case X86::VANDPDZ128rr:
7333  case X86::VANDPSZ128rr:
7334  case X86::VANDPDZ256rr:
7335  case X86::VANDPSZ256rr:
7336  case X86::VANDPDZrr:
7337  case X86::VANDPSZrr:
7338  case X86::VORPDrr:
7339  case X86::VORPSrr:
7340  case X86::VORPDYrr:
7341  case X86::VORPSYrr:
7342  case X86::VORPDZ128rr:
7343  case X86::VORPSZ128rr:
7344  case X86::VORPDZ256rr:
7345  case X86::VORPSZ256rr:
7346  case X86::VORPDZrr:
7347  case X86::VORPSZrr:
7348  case X86::VXORPDrr:
7349  case X86::VXORPSrr:
7350  case X86::VXORPDYrr:
7351  case X86::VXORPSYrr:
7352  case X86::VXORPDZ128rr:
7353  case X86::VXORPSZ128rr:
7354  case X86::VXORPDZ256rr:
7355  case X86::VXORPSZ256rr:
7356  case X86::VXORPDZrr:
7357  case X86::VXORPSZrr:
7358  case X86::KADDBrr:
7359  case X86::KADDWrr:
7360  case X86::KADDDrr:
7361  case X86::KADDQrr:
7362  case X86::KANDBrr:
7363  case X86::KANDWrr:
7364  case X86::KANDDrr:
7365  case X86::KANDQrr:
7366  case X86::KORBrr:
7367  case X86::KORWrr:
7368  case X86::KORDrr:
7369  case X86::KORQrr:
7370  case X86::KXORBrr:
7371  case X86::KXORWrr:
7372  case X86::KXORDrr:
7373  case X86::KXORQrr:
7374  case X86::VPADDBrr:
7375  case X86::VPADDWrr:
7376  case X86::VPADDDrr:
7377  case X86::VPADDQrr:
7378  case X86::VPADDBYrr:
7379  case X86::VPADDWYrr:
7380  case X86::VPADDDYrr:
7381  case X86::VPADDQYrr:
7382  case X86::VPADDBZ128rr:
7383  case X86::VPADDWZ128rr:
7384  case X86::VPADDDZ128rr:
7385  case X86::VPADDQZ128rr:
7386  case X86::VPADDBZ256rr:
7387  case X86::VPADDWZ256rr:
7388  case X86::VPADDDZ256rr:
7389  case X86::VPADDQZ256rr:
7390  case X86::VPADDBZrr:
7391  case X86::VPADDWZrr:
7392  case X86::VPADDDZrr:
7393  case X86::VPADDQZrr:
7394  case X86::VPMULLWrr:
7395  case X86::VPMULLWYrr:
7396  case X86::VPMULLWZ128rr:
7397  case X86::VPMULLWZ256rr:
7398  case X86::VPMULLWZrr:
7399  case X86::VPMULLDrr:
7400  case X86::VPMULLDYrr:
7401  case X86::VPMULLDZ128rr:
7402  case X86::VPMULLDZ256rr:
7403  case X86::VPMULLDZrr:
7404  case X86::VPMULLQZ128rr:
7405  case X86::VPMULLQZ256rr:
7406  case X86::VPMULLQZrr:
7407  case X86::VPMAXSBrr:
7408  case X86::VPMAXSBYrr:
7409  case X86::VPMAXSBZ128rr:
7410  case X86::VPMAXSBZ256rr:
7411  case X86::VPMAXSBZrr:
7412  case X86::VPMAXSDrr:
7413  case X86::VPMAXSDYrr:
7414  case X86::VPMAXSDZ128rr:
7415  case X86::VPMAXSDZ256rr:
7416  case X86::VPMAXSDZrr:
7417  case X86::VPMAXSQZ128rr:
7418  case X86::VPMAXSQZ256rr:
7419  case X86::VPMAXSQZrr:
7420  case X86::VPMAXSWrr:
7421  case X86::VPMAXSWYrr:
7422  case X86::VPMAXSWZ128rr:
7423  case X86::VPMAXSWZ256rr:
7424  case X86::VPMAXSWZrr:
7425  case X86::VPMAXUBrr:
7426  case X86::VPMAXUBYrr:
7427  case X86::VPMAXUBZ128rr:
7428  case X86::VPMAXUBZ256rr:
7429  case X86::VPMAXUBZrr:
7430  case X86::VPMAXUDrr:
7431  case X86::VPMAXUDYrr:
7432  case X86::VPMAXUDZ128rr:
7433  case X86::VPMAXUDZ256rr:
7434  case X86::VPMAXUDZrr:
7435  case X86::VPMAXUQZ128rr:
7436  case X86::VPMAXUQZ256rr:
7437  case X86::VPMAXUQZrr:
7438  case X86::VPMAXUWrr:
7439  case X86::VPMAXUWYrr:
7440  case X86::VPMAXUWZ128rr:
7441  case X86::VPMAXUWZ256rr:
7442  case X86::VPMAXUWZrr:
7443  case X86::VPMINSBrr:
7444  case X86::VPMINSBYrr:
7445  case X86::VPMINSBZ128rr:
7446  case X86::VPMINSBZ256rr:
7447  case X86::VPMINSBZrr:
7448  case X86::VPMINSDrr:
7449  case X86::VPMINSDYrr:
7450  case X86::VPMINSDZ128rr:
7451  case X86::VPMINSDZ256rr:
7452  case X86::VPMINSDZrr:
7453  case X86::VPMINSQZ128rr:
7454  case X86::VPMINSQZ256rr:
7455  case X86::VPMINSQZrr:
7456  case X86::VPMINSWrr:
7457  case X86::VPMINSWYrr:
7458  case X86::VPMINSWZ128rr:
7459  case X86::VPMINSWZ256rr:
7460  case X86::VPMINSWZrr:
7461  case X86::VPMINUBrr:
7462  case X86::VPMINUBYrr:
7463  case X86::VPMINUBZ128rr:
7464  case X86::VPMINUBZ256rr:
7465  case X86::VPMINUBZrr:
7466  case X86::VPMINUDrr:
7467  case X86::VPMINUDYrr:
7468  case X86::VPMINUDZ128rr:
7469  case X86::VPMINUDZ256rr:
7470  case X86::VPMINUDZrr:
7471  case X86::VPMINUQZ128rr:
7472  case X86::VPMINUQZ256rr:
7473  case X86::VPMINUQZrr:
7474  case X86::VPMINUWrr:
7475  case X86::VPMINUWYrr:
7476  case X86::VPMINUWZ128rr:
7477  case X86::VPMINUWZ256rr:
7478  case X86::VPMINUWZrr:
7479  // Normal min/max instructions are not commutative because of NaN and signed
7480  // zero semantics, but these are. Thus, there's no need to check for global
7481  // relaxed math; the instructions themselves have the properties we need.
7482  case X86::MAXCPDrr:
7483  case X86::MAXCPSrr:
7484  case X86::MAXCSDrr:
7485  case X86::MAXCSSrr:
7486  case X86::MINCPDrr:
7487  case X86::MINCPSrr:
7488  case X86::MINCSDrr:
7489  case X86::MINCSSrr:
7490  case X86::VMAXCPDrr:
7491  case X86::VMAXCPSrr:
7492  case X86::VMAXCPDYrr:
7493  case X86::VMAXCPSYrr:
7494  case X86::VMAXCPDZ128rr:
7495  case X86::VMAXCPSZ128rr:
7496  case X86::VMAXCPDZ256rr:
7497  case X86::VMAXCPSZ256rr:
7498  case X86::VMAXCPDZrr:
7499  case X86::VMAXCPSZrr:
7500  case X86::VMAXCSDrr:
7501  case X86::VMAXCSSrr:
7502  case X86::VMAXCSDZrr:
7503  case X86::VMAXCSSZrr:
7504  case X86::VMINCPDrr:
7505  case X86::VMINCPSrr:
7506  case X86::VMINCPDYrr:
7507  case X86::VMINCPSYrr:
7508  case X86::VMINCPDZ128rr:
7509  case X86::VMINCPSZ128rr:
7510  case X86::VMINCPDZ256rr:
7511  case X86::VMINCPSZ256rr:
7512  case X86::VMINCPDZrr:
7513  case X86::VMINCPSZrr:
7514  case X86::VMINCSDrr:
7515  case X86::VMINCSSrr:
7516  case X86::VMINCSDZrr:
7517  case X86::VMINCSSZrr:
7518    return true;
7519  case X86::ADDPDrr:
7520  case X86::ADDPSrr:
7521  case X86::ADDSDrr:
7522  case X86::ADDSSrr:
7523  case X86::MULPDrr:
7524  case X86::MULPSrr:
7525  case X86::MULSDrr:
7526  case X86::MULSSrr:
7527  case X86::VADDPDrr:
7528  case X86::VADDPSrr:
7529  case X86::VADDPDYrr:
7530  case X86::VADDPSYrr:
7531  case X86::VADDPDZ128rr:
7532  case X86::VADDPSZ128rr:
7533  case X86::VADDPDZ256rr:
7534  case X86::VADDPSZ256rr:
7535  case X86::VADDPDZrr:
7536  case X86::VADDPSZrr:
7537  case X86::VADDSDrr:
7538  case X86::VADDSSrr:
7539  case X86::VADDSDZrr:
7540  case X86::VADDSSZrr:
7541  case X86::VMULPDrr:
7542  case X86::VMULPSrr:
7543  case X86::VMULPDYrr:
7544  case X86::VMULPSYrr:
7545  case X86::VMULPDZ128rr:
7546  case X86::VMULPSZ128rr:
7547  case X86::VMULPDZ256rr:
7548  case X86::VMULPSZ256rr:
7549  case X86::VMULPDZrr:
7550  case X86::VMULPSZrr:
7551  case X86::VMULSDrr:
7552  case X86::VMULSSrr:
7553  case X86::VMULSDZrr:
7554  case X86::VMULSSZrr:
7555    return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath;
7556  default:
7557    return false;
7558  }
7559}
7560
7561/// If \p DescribedReg overlaps with the MOVrr instruction's destination
7562/// register then, if possible, describe the value in terms of the source
7563/// register.
7564static Optional<ParamLoadedValue>
7565describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg,
7566                         const TargetRegisterInfo *TRI) {
7567  Register DestReg = MI.getOperand(0).getReg();
7568  Register SrcReg = MI.getOperand(1).getReg();
7569
7570  auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
7571
7572  // If the described register is the destination, just return the source.
7573  if (DestReg == DescribedReg)
7574    return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
7575
7576  // If the described register is a sub-register of the destination register,
7577  // then pick out the source register's corresponding sub-register.
7578  if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) {
7579    unsigned SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx);
7580    return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr);
7581  }
7582
7583  // The remaining case to consider is when the described register is a
7584  // super-register of the destination register. MOV8rr and MOV16rr does not
7585  // write to any of the other bytes in the register, meaning that we'd have to
7586  // describe the value using a combination of the source register and the
7587  // non-overlapping bits in the described register, which is not currently
7588  // possible.
7589  if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr ||
7590      !TRI->isSuperRegister(DestReg, DescribedReg))
7591    return None;
7592
7593  assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case");
7594  return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
7595}
7596
7597Optional<ParamLoadedValue>
7598X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const {
7599  const MachineOperand *Op = nullptr;
7600  DIExpression *Expr = nullptr;
7601
7602  const TargetRegisterInfo *TRI = &getRegisterInfo();
7603
7604  switch (MI.getOpcode()) {
7605  case X86::LEA32r:
7606  case X86::LEA64r:
7607  case X86::LEA64_32r: {
7608    // We may need to describe a 64-bit parameter with a 32-bit LEA.
7609    if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
7610      return None;
7611
7612    // Operand 4 could be global address. For now we do not support
7613    // such situation.
7614    if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm())
7615      return None;
7616
7617    const MachineOperand &Op1 = MI.getOperand(1);
7618    const MachineOperand &Op2 = MI.getOperand(3);
7619    assert(Op2.isReg() && (Op2.getReg() == X86::NoRegister ||
7620                           Register::isPhysicalRegister(Op2.getReg())));
7621
7622    // Omit situations like:
7623    // %rsi = lea %rsi, 4, ...
7624    if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) ||
7625        Op2.getReg() == MI.getOperand(0).getReg())
7626      return None;
7627    else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister &&
7628              TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) ||
7629             (Op2.getReg() != X86::NoRegister &&
7630              TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg())))
7631      return None;
7632
7633    int64_t Coef = MI.getOperand(2).getImm();
7634    int64_t Offset = MI.getOperand(4).getImm();
7635    SmallVector<uint64_t, 8> Ops;
7636
7637    if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) {
7638      Op = &Op1;
7639    } else if (Op1.isFI())
7640      Op = &Op1;
7641
7642    if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) {
7643      Ops.push_back(dwarf::DW_OP_constu);
7644      Ops.push_back(Coef + 1);
7645      Ops.push_back(dwarf::DW_OP_mul);
7646    } else {
7647      if (Op && Op2.getReg() != X86::NoRegister) {
7648        int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false);
7649        if (dwarfReg < 0)
7650          return None;
7651        else if (dwarfReg < 32) {
7652          Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg);
7653          Ops.push_back(0);
7654        } else {
7655          Ops.push_back(dwarf::DW_OP_bregx);
7656          Ops.push_back(dwarfReg);
7657          Ops.push_back(0);
7658        }
7659      } else if (!Op) {
7660        assert(Op2.getReg() != X86::NoRegister);
7661        Op = &Op2;
7662      }
7663
7664      if (Coef > 1) {
7665        assert(Op2.getReg() != X86::NoRegister);
7666        Ops.push_back(dwarf::DW_OP_constu);
7667        Ops.push_back(Coef);
7668        Ops.push_back(dwarf::DW_OP_mul);
7669      }
7670
7671      if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) &&
7672          Op2.getReg() != X86::NoRegister) {
7673        Ops.push_back(dwarf::DW_OP_plus);
7674      }
7675    }
7676
7677    DIExpression::appendOffset(Ops, Offset);
7678    Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops);
7679
7680    return ParamLoadedValue(*Op, Expr);;
7681  }
7682  case X86::MOV32ri:
7683  case X86::MOV64ri:
7684  case X86::MOV64ri32:
7685    // MOV32ri may be used for producing zero-extended 32-bit immediates in
7686    // 64-bit parameters, so we need to consider super-registers.
7687    if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
7688      return None;
7689    return ParamLoadedValue(MI.getOperand(1), Expr);
7690  case X86::MOV8rr:
7691  case X86::MOV16rr:
7692  case X86::MOV32rr:
7693  case X86::MOV64rr:
7694    return describeMOVrrLoadedValue(MI, Reg, TRI);
7695  case X86::XOR32rr: {
7696    // 64-bit parameters are zero-materialized using XOR32rr, so also consider
7697    // super-registers.
7698    if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
7699      return None;
7700    if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
7701      return ParamLoadedValue(MachineOperand::CreateImm(0), Expr);
7702    return None;
7703  }
7704  case X86::MOVSX64rr32: {
7705    // We may need to describe the lower 32 bits of the MOVSX; for example, in
7706    // cases like this:
7707    //
7708    //  $ebx = [...]
7709    //  $rdi = MOVSX64rr32 $ebx
7710    //  $esi = MOV32rr $edi
7711    if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg))
7712      return None;
7713
7714    Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
7715
7716    // If the described register is the destination register we need to
7717    // sign-extend the source register from 32 bits. The other case we handle
7718    // is when the described register is the 32-bit sub-register of the
7719    // destination register, in case we just need to return the source
7720    // register.
7721    if (Reg == MI.getOperand(0).getReg())
7722      Expr = DIExpression::appendExt(Expr, 32, 64, true);
7723    else
7724      assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) &&
7725             "Unhandled sub-register case for MOVSX64rr32");
7726
7727    return ParamLoadedValue(MI.getOperand(1), Expr);
7728  }
7729  default:
7730    assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction");
7731    return TargetInstrInfo::describeLoadedValue(MI, Reg);
7732  }
7733}
7734
7735/// This is an architecture-specific helper function of reassociateOps.
7736/// Set special operand attributes for new instructions after reassociation.
7737void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
7738                                         MachineInstr &OldMI2,
7739                                         MachineInstr &NewMI1,
7740                                         MachineInstr &NewMI2) const {
7741  // Integer instructions may define an implicit EFLAGS dest register operand.
7742  MachineOperand *OldFlagDef1 = OldMI1.findRegisterDefOperand(X86::EFLAGS);
7743  MachineOperand *OldFlagDef2 = OldMI2.findRegisterDefOperand(X86::EFLAGS);
7744
7745  assert(!OldFlagDef1 == !OldFlagDef2 &&
7746         "Unexpected instruction type for reassociation");
7747
7748  if (!OldFlagDef1 || !OldFlagDef2)
7749    return;
7750
7751  assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() &&
7752         "Must have dead EFLAGS operand in reassociable instruction");
7753
7754  MachineOperand *NewFlagDef1 = NewMI1.findRegisterDefOperand(X86::EFLAGS);
7755  MachineOperand *NewFlagDef2 = NewMI2.findRegisterDefOperand(X86::EFLAGS);
7756
7757  assert(NewFlagDef1 && NewFlagDef2 &&
7758         "Unexpected operand in reassociable instruction");
7759
7760  // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
7761  // of this pass or other passes. The EFLAGS operands must be dead in these new
7762  // instructions because the EFLAGS operands in the original instructions must
7763  // be dead in order for reassociation to occur.
7764  NewFlagDef1->setIsDead();
7765  NewFlagDef2->setIsDead();
7766}
7767
7768std::pair<unsigned, unsigned>
7769X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
7770  return std::make_pair(TF, 0u);
7771}
7772
7773ArrayRef<std::pair<unsigned, const char *>>
7774X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
7775  using namespace X86II;
7776  static const std::pair<unsigned, const char *> TargetFlags[] = {
7777      {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
7778      {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
7779      {MO_GOT, "x86-got"},
7780      {MO_GOTOFF, "x86-gotoff"},
7781      {MO_GOTPCREL, "x86-gotpcrel"},
7782      {MO_PLT, "x86-plt"},
7783      {MO_TLSGD, "x86-tlsgd"},
7784      {MO_TLSLD, "x86-tlsld"},
7785      {MO_TLSLDM, "x86-tlsldm"},
7786      {MO_GOTTPOFF, "x86-gottpoff"},
7787      {MO_INDNTPOFF, "x86-indntpoff"},
7788      {MO_TPOFF, "x86-tpoff"},
7789      {MO_DTPOFF, "x86-dtpoff"},
7790      {MO_NTPOFF, "x86-ntpoff"},
7791      {MO_GOTNTPOFF, "x86-gotntpoff"},
7792      {MO_DLLIMPORT, "x86-dllimport"},
7793      {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
7794      {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
7795      {MO_TLVP, "x86-tlvp"},
7796      {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
7797      {MO_SECREL, "x86-secrel"},
7798      {MO_COFFSTUB, "x86-coffstub"}};
7799  return makeArrayRef(TargetFlags);
7800}
7801
7802namespace {
7803  /// Create Global Base Reg pass. This initializes the PIC
7804  /// global base register for x86-32.
7805  struct CGBR : public MachineFunctionPass {
7806    static char ID;
7807    CGBR() : MachineFunctionPass(ID) {}
7808
7809    bool runOnMachineFunction(MachineFunction &MF) override {
7810      const X86TargetMachine *TM =
7811        static_cast<const X86TargetMachine *>(&MF.getTarget());
7812      const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
7813
7814      // Don't do anything in the 64-bit small and kernel code models. They use
7815      // RIP-relative addressing for everything.
7816      if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small ||
7817                            TM->getCodeModel() == CodeModel::Kernel))
7818        return false;
7819
7820      // Only emit a global base reg in PIC mode.
7821      if (!TM->isPositionIndependent())
7822        return false;
7823
7824      X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
7825      unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
7826
7827      // If we didn't need a GlobalBaseReg, don't insert code.
7828      if (GlobalBaseReg == 0)
7829        return false;
7830
7831      // Insert the set of GlobalBaseReg into the first MBB of the function
7832      MachineBasicBlock &FirstMBB = MF.front();
7833      MachineBasicBlock::iterator MBBI = FirstMBB.begin();
7834      DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
7835      MachineRegisterInfo &RegInfo = MF.getRegInfo();
7836      const X86InstrInfo *TII = STI.getInstrInfo();
7837
7838      unsigned PC;
7839      if (STI.isPICStyleGOT())
7840        PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
7841      else
7842        PC = GlobalBaseReg;
7843
7844      if (STI.is64Bit()) {
7845        if (TM->getCodeModel() == CodeModel::Medium) {
7846          // In the medium code model, use a RIP-relative LEA to materialize the
7847          // GOT.
7848          BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
7849              .addReg(X86::RIP)
7850              .addImm(0)
7851              .addReg(0)
7852              .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
7853              .addReg(0);
7854        } else if (TM->getCodeModel() == CodeModel::Large) {
7855          // In the large code model, we are aiming for this code, though the
7856          // register allocation may vary:
7857          //   leaq .LN$pb(%rip), %rax
7858          //   movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
7859          //   addq %rcx, %rax
7860          // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
7861          Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
7862          Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
7863          BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
7864              .addReg(X86::RIP)
7865              .addImm(0)
7866              .addReg(0)
7867              .addSym(MF.getPICBaseSymbol())
7868              .addReg(0);
7869          std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol());
7870          BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
7871              .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
7872                                 X86II::MO_PIC_BASE_OFFSET);
7873          BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
7874              .addReg(PBReg, RegState::Kill)
7875              .addReg(GOTReg, RegState::Kill);
7876        } else {
7877          llvm_unreachable("unexpected code model");
7878        }
7879      } else {
7880        // Operand of MovePCtoStack is completely ignored by asm printer. It's
7881        // only used in JIT code emission as displacement to pc.
7882        BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
7883
7884        // If we're using vanilla 'GOT' PIC style, we should use relative
7885        // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
7886        if (STI.isPICStyleGOT()) {
7887          // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
7888          // %some_register
7889          BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
7890              .addReg(PC)
7891              .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
7892                                 X86II::MO_GOT_ABSOLUTE_ADDRESS);
7893        }
7894      }
7895
7896      return true;
7897    }
7898
7899    StringRef getPassName() const override {
7900      return "X86 PIC Global Base Reg Initialization";
7901    }
7902
7903    void getAnalysisUsage(AnalysisUsage &AU) const override {
7904      AU.setPreservesCFG();
7905      MachineFunctionPass::getAnalysisUsage(AU);
7906    }
7907  };
7908}
7909
7910char CGBR::ID = 0;
7911FunctionPass*
7912llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
7913
7914namespace {
7915  struct LDTLSCleanup : public MachineFunctionPass {
7916    static char ID;
7917    LDTLSCleanup() : MachineFunctionPass(ID) {}
7918
7919    bool runOnMachineFunction(MachineFunction &MF) override {
7920      if (skipFunction(MF.getFunction()))
7921        return false;
7922
7923      X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
7924      if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
7925        // No point folding accesses if there isn't at least two.
7926        return false;
7927      }
7928
7929      MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
7930      return VisitNode(DT->getRootNode(), 0);
7931    }
7932
7933    // Visit the dominator subtree rooted at Node in pre-order.
7934    // If TLSBaseAddrReg is non-null, then use that to replace any
7935    // TLS_base_addr instructions. Otherwise, create the register
7936    // when the first such instruction is seen, and then use it
7937    // as we encounter more instructions.
7938    bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
7939      MachineBasicBlock *BB = Node->getBlock();
7940      bool Changed = false;
7941
7942      // Traverse the current block.
7943      for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
7944           ++I) {
7945        switch (I->getOpcode()) {
7946          case X86::TLS_base_addr32:
7947          case X86::TLS_base_addr64:
7948            if (TLSBaseAddrReg)
7949              I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
7950            else
7951              I = SetRegister(*I, &TLSBaseAddrReg);
7952            Changed = true;
7953            break;
7954          default:
7955            break;
7956        }
7957      }
7958
7959      // Visit the children of this block in the dominator tree.
7960      for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
7961           I != E; ++I) {
7962        Changed |= VisitNode(*I, TLSBaseAddrReg);
7963      }
7964
7965      return Changed;
7966    }
7967
7968    // Replace the TLS_base_addr instruction I with a copy from
7969    // TLSBaseAddrReg, returning the new instruction.
7970    MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
7971                                         unsigned TLSBaseAddrReg) {
7972      MachineFunction *MF = I.getParent()->getParent();
7973      const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
7974      const bool is64Bit = STI.is64Bit();
7975      const X86InstrInfo *TII = STI.getInstrInfo();
7976
7977      // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
7978      MachineInstr *Copy =
7979          BuildMI(*I.getParent(), I, I.getDebugLoc(),
7980                  TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
7981              .addReg(TLSBaseAddrReg);
7982
7983      // Erase the TLS_base_addr instruction.
7984      I.eraseFromParent();
7985
7986      return Copy;
7987    }
7988
7989    // Create a virtual register in *TLSBaseAddrReg, and populate it by
7990    // inserting a copy instruction after I. Returns the new instruction.
7991    MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
7992      MachineFunction *MF = I.getParent()->getParent();
7993      const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
7994      const bool is64Bit = STI.is64Bit();
7995      const X86InstrInfo *TII = STI.getInstrInfo();
7996
7997      // Create a virtual register for the TLS base address.
7998      MachineRegisterInfo &RegInfo = MF->getRegInfo();
7999      *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
8000                                                      ? &X86::GR64RegClass
8001                                                      : &X86::GR32RegClass);
8002
8003      // Insert a copy from RAX/EAX to TLSBaseAddrReg.
8004      MachineInstr *Next = I.getNextNode();
8005      MachineInstr *Copy =
8006          BuildMI(*I.getParent(), Next, I.getDebugLoc(),
8007                  TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
8008              .addReg(is64Bit ? X86::RAX : X86::EAX);
8009
8010      return Copy;
8011    }
8012
8013    StringRef getPassName() const override {
8014      return "Local Dynamic TLS Access Clean-up";
8015    }
8016
8017    void getAnalysisUsage(AnalysisUsage &AU) const override {
8018      AU.setPreservesCFG();
8019      AU.addRequired<MachineDominatorTree>();
8020      MachineFunctionPass::getAnalysisUsage(AU);
8021    }
8022  };
8023}
8024
8025char LDTLSCleanup::ID = 0;
8026FunctionPass*
8027llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
8028
8029/// Constants defining how certain sequences should be outlined.
8030///
8031/// \p MachineOutlinerDefault implies that the function is called with a call
8032/// instruction, and a return must be emitted for the outlined function frame.
8033///
8034/// That is,
8035///
8036/// I1                                 OUTLINED_FUNCTION:
8037/// I2 --> call OUTLINED_FUNCTION       I1
8038/// I3                                  I2
8039///                                     I3
8040///                                     ret
8041///
8042/// * Call construction overhead: 1 (call instruction)
8043/// * Frame construction overhead: 1 (return instruction)
8044///
8045/// \p MachineOutlinerTailCall implies that the function is being tail called.
8046/// A jump is emitted instead of a call, and the return is already present in
8047/// the outlined sequence. That is,
8048///
8049/// I1                                 OUTLINED_FUNCTION:
8050/// I2 --> jmp OUTLINED_FUNCTION       I1
8051/// ret                                I2
8052///                                    ret
8053///
8054/// * Call construction overhead: 1 (jump instruction)
8055/// * Frame construction overhead: 0 (don't need to return)
8056///
8057enum MachineOutlinerClass {
8058  MachineOutlinerDefault,
8059  MachineOutlinerTailCall
8060};
8061
8062outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo(
8063    std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
8064  unsigned SequenceSize =
8065      std::accumulate(RepeatedSequenceLocs[0].front(),
8066                      std::next(RepeatedSequenceLocs[0].back()), 0,
8067                      [](unsigned Sum, const MachineInstr &MI) {
8068                        // FIXME: x86 doesn't implement getInstSizeInBytes, so
8069                        // we can't tell the cost.  Just assume each instruction
8070                        // is one byte.
8071                        if (MI.isDebugInstr() || MI.isKill())
8072                          return Sum;
8073                        return Sum + 1;
8074                      });
8075
8076  // FIXME: Use real size in bytes for call and ret instructions.
8077  if (RepeatedSequenceLocs[0].back()->isTerminator()) {
8078    for (outliner::Candidate &C : RepeatedSequenceLocs)
8079      C.setCallInfo(MachineOutlinerTailCall, 1);
8080
8081    return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
8082                                      0, // Number of bytes to emit frame.
8083                                      MachineOutlinerTailCall // Type of frame.
8084    );
8085  }
8086
8087  for (outliner::Candidate &C : RepeatedSequenceLocs)
8088    C.setCallInfo(MachineOutlinerDefault, 1);
8089
8090  return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
8091                                    MachineOutlinerDefault);
8092}
8093
8094bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF,
8095                                           bool OutlineFromLinkOnceODRs) const {
8096  const Function &F = MF.getFunction();
8097
8098  // Does the function use a red zone? If it does, then we can't risk messing
8099  // with the stack.
8100  if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) {
8101    // It could have a red zone. If it does, then we don't want to touch it.
8102    const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
8103    if (!X86FI || X86FI->getUsesRedZone())
8104      return false;
8105  }
8106
8107  // If we *don't* want to outline from things that could potentially be deduped
8108  // then return false.
8109  if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
8110      return false;
8111
8112  // This function is viable for outlining, so return true.
8113  return true;
8114}
8115
8116outliner::InstrType
8117X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,  unsigned Flags) const {
8118  MachineInstr &MI = *MIT;
8119  // Don't allow debug values to impact outlining type.
8120  if (MI.isDebugInstr() || MI.isIndirectDebugValue())
8121    return outliner::InstrType::Invisible;
8122
8123  // At this point, KILL instructions don't really tell us much so we can go
8124  // ahead and skip over them.
8125  if (MI.isKill())
8126    return outliner::InstrType::Invisible;
8127
8128  // Is this a tail call? If yes, we can outline as a tail call.
8129  if (isTailCall(MI))
8130    return outliner::InstrType::Legal;
8131
8132  // Is this the terminator of a basic block?
8133  if (MI.isTerminator() || MI.isReturn()) {
8134
8135    // Does its parent have any successors in its MachineFunction?
8136    if (MI.getParent()->succ_empty())
8137      return outliner::InstrType::Legal;
8138
8139    // It does, so we can't tail call it.
8140    return outliner::InstrType::Illegal;
8141  }
8142
8143  // Don't outline anything that modifies or reads from the stack pointer.
8144  //
8145  // FIXME: There are instructions which are being manually built without
8146  // explicit uses/defs so we also have to check the MCInstrDesc. We should be
8147  // able to remove the extra checks once those are fixed up. For example,
8148  // sometimes we might get something like %rax = POP64r 1. This won't be
8149  // caught by modifiesRegister or readsRegister even though the instruction
8150  // really ought to be formed so that modifiesRegister/readsRegister would
8151  // catch it.
8152  if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
8153      MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
8154      MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
8155    return outliner::InstrType::Illegal;
8156
8157  // Outlined calls change the instruction pointer, so don't read from it.
8158  if (MI.readsRegister(X86::RIP, &RI) ||
8159      MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
8160      MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
8161    return outliner::InstrType::Illegal;
8162
8163  // Positions can't safely be outlined.
8164  if (MI.isPosition())
8165    return outliner::InstrType::Illegal;
8166
8167  // Make sure none of the operands of this instruction do anything tricky.
8168  for (const MachineOperand &MOP : MI.operands())
8169    if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
8170        MOP.isTargetIndex())
8171      return outliner::InstrType::Illegal;
8172
8173  return outliner::InstrType::Legal;
8174}
8175
8176void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB,
8177                                          MachineFunction &MF,
8178                                          const outliner::OutlinedFunction &OF)
8179                                          const {
8180  // If we're a tail call, we already have a return, so don't do anything.
8181  if (OF.FrameConstructionID == MachineOutlinerTailCall)
8182    return;
8183
8184  // We're a normal call, so our sequence doesn't have a return instruction.
8185  // Add it in.
8186  MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RETQ));
8187  MBB.insert(MBB.end(), retq);
8188}
8189
8190MachineBasicBlock::iterator
8191X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
8192                                 MachineBasicBlock::iterator &It,
8193                                 MachineFunction &MF,
8194                                 const outliner::Candidate &C) const {
8195  // Is it a tail call?
8196  if (C.CallConstructionID == MachineOutlinerTailCall) {
8197    // Yes, just insert a JMP.
8198    It = MBB.insert(It,
8199                  BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
8200                      .addGlobalAddress(M.getNamedValue(MF.getName())));
8201  } else {
8202    // No, insert a call.
8203    It = MBB.insert(It,
8204                  BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
8205                      .addGlobalAddress(M.getNamedValue(MF.getName())));
8206  }
8207
8208  return It;
8209}
8210
8211#define GET_INSTRINFO_HELPERS
8212#include "X86GenInstrInfo.inc"
8213