X86InstrInfo.cpp revision 360661
1234353Sdim//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2193323Sed//
3353358Sdim// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4353358Sdim// See https://llvm.org/LICENSE.txt for license information.
5353358Sdim// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6193323Sed//
7193323Sed//===----------------------------------------------------------------------===//
8193323Sed//
9193323Sed// This file contains the X86 implementation of the TargetInstrInfo class.
10193323Sed//
11193323Sed//===----------------------------------------------------------------------===//
12193323Sed
13193323Sed#include "X86InstrInfo.h"
14193323Sed#include "X86.h"
15193323Sed#include "X86InstrBuilder.h"
16341825Sdim#include "X86InstrFoldTables.h"
17193323Sed#include "X86MachineFunctionInfo.h"
18193323Sed#include "X86Subtarget.h"
19193323Sed#include "X86TargetMachine.h"
20193323Sed#include "llvm/ADT/STLExtras.h"
21341825Sdim#include "llvm/ADT/Sequence.h"
22309124Sdim#include "llvm/CodeGen/LivePhysRegs.h"
23249423Sdim#include "llvm/CodeGen/LiveVariables.h"
24193323Sed#include "llvm/CodeGen/MachineConstantPool.h"
25239462Sdim#include "llvm/CodeGen/MachineDominators.h"
26193323Sed#include "llvm/CodeGen/MachineFrameInfo.h"
27193323Sed#include "llvm/CodeGen/MachineInstrBuilder.h"
28309124Sdim#include "llvm/CodeGen/MachineModuleInfo.h"
29193323Sed#include "llvm/CodeGen/MachineRegisterInfo.h"
30261991Sdim#include "llvm/CodeGen/StackMaps.h"
31249423Sdim#include "llvm/IR/DerivedTypes.h"
32280031Sdim#include "llvm/IR/Function.h"
33249423Sdim#include "llvm/IR/LLVMContext.h"
34234353Sdim#include "llvm/MC/MCAsmInfo.h"
35276479Sdim#include "llvm/MC/MCExpr.h"
36207618Srdivacky#include "llvm/MC/MCInst.h"
37193323Sed#include "llvm/Support/CommandLine.h"
38202375Srdivacky#include "llvm/Support/Debug.h"
39198090Srdivacky#include "llvm/Support/ErrorHandling.h"
40198090Srdivacky#include "llvm/Support/raw_ostream.h"
41193323Sed#include "llvm/Target/TargetOptions.h"
42199481Srdivacky
43276479Sdimusing namespace llvm;
44276479Sdim
45276479Sdim#define DEBUG_TYPE "x86-instr-info"
46276479Sdim
47261991Sdim#define GET_INSTRINFO_CTOR_DTOR
48224145Sdim#include "X86GenInstrInfo.inc"
49224145Sdim
50198090Srdivackystatic cl::opt<bool>
51327952Sdim    NoFusing("disable-spill-fusing",
52327952Sdim             cl::desc("Disable fusing of spill code into instructions"),
53327952Sdim             cl::Hidden);
54198090Srdivackystatic cl::opt<bool>
55198090SrdivackyPrintFailedFusing("print-failed-fuse-candidates",
56198090Srdivacky                  cl::desc("Print instructions that the allocator wants to"
57198090Srdivacky                           " fuse, but the X86 backend currently can't"),
58198090Srdivacky                  cl::Hidden);
59198090Srdivackystatic cl::opt<bool>
60198090SrdivackyReMatPICStubLoad("remat-pic-stub-load",
61198090Srdivacky                 cl::desc("Re-materialize load from stub in PIC mode"),
62198090Srdivacky                 cl::init(false), cl::Hidden);
63309124Sdimstatic cl::opt<unsigned>
64309124SdimPartialRegUpdateClearance("partial-reg-update-clearance",
65309124Sdim                          cl::desc("Clearance between two register writes "
66309124Sdim                                   "for inserting XOR to avoid partial "
67309124Sdim                                   "register update"),
68309124Sdim                          cl::init(64), cl::Hidden);
69309124Sdimstatic cl::opt<unsigned>
70309124SdimUndefRegClearance("undef-reg-clearance",
71309124Sdim                  cl::desc("How many idle instructions we would like before "
72309124Sdim                           "certain undef register reads"),
73314564Sdim                  cl::init(128), cl::Hidden);
74193323Sed
75226633Sdim
76261991Sdim// Pin the vtable to this file.
77261991Sdimvoid X86InstrInfo::anchor() {}
78261991Sdim
79276479SdimX86InstrInfo::X86InstrInfo(X86Subtarget &STI)
80296417Sdim    : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
81296417Sdim                                               : X86::ADJCALLSTACKDOWN32),
82296417Sdim                      (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
83296417Sdim                                               : X86::ADJCALLSTACKUP32),
84309124Sdim                      X86::CATCHRET,
85309124Sdim                      (STI.is64Bit() ? X86::RETQ : X86::RETL)),
86288943Sdim      Subtarget(STI), RI(STI.getTargetTriple()) {
87226633Sdim}
88218893Sdim
89202375Srdivackybool
90202375SrdivackyX86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
91202375Srdivacky                                    unsigned &SrcReg, unsigned &DstReg,
92202375Srdivacky                                    unsigned &SubIdx) const {
93202375Srdivacky  switch (MI.getOpcode()) {
94202375Srdivacky  default: break;
95202375Srdivacky  case X86::MOVSX16rr8:
96202375Srdivacky  case X86::MOVZX16rr8:
97202375Srdivacky  case X86::MOVSX32rr8:
98202375Srdivacky  case X86::MOVZX32rr8:
99202375Srdivacky  case X86::MOVSX64rr8:
100276479Sdim    if (!Subtarget.is64Bit())
101202375Srdivacky      // It's not always legal to reference the low 8-bit of the larger
102202375Srdivacky      // register in 32-bit mode.
103202375Srdivacky      return false;
104321369Sdim    LLVM_FALLTHROUGH;
105202375Srdivacky  case X86::MOVSX32rr16:
106202375Srdivacky  case X86::MOVZX32rr16:
107202375Srdivacky  case X86::MOVSX64rr16:
108261991Sdim  case X86::MOVSX64rr32: {
109202375Srdivacky    if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
110202375Srdivacky      // Be conservative.
111202375Srdivacky      return false;
112202375Srdivacky    SrcReg = MI.getOperand(1).getReg();
113202375Srdivacky    DstReg = MI.getOperand(0).getReg();
114202375Srdivacky    switch (MI.getOpcode()) {
115243830Sdim    default: llvm_unreachable("Unreachable!");
116202375Srdivacky    case X86::MOVSX16rr8:
117202375Srdivacky    case X86::MOVZX16rr8:
118202375Srdivacky    case X86::MOVSX32rr8:
119202375Srdivacky    case X86::MOVZX32rr8:
120202375Srdivacky    case X86::MOVSX64rr8:
121208599Srdivacky      SubIdx = X86::sub_8bit;
122202375Srdivacky      break;
123202375Srdivacky    case X86::MOVSX32rr16:
124202375Srdivacky    case X86::MOVZX32rr16:
125202375Srdivacky    case X86::MOVSX64rr16:
126208599Srdivacky      SubIdx = X86::sub_16bit;
127202375Srdivacky      break;
128202375Srdivacky    case X86::MOVSX64rr32:
129208599Srdivacky      SubIdx = X86::sub_32bit;
130202375Srdivacky      break;
131202375Srdivacky    }
132202375Srdivacky    return true;
133202375Srdivacky  }
134202375Srdivacky  }
135202375Srdivacky  return false;
136202375Srdivacky}
137202375Srdivacky
138309124Sdimint X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
139309124Sdim  const MachineFunction *MF = MI.getParent()->getParent();
140280031Sdim  const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
141280031Sdim
142321369Sdim  if (isFrameInstr(MI)) {
143280031Sdim    unsigned StackAlign = TFI->getStackAlignment();
144321369Sdim    int SPAdj = alignTo(getFrameSize(MI), StackAlign);
145321369Sdim    SPAdj -= getFrameAdjustment(MI);
146321369Sdim    if (!isFrameSetup(MI))
147321369Sdim      SPAdj = -SPAdj;
148321369Sdim    return SPAdj;
149280031Sdim  }
150288943Sdim
151288943Sdim  // To know whether a call adjusts the stack, we need information
152280031Sdim  // that is bound to the following ADJCALLSTACKUP pseudo.
153280031Sdim  // Look for the next ADJCALLSTACKUP that follows the call.
154309124Sdim  if (MI.isCall()) {
155309124Sdim    const MachineBasicBlock *MBB = MI.getParent();
156280031Sdim    auto I = ++MachineBasicBlock::const_iterator(MI);
157280031Sdim    for (auto E = MBB->end(); I != E; ++I) {
158280031Sdim      if (I->getOpcode() == getCallFrameDestroyOpcode() ||
159280031Sdim          I->isCall())
160280031Sdim        break;
161280031Sdim    }
162280031Sdim
163280031Sdim    // If we could not find a frame destroy opcode, then it has already
164280031Sdim    // been simplified, so we don't care.
165280031Sdim    if (I->getOpcode() != getCallFrameDestroyOpcode())
166280031Sdim      return 0;
167280031Sdim
168280031Sdim    return -(I->getOperand(1).getImm());
169280031Sdim  }
170280031Sdim
171280031Sdim  // Currently handle only PUSHes we can reasonably expect to see
172280031Sdim  // in call sequences
173309124Sdim  switch (MI.getOpcode()) {
174288943Sdim  default:
175280031Sdim    return 0;
176280031Sdim  case X86::PUSH32i8:
177280031Sdim  case X86::PUSH32r:
178280031Sdim  case X86::PUSH32rmm:
179280031Sdim  case X86::PUSH32rmr:
180280031Sdim  case X86::PUSHi32:
181280031Sdim    return 4;
182309124Sdim  case X86::PUSH64i8:
183309124Sdim  case X86::PUSH64r:
184309124Sdim  case X86::PUSH64rmm:
185309124Sdim  case X86::PUSH64rmr:
186309124Sdim  case X86::PUSH64i32:
187309124Sdim    return 8;
188280031Sdim  }
189280031Sdim}
190280031Sdim
191288943Sdim/// Return true and the FrameIndex if the specified
192199481Srdivacky/// operand and follow operands form a reference to the stack frame.
193309124Sdimbool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
194199481Srdivacky                                  int &FrameIndex) const {
195309124Sdim  if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
196309124Sdim      MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
197309124Sdim      MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
198309124Sdim      MI.getOperand(Op + X86::AddrDisp).isImm() &&
199309124Sdim      MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
200309124Sdim      MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
201309124Sdim      MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
202309124Sdim    FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
203199481Srdivacky    return true;
204199481Srdivacky  }
205199481Srdivacky  return false;
206199481Srdivacky}
207199481Srdivacky
208341825Sdimstatic bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
209199481Srdivacky  switch (Opcode) {
210234353Sdim  default:
211234353Sdim    return false;
212193323Sed  case X86::MOV8rm:
213341825Sdim  case X86::KMOVBkm:
214341825Sdim    MemBytes = 1;
215341825Sdim    return true;
216193323Sed  case X86::MOV16rm:
217341825Sdim  case X86::KMOVWkm:
218341825Sdim    MemBytes = 2;
219341825Sdim    return true;
220193323Sed  case X86::MOV32rm:
221341825Sdim  case X86::MOVSSrm:
222353358Sdim  case X86::MOVSSrm_alt:
223353358Sdim  case X86::VMOVSSrm:
224353358Sdim  case X86::VMOVSSrm_alt:
225341825Sdim  case X86::VMOVSSZrm:
226353358Sdim  case X86::VMOVSSZrm_alt:
227341825Sdim  case X86::KMOVDkm:
228341825Sdim    MemBytes = 4;
229341825Sdim    return true;
230193323Sed  case X86::MOV64rm:
231193323Sed  case X86::LD_Fp64m:
232193323Sed  case X86::MOVSDrm:
233353358Sdim  case X86::MOVSDrm_alt:
234341825Sdim  case X86::VMOVSDrm:
235353358Sdim  case X86::VMOVSDrm_alt:
236341825Sdim  case X86::VMOVSDZrm:
237353358Sdim  case X86::VMOVSDZrm_alt:
238341825Sdim  case X86::MMX_MOVD64rm:
239341825Sdim  case X86::MMX_MOVQ64rm:
240341825Sdim  case X86::KMOVQkm:
241341825Sdim    MemBytes = 8;
242341825Sdim    return true;
243193323Sed  case X86::MOVAPSrm:
244309124Sdim  case X86::MOVUPSrm:
245193323Sed  case X86::MOVAPDrm:
246309124Sdim  case X86::MOVUPDrm:
247193323Sed  case X86::MOVDQArm:
248309124Sdim  case X86::MOVDQUrm:
249226633Sdim  case X86::VMOVAPSrm:
250309124Sdim  case X86::VMOVUPSrm:
251226633Sdim  case X86::VMOVAPDrm:
252309124Sdim  case X86::VMOVUPDrm:
253226633Sdim  case X86::VMOVDQArm:
254309124Sdim  case X86::VMOVDQUrm:
255341825Sdim  case X86::VMOVAPSZ128rm:
256341825Sdim  case X86::VMOVUPSZ128rm:
257341825Sdim  case X86::VMOVAPSZ128rm_NOVLX:
258341825Sdim  case X86::VMOVUPSZ128rm_NOVLX:
259341825Sdim  case X86::VMOVAPDZ128rm:
260341825Sdim  case X86::VMOVUPDZ128rm:
261341825Sdim  case X86::VMOVDQU8Z128rm:
262341825Sdim  case X86::VMOVDQU16Z128rm:
263341825Sdim  case X86::VMOVDQA32Z128rm:
264341825Sdim  case X86::VMOVDQU32Z128rm:
265341825Sdim  case X86::VMOVDQA64Z128rm:
266341825Sdim  case X86::VMOVDQU64Z128rm:
267341825Sdim    MemBytes = 16;
268341825Sdim    return true;
269341825Sdim  case X86::VMOVAPSYrm:
270280031Sdim  case X86::VMOVUPSYrm:
271341825Sdim  case X86::VMOVAPDYrm:
272280031Sdim  case X86::VMOVUPDYrm:
273341825Sdim  case X86::VMOVDQAYrm:
274280031Sdim  case X86::VMOVDQUYrm:
275309124Sdim  case X86::VMOVAPSZ256rm:
276341825Sdim  case X86::VMOVUPSZ256rm:
277314564Sdim  case X86::VMOVAPSZ256rm_NOVLX:
278314564Sdim  case X86::VMOVUPSZ256rm_NOVLX:
279309124Sdim  case X86::VMOVAPDZ256rm:
280309124Sdim  case X86::VMOVUPDZ256rm:
281341825Sdim  case X86::VMOVDQU8Z256rm:
282341825Sdim  case X86::VMOVDQU16Z256rm:
283309124Sdim  case X86::VMOVDQA32Z256rm:
284309124Sdim  case X86::VMOVDQU32Z256rm:
285309124Sdim  case X86::VMOVDQA64Z256rm:
286309124Sdim  case X86::VMOVDQU64Z256rm:
287341825Sdim    MemBytes = 32;
288341825Sdim    return true;
289341825Sdim  case X86::VMOVAPSZrm:
290341825Sdim  case X86::VMOVUPSZrm:
291341825Sdim  case X86::VMOVAPDZrm:
292341825Sdim  case X86::VMOVUPDZrm:
293309124Sdim  case X86::VMOVDQU8Zrm:
294309124Sdim  case X86::VMOVDQU16Zrm:
295341825Sdim  case X86::VMOVDQA32Zrm:
296341825Sdim  case X86::VMOVDQU32Zrm:
297341825Sdim  case X86::VMOVDQA64Zrm:
298341825Sdim  case X86::VMOVDQU64Zrm:
299341825Sdim    MemBytes = 64;
300199481Srdivacky    return true;
301193323Sed  }
302193323Sed}
303193323Sed
304341825Sdimstatic bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
305199481Srdivacky  switch (Opcode) {
306341825Sdim  default:
307341825Sdim    return false;
308193323Sed  case X86::MOV8mr:
309341825Sdim  case X86::KMOVBmk:
310341825Sdim    MemBytes = 1;
311341825Sdim    return true;
312193323Sed  case X86::MOV16mr:
313341825Sdim  case X86::KMOVWmk:
314341825Sdim    MemBytes = 2;
315341825Sdim    return true;
316193323Sed  case X86::MOV32mr:
317341825Sdim  case X86::MOVSSmr:
318341825Sdim  case X86::VMOVSSmr:
319341825Sdim  case X86::VMOVSSZmr:
320341825Sdim  case X86::KMOVDmk:
321341825Sdim    MemBytes = 4;
322341825Sdim    return true;
323193323Sed  case X86::MOV64mr:
324193323Sed  case X86::ST_FpP64m:
325193323Sed  case X86::MOVSDmr:
326341825Sdim  case X86::VMOVSDmr:
327341825Sdim  case X86::VMOVSDZmr:
328341825Sdim  case X86::MMX_MOVD64mr:
329341825Sdim  case X86::MMX_MOVQ64mr:
330341825Sdim  case X86::MMX_MOVNTQmr:
331341825Sdim  case X86::KMOVQmk:
332341825Sdim    MemBytes = 8;
333341825Sdim    return true;
334193323Sed  case X86::MOVAPSmr:
335309124Sdim  case X86::MOVUPSmr:
336193323Sed  case X86::MOVAPDmr:
337309124Sdim  case X86::MOVUPDmr:
338193323Sed  case X86::MOVDQAmr:
339309124Sdim  case X86::MOVDQUmr:
340226633Sdim  case X86::VMOVAPSmr:
341309124Sdim  case X86::VMOVUPSmr:
342226633Sdim  case X86::VMOVAPDmr:
343309124Sdim  case X86::VMOVUPDmr:
344226633Sdim  case X86::VMOVDQAmr:
345309124Sdim  case X86::VMOVDQUmr:
346341825Sdim  case X86::VMOVUPSZ128mr:
347341825Sdim  case X86::VMOVAPSZ128mr:
348341825Sdim  case X86::VMOVUPSZ128mr_NOVLX:
349341825Sdim  case X86::VMOVAPSZ128mr_NOVLX:
350341825Sdim  case X86::VMOVUPDZ128mr:
351341825Sdim  case X86::VMOVAPDZ128mr:
352341825Sdim  case X86::VMOVDQA32Z128mr:
353341825Sdim  case X86::VMOVDQU32Z128mr:
354341825Sdim  case X86::VMOVDQA64Z128mr:
355341825Sdim  case X86::VMOVDQU64Z128mr:
356341825Sdim  case X86::VMOVDQU8Z128mr:
357341825Sdim  case X86::VMOVDQU16Z128mr:
358341825Sdim    MemBytes = 16;
359341825Sdim    return true;
360280031Sdim  case X86::VMOVUPSYmr:
361224145Sdim  case X86::VMOVAPSYmr:
362280031Sdim  case X86::VMOVUPDYmr:
363224145Sdim  case X86::VMOVAPDYmr:
364280031Sdim  case X86::VMOVDQUYmr:
365224145Sdim  case X86::VMOVDQAYmr:
366309124Sdim  case X86::VMOVUPSZ256mr:
367341825Sdim  case X86::VMOVAPSZ256mr:
368314564Sdim  case X86::VMOVUPSZ256mr_NOVLX:
369314564Sdim  case X86::VMOVAPSZ256mr_NOVLX:
370309124Sdim  case X86::VMOVUPDZ256mr:
371309124Sdim  case X86::VMOVAPDZ256mr:
372341825Sdim  case X86::VMOVDQU8Z256mr:
373341825Sdim  case X86::VMOVDQU16Z256mr:
374309124Sdim  case X86::VMOVDQA32Z256mr:
375309124Sdim  case X86::VMOVDQU32Z256mr:
376309124Sdim  case X86::VMOVDQA64Z256mr:
377309124Sdim  case X86::VMOVDQU64Z256mr:
378341825Sdim    MemBytes = 32;
379341825Sdim    return true;
380341825Sdim  case X86::VMOVUPSZmr:
381341825Sdim  case X86::VMOVAPSZmr:
382341825Sdim  case X86::VMOVUPDZmr:
383341825Sdim  case X86::VMOVAPDZmr:
384309124Sdim  case X86::VMOVDQU8Zmr:
385309124Sdim  case X86::VMOVDQU16Zmr:
386341825Sdim  case X86::VMOVDQA32Zmr:
387341825Sdim  case X86::VMOVDQU32Zmr:
388341825Sdim  case X86::VMOVDQA64Zmr:
389341825Sdim  case X86::VMOVDQU64Zmr:
390341825Sdim    MemBytes = 64;
391199481Srdivacky    return true;
392199481Srdivacky  }
393199481Srdivacky  return false;
394199481Srdivacky}
395199481Srdivacky
396309124Sdimunsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
397199481Srdivacky                                           int &FrameIndex) const {
398341825Sdim  unsigned Dummy;
399341825Sdim  return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
400341825Sdim}
401341825Sdim
402341825Sdimunsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
403341825Sdim                                           int &FrameIndex,
404341825Sdim                                           unsigned &MemBytes) const {
405341825Sdim  if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
406309124Sdim    if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
407309124Sdim      return MI.getOperand(0).getReg();
408199481Srdivacky  return 0;
409199481Srdivacky}
410199481Srdivacky
411309124Sdimunsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
412199481Srdivacky                                                 int &FrameIndex) const {
413341825Sdim  unsigned Dummy;
414341825Sdim  if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
415199481Srdivacky    unsigned Reg;
416199481Srdivacky    if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
417199481Srdivacky      return Reg;
418199481Srdivacky    // Check for post-frame index elimination operations
419344779Sdim    SmallVector<const MachineMemOperand *, 1> Accesses;
420344779Sdim    if (hasLoadFromStackSlot(MI, Accesses)) {
421344779Sdim      FrameIndex =
422344779Sdim          cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
423344779Sdim              ->getFrameIndex();
424344779Sdim      return 1;
425344779Sdim    }
426199481Srdivacky  }
427199481Srdivacky  return 0;
428199481Srdivacky}
429199481Srdivacky
430309124Sdimunsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
431199481Srdivacky                                          int &FrameIndex) const {
432341825Sdim  unsigned Dummy;
433341825Sdim  return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
434341825Sdim}
435341825Sdim
436341825Sdimunsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
437341825Sdim                                          int &FrameIndex,
438341825Sdim                                          unsigned &MemBytes) const {
439341825Sdim  if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
440309124Sdim    if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
441212904Sdim        isFrameOperand(MI, 0, FrameIndex))
442309124Sdim      return MI.getOperand(X86::AddrNumOperands).getReg();
443199481Srdivacky  return 0;
444199481Srdivacky}
445199481Srdivacky
446309124Sdimunsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
447199481Srdivacky                                                int &FrameIndex) const {
448341825Sdim  unsigned Dummy;
449341825Sdim  if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
450199481Srdivacky    unsigned Reg;
451199481Srdivacky    if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
452199481Srdivacky      return Reg;
453199481Srdivacky    // Check for post-frame index elimination operations
454344779Sdim    SmallVector<const MachineMemOperand *, 1> Accesses;
455344779Sdim    if (hasStoreToStackSlot(MI, Accesses)) {
456344779Sdim      FrameIndex =
457344779Sdim          cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
458344779Sdim              ->getFrameIndex();
459344779Sdim      return 1;
460344779Sdim    }
461193323Sed  }
462193323Sed  return 0;
463193323Sed}
464193323Sed
465288943Sdim/// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
466193323Sedstatic bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
467239462Sdim  // Don't waste compile time scanning use-def chains of physregs.
468239462Sdim  if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
469239462Sdim    return false;
470193323Sed  bool isPICBase = false;
471276479Sdim  for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
472276479Sdim         E = MRI.def_instr_end(); I != E; ++I) {
473276479Sdim    MachineInstr *DefMI = &*I;
474193323Sed    if (DefMI->getOpcode() != X86::MOVPC32r)
475193323Sed      return false;
476193323Sed    assert(!isPICBase && "More than one PIC base?");
477193323Sed    isPICBase = true;
478193323Sed  }
479193323Sed  return isPICBase;
480193323Sed}
481193323Sed
482309124Sdimbool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
483309124Sdim                                                     AliasAnalysis *AA) const {
484309124Sdim  switch (MI.getOpcode()) {
485193323Sed  default: break;
486243830Sdim  case X86::MOV8rm:
487314564Sdim  case X86::MOV8rm_NOREX:
488243830Sdim  case X86::MOV16rm:
489243830Sdim  case X86::MOV32rm:
490243830Sdim  case X86::MOV64rm:
491243830Sdim  case X86::MOVSSrm:
492353358Sdim  case X86::MOVSSrm_alt:
493243830Sdim  case X86::MOVSDrm:
494353358Sdim  case X86::MOVSDrm_alt:
495243830Sdim  case X86::MOVAPSrm:
496243830Sdim  case X86::MOVUPSrm:
497243830Sdim  case X86::MOVAPDrm:
498314564Sdim  case X86::MOVUPDrm:
499243830Sdim  case X86::MOVDQArm:
500249423Sdim  case X86::MOVDQUrm:
501243830Sdim  case X86::VMOVSSrm:
502353358Sdim  case X86::VMOVSSrm_alt:
503243830Sdim  case X86::VMOVSDrm:
504353358Sdim  case X86::VMOVSDrm_alt:
505243830Sdim  case X86::VMOVAPSrm:
506243830Sdim  case X86::VMOVUPSrm:
507243830Sdim  case X86::VMOVAPDrm:
508314564Sdim  case X86::VMOVUPDrm:
509243830Sdim  case X86::VMOVDQArm:
510249423Sdim  case X86::VMOVDQUrm:
511243830Sdim  case X86::VMOVAPSYrm:
512243830Sdim  case X86::VMOVUPSYrm:
513243830Sdim  case X86::VMOVAPDYrm:
514314564Sdim  case X86::VMOVUPDYrm:
515243830Sdim  case X86::VMOVDQAYrm:
516249423Sdim  case X86::VMOVDQUYrm:
517243830Sdim  case X86::MMX_MOVD64rm:
518243830Sdim  case X86::MMX_MOVQ64rm:
519296417Sdim  // AVX-512
520314564Sdim  case X86::VMOVSSZrm:
521353358Sdim  case X86::VMOVSSZrm_alt:
522314564Sdim  case X86::VMOVSDZrm:
523353358Sdim  case X86::VMOVSDZrm_alt:
524296417Sdim  case X86::VMOVAPDZ128rm:
525296417Sdim  case X86::VMOVAPDZ256rm:
526296417Sdim  case X86::VMOVAPDZrm:
527296417Sdim  case X86::VMOVAPSZ128rm:
528296417Sdim  case X86::VMOVAPSZ256rm:
529314564Sdim  case X86::VMOVAPSZ128rm_NOVLX:
530314564Sdim  case X86::VMOVAPSZ256rm_NOVLX:
531296417Sdim  case X86::VMOVAPSZrm:
532296417Sdim  case X86::VMOVDQA32Z128rm:
533296417Sdim  case X86::VMOVDQA32Z256rm:
534296417Sdim  case X86::VMOVDQA32Zrm:
535296417Sdim  case X86::VMOVDQA64Z128rm:
536296417Sdim  case X86::VMOVDQA64Z256rm:
537296417Sdim  case X86::VMOVDQA64Zrm:
538296417Sdim  case X86::VMOVDQU16Z128rm:
539296417Sdim  case X86::VMOVDQU16Z256rm:
540296417Sdim  case X86::VMOVDQU16Zrm:
541296417Sdim  case X86::VMOVDQU32Z128rm:
542296417Sdim  case X86::VMOVDQU32Z256rm:
543296417Sdim  case X86::VMOVDQU32Zrm:
544296417Sdim  case X86::VMOVDQU64Z128rm:
545296417Sdim  case X86::VMOVDQU64Z256rm:
546296417Sdim  case X86::VMOVDQU64Zrm:
547296417Sdim  case X86::VMOVDQU8Z128rm:
548296417Sdim  case X86::VMOVDQU8Z256rm:
549296417Sdim  case X86::VMOVDQU8Zrm:
550314564Sdim  case X86::VMOVUPDZ128rm:
551314564Sdim  case X86::VMOVUPDZ256rm:
552314564Sdim  case X86::VMOVUPDZrm:
553296417Sdim  case X86::VMOVUPSZ128rm:
554296417Sdim  case X86::VMOVUPSZ256rm:
555314564Sdim  case X86::VMOVUPSZ128rm_NOVLX:
556314564Sdim  case X86::VMOVUPSZ256rm_NOVLX:
557296417Sdim  case X86::VMOVUPSZrm: {
558243830Sdim    // Loads from constant pools are trivially rematerializable.
559309124Sdim    if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
560309124Sdim        MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
561309124Sdim        MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
562309124Sdim        MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
563314564Sdim        MI.isDereferenceableInvariantLoad(AA)) {
564309124Sdim      unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
565243830Sdim      if (BaseReg == 0 || BaseReg == X86::RIP)
566243830Sdim        return true;
567243830Sdim      // Allow re-materialization of PIC load.
568309124Sdim      if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
569243830Sdim        return false;
570309124Sdim      const MachineFunction &MF = *MI.getParent()->getParent();
571243830Sdim      const MachineRegisterInfo &MRI = MF.getRegInfo();
572243830Sdim      return regIsPICBase(BaseReg, MRI);
573193323Sed    }
574243830Sdim    return false;
575243830Sdim  }
576218893Sdim
577243830Sdim  case X86::LEA32r:
578243830Sdim  case X86::LEA64r: {
579309124Sdim    if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
580309124Sdim        MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
581309124Sdim        MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
582309124Sdim        !MI.getOperand(1 + X86::AddrDisp).isReg()) {
583243830Sdim      // lea fi#, lea GV, etc. are all rematerializable.
584309124Sdim      if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
585243830Sdim        return true;
586309124Sdim      unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
587243830Sdim      if (BaseReg == 0)
588243830Sdim        return true;
589243830Sdim      // Allow re-materialization of lea PICBase + x.
590309124Sdim      const MachineFunction &MF = *MI.getParent()->getParent();
591243830Sdim      const MachineRegisterInfo &MRI = MF.getRegInfo();
592243830Sdim      return regIsPICBase(BaseReg, MRI);
593243830Sdim    }
594243830Sdim    return false;
595193323Sed  }
596243830Sdim  }
597193323Sed
598193323Sed  // All other instructions marked M_REMATERIALIZABLE are always trivially
599193323Sed  // rematerializable.
600193323Sed  return true;
601193323Sed}
602193323Sed
603193323Sedvoid X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
604193323Sed                                 MachineBasicBlock::iterator I,
605198090Srdivacky                                 unsigned DestReg, unsigned SubIdx,
606309124Sdim                                 const MachineInstr &Orig,
607210299Sed                                 const TargetRegisterInfo &TRI) const {
608353358Sdim  bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
609296417Sdim  if (ClobbersEFLAGS && !isSafeToClobberEFLAGS(MBB, I)) {
610296417Sdim    // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
611296417Sdim    // effects.
612296417Sdim    int Value;
613309124Sdim    switch (Orig.getOpcode()) {
614296417Sdim    case X86::MOV32r0:  Value = 0; break;
615296417Sdim    case X86::MOV32r1:  Value = 1; break;
616296417Sdim    case X86::MOV32r_1: Value = -1; break;
617296417Sdim    default:
618296417Sdim      llvm_unreachable("Unexpected instruction!");
619296417Sdim    }
620296417Sdim
621309124Sdim    const DebugLoc &DL = Orig.getDebugLoc();
622309124Sdim    BuildMI(MBB, I, DL, get(X86::MOV32ri))
623321369Sdim        .add(Orig.getOperand(0))
624309124Sdim        .addImm(Value);
625261991Sdim  } else {
626309124Sdim    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
627193323Sed    MBB.insert(I, MI);
628193323Sed  }
629193323Sed
630309124Sdim  MachineInstr &NewMI = *std::prev(I);
631309124Sdim  NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
632193323Sed}
633193323Sed
634288943Sdim/// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
635309124Sdimbool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
636309124Sdim  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
637309124Sdim    MachineOperand &MO = MI.getOperand(i);
638193323Sed    if (MO.isReg() && MO.isDef() &&
639193323Sed        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
640193323Sed      return true;
641193323Sed    }
642193323Sed  }
643193323Sed  return false;
644193323Sed}
645193323Sed
646288943Sdim/// Check whether the shift count for a machine operand is non-zero.
647344779Sdiminline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
648261991Sdim                                              unsigned ShiftAmtOperandIdx) {
649261991Sdim  // The shift count is six bits with the REX.W prefix and five bits without.
650309124Sdim  unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
651309124Sdim  unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
652261991Sdim  return Imm & ShiftCountMask;
653261991Sdim}
654261991Sdim
655288943Sdim/// Check whether the given shift count is appropriate
656261991Sdim/// can be represented by a LEA instruction.
657261991Sdiminline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
658261991Sdim  // Left shift instructions can be transformed into load-effective-address
659261991Sdim  // instructions if we can encode them appropriately.
660296417Sdim  // A LEA instruction utilizes a SIB byte to encode its scale factor.
661261991Sdim  // The SIB.scale field is two bits wide which means that we can encode any
662261991Sdim  // shift amount less than 4.
663261991Sdim  return ShAmt < 4 && ShAmt > 0;
664261991Sdim}
665261991Sdim
666309124Sdimbool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
667309124Sdim                                  unsigned Opc, bool AllowSP, unsigned &NewSrc,
668344779Sdim                                  bool &isKill, MachineOperand &ImplicitOp,
669309124Sdim                                  LiveVariables *LV) const {
670309124Sdim  MachineFunction &MF = *MI.getParent()->getParent();
671261991Sdim  const TargetRegisterClass *RC;
672261991Sdim  if (AllowSP) {
673261991Sdim    RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
674261991Sdim  } else {
675261991Sdim    RC = Opc != X86::LEA32r ?
676261991Sdim      &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
677261991Sdim  }
678261991Sdim  unsigned SrcReg = Src.getReg();
679261991Sdim
680261991Sdim  // For both LEA64 and LEA32 the register already has essentially the right
681261991Sdim  // type (32-bit or 64-bit) we may just need to forbid SP.
682261991Sdim  if (Opc != X86::LEA64_32r) {
683261991Sdim    NewSrc = SrcReg;
684261991Sdim    isKill = Src.isKill();
685344779Sdim    assert(!Src.isUndef() && "Undef op doesn't need optimization");
686261991Sdim
687261991Sdim    if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
688261991Sdim        !MF.getRegInfo().constrainRegClass(NewSrc, RC))
689261991Sdim      return false;
690261991Sdim
691261991Sdim    return true;
692261991Sdim  }
693261991Sdim
694261991Sdim  // This is for an LEA64_32r and incoming registers are 32-bit. One way or
695261991Sdim  // another we need to add 64-bit registers to the final MI.
696261991Sdim  if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
697261991Sdim    ImplicitOp = Src;
698261991Sdim    ImplicitOp.setImplicit();
699261991Sdim
700296417Sdim    NewSrc = getX86SubSuperRegister(Src.getReg(), 64);
701314564Sdim    isKill = Src.isKill();
702344779Sdim    assert(!Src.isUndef() && "Undef op doesn't need optimization");
703261991Sdim  } else {
704261991Sdim    // Virtual register of the wrong class, we have to create a temporary 64-bit
705261991Sdim    // vreg to feed into the LEA.
706261991Sdim    NewSrc = MF.getRegInfo().createVirtualRegister(RC);
707321369Sdim    MachineInstr *Copy =
708321369Sdim        BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
709321369Sdim            .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
710321369Sdim            .add(Src);
711261991Sdim
712261991Sdim    // Which is obviously going to be dead after we're done with it.
713261991Sdim    isKill = true;
714309124Sdim
715309124Sdim    if (LV)
716309124Sdim      LV->replaceKillInstruction(SrcReg, MI, *Copy);
717261991Sdim  }
718261991Sdim
719261991Sdim  // We've set all the parameters without issue.
720261991Sdim  return true;
721261991Sdim}
722261991Sdim
723309124SdimMachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(
724309124Sdim    unsigned MIOpc, MachineFunction::iterator &MFI, MachineInstr &MI,
725353358Sdim    LiveVariables *LV, bool Is8BitOp) const {
726344779Sdim  // We handle 8-bit adds and various 16-bit opcodes in the switch below.
727200581Srdivacky  MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
728353358Sdim  assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits(
729344779Sdim              *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
730344779Sdim         "Unexpected type for LEA transform");
731218893Sdim
732344779Sdim  // TODO: For a 32-bit target, we need to adjust the LEA variables with
733344779Sdim  // something like this:
734344779Sdim  //   Opcode = X86::LEA32r;
735344779Sdim  //   InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
736344779Sdim  //   OutRegLEA =
737344779Sdim  //       Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
738344779Sdim  //                : RegInfo.createVirtualRegister(&X86::GR32RegClass);
739344779Sdim  if (!Subtarget.is64Bit())
740344779Sdim    return nullptr;
741344779Sdim
742344779Sdim  unsigned Opcode = X86::LEA64_32r;
743344779Sdim  unsigned InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
744344779Sdim  unsigned OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
745344779Sdim
746200581Srdivacky  // Build and insert into an implicit UNDEF value. This is OK because
747344779Sdim  // we will be shifting and then extracting the lower 8/16-bits.
748200581Srdivacky  // This has the potential to cause partial register stall. e.g.
749200581Srdivacky  //   movw    (%rbp,%rcx,2), %dx
750200581Srdivacky  //   leal    -65(%rdx), %esi
751200581Srdivacky  // But testing has shown this *does* help performance in 64-bit mode (at
752200581Srdivacky  // least on modern x86 machines).
753344779Sdim  MachineBasicBlock::iterator MBBI = MI.getIterator();
754344779Sdim  unsigned Dest = MI.getOperand(0).getReg();
755344779Sdim  unsigned Src = MI.getOperand(1).getReg();
756344779Sdim  bool IsDead = MI.getOperand(0).isDead();
757344779Sdim  bool IsKill = MI.getOperand(1).isKill();
758353358Sdim  unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
759344779Sdim  assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization");
760344779Sdim  BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
761200581Srdivacky  MachineInstr *InsMI =
762309124Sdim      BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
763344779Sdim          .addReg(InRegLEA, RegState::Define, SubReg)
764344779Sdim          .addReg(Src, getKillRegState(IsKill));
765200581Srdivacky
766309124Sdim  MachineInstrBuilder MIB =
767344779Sdim      BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
768200581Srdivacky  switch (MIOpc) {
769243830Sdim  default: llvm_unreachable("Unreachable!");
770353358Sdim  case X86::SHL8ri:
771200581Srdivacky  case X86::SHL16ri: {
772309124Sdim    unsigned ShAmt = MI.getOperand(2).getImm();
773309124Sdim    MIB.addReg(0).addImm(1ULL << ShAmt)
774344779Sdim       .addReg(InRegLEA, RegState::Kill).addImm(0).addReg(0);
775200581Srdivacky    break;
776200581Srdivacky  }
777353358Sdim  case X86::INC8r:
778200581Srdivacky  case X86::INC16r:
779344779Sdim    addRegOffset(MIB, InRegLEA, true, 1);
780200581Srdivacky    break;
781353358Sdim  case X86::DEC8r:
782200581Srdivacky  case X86::DEC16r:
783344779Sdim    addRegOffset(MIB, InRegLEA, true, -1);
784200581Srdivacky    break;
785344779Sdim  case X86::ADD8ri:
786353358Sdim  case X86::ADD8ri_DB:
787200581Srdivacky  case X86::ADD16ri:
788200581Srdivacky  case X86::ADD16ri8:
789218893Sdim  case X86::ADD16ri_DB:
790218893Sdim  case X86::ADD16ri8_DB:
791344779Sdim    addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
792200581Srdivacky    break;
793344779Sdim  case X86::ADD8rr:
794353358Sdim  case X86::ADD8rr_DB:
795218893Sdim  case X86::ADD16rr:
796218893Sdim  case X86::ADD16rr_DB: {
797309124Sdim    unsigned Src2 = MI.getOperand(2).getReg();
798344779Sdim    bool IsKill2 = MI.getOperand(2).isKill();
799344779Sdim    assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization");
800344779Sdim    unsigned InRegLEA2 = 0;
801276479Sdim    MachineInstr *InsMI2 = nullptr;
802200581Srdivacky    if (Src == Src2) {
803344779Sdim      // ADD8rr/ADD16rr killed %reg1028, %reg1028
804200581Srdivacky      // just a single insert_subreg.
805344779Sdim      addRegReg(MIB, InRegLEA, true, InRegLEA, false);
806200581Srdivacky    } else {
807276479Sdim      if (Subtarget.is64Bit())
808344779Sdim        InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
809261991Sdim      else
810344779Sdim        InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
811200581Srdivacky      // Build and insert into an implicit UNDEF value. This is OK because
812344779Sdim      // we will be shifting and then extracting the lower 8/16-bits.
813344779Sdim      BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA2);
814309124Sdim      InsMI2 = BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
815344779Sdim                   .addReg(InRegLEA2, RegState::Define, SubReg)
816344779Sdim                   .addReg(Src2, getKillRegState(IsKill2));
817344779Sdim      addRegReg(MIB, InRegLEA, true, InRegLEA2, true);
818200581Srdivacky    }
819344779Sdim    if (LV && IsKill2 && InsMI2)
820309124Sdim      LV->replaceKillInstruction(Src2, MI, *InsMI2);
821200581Srdivacky    break;
822200581Srdivacky  }
823200581Srdivacky  }
824200581Srdivacky
825200581Srdivacky  MachineInstr *NewMI = MIB;
826200581Srdivacky  MachineInstr *ExtMI =
827309124Sdim      BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
828344779Sdim          .addReg(Dest, RegState::Define | getDeadRegState(IsDead))
829344779Sdim          .addReg(OutRegLEA, RegState::Kill, SubReg);
830200581Srdivacky
831200581Srdivacky  if (LV) {
832344779Sdim    // Update live variables.
833344779Sdim    LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
834344779Sdim    LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
835344779Sdim    if (IsKill)
836309124Sdim      LV->replaceKillInstruction(Src, MI, *InsMI);
837344779Sdim    if (IsDead)
838309124Sdim      LV->replaceKillInstruction(Dest, MI, *ExtMI);
839200581Srdivacky  }
840200581Srdivacky
841200581Srdivacky  return ExtMI;
842200581Srdivacky}
843200581Srdivacky
844288943Sdim/// This method must be implemented by targets that
845193323Sed/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
846193323Sed/// may be able to convert a two-address instruction into a true
847193323Sed/// three-address instruction on demand.  This allows the X86 target (for
848193323Sed/// example) to convert ADD and SHL instructions into LEA instructions if they
849193323Sed/// would require register copies due to two-addressness.
850193323Sed///
851193323Sed/// This method returns a null pointer if the transformation cannot be
852193323Sed/// performed, otherwise it returns the new instruction.
853193323Sed///
854193323SedMachineInstr *
855193323SedX86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
856309124Sdim                                    MachineInstr &MI, LiveVariables *LV) const {
857261991Sdim  // The following opcodes also sets the condition code register(s). Only
858261991Sdim  // convert them to equivalent lea if the condition code register def's
859261991Sdim  // are dead!
860261991Sdim  if (hasLiveCondCodeDef(MI))
861276479Sdim    return nullptr;
862261991Sdim
863309124Sdim  MachineFunction &MF = *MI.getParent()->getParent();
864193323Sed  // All instructions input are two-addr instructions.  Get the known operands.
865309124Sdim  const MachineOperand &Dest = MI.getOperand(0);
866309124Sdim  const MachineOperand &Src = MI.getOperand(1);
867193323Sed
868344779Sdim  // Ideally, operations with undef should be folded before we get here, but we
869344779Sdim  // can't guarantee it. Bail out because optimizing undefs is a waste of time.
870344779Sdim  // Without this, we have to forward undef state to new register operands to
871344779Sdim  // avoid machine verifier errors.
872344779Sdim  if (Src.isUndef())
873344779Sdim    return nullptr;
874344779Sdim  if (MI.getNumOperands() > 2)
875344779Sdim    if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
876344779Sdim      return nullptr;
877344779Sdim
878276479Sdim  MachineInstr *NewMI = nullptr;
879344779Sdim  bool Is64Bit = Subtarget.is64Bit();
880193323Sed
881353358Sdim  bool Is8BitOp = false;
882309124Sdim  unsigned MIOpc = MI.getOpcode();
883193323Sed  switch (MIOpc) {
884353358Sdim  default: llvm_unreachable("Unreachable!");
885193323Sed  case X86::SHL64ri: {
886309124Sdim    assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
887261991Sdim    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
888276479Sdim    if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
889193323Sed
890218893Sdim    // LEA can't handle RSP.
891243830Sdim    if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
892243830Sdim        !MF.getRegInfo().constrainRegClass(Src.getReg(),
893243830Sdim                                           &X86::GR64_NOSPRegClass))
894276479Sdim      return nullptr;
895218893Sdim
896309124Sdim    NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
897321369Sdim                .add(Dest)
898309124Sdim                .addReg(0)
899309124Sdim                .addImm(1ULL << ShAmt)
900321369Sdim                .add(Src)
901309124Sdim                .addImm(0)
902309124Sdim                .addReg(0);
903193323Sed    break;
904193323Sed  }
905193323Sed  case X86::SHL32ri: {
906309124Sdim    assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
907261991Sdim    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
908276479Sdim    if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
909193323Sed
910344779Sdim    unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
911261991Sdim
912218893Sdim    // LEA can't handle ESP.
913344779Sdim    bool isKill;
914261991Sdim    unsigned SrcReg;
915261991Sdim    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
916261991Sdim    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
917344779Sdim                        SrcReg, isKill, ImplicitOp, LV))
918276479Sdim      return nullptr;
919218893Sdim
920309124Sdim    MachineInstrBuilder MIB =
921309124Sdim        BuildMI(MF, MI.getDebugLoc(), get(Opc))
922321369Sdim            .add(Dest)
923309124Sdim            .addReg(0)
924309124Sdim            .addImm(1ULL << ShAmt)
925344779Sdim            .addReg(SrcReg, getKillRegState(isKill))
926309124Sdim            .addImm(0)
927309124Sdim            .addReg(0);
928261991Sdim    if (ImplicitOp.getReg() != 0)
929321369Sdim      MIB.add(ImplicitOp);
930261991Sdim    NewMI = MIB;
931261991Sdim
932193323Sed    break;
933193323Sed  }
934353358Sdim  case X86::SHL8ri:
935353358Sdim    Is8BitOp = true;
936353358Sdim    LLVM_FALLTHROUGH;
937193323Sed  case X86::SHL16ri: {
938309124Sdim    assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
939261991Sdim    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
940344779Sdim    if (!isTruncatedShiftCountForLEA(ShAmt))
941344779Sdim      return nullptr;
942353358Sdim    return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
943193323Sed  }
944280031Sdim  case X86::INC64r:
945280031Sdim  case X86::INC32r: {
946309124Sdim    assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
947344779Sdim    unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r :
948344779Sdim        (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
949344779Sdim    bool isKill;
950280031Sdim    unsigned SrcReg;
951280031Sdim    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
952344779Sdim    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill,
953344779Sdim                        ImplicitOp, LV))
954280031Sdim      return nullptr;
955193323Sed
956309124Sdim    MachineInstrBuilder MIB =
957309124Sdim        BuildMI(MF, MI.getDebugLoc(), get(Opc))
958321369Sdim            .add(Dest)
959344779Sdim            .addReg(SrcReg, getKillRegState(isKill));
960280031Sdim    if (ImplicitOp.getReg() != 0)
961321369Sdim      MIB.add(ImplicitOp);
962218893Sdim
963280031Sdim    NewMI = addOffset(MIB, 1);
964280031Sdim    break;
965280031Sdim  }
966280031Sdim  case X86::DEC64r:
967280031Sdim  case X86::DEC32r: {
968309124Sdim    assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
969280031Sdim    unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
970344779Sdim        : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
971261991Sdim
972344779Sdim    bool isKill;
973280031Sdim    unsigned SrcReg;
974280031Sdim    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
975344779Sdim    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill,
976344779Sdim                        ImplicitOp, LV))
977280031Sdim      return nullptr;
978261991Sdim
979309124Sdim    MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
980321369Sdim                                  .add(Dest)
981344779Sdim                                  .addReg(SrcReg, getKillRegState(isKill));
982280031Sdim    if (ImplicitOp.getReg() != 0)
983321369Sdim      MIB.add(ImplicitOp);
984218893Sdim
985280031Sdim    NewMI = addOffset(MIB, -1);
986261991Sdim
987280031Sdim    break;
988280031Sdim  }
989353358Sdim  case X86::DEC8r:
990353358Sdim  case X86::INC8r:
991353358Sdim    Is8BitOp = true;
992353358Sdim    LLVM_FALLTHROUGH;
993280031Sdim  case X86::DEC16r:
994353358Sdim  case X86::INC16r:
995353358Sdim    return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
996280031Sdim  case X86::ADD64rr:
997280031Sdim  case X86::ADD64rr_DB:
998280031Sdim  case X86::ADD32rr:
999280031Sdim  case X86::ADD32rr_DB: {
1000309124Sdim    assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1001280031Sdim    unsigned Opc;
1002280031Sdim    if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
1003280031Sdim      Opc = X86::LEA64r;
1004280031Sdim    else
1005344779Sdim      Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1006261991Sdim
1007344779Sdim    bool isKill;
1008280031Sdim    unsigned SrcReg;
1009280031Sdim    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1010280031Sdim    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1011344779Sdim                        SrcReg, isKill, ImplicitOp, LV))
1012280031Sdim      return nullptr;
1013218893Sdim
1014309124Sdim    const MachineOperand &Src2 = MI.getOperand(2);
1015344779Sdim    bool isKill2;
1016280031Sdim    unsigned SrcReg2;
1017280031Sdim    MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
1018280031Sdim    if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
1019344779Sdim                        SrcReg2, isKill2, ImplicitOp2, LV))
1020280031Sdim      return nullptr;
1021218893Sdim
1022321369Sdim    MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
1023280031Sdim    if (ImplicitOp.getReg() != 0)
1024321369Sdim      MIB.add(ImplicitOp);
1025280031Sdim    if (ImplicitOp2.getReg() != 0)
1026321369Sdim      MIB.add(ImplicitOp2);
1027218893Sdim
1028280031Sdim    NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
1029280031Sdim    if (LV && Src2.isKill())
1030309124Sdim      LV->replaceKillInstruction(SrcReg2, MI, *NewMI);
1031280031Sdim    break;
1032280031Sdim  }
1033344779Sdim  case X86::ADD8rr:
1034353358Sdim  case X86::ADD8rr_DB:
1035353358Sdim    Is8BitOp = true;
1036353358Sdim    LLVM_FALLTHROUGH;
1037280031Sdim  case X86::ADD16rr:
1038344779Sdim  case X86::ADD16rr_DB:
1039353358Sdim    return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1040280031Sdim  case X86::ADD64ri32:
1041280031Sdim  case X86::ADD64ri8:
1042280031Sdim  case X86::ADD64ri32_DB:
1043280031Sdim  case X86::ADD64ri8_DB:
1044309124Sdim    assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1045321369Sdim    NewMI = addOffset(
1046321369Sdim        BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
1047321369Sdim        MI.getOperand(2));
1048280031Sdim    break;
1049280031Sdim  case X86::ADD32ri:
1050280031Sdim  case X86::ADD32ri8:
1051280031Sdim  case X86::ADD32ri_DB:
1052280031Sdim  case X86::ADD32ri8_DB: {
1053309124Sdim    assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1054344779Sdim    unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1055243830Sdim
1056344779Sdim    bool isKill;
1057280031Sdim    unsigned SrcReg;
1058280031Sdim    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1059280031Sdim    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1060344779Sdim                        SrcReg, isKill, ImplicitOp, LV))
1061280031Sdim      return nullptr;
1062261991Sdim
1063309124Sdim    MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1064321369Sdim                                  .add(Dest)
1065344779Sdim                                  .addReg(SrcReg, getKillRegState(isKill));
1066280031Sdim    if (ImplicitOp.getReg() != 0)
1067321369Sdim      MIB.add(ImplicitOp);
1068261991Sdim
1069314564Sdim    NewMI = addOffset(MIB, MI.getOperand(2));
1070280031Sdim    break;
1071193323Sed  }
1072344779Sdim  case X86::ADD8ri:
1073353358Sdim  case X86::ADD8ri_DB:
1074353358Sdim    Is8BitOp = true;
1075353358Sdim    LLVM_FALLTHROUGH;
1076280031Sdim  case X86::ADD16ri:
1077280031Sdim  case X86::ADD16ri8:
1078280031Sdim  case X86::ADD16ri_DB:
1079280031Sdim  case X86::ADD16ri8_DB:
1080353358Sdim    return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1081353358Sdim  case X86::SUB8ri:
1082353358Sdim  case X86::SUB16ri8:
1083353358Sdim  case X86::SUB16ri:
1084353358Sdim    /// FIXME: Support these similar to ADD8ri/ADD16ri*.
1085353358Sdim    return nullptr;
1086353358Sdim  case X86::SUB32ri8:
1087353358Sdim  case X86::SUB32ri: {
1088360661Sdim    if (!MI.getOperand(2).isImm())
1089360661Sdim      return nullptr;
1090353358Sdim    int64_t Imm = MI.getOperand(2).getImm();
1091353358Sdim    if (!isInt<32>(-Imm))
1092353358Sdim      return nullptr;
1093353358Sdim
1094353358Sdim    assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1095353358Sdim    unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1096353358Sdim
1097353358Sdim    bool isKill;
1098353358Sdim    unsigned SrcReg;
1099353358Sdim    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1100353358Sdim    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1101353358Sdim                        SrcReg, isKill, ImplicitOp, LV))
1102353358Sdim      return nullptr;
1103353358Sdim
1104353358Sdim    MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1105353358Sdim                                  .add(Dest)
1106353358Sdim                                  .addReg(SrcReg, getKillRegState(isKill));
1107353358Sdim    if (ImplicitOp.getReg() != 0)
1108353358Sdim      MIB.add(ImplicitOp);
1109353358Sdim
1110353358Sdim    NewMI = addOffset(MIB, -Imm);
1111353358Sdim    break;
1112353358Sdim  }
1113353358Sdim
1114353358Sdim  case X86::SUB64ri8:
1115353358Sdim  case X86::SUB64ri32: {
1116360661Sdim    if (!MI.getOperand(2).isImm())
1117360661Sdim      return nullptr;
1118353358Sdim    int64_t Imm = MI.getOperand(2).getImm();
1119353358Sdim    if (!isInt<32>(-Imm))
1120353358Sdim      return nullptr;
1121353358Sdim
1122353358Sdim    assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!");
1123353358Sdim
1124353358Sdim    MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(),
1125353358Sdim                                      get(X86::LEA64r)).add(Dest).add(Src);
1126353358Sdim    NewMI = addOffset(MIB, -Imm);
1127353358Sdim    break;
1128353358Sdim  }
1129353358Sdim
1130321369Sdim  case X86::VMOVDQU8Z128rmk:
1131321369Sdim  case X86::VMOVDQU8Z256rmk:
1132321369Sdim  case X86::VMOVDQU8Zrmk:
1133321369Sdim  case X86::VMOVDQU16Z128rmk:
1134321369Sdim  case X86::VMOVDQU16Z256rmk:
1135321369Sdim  case X86::VMOVDQU16Zrmk:
1136321369Sdim  case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
1137321369Sdim  case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
1138321369Sdim  case X86::VMOVDQU32Zrmk:    case X86::VMOVDQA32Zrmk:
1139321369Sdim  case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
1140321369Sdim  case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
1141321369Sdim  case X86::VMOVDQU64Zrmk:    case X86::VMOVDQA64Zrmk:
1142321369Sdim  case X86::VMOVUPDZ128rmk:   case X86::VMOVAPDZ128rmk:
1143321369Sdim  case X86::VMOVUPDZ256rmk:   case X86::VMOVAPDZ256rmk:
1144321369Sdim  case X86::VMOVUPDZrmk:      case X86::VMOVAPDZrmk:
1145321369Sdim  case X86::VMOVUPSZ128rmk:   case X86::VMOVAPSZ128rmk:
1146321369Sdim  case X86::VMOVUPSZ256rmk:   case X86::VMOVAPSZ256rmk:
1147321369Sdim  case X86::VMOVUPSZrmk:      case X86::VMOVAPSZrmk: {
1148321369Sdim    unsigned Opc;
1149321369Sdim    switch (MIOpc) {
1150321369Sdim    default: llvm_unreachable("Unreachable!");
1151321369Sdim    case X86::VMOVDQU8Z128rmk:  Opc = X86::VPBLENDMBZ128rmk; break;
1152321369Sdim    case X86::VMOVDQU8Z256rmk:  Opc = X86::VPBLENDMBZ256rmk; break;
1153321369Sdim    case X86::VMOVDQU8Zrmk:     Opc = X86::VPBLENDMBZrmk;    break;
1154321369Sdim    case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break;
1155321369Sdim    case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break;
1156321369Sdim    case X86::VMOVDQU16Zrmk:    Opc = X86::VPBLENDMWZrmk;    break;
1157321369Sdim    case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
1158321369Sdim    case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
1159321369Sdim    case X86::VMOVDQU32Zrmk:    Opc = X86::VPBLENDMDZrmk;    break;
1160321369Sdim    case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
1161321369Sdim    case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
1162321369Sdim    case X86::VMOVDQU64Zrmk:    Opc = X86::VPBLENDMQZrmk;    break;
1163321369Sdim    case X86::VMOVUPDZ128rmk:   Opc = X86::VBLENDMPDZ128rmk; break;
1164321369Sdim    case X86::VMOVUPDZ256rmk:   Opc = X86::VBLENDMPDZ256rmk; break;
1165321369Sdim    case X86::VMOVUPDZrmk:      Opc = X86::VBLENDMPDZrmk;    break;
1166321369Sdim    case X86::VMOVUPSZ128rmk:   Opc = X86::VBLENDMPSZ128rmk; break;
1167321369Sdim    case X86::VMOVUPSZ256rmk:   Opc = X86::VBLENDMPSZ256rmk; break;
1168321369Sdim    case X86::VMOVUPSZrmk:      Opc = X86::VBLENDMPSZrmk;    break;
1169321369Sdim    case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
1170321369Sdim    case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
1171321369Sdim    case X86::VMOVDQA32Zrmk:    Opc = X86::VPBLENDMDZrmk;    break;
1172321369Sdim    case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
1173321369Sdim    case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
1174321369Sdim    case X86::VMOVDQA64Zrmk:    Opc = X86::VPBLENDMQZrmk;    break;
1175321369Sdim    case X86::VMOVAPDZ128rmk:   Opc = X86::VBLENDMPDZ128rmk; break;
1176321369Sdim    case X86::VMOVAPDZ256rmk:   Opc = X86::VBLENDMPDZ256rmk; break;
1177321369Sdim    case X86::VMOVAPDZrmk:      Opc = X86::VBLENDMPDZrmk;    break;
1178321369Sdim    case X86::VMOVAPSZ128rmk:   Opc = X86::VBLENDMPSZ128rmk; break;
1179321369Sdim    case X86::VMOVAPSZ256rmk:   Opc = X86::VBLENDMPSZ256rmk; break;
1180321369Sdim    case X86::VMOVAPSZrmk:      Opc = X86::VBLENDMPSZrmk;    break;
1181321369Sdim    }
1182321369Sdim
1183321369Sdim    NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1184321369Sdim              .add(Dest)
1185321369Sdim              .add(MI.getOperand(2))
1186321369Sdim              .add(Src)
1187321369Sdim              .add(MI.getOperand(3))
1188321369Sdim              .add(MI.getOperand(4))
1189321369Sdim              .add(MI.getOperand(5))
1190321369Sdim              .add(MI.getOperand(6))
1191321369Sdim              .add(MI.getOperand(7));
1192321369Sdim    break;
1193193323Sed  }
1194321369Sdim  case X86::VMOVDQU8Z128rrk:
1195321369Sdim  case X86::VMOVDQU8Z256rrk:
1196321369Sdim  case X86::VMOVDQU8Zrrk:
1197321369Sdim  case X86::VMOVDQU16Z128rrk:
1198321369Sdim  case X86::VMOVDQU16Z256rrk:
1199321369Sdim  case X86::VMOVDQU16Zrrk:
1200321369Sdim  case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
1201321369Sdim  case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
1202321369Sdim  case X86::VMOVDQU32Zrrk:    case X86::VMOVDQA32Zrrk:
1203321369Sdim  case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
1204321369Sdim  case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
1205321369Sdim  case X86::VMOVDQU64Zrrk:    case X86::VMOVDQA64Zrrk:
1206321369Sdim  case X86::VMOVUPDZ128rrk:   case X86::VMOVAPDZ128rrk:
1207321369Sdim  case X86::VMOVUPDZ256rrk:   case X86::VMOVAPDZ256rrk:
1208321369Sdim  case X86::VMOVUPDZrrk:      case X86::VMOVAPDZrrk:
1209321369Sdim  case X86::VMOVUPSZ128rrk:   case X86::VMOVAPSZ128rrk:
1210321369Sdim  case X86::VMOVUPSZ256rrk:   case X86::VMOVAPSZ256rrk:
1211321369Sdim  case X86::VMOVUPSZrrk:      case X86::VMOVAPSZrrk: {
1212321369Sdim    unsigned Opc;
1213321369Sdim    switch (MIOpc) {
1214321369Sdim    default: llvm_unreachable("Unreachable!");
1215321369Sdim    case X86::VMOVDQU8Z128rrk:  Opc = X86::VPBLENDMBZ128rrk; break;
1216321369Sdim    case X86::VMOVDQU8Z256rrk:  Opc = X86::VPBLENDMBZ256rrk; break;
1217321369Sdim    case X86::VMOVDQU8Zrrk:     Opc = X86::VPBLENDMBZrrk;    break;
1218321369Sdim    case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
1219321369Sdim    case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
1220321369Sdim    case X86::VMOVDQU16Zrrk:    Opc = X86::VPBLENDMWZrrk;    break;
1221321369Sdim    case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1222321369Sdim    case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1223321369Sdim    case X86::VMOVDQU32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break;
1224321369Sdim    case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1225321369Sdim    case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1226321369Sdim    case X86::VMOVDQU64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break;
1227321369Sdim    case X86::VMOVUPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break;
1228321369Sdim    case X86::VMOVUPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break;
1229321369Sdim    case X86::VMOVUPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break;
1230321369Sdim    case X86::VMOVUPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break;
1231321369Sdim    case X86::VMOVUPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break;
1232321369Sdim    case X86::VMOVUPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break;
1233321369Sdim    case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1234321369Sdim    case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1235321369Sdim    case X86::VMOVDQA32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break;
1236321369Sdim    case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1237321369Sdim    case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1238321369Sdim    case X86::VMOVDQA64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break;
1239321369Sdim    case X86::VMOVAPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break;
1240321369Sdim    case X86::VMOVAPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break;
1241321369Sdim    case X86::VMOVAPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break;
1242321369Sdim    case X86::VMOVAPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break;
1243321369Sdim    case X86::VMOVAPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break;
1244321369Sdim    case X86::VMOVAPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break;
1245321369Sdim    }
1246193323Sed
1247321369Sdim    NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1248321369Sdim              .add(Dest)
1249321369Sdim              .add(MI.getOperand(2))
1250321369Sdim              .add(Src)
1251321369Sdim              .add(MI.getOperand(3));
1252321369Sdim    break;
1253321369Sdim  }
1254321369Sdim  }
1255321369Sdim
1256276479Sdim  if (!NewMI) return nullptr;
1257193323Sed
1258193323Sed  if (LV) {  // Update live variables
1259243830Sdim    if (Src.isKill())
1260309124Sdim      LV->replaceKillInstruction(Src.getReg(), MI, *NewMI);
1261243830Sdim    if (Dest.isDead())
1262309124Sdim      LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI);
1263193323Sed  }
1264193323Sed
1265309124Sdim  MFI->insert(MI.getIterator(), NewMI); // Insert the new inst
1266193323Sed  return NewMI;
1267193323Sed}
1268193323Sed
1269314564Sdim/// This determines which of three possible cases of a three source commute
1270314564Sdim/// the source indexes correspond to taking into account any mask operands.
1271314564Sdim/// All prevents commuting a passthru operand. Returns -1 if the commute isn't
1272314564Sdim/// possible.
1273314564Sdim/// Case 0 - Possible to commute the first and second operands.
1274314564Sdim/// Case 1 - Possible to commute the first and third operands.
1275314564Sdim/// Case 2 - Possible to commute the second and third operands.
1276341825Sdimstatic unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
1277341825Sdim                                       unsigned SrcOpIdx2) {
1278314564Sdim  // Put the lowest index to SrcOpIdx1 to simplify the checks below.
1279314564Sdim  if (SrcOpIdx1 > SrcOpIdx2)
1280314564Sdim    std::swap(SrcOpIdx1, SrcOpIdx2);
1281296417Sdim
1282314564Sdim  unsigned Op1 = 1, Op2 = 2, Op3 = 3;
1283314564Sdim  if (X86II::isKMasked(TSFlags)) {
1284314564Sdim    Op2++;
1285314564Sdim    Op3++;
1286314564Sdim  }
1287296417Sdim
1288314564Sdim  if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
1289314564Sdim    return 0;
1290314564Sdim  if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
1291314564Sdim    return 1;
1292314564Sdim  if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
1293314564Sdim    return 2;
1294341825Sdim  llvm_unreachable("Unknown three src commute case.");
1295314564Sdim}
1296296417Sdim
1297314564Sdimunsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
1298314564Sdim    const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
1299314564Sdim    const X86InstrFMA3Group &FMA3Group) const {
1300296417Sdim
1301314564Sdim  unsigned Opc = MI.getOpcode();
1302296417Sdim
1303314564Sdim  // TODO: Commuting the 1st operand of FMA*_Int requires some additional
1304314564Sdim  // analysis. The commute optimization is legal only if all users of FMA*_Int
1305314564Sdim  // use only the lowest element of the FMA*_Int instruction. Such analysis are
1306314564Sdim  // not implemented yet. So, just return 0 in that case.
1307314564Sdim  // When such analysis are available this place will be the right place for
1308314564Sdim  // calling it.
1309341825Sdim  assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&
1310341825Sdim         "Intrinsic instructions can't commute operand 1");
1311296417Sdim
1312314564Sdim  // Determine which case this commute is or if it can't be done.
1313341825Sdim  unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1314341825Sdim                                         SrcOpIdx2);
1315341825Sdim  assert(Case < 3 && "Unexpected case number!");
1316296417Sdim
1317314564Sdim  // Define the FMA forms mapping array that helps to map input FMA form
1318314564Sdim  // to output FMA form to preserve the operation semantics after
1319314564Sdim  // commuting the operands.
1320314564Sdim  const unsigned Form132Index = 0;
1321314564Sdim  const unsigned Form213Index = 1;
1322314564Sdim  const unsigned Form231Index = 2;
1323314564Sdim  static const unsigned FormMapping[][3] = {
1324314564Sdim    // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
1325314564Sdim    // FMA132 A, C, b; ==> FMA231 C, A, b;
1326314564Sdim    // FMA213 B, A, c; ==> FMA213 A, B, c;
1327314564Sdim    // FMA231 C, A, b; ==> FMA132 A, C, b;
1328314564Sdim    { Form231Index, Form213Index, Form132Index },
1329314564Sdim    // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
1330314564Sdim    // FMA132 A, c, B; ==> FMA132 B, c, A;
1331314564Sdim    // FMA213 B, a, C; ==> FMA231 C, a, B;
1332314564Sdim    // FMA231 C, a, B; ==> FMA213 B, a, C;
1333314564Sdim    { Form132Index, Form231Index, Form213Index },
1334314564Sdim    // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
1335314564Sdim    // FMA132 a, C, B; ==> FMA213 a, B, C;
1336314564Sdim    // FMA213 b, A, C; ==> FMA132 b, C, A;
1337314564Sdim    // FMA231 c, A, B; ==> FMA231 c, B, A;
1338314564Sdim    { Form213Index, Form132Index, Form231Index }
1339314564Sdim  };
1340296417Sdim
1341314564Sdim  unsigned FMAForms[3];
1342341825Sdim  FMAForms[0] = FMA3Group.get132Opcode();
1343341825Sdim  FMAForms[1] = FMA3Group.get213Opcode();
1344341825Sdim  FMAForms[2] = FMA3Group.get231Opcode();
1345314564Sdim  unsigned FormIndex;
1346314564Sdim  for (FormIndex = 0; FormIndex < 3; FormIndex++)
1347314564Sdim    if (Opc == FMAForms[FormIndex])
1348314564Sdim      break;
1349296417Sdim
1350314564Sdim  // Everything is ready, just adjust the FMA opcode and return it.
1351314564Sdim  FormIndex = FormMapping[Case][FormIndex];
1352314564Sdim  return FMAForms[FormIndex];
1353314564Sdim}
1354296417Sdim
1355341825Sdimstatic void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
1356314564Sdim                             unsigned SrcOpIdx2) {
1357314564Sdim  // Determine which case this commute is or if it can't be done.
1358341825Sdim  unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1359341825Sdim                                         SrcOpIdx2);
1360341825Sdim  assert(Case < 3 && "Unexpected case value!");
1361314564Sdim
1362314564Sdim  // For each case we need to swap two pairs of bits in the final immediate.
1363314564Sdim  static const uint8_t SwapMasks[3][4] = {
1364314564Sdim    { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
1365314564Sdim    { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
1366314564Sdim    { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
1367314564Sdim  };
1368314564Sdim
1369314564Sdim  uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
1370314564Sdim  // Clear out the bits we are swapping.
1371314564Sdim  uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
1372314564Sdim                           SwapMasks[Case][2] | SwapMasks[Case][3]);
1373314564Sdim  // If the immediate had a bit of the pair set, then set the opposite bit.
1374314564Sdim  if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
1375314564Sdim  if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
1376314564Sdim  if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
1377314564Sdim  if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
1378314564Sdim  MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
1379314564Sdim}
1380314564Sdim
1381341825Sdim// Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
1382314564Sdim// commuted.
1383314564Sdimstatic bool isCommutableVPERMV3Instruction(unsigned Opcode) {
1384314564Sdim#define VPERM_CASES(Suffix) \
1385314564Sdim  case X86::VPERMI2##Suffix##128rr:    case X86::VPERMT2##Suffix##128rr:    \
1386314564Sdim  case X86::VPERMI2##Suffix##256rr:    case X86::VPERMT2##Suffix##256rr:    \
1387314564Sdim  case X86::VPERMI2##Suffix##rr:       case X86::VPERMT2##Suffix##rr:       \
1388314564Sdim  case X86::VPERMI2##Suffix##128rm:    case X86::VPERMT2##Suffix##128rm:    \
1389314564Sdim  case X86::VPERMI2##Suffix##256rm:    case X86::VPERMT2##Suffix##256rm:    \
1390314564Sdim  case X86::VPERMI2##Suffix##rm:       case X86::VPERMT2##Suffix##rm:       \
1391314564Sdim  case X86::VPERMI2##Suffix##128rrkz:  case X86::VPERMT2##Suffix##128rrkz:  \
1392314564Sdim  case X86::VPERMI2##Suffix##256rrkz:  case X86::VPERMT2##Suffix##256rrkz:  \
1393314564Sdim  case X86::VPERMI2##Suffix##rrkz:     case X86::VPERMT2##Suffix##rrkz:     \
1394314564Sdim  case X86::VPERMI2##Suffix##128rmkz:  case X86::VPERMT2##Suffix##128rmkz:  \
1395314564Sdim  case X86::VPERMI2##Suffix##256rmkz:  case X86::VPERMT2##Suffix##256rmkz:  \
1396314564Sdim  case X86::VPERMI2##Suffix##rmkz:     case X86::VPERMT2##Suffix##rmkz:
1397314564Sdim
1398314564Sdim#define VPERM_CASES_BROADCAST(Suffix) \
1399314564Sdim  VPERM_CASES(Suffix) \
1400314564Sdim  case X86::VPERMI2##Suffix##128rmb:   case X86::VPERMT2##Suffix##128rmb:   \
1401314564Sdim  case X86::VPERMI2##Suffix##256rmb:   case X86::VPERMT2##Suffix##256rmb:   \
1402314564Sdim  case X86::VPERMI2##Suffix##rmb:      case X86::VPERMT2##Suffix##rmb:      \
1403314564Sdim  case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
1404314564Sdim  case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
1405314564Sdim  case X86::VPERMI2##Suffix##rmbkz:    case X86::VPERMT2##Suffix##rmbkz:
1406314564Sdim
1407314564Sdim  switch (Opcode) {
1408314564Sdim  default: return false;
1409314564Sdim  VPERM_CASES(B)
1410314564Sdim  VPERM_CASES_BROADCAST(D)
1411314564Sdim  VPERM_CASES_BROADCAST(PD)
1412314564Sdim  VPERM_CASES_BROADCAST(PS)
1413314564Sdim  VPERM_CASES_BROADCAST(Q)
1414314564Sdim  VPERM_CASES(W)
1415314564Sdim    return true;
1416296417Sdim  }
1417314564Sdim#undef VPERM_CASES_BROADCAST
1418314564Sdim#undef VPERM_CASES
1419296417Sdim}
1420296417Sdim
1421314564Sdim// Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
1422341825Sdim// from the I opcode to the T opcode and vice versa.
1423314564Sdimstatic unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
1424314564Sdim#define VPERM_CASES(Orig, New) \
1425314564Sdim  case X86::Orig##128rr:    return X86::New##128rr;   \
1426314564Sdim  case X86::Orig##128rrkz:  return X86::New##128rrkz; \
1427314564Sdim  case X86::Orig##128rm:    return X86::New##128rm;   \
1428314564Sdim  case X86::Orig##128rmkz:  return X86::New##128rmkz; \
1429314564Sdim  case X86::Orig##256rr:    return X86::New##256rr;   \
1430314564Sdim  case X86::Orig##256rrkz:  return X86::New##256rrkz; \
1431314564Sdim  case X86::Orig##256rm:    return X86::New##256rm;   \
1432314564Sdim  case X86::Orig##256rmkz:  return X86::New##256rmkz; \
1433314564Sdim  case X86::Orig##rr:       return X86::New##rr;      \
1434314564Sdim  case X86::Orig##rrkz:     return X86::New##rrkz;    \
1435314564Sdim  case X86::Orig##rm:       return X86::New##rm;      \
1436314564Sdim  case X86::Orig##rmkz:     return X86::New##rmkz;
1437314564Sdim
1438314564Sdim#define VPERM_CASES_BROADCAST(Orig, New) \
1439314564Sdim  VPERM_CASES(Orig, New) \
1440314564Sdim  case X86::Orig##128rmb:   return X86::New##128rmb;   \
1441314564Sdim  case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
1442314564Sdim  case X86::Orig##256rmb:   return X86::New##256rmb;   \
1443314564Sdim  case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
1444314564Sdim  case X86::Orig##rmb:      return X86::New##rmb;      \
1445314564Sdim  case X86::Orig##rmbkz:    return X86::New##rmbkz;
1446314564Sdim
1447314564Sdim  switch (Opcode) {
1448314564Sdim  VPERM_CASES(VPERMI2B, VPERMT2B)
1449314564Sdim  VPERM_CASES_BROADCAST(VPERMI2D,  VPERMT2D)
1450314564Sdim  VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
1451314564Sdim  VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
1452314564Sdim  VPERM_CASES_BROADCAST(VPERMI2Q,  VPERMT2Q)
1453314564Sdim  VPERM_CASES(VPERMI2W, VPERMT2W)
1454314564Sdim  VPERM_CASES(VPERMT2B, VPERMI2B)
1455314564Sdim  VPERM_CASES_BROADCAST(VPERMT2D,  VPERMI2D)
1456314564Sdim  VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
1457314564Sdim  VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
1458314564Sdim  VPERM_CASES_BROADCAST(VPERMT2Q,  VPERMI2Q)
1459314564Sdim  VPERM_CASES(VPERMT2W, VPERMI2W)
1460314564Sdim  }
1461314564Sdim
1462314564Sdim  llvm_unreachable("Unreachable!");
1463314564Sdim#undef VPERM_CASES_BROADCAST
1464314564Sdim#undef VPERM_CASES
1465314564Sdim}
1466314564Sdim
1467309124SdimMachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
1468296417Sdim                                                   unsigned OpIdx1,
1469296417Sdim                                                   unsigned OpIdx2) const {
1470309124Sdim  auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
1471309124Sdim    if (NewMI)
1472309124Sdim      return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
1473309124Sdim    return MI;
1474309124Sdim  };
1475309124Sdim
1476309124Sdim  switch (MI.getOpcode()) {
1477193323Sed  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1478193323Sed  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1479193323Sed  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1480193323Sed  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1481193323Sed  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1482193323Sed  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1483193323Sed    unsigned Opc;
1484193323Sed    unsigned Size;
1485309124Sdim    switch (MI.getOpcode()) {
1486198090Srdivacky    default: llvm_unreachable("Unreachable!");
1487193323Sed    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1488193323Sed    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1489193323Sed    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1490193323Sed    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1491193323Sed    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1492193323Sed    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1493193323Sed    }
1494309124Sdim    unsigned Amt = MI.getOperand(3).getImm();
1495309124Sdim    auto &WorkingMI = cloneIfNew(MI);
1496309124Sdim    WorkingMI.setDesc(get(Opc));
1497309124Sdim    WorkingMI.getOperand(3).setImm(Size - Amt);
1498309124Sdim    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1499309124Sdim                                                   OpIdx1, OpIdx2);
1500193323Sed  }
1501321369Sdim  case X86::PFSUBrr:
1502321369Sdim  case X86::PFSUBRrr: {
1503321369Sdim    // PFSUB  x, y: x = x - y
1504321369Sdim    // PFSUBR x, y: x = y - x
1505321369Sdim    unsigned Opc =
1506321369Sdim        (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr);
1507321369Sdim    auto &WorkingMI = cloneIfNew(MI);
1508321369Sdim    WorkingMI.setDesc(get(Opc));
1509321369Sdim    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1510321369Sdim                                                   OpIdx1, OpIdx2);
1511321369Sdim  }
1512280031Sdim  case X86::BLENDPDrri:
1513280031Sdim  case X86::BLENDPSrri:
1514280031Sdim  case X86::VBLENDPDrri:
1515280031Sdim  case X86::VBLENDPSrri:
1516341825Sdim    // If we're optimizing for size, try to use MOVSD/MOVSS.
1517353358Sdim    if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
1518341825Sdim      unsigned Mask, Opc;
1519341825Sdim      switch (MI.getOpcode()) {
1520341825Sdim      default: llvm_unreachable("Unreachable!");
1521341825Sdim      case X86::BLENDPDrri:  Opc = X86::MOVSDrr;  Mask = 0x03; break;
1522341825Sdim      case X86::BLENDPSrri:  Opc = X86::MOVSSrr;  Mask = 0x0F; break;
1523341825Sdim      case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break;
1524341825Sdim      case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break;
1525341825Sdim      }
1526341825Sdim      if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
1527341825Sdim        auto &WorkingMI = cloneIfNew(MI);
1528341825Sdim        WorkingMI.setDesc(get(Opc));
1529341825Sdim        WorkingMI.RemoveOperand(3);
1530341825Sdim        return TargetInstrInfo::commuteInstructionImpl(WorkingMI,
1531341825Sdim                                                       /*NewMI=*/false,
1532341825Sdim                                                       OpIdx1, OpIdx2);
1533341825Sdim      }
1534341825Sdim    }
1535341825Sdim    LLVM_FALLTHROUGH;
1536341825Sdim  case X86::PBLENDWrri:
1537280031Sdim  case X86::VBLENDPDYrri:
1538280031Sdim  case X86::VBLENDPSYrri:
1539280031Sdim  case X86::VPBLENDDrri:
1540280031Sdim  case X86::VPBLENDWrri:
1541280031Sdim  case X86::VPBLENDDYrri:
1542280031Sdim  case X86::VPBLENDWYrri:{
1543353358Sdim    int8_t Mask;
1544309124Sdim    switch (MI.getOpcode()) {
1545280031Sdim    default: llvm_unreachable("Unreachable!");
1546353358Sdim    case X86::BLENDPDrri:    Mask = (int8_t)0x03; break;
1547353358Sdim    case X86::BLENDPSrri:    Mask = (int8_t)0x0F; break;
1548353358Sdim    case X86::PBLENDWrri:    Mask = (int8_t)0xFF; break;
1549353358Sdim    case X86::VBLENDPDrri:   Mask = (int8_t)0x03; break;
1550353358Sdim    case X86::VBLENDPSrri:   Mask = (int8_t)0x0F; break;
1551353358Sdim    case X86::VBLENDPDYrri:  Mask = (int8_t)0x0F; break;
1552353358Sdim    case X86::VBLENDPSYrri:  Mask = (int8_t)0xFF; break;
1553353358Sdim    case X86::VPBLENDDrri:   Mask = (int8_t)0x0F; break;
1554353358Sdim    case X86::VPBLENDWrri:   Mask = (int8_t)0xFF; break;
1555353358Sdim    case X86::VPBLENDDYrri:  Mask = (int8_t)0xFF; break;
1556353358Sdim    case X86::VPBLENDWYrri:  Mask = (int8_t)0xFF; break;
1557280031Sdim    }
1558280031Sdim    // Only the least significant bits of Imm are used.
1559353358Sdim    // Using int8_t to ensure it will be sign extended to the int64_t that
1560353358Sdim    // setImm takes in order to match isel behavior.
1561353358Sdim    int8_t Imm = MI.getOperand(3).getImm() & Mask;
1562309124Sdim    auto &WorkingMI = cloneIfNew(MI);
1563309124Sdim    WorkingMI.getOperand(3).setImm(Mask ^ Imm);
1564309124Sdim    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1565309124Sdim                                                   OpIdx1, OpIdx2);
1566280031Sdim  }
1567353358Sdim  case X86::INSERTPSrr:
1568353358Sdim  case X86::VINSERTPSrr:
1569353358Sdim  case X86::VINSERTPSZrr: {
1570353358Sdim    unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
1571353358Sdim    unsigned ZMask = Imm & 15;
1572353358Sdim    unsigned DstIdx = (Imm >> 4) & 3;
1573353358Sdim    unsigned SrcIdx = (Imm >> 6) & 3;
1574353358Sdim
1575353358Sdim    // We can commute insertps if we zero 2 of the elements, the insertion is
1576353358Sdim    // "inline" and we don't override the insertion with a zero.
1577353358Sdim    if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
1578353358Sdim        countPopulation(ZMask) == 2) {
1579353358Sdim      unsigned AltIdx = findFirstSet((ZMask | (1 << DstIdx)) ^ 15);
1580353358Sdim      assert(AltIdx < 4 && "Illegal insertion index");
1581353358Sdim      unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
1582353358Sdim      auto &WorkingMI = cloneIfNew(MI);
1583353358Sdim      WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm);
1584353358Sdim      return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1585353358Sdim                                                     OpIdx1, OpIdx2);
1586353358Sdim    }
1587353358Sdim    return nullptr;
1588353358Sdim  }
1589314564Sdim  case X86::MOVSDrr:
1590314564Sdim  case X86::MOVSSrr:
1591314564Sdim  case X86::VMOVSDrr:
1592314564Sdim  case X86::VMOVSSrr:{
1593314564Sdim    // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
1594353358Sdim    if (Subtarget.hasSSE41()) {
1595353358Sdim      unsigned Mask, Opc;
1596353358Sdim      switch (MI.getOpcode()) {
1597353358Sdim      default: llvm_unreachable("Unreachable!");
1598353358Sdim      case X86::MOVSDrr:  Opc = X86::BLENDPDrri;  Mask = 0x02; break;
1599353358Sdim      case X86::MOVSSrr:  Opc = X86::BLENDPSrri;  Mask = 0x0E; break;
1600353358Sdim      case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
1601353358Sdim      case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
1602353358Sdim      }
1603314564Sdim
1604353358Sdim      auto &WorkingMI = cloneIfNew(MI);
1605353358Sdim      WorkingMI.setDesc(get(Opc));
1606353358Sdim      WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
1607353358Sdim      return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1608353358Sdim                                                     OpIdx1, OpIdx2);
1609314564Sdim    }
1610314564Sdim
1611353358Sdim    // Convert to SHUFPD.
1612353358Sdim    assert(MI.getOpcode() == X86::MOVSDrr &&
1613353358Sdim           "Can only commute MOVSDrr without SSE4.1");
1614353358Sdim
1615314564Sdim    auto &WorkingMI = cloneIfNew(MI);
1616353358Sdim    WorkingMI.setDesc(get(X86::SHUFPDrri));
1617353358Sdim    WorkingMI.addOperand(MachineOperand::CreateImm(0x02));
1618314564Sdim    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1619314564Sdim                                                   OpIdx1, OpIdx2);
1620314564Sdim  }
1621353358Sdim  case X86::SHUFPDrri: {
1622353358Sdim    // Commute to MOVSD.
1623353358Sdim    assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
1624353358Sdim    auto &WorkingMI = cloneIfNew(MI);
1625353358Sdim    WorkingMI.setDesc(get(X86::MOVSDrr));
1626353358Sdim    WorkingMI.RemoveOperand(3);
1627353358Sdim    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1628353358Sdim                                                   OpIdx1, OpIdx2);
1629353358Sdim  }
1630288943Sdim  case X86::PCLMULQDQrr:
1631327952Sdim  case X86::VPCLMULQDQrr:
1632327952Sdim  case X86::VPCLMULQDQYrr:
1633327952Sdim  case X86::VPCLMULQDQZrr:
1634327952Sdim  case X86::VPCLMULQDQZ128rr:
1635327952Sdim  case X86::VPCLMULQDQZ256rr: {
1636288943Sdim    // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
1637288943Sdim    // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
1638309124Sdim    unsigned Imm = MI.getOperand(3).getImm();
1639288943Sdim    unsigned Src1Hi = Imm & 0x01;
1640288943Sdim    unsigned Src2Hi = Imm & 0x10;
1641309124Sdim    auto &WorkingMI = cloneIfNew(MI);
1642309124Sdim    WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
1643309124Sdim    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1644309124Sdim                                                   OpIdx1, OpIdx2);
1645288943Sdim  }
1646321369Sdim  case X86::VPCMPBZ128rri:  case X86::VPCMPUBZ128rri:
1647321369Sdim  case X86::VPCMPBZ256rri:  case X86::VPCMPUBZ256rri:
1648321369Sdim  case X86::VPCMPBZrri:     case X86::VPCMPUBZrri:
1649321369Sdim  case X86::VPCMPDZ128rri:  case X86::VPCMPUDZ128rri:
1650321369Sdim  case X86::VPCMPDZ256rri:  case X86::VPCMPUDZ256rri:
1651321369Sdim  case X86::VPCMPDZrri:     case X86::VPCMPUDZrri:
1652321369Sdim  case X86::VPCMPQZ128rri:  case X86::VPCMPUQZ128rri:
1653321369Sdim  case X86::VPCMPQZ256rri:  case X86::VPCMPUQZ256rri:
1654321369Sdim  case X86::VPCMPQZrri:     case X86::VPCMPUQZrri:
1655321369Sdim  case X86::VPCMPWZ128rri:  case X86::VPCMPUWZ128rri:
1656321369Sdim  case X86::VPCMPWZ256rri:  case X86::VPCMPUWZ256rri:
1657321369Sdim  case X86::VPCMPWZrri:     case X86::VPCMPUWZrri:
1658321369Sdim  case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik:
1659321369Sdim  case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik:
1660321369Sdim  case X86::VPCMPBZrrik:    case X86::VPCMPUBZrrik:
1661321369Sdim  case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik:
1662321369Sdim  case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik:
1663321369Sdim  case X86::VPCMPDZrrik:    case X86::VPCMPUDZrrik:
1664321369Sdim  case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik:
1665321369Sdim  case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik:
1666321369Sdim  case X86::VPCMPQZrrik:    case X86::VPCMPUQZrrik:
1667321369Sdim  case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik:
1668321369Sdim  case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik:
1669321369Sdim  case X86::VPCMPWZrrik:    case X86::VPCMPUWZrrik: {
1670314564Sdim    // Flip comparison mode immediate (if necessary).
1671321369Sdim    unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7;
1672341825Sdim    Imm = X86::getSwappedVPCMPImm(Imm);
1673314564Sdim    auto &WorkingMI = cloneIfNew(MI);
1674321369Sdim    WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm);
1675314564Sdim    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1676314564Sdim                                                   OpIdx1, OpIdx2);
1677314564Sdim  }
1678288943Sdim  case X86::VPCOMBri: case X86::VPCOMUBri:
1679288943Sdim  case X86::VPCOMDri: case X86::VPCOMUDri:
1680288943Sdim  case X86::VPCOMQri: case X86::VPCOMUQri:
1681288943Sdim  case X86::VPCOMWri: case X86::VPCOMUWri: {
1682288943Sdim    // Flip comparison mode immediate (if necessary).
1683309124Sdim    unsigned Imm = MI.getOperand(3).getImm() & 0x7;
1684341825Sdim    Imm = X86::getSwappedVPCOMImm(Imm);
1685309124Sdim    auto &WorkingMI = cloneIfNew(MI);
1686309124Sdim    WorkingMI.getOperand(3).setImm(Imm);
1687309124Sdim    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1688309124Sdim                                                   OpIdx1, OpIdx2);
1689288943Sdim  }
1690309124Sdim  case X86::VPERM2F128rr:
1691309124Sdim  case X86::VPERM2I128rr: {
1692309124Sdim    // Flip permute source immediate.
1693309124Sdim    // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
1694309124Sdim    // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
1695353358Sdim    int8_t Imm = MI.getOperand(3).getImm() & 0xFF;
1696309124Sdim    auto &WorkingMI = cloneIfNew(MI);
1697309124Sdim    WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
1698309124Sdim    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1699309124Sdim                                                   OpIdx1, OpIdx2);
1700309124Sdim  }
1701314564Sdim  case X86::MOVHLPSrr:
1702341825Sdim  case X86::UNPCKHPDrr:
1703341825Sdim  case X86::VMOVHLPSrr:
1704341825Sdim  case X86::VUNPCKHPDrr:
1705341825Sdim  case X86::VMOVHLPSZrr:
1706341825Sdim  case X86::VUNPCKHPDZ128rr: {
1707341825Sdim    assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
1708314564Sdim
1709314564Sdim    unsigned Opc = MI.getOpcode();
1710314564Sdim    switch (Opc) {
1711341825Sdim    default: llvm_unreachable("Unreachable!");
1712341825Sdim    case X86::MOVHLPSrr:       Opc = X86::UNPCKHPDrr;      break;
1713341825Sdim    case X86::UNPCKHPDrr:      Opc = X86::MOVHLPSrr;       break;
1714341825Sdim    case X86::VMOVHLPSrr:      Opc = X86::VUNPCKHPDrr;     break;
1715341825Sdim    case X86::VUNPCKHPDrr:     Opc = X86::VMOVHLPSrr;      break;
1716341825Sdim    case X86::VMOVHLPSZrr:     Opc = X86::VUNPCKHPDZ128rr; break;
1717341825Sdim    case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr;     break;
1718314564Sdim    }
1719314564Sdim    auto &WorkingMI = cloneIfNew(MI);
1720314564Sdim    WorkingMI.setDesc(get(Opc));
1721314564Sdim    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1722314564Sdim                                                   OpIdx1, OpIdx2);
1723314564Sdim  }
1724353358Sdim  case X86::CMOV16rr:  case X86::CMOV32rr:  case X86::CMOV64rr: {
1725309124Sdim    auto &WorkingMI = cloneIfNew(MI);
1726353358Sdim    unsigned OpNo = MI.getDesc().getNumOperands() - 1;
1727353358Sdim    X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
1728353358Sdim    WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC));
1729309124Sdim    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1730309124Sdim                                                   OpIdx1, OpIdx2);
1731193323Sed  }
1732314564Sdim  case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi:
1733314564Sdim  case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi:
1734314564Sdim  case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi:
1735314564Sdim  case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi:
1736314564Sdim  case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi:
1737314564Sdim  case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi:
1738321369Sdim  case X86::VPTERNLOGDZrrik:
1739321369Sdim  case X86::VPTERNLOGDZ128rrik:
1740321369Sdim  case X86::VPTERNLOGDZ256rrik:
1741321369Sdim  case X86::VPTERNLOGQZrrik:
1742321369Sdim  case X86::VPTERNLOGQZ128rrik:
1743321369Sdim  case X86::VPTERNLOGQZ256rrik:
1744314564Sdim  case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz:
1745314564Sdim  case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
1746314564Sdim  case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
1747314564Sdim  case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz:
1748314564Sdim  case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
1749321369Sdim  case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
1750321369Sdim  case X86::VPTERNLOGDZ128rmbi:
1751321369Sdim  case X86::VPTERNLOGDZ256rmbi:
1752321369Sdim  case X86::VPTERNLOGDZrmbi:
1753321369Sdim  case X86::VPTERNLOGQZ128rmbi:
1754321369Sdim  case X86::VPTERNLOGQZ256rmbi:
1755321369Sdim  case X86::VPTERNLOGQZrmbi:
1756321369Sdim  case X86::VPTERNLOGDZ128rmbikz:
1757321369Sdim  case X86::VPTERNLOGDZ256rmbikz:
1758321369Sdim  case X86::VPTERNLOGDZrmbikz:
1759321369Sdim  case X86::VPTERNLOGQZ128rmbikz:
1760321369Sdim  case X86::VPTERNLOGQZ256rmbikz:
1761321369Sdim  case X86::VPTERNLOGQZrmbikz: {
1762314564Sdim    auto &WorkingMI = cloneIfNew(MI);
1763341825Sdim    commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2);
1764314564Sdim    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1765314564Sdim                                                   OpIdx1, OpIdx2);
1766314564Sdim  }
1767314564Sdim  default: {
1768314564Sdim    if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
1769314564Sdim      unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
1770314564Sdim      auto &WorkingMI = cloneIfNew(MI);
1771314564Sdim      WorkingMI.setDesc(get(Opc));
1772314564Sdim      return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1773314564Sdim                                                     OpIdx1, OpIdx2);
1774314564Sdim    }
1775314564Sdim
1776341825Sdim    const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
1777341825Sdim                                                      MI.getDesc().TSFlags);
1778314564Sdim    if (FMA3Group) {
1779314564Sdim      unsigned Opc =
1780314564Sdim        getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
1781309124Sdim      auto &WorkingMI = cloneIfNew(MI);
1782309124Sdim      WorkingMI.setDesc(get(Opc));
1783309124Sdim      return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1784309124Sdim                                                     OpIdx1, OpIdx2);
1785296417Sdim    }
1786309124Sdim
1787296417Sdim    return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
1788193323Sed  }
1789314564Sdim  }
1790193323Sed}
1791193323Sed
1792341825Sdimbool
1793341825SdimX86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
1794341825Sdim                                            unsigned &SrcOpIdx1,
1795341825Sdim                                            unsigned &SrcOpIdx2,
1796341825Sdim                                            bool IsIntrinsic) const {
1797314564Sdim  uint64_t TSFlags = MI.getDesc().TSFlags;
1798314564Sdim
1799314564Sdim  unsigned FirstCommutableVecOp = 1;
1800314564Sdim  unsigned LastCommutableVecOp = 3;
1801341825Sdim  unsigned KMaskOp = -1U;
1802314564Sdim  if (X86II::isKMasked(TSFlags)) {
1803341825Sdim    // For k-zero-masked operations it is Ok to commute the first vector
1804341825Sdim    // operand.
1805341825Sdim    // For regular k-masked operations a conservative choice is done as the
1806341825Sdim    // elements of the first vector operand, for which the corresponding bit
1807341825Sdim    // in the k-mask operand is set to 0, are copied to the result of the
1808341825Sdim    // instruction.
1809341825Sdim    // TODO/FIXME: The commute still may be legal if it is known that the
1810341825Sdim    // k-mask operand is set to either all ones or all zeroes.
1811341825Sdim    // It is also Ok to commute the 1st operand if all users of MI use only
1812341825Sdim    // the elements enabled by the k-mask operand. For example,
1813341825Sdim    //   v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
1814341825Sdim    //                                                     : v1[i];
1815341825Sdim    //   VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
1816341825Sdim    //                                  // Ok, to commute v1 in FMADD213PSZrk.
1817341825Sdim
1818314564Sdim    // The k-mask operand has index = 2 for masked and zero-masked operations.
1819314564Sdim    KMaskOp = 2;
1820314564Sdim
1821314564Sdim    // The operand with index = 1 is used as a source for those elements for
1822314564Sdim    // which the corresponding bit in the k-mask is set to 0.
1823314564Sdim    if (X86II::isKMergeMasked(TSFlags))
1824314564Sdim      FirstCommutableVecOp = 3;
1825314564Sdim
1826314564Sdim    LastCommutableVecOp++;
1827341825Sdim  } else if (IsIntrinsic) {
1828341825Sdim    // Commuting the first operand of an intrinsic instruction isn't possible
1829341825Sdim    // unless we can prove that only the lowest element of the result is used.
1830341825Sdim    FirstCommutableVecOp = 2;
1831314564Sdim  }
1832314564Sdim
1833314564Sdim  if (isMem(MI, LastCommutableVecOp))
1834314564Sdim    LastCommutableVecOp--;
1835314564Sdim
1836296417Sdim  // Only the first RegOpsNum operands are commutable.
1837296417Sdim  // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
1838296417Sdim  // that the operand is not specified/fixed.
1839296417Sdim  if (SrcOpIdx1 != CommuteAnyOperandIndex &&
1840314564Sdim      (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
1841314564Sdim       SrcOpIdx1 == KMaskOp))
1842296417Sdim    return false;
1843296417Sdim  if (SrcOpIdx2 != CommuteAnyOperandIndex &&
1844314564Sdim      (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
1845314564Sdim       SrcOpIdx2 == KMaskOp))
1846296417Sdim    return false;
1847296417Sdim
1848296417Sdim  // Look for two different register operands assumed to be commutable
1849296417Sdim  // regardless of the FMA opcode. The FMA opcode is adjusted later.
1850296417Sdim  if (SrcOpIdx1 == CommuteAnyOperandIndex ||
1851296417Sdim      SrcOpIdx2 == CommuteAnyOperandIndex) {
1852296417Sdim    unsigned CommutableOpIdx2 = SrcOpIdx2;
1853296417Sdim
1854296417Sdim    // At least one of operands to be commuted is not specified and
1855296417Sdim    // this method is free to choose appropriate commutable operands.
1856296417Sdim    if (SrcOpIdx1 == SrcOpIdx2)
1857296417Sdim      // Both of operands are not fixed. By default set one of commutable
1858296417Sdim      // operands to the last register operand of the instruction.
1859314564Sdim      CommutableOpIdx2 = LastCommutableVecOp;
1860296417Sdim    else if (SrcOpIdx2 == CommuteAnyOperandIndex)
1861296417Sdim      // Only one of operands is not fixed.
1862296417Sdim      CommutableOpIdx2 = SrcOpIdx1;
1863296417Sdim
1864296417Sdim    // CommutableOpIdx2 is well defined now. Let's choose another commutable
1865296417Sdim    // operand and assign its index to CommutableOpIdx1.
1866309124Sdim    unsigned Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
1867353358Sdim
1868353358Sdim    unsigned CommutableOpIdx1;
1869314564Sdim    for (CommutableOpIdx1 = LastCommutableVecOp;
1870314564Sdim         CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
1871314564Sdim      // Just ignore and skip the k-mask operand.
1872314564Sdim      if (CommutableOpIdx1 == KMaskOp)
1873314564Sdim        continue;
1874314564Sdim
1875296417Sdim      // The commuted operands must have different registers.
1876296417Sdim      // Otherwise, the commute transformation does not change anything and
1877296417Sdim      // is useless then.
1878309124Sdim      if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
1879296417Sdim        break;
1880296417Sdim    }
1881296417Sdim
1882296417Sdim    // No appropriate commutable operands were found.
1883314564Sdim    if (CommutableOpIdx1 < FirstCommutableVecOp)
1884296417Sdim      return false;
1885296417Sdim
1886296417Sdim    // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
1887296417Sdim    // to return those values.
1888296417Sdim    if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
1889296417Sdim                              CommutableOpIdx1, CommutableOpIdx2))
1890296417Sdim      return false;
1891296417Sdim  }
1892296417Sdim
1893314564Sdim  return true;
1894296417Sdim}
1895296417Sdim
1896309124Sdimbool X86InstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
1897276479Sdim                                         unsigned &SrcOpIdx2) const {
1898314564Sdim  const MCInstrDesc &Desc = MI.getDesc();
1899314564Sdim  if (!Desc.isCommutable())
1900314564Sdim    return false;
1901314564Sdim
1902309124Sdim  switch (MI.getOpcode()) {
1903314564Sdim  case X86::CMPSDrr:
1904314564Sdim  case X86::CMPSSrr:
1905309124Sdim  case X86::CMPPDrri:
1906309124Sdim  case X86::CMPPSrri:
1907314564Sdim  case X86::VCMPSDrr:
1908314564Sdim  case X86::VCMPSSrr:
1909309124Sdim  case X86::VCMPPDrri:
1910309124Sdim  case X86::VCMPPSrri:
1911309124Sdim  case X86::VCMPPDYrri:
1912314564Sdim  case X86::VCMPPSYrri:
1913314564Sdim  case X86::VCMPSDZrr:
1914314564Sdim  case X86::VCMPSSZrr:
1915314564Sdim  case X86::VCMPPDZrri:
1916314564Sdim  case X86::VCMPPSZrri:
1917314564Sdim  case X86::VCMPPDZ128rri:
1918314564Sdim  case X86::VCMPPSZ128rri:
1919314564Sdim  case X86::VCMPPDZ256rri:
1920353358Sdim  case X86::VCMPPSZ256rri:
1921353358Sdim  case X86::VCMPPDZrrik:
1922353358Sdim  case X86::VCMPPSZrrik:
1923353358Sdim  case X86::VCMPPDZ128rrik:
1924353358Sdim  case X86::VCMPPSZ128rrik:
1925353358Sdim  case X86::VCMPPDZ256rrik:
1926353358Sdim  case X86::VCMPPSZ256rrik: {
1927353358Sdim    unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0;
1928353358Sdim
1929309124Sdim    // Float comparison can be safely commuted for
1930309124Sdim    // Ordered/Unordered/Equal/NotEqual tests
1931353358Sdim    unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7;
1932309124Sdim    switch (Imm) {
1933309124Sdim    case 0x00: // EQUAL
1934309124Sdim    case 0x03: // UNORDERED
1935309124Sdim    case 0x04: // NOT EQUAL
1936309124Sdim    case 0x07: // ORDERED
1937353358Sdim      // The indices of the commutable operands are 1 and 2 (or 2 and 3
1938353358Sdim      // when masked).
1939309124Sdim      // Assign them to the returned operand indices here.
1940353358Sdim      return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
1941353358Sdim                                  2 + OpOffset);
1942288943Sdim    }
1943309124Sdim    return false;
1944276479Sdim  }
1945314564Sdim  case X86::MOVSSrr:
1946353358Sdim    // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
1947353358Sdim    // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
1948353358Sdim    // AVX implies sse4.1.
1949314564Sdim    if (Subtarget.hasSSE41())
1950314564Sdim      return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1951314564Sdim    return false;
1952353358Sdim  case X86::SHUFPDrri:
1953353358Sdim    // We can commute this to MOVSD.
1954353358Sdim    if (MI.getOperand(3).getImm() == 0x02)
1955353358Sdim      return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1956353358Sdim    return false;
1957341825Sdim  case X86::MOVHLPSrr:
1958341825Sdim  case X86::UNPCKHPDrr:
1959341825Sdim  case X86::VMOVHLPSrr:
1960341825Sdim  case X86::VUNPCKHPDrr:
1961341825Sdim  case X86::VMOVHLPSZrr:
1962341825Sdim  case X86::VUNPCKHPDZ128rr:
1963341825Sdim    if (Subtarget.hasSSE2())
1964341825Sdim      return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1965341825Sdim    return false;
1966314564Sdim  case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi:
1967314564Sdim  case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi:
1968314564Sdim  case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi:
1969314564Sdim  case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi:
1970314564Sdim  case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi:
1971314564Sdim  case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi:
1972321369Sdim  case X86::VPTERNLOGDZrrik:
1973321369Sdim  case X86::VPTERNLOGDZ128rrik:
1974321369Sdim  case X86::VPTERNLOGDZ256rrik:
1975321369Sdim  case X86::VPTERNLOGQZrrik:
1976321369Sdim  case X86::VPTERNLOGQZ128rrik:
1977321369Sdim  case X86::VPTERNLOGQZ256rrik:
1978314564Sdim  case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz:
1979314564Sdim  case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
1980314564Sdim  case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
1981314564Sdim  case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz:
1982314564Sdim  case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
1983314564Sdim  case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
1984321369Sdim  case X86::VPTERNLOGDZ128rmbi:
1985321369Sdim  case X86::VPTERNLOGDZ256rmbi:
1986321369Sdim  case X86::VPTERNLOGDZrmbi:
1987321369Sdim  case X86::VPTERNLOGQZ128rmbi:
1988321369Sdim  case X86::VPTERNLOGQZ256rmbi:
1989321369Sdim  case X86::VPTERNLOGQZrmbi:
1990321369Sdim  case X86::VPTERNLOGDZ128rmbikz:
1991321369Sdim  case X86::VPTERNLOGDZ256rmbikz:
1992321369Sdim  case X86::VPTERNLOGDZrmbikz:
1993321369Sdim  case X86::VPTERNLOGQZ128rmbikz:
1994321369Sdim  case X86::VPTERNLOGQZ256rmbikz:
1995321369Sdim  case X86::VPTERNLOGQZrmbikz:
1996314564Sdim    return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1997327952Sdim  case X86::VPMADD52HUQZ128r:
1998327952Sdim  case X86::VPMADD52HUQZ128rk:
1999327952Sdim  case X86::VPMADD52HUQZ128rkz:
2000327952Sdim  case X86::VPMADD52HUQZ256r:
2001327952Sdim  case X86::VPMADD52HUQZ256rk:
2002327952Sdim  case X86::VPMADD52HUQZ256rkz:
2003327952Sdim  case X86::VPMADD52HUQZr:
2004327952Sdim  case X86::VPMADD52HUQZrk:
2005327952Sdim  case X86::VPMADD52HUQZrkz:
2006327952Sdim  case X86::VPMADD52LUQZ128r:
2007327952Sdim  case X86::VPMADD52LUQZ128rk:
2008327952Sdim  case X86::VPMADD52LUQZ128rkz:
2009327952Sdim  case X86::VPMADD52LUQZ256r:
2010327952Sdim  case X86::VPMADD52LUQZ256rk:
2011327952Sdim  case X86::VPMADD52LUQZ256rkz:
2012327952Sdim  case X86::VPMADD52LUQZr:
2013327952Sdim  case X86::VPMADD52LUQZrk:
2014327952Sdim  case X86::VPMADD52LUQZrkz: {
2015327952Sdim    unsigned CommutableOpIdx1 = 2;
2016327952Sdim    unsigned CommutableOpIdx2 = 3;
2017341825Sdim    if (X86II::isKMasked(Desc.TSFlags)) {
2018327952Sdim      // Skip the mask register.
2019327952Sdim      ++CommutableOpIdx1;
2020327952Sdim      ++CommutableOpIdx2;
2021327952Sdim    }
2022327952Sdim    if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2023327952Sdim                              CommutableOpIdx1, CommutableOpIdx2))
2024327952Sdim      return false;
2025327952Sdim    if (!MI.getOperand(SrcOpIdx1).isReg() ||
2026327952Sdim        !MI.getOperand(SrcOpIdx2).isReg())
2027327952Sdim      // No idea.
2028327952Sdim      return false;
2029327952Sdim    return true;
2030327952Sdim  }
2031327952Sdim
2032309124Sdim  default:
2033341825Sdim    const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2034341825Sdim                                                      MI.getDesc().TSFlags);
2035314564Sdim    if (FMA3Group)
2036341825Sdim      return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
2037341825Sdim                                           FMA3Group->isIntrinsic());
2038314564Sdim
2039314564Sdim    // Handled masked instructions since we need to skip over the mask input
2040314564Sdim    // and the preserved input.
2041341825Sdim    if (X86II::isKMasked(Desc.TSFlags)) {
2042314564Sdim      // First assume that the first input is the mask operand and skip past it.
2043314564Sdim      unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
2044314564Sdim      unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
2045314564Sdim      // Check if the first input is tied. If there isn't one then we only
2046314564Sdim      // need to skip the mask operand which we did above.
2047314564Sdim      if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
2048314564Sdim                                             MCOI::TIED_TO) != -1)) {
2049314564Sdim        // If this is zero masking instruction with a tied operand, we need to
2050314564Sdim        // move the first index back to the first input since this must
2051314564Sdim        // be a 3 input instruction and we want the first two non-mask inputs.
2052314564Sdim        // Otherwise this is a 2 input instruction with a preserved input and
2053314564Sdim        // mask, so we need to move the indices to skip one more input.
2054341825Sdim        if (X86II::isKMergeMasked(Desc.TSFlags)) {
2055314564Sdim          ++CommutableOpIdx1;
2056314564Sdim          ++CommutableOpIdx2;
2057341825Sdim        } else {
2058341825Sdim          --CommutableOpIdx1;
2059314564Sdim        }
2060314564Sdim      }
2061314564Sdim
2062314564Sdim      if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2063314564Sdim                                CommutableOpIdx1, CommutableOpIdx2))
2064314564Sdim        return false;
2065314564Sdim
2066314564Sdim      if (!MI.getOperand(SrcOpIdx1).isReg() ||
2067314564Sdim          !MI.getOperand(SrcOpIdx2).isReg())
2068314564Sdim        // No idea.
2069314564Sdim        return false;
2070314564Sdim      return true;
2071314564Sdim    }
2072314564Sdim
2073309124Sdim    return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2074309124Sdim  }
2075296417Sdim  return false;
2076276479Sdim}
2077276479Sdim
2078353358SdimX86::CondCode X86::getCondFromBranch(const MachineInstr &MI) {
2079353358Sdim  switch (MI.getOpcode()) {
2080193323Sed  default: return X86::COND_INVALID;
2081353358Sdim  case X86::JCC_1:
2082353358Sdim    return static_cast<X86::CondCode>(
2083353358Sdim        MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2084193323Sed  }
2085193323Sed}
2086193323Sed
2087353358Sdim/// Return condition code of a SETCC opcode.
2088353358SdimX86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) {
2089353358Sdim  switch (MI.getOpcode()) {
2090239462Sdim  default: return X86::COND_INVALID;
2091353358Sdim  case X86::SETCCr: case X86::SETCCm:
2092353358Sdim    return static_cast<X86::CondCode>(
2093353358Sdim        MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2094239462Sdim  }
2095239462Sdim}
2096239462Sdim
2097288943Sdim/// Return condition code of a CMov opcode.
2098353358SdimX86::CondCode X86::getCondFromCMov(const MachineInstr &MI) {
2099353358Sdim  switch (MI.getOpcode()) {
2100239462Sdim  default: return X86::COND_INVALID;
2101353358Sdim  case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr:
2102353358Sdim  case X86::CMOV16rm: case X86::CMOV32rm: case X86::CMOV64rm:
2103353358Sdim    return static_cast<X86::CondCode>(
2104353358Sdim        MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2105239462Sdim  }
2106239462Sdim}
2107239462Sdim
2108288943Sdim/// Return the inverse of the specified condition,
2109193323Sed/// e.g. turning COND_E to COND_NE.
2110193323SedX86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2111193323Sed  switch (CC) {
2112198090Srdivacky  default: llvm_unreachable("Illegal condition code!");
2113193323Sed  case X86::COND_E:  return X86::COND_NE;
2114193323Sed  case X86::COND_NE: return X86::COND_E;
2115193323Sed  case X86::COND_L:  return X86::COND_GE;
2116193323Sed  case X86::COND_LE: return X86::COND_G;
2117193323Sed  case X86::COND_G:  return X86::COND_LE;
2118193323Sed  case X86::COND_GE: return X86::COND_L;
2119193323Sed  case X86::COND_B:  return X86::COND_AE;
2120193323Sed  case X86::COND_BE: return X86::COND_A;
2121193323Sed  case X86::COND_A:  return X86::COND_BE;
2122193323Sed  case X86::COND_AE: return X86::COND_B;
2123193323Sed  case X86::COND_S:  return X86::COND_NS;
2124193323Sed  case X86::COND_NS: return X86::COND_S;
2125193323Sed  case X86::COND_P:  return X86::COND_NP;
2126193323Sed  case X86::COND_NP: return X86::COND_P;
2127193323Sed  case X86::COND_O:  return X86::COND_NO;
2128193323Sed  case X86::COND_NO: return X86::COND_O;
2129309124Sdim  case X86::COND_NE_OR_P:  return X86::COND_E_AND_NP;
2130309124Sdim  case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
2131193323Sed  }
2132193323Sed}
2133193323Sed
2134288943Sdim/// Assuming the flags are set by MI(a,b), return the condition code if we
2135288943Sdim/// modify the instructions such that flags are set by MI(b,a).
2136239462Sdimstatic X86::CondCode getSwappedCondition(X86::CondCode CC) {
2137239462Sdim  switch (CC) {
2138239462Sdim  default: return X86::COND_INVALID;
2139239462Sdim  case X86::COND_E:  return X86::COND_E;
2140239462Sdim  case X86::COND_NE: return X86::COND_NE;
2141239462Sdim  case X86::COND_L:  return X86::COND_G;
2142239462Sdim  case X86::COND_LE: return X86::COND_GE;
2143239462Sdim  case X86::COND_G:  return X86::COND_L;
2144239462Sdim  case X86::COND_GE: return X86::COND_LE;
2145239462Sdim  case X86::COND_B:  return X86::COND_A;
2146239462Sdim  case X86::COND_BE: return X86::COND_AE;
2147239462Sdim  case X86::COND_A:  return X86::COND_B;
2148239462Sdim  case X86::COND_AE: return X86::COND_BE;
2149239462Sdim  }
2150239462Sdim}
2151239462Sdim
2152321369Sdimstd::pair<X86::CondCode, bool>
2153321369SdimX86::getX86ConditionCode(CmpInst::Predicate Predicate) {
2154321369Sdim  X86::CondCode CC = X86::COND_INVALID;
2155321369Sdim  bool NeedSwap = false;
2156321369Sdim  switch (Predicate) {
2157321369Sdim  default: break;
2158321369Sdim  // Floating-point Predicates
2159321369Sdim  case CmpInst::FCMP_UEQ: CC = X86::COND_E;       break;
2160321369Sdim  case CmpInst::FCMP_OLT: NeedSwap = true;        LLVM_FALLTHROUGH;
2161321369Sdim  case CmpInst::FCMP_OGT: CC = X86::COND_A;       break;
2162321369Sdim  case CmpInst::FCMP_OLE: NeedSwap = true;        LLVM_FALLTHROUGH;
2163321369Sdim  case CmpInst::FCMP_OGE: CC = X86::COND_AE;      break;
2164321369Sdim  case CmpInst::FCMP_UGT: NeedSwap = true;        LLVM_FALLTHROUGH;
2165321369Sdim  case CmpInst::FCMP_ULT: CC = X86::COND_B;       break;
2166321369Sdim  case CmpInst::FCMP_UGE: NeedSwap = true;        LLVM_FALLTHROUGH;
2167321369Sdim  case CmpInst::FCMP_ULE: CC = X86::COND_BE;      break;
2168321369Sdim  case CmpInst::FCMP_ONE: CC = X86::COND_NE;      break;
2169321369Sdim  case CmpInst::FCMP_UNO: CC = X86::COND_P;       break;
2170321369Sdim  case CmpInst::FCMP_ORD: CC = X86::COND_NP;      break;
2171321369Sdim  case CmpInst::FCMP_OEQ:                         LLVM_FALLTHROUGH;
2172321369Sdim  case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
2173321369Sdim
2174321369Sdim  // Integer Predicates
2175321369Sdim  case CmpInst::ICMP_EQ:  CC = X86::COND_E;       break;
2176321369Sdim  case CmpInst::ICMP_NE:  CC = X86::COND_NE;      break;
2177321369Sdim  case CmpInst::ICMP_UGT: CC = X86::COND_A;       break;
2178321369Sdim  case CmpInst::ICMP_UGE: CC = X86::COND_AE;      break;
2179321369Sdim  case CmpInst::ICMP_ULT: CC = X86::COND_B;       break;
2180321369Sdim  case CmpInst::ICMP_ULE: CC = X86::COND_BE;      break;
2181321369Sdim  case CmpInst::ICMP_SGT: CC = X86::COND_G;       break;
2182321369Sdim  case CmpInst::ICMP_SGE: CC = X86::COND_GE;      break;
2183321369Sdim  case CmpInst::ICMP_SLT: CC = X86::COND_L;       break;
2184321369Sdim  case CmpInst::ICMP_SLE: CC = X86::COND_LE;      break;
2185321369Sdim  }
2186321369Sdim
2187321369Sdim  return std::make_pair(CC, NeedSwap);
2188321369Sdim}
2189321369Sdim
2190353358Sdim/// Return a setcc opcode based on whether it has memory operand.
2191353358Sdimunsigned X86::getSETOpc(bool HasMemoryOperand) {
2192353358Sdim  return HasMemoryOperand ? X86::SETCCr : X86::SETCCm;
2193239462Sdim}
2194239462Sdim
2195353358Sdim/// Return a cmov opcode for the given register size in bytes, and operand type.
2196353358Sdimunsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) {
2197239462Sdim  switch(RegBytes) {
2198239462Sdim  default: llvm_unreachable("Illegal register size!");
2199353358Sdim  case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr;
2200353358Sdim  case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr;
2201360661Sdim  case 8: return HasMemoryOperand ? X86::CMOV64rm : X86::CMOV64rr;
2202239462Sdim  }
2203239462Sdim}
2204239462Sdim
2205341825Sdim/// Get the VPCMP immediate for the given condition.
2206341825Sdimunsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
2207341825Sdim  switch (CC) {
2208341825Sdim  default: llvm_unreachable("Unexpected SETCC condition");
2209341825Sdim  case ISD::SETNE:  return 4;
2210341825Sdim  case ISD::SETEQ:  return 0;
2211341825Sdim  case ISD::SETULT:
2212341825Sdim  case ISD::SETLT: return 1;
2213341825Sdim  case ISD::SETUGT:
2214341825Sdim  case ISD::SETGT: return 6;
2215341825Sdim  case ISD::SETUGE:
2216341825Sdim  case ISD::SETGE: return 5;
2217341825Sdim  case ISD::SETULE:
2218341825Sdim  case ISD::SETLE: return 2;
2219341825Sdim  }
2220341825Sdim}
2221341825Sdim
2222341825Sdim/// Get the VPCMP immediate if the opcodes are swapped.
2223341825Sdimunsigned X86::getSwappedVPCMPImm(unsigned Imm) {
2224341825Sdim  switch (Imm) {
2225341825Sdim  default: llvm_unreachable("Unreachable!");
2226341825Sdim  case 0x01: Imm = 0x06; break; // LT  -> NLE
2227341825Sdim  case 0x02: Imm = 0x05; break; // LE  -> NLT
2228341825Sdim  case 0x05: Imm = 0x02; break; // NLT -> LE
2229341825Sdim  case 0x06: Imm = 0x01; break; // NLE -> LT
2230341825Sdim  case 0x00: // EQ
2231341825Sdim  case 0x03: // FALSE
2232341825Sdim  case 0x04: // NE
2233341825Sdim  case 0x07: // TRUE
2234341825Sdim    break;
2235341825Sdim  }
2236341825Sdim
2237341825Sdim  return Imm;
2238341825Sdim}
2239341825Sdim
2240341825Sdim/// Get the VPCOM immediate if the opcodes are swapped.
2241341825Sdimunsigned X86::getSwappedVPCOMImm(unsigned Imm) {
2242341825Sdim  switch (Imm) {
2243341825Sdim  default: llvm_unreachable("Unreachable!");
2244341825Sdim  case 0x00: Imm = 0x02; break; // LT -> GT
2245341825Sdim  case 0x01: Imm = 0x03; break; // LE -> GE
2246341825Sdim  case 0x02: Imm = 0x00; break; // GT -> LT
2247341825Sdim  case 0x03: Imm = 0x01; break; // GE -> LE
2248341825Sdim  case 0x04: // EQ
2249341825Sdim  case 0x05: // NE
2250341825Sdim  case 0x06: // FALSE
2251341825Sdim  case 0x07: // TRUE
2252341825Sdim    break;
2253341825Sdim  }
2254341825Sdim
2255341825Sdim  return Imm;
2256341825Sdim}
2257341825Sdim
2258309124Sdimbool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
2259309124Sdim  if (!MI.isTerminator()) return false;
2260218893Sdim
2261193323Sed  // Conditional branch is a special case.
2262309124Sdim  if (MI.isBranch() && !MI.isBarrier())
2263193323Sed    return true;
2264309124Sdim  if (!MI.isPredicable())
2265193323Sed    return true;
2266193323Sed  return !isPredicated(MI);
2267193323Sed}
2268193323Sed
2269321369Sdimbool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
2270321369Sdim  switch (MI.getOpcode()) {
2271321369Sdim  case X86::TCRETURNdi:
2272321369Sdim  case X86::TCRETURNri:
2273321369Sdim  case X86::TCRETURNmi:
2274321369Sdim  case X86::TCRETURNdi64:
2275321369Sdim  case X86::TCRETURNri64:
2276321369Sdim  case X86::TCRETURNmi64:
2277321369Sdim    return true;
2278321369Sdim  default:
2279321369Sdim    return false;
2280321369Sdim  }
2281321369Sdim}
2282321369Sdim
2283321369Sdimbool X86InstrInfo::canMakeTailCallConditional(
2284321369Sdim    SmallVectorImpl<MachineOperand> &BranchCond,
2285321369Sdim    const MachineInstr &TailCall) const {
2286321369Sdim  if (TailCall.getOpcode() != X86::TCRETURNdi &&
2287321369Sdim      TailCall.getOpcode() != X86::TCRETURNdi64) {
2288321369Sdim    // Only direct calls can be done with a conditional branch.
2289321369Sdim    return false;
2290321369Sdim  }
2291321369Sdim
2292321369Sdim  const MachineFunction *MF = TailCall.getParent()->getParent();
2293321369Sdim  if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
2294321369Sdim    // Conditional tail calls confuse the Win64 unwinder.
2295321369Sdim    return false;
2296321369Sdim  }
2297321369Sdim
2298321369Sdim  assert(BranchCond.size() == 1);
2299321369Sdim  if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
2300321369Sdim    // Can't make a conditional tail call with this condition.
2301321369Sdim    return false;
2302321369Sdim  }
2303321369Sdim
2304321369Sdim  const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
2305321369Sdim  if (X86FI->getTCReturnAddrDelta() != 0 ||
2306321369Sdim      TailCall.getOperand(1).getImm() != 0) {
2307321369Sdim    // A conditional tail call cannot do any stack adjustment.
2308321369Sdim    return false;
2309321369Sdim  }
2310321369Sdim
2311321369Sdim  return true;
2312321369Sdim}
2313321369Sdim
2314321369Sdimvoid X86InstrInfo::replaceBranchWithTailCall(
2315321369Sdim    MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
2316321369Sdim    const MachineInstr &TailCall) const {
2317321369Sdim  assert(canMakeTailCallConditional(BranchCond, TailCall));
2318321369Sdim
2319321369Sdim  MachineBasicBlock::iterator I = MBB.end();
2320321369Sdim  while (I != MBB.begin()) {
2321321369Sdim    --I;
2322341825Sdim    if (I->isDebugInstr())
2323321369Sdim      continue;
2324321369Sdim    if (!I->isBranch())
2325321369Sdim      assert(0 && "Can't find the branch to replace!");
2326321369Sdim
2327353358Sdim    X86::CondCode CC = X86::getCondFromBranch(*I);
2328321369Sdim    assert(BranchCond.size() == 1);
2329321369Sdim    if (CC != BranchCond[0].getImm())
2330321369Sdim      continue;
2331321369Sdim
2332321369Sdim    break;
2333321369Sdim  }
2334321369Sdim
2335321369Sdim  unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
2336321369Sdim                                                         : X86::TCRETURNdi64cc;
2337321369Sdim
2338321369Sdim  auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
2339321369Sdim  MIB->addOperand(TailCall.getOperand(0)); // Destination.
2340321369Sdim  MIB.addImm(0); // Stack offset (not used).
2341321369Sdim  MIB->addOperand(BranchCond[0]); // Condition.
2342321369Sdim  MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
2343321369Sdim
2344321369Sdim  // Add implicit uses and defs of all live regs potentially clobbered by the
2345321369Sdim  // call. This way they still appear live across the call.
2346321369Sdim  LivePhysRegs LiveRegs(getRegisterInfo());
2347321369Sdim  LiveRegs.addLiveOuts(MBB);
2348344779Sdim  SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
2349321369Sdim  LiveRegs.stepForward(*MIB, Clobbers);
2350321369Sdim  for (const auto &C : Clobbers) {
2351321369Sdim    MIB.addReg(C.first, RegState::Implicit);
2352321369Sdim    MIB.addReg(C.first, RegState::Implicit | RegState::Define);
2353321369Sdim  }
2354321369Sdim
2355321369Sdim  I->eraseFromParent();
2356321369Sdim}
2357321369Sdim
2358309124Sdim// Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
2359309124Sdim// not be a fallthrough MBB now due to layout changes). Return nullptr if the
2360309124Sdim// fallthrough MBB cannot be identified.
2361309124Sdimstatic MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
2362309124Sdim                                            MachineBasicBlock *TBB) {
2363309124Sdim  // Look for non-EHPad successors other than TBB. If we find exactly one, it
2364309124Sdim  // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
2365309124Sdim  // and fallthrough MBB. If we find more than one, we cannot identify the
2366309124Sdim  // fallthrough MBB and should return nullptr.
2367309124Sdim  MachineBasicBlock *FallthroughBB = nullptr;
2368309124Sdim  for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) {
2369309124Sdim    if ((*SI)->isEHPad() || (*SI == TBB && FallthroughBB))
2370309124Sdim      continue;
2371309124Sdim    // Return a nullptr if we found more than one fallthrough successor.
2372309124Sdim    if (FallthroughBB && FallthroughBB != TBB)
2373309124Sdim      return nullptr;
2374309124Sdim    FallthroughBB = *SI;
2375309124Sdim  }
2376309124Sdim  return FallthroughBB;
2377309124Sdim}
2378309124Sdim
2379288943Sdimbool X86InstrInfo::AnalyzeBranchImpl(
2380288943Sdim    MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
2381288943Sdim    SmallVectorImpl<MachineOperand> &Cond,
2382288943Sdim    SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
2383288943Sdim
2384193323Sed  // Start from the bottom of the block and work up, examining the
2385193323Sed  // terminator instructions.
2386193323Sed  MachineBasicBlock::iterator I = MBB.end();
2387207618Srdivacky  MachineBasicBlock::iterator UnCondBrIter = MBB.end();
2388193323Sed  while (I != MBB.begin()) {
2389193323Sed    --I;
2390341825Sdim    if (I->isDebugInstr())
2391206083Srdivacky      continue;
2392200581Srdivacky
2393200581Srdivacky    // Working from the bottom, when we see a non-terminator instruction, we're
2394200581Srdivacky    // done.
2395309124Sdim    if (!isUnpredicatedTerminator(*I))
2396193323Sed      break;
2397200581Srdivacky
2398200581Srdivacky    // A terminator that isn't a branch can't easily be handled by this
2399200581Srdivacky    // analysis.
2400234353Sdim    if (!I->isBranch())
2401193323Sed      return true;
2402200581Srdivacky
2403193323Sed    // Handle unconditional branches.
2404280031Sdim    if (I->getOpcode() == X86::JMP_1) {
2405207618Srdivacky      UnCondBrIter = I;
2406207618Srdivacky
2407193323Sed      if (!AllowModify) {
2408193323Sed        TBB = I->getOperand(0).getMBB();
2409193323Sed        continue;
2410193323Sed      }
2411193323Sed
2412193323Sed      // If the block has any instructions after a JMP, delete them.
2413276479Sdim      while (std::next(I) != MBB.end())
2414276479Sdim        std::next(I)->eraseFromParent();
2415200581Srdivacky
2416193323Sed      Cond.clear();
2417276479Sdim      FBB = nullptr;
2418200581Srdivacky
2419193323Sed      // Delete the JMP if it's equivalent to a fall-through.
2420193323Sed      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
2421276479Sdim        TBB = nullptr;
2422193323Sed        I->eraseFromParent();
2423193323Sed        I = MBB.end();
2424207618Srdivacky        UnCondBrIter = MBB.end();
2425193323Sed        continue;
2426193323Sed      }
2427200581Srdivacky
2428207618Srdivacky      // TBB is used to indicate the unconditional destination.
2429193323Sed      TBB = I->getOperand(0).getMBB();
2430193323Sed      continue;
2431193323Sed    }
2432200581Srdivacky
2433193323Sed    // Handle conditional branches.
2434353358Sdim    X86::CondCode BranchCode = X86::getCondFromBranch(*I);
2435193323Sed    if (BranchCode == X86::COND_INVALID)
2436193323Sed      return true;  // Can't handle indirect branch.
2437200581Srdivacky
2438344779Sdim    // In practice we should never have an undef eflags operand, if we do
2439344779Sdim    // abort here as we are not prepared to preserve the flag.
2440353358Sdim    if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef())
2441344779Sdim      return true;
2442344779Sdim
2443193323Sed    // Working from the bottom, handle the first conditional branch.
2444193323Sed    if (Cond.empty()) {
2445207618Srdivacky      MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
2446207618Srdivacky      if (AllowModify && UnCondBrIter != MBB.end() &&
2447207618Srdivacky          MBB.isLayoutSuccessor(TargetBB)) {
2448207618Srdivacky        // If we can modify the code and it ends in something like:
2449207618Srdivacky        //
2450207618Srdivacky        //     jCC L1
2451207618Srdivacky        //     jmp L2
2452207618Srdivacky        //   L1:
2453207618Srdivacky        //     ...
2454207618Srdivacky        //   L2:
2455207618Srdivacky        //
2456207618Srdivacky        // Then we can change this to:
2457207618Srdivacky        //
2458207618Srdivacky        //     jnCC L2
2459207618Srdivacky        //   L1:
2460207618Srdivacky        //     ...
2461207618Srdivacky        //   L2:
2462207618Srdivacky        //
2463207618Srdivacky        // Which is a bit more efficient.
2464207618Srdivacky        // We conditionally jump to the fall-through block.
2465207618Srdivacky        BranchCode = GetOppositeBranchCondition(BranchCode);
2466207618Srdivacky        MachineBasicBlock::iterator OldInst = I;
2467207618Srdivacky
2468353358Sdim        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JCC_1))
2469353358Sdim          .addMBB(UnCondBrIter->getOperand(0).getMBB())
2470353358Sdim          .addImm(BranchCode);
2471280031Sdim        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
2472207618Srdivacky          .addMBB(TargetBB);
2473207618Srdivacky
2474207618Srdivacky        OldInst->eraseFromParent();
2475207618Srdivacky        UnCondBrIter->eraseFromParent();
2476207618Srdivacky
2477207618Srdivacky        // Restart the analysis.
2478207618Srdivacky        UnCondBrIter = MBB.end();
2479207618Srdivacky        I = MBB.end();
2480207618Srdivacky        continue;
2481207618Srdivacky      }
2482207618Srdivacky
2483193323Sed      FBB = TBB;
2484193323Sed      TBB = I->getOperand(0).getMBB();
2485193323Sed      Cond.push_back(MachineOperand::CreateImm(BranchCode));
2486309124Sdim      CondBranches.push_back(&*I);
2487193323Sed      continue;
2488193323Sed    }
2489200581Srdivacky
2490200581Srdivacky    // Handle subsequent conditional branches. Only handle the case where all
2491200581Srdivacky    // conditional branches branch to the same destination and their condition
2492200581Srdivacky    // opcodes fit one of the special multi-branch idioms.
2493193323Sed    assert(Cond.size() == 1);
2494193323Sed    assert(TBB);
2495200581Srdivacky
2496200581Srdivacky    // If the conditions are the same, we can leave them alone.
2497193323Sed    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
2498309124Sdim    auto NewTBB = I->getOperand(0).getMBB();
2499309124Sdim    if (OldBranchCode == BranchCode && TBB == NewTBB)
2500193323Sed      continue;
2501200581Srdivacky
2502200581Srdivacky    // If they differ, see if they fit one of the known patterns. Theoretically,
2503200581Srdivacky    // we could handle more patterns here, but we shouldn't expect to see them
2504200581Srdivacky    // if instruction selection has done a reasonable job.
2505309124Sdim    if (TBB == NewTBB &&
2506309124Sdim               ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
2507309124Sdim                (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
2508193323Sed      BranchCode = X86::COND_NE_OR_P;
2509309124Sdim    } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
2510309124Sdim               (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
2511309124Sdim      if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
2512309124Sdim        return true;
2513309124Sdim
2514309124Sdim      // X86::COND_E_AND_NP usually has two different branch destinations.
2515309124Sdim      //
2516309124Sdim      // JP B1
2517309124Sdim      // JE B2
2518309124Sdim      // JMP B1
2519309124Sdim      // B1:
2520309124Sdim      // B2:
2521309124Sdim      //
2522309124Sdim      // Here this condition branches to B2 only if NP && E. It has another
2523309124Sdim      // equivalent form:
2524309124Sdim      //
2525309124Sdim      // JNE B1
2526309124Sdim      // JNP B2
2527309124Sdim      // JMP B1
2528309124Sdim      // B1:
2529309124Sdim      // B2:
2530309124Sdim      //
2531309124Sdim      // Similarly it branches to B2 only if E && NP. That is why this condition
2532309124Sdim      // is named with COND_E_AND_NP.
2533309124Sdim      BranchCode = X86::COND_E_AND_NP;
2534309124Sdim    } else
2535193323Sed      return true;
2536200581Srdivacky
2537193323Sed    // Update the MachineOperand.
2538193323Sed    Cond[0].setImm(BranchCode);
2539309124Sdim    CondBranches.push_back(&*I);
2540193323Sed  }
2541193323Sed
2542193323Sed  return false;
2543193323Sed}
2544193323Sed
2545309124Sdimbool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
2546288943Sdim                                 MachineBasicBlock *&TBB,
2547288943Sdim                                 MachineBasicBlock *&FBB,
2548288943Sdim                                 SmallVectorImpl<MachineOperand> &Cond,
2549288943Sdim                                 bool AllowModify) const {
2550288943Sdim  SmallVector<MachineInstr *, 4> CondBranches;
2551288943Sdim  return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
2552288943Sdim}
2553288943Sdim
2554309124Sdimbool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
2555288943Sdim                                          MachineBranchPredicate &MBP,
2556288943Sdim                                          bool AllowModify) const {
2557288943Sdim  using namespace std::placeholders;
2558288943Sdim
2559288943Sdim  SmallVector<MachineOperand, 4> Cond;
2560288943Sdim  SmallVector<MachineInstr *, 4> CondBranches;
2561288943Sdim  if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
2562288943Sdim                        AllowModify))
2563288943Sdim    return true;
2564288943Sdim
2565288943Sdim  if (Cond.size() != 1)
2566288943Sdim    return true;
2567288943Sdim
2568288943Sdim  assert(MBP.TrueDest && "expected!");
2569288943Sdim
2570288943Sdim  if (!MBP.FalseDest)
2571288943Sdim    MBP.FalseDest = MBB.getNextNode();
2572288943Sdim
2573288943Sdim  const TargetRegisterInfo *TRI = &getRegisterInfo();
2574288943Sdim
2575288943Sdim  MachineInstr *ConditionDef = nullptr;
2576288943Sdim  bool SingleUseCondition = true;
2577288943Sdim
2578288943Sdim  for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) {
2579288943Sdim    if (I->modifiesRegister(X86::EFLAGS, TRI)) {
2580288943Sdim      ConditionDef = &*I;
2581288943Sdim      break;
2582288943Sdim    }
2583288943Sdim
2584288943Sdim    if (I->readsRegister(X86::EFLAGS, TRI))
2585288943Sdim      SingleUseCondition = false;
2586288943Sdim  }
2587288943Sdim
2588288943Sdim  if (!ConditionDef)
2589288943Sdim    return true;
2590288943Sdim
2591288943Sdim  if (SingleUseCondition) {
2592288943Sdim    for (auto *Succ : MBB.successors())
2593288943Sdim      if (Succ->isLiveIn(X86::EFLAGS))
2594288943Sdim        SingleUseCondition = false;
2595288943Sdim  }
2596288943Sdim
2597288943Sdim  MBP.ConditionDef = ConditionDef;
2598288943Sdim  MBP.SingleUseCondition = SingleUseCondition;
2599288943Sdim
2600288943Sdim  // Currently we only recognize the simple pattern:
2601288943Sdim  //
2602288943Sdim  //   test %reg, %reg
2603288943Sdim  //   je %label
2604288943Sdim  //
2605288943Sdim  const unsigned TestOpcode =
2606288943Sdim      Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
2607288943Sdim
2608288943Sdim  if (ConditionDef->getOpcode() == TestOpcode &&
2609288943Sdim      ConditionDef->getNumOperands() == 3 &&
2610288943Sdim      ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
2611288943Sdim      (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
2612288943Sdim    MBP.LHS = ConditionDef->getOperand(0);
2613288943Sdim    MBP.RHS = MachineOperand::CreateImm(0);
2614288943Sdim    MBP.Predicate = Cond[0].getImm() == X86::COND_NE
2615288943Sdim                        ? MachineBranchPredicate::PRED_NE
2616288943Sdim                        : MachineBranchPredicate::PRED_EQ;
2617288943Sdim    return false;
2618288943Sdim  }
2619288943Sdim
2620288943Sdim  return true;
2621288943Sdim}
2622288943Sdim
2623314564Sdimunsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
2624314564Sdim                                    int *BytesRemoved) const {
2625314564Sdim  assert(!BytesRemoved && "code size not handled");
2626314564Sdim
2627193323Sed  MachineBasicBlock::iterator I = MBB.end();
2628193323Sed  unsigned Count = 0;
2629193323Sed
2630193323Sed  while (I != MBB.begin()) {
2631193323Sed    --I;
2632341825Sdim    if (I->isDebugInstr())
2633206083Srdivacky      continue;
2634280031Sdim    if (I->getOpcode() != X86::JMP_1 &&
2635353358Sdim        X86::getCondFromBranch(*I) == X86::COND_INVALID)
2636193323Sed      break;
2637193323Sed    // Remove the branch.
2638193323Sed    I->eraseFromParent();
2639193323Sed    I = MBB.end();
2640193323Sed    ++Count;
2641193323Sed  }
2642218893Sdim
2643193323Sed  return Count;
2644193323Sed}
2645193323Sed
2646314564Sdimunsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
2647309124Sdim                                    MachineBasicBlock *TBB,
2648309124Sdim                                    MachineBasicBlock *FBB,
2649309124Sdim                                    ArrayRef<MachineOperand> Cond,
2650314564Sdim                                    const DebugLoc &DL,
2651314564Sdim                                    int *BytesAdded) const {
2652193323Sed  // Shouldn't be a fall through.
2653314564Sdim  assert(TBB && "insertBranch must not be told to insert a fallthrough");
2654193323Sed  assert((Cond.size() == 1 || Cond.size() == 0) &&
2655193323Sed         "X86 branch conditions have one component!");
2656314564Sdim  assert(!BytesAdded && "code size not handled");
2657193323Sed
2658193323Sed  if (Cond.empty()) {
2659193323Sed    // Unconditional branch?
2660193323Sed    assert(!FBB && "Unconditional branch with multiple successors!");
2661280031Sdim    BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
2662193323Sed    return 1;
2663193323Sed  }
2664193323Sed
2665309124Sdim  // If FBB is null, it is implied to be a fall-through block.
2666309124Sdim  bool FallThru = FBB == nullptr;
2667309124Sdim
2668193323Sed  // Conditional branch.
2669193323Sed  unsigned Count = 0;
2670193323Sed  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
2671193323Sed  switch (CC) {
2672193323Sed  case X86::COND_NE_OR_P:
2673193323Sed    // Synthesize NE_OR_P with two branches.
2674353358Sdim    BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
2675193323Sed    ++Count;
2676353358Sdim    BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
2677193323Sed    ++Count;
2678193323Sed    break;
2679309124Sdim  case X86::COND_E_AND_NP:
2680309124Sdim    // Use the next block of MBB as FBB if it is null.
2681309124Sdim    if (FBB == nullptr) {
2682309124Sdim      FBB = getFallThroughMBB(&MBB, TBB);
2683309124Sdim      assert(FBB && "MBB cannot be the last block in function when the false "
2684309124Sdim                    "body is a fall-through.");
2685309124Sdim    }
2686309124Sdim    // Synthesize COND_E_AND_NP with two branches.
2687353358Sdim    BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
2688309124Sdim    ++Count;
2689353358Sdim    BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
2690309124Sdim    ++Count;
2691309124Sdim    break;
2692193323Sed  default: {
2693353358Sdim    BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
2694193323Sed    ++Count;
2695193323Sed  }
2696193323Sed  }
2697309124Sdim  if (!FallThru) {
2698193323Sed    // Two-way Conditional branch. Insert the second branch.
2699280031Sdim    BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
2700193323Sed    ++Count;
2701193323Sed  }
2702193323Sed  return Count;
2703193323Sed}
2704193323Sed
2705239462Sdimbool X86InstrInfo::
2706239462SdimcanInsertSelect(const MachineBasicBlock &MBB,
2707288943Sdim                ArrayRef<MachineOperand> Cond,
2708239462Sdim                unsigned TrueReg, unsigned FalseReg,
2709239462Sdim                int &CondCycles, int &TrueCycles, int &FalseCycles) const {
2710239462Sdim  // Not all subtargets have cmov instructions.
2711276479Sdim  if (!Subtarget.hasCMov())
2712239462Sdim    return false;
2713239462Sdim  if (Cond.size() != 1)
2714239462Sdim    return false;
2715239462Sdim  // We cannot do the composite conditions, at least not in SSA form.
2716353358Sdim  if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
2717239462Sdim    return false;
2718239462Sdim
2719239462Sdim  // Check register classes.
2720239462Sdim  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2721239462Sdim  const TargetRegisterClass *RC =
2722239462Sdim    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
2723239462Sdim  if (!RC)
2724239462Sdim    return false;
2725239462Sdim
2726239462Sdim  // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
2727239462Sdim  if (X86::GR16RegClass.hasSubClassEq(RC) ||
2728239462Sdim      X86::GR32RegClass.hasSubClassEq(RC) ||
2729239462Sdim      X86::GR64RegClass.hasSubClassEq(RC)) {
2730239462Sdim    // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
2731239462Sdim    // Bridge. Probably Ivy Bridge as well.
2732239462Sdim    CondCycles = 2;
2733239462Sdim    TrueCycles = 2;
2734239462Sdim    FalseCycles = 2;
2735239462Sdim    return true;
2736239462Sdim  }
2737239462Sdim
2738239462Sdim  // Can't do vectors.
2739239462Sdim  return false;
2740239462Sdim}
2741239462Sdim
2742239462Sdimvoid X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
2743309124Sdim                                MachineBasicBlock::iterator I,
2744309124Sdim                                const DebugLoc &DL, unsigned DstReg,
2745309124Sdim                                ArrayRef<MachineOperand> Cond, unsigned TrueReg,
2746309124Sdim                                unsigned FalseReg) const {
2747309124Sdim  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2748321369Sdim  const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
2749321369Sdim  const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
2750309124Sdim  assert(Cond.size() == 1 && "Invalid Cond array");
2751353358Sdim  unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
2752353358Sdim                                    false /*HasMemoryOperand*/);
2753353358Sdim  BuildMI(MBB, I, DL, get(Opc), DstReg)
2754353358Sdim      .addReg(FalseReg)
2755353358Sdim      .addReg(TrueReg)
2756353358Sdim      .addImm(Cond[0].getImm());
2757239462Sdim}
2758239462Sdim
2759288943Sdim/// Test if the given register is a physical h register.
2760193323Sedstatic bool isHReg(unsigned Reg) {
2761193323Sed  return X86::GR8_ABCD_HRegClass.contains(Reg);
2762193323Sed}
2763193323Sed
2764212904Sdim// Try and copy between VR128/VR64 and GR64 registers.
2765341825Sdimstatic unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
2766276479Sdim                                        const X86Subtarget &Subtarget) {
2767314564Sdim  bool HasAVX = Subtarget.hasAVX();
2768314564Sdim  bool HasAVX512 = Subtarget.hasAVX512();
2769261991Sdim
2770314564Sdim  // SrcReg(MaskReg) -> DestReg(GR64)
2771314564Sdim  // SrcReg(MaskReg) -> DestReg(GR32)
2772314564Sdim
2773314564Sdim  // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2774314564Sdim  if (X86::VK16RegClass.contains(SrcReg)) {
2775314564Sdim    if (X86::GR64RegClass.contains(DestReg)) {
2776314564Sdim      assert(Subtarget.hasBWI());
2777314564Sdim      return X86::KMOVQrk;
2778314564Sdim    }
2779314564Sdim    if (X86::GR32RegClass.contains(DestReg))
2780314564Sdim      return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
2781314564Sdim  }
2782314564Sdim
2783314564Sdim  // SrcReg(GR64) -> DestReg(MaskReg)
2784314564Sdim  // SrcReg(GR32) -> DestReg(MaskReg)
2785314564Sdim
2786314564Sdim  // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2787314564Sdim  if (X86::VK16RegClass.contains(DestReg)) {
2788314564Sdim    if (X86::GR64RegClass.contains(SrcReg)) {
2789314564Sdim      assert(Subtarget.hasBWI());
2790314564Sdim      return X86::KMOVQkr;
2791314564Sdim    }
2792314564Sdim    if (X86::GR32RegClass.contains(SrcReg))
2793314564Sdim      return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
2794314564Sdim  }
2795314564Sdim
2796314564Sdim
2797212904Sdim  // SrcReg(VR128) -> DestReg(GR64)
2798212904Sdim  // SrcReg(VR64)  -> DestReg(GR64)
2799212904Sdim  // SrcReg(GR64)  -> DestReg(VR128)
2800212904Sdim  // SrcReg(GR64)  -> DestReg(VR64)
2801212904Sdim
2802212904Sdim  if (X86::GR64RegClass.contains(DestReg)) {
2803261991Sdim    if (X86::VR128XRegClass.contains(SrcReg))
2804212904Sdim      // Copy from a VR128 register to a GR64 register.
2805309124Sdim      return HasAVX512 ? X86::VMOVPQIto64Zrr :
2806309124Sdim             HasAVX    ? X86::VMOVPQIto64rr  :
2807309124Sdim                         X86::MOVPQIto64rr;
2808243830Sdim    if (X86::VR64RegClass.contains(SrcReg))
2809212904Sdim      // Copy from a VR64 register to a GR64 register.
2810288943Sdim      return X86::MMX_MOVD64from64rr;
2811212904Sdim  } else if (X86::GR64RegClass.contains(SrcReg)) {
2812212904Sdim    // Copy from a GR64 register to a VR128 register.
2813261991Sdim    if (X86::VR128XRegClass.contains(DestReg))
2814309124Sdim      return HasAVX512 ? X86::VMOV64toPQIZrr :
2815309124Sdim             HasAVX    ? X86::VMOV64toPQIrr  :
2816309124Sdim                         X86::MOV64toPQIrr;
2817212904Sdim    // Copy from a GR64 register to a VR64 register.
2818243830Sdim    if (X86::VR64RegClass.contains(DestReg))
2819288943Sdim      return X86::MMX_MOVD64to64rr;
2820212904Sdim  }
2821212904Sdim
2822353358Sdim  // SrcReg(VR128) -> DestReg(GR32)
2823353358Sdim  // SrcReg(GR32)  -> DestReg(VR128)
2824226633Sdim
2825309124Sdim  if (X86::GR32RegClass.contains(DestReg) &&
2826353358Sdim      X86::VR128XRegClass.contains(SrcReg))
2827353358Sdim    // Copy from a VR128 register to a GR32 register.
2828353358Sdim    return HasAVX512 ? X86::VMOVPDI2DIZrr :
2829353358Sdim           HasAVX    ? X86::VMOVPDI2DIrr  :
2830353358Sdim                       X86::MOVPDI2DIrr;
2831226633Sdim
2832353358Sdim  if (X86::VR128XRegClass.contains(DestReg) &&
2833309124Sdim      X86::GR32RegClass.contains(SrcReg))
2834353358Sdim    // Copy from a VR128 register to a VR128 register.
2835353358Sdim    return HasAVX512 ? X86::VMOVDI2PDIZrr :
2836353358Sdim           HasAVX    ? X86::VMOVDI2PDIrr  :
2837353358Sdim                       X86::MOVDI2PDIrr;
2838261991Sdim  return 0;
2839261991Sdim}
2840226633Sdim
2841210299Sedvoid X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
2842309124Sdim                               MachineBasicBlock::iterator MI,
2843309124Sdim                               const DebugLoc &DL, unsigned DestReg,
2844309124Sdim                               unsigned SrcReg, bool KillSrc) const {
2845210299Sed  // First deal with the normal symmetric copies.
2846276479Sdim  bool HasAVX = Subtarget.hasAVX();
2847314564Sdim  bool HasVLX = Subtarget.hasVLX();
2848261991Sdim  unsigned Opc = 0;
2849210299Sed  if (X86::GR64RegClass.contains(DestReg, SrcReg))
2850210299Sed    Opc = X86::MOV64rr;
2851210299Sed  else if (X86::GR32RegClass.contains(DestReg, SrcReg))
2852210299Sed    Opc = X86::MOV32rr;
2853210299Sed  else if (X86::GR16RegClass.contains(DestReg, SrcReg))
2854210299Sed    Opc = X86::MOV16rr;
2855210299Sed  else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
2856210299Sed    // Copying to or from a physical H register on x86-64 requires a NOREX
2857210299Sed    // move.  Otherwise use a normal move.
2858210299Sed    if ((isHReg(DestReg) || isHReg(SrcReg)) &&
2859276479Sdim        Subtarget.is64Bit()) {
2860210299Sed      Opc = X86::MOV8rr_NOREX;
2861226633Sdim      // Both operands must be encodable without an REX prefix.
2862226633Sdim      assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
2863226633Sdim             "8-bit H register can not be copied outside GR8_NOREX");
2864226633Sdim    } else
2865210299Sed      Opc = X86::MOV8rr;
2866261991Sdim  }
2867261991Sdim  else if (X86::VR64RegClass.contains(DestReg, SrcReg))
2868261991Sdim    Opc = X86::MMX_MOVQ64rr;
2869314564Sdim  else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
2870314564Sdim    if (HasVLX)
2871314564Sdim      Opc = X86::VMOVAPSZ128rr;
2872314564Sdim    else if (X86::VR128RegClass.contains(DestReg, SrcReg))
2873314564Sdim      Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
2874314564Sdim    else {
2875314564Sdim      // If this an extended register and we don't have VLX we need to use a
2876314564Sdim      // 512-bit move.
2877314564Sdim      Opc = X86::VMOVAPSZrr;
2878314564Sdim      const TargetRegisterInfo *TRI = &getRegisterInfo();
2879314564Sdim      DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
2880314564Sdim                                         &X86::VR512RegClass);
2881314564Sdim      SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
2882314564Sdim                                        &X86::VR512RegClass);
2883314564Sdim    }
2884314564Sdim  } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
2885314564Sdim    if (HasVLX)
2886314564Sdim      Opc = X86::VMOVAPSZ256rr;
2887314564Sdim    else if (X86::VR256RegClass.contains(DestReg, SrcReg))
2888314564Sdim      Opc = X86::VMOVAPSYrr;
2889314564Sdim    else {
2890314564Sdim      // If this an extended register and we don't have VLX we need to use a
2891314564Sdim      // 512-bit move.
2892314564Sdim      Opc = X86::VMOVAPSZrr;
2893314564Sdim      const TargetRegisterInfo *TRI = &getRegisterInfo();
2894314564Sdim      DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
2895314564Sdim                                         &X86::VR512RegClass);
2896314564Sdim      SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
2897314564Sdim                                        &X86::VR512RegClass);
2898314564Sdim    }
2899314564Sdim  } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
2900314564Sdim    Opc = X86::VMOVAPSZrr;
2901314564Sdim  // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2902314564Sdim  else if (X86::VK16RegClass.contains(DestReg, SrcReg))
2903314564Sdim    Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
2904261991Sdim  if (!Opc)
2905276479Sdim    Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
2906193323Sed
2907210299Sed  if (Opc) {
2908210299Sed    BuildMI(MBB, MI, DL, get(Opc), DestReg)
2909210299Sed      .addReg(SrcReg, getKillRegState(KillSrc));
2910210299Sed    return;
2911193323Sed  }
2912198090Srdivacky
2913332833Sdim  if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
2914332833Sdim    // FIXME: We use a fatal error here because historically LLVM has tried
2915332833Sdim    // lower some of these physreg copies and we want to ensure we get
2916332833Sdim    // reasonable bug reports if someone encounters a case no other testing
2917332833Sdim    // found. This path should be removed after the LLVM 7 release.
2918332833Sdim    report_fatal_error("Unable to copy EFLAGS physical register!");
2919193323Sed  }
2920193323Sed
2921341825Sdim  LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
2922341825Sdim                    << RI.getName(DestReg) << '\n');
2923341825Sdim  report_fatal_error("Cannot emit physreg copy instruction");
2924193323Sed}
2925193323Sed
2926344779Sdimbool X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI,
2927344779Sdim                                   const MachineOperand *&Src,
2928344779Sdim                                   const MachineOperand *&Dest) const {
2929341825Sdim  if (MI.isMoveReg()) {
2930341825Sdim    Dest = &MI.getOperand(0);
2931341825Sdim    Src = &MI.getOperand(1);
2932341825Sdim    return true;
2933341825Sdim  }
2934341825Sdim  return false;
2935341825Sdim}
2936341825Sdim
2937210299Sedstatic unsigned getLoadStoreRegOpcode(unsigned Reg,
2938210299Sed                                      const TargetRegisterClass *RC,
2939210299Sed                                      bool isStackAligned,
2940276479Sdim                                      const X86Subtarget &STI,
2941210299Sed                                      bool load) {
2942314564Sdim  bool HasAVX = STI.hasAVX();
2943314564Sdim  bool HasAVX512 = STI.hasAVX512();
2944314564Sdim  bool HasVLX = STI.hasVLX();
2945261991Sdim
2946321369Sdim  switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
2947210299Sed  default:
2948223017Sdim    llvm_unreachable("Unknown spill size");
2949223017Sdim  case 1:
2950223017Sdim    assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
2951276479Sdim    if (STI.is64Bit())
2952223017Sdim      // Copying to or from a physical H register on x86-64 requires a NOREX
2953223017Sdim      // move.  Otherwise use a normal move.
2954223017Sdim      if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
2955223017Sdim        return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
2956223017Sdim    return load ? X86::MOV8rm : X86::MOV8mr;
2957223017Sdim  case 2:
2958314564Sdim    if (X86::VK16RegClass.hasSubClassEq(RC))
2959314564Sdim      return load ? X86::KMOVWkm : X86::KMOVWmk;
2960223017Sdim    assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
2961210299Sed    return load ? X86::MOV16rm : X86::MOV16mr;
2962223017Sdim  case 4:
2963223017Sdim    if (X86::GR32RegClass.hasSubClassEq(RC))
2964223017Sdim      return load ? X86::MOV32rm : X86::MOV32mr;
2965314564Sdim    if (X86::FR32XRegClass.hasSubClassEq(RC))
2966226633Sdim      return load ?
2967353358Sdim        (HasAVX512 ? X86::VMOVSSZrm_alt :
2968353358Sdim         HasAVX    ? X86::VMOVSSrm_alt :
2969353358Sdim                     X86::MOVSSrm_alt) :
2970353358Sdim        (HasAVX512 ? X86::VMOVSSZmr :
2971353358Sdim         HasAVX    ? X86::VMOVSSmr :
2972353358Sdim                     X86::MOVSSmr);
2973223017Sdim    if (X86::RFP32RegClass.hasSubClassEq(RC))
2974223017Sdim      return load ? X86::LD_Fp32m : X86::ST_Fp32m;
2975341825Sdim    if (X86::VK32RegClass.hasSubClassEq(RC)) {
2976341825Sdim      assert(STI.hasBWI() && "KMOVD requires BWI");
2977314564Sdim      return load ? X86::KMOVDkm : X86::KMOVDmk;
2978341825Sdim    }
2979353358Sdim    // All of these mask pair classes have the same spill size, the same kind
2980353358Sdim    // of kmov instructions can be used with all of them.
2981353358Sdim    if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
2982353358Sdim        X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
2983353358Sdim        X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
2984353358Sdim        X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
2985353358Sdim        X86::VK16PAIRRegClass.hasSubClassEq(RC))
2986353358Sdim      return load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
2987223017Sdim    llvm_unreachable("Unknown 4-byte regclass");
2988223017Sdim  case 8:
2989223017Sdim    if (X86::GR64RegClass.hasSubClassEq(RC))
2990223017Sdim      return load ? X86::MOV64rm : X86::MOV64mr;
2991314564Sdim    if (X86::FR64XRegClass.hasSubClassEq(RC))
2992226633Sdim      return load ?
2993353358Sdim        (HasAVX512 ? X86::VMOVSDZrm_alt :
2994353358Sdim         HasAVX    ? X86::VMOVSDrm_alt :
2995353358Sdim                     X86::MOVSDrm_alt) :
2996353358Sdim        (HasAVX512 ? X86::VMOVSDZmr :
2997353358Sdim         HasAVX    ? X86::VMOVSDmr :
2998353358Sdim                     X86::MOVSDmr);
2999223017Sdim    if (X86::VR64RegClass.hasSubClassEq(RC))
3000223017Sdim      return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
3001223017Sdim    if (X86::RFP64RegClass.hasSubClassEq(RC))
3002223017Sdim      return load ? X86::LD_Fp64m : X86::ST_Fp64m;
3003341825Sdim    if (X86::VK64RegClass.hasSubClassEq(RC)) {
3004341825Sdim      assert(STI.hasBWI() && "KMOVQ requires BWI");
3005314564Sdim      return load ? X86::KMOVQkm : X86::KMOVQmk;
3006341825Sdim    }
3007223017Sdim    llvm_unreachable("Unknown 8-byte regclass");
3008223017Sdim  case 10:
3009223017Sdim    assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
3010210299Sed    return load ? X86::LD_Fp80m : X86::ST_FpP80m;
3011226633Sdim  case 16: {
3012321369Sdim    if (X86::VR128XRegClass.hasSubClassEq(RC)) {
3013321369Sdim      // If stack is realigned we can use aligned stores.
3014321369Sdim      if (isStackAligned)
3015321369Sdim        return load ?
3016321369Sdim          (HasVLX    ? X86::VMOVAPSZ128rm :
3017321369Sdim           HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
3018321369Sdim           HasAVX    ? X86::VMOVAPSrm :
3019321369Sdim                       X86::MOVAPSrm):
3020321369Sdim          (HasVLX    ? X86::VMOVAPSZ128mr :
3021321369Sdim           HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
3022321369Sdim           HasAVX    ? X86::VMOVAPSmr :
3023321369Sdim                       X86::MOVAPSmr);
3024321369Sdim      else
3025321369Sdim        return load ?
3026321369Sdim          (HasVLX    ? X86::VMOVUPSZ128rm :
3027321369Sdim           HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
3028321369Sdim           HasAVX    ? X86::VMOVUPSrm :
3029321369Sdim                       X86::MOVUPSrm):
3030321369Sdim          (HasVLX    ? X86::VMOVUPSZ128mr :
3031321369Sdim           HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
3032321369Sdim           HasAVX    ? X86::VMOVUPSmr :
3033321369Sdim                       X86::MOVUPSmr);
3034321369Sdim    }
3035321369Sdim    if (X86::BNDRRegClass.hasSubClassEq(RC)) {
3036321369Sdim      if (STI.is64Bit())
3037341825Sdim        return load ? X86::BNDMOV64rm : X86::BNDMOV64mr;
3038321369Sdim      else
3039341825Sdim        return load ? X86::BNDMOV32rm : X86::BNDMOV32mr;
3040321369Sdim    }
3041321369Sdim    llvm_unreachable("Unknown 16-byte regclass");
3042226633Sdim  }
3043224145Sdim  case 32:
3044314564Sdim    assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
3045224145Sdim    // If stack is realigned we can use aligned stores.
3046224145Sdim    if (isStackAligned)
3047314564Sdim      return load ?
3048314564Sdim        (HasVLX    ? X86::VMOVAPSZ256rm :
3049314564Sdim         HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
3050314564Sdim                     X86::VMOVAPSYrm) :
3051314564Sdim        (HasVLX    ? X86::VMOVAPSZ256mr :
3052314564Sdim         HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
3053314564Sdim                     X86::VMOVAPSYmr);
3054224145Sdim    else
3055314564Sdim      return load ?
3056314564Sdim        (HasVLX    ? X86::VMOVUPSZ256rm :
3057314564Sdim         HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
3058314564Sdim                     X86::VMOVUPSYrm) :
3059314564Sdim        (HasVLX    ? X86::VMOVUPSZ256mr :
3060314564Sdim         HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
3061314564Sdim                     X86::VMOVUPSYmr);
3062261991Sdim  case 64:
3063261991Sdim    assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
3064314564Sdim    assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
3065261991Sdim    if (isStackAligned)
3066261991Sdim      return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3067261991Sdim    else
3068261991Sdim      return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3069193323Sed  }
3070210299Sed}
3071193323Sed
3072344779Sdimbool X86InstrInfo::getMemOperandWithOffset(
3073353358Sdim    const MachineInstr &MemOp, const MachineOperand *&BaseOp, int64_t &Offset,
3074344779Sdim    const TargetRegisterInfo *TRI) const {
3075309124Sdim  const MCInstrDesc &Desc = MemOp.getDesc();
3076309124Sdim  int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3077288943Sdim  if (MemRefBegin < 0)
3078288943Sdim    return false;
3079288943Sdim
3080288943Sdim  MemRefBegin += X86II::getOperandBias(Desc);
3081288943Sdim
3082344779Sdim  BaseOp = &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
3083344779Sdim  if (!BaseOp->isReg()) // Can be an MO_FrameIndex
3084288943Sdim    return false;
3085288943Sdim
3086309124Sdim  if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
3087309124Sdim    return false;
3088309124Sdim
3089309124Sdim  if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
3090288943Sdim      X86::NoRegister)
3091288943Sdim    return false;
3092288943Sdim
3093309124Sdim  const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
3094288943Sdim
3095288943Sdim  // Displacement can be symbolic
3096288943Sdim  if (!DispMO.isImm())
3097288943Sdim    return false;
3098288943Sdim
3099288943Sdim  Offset = DispMO.getImm();
3100288943Sdim
3101344779Sdim  assert(BaseOp->isReg() && "getMemOperandWithOffset only supports base "
3102344779Sdim                            "operands of type register.");
3103314564Sdim  return true;
3104288943Sdim}
3105288943Sdim
3106210299Sedstatic unsigned getStoreRegOpcode(unsigned SrcReg,
3107210299Sed                                  const TargetRegisterClass *RC,
3108210299Sed                                  bool isStackAligned,
3109276479Sdim                                  const X86Subtarget &STI) {
3110276479Sdim  return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false);
3111193323Sed}
3112193323Sed
3113210299Sed
3114210299Sedstatic unsigned getLoadRegOpcode(unsigned DestReg,
3115210299Sed                                 const TargetRegisterClass *RC,
3116210299Sed                                 bool isStackAligned,
3117276479Sdim                                 const X86Subtarget &STI) {
3118276479Sdim  return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true);
3119210299Sed}
3120210299Sed
3121193323Sedvoid X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3122193323Sed                                       MachineBasicBlock::iterator MI,
3123193323Sed                                       unsigned SrcReg, bool isKill, int FrameIdx,
3124208599Srdivacky                                       const TargetRegisterClass *RC,
3125208599Srdivacky                                       const TargetRegisterInfo *TRI) const {
3126193323Sed  const MachineFunction &MF = *MBB.getParent();
3127321369Sdim  assert(MF.getFrameInfo().getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
3128212904Sdim         "Stack slot too small for store");
3129321369Sdim  unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3130288943Sdim  bool isAligned =
3131288943Sdim      (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
3132288943Sdim      RI.canRealignStack(MF);
3133276479Sdim  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3134344779Sdim  addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3135193323Sed    .addReg(SrcReg, getKillRegState(isKill));
3136193323Sed}
3137193323Sed
3138344779Sdimvoid X86InstrInfo::storeRegToAddr(
3139344779Sdim    MachineFunction &MF, unsigned SrcReg, bool isKill,
3140344779Sdim    SmallVectorImpl<MachineOperand> &Addr, const TargetRegisterClass *RC,
3141344779Sdim    ArrayRef<MachineMemOperand *> MMOs,
3142344779Sdim    SmallVectorImpl<MachineInstr *> &NewMIs) const {
3143321369Sdim  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
3144321369Sdim  unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
3145344779Sdim  bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
3146276479Sdim  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3147206124Srdivacky  DebugLoc DL;
3148193323Sed  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
3149193323Sed  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
3150321369Sdim    MIB.add(Addr[i]);
3151193323Sed  MIB.addReg(SrcReg, getKillRegState(isKill));
3152344779Sdim  MIB.setMemRefs(MMOs);
3153193323Sed  NewMIs.push_back(MIB);
3154193323Sed}
3155193323Sed
3156193323Sed
3157193323Sedvoid X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
3158193323Sed                                        MachineBasicBlock::iterator MI,
3159193323Sed                                        unsigned DestReg, int FrameIdx,
3160208599Srdivacky                                        const TargetRegisterClass *RC,
3161208599Srdivacky                                        const TargetRegisterInfo *TRI) const {
3162193323Sed  const MachineFunction &MF = *MBB.getParent();
3163321369Sdim  unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3164288943Sdim  bool isAligned =
3165288943Sdim      (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
3166288943Sdim      RI.canRealignStack(MF);
3167276479Sdim  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
3168344779Sdim  addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg), FrameIdx);
3169193323Sed}
3170193323Sed
3171344779Sdimvoid X86InstrInfo::loadRegFromAddr(
3172344779Sdim    MachineFunction &MF, unsigned DestReg,
3173344779Sdim    SmallVectorImpl<MachineOperand> &Addr, const TargetRegisterClass *RC,
3174344779Sdim    ArrayRef<MachineMemOperand *> MMOs,
3175344779Sdim    SmallVectorImpl<MachineInstr *> &NewMIs) const {
3176321369Sdim  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
3177321369Sdim  unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
3178344779Sdim  bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
3179276479Sdim  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
3180206124Srdivacky  DebugLoc DL;
3181193323Sed  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
3182193323Sed  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
3183321369Sdim    MIB.add(Addr[i]);
3184344779Sdim  MIB.setMemRefs(MMOs);
3185193323Sed  NewMIs.push_back(MIB);
3186193323Sed}
3187193323Sed
3188309124Sdimbool X86InstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
3189309124Sdim                                  unsigned &SrcReg2, int &CmpMask,
3190309124Sdim                                  int &CmpValue) const {
3191309124Sdim  switch (MI.getOpcode()) {
3192239462Sdim  default: break;
3193239462Sdim  case X86::CMP64ri32:
3194239462Sdim  case X86::CMP64ri8:
3195239462Sdim  case X86::CMP32ri:
3196239462Sdim  case X86::CMP32ri8:
3197239462Sdim  case X86::CMP16ri:
3198239462Sdim  case X86::CMP16ri8:
3199239462Sdim  case X86::CMP8ri:
3200309124Sdim    SrcReg = MI.getOperand(0).getReg();
3201239462Sdim    SrcReg2 = 0;
3202321369Sdim    if (MI.getOperand(1).isImm()) {
3203321369Sdim      CmpMask = ~0;
3204321369Sdim      CmpValue = MI.getOperand(1).getImm();
3205321369Sdim    } else {
3206321369Sdim      CmpMask = CmpValue = 0;
3207321369Sdim    }
3208239462Sdim    return true;
3209239462Sdim  // A SUB can be used to perform comparison.
3210239462Sdim  case X86::SUB64rm:
3211239462Sdim  case X86::SUB32rm:
3212239462Sdim  case X86::SUB16rm:
3213239462Sdim  case X86::SUB8rm:
3214309124Sdim    SrcReg = MI.getOperand(1).getReg();
3215239462Sdim    SrcReg2 = 0;
3216321369Sdim    CmpMask = 0;
3217239462Sdim    CmpValue = 0;
3218239462Sdim    return true;
3219239462Sdim  case X86::SUB64rr:
3220239462Sdim  case X86::SUB32rr:
3221239462Sdim  case X86::SUB16rr:
3222239462Sdim  case X86::SUB8rr:
3223309124Sdim    SrcReg = MI.getOperand(1).getReg();
3224309124Sdim    SrcReg2 = MI.getOperand(2).getReg();
3225321369Sdim    CmpMask = 0;
3226239462Sdim    CmpValue = 0;
3227239462Sdim    return true;
3228239462Sdim  case X86::SUB64ri32:
3229239462Sdim  case X86::SUB64ri8:
3230239462Sdim  case X86::SUB32ri:
3231239462Sdim  case X86::SUB32ri8:
3232239462Sdim  case X86::SUB16ri:
3233239462Sdim  case X86::SUB16ri8:
3234239462Sdim  case X86::SUB8ri:
3235309124Sdim    SrcReg = MI.getOperand(1).getReg();
3236239462Sdim    SrcReg2 = 0;
3237321369Sdim    if (MI.getOperand(2).isImm()) {
3238321369Sdim      CmpMask = ~0;
3239321369Sdim      CmpValue = MI.getOperand(2).getImm();
3240321369Sdim    } else {
3241321369Sdim      CmpMask = CmpValue = 0;
3242321369Sdim    }
3243239462Sdim    return true;
3244239462Sdim  case X86::CMP64rr:
3245239462Sdim  case X86::CMP32rr:
3246239462Sdim  case X86::CMP16rr:
3247239462Sdim  case X86::CMP8rr:
3248309124Sdim    SrcReg = MI.getOperand(0).getReg();
3249309124Sdim    SrcReg2 = MI.getOperand(1).getReg();
3250321369Sdim    CmpMask = 0;
3251239462Sdim    CmpValue = 0;
3252239462Sdim    return true;
3253239462Sdim  case X86::TEST8rr:
3254239462Sdim  case X86::TEST16rr:
3255239462Sdim  case X86::TEST32rr:
3256239462Sdim  case X86::TEST64rr:
3257309124Sdim    SrcReg = MI.getOperand(0).getReg();
3258309124Sdim    if (MI.getOperand(1).getReg() != SrcReg)
3259309124Sdim      return false;
3260239462Sdim    // Compare against zero.
3261239462Sdim    SrcReg2 = 0;
3262239462Sdim    CmpMask = ~0;
3263239462Sdim    CmpValue = 0;
3264239462Sdim    return true;
3265239462Sdim  }
3266239462Sdim  return false;
3267239462Sdim}
3268239462Sdim
3269288943Sdim/// Check whether the first instruction, whose only
3270239462Sdim/// purpose is to update flags, can be made redundant.
3271239462Sdim/// CMPrr can be made redundant by SUBrr if the operands are the same.
3272239462Sdim/// This function can be extended later on.
3273239462Sdim/// SrcReg, SrcRegs: register operands for FlagI.
3274239462Sdim/// ImmValue: immediate for FlagI if it takes an immediate.
3275344779Sdiminline static bool isRedundantFlagInstr(const MachineInstr &FlagI,
3276344779Sdim                                        unsigned SrcReg, unsigned SrcReg2,
3277344779Sdim                                        int ImmMask, int ImmValue,
3278344779Sdim                                        const MachineInstr &OI) {
3279309124Sdim  if (((FlagI.getOpcode() == X86::CMP64rr && OI.getOpcode() == X86::SUB64rr) ||
3280309124Sdim       (FlagI.getOpcode() == X86::CMP32rr && OI.getOpcode() == X86::SUB32rr) ||
3281309124Sdim       (FlagI.getOpcode() == X86::CMP16rr && OI.getOpcode() == X86::SUB16rr) ||
3282309124Sdim       (FlagI.getOpcode() == X86::CMP8rr && OI.getOpcode() == X86::SUB8rr)) &&
3283309124Sdim      ((OI.getOperand(1).getReg() == SrcReg &&
3284309124Sdim        OI.getOperand(2).getReg() == SrcReg2) ||
3285309124Sdim       (OI.getOperand(1).getReg() == SrcReg2 &&
3286309124Sdim        OI.getOperand(2).getReg() == SrcReg)))
3287239462Sdim    return true;
3288239462Sdim
3289321369Sdim  if (ImmMask != 0 &&
3290321369Sdim      ((FlagI.getOpcode() == X86::CMP64ri32 &&
3291309124Sdim        OI.getOpcode() == X86::SUB64ri32) ||
3292309124Sdim       (FlagI.getOpcode() == X86::CMP64ri8 &&
3293309124Sdim        OI.getOpcode() == X86::SUB64ri8) ||
3294309124Sdim       (FlagI.getOpcode() == X86::CMP32ri && OI.getOpcode() == X86::SUB32ri) ||
3295309124Sdim       (FlagI.getOpcode() == X86::CMP32ri8 &&
3296309124Sdim        OI.getOpcode() == X86::SUB32ri8) ||
3297309124Sdim       (FlagI.getOpcode() == X86::CMP16ri && OI.getOpcode() == X86::SUB16ri) ||
3298309124Sdim       (FlagI.getOpcode() == X86::CMP16ri8 &&
3299309124Sdim        OI.getOpcode() == X86::SUB16ri8) ||
3300309124Sdim       (FlagI.getOpcode() == X86::CMP8ri && OI.getOpcode() == X86::SUB8ri)) &&
3301309124Sdim      OI.getOperand(1).getReg() == SrcReg &&
3302309124Sdim      OI.getOperand(2).getImm() == ImmValue)
3303239462Sdim    return true;
3304239462Sdim  return false;
3305239462Sdim}
3306239462Sdim
3307288943Sdim/// Check whether the definition can be converted
3308239462Sdim/// to remove a comparison against zero.
3309344779Sdiminline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag) {
3310344779Sdim  NoSignFlag = false;
3311344779Sdim
3312309124Sdim  switch (MI.getOpcode()) {
3313239462Sdim  default: return false;
3314261991Sdim
3315261991Sdim  // The shift instructions only modify ZF if their shift count is non-zero.
3316261991Sdim  // N.B.: The processor truncates the shift count depending on the encoding.
3317261991Sdim  case X86::SAR8ri:    case X86::SAR16ri:  case X86::SAR32ri:case X86::SAR64ri:
3318261991Sdim  case X86::SHR8ri:    case X86::SHR16ri:  case X86::SHR32ri:case X86::SHR64ri:
3319261991Sdim     return getTruncatedShiftCount(MI, 2) != 0;
3320261991Sdim
3321261991Sdim  // Some left shift instructions can be turned into LEA instructions but only
3322261991Sdim  // if their flags aren't used. Avoid transforming such instructions.
3323261991Sdim  case X86::SHL8ri:    case X86::SHL16ri:  case X86::SHL32ri:case X86::SHL64ri:{
3324261991Sdim    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
3325261991Sdim    if (isTruncatedShiftCountForLEA(ShAmt)) return false;
3326261991Sdim    return ShAmt != 0;
3327261991Sdim  }
3328261991Sdim
3329261991Sdim  case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
3330261991Sdim  case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
3331261991Sdim     return getTruncatedShiftCount(MI, 3) != 0;
3332261991Sdim
3333239462Sdim  case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
3334239462Sdim  case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
3335239462Sdim  case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
3336239462Sdim  case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm:
3337239462Sdim  case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm:
3338249423Sdim  case X86::DEC64r:    case X86::DEC32r:   case X86::DEC16r: case X86::DEC8r:
3339239462Sdim  case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
3340239462Sdim  case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8:
3341239462Sdim  case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr:
3342239462Sdim  case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm:
3343239462Sdim  case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm:
3344249423Sdim  case X86::INC64r:    case X86::INC32r:   case X86::INC16r: case X86::INC8r:
3345239462Sdim  case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
3346239462Sdim  case X86::AND32ri8:  case X86::AND16ri:  case X86::AND16ri8:
3347239462Sdim  case X86::AND8ri:    case X86::AND64rr:  case X86::AND32rr:
3348239462Sdim  case X86::AND16rr:   case X86::AND8rr:   case X86::AND64rm:
3349239462Sdim  case X86::AND32rm:   case X86::AND16rm:  case X86::AND8rm:
3350239462Sdim  case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
3351239462Sdim  case X86::XOR32ri8:  case X86::XOR16ri:  case X86::XOR16ri8:
3352239462Sdim  case X86::XOR8ri:    case X86::XOR64rr:  case X86::XOR32rr:
3353239462Sdim  case X86::XOR16rr:   case X86::XOR8rr:   case X86::XOR64rm:
3354239462Sdim  case X86::XOR32rm:   case X86::XOR16rm:  case X86::XOR8rm:
3355239462Sdim  case X86::OR64ri32:  case X86::OR64ri8:  case X86::OR32ri:
3356239462Sdim  case X86::OR32ri8:   case X86::OR16ri:   case X86::OR16ri8:
3357239462Sdim  case X86::OR8ri:     case X86::OR64rr:   case X86::OR32rr:
3358239462Sdim  case X86::OR16rr:    case X86::OR8rr:    case X86::OR64rm:
3359239462Sdim  case X86::OR32rm:    case X86::OR16rm:   case X86::OR8rm:
3360327952Sdim  case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri:
3361327952Sdim  case X86::ADC32ri8:  case X86::ADC16ri:  case X86::ADC16ri8:
3362327952Sdim  case X86::ADC8ri:    case X86::ADC64rr:  case X86::ADC32rr:
3363327952Sdim  case X86::ADC16rr:   case X86::ADC8rr:   case X86::ADC64rm:
3364327952Sdim  case X86::ADC32rm:   case X86::ADC16rm:  case X86::ADC8rm:
3365327952Sdim  case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri:
3366327952Sdim  case X86::SBB32ri8:  case X86::SBB16ri:  case X86::SBB16ri8:
3367327952Sdim  case X86::SBB8ri:    case X86::SBB64rr:  case X86::SBB32rr:
3368327952Sdim  case X86::SBB16rr:   case X86::SBB8rr:   case X86::SBB64rm:
3369327952Sdim  case X86::SBB32rm:   case X86::SBB16rm:  case X86::SBB8rm:
3370261991Sdim  case X86::NEG8r:     case X86::NEG16r:   case X86::NEG32r: case X86::NEG64r:
3371261991Sdim  case X86::SAR8r1:    case X86::SAR16r1:  case X86::SAR32r1:case X86::SAR64r1:
3372261991Sdim  case X86::SHR8r1:    case X86::SHR16r1:  case X86::SHR32r1:case X86::SHR64r1:
3373261991Sdim  case X86::SHL8r1:    case X86::SHL16r1:  case X86::SHL32r1:case X86::SHL64r1:
3374249423Sdim  case X86::ANDN32rr:  case X86::ANDN32rm:
3375249423Sdim  case X86::ANDN64rr:  case X86::ANDN64rm:
3376261991Sdim  case X86::BLSI32rr:  case X86::BLSI32rm:
3377261991Sdim  case X86::BLSI64rr:  case X86::BLSI64rm:
3378261991Sdim  case X86::BLSMSK32rr:case X86::BLSMSK32rm:
3379261991Sdim  case X86::BLSMSK64rr:case X86::BLSMSK64rm:
3380261991Sdim  case X86::BLSR32rr:  case X86::BLSR32rm:
3381261991Sdim  case X86::BLSR64rr:  case X86::BLSR64rm:
3382261991Sdim  case X86::BZHI32rr:  case X86::BZHI32rm:
3383261991Sdim  case X86::BZHI64rr:  case X86::BZHI64rm:
3384261991Sdim  case X86::LZCNT16rr: case X86::LZCNT16rm:
3385261991Sdim  case X86::LZCNT32rr: case X86::LZCNT32rm:
3386261991Sdim  case X86::LZCNT64rr: case X86::LZCNT64rm:
3387261991Sdim  case X86::POPCNT16rr:case X86::POPCNT16rm:
3388261991Sdim  case X86::POPCNT32rr:case X86::POPCNT32rm:
3389261991Sdim  case X86::POPCNT64rr:case X86::POPCNT64rm:
3390261991Sdim  case X86::TZCNT16rr: case X86::TZCNT16rm:
3391261991Sdim  case X86::TZCNT32rr: case X86::TZCNT32rm:
3392261991Sdim  case X86::TZCNT64rr: case X86::TZCNT64rm:
3393327952Sdim  case X86::BLCFILL32rr: case X86::BLCFILL32rm:
3394327952Sdim  case X86::BLCFILL64rr: case X86::BLCFILL64rm:
3395327952Sdim  case X86::BLCI32rr:    case X86::BLCI32rm:
3396327952Sdim  case X86::BLCI64rr:    case X86::BLCI64rm:
3397327952Sdim  case X86::BLCIC32rr:   case X86::BLCIC32rm:
3398327952Sdim  case X86::BLCIC64rr:   case X86::BLCIC64rm:
3399327952Sdim  case X86::BLCMSK32rr:  case X86::BLCMSK32rm:
3400327952Sdim  case X86::BLCMSK64rr:  case X86::BLCMSK64rm:
3401327952Sdim  case X86::BLCS32rr:    case X86::BLCS32rm:
3402327952Sdim  case X86::BLCS64rr:    case X86::BLCS64rm:
3403327952Sdim  case X86::BLSFILL32rr: case X86::BLSFILL32rm:
3404327952Sdim  case X86::BLSFILL64rr: case X86::BLSFILL64rm:
3405327952Sdim  case X86::BLSIC32rr:   case X86::BLSIC32rm:
3406327952Sdim  case X86::BLSIC64rr:   case X86::BLSIC64rm:
3407344779Sdim  case X86::T1MSKC32rr:  case X86::T1MSKC32rm:
3408344779Sdim  case X86::T1MSKC64rr:  case X86::T1MSKC64rm:
3409344779Sdim  case X86::TZMSK32rr:   case X86::TZMSK32rm:
3410344779Sdim  case X86::TZMSK64rr:   case X86::TZMSK64rm:
3411239462Sdim    return true;
3412344779Sdim  case X86::BEXTR32rr:   case X86::BEXTR64rr:
3413344779Sdim  case X86::BEXTR32rm:   case X86::BEXTR64rm:
3414344779Sdim  case X86::BEXTRI32ri:  case X86::BEXTRI32mi:
3415344779Sdim  case X86::BEXTRI64ri:  case X86::BEXTRI64mi:
3416344779Sdim    // BEXTR doesn't update the sign flag so we can't use it.
3417344779Sdim    NoSignFlag = true;
3418344779Sdim    return true;
3419239462Sdim  }
3420239462Sdim}
3421239462Sdim
3422288943Sdim/// Check whether the use can be converted to remove a comparison against zero.
3423344779Sdimstatic X86::CondCode isUseDefConvertible(const MachineInstr &MI) {
3424309124Sdim  switch (MI.getOpcode()) {
3425276479Sdim  default: return X86::COND_INVALID;
3426353358Sdim  case X86::NEG8r:
3427353358Sdim  case X86::NEG16r:
3428353358Sdim  case X86::NEG32r:
3429353358Sdim  case X86::NEG64r:
3430353358Sdim    return X86::COND_AE;
3431353358Sdim  case X86::LZCNT16rr:
3432353358Sdim  case X86::LZCNT32rr:
3433353358Sdim  case X86::LZCNT64rr:
3434276479Sdim    return X86::COND_B;
3435353358Sdim  case X86::POPCNT16rr:
3436353358Sdim  case X86::POPCNT32rr:
3437353358Sdim  case X86::POPCNT64rr:
3438276479Sdim    return X86::COND_E;
3439353358Sdim  case X86::TZCNT16rr:
3440353358Sdim  case X86::TZCNT32rr:
3441353358Sdim  case X86::TZCNT64rr:
3442276479Sdim    return X86::COND_B;
3443353358Sdim  case X86::BSF16rr:
3444353358Sdim  case X86::BSF32rr:
3445353358Sdim  case X86::BSF64rr:
3446353358Sdim  case X86::BSR16rr:
3447353358Sdim  case X86::BSR32rr:
3448353358Sdim  case X86::BSR64rr:
3449341825Sdim    return X86::COND_E;
3450353358Sdim  case X86::BLSI32rr:
3451353358Sdim  case X86::BLSI64rr:
3452353358Sdim    return X86::COND_AE;
3453353358Sdim  case X86::BLSR32rr:
3454353358Sdim  case X86::BLSR64rr:
3455353358Sdim  case X86::BLSMSK32rr:
3456353358Sdim  case X86::BLSMSK64rr:
3457353358Sdim    return X86::COND_B;
3458353358Sdim  // TODO: TBM instructions.
3459276479Sdim  }
3460276479Sdim}
3461276479Sdim
3462288943Sdim/// Check if there exists an earlier instruction that
3463239462Sdim/// operates on the same source operands and sets flags in the same way as
3464239462Sdim/// Compare; remove Compare if possible.
3465309124Sdimbool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
3466309124Sdim                                        unsigned SrcReg2, int CmpMask,
3467309124Sdim                                        int CmpValue,
3468309124Sdim                                        const MachineRegisterInfo *MRI) const {
3469239462Sdim  // Check whether we can replace SUB with CMP.
3470309124Sdim  switch (CmpInstr.getOpcode()) {
3471239462Sdim  default: break;
3472239462Sdim  case X86::SUB64ri32:
3473239462Sdim  case X86::SUB64ri8:
3474239462Sdim  case X86::SUB32ri:
3475239462Sdim  case X86::SUB32ri8:
3476239462Sdim  case X86::SUB16ri:
3477239462Sdim  case X86::SUB16ri8:
3478239462Sdim  case X86::SUB8ri:
3479239462Sdim  case X86::SUB64rm:
3480239462Sdim  case X86::SUB32rm:
3481239462Sdim  case X86::SUB16rm:
3482239462Sdim  case X86::SUB8rm:
3483239462Sdim  case X86::SUB64rr:
3484239462Sdim  case X86::SUB32rr:
3485239462Sdim  case X86::SUB16rr:
3486239462Sdim  case X86::SUB8rr: {
3487309124Sdim    if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
3488239462Sdim      return false;
3489239462Sdim    // There is no use of the destination register, we can replace SUB with CMP.
3490353358Sdim    unsigned NewOpcode = 0;
3491309124Sdim    switch (CmpInstr.getOpcode()) {
3492243830Sdim    default: llvm_unreachable("Unreachable!");
3493239462Sdim    case X86::SUB64rm:   NewOpcode = X86::CMP64rm;   break;
3494239462Sdim    case X86::SUB32rm:   NewOpcode = X86::CMP32rm;   break;
3495239462Sdim    case X86::SUB16rm:   NewOpcode = X86::CMP16rm;   break;
3496239462Sdim    case X86::SUB8rm:    NewOpcode = X86::CMP8rm;    break;
3497239462Sdim    case X86::SUB64rr:   NewOpcode = X86::CMP64rr;   break;
3498239462Sdim    case X86::SUB32rr:   NewOpcode = X86::CMP32rr;   break;
3499239462Sdim    case X86::SUB16rr:   NewOpcode = X86::CMP16rr;   break;
3500239462Sdim    case X86::SUB8rr:    NewOpcode = X86::CMP8rr;    break;
3501239462Sdim    case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
3502239462Sdim    case X86::SUB64ri8:  NewOpcode = X86::CMP64ri8;  break;
3503239462Sdim    case X86::SUB32ri:   NewOpcode = X86::CMP32ri;   break;
3504239462Sdim    case X86::SUB32ri8:  NewOpcode = X86::CMP32ri8;  break;
3505239462Sdim    case X86::SUB16ri:   NewOpcode = X86::CMP16ri;   break;
3506239462Sdim    case X86::SUB16ri8:  NewOpcode = X86::CMP16ri8;  break;
3507239462Sdim    case X86::SUB8ri:    NewOpcode = X86::CMP8ri;    break;
3508239462Sdim    }
3509309124Sdim    CmpInstr.setDesc(get(NewOpcode));
3510309124Sdim    CmpInstr.RemoveOperand(0);
3511239462Sdim    // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
3512239462Sdim    if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
3513239462Sdim        NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
3514239462Sdim      return false;
3515239462Sdim  }
3516239462Sdim  }
3517239462Sdim
3518239462Sdim  // Get the unique definition of SrcReg.
3519239462Sdim  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3520239462Sdim  if (!MI) return false;
3521239462Sdim
3522239462Sdim  // CmpInstr is the first instruction of the BB.
3523239462Sdim  MachineBasicBlock::iterator I = CmpInstr, Def = MI;
3524239462Sdim
3525239462Sdim  // If we are comparing against zero, check whether we can use MI to update
3526239462Sdim  // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
3527321369Sdim  bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
3528309124Sdim  if (IsCmpZero && MI->getParent() != CmpInstr.getParent())
3529239462Sdim    return false;
3530239462Sdim
3531276479Sdim  // If we have a use of the source register between the def and our compare
3532276479Sdim  // instruction we can eliminate the compare iff the use sets EFLAGS in the
3533276479Sdim  // right way.
3534276479Sdim  bool ShouldUpdateCC = false;
3535344779Sdim  bool NoSignFlag = false;
3536276479Sdim  X86::CondCode NewCC = X86::COND_INVALID;
3537344779Sdim  if (IsCmpZero && !isDefConvertible(*MI, NoSignFlag)) {
3538276479Sdim    // Scan forward from the use until we hit the use we're looking for or the
3539276479Sdim    // compare instruction.
3540276479Sdim    for (MachineBasicBlock::iterator J = MI;; ++J) {
3541276479Sdim      // Do we have a convertible instruction?
3542309124Sdim      NewCC = isUseDefConvertible(*J);
3543276479Sdim      if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
3544276479Sdim          J->getOperand(1).getReg() == SrcReg) {
3545276479Sdim        assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
3546276479Sdim        ShouldUpdateCC = true; // Update CC later on.
3547276479Sdim        // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
3548276479Sdim        // with the new def.
3549309124Sdim        Def = J;
3550309124Sdim        MI = &*Def;
3551276479Sdim        break;
3552276479Sdim      }
3553276479Sdim
3554276479Sdim      if (J == I)
3555276479Sdim        return false;
3556276479Sdim    }
3557276479Sdim  }
3558276479Sdim
3559239462Sdim  // We are searching for an earlier instruction that can make CmpInstr
3560239462Sdim  // redundant and that instruction will be saved in Sub.
3561276479Sdim  MachineInstr *Sub = nullptr;
3562239462Sdim  const TargetRegisterInfo *TRI = &getRegisterInfo();
3563239462Sdim
3564239462Sdim  // We iterate backward, starting from the instruction before CmpInstr and
3565239462Sdim  // stop when reaching the definition of a source register or done with the BB.
3566239462Sdim  // RI points to the instruction before CmpInstr.
3567239462Sdim  // If the definition is in this basic block, RE points to the definition;
3568239462Sdim  // otherwise, RE is the rend of the basic block.
3569239462Sdim  MachineBasicBlock::reverse_iterator
3570314564Sdim      RI = ++I.getReverse(),
3571309124Sdim      RE = CmpInstr.getParent() == MI->getParent()
3572314564Sdim               ? Def.getReverse() /* points to MI */
3573309124Sdim               : CmpInstr.getParent()->rend();
3574276479Sdim  MachineInstr *Movr0Inst = nullptr;
3575239462Sdim  for (; RI != RE; ++RI) {
3576309124Sdim    MachineInstr &Instr = *RI;
3577239462Sdim    // Check whether CmpInstr can be made redundant by the current instruction.
3578321369Sdim    if (!IsCmpZero && isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask,
3579321369Sdim                                           CmpValue, Instr)) {
3580309124Sdim      Sub = &Instr;
3581239462Sdim      break;
3582239462Sdim    }
3583239462Sdim
3584309124Sdim    if (Instr.modifiesRegister(X86::EFLAGS, TRI) ||
3585309124Sdim        Instr.readsRegister(X86::EFLAGS, TRI)) {
3586239462Sdim      // This instruction modifies or uses EFLAGS.
3587239462Sdim
3588239462Sdim      // MOV32r0 etc. are implemented with xor which clobbers condition code.
3589239462Sdim      // They are safe to move up, if the definition to EFLAGS is dead and
3590239462Sdim      // earlier instructions do not read or write EFLAGS.
3591309124Sdim      if (!Movr0Inst && Instr.getOpcode() == X86::MOV32r0 &&
3592309124Sdim          Instr.registerDefIsDead(X86::EFLAGS, TRI)) {
3593309124Sdim        Movr0Inst = &Instr;
3594239462Sdim        continue;
3595239462Sdim      }
3596239462Sdim
3597239462Sdim      // We can't remove CmpInstr.
3598239462Sdim      return false;
3599239462Sdim    }
3600239462Sdim  }
3601239462Sdim
3602239462Sdim  // Return false if no candidates exist.
3603239462Sdim  if (!IsCmpZero && !Sub)
3604239462Sdim    return false;
3605239462Sdim
3606239462Sdim  bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
3607239462Sdim                    Sub->getOperand(2).getReg() == SrcReg);
3608239462Sdim
3609239462Sdim  // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
3610239462Sdim  // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
3611239462Sdim  // If we are done with the basic block, we need to check whether EFLAGS is
3612239462Sdim  // live-out.
3613239462Sdim  bool IsSafe = false;
3614353358Sdim  SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate;
3615309124Sdim  MachineBasicBlock::iterator E = CmpInstr.getParent()->end();
3616239462Sdim  for (++I; I != E; ++I) {
3617239462Sdim    const MachineInstr &Instr = *I;
3618239462Sdim    bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
3619239462Sdim    bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
3620239462Sdim    // We should check the usage if this instruction uses and updates EFLAGS.
3621239462Sdim    if (!UseEFLAGS && ModifyEFLAGS) {
3622239462Sdim      // It is safe to remove CmpInstr if EFLAGS is updated again.
3623239462Sdim      IsSafe = true;
3624239462Sdim      break;
3625239462Sdim    }
3626239462Sdim    if (!UseEFLAGS && !ModifyEFLAGS)
3627239462Sdim      continue;
3628239462Sdim
3629239462Sdim    // EFLAGS is used by this instruction.
3630276479Sdim    X86::CondCode OldCC = X86::COND_INVALID;
3631239462Sdim    if (IsCmpZero || IsSwapped) {
3632239462Sdim      // We decode the condition code from opcode.
3633239462Sdim      if (Instr.isBranch())
3634353358Sdim        OldCC = X86::getCondFromBranch(Instr);
3635239462Sdim      else {
3636353358Sdim        OldCC = X86::getCondFromSETCC(Instr);
3637353358Sdim        if (OldCC == X86::COND_INVALID)
3638353358Sdim          OldCC = X86::getCondFromCMov(Instr);
3639239462Sdim      }
3640239462Sdim      if (OldCC == X86::COND_INVALID) return false;
3641239462Sdim    }
3642327952Sdim    X86::CondCode ReplacementCC = X86::COND_INVALID;
3643239462Sdim    if (IsCmpZero) {
3644239462Sdim      switch (OldCC) {
3645239462Sdim      default: break;
3646239462Sdim      case X86::COND_A: case X86::COND_AE:
3647239462Sdim      case X86::COND_B: case X86::COND_BE:
3648239462Sdim      case X86::COND_G: case X86::COND_GE:
3649239462Sdim      case X86::COND_L: case X86::COND_LE:
3650239462Sdim      case X86::COND_O: case X86::COND_NO:
3651239462Sdim        // CF and OF are used, we can't perform this optimization.
3652239462Sdim        return false;
3653344779Sdim      case X86::COND_S: case X86::COND_NS:
3654344779Sdim        // If SF is used, but the instruction doesn't update the SF, then we
3655344779Sdim        // can't do the optimization.
3656344779Sdim        if (NoSignFlag)
3657344779Sdim          return false;
3658344779Sdim        break;
3659239462Sdim      }
3660276479Sdim
3661276479Sdim      // If we're updating the condition code check if we have to reverse the
3662276479Sdim      // condition.
3663276479Sdim      if (ShouldUpdateCC)
3664276479Sdim        switch (OldCC) {
3665276479Sdim        default:
3666276479Sdim          return false;
3667276479Sdim        case X86::COND_E:
3668327952Sdim          ReplacementCC = NewCC;
3669276479Sdim          break;
3670276479Sdim        case X86::COND_NE:
3671327952Sdim          ReplacementCC = GetOppositeBranchCondition(NewCC);
3672276479Sdim          break;
3673276479Sdim        }
3674239462Sdim    } else if (IsSwapped) {
3675239462Sdim      // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
3676239462Sdim      // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3677239462Sdim      // We swap the condition code and synthesize the new opcode.
3678327952Sdim      ReplacementCC = getSwappedCondition(OldCC);
3679327952Sdim      if (ReplacementCC == X86::COND_INVALID) return false;
3680276479Sdim    }
3681239462Sdim
3682327952Sdim    if ((ShouldUpdateCC || IsSwapped) && ReplacementCC != OldCC) {
3683239462Sdim      // Push the MachineInstr to OpsToUpdate.
3684239462Sdim      // If it is safe to remove CmpInstr, the condition code of these
3685239462Sdim      // instructions will be modified.
3686353358Sdim      OpsToUpdate.push_back(std::make_pair(&*I, ReplacementCC));
3687239462Sdim    }
3688239462Sdim    if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
3689239462Sdim      // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
3690239462Sdim      IsSafe = true;
3691239462Sdim      break;
3692239462Sdim    }
3693239462Sdim  }
3694239462Sdim
3695239462Sdim  // If EFLAGS is not killed nor re-defined, we should check whether it is
3696239462Sdim  // live-out. If it is live-out, do not optimize.
3697239462Sdim  if ((IsCmpZero || IsSwapped) && !IsSafe) {
3698309124Sdim    MachineBasicBlock *MBB = CmpInstr.getParent();
3699296417Sdim    for (MachineBasicBlock *Successor : MBB->successors())
3700296417Sdim      if (Successor->isLiveIn(X86::EFLAGS))
3701239462Sdim        return false;
3702239462Sdim  }
3703239462Sdim
3704239462Sdim  // The instruction to be updated is either Sub or MI.
3705239462Sdim  Sub = IsCmpZero ? MI : Sub;
3706261991Sdim  // Move Movr0Inst to the appropriate place before Sub.
3707239462Sdim  if (Movr0Inst) {
3708261991Sdim    // Look backwards until we find a def that doesn't use the current EFLAGS.
3709261991Sdim    Def = Sub;
3710314564Sdim    MachineBasicBlock::reverse_iterator InsertI = Def.getReverse(),
3711314564Sdim                                        InsertE = Sub->getParent()->rend();
3712261991Sdim    for (; InsertI != InsertE; ++InsertI) {
3713261991Sdim      MachineInstr *Instr = &*InsertI;
3714261991Sdim      if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
3715261991Sdim          Instr->modifiesRegister(X86::EFLAGS, TRI)) {
3716261991Sdim        Sub->getParent()->remove(Movr0Inst);
3717261991Sdim        Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
3718261991Sdim                                   Movr0Inst);
3719261991Sdim        break;
3720261991Sdim      }
3721261991Sdim    }
3722261991Sdim    if (InsertI == InsertE)
3723261991Sdim      return false;
3724239462Sdim  }
3725239462Sdim
3726243830Sdim  // Make sure Sub instruction defines EFLAGS and mark the def live.
3727353358Sdim  MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS);
3728353358Sdim  assert(FlagDef && "Unable to locate a def EFLAGS operand");
3729353358Sdim  FlagDef->setIsDead(false);
3730261991Sdim
3731309124Sdim  CmpInstr.eraseFromParent();
3732239462Sdim
3733239462Sdim  // Modify the condition code of instructions in OpsToUpdate.
3734353358Sdim  for (auto &Op : OpsToUpdate) {
3735353358Sdim    Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
3736353358Sdim        .setImm(Op.second);
3737353358Sdim  }
3738239462Sdim  return true;
3739239462Sdim}
3740239462Sdim
3741288943Sdim/// Try to remove the load by folding it to a register
3742239462Sdim/// operand at the use. We fold the load instructions if load defines a virtual
3743239462Sdim/// register, the virtual register is used once in the same BB, and the
3744239462Sdim/// instructions in-between do not load or store, and have no side effects.
3745309124SdimMachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
3746280031Sdim                                              const MachineRegisterInfo *MRI,
3747280031Sdim                                              unsigned &FoldAsLoadDefReg,
3748280031Sdim                                              MachineInstr *&DefMI) const {
3749239462Sdim  // Check whether we can move DefMI here.
3750239462Sdim  DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
3751239462Sdim  assert(DefMI);
3752239462Sdim  bool SawStore = false;
3753288943Sdim  if (!DefMI->isSafeToMove(nullptr, SawStore))
3754276479Sdim    return nullptr;
3755239462Sdim
3756280031Sdim  // Collect information about virtual register operands of MI.
3757314564Sdim  SmallVector<unsigned, 1> SrcOperandIds;
3758314564Sdim  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
3759309124Sdim    MachineOperand &MO = MI.getOperand(i);
3760280031Sdim    if (!MO.isReg())
3761280031Sdim      continue;
3762280031Sdim    unsigned Reg = MO.getReg();
3763280031Sdim    if (Reg != FoldAsLoadDefReg)
3764280031Sdim      continue;
3765314564Sdim    // Do not fold if we have a subreg use or a def.
3766314564Sdim    if (MO.getSubReg() || MO.isDef())
3767280031Sdim      return nullptr;
3768314564Sdim    SrcOperandIds.push_back(i);
3769280031Sdim  }
3770314564Sdim  if (SrcOperandIds.empty())
3771280031Sdim    return nullptr;
3772239462Sdim
3773280031Sdim  // Check whether we can fold the def into SrcOperandId.
3774314564Sdim  if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
3775280031Sdim    FoldAsLoadDefReg = 0;
3776280031Sdim    return FoldMI;
3777280031Sdim  }
3778239462Sdim
3779276479Sdim  return nullptr;
3780239462Sdim}
3781239462Sdim
3782288943Sdim/// Expand a single-def pseudo instruction to a two-addr
3783288943Sdim/// instruction with two undef reads of the register being defined.
3784288943Sdim/// This is used for mapping:
3785226633Sdim///   %xmm4 = V_SET0
3786226633Sdim/// to:
3787327952Sdim///   %xmm4 = PXORrr undef %xmm4, undef %xmm4
3788226633Sdim///
3789249423Sdimstatic bool Expand2AddrUndef(MachineInstrBuilder &MIB,
3790249423Sdim                             const MCInstrDesc &Desc) {
3791226633Sdim  assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
3792249423Sdim  unsigned Reg = MIB->getOperand(0).getReg();
3793249423Sdim  MIB->setDesc(Desc);
3794226633Sdim
3795226633Sdim  // MachineInstr::addOperand() will insert explicit operands before any
3796226633Sdim  // implicit operands.
3797249423Sdim  MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
3798226633Sdim  // But we don't trust that.
3799249423Sdim  assert(MIB->getOperand(1).getReg() == Reg &&
3800249423Sdim         MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
3801226633Sdim  return true;
3802226633Sdim}
3803226633Sdim
3804296417Sdim/// Expand a single-def pseudo instruction to a two-addr
3805296417Sdim/// instruction with two %k0 reads.
3806296417Sdim/// This is used for mapping:
3807296417Sdim///   %k4 = K_SET1
3808296417Sdim/// to:
3809296417Sdim///   %k4 = KXNORrr %k0, %k0
3810296417Sdimstatic bool Expand2AddrKreg(MachineInstrBuilder &MIB,
3811296417Sdim                            const MCInstrDesc &Desc, unsigned Reg) {
3812296417Sdim  assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
3813296417Sdim  MIB->setDesc(Desc);
3814296417Sdim  MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
3815296417Sdim  return true;
3816296417Sdim}
3817296417Sdim
3818296417Sdimstatic bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
3819296417Sdim                          bool MinusOne) {
3820296417Sdim  MachineBasicBlock &MBB = *MIB->getParent();
3821296417Sdim  DebugLoc DL = MIB->getDebugLoc();
3822296417Sdim  unsigned Reg = MIB->getOperand(0).getReg();
3823296417Sdim
3824296417Sdim  // Insert the XOR.
3825296417Sdim  BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
3826296417Sdim      .addReg(Reg, RegState::Undef)
3827296417Sdim      .addReg(Reg, RegState::Undef);
3828296417Sdim
3829296417Sdim  // Turn the pseudo into an INC or DEC.
3830296417Sdim  MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
3831296417Sdim  MIB.addReg(Reg);
3832296417Sdim
3833296417Sdim  return true;
3834296417Sdim}
3835296417Sdim
3836314564Sdimstatic bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
3837314564Sdim                               const TargetInstrInfo &TII,
3838314564Sdim                               const X86Subtarget &Subtarget) {
3839309124Sdim  MachineBasicBlock &MBB = *MIB->getParent();
3840309124Sdim  DebugLoc DL = MIB->getDebugLoc();
3841309124Sdim  int64_t Imm = MIB->getOperand(1).getImm();
3842309124Sdim  assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
3843309124Sdim  MachineBasicBlock::iterator I = MIB.getInstr();
3844309124Sdim
3845309124Sdim  int StackAdjustment;
3846309124Sdim
3847309124Sdim  if (Subtarget.is64Bit()) {
3848309124Sdim    assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
3849309124Sdim           MIB->getOpcode() == X86::MOV32ImmSExti8);
3850309124Sdim
3851309124Sdim    // Can't use push/pop lowering if the function might write to the red zone.
3852309124Sdim    X86MachineFunctionInfo *X86FI =
3853309124Sdim        MBB.getParent()->getInfo<X86MachineFunctionInfo>();
3854309124Sdim    if (X86FI->getUsesRedZone()) {
3855314564Sdim      MIB->setDesc(TII.get(MIB->getOpcode() ==
3856314564Sdim                           X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
3857309124Sdim      return true;
3858309124Sdim    }
3859309124Sdim
3860309124Sdim    // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
3861309124Sdim    // widen the register if necessary.
3862309124Sdim    StackAdjustment = 8;
3863314564Sdim    BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm);
3864314564Sdim    MIB->setDesc(TII.get(X86::POP64r));
3865309124Sdim    MIB->getOperand(0)
3866309124Sdim        .setReg(getX86SubSuperRegister(MIB->getOperand(0).getReg(), 64));
3867309124Sdim  } else {
3868309124Sdim    assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
3869309124Sdim    StackAdjustment = 4;
3870314564Sdim    BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm);
3871314564Sdim    MIB->setDesc(TII.get(X86::POP32r));
3872309124Sdim  }
3873309124Sdim
3874309124Sdim  // Build CFI if necessary.
3875309124Sdim  MachineFunction &MF = *MBB.getParent();
3876309124Sdim  const X86FrameLowering *TFL = Subtarget.getFrameLowering();
3877309124Sdim  bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
3878309124Sdim  bool NeedsDwarfCFI =
3879309124Sdim      !IsWin64Prologue &&
3880327952Sdim      (MF.getMMI().hasDebugInfo() || MF.getFunction().needsUnwindTableEntry());
3881309124Sdim  bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
3882309124Sdim  if (EmitCFI) {
3883309124Sdim    TFL->BuildCFI(MBB, I, DL,
3884309124Sdim        MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
3885309124Sdim    TFL->BuildCFI(MBB, std::next(I), DL,
3886309124Sdim        MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
3887309124Sdim  }
3888309124Sdim
3889309124Sdim  return true;
3890309124Sdim}
3891309124Sdim
3892280031Sdim// LoadStackGuard has so far only been implemented for 64-bit MachO. Different
3893280031Sdim// code sequence is needed for other targets.
3894280031Sdimstatic void expandLoadStackGuard(MachineInstrBuilder &MIB,
3895280031Sdim                                 const TargetInstrInfo &TII) {
3896280031Sdim  MachineBasicBlock &MBB = *MIB->getParent();
3897280031Sdim  DebugLoc DL = MIB->getDebugLoc();
3898280031Sdim  unsigned Reg = MIB->getOperand(0).getReg();
3899280031Sdim  const GlobalValue *GV =
3900280031Sdim      cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
3901314564Sdim  auto Flags = MachineMemOperand::MOLoad |
3902314564Sdim               MachineMemOperand::MODereferenceable |
3903314564Sdim               MachineMemOperand::MOInvariant;
3904296417Sdim  MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
3905309124Sdim      MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, 8);
3906280031Sdim  MachineBasicBlock::iterator I = MIB.getInstr();
3907280031Sdim
3908280031Sdim  BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
3909280031Sdim      .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
3910280031Sdim      .addMemOperand(MMO);
3911280031Sdim  MIB->setDebugLoc(DL);
3912280031Sdim  MIB->setDesc(TII.get(X86::MOV64rm));
3913280031Sdim  MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
3914280031Sdim}
3915280031Sdim
3916327952Sdimstatic bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
3917327952Sdim  MachineBasicBlock &MBB = *MIB->getParent();
3918327952Sdim  MachineFunction &MF = *MBB.getParent();
3919327952Sdim  const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
3920327952Sdim  const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
3921327952Sdim  unsigned XorOp =
3922327952Sdim      MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
3923327952Sdim  MIB->setDesc(TII.get(XorOp));
3924327952Sdim  MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
3925327952Sdim  return true;
3926327952Sdim}
3927327952Sdim
3928314564Sdim// This is used to handle spills for 128/256-bit registers when we have AVX512,
3929314564Sdim// but not VLX. If it uses an extended register we need to use an instruction
3930314564Sdim// that loads the lower 128/256-bit, but is available with only AVX512F.
3931314564Sdimstatic bool expandNOVLXLoad(MachineInstrBuilder &MIB,
3932314564Sdim                            const TargetRegisterInfo *TRI,
3933314564Sdim                            const MCInstrDesc &LoadDesc,
3934314564Sdim                            const MCInstrDesc &BroadcastDesc,
3935314564Sdim                            unsigned SubIdx) {
3936314564Sdim  unsigned DestReg = MIB->getOperand(0).getReg();
3937314564Sdim  // Check if DestReg is XMM16-31 or YMM16-31.
3938314564Sdim  if (TRI->getEncodingValue(DestReg) < 16) {
3939314564Sdim    // We can use a normal VEX encoded load.
3940314564Sdim    MIB->setDesc(LoadDesc);
3941314564Sdim  } else {
3942314564Sdim    // Use a 128/256-bit VBROADCAST instruction.
3943314564Sdim    MIB->setDesc(BroadcastDesc);
3944314564Sdim    // Change the destination to a 512-bit register.
3945314564Sdim    DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
3946314564Sdim    MIB->getOperand(0).setReg(DestReg);
3947314564Sdim  }
3948314564Sdim  return true;
3949314564Sdim}
3950314564Sdim
3951314564Sdim// This is used to handle spills for 128/256-bit registers when we have AVX512,
3952314564Sdim// but not VLX. If it uses an extended register we need to use an instruction
3953314564Sdim// that stores the lower 128/256-bit, but is available with only AVX512F.
3954314564Sdimstatic bool expandNOVLXStore(MachineInstrBuilder &MIB,
3955314564Sdim                             const TargetRegisterInfo *TRI,
3956314564Sdim                             const MCInstrDesc &StoreDesc,
3957314564Sdim                             const MCInstrDesc &ExtractDesc,
3958314564Sdim                             unsigned SubIdx) {
3959314564Sdim  unsigned SrcReg = MIB->getOperand(X86::AddrNumOperands).getReg();
3960314564Sdim  // Check if DestReg is XMM16-31 or YMM16-31.
3961314564Sdim  if (TRI->getEncodingValue(SrcReg) < 16) {
3962314564Sdim    // We can use a normal VEX encoded store.
3963314564Sdim    MIB->setDesc(StoreDesc);
3964314564Sdim  } else {
3965314564Sdim    // Use a VEXTRACTF instruction.
3966314564Sdim    MIB->setDesc(ExtractDesc);
3967314564Sdim    // Change the destination to a 512-bit register.
3968314564Sdim    SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
3969314564Sdim    MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
3970314564Sdim    MIB.addImm(0x0); // Append immediate to extract from the lower bits.
3971314564Sdim  }
3972314564Sdim
3973314564Sdim  return true;
3974314564Sdim}
3975353358Sdim
3976353358Sdimstatic bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) {
3977353358Sdim  MIB->setDesc(Desc);
3978353358Sdim  int64_t ShiftAmt = MIB->getOperand(2).getImm();
3979353358Sdim  // Temporarily remove the immediate so we can add another source register.
3980353358Sdim  MIB->RemoveOperand(2);
3981353358Sdim  // Add the register. Don't copy the kill flag if there is one.
3982353358Sdim  MIB.addReg(MIB->getOperand(1).getReg(),
3983353358Sdim             getUndefRegState(MIB->getOperand(1).isUndef()));
3984353358Sdim  // Add back the immediate.
3985353358Sdim  MIB.addImm(ShiftAmt);
3986353358Sdim  return true;
3987353358Sdim}
3988353358Sdim
3989309124Sdimbool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
3990276479Sdim  bool HasAVX = Subtarget.hasAVX();
3991309124Sdim  MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
3992309124Sdim  switch (MI.getOpcode()) {
3993276479Sdim  case X86::MOV32r0:
3994276479Sdim    return Expand2AddrUndef(MIB, get(X86::XOR32rr));
3995296417Sdim  case X86::MOV32r1:
3996296417Sdim    return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
3997296417Sdim  case X86::MOV32r_1:
3998296417Sdim    return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
3999309124Sdim  case X86::MOV32ImmSExti8:
4000309124Sdim  case X86::MOV64ImmSExti8:
4001314564Sdim    return ExpandMOVImmSExti8(MIB, *this, Subtarget);
4002243830Sdim  case X86::SETB_C8r:
4003249423Sdim    return Expand2AddrUndef(MIB, get(X86::SBB8rr));
4004243830Sdim  case X86::SETB_C16r:
4005249423Sdim    return Expand2AddrUndef(MIB, get(X86::SBB16rr));
4006243830Sdim  case X86::SETB_C32r:
4007249423Sdim    return Expand2AddrUndef(MIB, get(X86::SBB32rr));
4008243830Sdim  case X86::SETB_C64r:
4009249423Sdim    return Expand2AddrUndef(MIB, get(X86::SBB64rr));
4010341825Sdim  case X86::MMX_SET0:
4011341825Sdim    return Expand2AddrUndef(MIB, get(X86::MMX_PXORirr));
4012226633Sdim  case X86::V_SET0:
4013234353Sdim  case X86::FsFLD0SS:
4014234353Sdim  case X86::FsFLD0SD:
4015249423Sdim    return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
4016327952Sdim  case X86::AVX_SET0: {
4017243830Sdim    assert(HasAVX && "AVX not supported");
4018327952Sdim    const TargetRegisterInfo *TRI = &getRegisterInfo();
4019327952Sdim    unsigned SrcReg = MIB->getOperand(0).getReg();
4020327952Sdim    unsigned XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4021327952Sdim    MIB->getOperand(0).setReg(XReg);
4022327952Sdim    Expand2AddrUndef(MIB, get(X86::VXORPSrr));
4023327952Sdim    MIB.addReg(SrcReg, RegState::ImplicitDefine);
4024327952Sdim    return true;
4025327952Sdim  }
4026309124Sdim  case X86::AVX512_128_SET0:
4027321369Sdim  case X86::AVX512_FsFLD0SS:
4028321369Sdim  case X86::AVX512_FsFLD0SD: {
4029321369Sdim    bool HasVLX = Subtarget.hasVLX();
4030321369Sdim    unsigned SrcReg = MIB->getOperand(0).getReg();
4031321369Sdim    const TargetRegisterInfo *TRI = &getRegisterInfo();
4032321369Sdim    if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
4033321369Sdim      return Expand2AddrUndef(MIB,
4034321369Sdim                              get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4035321369Sdim    // Extended register without VLX. Use a larger XOR.
4036327952Sdim    SrcReg =
4037327952Sdim        TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
4038321369Sdim    MIB->getOperand(0).setReg(SrcReg);
4039321369Sdim    return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4040321369Sdim  }
4041327952Sdim  case X86::AVX512_256_SET0:
4042327952Sdim  case X86::AVX512_512_SET0: {
4043321369Sdim    bool HasVLX = Subtarget.hasVLX();
4044321369Sdim    unsigned SrcReg = MIB->getOperand(0).getReg();
4045321369Sdim    const TargetRegisterInfo *TRI = &getRegisterInfo();
4046327952Sdim    if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
4047327952Sdim      unsigned XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4048327952Sdim      MIB->getOperand(0).setReg(XReg);
4049327952Sdim      Expand2AddrUndef(MIB,
4050327952Sdim                       get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4051327952Sdim      MIB.addReg(SrcReg, RegState::ImplicitDefine);
4052327952Sdim      return true;
4053327952Sdim    }
4054353358Sdim    if (MI.getOpcode() == X86::AVX512_256_SET0) {
4055353358Sdim      // No VLX so we must reference a zmm.
4056353358Sdim      unsigned ZReg =
4057353358Sdim        TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
4058353358Sdim      MIB->getOperand(0).setReg(ZReg);
4059353358Sdim    }
4060321369Sdim    return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4061321369Sdim  }
4062243830Sdim  case X86::V_SETALLONES:
4063249423Sdim    return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
4064243830Sdim  case X86::AVX2_SETALLONES:
4065249423Sdim    return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
4066321369Sdim  case X86::AVX1_SETALLONES: {
4067321369Sdim    unsigned Reg = MIB->getOperand(0).getReg();
4068321369Sdim    // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
4069321369Sdim    MIB->setDesc(get(X86::VCMPPSYrri));
4070321369Sdim    MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
4071321369Sdim    return true;
4072321369Sdim  }
4073309124Sdim  case X86::AVX512_512_SETALLONES: {
4074309124Sdim    unsigned Reg = MIB->getOperand(0).getReg();
4075309124Sdim    MIB->setDesc(get(X86::VPTERNLOGDZrri));
4076309124Sdim    // VPTERNLOGD needs 3 register inputs and an immediate.
4077309124Sdim    // 0xff will return 1s for any input.
4078309124Sdim    MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
4079309124Sdim       .addReg(Reg, RegState::Undef).addImm(0xff);
4080309124Sdim    return true;
4081309124Sdim  }
4082314564Sdim  case X86::AVX512_512_SEXT_MASK_32:
4083314564Sdim  case X86::AVX512_512_SEXT_MASK_64: {
4084314564Sdim    unsigned Reg = MIB->getOperand(0).getReg();
4085314564Sdim    unsigned MaskReg = MIB->getOperand(1).getReg();
4086314564Sdim    unsigned MaskState = getRegState(MIB->getOperand(1));
4087314564Sdim    unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ?
4088314564Sdim                   X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz;
4089314564Sdim    MI.RemoveOperand(1);
4090314564Sdim    MIB->setDesc(get(Opc));
4091314564Sdim    // VPTERNLOG needs 3 register inputs and an immediate.
4092314564Sdim    // 0xff will return 1s for any input.
4093314564Sdim    MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState)
4094314564Sdim       .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff);
4095314564Sdim    return true;
4096314564Sdim  }
4097314564Sdim  case X86::VMOVAPSZ128rm_NOVLX:
4098314564Sdim    return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
4099314564Sdim                           get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4100314564Sdim  case X86::VMOVUPSZ128rm_NOVLX:
4101314564Sdim    return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
4102314564Sdim                           get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4103314564Sdim  case X86::VMOVAPSZ256rm_NOVLX:
4104314564Sdim    return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
4105314564Sdim                           get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4106314564Sdim  case X86::VMOVUPSZ256rm_NOVLX:
4107314564Sdim    return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
4108314564Sdim                           get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4109314564Sdim  case X86::VMOVAPSZ128mr_NOVLX:
4110314564Sdim    return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
4111314564Sdim                            get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4112314564Sdim  case X86::VMOVUPSZ128mr_NOVLX:
4113314564Sdim    return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
4114314564Sdim                            get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4115314564Sdim  case X86::VMOVAPSZ256mr_NOVLX:
4116314564Sdim    return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
4117314564Sdim                            get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
4118314564Sdim  case X86::VMOVUPSZ256mr_NOVLX:
4119314564Sdim    return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
4120314564Sdim                            get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
4121344779Sdim  case X86::MOV32ri64: {
4122344779Sdim    unsigned Reg = MIB->getOperand(0).getReg();
4123344779Sdim    unsigned Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
4124309124Sdim    MI.setDesc(get(X86::MOV32ri));
4125344779Sdim    MIB->getOperand(0).setReg(Reg32);
4126344779Sdim    MIB.addReg(Reg, RegState::ImplicitDefine);
4127296417Sdim    return true;
4128344779Sdim  }
4129296417Sdim
4130296417Sdim  // KNL does not recognize dependency-breaking idioms for mask registers,
4131296417Sdim  // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
4132296417Sdim  // Using %k0 as the undef input register is a performance heuristic based
4133296417Sdim  // on the assumption that %k0 is used less frequently than the other mask
4134296417Sdim  // registers, since it is not usable as a write mask.
4135296417Sdim  // FIXME: A more advanced approach would be to choose the best input mask
4136296417Sdim  // register based on context.
4137296417Sdim  case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
4138296417Sdim  case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
4139296417Sdim  case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
4140296417Sdim  case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
4141296417Sdim  case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
4142296417Sdim  case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
4143280031Sdim  case TargetOpcode::LOAD_STACK_GUARD:
4144280031Sdim    expandLoadStackGuard(MIB, *this);
4145280031Sdim    return true;
4146327952Sdim  case X86::XOR64_FP:
4147327952Sdim  case X86::XOR32_FP:
4148327952Sdim    return expandXorFP(MIB, *this);
4149353358Sdim  case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8));
4150353358Sdim  case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8));
4151353358Sdim  case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8));
4152353358Sdim  case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8));
4153353358Sdim  case X86::ADD8rr_DB:    MIB->setDesc(get(X86::OR8rr));    break;
4154353358Sdim  case X86::ADD16rr_DB:   MIB->setDesc(get(X86::OR16rr));   break;
4155353358Sdim  case X86::ADD32rr_DB:   MIB->setDesc(get(X86::OR32rr));   break;
4156353358Sdim  case X86::ADD64rr_DB:   MIB->setDesc(get(X86::OR64rr));   break;
4157353358Sdim  case X86::ADD8ri_DB:    MIB->setDesc(get(X86::OR8ri));    break;
4158353358Sdim  case X86::ADD16ri_DB:   MIB->setDesc(get(X86::OR16ri));   break;
4159353358Sdim  case X86::ADD32ri_DB:   MIB->setDesc(get(X86::OR32ri));   break;
4160353358Sdim  case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break;
4161353358Sdim  case X86::ADD16ri8_DB:  MIB->setDesc(get(X86::OR16ri8));  break;
4162353358Sdim  case X86::ADD32ri8_DB:  MIB->setDesc(get(X86::OR32ri8));  break;
4163353358Sdim  case X86::ADD64ri8_DB:  MIB->setDesc(get(X86::OR64ri8));  break;
4164226633Sdim  }
4165226633Sdim  return false;
4166226633Sdim}
4167226633Sdim
4168327952Sdim/// Return true for all instructions that only update
4169327952Sdim/// the first 32 or 64-bits of the destination register and leave the rest
4170327952Sdim/// unmodified. This can be used to avoid folding loads if the instructions
4171327952Sdim/// only update part of the destination register, and the non-updated part is
4172327952Sdim/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
4173327952Sdim/// instructions breaks the partial register dependency and it can improve
4174327952Sdim/// performance. e.g.:
4175327952Sdim///
4176327952Sdim///   movss (%rdi), %xmm0
4177327952Sdim///   cvtss2sd %xmm0, %xmm0
4178327952Sdim///
4179327952Sdim/// Instead of
4180327952Sdim///   cvtss2sd (%rdi), %xmm0
4181327952Sdim///
4182327952Sdim/// FIXME: This should be turned into a TSFlags.
4183327952Sdim///
4184341825Sdimstatic bool hasPartialRegUpdate(unsigned Opcode,
4185353358Sdim                                const X86Subtarget &Subtarget,
4186353358Sdim                                bool ForLoadFold = false) {
4187327952Sdim  switch (Opcode) {
4188327952Sdim  case X86::CVTSI2SSrr:
4189327952Sdim  case X86::CVTSI2SSrm:
4190327952Sdim  case X86::CVTSI642SSrr:
4191327952Sdim  case X86::CVTSI642SSrm:
4192327952Sdim  case X86::CVTSI2SDrr:
4193327952Sdim  case X86::CVTSI2SDrm:
4194327952Sdim  case X86::CVTSI642SDrr:
4195327952Sdim  case X86::CVTSI642SDrm:
4196353358Sdim    // Load folding won't effect the undef register update since the input is
4197353358Sdim    // a GPR.
4198353358Sdim    return !ForLoadFold;
4199327952Sdim  case X86::CVTSD2SSrr:
4200327952Sdim  case X86::CVTSD2SSrm:
4201327952Sdim  case X86::CVTSS2SDrr:
4202327952Sdim  case X86::CVTSS2SDrm:
4203327952Sdim  case X86::MOVHPDrm:
4204327952Sdim  case X86::MOVHPSrm:
4205327952Sdim  case X86::MOVLPDrm:
4206327952Sdim  case X86::MOVLPSrm:
4207327952Sdim  case X86::RCPSSr:
4208327952Sdim  case X86::RCPSSm:
4209327952Sdim  case X86::RCPSSr_Int:
4210327952Sdim  case X86::RCPSSm_Int:
4211327952Sdim  case X86::ROUNDSDr:
4212327952Sdim  case X86::ROUNDSDm:
4213327952Sdim  case X86::ROUNDSSr:
4214327952Sdim  case X86::ROUNDSSm:
4215327952Sdim  case X86::RSQRTSSr:
4216327952Sdim  case X86::RSQRTSSm:
4217327952Sdim  case X86::RSQRTSSr_Int:
4218327952Sdim  case X86::RSQRTSSm_Int:
4219327952Sdim  case X86::SQRTSSr:
4220327952Sdim  case X86::SQRTSSm:
4221327952Sdim  case X86::SQRTSSr_Int:
4222327952Sdim  case X86::SQRTSSm_Int:
4223327952Sdim  case X86::SQRTSDr:
4224327952Sdim  case X86::SQRTSDm:
4225327952Sdim  case X86::SQRTSDr_Int:
4226327952Sdim  case X86::SQRTSDm_Int:
4227327952Sdim    return true;
4228341825Sdim  // GPR
4229341825Sdim  case X86::POPCNT32rm:
4230341825Sdim  case X86::POPCNT32rr:
4231341825Sdim  case X86::POPCNT64rm:
4232341825Sdim  case X86::POPCNT64rr:
4233341825Sdim    return Subtarget.hasPOPCNTFalseDeps();
4234341825Sdim  case X86::LZCNT32rm:
4235341825Sdim  case X86::LZCNT32rr:
4236341825Sdim  case X86::LZCNT64rm:
4237341825Sdim  case X86::LZCNT64rr:
4238341825Sdim  case X86::TZCNT32rm:
4239341825Sdim  case X86::TZCNT32rr:
4240341825Sdim  case X86::TZCNT64rm:
4241341825Sdim  case X86::TZCNT64rr:
4242341825Sdim    return Subtarget.hasLZCNTFalseDeps();
4243327952Sdim  }
4244327952Sdim
4245327952Sdim  return false;
4246327952Sdim}
4247327952Sdim
4248341825Sdim/// Inform the BreakFalseDeps pass how many idle
4249327952Sdim/// instructions we would like before a partial register update.
4250327952Sdimunsigned X86InstrInfo::getPartialRegUpdateClearance(
4251327952Sdim    const MachineInstr &MI, unsigned OpNum,
4252327952Sdim    const TargetRegisterInfo *TRI) const {
4253341825Sdim  if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
4254327952Sdim    return 0;
4255327952Sdim
4256327952Sdim  // If MI is marked as reading Reg, the partial register update is wanted.
4257327952Sdim  const MachineOperand &MO = MI.getOperand(0);
4258327952Sdim  unsigned Reg = MO.getReg();
4259327952Sdim  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4260327952Sdim    if (MO.readsReg() || MI.readsVirtualRegister(Reg))
4261327952Sdim      return 0;
4262327952Sdim  } else {
4263327952Sdim    if (MI.readsRegister(Reg, TRI))
4264327952Sdim      return 0;
4265327952Sdim  }
4266327952Sdim
4267327952Sdim  // If any instructions in the clearance range are reading Reg, insert a
4268327952Sdim  // dependency breaking instruction, which is inexpensive and is likely to
4269327952Sdim  // be hidden in other instruction's cycles.
4270327952Sdim  return PartialRegUpdateClearance;
4271327952Sdim}
4272327952Sdim
4273327952Sdim// Return true for any instruction the copies the high bits of the first source
4274327952Sdim// operand into the unused high bits of the destination operand.
4275353358Sdimstatic bool hasUndefRegUpdate(unsigned Opcode, bool ForLoadFold = false) {
4276327952Sdim  switch (Opcode) {
4277327952Sdim  case X86::VCVTSI2SSrr:
4278327952Sdim  case X86::VCVTSI2SSrm:
4279327952Sdim  case X86::VCVTSI2SSrr_Int:
4280327952Sdim  case X86::VCVTSI2SSrm_Int:
4281327952Sdim  case X86::VCVTSI642SSrr:
4282327952Sdim  case X86::VCVTSI642SSrm:
4283327952Sdim  case X86::VCVTSI642SSrr_Int:
4284327952Sdim  case X86::VCVTSI642SSrm_Int:
4285327952Sdim  case X86::VCVTSI2SDrr:
4286327952Sdim  case X86::VCVTSI2SDrm:
4287327952Sdim  case X86::VCVTSI2SDrr_Int:
4288327952Sdim  case X86::VCVTSI2SDrm_Int:
4289327952Sdim  case X86::VCVTSI642SDrr:
4290327952Sdim  case X86::VCVTSI642SDrm:
4291327952Sdim  case X86::VCVTSI642SDrr_Int:
4292327952Sdim  case X86::VCVTSI642SDrm_Int:
4293327952Sdim  // AVX-512
4294327952Sdim  case X86::VCVTSI2SSZrr:
4295327952Sdim  case X86::VCVTSI2SSZrm:
4296327952Sdim  case X86::VCVTSI2SSZrr_Int:
4297327952Sdim  case X86::VCVTSI2SSZrrb_Int:
4298327952Sdim  case X86::VCVTSI2SSZrm_Int:
4299327952Sdim  case X86::VCVTSI642SSZrr:
4300327952Sdim  case X86::VCVTSI642SSZrm:
4301327952Sdim  case X86::VCVTSI642SSZrr_Int:
4302327952Sdim  case X86::VCVTSI642SSZrrb_Int:
4303327952Sdim  case X86::VCVTSI642SSZrm_Int:
4304327952Sdim  case X86::VCVTSI2SDZrr:
4305327952Sdim  case X86::VCVTSI2SDZrm:
4306327952Sdim  case X86::VCVTSI2SDZrr_Int:
4307327952Sdim  case X86::VCVTSI2SDZrm_Int:
4308327952Sdim  case X86::VCVTSI642SDZrr:
4309327952Sdim  case X86::VCVTSI642SDZrm:
4310327952Sdim  case X86::VCVTSI642SDZrr_Int:
4311327952Sdim  case X86::VCVTSI642SDZrrb_Int:
4312327952Sdim  case X86::VCVTSI642SDZrm_Int:
4313327952Sdim  case X86::VCVTUSI2SSZrr:
4314327952Sdim  case X86::VCVTUSI2SSZrm:
4315327952Sdim  case X86::VCVTUSI2SSZrr_Int:
4316327952Sdim  case X86::VCVTUSI2SSZrrb_Int:
4317327952Sdim  case X86::VCVTUSI2SSZrm_Int:
4318327952Sdim  case X86::VCVTUSI642SSZrr:
4319327952Sdim  case X86::VCVTUSI642SSZrm:
4320327952Sdim  case X86::VCVTUSI642SSZrr_Int:
4321327952Sdim  case X86::VCVTUSI642SSZrrb_Int:
4322327952Sdim  case X86::VCVTUSI642SSZrm_Int:
4323327952Sdim  case X86::VCVTUSI2SDZrr:
4324327952Sdim  case X86::VCVTUSI2SDZrm:
4325327952Sdim  case X86::VCVTUSI2SDZrr_Int:
4326327952Sdim  case X86::VCVTUSI2SDZrm_Int:
4327327952Sdim  case X86::VCVTUSI642SDZrr:
4328327952Sdim  case X86::VCVTUSI642SDZrm:
4329327952Sdim  case X86::VCVTUSI642SDZrr_Int:
4330327952Sdim  case X86::VCVTUSI642SDZrrb_Int:
4331327952Sdim  case X86::VCVTUSI642SDZrm_Int:
4332353358Sdim    // Load folding won't effect the undef register update since the input is
4333353358Sdim    // a GPR.
4334353358Sdim    return !ForLoadFold;
4335353358Sdim  case X86::VCVTSD2SSrr:
4336353358Sdim  case X86::VCVTSD2SSrm:
4337353358Sdim  case X86::VCVTSD2SSrr_Int:
4338353358Sdim  case X86::VCVTSD2SSrm_Int:
4339353358Sdim  case X86::VCVTSS2SDrr:
4340353358Sdim  case X86::VCVTSS2SDrm:
4341353358Sdim  case X86::VCVTSS2SDrr_Int:
4342353358Sdim  case X86::VCVTSS2SDrm_Int:
4343353358Sdim  case X86::VRCPSSr:
4344353358Sdim  case X86::VRCPSSr_Int:
4345353358Sdim  case X86::VRCPSSm:
4346353358Sdim  case X86::VRCPSSm_Int:
4347353358Sdim  case X86::VROUNDSDr:
4348353358Sdim  case X86::VROUNDSDm:
4349353358Sdim  case X86::VROUNDSDr_Int:
4350353358Sdim  case X86::VROUNDSDm_Int:
4351353358Sdim  case X86::VROUNDSSr:
4352353358Sdim  case X86::VROUNDSSm:
4353353358Sdim  case X86::VROUNDSSr_Int:
4354353358Sdim  case X86::VROUNDSSm_Int:
4355353358Sdim  case X86::VRSQRTSSr:
4356353358Sdim  case X86::VRSQRTSSr_Int:
4357353358Sdim  case X86::VRSQRTSSm:
4358353358Sdim  case X86::VRSQRTSSm_Int:
4359353358Sdim  case X86::VSQRTSSr:
4360353358Sdim  case X86::VSQRTSSr_Int:
4361353358Sdim  case X86::VSQRTSSm:
4362353358Sdim  case X86::VSQRTSSm_Int:
4363353358Sdim  case X86::VSQRTSDr:
4364353358Sdim  case X86::VSQRTSDr_Int:
4365353358Sdim  case X86::VSQRTSDm:
4366353358Sdim  case X86::VSQRTSDm_Int:
4367353358Sdim  // AVX-512
4368327952Sdim  case X86::VCVTSD2SSZrr:
4369327952Sdim  case X86::VCVTSD2SSZrr_Int:
4370327952Sdim  case X86::VCVTSD2SSZrrb_Int:
4371327952Sdim  case X86::VCVTSD2SSZrm:
4372327952Sdim  case X86::VCVTSD2SSZrm_Int:
4373327952Sdim  case X86::VCVTSS2SDZrr:
4374327952Sdim  case X86::VCVTSS2SDZrr_Int:
4375327952Sdim  case X86::VCVTSS2SDZrrb_Int:
4376327952Sdim  case X86::VCVTSS2SDZrm:
4377327952Sdim  case X86::VCVTSS2SDZrm_Int:
4378341825Sdim  case X86::VGETEXPSDZr:
4379341825Sdim  case X86::VGETEXPSDZrb:
4380341825Sdim  case X86::VGETEXPSDZm:
4381341825Sdim  case X86::VGETEXPSSZr:
4382341825Sdim  case X86::VGETEXPSSZrb:
4383341825Sdim  case X86::VGETEXPSSZm:
4384341825Sdim  case X86::VGETMANTSDZrri:
4385341825Sdim  case X86::VGETMANTSDZrrib:
4386341825Sdim  case X86::VGETMANTSDZrmi:
4387341825Sdim  case X86::VGETMANTSSZrri:
4388341825Sdim  case X86::VGETMANTSSZrrib:
4389341825Sdim  case X86::VGETMANTSSZrmi:
4390341825Sdim  case X86::VRNDSCALESDZr:
4391341825Sdim  case X86::VRNDSCALESDZr_Int:
4392341825Sdim  case X86::VRNDSCALESDZrb_Int:
4393341825Sdim  case X86::VRNDSCALESDZm:
4394341825Sdim  case X86::VRNDSCALESDZm_Int:
4395341825Sdim  case X86::VRNDSCALESSZr:
4396341825Sdim  case X86::VRNDSCALESSZr_Int:
4397341825Sdim  case X86::VRNDSCALESSZrb_Int:
4398341825Sdim  case X86::VRNDSCALESSZm:
4399341825Sdim  case X86::VRNDSCALESSZm_Int:
4400341825Sdim  case X86::VRCP14SDZrr:
4401341825Sdim  case X86::VRCP14SDZrm:
4402341825Sdim  case X86::VRCP14SSZrr:
4403341825Sdim  case X86::VRCP14SSZrm:
4404341825Sdim  case X86::VRCP28SDZr:
4405341825Sdim  case X86::VRCP28SDZrb:
4406341825Sdim  case X86::VRCP28SDZm:
4407341825Sdim  case X86::VRCP28SSZr:
4408341825Sdim  case X86::VRCP28SSZrb:
4409341825Sdim  case X86::VRCP28SSZm:
4410341825Sdim  case X86::VREDUCESSZrmi:
4411341825Sdim  case X86::VREDUCESSZrri:
4412341825Sdim  case X86::VREDUCESSZrrib:
4413341825Sdim  case X86::VRSQRT14SDZrr:
4414341825Sdim  case X86::VRSQRT14SDZrm:
4415341825Sdim  case X86::VRSQRT14SSZrr:
4416341825Sdim  case X86::VRSQRT14SSZrm:
4417341825Sdim  case X86::VRSQRT28SDZr:
4418341825Sdim  case X86::VRSQRT28SDZrb:
4419341825Sdim  case X86::VRSQRT28SDZm:
4420341825Sdim  case X86::VRSQRT28SSZr:
4421341825Sdim  case X86::VRSQRT28SSZrb:
4422341825Sdim  case X86::VRSQRT28SSZm:
4423327952Sdim  case X86::VSQRTSSZr:
4424327952Sdim  case X86::VSQRTSSZr_Int:
4425327952Sdim  case X86::VSQRTSSZrb_Int:
4426327952Sdim  case X86::VSQRTSSZm:
4427327952Sdim  case X86::VSQRTSSZm_Int:
4428327952Sdim  case X86::VSQRTSDZr:
4429327952Sdim  case X86::VSQRTSDZr_Int:
4430327952Sdim  case X86::VSQRTSDZrb_Int:
4431327952Sdim  case X86::VSQRTSDZm:
4432327952Sdim  case X86::VSQRTSDZm_Int:
4433327952Sdim    return true;
4434327952Sdim  }
4435327952Sdim
4436327952Sdim  return false;
4437327952Sdim}
4438327952Sdim
4439341825Sdim/// Inform the BreakFalseDeps pass how many idle instructions we would like
4440327952Sdim/// before certain undef register reads.
4441327952Sdim///
4442327952Sdim/// This catches the VCVTSI2SD family of instructions:
4443327952Sdim///
4444327952Sdim/// vcvtsi2sdq %rax, undef %xmm0, %xmm14
4445327952Sdim///
4446327952Sdim/// We should to be careful *not* to catch VXOR idioms which are presumably
4447327952Sdim/// handled specially in the pipeline:
4448327952Sdim///
4449327952Sdim/// vxorps undef %xmm1, undef %xmm1, %xmm1
4450327952Sdim///
4451327952Sdim/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
4452327952Sdim/// high bits that are passed-through are not live.
4453327952Sdimunsigned
4454327952SdimX86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
4455327952Sdim                                   const TargetRegisterInfo *TRI) const {
4456327952Sdim  if (!hasUndefRegUpdate(MI.getOpcode()))
4457327952Sdim    return 0;
4458327952Sdim
4459327952Sdim  // Set the OpNum parameter to the first source operand.
4460327952Sdim  OpNum = 1;
4461327952Sdim
4462327952Sdim  const MachineOperand &MO = MI.getOperand(OpNum);
4463327952Sdim  if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
4464327952Sdim    return UndefRegClearance;
4465327952Sdim  }
4466327952Sdim  return 0;
4467327952Sdim}
4468327952Sdim
4469327952Sdimvoid X86InstrInfo::breakPartialRegDependency(
4470327952Sdim    MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
4471327952Sdim  unsigned Reg = MI.getOperand(OpNum).getReg();
4472327952Sdim  // If MI kills this register, the false dependence is already broken.
4473327952Sdim  if (MI.killsRegister(Reg, TRI))
4474327952Sdim    return;
4475327952Sdim
4476327952Sdim  if (X86::VR128RegClass.contains(Reg)) {
4477327952Sdim    // These instructions are all floating point domain, so xorps is the best
4478327952Sdim    // choice.
4479327952Sdim    unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
4480327952Sdim    BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
4481327952Sdim        .addReg(Reg, RegState::Undef)
4482327952Sdim        .addReg(Reg, RegState::Undef);
4483327952Sdim    MI.addRegisterKilled(Reg, TRI, true);
4484327952Sdim  } else if (X86::VR256RegClass.contains(Reg)) {
4485327952Sdim    // Use vxorps to clear the full ymm register.
4486327952Sdim    // It wants to read and write the xmm sub-register.
4487327952Sdim    unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
4488327952Sdim    BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
4489327952Sdim        .addReg(XReg, RegState::Undef)
4490327952Sdim        .addReg(XReg, RegState::Undef)
4491327952Sdim        .addReg(Reg, RegState::ImplicitDefine);
4492327952Sdim    MI.addRegisterKilled(Reg, TRI, true);
4493341825Sdim  } else if (X86::GR64RegClass.contains(Reg)) {
4494341825Sdim    // Using XOR32rr because it has shorter encoding and zeros up the upper bits
4495341825Sdim    // as well.
4496341825Sdim    unsigned XReg = TRI->getSubReg(Reg, X86::sub_32bit);
4497341825Sdim    BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
4498341825Sdim        .addReg(XReg, RegState::Undef)
4499341825Sdim        .addReg(XReg, RegState::Undef)
4500341825Sdim        .addReg(Reg, RegState::ImplicitDefine);
4501341825Sdim    MI.addRegisterKilled(Reg, TRI, true);
4502341825Sdim  } else if (X86::GR32RegClass.contains(Reg)) {
4503341825Sdim    BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
4504341825Sdim        .addReg(Reg, RegState::Undef)
4505341825Sdim        .addReg(Reg, RegState::Undef);
4506341825Sdim    MI.addRegisterKilled(Reg, TRI, true);
4507327952Sdim  }
4508327952Sdim}
4509327952Sdim
4510296417Sdimstatic void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
4511296417Sdim                        int PtrOffset = 0) {
4512288943Sdim  unsigned NumAddrOps = MOs.size();
4513296417Sdim
4514296417Sdim  if (NumAddrOps < 4) {
4515296417Sdim    // FrameIndex only - add an immediate offset (whether its zero or not).
4516296417Sdim    for (unsigned i = 0; i != NumAddrOps; ++i)
4517321369Sdim      MIB.add(MOs[i]);
4518296417Sdim    addOffset(MIB, PtrOffset);
4519296417Sdim  } else {
4520296417Sdim    // General Memory Addressing - we need to add any offset to an existing
4521296417Sdim    // offset.
4522296417Sdim    assert(MOs.size() == 5 && "Unexpected memory operand list length");
4523296417Sdim    for (unsigned i = 0; i != NumAddrOps; ++i) {
4524296417Sdim      const MachineOperand &MO = MOs[i];
4525296417Sdim      if (i == 3 && PtrOffset != 0) {
4526296417Sdim        MIB.addDisp(MO, PtrOffset);
4527296417Sdim      } else {
4528321369Sdim        MIB.add(MO);
4529296417Sdim      }
4530296417Sdim    }
4531296417Sdim  }
4532288943Sdim}
4533288943Sdim
4534341825Sdimstatic void updateOperandRegConstraints(MachineFunction &MF,
4535341825Sdim                                        MachineInstr &NewMI,
4536341825Sdim                                        const TargetInstrInfo &TII) {
4537341825Sdim  MachineRegisterInfo &MRI = MF.getRegInfo();
4538341825Sdim  const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
4539341825Sdim
4540341825Sdim  for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
4541341825Sdim    MachineOperand &MO = NewMI.getOperand(Idx);
4542341825Sdim    // We only need to update constraints on virtual register operands.
4543341825Sdim    if (!MO.isReg())
4544341825Sdim      continue;
4545341825Sdim    unsigned Reg = MO.getReg();
4546341825Sdim    if (!TRI.isVirtualRegister(Reg))
4547341825Sdim      continue;
4548341825Sdim
4549341825Sdim    auto *NewRC = MRI.constrainRegClass(
4550341825Sdim        Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
4551341825Sdim    if (!NewRC) {
4552341825Sdim      LLVM_DEBUG(
4553341825Sdim          dbgs() << "WARNING: Unable to update register constraint for operand "
4554341825Sdim                 << Idx << " of instruction:\n";
4555341825Sdim          NewMI.dump(); dbgs() << "\n");
4556341825Sdim    }
4557341825Sdim  }
4558341825Sdim}
4559341825Sdim
4560193323Sedstatic MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
4561288943Sdim                                     ArrayRef<MachineOperand> MOs,
4562288943Sdim                                     MachineBasicBlock::iterator InsertPt,
4563309124Sdim                                     MachineInstr &MI,
4564193323Sed                                     const TargetInstrInfo &TII) {
4565193323Sed  // Create the base instruction with the memory operand as the first part.
4566249423Sdim  // Omit the implicit operands, something BuildMI can't do.
4567309124Sdim  MachineInstr *NewMI =
4568309124Sdim      MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
4569249423Sdim  MachineInstrBuilder MIB(MF, NewMI);
4570288943Sdim  addOperands(MIB, MOs);
4571218893Sdim
4572193323Sed  // Loop over the rest of the ri operands, converting them over.
4573309124Sdim  unsigned NumOps = MI.getDesc().getNumOperands() - 2;
4574193323Sed  for (unsigned i = 0; i != NumOps; ++i) {
4575309124Sdim    MachineOperand &MO = MI.getOperand(i + 2);
4576321369Sdim    MIB.add(MO);
4577193323Sed  }
4578309124Sdim  for (unsigned i = NumOps + 2, e = MI.getNumOperands(); i != e; ++i) {
4579309124Sdim    MachineOperand &MO = MI.getOperand(i);
4580321369Sdim    MIB.add(MO);
4581193323Sed  }
4582288943Sdim
4583341825Sdim  updateOperandRegConstraints(MF, *NewMI, TII);
4584341825Sdim
4585288943Sdim  MachineBasicBlock *MBB = InsertPt->getParent();
4586288943Sdim  MBB->insert(InsertPt, NewMI);
4587288943Sdim
4588193323Sed  return MIB;
4589193323Sed}
4590193323Sed
4591288943Sdimstatic MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
4592288943Sdim                              unsigned OpNo, ArrayRef<MachineOperand> MOs,
4593288943Sdim                              MachineBasicBlock::iterator InsertPt,
4594309124Sdim                              MachineInstr &MI, const TargetInstrInfo &TII,
4595296417Sdim                              int PtrOffset = 0) {
4596249423Sdim  // Omit the implicit operands, something BuildMI can't do.
4597309124Sdim  MachineInstr *NewMI =
4598309124Sdim      MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
4599249423Sdim  MachineInstrBuilder MIB(MF, NewMI);
4600218893Sdim
4601309124Sdim  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
4602309124Sdim    MachineOperand &MO = MI.getOperand(i);
4603193323Sed    if (i == OpNo) {
4604193323Sed      assert(MO.isReg() && "Expected to fold into reg operand!");
4605296417Sdim      addOperands(MIB, MOs, PtrOffset);
4606193323Sed    } else {
4607321369Sdim      MIB.add(MO);
4608193323Sed    }
4609193323Sed  }
4610288943Sdim
4611341825Sdim  updateOperandRegConstraints(MF, *NewMI, TII);
4612341825Sdim
4613288943Sdim  MachineBasicBlock *MBB = InsertPt->getParent();
4614288943Sdim  MBB->insert(InsertPt, NewMI);
4615288943Sdim
4616193323Sed  return MIB;
4617193323Sed}
4618193323Sed
4619193323Sedstatic MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
4620288943Sdim                                ArrayRef<MachineOperand> MOs,
4621288943Sdim                                MachineBasicBlock::iterator InsertPt,
4622309124Sdim                                MachineInstr &MI) {
4623288943Sdim  MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
4624309124Sdim                                    MI.getDebugLoc(), TII.get(Opcode));
4625288943Sdim  addOperands(MIB, MOs);
4626193323Sed  return MIB.addImm(0);
4627193323Sed}
4628193323Sed
4629296417SdimMachineInstr *X86InstrInfo::foldMemoryOperandCustom(
4630309124Sdim    MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
4631296417Sdim    ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
4632296417Sdim    unsigned Size, unsigned Align) const {
4633309124Sdim  switch (MI.getOpcode()) {
4634296417Sdim  case X86::INSERTPSrr:
4635296417Sdim  case X86::VINSERTPSrr:
4636314564Sdim  case X86::VINSERTPSZrr:
4637296417Sdim    // Attempt to convert the load of inserted vector into a fold load
4638296417Sdim    // of a single float.
4639296417Sdim    if (OpNum == 2) {
4640309124Sdim      unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
4641296417Sdim      unsigned ZMask = Imm & 15;
4642296417Sdim      unsigned DstIdx = (Imm >> 4) & 3;
4643296417Sdim      unsigned SrcIdx = (Imm >> 6) & 3;
4644296417Sdim
4645321369Sdim      const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4646321369Sdim      const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4647321369Sdim      unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4648353358Sdim      if ((Size == 0 || Size >= 16) && RCSize >= 16 && 4 <= Align) {
4649296417Sdim        int PtrOffset = SrcIdx * 4;
4650296417Sdim        unsigned NewImm = (DstIdx << 4) | ZMask;
4651296417Sdim        unsigned NewOpCode =
4652314564Sdim            (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm :
4653314564Sdim            (MI.getOpcode() == X86::VINSERTPSrr)  ? X86::VINSERTPSrm  :
4654314564Sdim                                                    X86::INSERTPSrm;
4655296417Sdim        MachineInstr *NewMI =
4656296417Sdim            FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
4657296417Sdim        NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
4658296417Sdim        return NewMI;
4659296417Sdim      }
4660296417Sdim    }
4661296417Sdim    break;
4662309124Sdim  case X86::MOVHLPSrr:
4663309124Sdim  case X86::VMOVHLPSrr:
4664314564Sdim  case X86::VMOVHLPSZrr:
4665309124Sdim    // Move the upper 64-bits of the second operand to the lower 64-bits.
4666309124Sdim    // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
4667309124Sdim    // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
4668309124Sdim    if (OpNum == 2) {
4669321369Sdim      const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4670321369Sdim      const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4671321369Sdim      unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4672353358Sdim      if ((Size == 0 || Size >= 16) && RCSize >= 16 && 8 <= Align) {
4673309124Sdim        unsigned NewOpCode =
4674314564Sdim            (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm :
4675314564Sdim            (MI.getOpcode() == X86::VMOVHLPSrr)  ? X86::VMOVLPSrm     :
4676314564Sdim                                                   X86::MOVLPSrm;
4677309124Sdim        MachineInstr *NewMI =
4678309124Sdim            FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
4679309124Sdim        return NewMI;
4680309124Sdim      }
4681309124Sdim    }
4682309124Sdim    break;
4683353358Sdim  case X86::UNPCKLPDrr:
4684353358Sdim    // If we won't be able to fold this to the memory form of UNPCKL, use
4685353358Sdim    // MOVHPD instead. Done as custom because we can't have this in the load
4686353358Sdim    // table twice.
4687353358Sdim    if (OpNum == 2) {
4688353358Sdim      const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4689353358Sdim      const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4690353358Sdim      unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4691353358Sdim      if ((Size == 0 || Size >= 16) && RCSize >= 16 && Align < 16) {
4692353358Sdim        MachineInstr *NewMI =
4693353358Sdim            FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this);
4694353358Sdim        return NewMI;
4695353358Sdim      }
4696353358Sdim    }
4697353358Sdim    break;
4698353358Sdim  }
4699296417Sdim
4700296417Sdim  return nullptr;
4701296417Sdim}
4702296417Sdim
4703353358Sdimstatic bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF,
4704353358Sdim                                               MachineInstr &MI) {
4705353358Sdim  if (!hasUndefRegUpdate(MI.getOpcode(), /*ForLoadFold*/true) ||
4706341825Sdim      !MI.getOperand(1).isReg())
4707341825Sdim    return false;
4708341825Sdim
4709341825Sdim  // The are two cases we need to handle depending on where in the pipeline
4710341825Sdim  // the folding attempt is being made.
4711341825Sdim  // -Register has the undef flag set.
4712341825Sdim  // -Register is produced by the IMPLICIT_DEF instruction.
4713341825Sdim
4714341825Sdim  if (MI.getOperand(1).isUndef())
4715341825Sdim    return true;
4716341825Sdim
4717341825Sdim  MachineRegisterInfo &RegInfo = MF.getRegInfo();
4718341825Sdim  MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
4719341825Sdim  return VRegDef && VRegDef->isImplicitDef();
4720341825Sdim}
4721341825Sdim
4722341825Sdim
4723288943SdimMachineInstr *X86InstrInfo::foldMemoryOperandImpl(
4724309124Sdim    MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
4725288943Sdim    ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
4726288943Sdim    unsigned Size, unsigned Align, bool AllowCommute) const {
4727327952Sdim  bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
4728193323Sed  bool isTwoAddrFold = false;
4729249423Sdim
4730296417Sdim  // For CPUs that favor the register form of a call or push,
4731296417Sdim  // do not fold loads into calls or pushes, unless optimizing for size
4732296417Sdim  // aggressively.
4733353358Sdim  if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
4734309124Sdim      (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
4735309124Sdim       MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
4736309124Sdim       MI.getOpcode() == X86::PUSH64r))
4737276479Sdim    return nullptr;
4738249423Sdim
4739341825Sdim  // Avoid partial and undef register update stalls unless optimizing for size.
4740353358Sdim  if (!MF.getFunction().hasOptSize() &&
4741353358Sdim      (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
4742341825Sdim       shouldPreventUndefRegUpdateMemFold(MF, MI)))
4743327952Sdim    return nullptr;
4744327952Sdim
4745309124Sdim  unsigned NumOps = MI.getDesc().getNumOperands();
4746309124Sdim  bool isTwoAddr =
4747309124Sdim      NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
4748193323Sed
4749221345Sdim  // FIXME: AsmPrinter doesn't know how to handle
4750221345Sdim  // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
4751309124Sdim  if (MI.getOpcode() == X86::ADD32ri &&
4752309124Sdim      MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
4753276479Sdim    return nullptr;
4754221345Sdim
4755341825Sdim  // GOTTPOFF relocation loads can only be folded into add instructions.
4756341825Sdim  // FIXME: Need to exclude other relocations that only support specific
4757341825Sdim  // instructions.
4758341825Sdim  if (MOs.size() == X86::AddrNumOperands &&
4759341825Sdim      MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
4760341825Sdim      MI.getOpcode() != X86::ADD64rr)
4761341825Sdim    return nullptr;
4762341825Sdim
4763276479Sdim  MachineInstr *NewMI = nullptr;
4764296417Sdim
4765296417Sdim  // Attempt to fold any custom cases we have.
4766296417Sdim  if (MachineInstr *CustomMI =
4767296417Sdim          foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt, Size, Align))
4768296417Sdim    return CustomMI;
4769296417Sdim
4770341825Sdim  const X86MemoryFoldTableEntry *I = nullptr;
4771341825Sdim
4772193323Sed  // Folding a memory location into the two-address part of a two-address
4773193323Sed  // instruction is different than folding it other places.  It requires
4774193323Sed  // replacing the *two* registers with the memory location.
4775309124Sdim  if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
4776309124Sdim      MI.getOperand(1).isReg() &&
4777309124Sdim      MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
4778341825Sdim    I = lookupTwoAddrFoldTable(MI.getOpcode());
4779193323Sed    isTwoAddrFold = true;
4780341825Sdim  } else {
4781341825Sdim    if (OpNum == 0) {
4782341825Sdim      if (MI.getOpcode() == X86::MOV32r0) {
4783341825Sdim        NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
4784341825Sdim        if (NewMI)
4785341825Sdim          return NewMI;
4786341825Sdim      }
4787243830Sdim    }
4788218893Sdim
4789341825Sdim    I = lookupFoldTable(MI.getOpcode(), OpNum);
4790193323Sed  }
4791218893Sdim
4792341825Sdim  if (I != nullptr) {
4793341825Sdim    unsigned Opcode = I->DstOp;
4794341825Sdim    unsigned MinAlign = (I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
4795341825Sdim    if (Align < MinAlign)
4796341825Sdim      return nullptr;
4797341825Sdim    bool NarrowToMOV32rm = false;
4798341825Sdim    if (Size) {
4799341825Sdim      const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4800341825Sdim      const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum,
4801341825Sdim                                                  &RI, MF);
4802341825Sdim      unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4803341825Sdim      if (Size < RCSize) {
4804353358Sdim        // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
4805341825Sdim        // Check if it's safe to fold the load. If the size of the object is
4806341825Sdim        // narrower than the load width, then it's not.
4807341825Sdim        if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
4808341825Sdim          return nullptr;
4809341825Sdim        // If this is a 64-bit load, but the spill slot is 32, then we can do
4810341825Sdim        // a 32-bit load which is implicitly zero-extended. This likely is
4811341825Sdim        // due to live interval analysis remat'ing a load from stack slot.
4812341825Sdim        if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
4813341825Sdim          return nullptr;
4814341825Sdim        Opcode = X86::MOV32rm;
4815341825Sdim        NarrowToMOV32rm = true;
4816198090Srdivacky      }
4817341825Sdim    }
4818198090Srdivacky
4819341825Sdim    if (isTwoAddrFold)
4820341825Sdim      NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
4821341825Sdim    else
4822341825Sdim      NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
4823341825Sdim
4824341825Sdim    if (NarrowToMOV32rm) {
4825341825Sdim      // If this is the special case where we use a MOV32rm to load a 32-bit
4826341825Sdim      // value and zero-extend the top bits. Change the destination register
4827341825Sdim      // to a 32-bit one.
4828341825Sdim      unsigned DstReg = NewMI->getOperand(0).getReg();
4829341825Sdim      if (TargetRegisterInfo::isPhysicalRegister(DstReg))
4830341825Sdim        NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
4831193323Sed      else
4832341825Sdim        NewMI->getOperand(0).setSubReg(X86::sub_32bit);
4833193323Sed    }
4834341825Sdim    return NewMI;
4835193323Sed  }
4836218893Sdim
4837280031Sdim  // If the instruction and target operand are commutable, commute the
4838280031Sdim  // instruction and try again.
4839280031Sdim  if (AllowCommute) {
4840296417Sdim    unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
4841280031Sdim    if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
4842309124Sdim      bool HasDef = MI.getDesc().getNumDefs();
4843353358Sdim      Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
4844353358Sdim      Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
4845353358Sdim      Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
4846296417Sdim      bool Tied1 =
4847309124Sdim          0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
4848296417Sdim      bool Tied2 =
4849309124Sdim          0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
4850280031Sdim
4851280031Sdim      // If either of the commutable operands are tied to the destination
4852280031Sdim      // then we can not commute + fold.
4853296417Sdim      if ((HasDef && Reg0 == Reg1 && Tied1) ||
4854296417Sdim          (HasDef && Reg0 == Reg2 && Tied2))
4855280031Sdim        return nullptr;
4856280031Sdim
4857296417Sdim      MachineInstr *CommutedMI =
4858296417Sdim          commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
4859296417Sdim      if (!CommutedMI) {
4860296417Sdim        // Unable to commute.
4861296417Sdim        return nullptr;
4862296417Sdim      }
4863309124Sdim      if (CommutedMI != &MI) {
4864296417Sdim        // New instruction. We can't fold from this.
4865296417Sdim        CommutedMI->eraseFromParent();
4866296417Sdim        return nullptr;
4867296417Sdim      }
4868280031Sdim
4869296417Sdim      // Attempt to fold with the commuted version of the instruction.
4870296417Sdim      NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt,
4871296417Sdim                                    Size, Align, /*AllowCommute=*/false);
4872296417Sdim      if (NewMI)
4873296417Sdim        return NewMI;
4874280031Sdim
4875296417Sdim      // Folding failed again - undo the commute before returning.
4876296417Sdim      MachineInstr *UncommutedMI =
4877296417Sdim          commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
4878296417Sdim      if (!UncommutedMI) {
4879296417Sdim        // Unable to commute.
4880280031Sdim        return nullptr;
4881280031Sdim      }
4882309124Sdim      if (UncommutedMI != &MI) {
4883296417Sdim        // New instruction. It doesn't need to be kept.
4884296417Sdim        UncommutedMI->eraseFromParent();
4885296417Sdim        return nullptr;
4886296417Sdim      }
4887296417Sdim
4888296417Sdim      // Return here to prevent duplicate fuse failure report.
4889296417Sdim      return nullptr;
4890280031Sdim    }
4891280031Sdim  }
4892280031Sdim
4893218893Sdim  // No fusion
4894309124Sdim  if (PrintFailedFusing && !MI.isCopy())
4895309124Sdim    dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
4896276479Sdim  return nullptr;
4897193323Sed}
4898193323Sed
4899309124SdimMachineInstr *
4900309124SdimX86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
4901309124Sdim                                    ArrayRef<unsigned> Ops,
4902309124Sdim                                    MachineBasicBlock::iterator InsertPt,
4903353358Sdim                                    int FrameIndex, LiveIntervals *LIS,
4904353358Sdim                                    VirtRegMap *VRM) const {
4905218893Sdim  // Check switch flag
4906296417Sdim  if (NoFusing)
4907296417Sdim    return nullptr;
4908193323Sed
4909341825Sdim  // Avoid partial and undef register update stalls unless optimizing for size.
4910353358Sdim  if (!MF.getFunction().hasOptSize() &&
4911353358Sdim      (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
4912341825Sdim       shouldPreventUndefRegUpdateMemFold(MF, MI)))
4913276479Sdim    return nullptr;
4914201360Srdivacky
4915314564Sdim  // Don't fold subreg spills, or reloads that use a high subreg.
4916314564Sdim  for (auto Op : Ops) {
4917314564Sdim    MachineOperand &MO = MI.getOperand(Op);
4918314564Sdim    auto SubReg = MO.getSubReg();
4919314564Sdim    if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
4920314564Sdim      return nullptr;
4921314564Sdim  }
4922314564Sdim
4923314564Sdim  const MachineFrameInfo &MFI = MF.getFrameInfo();
4924314564Sdim  unsigned Size = MFI.getObjectSize(FrameIndex);
4925314564Sdim  unsigned Alignment = MFI.getObjectAlignment(FrameIndex);
4926256090Sdim  // If the function stack isn't realigned we don't want to fold instructions
4927256090Sdim  // that need increased alignment.
4928256090Sdim  if (!RI.needsStackRealignment(MF))
4929288943Sdim    Alignment =
4930288943Sdim        std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment());
4931193323Sed  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
4932193323Sed    unsigned NewOpc = 0;
4933198090Srdivacky    unsigned RCSize = 0;
4934309124Sdim    switch (MI.getOpcode()) {
4935276479Sdim    default: return nullptr;
4936198090Srdivacky    case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
4937208599Srdivacky    case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
4938208599Srdivacky    case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
4939208599Srdivacky    case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
4940193323Sed    }
4941198090Srdivacky    // Check if it's safe to fold the load. If the size of the object is
4942198090Srdivacky    // narrower than the load width, then it's not.
4943198090Srdivacky    if (Size < RCSize)
4944276479Sdim      return nullptr;
4945193323Sed    // Change to CMPXXri r, 0 first.
4946309124Sdim    MI.setDesc(get(NewOpc));
4947309124Sdim    MI.getOperand(1).ChangeToImmediate(0);
4948193323Sed  } else if (Ops.size() != 1)
4949276479Sdim    return nullptr;
4950193323Sed
4951288943Sdim  return foldMemoryOperandImpl(MF, MI, Ops[0],
4952288943Sdim                               MachineOperand::CreateFI(FrameIndex), InsertPt,
4953280031Sdim                               Size, Alignment, /*AllowCommute=*/true);
4954193323Sed}
4955193323Sed
4956288943Sdim/// Check if \p LoadMI is a partial register load that we can't fold into \p MI
4957288943Sdim/// because the latter uses contents that wouldn't be defined in the folded
4958288943Sdim/// version.  For instance, this transformation isn't legal:
4959288943Sdim///   movss (%rdi), %xmm0
4960288943Sdim///   addps %xmm0, %xmm0
4961288943Sdim/// ->
4962288943Sdim///   addps (%rdi), %xmm0
4963288943Sdim///
4964288943Sdim/// But this one is:
4965288943Sdim///   movss (%rdi), %xmm0
4966288943Sdim///   addss %xmm0, %xmm0
4967288943Sdim/// ->
4968288943Sdim///   addss (%rdi), %xmm0
4969288943Sdim///
4970288943Sdimstatic bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
4971288943Sdim                                             const MachineInstr &UserMI,
4972288943Sdim                                             const MachineFunction &MF) {
4973280031Sdim  unsigned Opc = LoadMI.getOpcode();
4974288943Sdim  unsigned UserOpc = UserMI.getOpcode();
4975321369Sdim  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4976321369Sdim  const TargetRegisterClass *RC =
4977321369Sdim      MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
4978321369Sdim  unsigned RegSize = TRI.getRegSizeInBits(*RC);
4979280031Sdim
4980353358Sdim  if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm ||
4981353358Sdim       Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt ||
4982353358Sdim       Opc == X86::VMOVSSZrm_alt) &&
4983321369Sdim      RegSize > 32) {
4984280031Sdim    // These instructions only load 32 bits, we can't fold them if the
4985288943Sdim    // destination register is wider than 32 bits (4 bytes), and its user
4986288943Sdim    // instruction isn't scalar (SS).
4987288943Sdim    switch (UserOpc) {
4988309124Sdim    case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int:
4989327952Sdim    case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int:
4990309124Sdim    case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int:
4991314564Sdim    case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int:
4992314564Sdim    case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int:
4993309124Sdim    case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int:
4994309124Sdim    case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int:
4995321369Sdim    case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz:
4996353358Sdim    case X86::VCMPSSZrr_Intk:
4997321369Sdim    case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz:
4998321369Sdim    case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz:
4999321369Sdim    case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz:
5000321369Sdim    case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz:
5001321369Sdim    case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz:
5002314564Sdim    case X86::VFMADDSS4rr_Int:   case X86::VFNMADDSS4rr_Int:
5003314564Sdim    case X86::VFMSUBSS4rr_Int:   case X86::VFNMSUBSS4rr_Int:
5004314564Sdim    case X86::VFMADD132SSr_Int:  case X86::VFNMADD132SSr_Int:
5005314564Sdim    case X86::VFMADD213SSr_Int:  case X86::VFNMADD213SSr_Int:
5006314564Sdim    case X86::VFMADD231SSr_Int:  case X86::VFNMADD231SSr_Int:
5007314564Sdim    case X86::VFMSUB132SSr_Int:  case X86::VFNMSUB132SSr_Int:
5008314564Sdim    case X86::VFMSUB213SSr_Int:  case X86::VFNMSUB213SSr_Int:
5009314564Sdim    case X86::VFMSUB231SSr_Int:  case X86::VFNMSUB231SSr_Int:
5010314564Sdim    case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int:
5011314564Sdim    case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int:
5012314564Sdim    case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int:
5013314564Sdim    case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int:
5014314564Sdim    case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int:
5015314564Sdim    case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int:
5016321369Sdim    case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk:
5017321369Sdim    case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk:
5018321369Sdim    case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk:
5019321369Sdim    case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk:
5020321369Sdim    case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk:
5021321369Sdim    case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk:
5022321369Sdim    case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz:
5023321369Sdim    case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz:
5024321369Sdim    case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz:
5025321369Sdim    case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz:
5026321369Sdim    case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz:
5027321369Sdim    case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz:
5028288943Sdim      return false;
5029288943Sdim    default:
5030288943Sdim      return true;
5031288943Sdim    }
5032288943Sdim  }
5033280031Sdim
5034353358Sdim  if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm ||
5035353358Sdim       Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt ||
5036353358Sdim       Opc == X86::VMOVSDZrm_alt) &&
5037321369Sdim      RegSize > 64) {
5038280031Sdim    // These instructions only load 64 bits, we can't fold them if the
5039288943Sdim    // destination register is wider than 64 bits (8 bytes), and its user
5040288943Sdim    // instruction isn't scalar (SD).
5041288943Sdim    switch (UserOpc) {
5042309124Sdim    case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int:
5043327952Sdim    case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int:
5044309124Sdim    case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int:
5045314564Sdim    case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int:
5046314564Sdim    case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int:
5047309124Sdim    case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int:
5048309124Sdim    case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int:
5049321369Sdim    case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz:
5050353358Sdim    case X86::VCMPSDZrr_Intk:
5051321369Sdim    case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz:
5052321369Sdim    case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz:
5053321369Sdim    case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz:
5054321369Sdim    case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz:
5055321369Sdim    case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz:
5056314564Sdim    case X86::VFMADDSD4rr_Int:   case X86::VFNMADDSD4rr_Int:
5057314564Sdim    case X86::VFMSUBSD4rr_Int:   case X86::VFNMSUBSD4rr_Int:
5058314564Sdim    case X86::VFMADD132SDr_Int:  case X86::VFNMADD132SDr_Int:
5059314564Sdim    case X86::VFMADD213SDr_Int:  case X86::VFNMADD213SDr_Int:
5060314564Sdim    case X86::VFMADD231SDr_Int:  case X86::VFNMADD231SDr_Int:
5061314564Sdim    case X86::VFMSUB132SDr_Int:  case X86::VFNMSUB132SDr_Int:
5062314564Sdim    case X86::VFMSUB213SDr_Int:  case X86::VFNMSUB213SDr_Int:
5063314564Sdim    case X86::VFMSUB231SDr_Int:  case X86::VFNMSUB231SDr_Int:
5064314564Sdim    case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int:
5065314564Sdim    case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int:
5066314564Sdim    case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int:
5067314564Sdim    case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int:
5068314564Sdim    case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int:
5069314564Sdim    case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int:
5070321369Sdim    case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk:
5071321369Sdim    case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk:
5072321369Sdim    case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk:
5073321369Sdim    case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk:
5074321369Sdim    case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk:
5075321369Sdim    case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk:
5076321369Sdim    case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz:
5077321369Sdim    case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz:
5078321369Sdim    case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz:
5079321369Sdim    case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz:
5080321369Sdim    case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz:
5081321369Sdim    case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz:
5082288943Sdim      return false;
5083288943Sdim    default:
5084288943Sdim      return true;
5085288943Sdim    }
5086288943Sdim  }
5087280031Sdim
5088280031Sdim  return false;
5089280031Sdim}
5090280031Sdim
5091288943SdimMachineInstr *X86InstrInfo::foldMemoryOperandImpl(
5092309124Sdim    MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
5093309124Sdim    MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
5094309124Sdim    LiveIntervals *LIS) const {
5095314564Sdim
5096314564Sdim  // TODO: Support the case where LoadMI loads a wide register, but MI
5097314564Sdim  // only uses a subreg.
5098314564Sdim  for (auto Op : Ops) {
5099314564Sdim    if (MI.getOperand(Op).getSubReg())
5100314564Sdim      return nullptr;
5101314564Sdim  }
5102314564Sdim
5103261991Sdim  // If loading from a FrameIndex, fold directly from the FrameIndex.
5104309124Sdim  unsigned NumOps = LoadMI.getDesc().getNumOperands();
5105261991Sdim  int FrameIndex;
5106280031Sdim  if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
5107309124Sdim    if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
5108280031Sdim      return nullptr;
5109309124Sdim    return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
5110280031Sdim  }
5111261991Sdim
5112218893Sdim  // Check switch flag
5113276479Sdim  if (NoFusing) return nullptr;
5114193323Sed
5115341825Sdim  // Avoid partial and undef register update stalls unless optimizing for size.
5116353358Sdim  if (!MF.getFunction().hasOptSize() &&
5117353358Sdim      (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
5118341825Sdim       shouldPreventUndefRegUpdateMemFold(MF, MI)))
5119276479Sdim    return nullptr;
5120201360Srdivacky
5121193323Sed  // Determine the alignment of the load.
5122193323Sed  unsigned Alignment = 0;
5123309124Sdim  if (LoadMI.hasOneMemOperand())
5124309124Sdim    Alignment = (*LoadMI.memoperands_begin())->getAlignment();
5125198090Srdivacky  else
5126309124Sdim    switch (LoadMI.getOpcode()) {
5127309124Sdim    case X86::AVX512_512_SET0:
5128309124Sdim    case X86::AVX512_512_SETALLONES:
5129309124Sdim      Alignment = 64;
5130309124Sdim      break;
5131234353Sdim    case X86::AVX2_SETALLONES:
5132321369Sdim    case X86::AVX1_SETALLONES:
5133243830Sdim    case X86::AVX_SET0:
5134309124Sdim    case X86::AVX512_256_SET0:
5135212904Sdim      Alignment = 32;
5136212904Sdim      break;
5137226633Sdim    case X86::V_SET0:
5138198090Srdivacky    case X86::V_SETALLONES:
5139309124Sdim    case X86::AVX512_128_SET0:
5140198090Srdivacky      Alignment = 16;
5141198090Srdivacky      break;
5142341825Sdim    case X86::MMX_SET0:
5143198090Srdivacky    case X86::FsFLD0SD:
5144314564Sdim    case X86::AVX512_FsFLD0SD:
5145198090Srdivacky      Alignment = 8;
5146198090Srdivacky      break;
5147198090Srdivacky    case X86::FsFLD0SS:
5148314564Sdim    case X86::AVX512_FsFLD0SS:
5149198090Srdivacky      Alignment = 4;
5150198090Srdivacky      break;
5151198090Srdivacky    default:
5152276479Sdim      return nullptr;
5153193323Sed    }
5154193323Sed  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5155193323Sed    unsigned NewOpc = 0;
5156309124Sdim    switch (MI.getOpcode()) {
5157276479Sdim    default: return nullptr;
5158193323Sed    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
5159208599Srdivacky    case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
5160208599Srdivacky    case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
5161208599Srdivacky    case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
5162193323Sed    }
5163193323Sed    // Change to CMPXXri r, 0 first.
5164309124Sdim    MI.setDesc(get(NewOpc));
5165309124Sdim    MI.getOperand(1).ChangeToImmediate(0);
5166193323Sed  } else if (Ops.size() != 1)
5167276479Sdim    return nullptr;
5168193323Sed
5169212904Sdim  // Make sure the subregisters match.
5170212904Sdim  // Otherwise we risk changing the size of the load.
5171309124Sdim  if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
5172276479Sdim    return nullptr;
5173212904Sdim
5174210299Sed  SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
5175309124Sdim  switch (LoadMI.getOpcode()) {
5176341825Sdim  case X86::MMX_SET0:
5177226633Sdim  case X86::V_SET0:
5178198090Srdivacky  case X86::V_SETALLONES:
5179234353Sdim  case X86::AVX2_SETALLONES:
5180321369Sdim  case X86::AVX1_SETALLONES:
5181243830Sdim  case X86::AVX_SET0:
5182309124Sdim  case X86::AVX512_128_SET0:
5183309124Sdim  case X86::AVX512_256_SET0:
5184309124Sdim  case X86::AVX512_512_SET0:
5185309124Sdim  case X86::AVX512_512_SETALLONES:
5186198090Srdivacky  case X86::FsFLD0SD:
5187314564Sdim  case X86::AVX512_FsFLD0SD:
5188314564Sdim  case X86::FsFLD0SS:
5189314564Sdim  case X86::AVX512_FsFLD0SS: {
5190226633Sdim    // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
5191193323Sed    // Create a constant-pool entry and operands to load from it.
5192193323Sed
5193204961Srdivacky    // Medium and large mode can't fold loads this way.
5194276479Sdim    if (MF.getTarget().getCodeModel() != CodeModel::Small &&
5195276479Sdim        MF.getTarget().getCodeModel() != CodeModel::Kernel)
5196276479Sdim      return nullptr;
5197204961Srdivacky
5198193323Sed    // x86-32 PIC requires a PIC base register for constant pools.
5199193323Sed    unsigned PICBase = 0;
5200309124Sdim    if (MF.getTarget().isPositionIndependent()) {
5201276479Sdim      if (Subtarget.is64Bit())
5202198090Srdivacky        PICBase = X86::RIP;
5203198090Srdivacky      else
5204210299Sed        // FIXME: PICBase = getGlobalBaseReg(&MF);
5205198090Srdivacky        // This doesn't work for several reasons.
5206198090Srdivacky        // 1. GlobalBaseReg may have been spilled.
5207198090Srdivacky        // 2. It may not be live at MI.
5208276479Sdim        return nullptr;
5209198090Srdivacky    }
5210193323Sed
5211198090Srdivacky    // Create a constant-pool entry.
5212193323Sed    MachineConstantPool &MCP = *MF.getConstantPool();
5213226633Sdim    Type *Ty;
5214309124Sdim    unsigned Opc = LoadMI.getOpcode();
5215314564Sdim    if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
5216327952Sdim      Ty = Type::getFloatTy(MF.getFunction().getContext());
5217314564Sdim    else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
5218327952Sdim      Ty = Type::getDoubleTy(MF.getFunction().getContext());
5219309124Sdim    else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
5220327952Sdim      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),16);
5221309124Sdim    else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
5222321369Sdim             Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES)
5223327952Sdim      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 8);
5224341825Sdim    else if (Opc == X86::MMX_SET0)
5225341825Sdim      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 2);
5226198090Srdivacky    else
5227327952Sdim      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 4);
5228226633Sdim
5229309124Sdim    bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
5230321369Sdim                      Opc == X86::AVX512_512_SETALLONES ||
5231321369Sdim                      Opc == X86::AVX1_SETALLONES);
5232226633Sdim    const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
5233226633Sdim                                    Constant::getNullValue(Ty);
5234198090Srdivacky    unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
5235193323Sed
5236193323Sed    // Create operands to load from the constant pool entry.
5237193323Sed    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
5238193323Sed    MOs.push_back(MachineOperand::CreateImm(1));
5239193323Sed    MOs.push_back(MachineOperand::CreateReg(0, false));
5240193323Sed    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
5241193323Sed    MOs.push_back(MachineOperand::CreateReg(0, false));
5242198090Srdivacky    break;
5243198090Srdivacky  }
5244198090Srdivacky  default: {
5245309124Sdim    if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
5246276479Sdim      return nullptr;
5247249423Sdim
5248193323Sed    // Folding a normal load. Just copy the load's address operands.
5249309124Sdim    MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
5250309124Sdim               LoadMI.operands_begin() + NumOps);
5251198090Srdivacky    break;
5252193323Sed  }
5253198090Srdivacky  }
5254288943Sdim  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
5255280031Sdim                               /*Size=*/0, Alignment, /*AllowCommute=*/true);
5256193323Sed}
5257193323Sed
5258344779Sdimstatic SmallVector<MachineMemOperand *, 2>
5259344779SdimextractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
5260344779Sdim  SmallVector<MachineMemOperand *, 2> LoadMMOs;
5261344779Sdim
5262344779Sdim  for (MachineMemOperand *MMO : MMOs) {
5263344779Sdim    if (!MMO->isLoad())
5264344779Sdim      continue;
5265344779Sdim
5266344779Sdim    if (!MMO->isStore()) {
5267344779Sdim      // Reuse the MMO.
5268344779Sdim      LoadMMOs.push_back(MMO);
5269344779Sdim    } else {
5270344779Sdim      // Clone the MMO and unset the store flag.
5271344779Sdim      LoadMMOs.push_back(MF.getMachineMemOperand(
5272353358Sdim          MMO, MMO->getFlags() & ~MachineMemOperand::MOStore));
5273344779Sdim    }
5274344779Sdim  }
5275344779Sdim
5276344779Sdim  return LoadMMOs;
5277344779Sdim}
5278344779Sdim
5279344779Sdimstatic SmallVector<MachineMemOperand *, 2>
5280344779SdimextractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
5281344779Sdim  SmallVector<MachineMemOperand *, 2> StoreMMOs;
5282344779Sdim
5283344779Sdim  for (MachineMemOperand *MMO : MMOs) {
5284344779Sdim    if (!MMO->isStore())
5285344779Sdim      continue;
5286344779Sdim
5287344779Sdim    if (!MMO->isLoad()) {
5288344779Sdim      // Reuse the MMO.
5289344779Sdim      StoreMMOs.push_back(MMO);
5290344779Sdim    } else {
5291344779Sdim      // Clone the MMO and unset the load flag.
5292344779Sdim      StoreMMOs.push_back(MF.getMachineMemOperand(
5293353358Sdim          MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad));
5294344779Sdim    }
5295344779Sdim  }
5296344779Sdim
5297344779Sdim  return StoreMMOs;
5298344779Sdim}
5299344779Sdim
5300309124Sdimbool X86InstrInfo::unfoldMemoryOperand(
5301309124Sdim    MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
5302309124Sdim    bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
5303341825Sdim  const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
5304341825Sdim  if (I == nullptr)
5305193323Sed    return false;
5306341825Sdim  unsigned Opc = I->DstOp;
5307341825Sdim  unsigned Index = I->Flags & TB_INDEX_MASK;
5308341825Sdim  bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5309341825Sdim  bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5310193323Sed  if (UnfoldLoad && !FoldedLoad)
5311193323Sed    return false;
5312193323Sed  UnfoldLoad &= FoldedLoad;
5313193323Sed  if (UnfoldStore && !FoldedStore)
5314193323Sed    return false;
5315193323Sed  UnfoldStore &= FoldedStore;
5316193323Sed
5317224145Sdim  const MCInstrDesc &MCID = get(Opc);
5318239462Sdim  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
5319296417Sdim  // TODO: Check if 32-byte or greater accesses are slow too?
5320309124Sdim  if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
5321296417Sdim      Subtarget.isUnalignedMem16Slow())
5322210299Sed    // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
5323210299Sed    // conservatively assume the address is unaligned. That's bad for
5324210299Sed    // performance.
5325210299Sed    return false;
5326210299Sed  SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
5327193323Sed  SmallVector<MachineOperand,2> BeforeOps;
5328193323Sed  SmallVector<MachineOperand,2> AfterOps;
5329193323Sed  SmallVector<MachineOperand,4> ImpOps;
5330309124Sdim  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
5331309124Sdim    MachineOperand &Op = MI.getOperand(i);
5332210299Sed    if (i >= Index && i < Index + X86::AddrNumOperands)
5333193323Sed      AddrOps.push_back(Op);
5334193323Sed    else if (Op.isReg() && Op.isImplicit())
5335193323Sed      ImpOps.push_back(Op);
5336193323Sed    else if (i < Index)
5337193323Sed      BeforeOps.push_back(Op);
5338193323Sed    else if (i > Index)
5339193323Sed      AfterOps.push_back(Op);
5340193323Sed  }
5341193323Sed
5342193323Sed  // Emit the load instruction.
5343193323Sed  if (UnfoldLoad) {
5344344779Sdim    auto MMOs = extractLoadMMOs(MI.memoperands(), MF);
5345344779Sdim    loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs, NewMIs);
5346193323Sed    if (UnfoldStore) {
5347193323Sed      // Address operands cannot be marked isKill.
5348210299Sed      for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
5349193323Sed        MachineOperand &MO = NewMIs[0]->getOperand(i);
5350193323Sed        if (MO.isReg())
5351193323Sed          MO.setIsKill(false);
5352193323Sed      }
5353193323Sed    }
5354193323Sed  }
5355193323Sed
5356193323Sed  // Emit the data processing instruction.
5357309124Sdim  MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
5358249423Sdim  MachineInstrBuilder MIB(MF, DataMI);
5359218893Sdim
5360193323Sed  if (FoldedStore)
5361193323Sed    MIB.addReg(Reg, RegState::Define);
5362296417Sdim  for (MachineOperand &BeforeOp : BeforeOps)
5363321369Sdim    MIB.add(BeforeOp);
5364193323Sed  if (FoldedLoad)
5365193323Sed    MIB.addReg(Reg);
5366296417Sdim  for (MachineOperand &AfterOp : AfterOps)
5367321369Sdim    MIB.add(AfterOp);
5368296417Sdim  for (MachineOperand &ImpOp : ImpOps) {
5369296417Sdim    MIB.addReg(ImpOp.getReg(),
5370296417Sdim               getDefRegState(ImpOp.isDef()) |
5371193323Sed               RegState::Implicit |
5372296417Sdim               getKillRegState(ImpOp.isKill()) |
5373296417Sdim               getDeadRegState(ImpOp.isDead()) |
5374296417Sdim               getUndefRegState(ImpOp.isUndef()));
5375193323Sed  }
5376193323Sed  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5377193323Sed  switch (DataMI->getOpcode()) {
5378193323Sed  default: break;
5379193323Sed  case X86::CMP64ri32:
5380208599Srdivacky  case X86::CMP64ri8:
5381193323Sed  case X86::CMP32ri:
5382208599Srdivacky  case X86::CMP32ri8:
5383193323Sed  case X86::CMP16ri:
5384208599Srdivacky  case X86::CMP16ri8:
5385193323Sed  case X86::CMP8ri: {
5386193323Sed    MachineOperand &MO0 = DataMI->getOperand(0);
5387193323Sed    MachineOperand &MO1 = DataMI->getOperand(1);
5388193323Sed    if (MO1.getImm() == 0) {
5389243830Sdim      unsigned NewOpc;
5390193323Sed      switch (DataMI->getOpcode()) {
5391243830Sdim      default: llvm_unreachable("Unreachable!");
5392208599Srdivacky      case X86::CMP64ri8:
5393193323Sed      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
5394208599Srdivacky      case X86::CMP32ri8:
5395193323Sed      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
5396208599Srdivacky      case X86::CMP16ri8:
5397193323Sed      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
5398193323Sed      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
5399193323Sed      }
5400193323Sed      DataMI->setDesc(get(NewOpc));
5401193323Sed      MO1.ChangeToRegister(MO0.getReg(), false);
5402193323Sed    }
5403193323Sed  }
5404193323Sed  }
5405193323Sed  NewMIs.push_back(DataMI);
5406193323Sed
5407193323Sed  // Emit the store instruction.
5408193323Sed  if (UnfoldStore) {
5409239462Sdim    const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
5410344779Sdim    auto MMOs = extractStoreMMOs(MI.memoperands(), MF);
5411344779Sdim    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs, NewMIs);
5412193323Sed  }
5413193323Sed
5414193323Sed  return true;
5415193323Sed}
5416193323Sed
5417193323Sedbool
5418193323SedX86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
5419193323Sed                                  SmallVectorImpl<SDNode*> &NewNodes) const {
5420193323Sed  if (!N->isMachineOpcode())
5421193323Sed    return false;
5422193323Sed
5423341825Sdim  const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
5424341825Sdim  if (I == nullptr)
5425193323Sed    return false;
5426341825Sdim  unsigned Opc = I->DstOp;
5427341825Sdim  unsigned Index = I->Flags & TB_INDEX_MASK;
5428341825Sdim  bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5429341825Sdim  bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5430224145Sdim  const MCInstrDesc &MCID = get(Opc);
5431239462Sdim  MachineFunction &MF = DAG.getMachineFunction();
5432321369Sdim  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5433239462Sdim  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
5434224145Sdim  unsigned NumDefs = MCID.NumDefs;
5435193323Sed  std::vector<SDValue> AddrOps;
5436193323Sed  std::vector<SDValue> BeforeOps;
5437193323Sed  std::vector<SDValue> AfterOps;
5438261991Sdim  SDLoc dl(N);
5439193323Sed  unsigned NumOps = N->getNumOperands();
5440193323Sed  for (unsigned i = 0; i != NumOps-1; ++i) {
5441193323Sed    SDValue Op = N->getOperand(i);
5442210299Sed    if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
5443193323Sed      AddrOps.push_back(Op);
5444193323Sed    else if (i < Index-NumDefs)
5445193323Sed      BeforeOps.push_back(Op);
5446193323Sed    else if (i > Index-NumDefs)
5447193323Sed      AfterOps.push_back(Op);
5448193323Sed  }
5449193323Sed  SDValue Chain = N->getOperand(NumOps-1);
5450193323Sed  AddrOps.push_back(Chain);
5451193323Sed
5452193323Sed  // Emit the load instruction.
5453276479Sdim  SDNode *Load = nullptr;
5454193323Sed  if (FoldedLoad) {
5455321369Sdim    EVT VT = *TRI.legalclasstypes_begin(*RC);
5456344779Sdim    auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
5457344779Sdim    if (MMOs.empty() && RC == &X86::VR128RegClass &&
5458296417Sdim        Subtarget.isUnalignedMem16Slow())
5459210299Sed      // Do not introduce a slow unaligned load.
5460210299Sed      return false;
5461296417Sdim    // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
5462296417Sdim    // memory access is slow above.
5463321369Sdim    unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
5464344779Sdim    bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
5465276479Sdim    Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl,
5466251662Sdim                              VT, MVT::Other, AddrOps);
5467193323Sed    NewNodes.push_back(Load);
5468198090Srdivacky
5469198090Srdivacky    // Preserve memory reference information.
5470344779Sdim    DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs);
5471193323Sed  }
5472193323Sed
5473193323Sed  // Emit the data processing instruction.
5474198090Srdivacky  std::vector<EVT> VTs;
5475276479Sdim  const TargetRegisterClass *DstRC = nullptr;
5476224145Sdim  if (MCID.getNumDefs() > 0) {
5477239462Sdim    DstRC = getRegClass(MCID, 0, &RI, MF);
5478321369Sdim    VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
5479193323Sed  }
5480193323Sed  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
5481198090Srdivacky    EVT VT = N->getValueType(i);
5482224145Sdim    if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
5483193323Sed      VTs.push_back(VT);
5484193323Sed  }
5485193323Sed  if (Load)
5486193323Sed    BeforeOps.push_back(SDValue(Load, 0));
5487288943Sdim  BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end());
5488341825Sdim  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5489341825Sdim  switch (Opc) {
5490341825Sdim    default: break;
5491341825Sdim    case X86::CMP64ri32:
5492341825Sdim    case X86::CMP64ri8:
5493341825Sdim    case X86::CMP32ri:
5494341825Sdim    case X86::CMP32ri8:
5495341825Sdim    case X86::CMP16ri:
5496341825Sdim    case X86::CMP16ri8:
5497341825Sdim    case X86::CMP8ri:
5498341825Sdim      if (isNullConstant(BeforeOps[1])) {
5499341825Sdim        switch (Opc) {
5500341825Sdim          default: llvm_unreachable("Unreachable!");
5501341825Sdim          case X86::CMP64ri8:
5502341825Sdim          case X86::CMP64ri32: Opc = X86::TEST64rr; break;
5503341825Sdim          case X86::CMP32ri8:
5504341825Sdim          case X86::CMP32ri:   Opc = X86::TEST32rr; break;
5505341825Sdim          case X86::CMP16ri8:
5506341825Sdim          case X86::CMP16ri:   Opc = X86::TEST16rr; break;
5507341825Sdim          case X86::CMP8ri:    Opc = X86::TEST8rr; break;
5508341825Sdim        }
5509341825Sdim        BeforeOps[1] = BeforeOps[0];
5510341825Sdim      }
5511341825Sdim  }
5512251662Sdim  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
5513193323Sed  NewNodes.push_back(NewNode);
5514193323Sed
5515193323Sed  // Emit the store instruction.
5516193323Sed  if (FoldedStore) {
5517193323Sed    AddrOps.pop_back();
5518193323Sed    AddrOps.push_back(SDValue(NewNode, 0));
5519193323Sed    AddrOps.push_back(Chain);
5520344779Sdim    auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
5521344779Sdim    if (MMOs.empty() && RC == &X86::VR128RegClass &&
5522296417Sdim        Subtarget.isUnalignedMem16Slow())
5523210299Sed      // Do not introduce a slow unaligned store.
5524210299Sed      return false;
5525296417Sdim    // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
5526296417Sdim    // memory access is slow above.
5527321369Sdim    unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
5528344779Sdim    bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
5529276479Sdim    SDNode *Store =
5530276479Sdim        DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
5531276479Sdim                           dl, MVT::Other, AddrOps);
5532193323Sed    NewNodes.push_back(Store);
5533198090Srdivacky
5534198090Srdivacky    // Preserve memory reference information.
5535344779Sdim    DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs);
5536193323Sed  }
5537193323Sed
5538193323Sed  return true;
5539193323Sed}
5540193323Sed
5541193323Sedunsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
5542198892Srdivacky                                      bool UnfoldLoad, bool UnfoldStore,
5543198892Srdivacky                                      unsigned *LoadRegIndex) const {
5544341825Sdim  const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc);
5545341825Sdim  if (I == nullptr)
5546193323Sed    return 0;
5547341825Sdim  bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5548341825Sdim  bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5549193323Sed  if (UnfoldLoad && !FoldedLoad)
5550193323Sed    return 0;
5551193323Sed  if (UnfoldStore && !FoldedStore)
5552193323Sed    return 0;
5553198892Srdivacky  if (LoadRegIndex)
5554341825Sdim    *LoadRegIndex = I->Flags & TB_INDEX_MASK;
5555341825Sdim  return I->DstOp;
5556193323Sed}
5557193323Sed
5558202878Srdivackybool
5559202878SrdivackyX86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
5560202878Srdivacky                                     int64_t &Offset1, int64_t &Offset2) const {
5561202878Srdivacky  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
5562202878Srdivacky    return false;
5563202878Srdivacky  unsigned Opc1 = Load1->getMachineOpcode();
5564202878Srdivacky  unsigned Opc2 = Load2->getMachineOpcode();
5565202878Srdivacky  switch (Opc1) {
5566202878Srdivacky  default: return false;
5567202878Srdivacky  case X86::MOV8rm:
5568202878Srdivacky  case X86::MOV16rm:
5569202878Srdivacky  case X86::MOV32rm:
5570202878Srdivacky  case X86::MOV64rm:
5571202878Srdivacky  case X86::LD_Fp32m:
5572202878Srdivacky  case X86::LD_Fp64m:
5573202878Srdivacky  case X86::LD_Fp80m:
5574202878Srdivacky  case X86::MOVSSrm:
5575353358Sdim  case X86::MOVSSrm_alt:
5576202878Srdivacky  case X86::MOVSDrm:
5577353358Sdim  case X86::MOVSDrm_alt:
5578202878Srdivacky  case X86::MMX_MOVD64rm:
5579202878Srdivacky  case X86::MMX_MOVQ64rm:
5580202878Srdivacky  case X86::MOVAPSrm:
5581202878Srdivacky  case X86::MOVUPSrm:
5582202878Srdivacky  case X86::MOVAPDrm:
5583309124Sdim  case X86::MOVUPDrm:
5584202878Srdivacky  case X86::MOVDQArm:
5585202878Srdivacky  case X86::MOVDQUrm:
5586226633Sdim  // AVX load instructions
5587226633Sdim  case X86::VMOVSSrm:
5588353358Sdim  case X86::VMOVSSrm_alt:
5589226633Sdim  case X86::VMOVSDrm:
5590353358Sdim  case X86::VMOVSDrm_alt:
5591226633Sdim  case X86::VMOVAPSrm:
5592226633Sdim  case X86::VMOVUPSrm:
5593226633Sdim  case X86::VMOVAPDrm:
5594309124Sdim  case X86::VMOVUPDrm:
5595226633Sdim  case X86::VMOVDQArm:
5596226633Sdim  case X86::VMOVDQUrm:
5597224145Sdim  case X86::VMOVAPSYrm:
5598224145Sdim  case X86::VMOVUPSYrm:
5599224145Sdim  case X86::VMOVAPDYrm:
5600309124Sdim  case X86::VMOVUPDYrm:
5601224145Sdim  case X86::VMOVDQAYrm:
5602224145Sdim  case X86::VMOVDQUYrm:
5603309124Sdim  // AVX512 load instructions
5604309124Sdim  case X86::VMOVSSZrm:
5605353358Sdim  case X86::VMOVSSZrm_alt:
5606309124Sdim  case X86::VMOVSDZrm:
5607353358Sdim  case X86::VMOVSDZrm_alt:
5608309124Sdim  case X86::VMOVAPSZ128rm:
5609309124Sdim  case X86::VMOVUPSZ128rm:
5610314564Sdim  case X86::VMOVAPSZ128rm_NOVLX:
5611314564Sdim  case X86::VMOVUPSZ128rm_NOVLX:
5612309124Sdim  case X86::VMOVAPDZ128rm:
5613309124Sdim  case X86::VMOVUPDZ128rm:
5614309124Sdim  case X86::VMOVDQU8Z128rm:
5615309124Sdim  case X86::VMOVDQU16Z128rm:
5616309124Sdim  case X86::VMOVDQA32Z128rm:
5617309124Sdim  case X86::VMOVDQU32Z128rm:
5618309124Sdim  case X86::VMOVDQA64Z128rm:
5619309124Sdim  case X86::VMOVDQU64Z128rm:
5620309124Sdim  case X86::VMOVAPSZ256rm:
5621309124Sdim  case X86::VMOVUPSZ256rm:
5622314564Sdim  case X86::VMOVAPSZ256rm_NOVLX:
5623314564Sdim  case X86::VMOVUPSZ256rm_NOVLX:
5624309124Sdim  case X86::VMOVAPDZ256rm:
5625309124Sdim  case X86::VMOVUPDZ256rm:
5626309124Sdim  case X86::VMOVDQU8Z256rm:
5627309124Sdim  case X86::VMOVDQU16Z256rm:
5628309124Sdim  case X86::VMOVDQA32Z256rm:
5629309124Sdim  case X86::VMOVDQU32Z256rm:
5630309124Sdim  case X86::VMOVDQA64Z256rm:
5631309124Sdim  case X86::VMOVDQU64Z256rm:
5632309124Sdim  case X86::VMOVAPSZrm:
5633309124Sdim  case X86::VMOVUPSZrm:
5634309124Sdim  case X86::VMOVAPDZrm:
5635309124Sdim  case X86::VMOVUPDZrm:
5636309124Sdim  case X86::VMOVDQU8Zrm:
5637309124Sdim  case X86::VMOVDQU16Zrm:
5638309124Sdim  case X86::VMOVDQA32Zrm:
5639309124Sdim  case X86::VMOVDQU32Zrm:
5640309124Sdim  case X86::VMOVDQA64Zrm:
5641309124Sdim  case X86::VMOVDQU64Zrm:
5642309124Sdim  case X86::KMOVBkm:
5643309124Sdim  case X86::KMOVWkm:
5644309124Sdim  case X86::KMOVDkm:
5645309124Sdim  case X86::KMOVQkm:
5646202878Srdivacky    break;
5647202878Srdivacky  }
5648202878Srdivacky  switch (Opc2) {
5649202878Srdivacky  default: return false;
5650202878Srdivacky  case X86::MOV8rm:
5651202878Srdivacky  case X86::MOV16rm:
5652202878Srdivacky  case X86::MOV32rm:
5653202878Srdivacky  case X86::MOV64rm:
5654202878Srdivacky  case X86::LD_Fp32m:
5655202878Srdivacky  case X86::LD_Fp64m:
5656202878Srdivacky  case X86::LD_Fp80m:
5657202878Srdivacky  case X86::MOVSSrm:
5658353358Sdim  case X86::MOVSSrm_alt:
5659202878Srdivacky  case X86::MOVSDrm:
5660353358Sdim  case X86::MOVSDrm_alt:
5661202878Srdivacky  case X86::MMX_MOVD64rm:
5662202878Srdivacky  case X86::MMX_MOVQ64rm:
5663202878Srdivacky  case X86::MOVAPSrm:
5664202878Srdivacky  case X86::MOVUPSrm:
5665202878Srdivacky  case X86::MOVAPDrm:
5666309124Sdim  case X86::MOVUPDrm:
5667202878Srdivacky  case X86::MOVDQArm:
5668202878Srdivacky  case X86::MOVDQUrm:
5669226633Sdim  // AVX load instructions
5670226633Sdim  case X86::VMOVSSrm:
5671353358Sdim  case X86::VMOVSSrm_alt:
5672226633Sdim  case X86::VMOVSDrm:
5673353358Sdim  case X86::VMOVSDrm_alt:
5674226633Sdim  case X86::VMOVAPSrm:
5675226633Sdim  case X86::VMOVUPSrm:
5676226633Sdim  case X86::VMOVAPDrm:
5677309124Sdim  case X86::VMOVUPDrm:
5678226633Sdim  case X86::VMOVDQArm:
5679226633Sdim  case X86::VMOVDQUrm:
5680224145Sdim  case X86::VMOVAPSYrm:
5681224145Sdim  case X86::VMOVUPSYrm:
5682224145Sdim  case X86::VMOVAPDYrm:
5683309124Sdim  case X86::VMOVUPDYrm:
5684224145Sdim  case X86::VMOVDQAYrm:
5685224145Sdim  case X86::VMOVDQUYrm:
5686309124Sdim  // AVX512 load instructions
5687309124Sdim  case X86::VMOVSSZrm:
5688353358Sdim  case X86::VMOVSSZrm_alt:
5689309124Sdim  case X86::VMOVSDZrm:
5690353358Sdim  case X86::VMOVSDZrm_alt:
5691309124Sdim  case X86::VMOVAPSZ128rm:
5692309124Sdim  case X86::VMOVUPSZ128rm:
5693314564Sdim  case X86::VMOVAPSZ128rm_NOVLX:
5694314564Sdim  case X86::VMOVUPSZ128rm_NOVLX:
5695309124Sdim  case X86::VMOVAPDZ128rm:
5696309124Sdim  case X86::VMOVUPDZ128rm:
5697309124Sdim  case X86::VMOVDQU8Z128rm:
5698309124Sdim  case X86::VMOVDQU16Z128rm:
5699309124Sdim  case X86::VMOVDQA32Z128rm:
5700309124Sdim  case X86::VMOVDQU32Z128rm:
5701309124Sdim  case X86::VMOVDQA64Z128rm:
5702309124Sdim  case X86::VMOVDQU64Z128rm:
5703309124Sdim  case X86::VMOVAPSZ256rm:
5704309124Sdim  case X86::VMOVUPSZ256rm:
5705314564Sdim  case X86::VMOVAPSZ256rm_NOVLX:
5706314564Sdim  case X86::VMOVUPSZ256rm_NOVLX:
5707309124Sdim  case X86::VMOVAPDZ256rm:
5708309124Sdim  case X86::VMOVUPDZ256rm:
5709309124Sdim  case X86::VMOVDQU8Z256rm:
5710309124Sdim  case X86::VMOVDQU16Z256rm:
5711309124Sdim  case X86::VMOVDQA32Z256rm:
5712309124Sdim  case X86::VMOVDQU32Z256rm:
5713309124Sdim  case X86::VMOVDQA64Z256rm:
5714309124Sdim  case X86::VMOVDQU64Z256rm:
5715309124Sdim  case X86::VMOVAPSZrm:
5716309124Sdim  case X86::VMOVUPSZrm:
5717309124Sdim  case X86::VMOVAPDZrm:
5718309124Sdim  case X86::VMOVUPDZrm:
5719309124Sdim  case X86::VMOVDQU8Zrm:
5720309124Sdim  case X86::VMOVDQU16Zrm:
5721309124Sdim  case X86::VMOVDQA32Zrm:
5722309124Sdim  case X86::VMOVDQU32Zrm:
5723309124Sdim  case X86::VMOVDQA64Zrm:
5724309124Sdim  case X86::VMOVDQU64Zrm:
5725309124Sdim  case X86::KMOVBkm:
5726309124Sdim  case X86::KMOVWkm:
5727309124Sdim  case X86::KMOVDkm:
5728309124Sdim  case X86::KMOVQkm:
5729202878Srdivacky    break;
5730202878Srdivacky  }
5731202878Srdivacky
5732321369Sdim  // Lambda to check if both the loads have the same value for an operand index.
5733321369Sdim  auto HasSameOp = [&](int I) {
5734321369Sdim    return Load1->getOperand(I) == Load2->getOperand(I);
5735321369Sdim  };
5736321369Sdim
5737321369Sdim  // All operands except the displacement should match.
5738321369Sdim  if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
5739321369Sdim      !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
5740202878Srdivacky    return false;
5741321369Sdim
5742321369Sdim  // Chain Operand must be the same.
5743321369Sdim  if (!HasSameOp(5))
5744202878Srdivacky    return false;
5745202878Srdivacky
5746321369Sdim  // Now let's examine if the displacements are constants.
5747321369Sdim  auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
5748321369Sdim  auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
5749321369Sdim  if (!Disp1 || !Disp2)
5750321369Sdim    return false;
5751321369Sdim
5752321369Sdim  Offset1 = Disp1->getSExtValue();
5753321369Sdim  Offset2 = Disp2->getSExtValue();
5754321369Sdim  return true;
5755202878Srdivacky}
5756202878Srdivacky
5757202878Srdivackybool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
5758202878Srdivacky                                           int64_t Offset1, int64_t Offset2,
5759202878Srdivacky                                           unsigned NumLoads) const {
5760202878Srdivacky  assert(Offset2 > Offset1);
5761202878Srdivacky  if ((Offset2 - Offset1) / 8 > 64)
5762202878Srdivacky    return false;
5763202878Srdivacky
5764202878Srdivacky  unsigned Opc1 = Load1->getMachineOpcode();
5765202878Srdivacky  unsigned Opc2 = Load2->getMachineOpcode();
5766202878Srdivacky  if (Opc1 != Opc2)
5767202878Srdivacky    return false;  // FIXME: overly conservative?
5768202878Srdivacky
5769202878Srdivacky  switch (Opc1) {
5770202878Srdivacky  default: break;
5771202878Srdivacky  case X86::LD_Fp32m:
5772202878Srdivacky  case X86::LD_Fp64m:
5773202878Srdivacky  case X86::LD_Fp80m:
5774202878Srdivacky  case X86::MMX_MOVD64rm:
5775202878Srdivacky  case X86::MMX_MOVQ64rm:
5776202878Srdivacky    return false;
5777202878Srdivacky  }
5778202878Srdivacky
5779202878Srdivacky  EVT VT = Load1->getValueType(0);
5780202878Srdivacky  switch (VT.getSimpleVT().SimpleTy) {
5781210299Sed  default:
5782202878Srdivacky    // XMM registers. In 64-bit mode we can be a bit more aggressive since we
5783202878Srdivacky    // have 16 of them to play with.
5784276479Sdim    if (Subtarget.is64Bit()) {
5785202878Srdivacky      if (NumLoads >= 3)
5786202878Srdivacky        return false;
5787210299Sed    } else if (NumLoads) {
5788202878Srdivacky      return false;
5789210299Sed    }
5790202878Srdivacky    break;
5791202878Srdivacky  case MVT::i8:
5792202878Srdivacky  case MVT::i16:
5793202878Srdivacky  case MVT::i32:
5794202878Srdivacky  case MVT::i64:
5795202878Srdivacky  case MVT::f32:
5796202878Srdivacky  case MVT::f64:
5797202878Srdivacky    if (NumLoads)
5798202878Srdivacky      return false;
5799210299Sed    break;
5800202878Srdivacky  }
5801202878Srdivacky
5802202878Srdivacky  return true;
5803202878Srdivacky}
5804202878Srdivacky
5805193323Sedbool X86InstrInfo::
5806314564SdimreverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
5807193323Sed  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
5808193323Sed  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
5809193323Sed  Cond[0].setImm(GetOppositeBranchCondition(CC));
5810193323Sed  return false;
5811193323Sed}
5812193323Sed
5813193323Sedbool X86InstrInfo::
5814193323SedisSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
5815193323Sed  // FIXME: Return false for x87 stack register classes for now. We can't
5816193323Sed  // allow any loads of these registers before FpGet_ST0_80.
5817332833Sdim  return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
5818332833Sdim           RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
5819332833Sdim           RC == &X86::RFP80RegClass);
5820193323Sed}
5821193323Sed
5822288943Sdim/// Return a virtual register initialized with the
5823193323Sed/// the global base register value. Output instructions required to
5824193323Sed/// initialize the register in the function entry block, if necessary.
5825193323Sed///
5826210299Sed/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
5827210299Sed///
5828193323Sedunsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
5829341825Sdim  assert((!Subtarget.is64Bit() ||
5830341825Sdim          MF->getTarget().getCodeModel() == CodeModel::Medium ||
5831341825Sdim          MF->getTarget().getCodeModel() == CodeModel::Large) &&
5832193323Sed         "X86-64 PIC uses RIP relative addressing");
5833193323Sed
5834193323Sed  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
5835193323Sed  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
5836193323Sed  if (GlobalBaseReg != 0)
5837193323Sed    return GlobalBaseReg;
5838193323Sed
5839210299Sed  // Create the register. The code to initialize it is inserted
5840210299Sed  // later, by the CGBR pass (below).
5841193323Sed  MachineRegisterInfo &RegInfo = MF->getRegInfo();
5842341825Sdim  GlobalBaseReg = RegInfo.createVirtualRegister(
5843341825Sdim      Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
5844193323Sed  X86FI->setGlobalBaseReg(GlobalBaseReg);
5845193323Sed  return GlobalBaseReg;
5846193323Sed}
5847206083Srdivacky
5848206083Srdivacky// These are the replaceable SSE instructions. Some of these have Int variants
5849206083Srdivacky// that we don't include here. We don't want to replace instructions selected
5850206083Srdivacky// by intrinsics.
5851234353Sdimstatic const uint16_t ReplaceableInstrs[][3] = {
5852212904Sdim  //PackedSingle     PackedDouble    PackedInt
5853206083Srdivacky  { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
5854206083Srdivacky  { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
5855206083Srdivacky  { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
5856206083Srdivacky  { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
5857206083Srdivacky  { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
5858314564Sdim  { X86::MOVLPSmr,   X86::MOVLPDmr,  X86::MOVPQI2QImr },
5859321369Sdim  { X86::MOVSDmr,    X86::MOVSDmr,   X86::MOVPQI2QImr },
5860314564Sdim  { X86::MOVSSmr,    X86::MOVSSmr,   X86::MOVPDI2DImr },
5861314564Sdim  { X86::MOVSDrm,    X86::MOVSDrm,   X86::MOVQI2PQIrm },
5862353358Sdim  { X86::MOVSDrm_alt,X86::MOVSDrm_alt,X86::MOVQI2PQIrm },
5863314564Sdim  { X86::MOVSSrm,    X86::MOVSSrm,   X86::MOVDI2PDIrm },
5864353358Sdim  { X86::MOVSSrm_alt,X86::MOVSSrm_alt,X86::MOVDI2PDIrm },
5865206083Srdivacky  { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
5866206083Srdivacky  { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
5867206083Srdivacky  { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
5868206083Srdivacky  { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
5869206083Srdivacky  { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
5870206083Srdivacky  { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
5871206083Srdivacky  { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
5872206083Srdivacky  { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
5873206083Srdivacky  { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
5874327952Sdim  { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm },
5875327952Sdim  { X86::MOVLHPSrr,  X86::UNPCKLPDrr, X86::PUNPCKLQDQrr },
5876327952Sdim  { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm },
5877327952Sdim  { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr },
5878327952Sdim  { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm },
5879327952Sdim  { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr },
5880327952Sdim  { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm },
5881327952Sdim  { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr },
5882327952Sdim  { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr },
5883327952Sdim  { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr },
5884212904Sdim  // AVX 128-bit support
5885212904Sdim  { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
5886212904Sdim  { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
5887212904Sdim  { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
5888212904Sdim  { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
5889212904Sdim  { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
5890314564Sdim  { X86::VMOVLPSmr,  X86::VMOVLPDmr,  X86::VMOVPQI2QImr },
5891321369Sdim  { X86::VMOVSDmr,   X86::VMOVSDmr,   X86::VMOVPQI2QImr },
5892314564Sdim  { X86::VMOVSSmr,   X86::VMOVSSmr,   X86::VMOVPDI2DImr },
5893314564Sdim  { X86::VMOVSDrm,   X86::VMOVSDrm,   X86::VMOVQI2PQIrm },
5894353358Sdim  { X86::VMOVSDrm_alt,X86::VMOVSDrm_alt,X86::VMOVQI2PQIrm },
5895314564Sdim  { X86::VMOVSSrm,   X86::VMOVSSrm,   X86::VMOVDI2PDIrm },
5896353358Sdim  { X86::VMOVSSrm_alt,X86::VMOVSSrm_alt,X86::VMOVDI2PDIrm },
5897212904Sdim  { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
5898212904Sdim  { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
5899212904Sdim  { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
5900212904Sdim  { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
5901212904Sdim  { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
5902212904Sdim  { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
5903212904Sdim  { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
5904212904Sdim  { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
5905212904Sdim  { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
5906327952Sdim  { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm },
5907327952Sdim  { X86::VMOVLHPSrr,  X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr },
5908327952Sdim  { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm },
5909327952Sdim  { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr },
5910327952Sdim  { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm },
5911327952Sdim  { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr },
5912327952Sdim  { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm },
5913327952Sdim  { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr },
5914327952Sdim  { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr },
5915327952Sdim  { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr },
5916224145Sdim  // AVX 256-bit support
5917224145Sdim  { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
5918224145Sdim  { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
5919224145Sdim  { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
5920224145Sdim  { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
5921224145Sdim  { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
5922314564Sdim  { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr },
5923327952Sdim  { X86::VPERMPSYrm,   X86::VPERMPSYrm,   X86::VPERMDYrm },
5924327952Sdim  { X86::VPERMPSYrr,   X86::VPERMPSYrr,   X86::VPERMDYrr },
5925327952Sdim  { X86::VPERMPDYmi,   X86::VPERMPDYmi,   X86::VPERMQYmi },
5926327952Sdim  { X86::VPERMPDYri,   X86::VPERMPDYri,   X86::VPERMQYri },
5927314564Sdim  // AVX512 support
5928314564Sdim  { X86::VMOVLPSZ128mr,  X86::VMOVLPDZ128mr,  X86::VMOVPQI2QIZmr  },
5929314564Sdim  { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
5930321369Sdim  { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr },
5931314564Sdim  { X86::VMOVNTPSZmr,    X86::VMOVNTPDZmr,    X86::VMOVNTDQZmr    },
5932314564Sdim  { X86::VMOVSDZmr,      X86::VMOVSDZmr,      X86::VMOVPQI2QIZmr  },
5933314564Sdim  { X86::VMOVSSZmr,      X86::VMOVSSZmr,      X86::VMOVPDI2DIZmr  },
5934314564Sdim  { X86::VMOVSDZrm,      X86::VMOVSDZrm,      X86::VMOVQI2PQIZrm  },
5935353358Sdim  { X86::VMOVSDZrm_alt,  X86::VMOVSDZrm_alt,  X86::VMOVQI2PQIZrm  },
5936314564Sdim  { X86::VMOVSSZrm,      X86::VMOVSSZrm,      X86::VMOVDI2PDIZrm  },
5937353358Sdim  { X86::VMOVSSZrm_alt,  X86::VMOVSSZrm_alt,  X86::VMOVDI2PDIZrm  },
5938314564Sdim  { X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128r, X86::VPBROADCASTDZ128r },
5939314564Sdim  { X86::VBROADCASTSSZ128m, X86::VBROADCASTSSZ128m, X86::VPBROADCASTDZ128m },
5940314564Sdim  { X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256r, X86::VPBROADCASTDZ256r },
5941314564Sdim  { X86::VBROADCASTSSZ256m, X86::VBROADCASTSSZ256m, X86::VPBROADCASTDZ256m },
5942314564Sdim  { X86::VBROADCASTSSZr,    X86::VBROADCASTSSZr,    X86::VPBROADCASTDZr },
5943314564Sdim  { X86::VBROADCASTSSZm,    X86::VBROADCASTSSZm,    X86::VPBROADCASTDZm },
5944353358Sdim  { X86::VMOVDDUPZ128rr,    X86::VMOVDDUPZ128rr,    X86::VPBROADCASTQZ128r },
5945353358Sdim  { X86::VMOVDDUPZ128rm,    X86::VMOVDDUPZ128rm,    X86::VPBROADCASTQZ128m },
5946314564Sdim  { X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256r, X86::VPBROADCASTQZ256r },
5947314564Sdim  { X86::VBROADCASTSDZ256m, X86::VBROADCASTSDZ256m, X86::VPBROADCASTQZ256m },
5948314564Sdim  { X86::VBROADCASTSDZr,    X86::VBROADCASTSDZr,    X86::VPBROADCASTQZr },
5949314564Sdim  { X86::VBROADCASTSDZm,    X86::VBROADCASTSDZm,    X86::VPBROADCASTQZm },
5950327952Sdim  { X86::VINSERTF32x4Zrr,   X86::VINSERTF32x4Zrr,   X86::VINSERTI32x4Zrr },
5951327952Sdim  { X86::VINSERTF32x4Zrm,   X86::VINSERTF32x4Zrm,   X86::VINSERTI32x4Zrm },
5952327952Sdim  { X86::VINSERTF32x8Zrr,   X86::VINSERTF32x8Zrr,   X86::VINSERTI32x8Zrr },
5953327952Sdim  { X86::VINSERTF32x8Zrm,   X86::VINSERTF32x8Zrm,   X86::VINSERTI32x8Zrm },
5954327952Sdim  { X86::VINSERTF64x2Zrr,   X86::VINSERTF64x2Zrr,   X86::VINSERTI64x2Zrr },
5955327952Sdim  { X86::VINSERTF64x2Zrm,   X86::VINSERTF64x2Zrm,   X86::VINSERTI64x2Zrm },
5956327952Sdim  { X86::VINSERTF64x4Zrr,   X86::VINSERTF64x4Zrr,   X86::VINSERTI64x4Zrr },
5957327952Sdim  { X86::VINSERTF64x4Zrm,   X86::VINSERTF64x4Zrm,   X86::VINSERTI64x4Zrm },
5958327952Sdim  { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr },
5959327952Sdim  { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm },
5960327952Sdim  { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr },
5961327952Sdim  { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm },
5962327952Sdim  { X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTI32x4Zrr },
5963327952Sdim  { X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTI32x4Zmr },
5964327952Sdim  { X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTI32x8Zrr },
5965327952Sdim  { X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTI32x8Zmr },
5966327952Sdim  { X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTI64x2Zrr },
5967327952Sdim  { X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTI64x2Zmr },
5968327952Sdim  { X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTI64x4Zrr },
5969327952Sdim  { X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTI64x4Zmr },
5970327952Sdim  { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr },
5971327952Sdim  { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr },
5972327952Sdim  { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr },
5973327952Sdim  { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr },
5974327952Sdim  { X86::VPERMILPSmi,        X86::VPERMILPSmi,        X86::VPSHUFDmi },
5975327952Sdim  { X86::VPERMILPSri,        X86::VPERMILPSri,        X86::VPSHUFDri },
5976327952Sdim  { X86::VPERMILPSZ128mi,    X86::VPERMILPSZ128mi,    X86::VPSHUFDZ128mi },
5977327952Sdim  { X86::VPERMILPSZ128ri,    X86::VPERMILPSZ128ri,    X86::VPSHUFDZ128ri },
5978327952Sdim  { X86::VPERMILPSZ256mi,    X86::VPERMILPSZ256mi,    X86::VPSHUFDZ256mi },
5979327952Sdim  { X86::VPERMILPSZ256ri,    X86::VPERMILPSZ256ri,    X86::VPSHUFDZ256ri },
5980327952Sdim  { X86::VPERMILPSZmi,       X86::VPERMILPSZmi,       X86::VPSHUFDZmi },
5981327952Sdim  { X86::VPERMILPSZri,       X86::VPERMILPSZri,       X86::VPSHUFDZri },
5982327952Sdim  { X86::VPERMPSZ256rm,      X86::VPERMPSZ256rm,      X86::VPERMDZ256rm },
5983327952Sdim  { X86::VPERMPSZ256rr,      X86::VPERMPSZ256rr,      X86::VPERMDZ256rr },
5984327952Sdim  { X86::VPERMPDZ256mi,      X86::VPERMPDZ256mi,      X86::VPERMQZ256mi },
5985327952Sdim  { X86::VPERMPDZ256ri,      X86::VPERMPDZ256ri,      X86::VPERMQZ256ri },
5986327952Sdim  { X86::VPERMPDZ256rm,      X86::VPERMPDZ256rm,      X86::VPERMQZ256rm },
5987327952Sdim  { X86::VPERMPDZ256rr,      X86::VPERMPDZ256rr,      X86::VPERMQZ256rr },
5988327952Sdim  { X86::VPERMPSZrm,         X86::VPERMPSZrm,         X86::VPERMDZrm },
5989327952Sdim  { X86::VPERMPSZrr,         X86::VPERMPSZrr,         X86::VPERMDZrr },
5990327952Sdim  { X86::VPERMPDZmi,         X86::VPERMPDZmi,         X86::VPERMQZmi },
5991327952Sdim  { X86::VPERMPDZri,         X86::VPERMPDZri,         X86::VPERMQZri },
5992327952Sdim  { X86::VPERMPDZrm,         X86::VPERMPDZrm,         X86::VPERMQZrm },
5993327952Sdim  { X86::VPERMPDZrr,         X86::VPERMPDZrr,         X86::VPERMQZrr },
5994327952Sdim  { X86::VUNPCKLPDZ256rm,    X86::VUNPCKLPDZ256rm,    X86::VPUNPCKLQDQZ256rm },
5995327952Sdim  { X86::VUNPCKLPDZ256rr,    X86::VUNPCKLPDZ256rr,    X86::VPUNPCKLQDQZ256rr },
5996327952Sdim  { X86::VUNPCKHPDZ256rm,    X86::VUNPCKHPDZ256rm,    X86::VPUNPCKHQDQZ256rm },
5997327952Sdim  { X86::VUNPCKHPDZ256rr,    X86::VUNPCKHPDZ256rr,    X86::VPUNPCKHQDQZ256rr },
5998327952Sdim  { X86::VUNPCKLPSZ256rm,    X86::VUNPCKLPSZ256rm,    X86::VPUNPCKLDQZ256rm },
5999327952Sdim  { X86::VUNPCKLPSZ256rr,    X86::VUNPCKLPSZ256rr,    X86::VPUNPCKLDQZ256rr },
6000327952Sdim  { X86::VUNPCKHPSZ256rm,    X86::VUNPCKHPSZ256rm,    X86::VPUNPCKHDQZ256rm },
6001327952Sdim  { X86::VUNPCKHPSZ256rr,    X86::VUNPCKHPSZ256rr,    X86::VPUNPCKHDQZ256rr },
6002327952Sdim  { X86::VUNPCKLPDZ128rm,    X86::VUNPCKLPDZ128rm,    X86::VPUNPCKLQDQZ128rm },
6003327952Sdim  { X86::VMOVLHPSZrr,        X86::VUNPCKLPDZ128rr,    X86::VPUNPCKLQDQZ128rr },
6004327952Sdim  { X86::VUNPCKHPDZ128rm,    X86::VUNPCKHPDZ128rm,    X86::VPUNPCKHQDQZ128rm },
6005327952Sdim  { X86::VUNPCKHPDZ128rr,    X86::VUNPCKHPDZ128rr,    X86::VPUNPCKHQDQZ128rr },
6006327952Sdim  { X86::VUNPCKLPSZ128rm,    X86::VUNPCKLPSZ128rm,    X86::VPUNPCKLDQZ128rm },
6007327952Sdim  { X86::VUNPCKLPSZ128rr,    X86::VUNPCKLPSZ128rr,    X86::VPUNPCKLDQZ128rr },
6008327952Sdim  { X86::VUNPCKHPSZ128rm,    X86::VUNPCKHPSZ128rm,    X86::VPUNPCKHDQZ128rm },
6009327952Sdim  { X86::VUNPCKHPSZ128rr,    X86::VUNPCKHPSZ128rr,    X86::VPUNPCKHDQZ128rr },
6010327952Sdim  { X86::VUNPCKLPDZrm,       X86::VUNPCKLPDZrm,       X86::VPUNPCKLQDQZrm },
6011327952Sdim  { X86::VUNPCKLPDZrr,       X86::VUNPCKLPDZrr,       X86::VPUNPCKLQDQZrr },
6012327952Sdim  { X86::VUNPCKHPDZrm,       X86::VUNPCKHPDZrm,       X86::VPUNPCKHQDQZrm },
6013327952Sdim  { X86::VUNPCKHPDZrr,       X86::VUNPCKHPDZrr,       X86::VPUNPCKHQDQZrr },
6014327952Sdim  { X86::VUNPCKLPSZrm,       X86::VUNPCKLPSZrm,       X86::VPUNPCKLDQZrm },
6015327952Sdim  { X86::VUNPCKLPSZrr,       X86::VUNPCKLPSZrr,       X86::VPUNPCKLDQZrr },
6016327952Sdim  { X86::VUNPCKHPSZrm,       X86::VUNPCKHPSZrm,       X86::VPUNPCKHDQZrm },
6017327952Sdim  { X86::VUNPCKHPSZrr,       X86::VUNPCKHPSZrr,       X86::VPUNPCKHDQZrr },
6018327952Sdim  { X86::VEXTRACTPSZmr,      X86::VEXTRACTPSZmr,      X86::VPEXTRDZmr },
6019327952Sdim  { X86::VEXTRACTPSZrr,      X86::VEXTRACTPSZrr,      X86::VPEXTRDZrr },
6020206083Srdivacky};
6021206083Srdivacky
6022234353Sdimstatic const uint16_t ReplaceableInstrsAVX2[][3] = {
6023234353Sdim  //PackedSingle       PackedDouble       PackedInt
6024234353Sdim  { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
6025234353Sdim  { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
6026234353Sdim  { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
6027234353Sdim  { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
6028234353Sdim  { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
6029234353Sdim  { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
6030234353Sdim  { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
6031234353Sdim  { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
6032234353Sdim  { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
6033276479Sdim  { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr },
6034276479Sdim  { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
6035276479Sdim  { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
6036353358Sdim  { X86::VMOVDDUPrm,     X86::VMOVDDUPrm,     X86::VPBROADCASTQrm},
6037353358Sdim  { X86::VMOVDDUPrr,     X86::VMOVDDUPrr,     X86::VPBROADCASTQrr},
6038276479Sdim  { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
6039276479Sdim  { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
6040276479Sdim  { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
6041314564Sdim  { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm},
6042314564Sdim  { X86::VBROADCASTF128,  X86::VBROADCASTF128,  X86::VBROADCASTI128 },
6043327952Sdim  { X86::VBLENDPSYrri,    X86::VBLENDPSYrri,    X86::VPBLENDDYrri },
6044327952Sdim  { X86::VBLENDPSYrmi,    X86::VBLENDPSYrmi,    X86::VPBLENDDYrmi },
6045327952Sdim  { X86::VPERMILPSYmi,    X86::VPERMILPSYmi,    X86::VPSHUFDYmi },
6046327952Sdim  { X86::VPERMILPSYri,    X86::VPERMILPSYri,    X86::VPSHUFDYri },
6047327952Sdim  { X86::VUNPCKLPDYrm,    X86::VUNPCKLPDYrm,    X86::VPUNPCKLQDQYrm },
6048327952Sdim  { X86::VUNPCKLPDYrr,    X86::VUNPCKLPDYrr,    X86::VPUNPCKLQDQYrr },
6049327952Sdim  { X86::VUNPCKHPDYrm,    X86::VUNPCKHPDYrm,    X86::VPUNPCKHQDQYrm },
6050327952Sdim  { X86::VUNPCKHPDYrr,    X86::VUNPCKHPDYrr,    X86::VPUNPCKHQDQYrr },
6051327952Sdim  { X86::VUNPCKLPSYrm,    X86::VUNPCKLPSYrm,    X86::VPUNPCKLDQYrm },
6052327952Sdim  { X86::VUNPCKLPSYrr,    X86::VUNPCKLPSYrr,    X86::VPUNPCKLDQYrr },
6053327952Sdim  { X86::VUNPCKHPSYrm,    X86::VUNPCKHPSYrm,    X86::VPUNPCKHDQYrm },
6054327952Sdim  { X86::VUNPCKHPSYrr,    X86::VUNPCKHPSYrr,    X86::VPUNPCKHDQYrr },
6055234353Sdim};
6056234353Sdim
6057353358Sdimstatic const uint16_t ReplaceableInstrsFP[][3] = {
6058353358Sdim  //PackedSingle         PackedDouble
6059353358Sdim  { X86::MOVLPSrm,       X86::MOVLPDrm,      X86::INSTRUCTION_LIST_END },
6060353358Sdim  { X86::MOVHPSrm,       X86::MOVHPDrm,      X86::INSTRUCTION_LIST_END },
6061353358Sdim  { X86::MOVHPSmr,       X86::MOVHPDmr,      X86::INSTRUCTION_LIST_END },
6062353358Sdim  { X86::VMOVLPSrm,      X86::VMOVLPDrm,     X86::INSTRUCTION_LIST_END },
6063353358Sdim  { X86::VMOVHPSrm,      X86::VMOVHPDrm,     X86::INSTRUCTION_LIST_END },
6064353358Sdim  { X86::VMOVHPSmr,      X86::VMOVHPDmr,     X86::INSTRUCTION_LIST_END },
6065353358Sdim  { X86::VMOVLPSZ128rm,  X86::VMOVLPDZ128rm, X86::INSTRUCTION_LIST_END },
6066353358Sdim  { X86::VMOVHPSZ128rm,  X86::VMOVHPDZ128rm, X86::INSTRUCTION_LIST_END },
6067353358Sdim  { X86::VMOVHPSZ128mr,  X86::VMOVHPDZ128mr, X86::INSTRUCTION_LIST_END },
6068353358Sdim};
6069353358Sdim
6070321369Sdimstatic const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = {
6071321369Sdim  //PackedSingle       PackedDouble       PackedInt
6072321369Sdim  { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
6073321369Sdim  { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
6074321369Sdim  { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
6075321369Sdim  { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
6076321369Sdim};
6077321369Sdim
6078314564Sdimstatic const uint16_t ReplaceableInstrsAVX512[][4] = {
6079314564Sdim  // Two integer columns for 64-bit and 32-bit elements.
6080314564Sdim  //PackedSingle        PackedDouble        PackedInt             PackedInt
6081314564Sdim  { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr  },
6082314564Sdim  { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm  },
6083314564Sdim  { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr  },
6084314564Sdim  { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr  },
6085314564Sdim  { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm  },
6086314564Sdim  { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr  },
6087314564Sdim  { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm  },
6088314564Sdim  { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr  },
6089314564Sdim  { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr  },
6090314564Sdim  { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm  },
6091314564Sdim  { X86::VMOVAPSZmr,    X86::VMOVAPDZmr,    X86::VMOVDQA64Zmr,    X86::VMOVDQA32Zmr     },
6092314564Sdim  { X86::VMOVAPSZrm,    X86::VMOVAPDZrm,    X86::VMOVDQA64Zrm,    X86::VMOVDQA32Zrm     },
6093314564Sdim  { X86::VMOVAPSZrr,    X86::VMOVAPDZrr,    X86::VMOVDQA64Zrr,    X86::VMOVDQA32Zrr     },
6094314564Sdim  { X86::VMOVUPSZmr,    X86::VMOVUPDZmr,    X86::VMOVDQU64Zmr,    X86::VMOVDQU32Zmr     },
6095314564Sdim  { X86::VMOVUPSZrm,    X86::VMOVUPDZrm,    X86::VMOVDQU64Zrm,    X86::VMOVDQU32Zrm     },
6096314564Sdim};
6097314564Sdim
6098314564Sdimstatic const uint16_t ReplaceableInstrsAVX512DQ[][4] = {
6099314564Sdim  // Two integer columns for 64-bit and 32-bit elements.
6100314564Sdim  //PackedSingle        PackedDouble        PackedInt           PackedInt
6101314564Sdim  { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
6102314564Sdim  { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
6103314564Sdim  { X86::VANDPSZ128rm,  X86::VANDPDZ128rm,  X86::VPANDQZ128rm,  X86::VPANDDZ128rm  },
6104314564Sdim  { X86::VANDPSZ128rr,  X86::VANDPDZ128rr,  X86::VPANDQZ128rr,  X86::VPANDDZ128rr  },
6105314564Sdim  { X86::VORPSZ128rm,   X86::VORPDZ128rm,   X86::VPORQZ128rm,   X86::VPORDZ128rm   },
6106314564Sdim  { X86::VORPSZ128rr,   X86::VORPDZ128rr,   X86::VPORQZ128rr,   X86::VPORDZ128rr   },
6107314564Sdim  { X86::VXORPSZ128rm,  X86::VXORPDZ128rm,  X86::VPXORQZ128rm,  X86::VPXORDZ128rm  },
6108314564Sdim  { X86::VXORPSZ128rr,  X86::VXORPDZ128rr,  X86::VPXORQZ128rr,  X86::VPXORDZ128rr  },
6109314564Sdim  { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
6110314564Sdim  { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
6111314564Sdim  { X86::VANDPSZ256rm,  X86::VANDPDZ256rm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  },
6112314564Sdim  { X86::VANDPSZ256rr,  X86::VANDPDZ256rr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  },
6113314564Sdim  { X86::VORPSZ256rm,   X86::VORPDZ256rm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   },
6114314564Sdim  { X86::VORPSZ256rr,   X86::VORPDZ256rr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   },
6115314564Sdim  { X86::VXORPSZ256rm,  X86::VXORPDZ256rm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  },
6116314564Sdim  { X86::VXORPSZ256rr,  X86::VXORPDZ256rr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  },
6117314564Sdim  { X86::VANDNPSZrm,    X86::VANDNPDZrm,    X86::VPANDNQZrm,    X86::VPANDNDZrm    },
6118314564Sdim  { X86::VANDNPSZrr,    X86::VANDNPDZrr,    X86::VPANDNQZrr,    X86::VPANDNDZrr    },
6119314564Sdim  { X86::VANDPSZrm,     X86::VANDPDZrm,     X86::VPANDQZrm,     X86::VPANDDZrm     },
6120314564Sdim  { X86::VANDPSZrr,     X86::VANDPDZrr,     X86::VPANDQZrr,     X86::VPANDDZrr     },
6121314564Sdim  { X86::VORPSZrm,      X86::VORPDZrm,      X86::VPORQZrm,      X86::VPORDZrm      },
6122314564Sdim  { X86::VORPSZrr,      X86::VORPDZrr,      X86::VPORQZrr,      X86::VPORDZrr      },
6123314564Sdim  { X86::VXORPSZrm,     X86::VXORPDZrm,     X86::VPXORQZrm,     X86::VPXORDZrm     },
6124314564Sdim  { X86::VXORPSZrr,     X86::VXORPDZrr,     X86::VPXORQZrr,     X86::VPXORDZrr     },
6125314564Sdim};
6126314564Sdim
6127314564Sdimstatic const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = {
6128314564Sdim  // Two integer columns for 64-bit and 32-bit elements.
6129314564Sdim  //PackedSingle          PackedDouble
6130314564Sdim  //PackedInt             PackedInt
6131314564Sdim  { X86::VANDNPSZ128rmk,  X86::VANDNPDZ128rmk,
6132314564Sdim    X86::VPANDNQZ128rmk,  X86::VPANDNDZ128rmk  },
6133314564Sdim  { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz,
6134314564Sdim    X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz },
6135314564Sdim  { X86::VANDNPSZ128rrk,  X86::VANDNPDZ128rrk,
6136314564Sdim    X86::VPANDNQZ128rrk,  X86::VPANDNDZ128rrk  },
6137314564Sdim  { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz,
6138314564Sdim    X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz },
6139314564Sdim  { X86::VANDPSZ128rmk,   X86::VANDPDZ128rmk,
6140314564Sdim    X86::VPANDQZ128rmk,   X86::VPANDDZ128rmk   },
6141314564Sdim  { X86::VANDPSZ128rmkz,  X86::VANDPDZ128rmkz,
6142314564Sdim    X86::VPANDQZ128rmkz,  X86::VPANDDZ128rmkz  },
6143314564Sdim  { X86::VANDPSZ128rrk,   X86::VANDPDZ128rrk,
6144314564Sdim    X86::VPANDQZ128rrk,   X86::VPANDDZ128rrk   },
6145314564Sdim  { X86::VANDPSZ128rrkz,  X86::VANDPDZ128rrkz,
6146314564Sdim    X86::VPANDQZ128rrkz,  X86::VPANDDZ128rrkz  },
6147314564Sdim  { X86::VORPSZ128rmk,    X86::VORPDZ128rmk,
6148314564Sdim    X86::VPORQZ128rmk,    X86::VPORDZ128rmk    },
6149314564Sdim  { X86::VORPSZ128rmkz,   X86::VORPDZ128rmkz,
6150314564Sdim    X86::VPORQZ128rmkz,   X86::VPORDZ128rmkz   },
6151314564Sdim  { X86::VORPSZ128rrk,    X86::VORPDZ128rrk,
6152314564Sdim    X86::VPORQZ128rrk,    X86::VPORDZ128rrk    },
6153314564Sdim  { X86::VORPSZ128rrkz,   X86::VORPDZ128rrkz,
6154314564Sdim    X86::VPORQZ128rrkz,   X86::VPORDZ128rrkz   },
6155314564Sdim  { X86::VXORPSZ128rmk,   X86::VXORPDZ128rmk,
6156314564Sdim    X86::VPXORQZ128rmk,   X86::VPXORDZ128rmk   },
6157314564Sdim  { X86::VXORPSZ128rmkz,  X86::VXORPDZ128rmkz,
6158314564Sdim    X86::VPXORQZ128rmkz,  X86::VPXORDZ128rmkz  },
6159314564Sdim  { X86::VXORPSZ128rrk,   X86::VXORPDZ128rrk,
6160314564Sdim    X86::VPXORQZ128rrk,   X86::VPXORDZ128rrk   },
6161314564Sdim  { X86::VXORPSZ128rrkz,  X86::VXORPDZ128rrkz,
6162314564Sdim    X86::VPXORQZ128rrkz,  X86::VPXORDZ128rrkz  },
6163314564Sdim  { X86::VANDNPSZ256rmk,  X86::VANDNPDZ256rmk,
6164314564Sdim    X86::VPANDNQZ256rmk,  X86::VPANDNDZ256rmk  },
6165314564Sdim  { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz,
6166314564Sdim    X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz },
6167314564Sdim  { X86::VANDNPSZ256rrk,  X86::VANDNPDZ256rrk,
6168314564Sdim    X86::VPANDNQZ256rrk,  X86::VPANDNDZ256rrk  },
6169314564Sdim  { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz,
6170314564Sdim    X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz },
6171314564Sdim  { X86::VANDPSZ256rmk,   X86::VANDPDZ256rmk,
6172314564Sdim    X86::VPANDQZ256rmk,   X86::VPANDDZ256rmk   },
6173314564Sdim  { X86::VANDPSZ256rmkz,  X86::VANDPDZ256rmkz,
6174314564Sdim    X86::VPANDQZ256rmkz,  X86::VPANDDZ256rmkz  },
6175314564Sdim  { X86::VANDPSZ256rrk,   X86::VANDPDZ256rrk,
6176314564Sdim    X86::VPANDQZ256rrk,   X86::VPANDDZ256rrk   },
6177314564Sdim  { X86::VANDPSZ256rrkz,  X86::VANDPDZ256rrkz,
6178314564Sdim    X86::VPANDQZ256rrkz,  X86::VPANDDZ256rrkz  },
6179314564Sdim  { X86::VORPSZ256rmk,    X86::VORPDZ256rmk,
6180314564Sdim    X86::VPORQZ256rmk,    X86::VPORDZ256rmk    },
6181314564Sdim  { X86::VORPSZ256rmkz,   X86::VORPDZ256rmkz,
6182314564Sdim    X86::VPORQZ256rmkz,   X86::VPORDZ256rmkz   },
6183314564Sdim  { X86::VORPSZ256rrk,    X86::VORPDZ256rrk,
6184314564Sdim    X86::VPORQZ256rrk,    X86::VPORDZ256rrk    },
6185314564Sdim  { X86::VORPSZ256rrkz,   X86::VORPDZ256rrkz,
6186314564Sdim    X86::VPORQZ256rrkz,   X86::VPORDZ256rrkz   },
6187314564Sdim  { X86::VXORPSZ256rmk,   X86::VXORPDZ256rmk,
6188314564Sdim    X86::VPXORQZ256rmk,   X86::VPXORDZ256rmk   },
6189314564Sdim  { X86::VXORPSZ256rmkz,  X86::VXORPDZ256rmkz,
6190314564Sdim    X86::VPXORQZ256rmkz,  X86::VPXORDZ256rmkz  },
6191314564Sdim  { X86::VXORPSZ256rrk,   X86::VXORPDZ256rrk,
6192314564Sdim    X86::VPXORQZ256rrk,   X86::VPXORDZ256rrk   },
6193314564Sdim  { X86::VXORPSZ256rrkz,  X86::VXORPDZ256rrkz,
6194314564Sdim    X86::VPXORQZ256rrkz,  X86::VPXORDZ256rrkz  },
6195314564Sdim  { X86::VANDNPSZrmk,     X86::VANDNPDZrmk,
6196314564Sdim    X86::VPANDNQZrmk,     X86::VPANDNDZrmk     },
6197314564Sdim  { X86::VANDNPSZrmkz,    X86::VANDNPDZrmkz,
6198314564Sdim    X86::VPANDNQZrmkz,    X86::VPANDNDZrmkz    },
6199314564Sdim  { X86::VANDNPSZrrk,     X86::VANDNPDZrrk,
6200314564Sdim    X86::VPANDNQZrrk,     X86::VPANDNDZrrk     },
6201314564Sdim  { X86::VANDNPSZrrkz,    X86::VANDNPDZrrkz,
6202314564Sdim    X86::VPANDNQZrrkz,    X86::VPANDNDZrrkz    },
6203314564Sdim  { X86::VANDPSZrmk,      X86::VANDPDZrmk,
6204314564Sdim    X86::VPANDQZrmk,      X86::VPANDDZrmk      },
6205314564Sdim  { X86::VANDPSZrmkz,     X86::VANDPDZrmkz,
6206314564Sdim    X86::VPANDQZrmkz,     X86::VPANDDZrmkz     },
6207314564Sdim  { X86::VANDPSZrrk,      X86::VANDPDZrrk,
6208314564Sdim    X86::VPANDQZrrk,      X86::VPANDDZrrk      },
6209314564Sdim  { X86::VANDPSZrrkz,     X86::VANDPDZrrkz,
6210314564Sdim    X86::VPANDQZrrkz,     X86::VPANDDZrrkz     },
6211314564Sdim  { X86::VORPSZrmk,       X86::VORPDZrmk,
6212314564Sdim    X86::VPORQZrmk,       X86::VPORDZrmk       },
6213314564Sdim  { X86::VORPSZrmkz,      X86::VORPDZrmkz,
6214314564Sdim    X86::VPORQZrmkz,      X86::VPORDZrmkz      },
6215314564Sdim  { X86::VORPSZrrk,       X86::VORPDZrrk,
6216314564Sdim    X86::VPORQZrrk,       X86::VPORDZrrk       },
6217314564Sdim  { X86::VORPSZrrkz,      X86::VORPDZrrkz,
6218314564Sdim    X86::VPORQZrrkz,      X86::VPORDZrrkz      },
6219314564Sdim  { X86::VXORPSZrmk,      X86::VXORPDZrmk,
6220314564Sdim    X86::VPXORQZrmk,      X86::VPXORDZrmk      },
6221314564Sdim  { X86::VXORPSZrmkz,     X86::VXORPDZrmkz,
6222314564Sdim    X86::VPXORQZrmkz,     X86::VPXORDZrmkz     },
6223314564Sdim  { X86::VXORPSZrrk,      X86::VXORPDZrrk,
6224314564Sdim    X86::VPXORQZrrk,      X86::VPXORDZrrk      },
6225314564Sdim  { X86::VXORPSZrrkz,     X86::VXORPDZrrkz,
6226314564Sdim    X86::VPXORQZrrkz,     X86::VPXORDZrrkz     },
6227314564Sdim  // Broadcast loads can be handled the same as masked operations to avoid
6228314564Sdim  // changing element size.
6229314564Sdim  { X86::VANDNPSZ128rmb,  X86::VANDNPDZ128rmb,
6230314564Sdim    X86::VPANDNQZ128rmb,  X86::VPANDNDZ128rmb  },
6231314564Sdim  { X86::VANDPSZ128rmb,   X86::VANDPDZ128rmb,
6232314564Sdim    X86::VPANDQZ128rmb,   X86::VPANDDZ128rmb   },
6233314564Sdim  { X86::VORPSZ128rmb,    X86::VORPDZ128rmb,
6234314564Sdim    X86::VPORQZ128rmb,    X86::VPORDZ128rmb    },
6235314564Sdim  { X86::VXORPSZ128rmb,   X86::VXORPDZ128rmb,
6236314564Sdim    X86::VPXORQZ128rmb,   X86::VPXORDZ128rmb   },
6237314564Sdim  { X86::VANDNPSZ256rmb,  X86::VANDNPDZ256rmb,
6238314564Sdim    X86::VPANDNQZ256rmb,  X86::VPANDNDZ256rmb  },
6239314564Sdim  { X86::VANDPSZ256rmb,   X86::VANDPDZ256rmb,
6240314564Sdim    X86::VPANDQZ256rmb,   X86::VPANDDZ256rmb   },
6241314564Sdim  { X86::VORPSZ256rmb,    X86::VORPDZ256rmb,
6242314564Sdim    X86::VPORQZ256rmb,    X86::VPORDZ256rmb    },
6243314564Sdim  { X86::VXORPSZ256rmb,   X86::VXORPDZ256rmb,
6244314564Sdim    X86::VPXORQZ256rmb,   X86::VPXORDZ256rmb   },
6245314564Sdim  { X86::VANDNPSZrmb,     X86::VANDNPDZrmb,
6246314564Sdim    X86::VPANDNQZrmb,     X86::VPANDNDZrmb     },
6247314564Sdim  { X86::VANDPSZrmb,      X86::VANDPDZrmb,
6248314564Sdim    X86::VPANDQZrmb,      X86::VPANDDZrmb      },
6249314564Sdim  { X86::VANDPSZrmb,      X86::VANDPDZrmb,
6250314564Sdim    X86::VPANDQZrmb,      X86::VPANDDZrmb      },
6251314564Sdim  { X86::VORPSZrmb,       X86::VORPDZrmb,
6252314564Sdim    X86::VPORQZrmb,       X86::VPORDZrmb       },
6253314564Sdim  { X86::VXORPSZrmb,      X86::VXORPDZrmb,
6254314564Sdim    X86::VPXORQZrmb,      X86::VPXORDZrmb      },
6255314564Sdim  { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk,
6256314564Sdim    X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk },
6257314564Sdim  { X86::VANDPSZ128rmbk,  X86::VANDPDZ128rmbk,
6258314564Sdim    X86::VPANDQZ128rmbk,  X86::VPANDDZ128rmbk  },
6259314564Sdim  { X86::VORPSZ128rmbk,   X86::VORPDZ128rmbk,
6260314564Sdim    X86::VPORQZ128rmbk,   X86::VPORDZ128rmbk   },
6261314564Sdim  { X86::VXORPSZ128rmbk,  X86::VXORPDZ128rmbk,
6262314564Sdim    X86::VPXORQZ128rmbk,  X86::VPXORDZ128rmbk  },
6263314564Sdim  { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk,
6264314564Sdim    X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk },
6265314564Sdim  { X86::VANDPSZ256rmbk,  X86::VANDPDZ256rmbk,
6266314564Sdim    X86::VPANDQZ256rmbk,  X86::VPANDDZ256rmbk  },
6267314564Sdim  { X86::VORPSZ256rmbk,   X86::VORPDZ256rmbk,
6268314564Sdim    X86::VPORQZ256rmbk,   X86::VPORDZ256rmbk   },
6269314564Sdim  { X86::VXORPSZ256rmbk,  X86::VXORPDZ256rmbk,
6270314564Sdim    X86::VPXORQZ256rmbk,  X86::VPXORDZ256rmbk  },
6271314564Sdim  { X86::VANDNPSZrmbk,    X86::VANDNPDZrmbk,
6272314564Sdim    X86::VPANDNQZrmbk,    X86::VPANDNDZrmbk    },
6273314564Sdim  { X86::VANDPSZrmbk,     X86::VANDPDZrmbk,
6274314564Sdim    X86::VPANDQZrmbk,     X86::VPANDDZrmbk     },
6275314564Sdim  { X86::VANDPSZrmbk,     X86::VANDPDZrmbk,
6276314564Sdim    X86::VPANDQZrmbk,     X86::VPANDDZrmbk     },
6277314564Sdim  { X86::VORPSZrmbk,      X86::VORPDZrmbk,
6278314564Sdim    X86::VPORQZrmbk,      X86::VPORDZrmbk      },
6279314564Sdim  { X86::VXORPSZrmbk,     X86::VXORPDZrmbk,
6280314564Sdim    X86::VPXORQZrmbk,     X86::VPXORDZrmbk     },
6281314564Sdim  { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz,
6282314564Sdim    X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz},
6283314564Sdim  { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz,
6284314564Sdim    X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz },
6285314564Sdim  { X86::VORPSZ128rmbkz,  X86::VORPDZ128rmbkz,
6286314564Sdim    X86::VPORQZ128rmbkz,  X86::VPORDZ128rmbkz  },
6287314564Sdim  { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz,
6288314564Sdim    X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz },
6289314564Sdim  { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz,
6290314564Sdim    X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz},
6291314564Sdim  { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz,
6292314564Sdim    X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz },
6293314564Sdim  { X86::VORPSZ256rmbkz,  X86::VORPDZ256rmbkz,
6294314564Sdim    X86::VPORQZ256rmbkz,  X86::VPORDZ256rmbkz  },
6295314564Sdim  { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz,
6296314564Sdim    X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz },
6297314564Sdim  { X86::VANDNPSZrmbkz,   X86::VANDNPDZrmbkz,
6298314564Sdim    X86::VPANDNQZrmbkz,   X86::VPANDNDZrmbkz   },
6299314564Sdim  { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz,
6300314564Sdim    X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    },
6301314564Sdim  { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz,
6302314564Sdim    X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    },
6303314564Sdim  { X86::VORPSZrmbkz,     X86::VORPDZrmbkz,
6304314564Sdim    X86::VPORQZrmbkz,     X86::VPORDZrmbkz     },
6305314564Sdim  { X86::VXORPSZrmbkz,    X86::VXORPDZrmbkz,
6306314564Sdim    X86::VPXORQZrmbkz,    X86::VPXORDZrmbkz    },
6307314564Sdim};
6308314564Sdim
6309341825Sdim// NOTE: These should only be used by the custom domain methods.
6310353358Sdimstatic const uint16_t ReplaceableBlendInstrs[][3] = {
6311341825Sdim  //PackedSingle             PackedDouble             PackedInt
6312341825Sdim  { X86::BLENDPSrmi,         X86::BLENDPDrmi,         X86::PBLENDWrmi   },
6313341825Sdim  { X86::BLENDPSrri,         X86::BLENDPDrri,         X86::PBLENDWrri   },
6314341825Sdim  { X86::VBLENDPSrmi,        X86::VBLENDPDrmi,        X86::VPBLENDWrmi  },
6315341825Sdim  { X86::VBLENDPSrri,        X86::VBLENDPDrri,        X86::VPBLENDWrri  },
6316341825Sdim  { X86::VBLENDPSYrmi,       X86::VBLENDPDYrmi,       X86::VPBLENDWYrmi },
6317341825Sdim  { X86::VBLENDPSYrri,       X86::VBLENDPDYrri,       X86::VPBLENDWYrri },
6318341825Sdim};
6319353358Sdimstatic const uint16_t ReplaceableBlendAVX2Instrs[][3] = {
6320341825Sdim  //PackedSingle             PackedDouble             PackedInt
6321341825Sdim  { X86::VBLENDPSrmi,        X86::VBLENDPDrmi,        X86::VPBLENDDrmi  },
6322341825Sdim  { X86::VBLENDPSrri,        X86::VBLENDPDrri,        X86::VPBLENDDrri  },
6323341825Sdim  { X86::VBLENDPSYrmi,       X86::VBLENDPDYrmi,       X86::VPBLENDDYrmi },
6324341825Sdim  { X86::VBLENDPSYrri,       X86::VBLENDPDYrri,       X86::VPBLENDDYrri },
6325341825Sdim};
6326341825Sdim
6327341825Sdim// Special table for changing EVEX logic instructions to VEX.
6328341825Sdim// TODO: Should we run EVEX->VEX earlier?
6329341825Sdimstatic const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = {
6330341825Sdim  // Two integer columns for 64-bit and 32-bit elements.
6331341825Sdim  //PackedSingle     PackedDouble     PackedInt           PackedInt
6332341825Sdim  { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
6333341825Sdim  { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
6334341825Sdim  { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDQZ128rm,  X86::VPANDDZ128rm  },
6335341825Sdim  { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDQZ128rr,  X86::VPANDDZ128rr  },
6336341825Sdim  { X86::VORPSrm,    X86::VORPDrm,    X86::VPORQZ128rm,   X86::VPORDZ128rm   },
6337341825Sdim  { X86::VORPSrr,    X86::VORPDrr,    X86::VPORQZ128rr,   X86::VPORDZ128rr   },
6338341825Sdim  { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORQZ128rm,  X86::VPXORDZ128rm  },
6339341825Sdim  { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORQZ128rr,  X86::VPXORDZ128rr  },
6340341825Sdim  { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
6341341825Sdim  { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
6342341825Sdim  { X86::VANDPSYrm,  X86::VANDPDYrm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  },
6343341825Sdim  { X86::VANDPSYrr,  X86::VANDPDYrr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  },
6344341825Sdim  { X86::VORPSYrm,   X86::VORPDYrm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   },
6345341825Sdim  { X86::VORPSYrr,   X86::VORPDYrr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   },
6346341825Sdim  { X86::VXORPSYrm,  X86::VXORPDYrm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  },
6347341825Sdim  { X86::VXORPSYrr,  X86::VXORPDYrr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  },
6348341825Sdim};
6349341825Sdim
6350206083Srdivacky// FIXME: Some shuffle and unpack instructions have equivalents in different
6351206083Srdivacky// domains, but they require a bit more work than just switching opcodes.
6352206083Srdivacky
6353314564Sdimstatic const uint16_t *lookup(unsigned opcode, unsigned domain,
6354314564Sdim                              ArrayRef<uint16_t[3]> Table) {
6355314564Sdim  for (const uint16_t (&Row)[3] : Table)
6356296417Sdim    if (Row[domain-1] == opcode)
6357296417Sdim      return Row;
6358276479Sdim  return nullptr;
6359206083Srdivacky}
6360206083Srdivacky
6361314564Sdimstatic const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
6362314564Sdim                                    ArrayRef<uint16_t[4]> Table) {
6363314564Sdim  // If this is the integer domain make sure to check both integer columns.
6364314564Sdim  for (const uint16_t (&Row)[4] : Table)
6365314564Sdim    if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode))
6366296417Sdim      return Row;
6367276479Sdim  return nullptr;
6368234353Sdim}
6369234353Sdim
6370341825Sdim// Helper to attempt to widen/narrow blend masks.
6371341825Sdimstatic bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
6372341825Sdim                            unsigned NewWidth, unsigned *pNewMask = nullptr) {
6373341825Sdim  assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
6374341825Sdim         "Illegal blend mask scale");
6375341825Sdim  unsigned NewMask = 0;
6376341825Sdim
6377341825Sdim  if ((OldWidth % NewWidth) == 0) {
6378341825Sdim    unsigned Scale = OldWidth / NewWidth;
6379341825Sdim    unsigned SubMask = (1u << Scale) - 1;
6380341825Sdim    for (unsigned i = 0; i != NewWidth; ++i) {
6381341825Sdim      unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
6382341825Sdim      if (Sub == SubMask)
6383341825Sdim        NewMask |= (1u << i);
6384341825Sdim      else if (Sub != 0x0)
6385341825Sdim        return false;
6386341825Sdim    }
6387341825Sdim  } else {
6388341825Sdim    unsigned Scale = NewWidth / OldWidth;
6389341825Sdim    unsigned SubMask = (1u << Scale) - 1;
6390341825Sdim    for (unsigned i = 0; i != OldWidth; ++i) {
6391341825Sdim      if (OldMask & (1 << i)) {
6392341825Sdim        NewMask |= (SubMask << (i * Scale));
6393341825Sdim      }
6394341825Sdim    }
6395341825Sdim  }
6396341825Sdim
6397341825Sdim  if (pNewMask)
6398341825Sdim    *pNewMask = NewMask;
6399341825Sdim  return true;
6400341825Sdim}
6401341825Sdim
6402341825Sdimuint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
6403341825Sdim  unsigned Opcode = MI.getOpcode();
6404341825Sdim  unsigned NumOperands = MI.getDesc().getNumOperands();
6405341825Sdim
6406341825Sdim  auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
6407341825Sdim    uint16_t validDomains = 0;
6408341825Sdim    if (MI.getOperand(NumOperands - 1).isImm()) {
6409341825Sdim      unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
6410341825Sdim      if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
6411341825Sdim        validDomains |= 0x2; // PackedSingle
6412341825Sdim      if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
6413341825Sdim        validDomains |= 0x4; // PackedDouble
6414341825Sdim      if (!Is256 || Subtarget.hasAVX2())
6415341825Sdim        validDomains |= 0x8; // PackedInt
6416341825Sdim    }
6417341825Sdim    return validDomains;
6418341825Sdim  };
6419341825Sdim
6420341825Sdim  switch (Opcode) {
6421341825Sdim  case X86::BLENDPDrmi:
6422341825Sdim  case X86::BLENDPDrri:
6423341825Sdim  case X86::VBLENDPDrmi:
6424341825Sdim  case X86::VBLENDPDrri:
6425341825Sdim    return GetBlendDomains(2, false);
6426341825Sdim  case X86::VBLENDPDYrmi:
6427341825Sdim  case X86::VBLENDPDYrri:
6428341825Sdim    return GetBlendDomains(4, true);
6429341825Sdim  case X86::BLENDPSrmi:
6430341825Sdim  case X86::BLENDPSrri:
6431341825Sdim  case X86::VBLENDPSrmi:
6432341825Sdim  case X86::VBLENDPSrri:
6433341825Sdim  case X86::VPBLENDDrmi:
6434341825Sdim  case X86::VPBLENDDrri:
6435341825Sdim    return GetBlendDomains(4, false);
6436341825Sdim  case X86::VBLENDPSYrmi:
6437341825Sdim  case X86::VBLENDPSYrri:
6438341825Sdim  case X86::VPBLENDDYrmi:
6439341825Sdim  case X86::VPBLENDDYrri:
6440341825Sdim    return GetBlendDomains(8, true);
6441341825Sdim  case X86::PBLENDWrmi:
6442341825Sdim  case X86::PBLENDWrri:
6443341825Sdim  case X86::VPBLENDWrmi:
6444341825Sdim  case X86::VPBLENDWrri:
6445341825Sdim  // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
6446341825Sdim  case X86::VPBLENDWYrmi:
6447341825Sdim  case X86::VPBLENDWYrri:
6448341825Sdim    return GetBlendDomains(8, false);
6449341825Sdim  case X86::VPANDDZ128rr:  case X86::VPANDDZ128rm:
6450341825Sdim  case X86::VPANDDZ256rr:  case X86::VPANDDZ256rm:
6451341825Sdim  case X86::VPANDQZ128rr:  case X86::VPANDQZ128rm:
6452341825Sdim  case X86::VPANDQZ256rr:  case X86::VPANDQZ256rm:
6453341825Sdim  case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
6454341825Sdim  case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
6455341825Sdim  case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
6456341825Sdim  case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
6457341825Sdim  case X86::VPORDZ128rr:   case X86::VPORDZ128rm:
6458341825Sdim  case X86::VPORDZ256rr:   case X86::VPORDZ256rm:
6459341825Sdim  case X86::VPORQZ128rr:   case X86::VPORQZ128rm:
6460341825Sdim  case X86::VPORQZ256rr:   case X86::VPORQZ256rm:
6461341825Sdim  case X86::VPXORDZ128rr:  case X86::VPXORDZ128rm:
6462341825Sdim  case X86::VPXORDZ256rr:  case X86::VPXORDZ256rm:
6463341825Sdim  case X86::VPXORQZ128rr:  case X86::VPXORQZ128rm:
6464341825Sdim  case X86::VPXORQZ256rr:  case X86::VPXORQZ256rm:
6465341825Sdim    // If we don't have DQI see if we can still switch from an EVEX integer
6466341825Sdim    // instruction to a VEX floating point instruction.
6467341825Sdim    if (Subtarget.hasDQI())
6468341825Sdim      return 0;
6469341825Sdim
6470341825Sdim    if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
6471341825Sdim      return 0;
6472341825Sdim    if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
6473341825Sdim      return 0;
6474341825Sdim    // Register forms will have 3 operands. Memory form will have more.
6475341825Sdim    if (NumOperands == 3 &&
6476341825Sdim        RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
6477341825Sdim      return 0;
6478341825Sdim
6479341825Sdim    // All domains are valid.
6480341825Sdim    return 0xe;
6481344779Sdim  case X86::MOVHLPSrr:
6482344779Sdim    // We can swap domains when both inputs are the same register.
6483344779Sdim    // FIXME: This doesn't catch all the cases we would like. If the input
6484344779Sdim    // register isn't KILLed by the instruction, the two address instruction
6485344779Sdim    // pass puts a COPY on one input. The other input uses the original
6486344779Sdim    // register. This prevents the same physical register from being used by
6487344779Sdim    // both inputs.
6488344779Sdim    if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
6489344779Sdim        MI.getOperand(0).getSubReg() == 0 &&
6490344779Sdim        MI.getOperand(1).getSubReg() == 0 &&
6491344779Sdim        MI.getOperand(2).getSubReg() == 0)
6492344779Sdim      return 0x6;
6493344779Sdim    return 0;
6494353358Sdim  case X86::SHUFPDrri:
6495353358Sdim    return 0x6;
6496341825Sdim  }
6497341825Sdim  return 0;
6498341825Sdim}
6499341825Sdim
6500341825Sdimbool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
6501341825Sdim                                            unsigned Domain) const {
6502341825Sdim  assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
6503341825Sdim  uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6504341825Sdim  assert(dom && "Not an SSE instruction");
6505341825Sdim
6506341825Sdim  unsigned Opcode = MI.getOpcode();
6507341825Sdim  unsigned NumOperands = MI.getDesc().getNumOperands();
6508341825Sdim
6509341825Sdim  auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
6510341825Sdim    if (MI.getOperand(NumOperands - 1).isImm()) {
6511341825Sdim      unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
6512341825Sdim      Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
6513341825Sdim      unsigned NewImm = Imm;
6514341825Sdim
6515353358Sdim      const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs);
6516341825Sdim      if (!table)
6517353358Sdim        table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
6518341825Sdim
6519341825Sdim      if (Domain == 1) { // PackedSingle
6520341825Sdim        AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
6521341825Sdim      } else if (Domain == 2) { // PackedDouble
6522341825Sdim        AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
6523341825Sdim      } else if (Domain == 3) { // PackedInt
6524341825Sdim        if (Subtarget.hasAVX2()) {
6525341825Sdim          // If we are already VPBLENDW use that, else use VPBLENDD.
6526341825Sdim          if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
6527353358Sdim            table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
6528341825Sdim            AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
6529341825Sdim          }
6530341825Sdim        } else {
6531341825Sdim          assert(!Is256 && "128-bit vector expected");
6532341825Sdim          AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
6533341825Sdim        }
6534341825Sdim      }
6535341825Sdim
6536341825Sdim      assert(table && table[Domain - 1] && "Unknown domain op");
6537341825Sdim      MI.setDesc(get(table[Domain - 1]));
6538341825Sdim      MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
6539341825Sdim    }
6540341825Sdim    return true;
6541341825Sdim  };
6542341825Sdim
6543341825Sdim  switch (Opcode) {
6544341825Sdim  case X86::BLENDPDrmi:
6545341825Sdim  case X86::BLENDPDrri:
6546341825Sdim  case X86::VBLENDPDrmi:
6547341825Sdim  case X86::VBLENDPDrri:
6548341825Sdim    return SetBlendDomain(2, false);
6549341825Sdim  case X86::VBLENDPDYrmi:
6550341825Sdim  case X86::VBLENDPDYrri:
6551341825Sdim    return SetBlendDomain(4, true);
6552341825Sdim  case X86::BLENDPSrmi:
6553341825Sdim  case X86::BLENDPSrri:
6554341825Sdim  case X86::VBLENDPSrmi:
6555341825Sdim  case X86::VBLENDPSrri:
6556341825Sdim  case X86::VPBLENDDrmi:
6557341825Sdim  case X86::VPBLENDDrri:
6558341825Sdim    return SetBlendDomain(4, false);
6559341825Sdim  case X86::VBLENDPSYrmi:
6560341825Sdim  case X86::VBLENDPSYrri:
6561341825Sdim  case X86::VPBLENDDYrmi:
6562341825Sdim  case X86::VPBLENDDYrri:
6563341825Sdim    return SetBlendDomain(8, true);
6564341825Sdim  case X86::PBLENDWrmi:
6565341825Sdim  case X86::PBLENDWrri:
6566341825Sdim  case X86::VPBLENDWrmi:
6567341825Sdim  case X86::VPBLENDWrri:
6568341825Sdim    return SetBlendDomain(8, false);
6569341825Sdim  case X86::VPBLENDWYrmi:
6570341825Sdim  case X86::VPBLENDWYrri:
6571341825Sdim    return SetBlendDomain(16, true);
6572341825Sdim  case X86::VPANDDZ128rr:  case X86::VPANDDZ128rm:
6573341825Sdim  case X86::VPANDDZ256rr:  case X86::VPANDDZ256rm:
6574341825Sdim  case X86::VPANDQZ128rr:  case X86::VPANDQZ128rm:
6575341825Sdim  case X86::VPANDQZ256rr:  case X86::VPANDQZ256rm:
6576341825Sdim  case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
6577341825Sdim  case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
6578341825Sdim  case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
6579341825Sdim  case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
6580341825Sdim  case X86::VPORDZ128rr:   case X86::VPORDZ128rm:
6581341825Sdim  case X86::VPORDZ256rr:   case X86::VPORDZ256rm:
6582341825Sdim  case X86::VPORQZ128rr:   case X86::VPORQZ128rm:
6583341825Sdim  case X86::VPORQZ256rr:   case X86::VPORQZ256rm:
6584341825Sdim  case X86::VPXORDZ128rr:  case X86::VPXORDZ128rm:
6585341825Sdim  case X86::VPXORDZ256rr:  case X86::VPXORDZ256rm:
6586341825Sdim  case X86::VPXORQZ128rr:  case X86::VPXORQZ128rm:
6587341825Sdim  case X86::VPXORQZ256rr:  case X86::VPXORQZ256rm: {
6588341825Sdim    // Without DQI, convert EVEX instructions to VEX instructions.
6589341825Sdim    if (Subtarget.hasDQI())
6590341825Sdim      return false;
6591341825Sdim
6592341825Sdim    const uint16_t *table = lookupAVX512(MI.getOpcode(), dom,
6593341825Sdim                                         ReplaceableCustomAVX512LogicInstrs);
6594341825Sdim    assert(table && "Instruction not found in table?");
6595341825Sdim    // Don't change integer Q instructions to D instructions and
6596341825Sdim    // use D intructions if we started with a PS instruction.
6597341825Sdim    if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6598341825Sdim      Domain = 4;
6599341825Sdim    MI.setDesc(get(table[Domain - 1]));
6600341825Sdim    return true;
6601341825Sdim  }
6602344779Sdim  case X86::UNPCKHPDrr:
6603344779Sdim  case X86::MOVHLPSrr:
6604344779Sdim    // We just need to commute the instruction which will switch the domains.
6605344779Sdim    if (Domain != dom && Domain != 3 &&
6606344779Sdim        MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
6607344779Sdim        MI.getOperand(0).getSubReg() == 0 &&
6608344779Sdim        MI.getOperand(1).getSubReg() == 0 &&
6609344779Sdim        MI.getOperand(2).getSubReg() == 0) {
6610344779Sdim      commuteInstruction(MI, false);
6611344779Sdim      return true;
6612344779Sdim    }
6613344779Sdim    // We must always return true for MOVHLPSrr.
6614344779Sdim    if (Opcode == X86::MOVHLPSrr)
6615344779Sdim      return true;
6616353358Sdim    break;
6617353358Sdim  case X86::SHUFPDrri: {
6618353358Sdim    if (Domain == 1) {
6619353358Sdim      unsigned Imm = MI.getOperand(3).getImm();
6620353358Sdim      unsigned NewImm = 0x44;
6621353358Sdim      if (Imm & 1) NewImm |= 0x0a;
6622353358Sdim      if (Imm & 2) NewImm |= 0xa0;
6623353358Sdim      MI.getOperand(3).setImm(NewImm);
6624353358Sdim      MI.setDesc(get(X86::SHUFPSrri));
6625353358Sdim    }
6626353358Sdim    return true;
6627341825Sdim  }
6628353358Sdim  }
6629341825Sdim  return false;
6630341825Sdim}
6631341825Sdim
6632206083Srdivackystd::pair<uint16_t, uint16_t>
6633309124SdimX86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
6634309124Sdim  uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6635314564Sdim  unsigned opcode = MI.getOpcode();
6636234353Sdim  uint16_t validDomains = 0;
6637314564Sdim  if (domain) {
6638341825Sdim    // Attempt to match for custom instructions.
6639341825Sdim    validDomains = getExecutionDomainCustom(MI);
6640341825Sdim    if (validDomains)
6641341825Sdim      return std::make_pair(domain, validDomains);
6642341825Sdim
6643341825Sdim    if (lookup(opcode, domain, ReplaceableInstrs)) {
6644314564Sdim      validDomains = 0xe;
6645314564Sdim    } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
6646314564Sdim      validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
6647353358Sdim    } else if (lookup(opcode, domain, ReplaceableInstrsFP)) {
6648353358Sdim      validDomains = 0x6;
6649321369Sdim    } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
6650321369Sdim      // Insert/extract instructions should only effect domain if AVX2
6651321369Sdim      // is enabled.
6652321369Sdim      if (!Subtarget.hasAVX2())
6653321369Sdim        return std::make_pair(0, 0);
6654321369Sdim      validDomains = 0xe;
6655314564Sdim    } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
6656314564Sdim      validDomains = 0xe;
6657321369Sdim    } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain,
6658321369Sdim                                                  ReplaceableInstrsAVX512DQ)) {
6659321369Sdim      validDomains = 0xe;
6660321369Sdim    } else if (Subtarget.hasDQI()) {
6661321369Sdim      if (const uint16_t *table = lookupAVX512(opcode, domain,
6662314564Sdim                                             ReplaceableInstrsAVX512DQMasked)) {
6663321369Sdim        if (domain == 1 || (domain == 3 && table[3] == opcode))
6664321369Sdim          validDomains = 0xa;
6665321369Sdim        else
6666321369Sdim          validDomains = 0xc;
6667321369Sdim      }
6668314564Sdim    }
6669314564Sdim  }
6670234353Sdim  return std::make_pair(domain, validDomains);
6671206083Srdivacky}
6672206083Srdivacky
6673309124Sdimvoid X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
6674206083Srdivacky  assert(Domain>0 && Domain<4 && "Invalid execution domain");
6675309124Sdim  uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6676206083Srdivacky  assert(dom && "Not an SSE instruction");
6677341825Sdim
6678341825Sdim  // Attempt to match for custom instructions.
6679341825Sdim  if (setExecutionDomainCustom(MI, Domain))
6680341825Sdim    return;
6681341825Sdim
6682314564Sdim  const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
6683234353Sdim  if (!table) { // try the other table
6684276479Sdim    assert((Subtarget.hasAVX2() || Domain < 3) &&
6685234353Sdim           "256-bit vector operations only available in AVX2");
6686314564Sdim    table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
6687234353Sdim  }
6688353358Sdim  if (!table) { // try the FP table
6689353358Sdim    table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP);
6690353358Sdim    assert((!table || Domain < 3) &&
6691353358Sdim           "Can only select PackedSingle or PackedDouble");
6692353358Sdim  }
6693321369Sdim  if (!table) { // try the other table
6694321369Sdim    assert(Subtarget.hasAVX2() &&
6695321369Sdim           "256-bit insert/extract only available in AVX2");
6696321369Sdim    table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
6697321369Sdim  }
6698314564Sdim  if (!table) { // try the AVX512 table
6699314564Sdim    assert(Subtarget.hasAVX512() && "Requires AVX-512");
6700314564Sdim    table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
6701314564Sdim    // Don't change integer Q instructions to D instructions.
6702314564Sdim    if (table && Domain == 3 && table[3] == MI.getOpcode())
6703314564Sdim      Domain = 4;
6704314564Sdim  }
6705314564Sdim  if (!table) { // try the AVX512DQ table
6706314564Sdim    assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
6707314564Sdim    table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
6708314564Sdim    // Don't change integer Q instructions to D instructions and
6709314564Sdim    // use D intructions if we started with a PS instruction.
6710314564Sdim    if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6711314564Sdim      Domain = 4;
6712314564Sdim  }
6713314564Sdim  if (!table) { // try the AVX512DQMasked table
6714314564Sdim    assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
6715314564Sdim    table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
6716314564Sdim    if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6717314564Sdim      Domain = 4;
6718314564Sdim  }
6719206083Srdivacky  assert(table && "Cannot change domain");
6720309124Sdim  MI.setDesc(get(table[Domain - 1]));
6721206083Srdivacky}
6722207618Srdivacky
6723288943Sdim/// Return the noop instruction to use for a noop.
6724321369Sdimvoid X86InstrInfo::getNoop(MCInst &NopInst) const {
6725207618Srdivacky  NopInst.setOpcode(X86::NOOP);
6726207618Srdivacky}
6727207618Srdivacky
6728221345Sdimbool X86InstrInfo::isHighLatencyDef(int opc) const {
6729221345Sdim  switch (opc) {
6730218893Sdim  default: return false;
6731309124Sdim  case X86::DIVPDrm:
6732309124Sdim  case X86::DIVPDrr:
6733309124Sdim  case X86::DIVPSrm:
6734309124Sdim  case X86::DIVPSrr:
6735218893Sdim  case X86::DIVSDrm:
6736218893Sdim  case X86::DIVSDrm_Int:
6737218893Sdim  case X86::DIVSDrr:
6738218893Sdim  case X86::DIVSDrr_Int:
6739218893Sdim  case X86::DIVSSrm:
6740218893Sdim  case X86::DIVSSrm_Int:
6741218893Sdim  case X86::DIVSSrr:
6742218893Sdim  case X86::DIVSSrr_Int:
6743218893Sdim  case X86::SQRTPDm:
6744218893Sdim  case X86::SQRTPDr:
6745218893Sdim  case X86::SQRTPSm:
6746218893Sdim  case X86::SQRTPSr:
6747218893Sdim  case X86::SQRTSDm:
6748218893Sdim  case X86::SQRTSDm_Int:
6749218893Sdim  case X86::SQRTSDr:
6750218893Sdim  case X86::SQRTSDr_Int:
6751218893Sdim  case X86::SQRTSSm:
6752218893Sdim  case X86::SQRTSSm_Int:
6753218893Sdim  case X86::SQRTSSr:
6754218893Sdim  case X86::SQRTSSr_Int:
6755226633Sdim  // AVX instructions with high latency
6756309124Sdim  case X86::VDIVPDrm:
6757309124Sdim  case X86::VDIVPDrr:
6758309124Sdim  case X86::VDIVPDYrm:
6759309124Sdim  case X86::VDIVPDYrr:
6760309124Sdim  case X86::VDIVPSrm:
6761309124Sdim  case X86::VDIVPSrr:
6762309124Sdim  case X86::VDIVPSYrm:
6763309124Sdim  case X86::VDIVPSYrr:
6764226633Sdim  case X86::VDIVSDrm:
6765226633Sdim  case X86::VDIVSDrm_Int:
6766226633Sdim  case X86::VDIVSDrr:
6767226633Sdim  case X86::VDIVSDrr_Int:
6768226633Sdim  case X86::VDIVSSrm:
6769226633Sdim  case X86::VDIVSSrm_Int:
6770226633Sdim  case X86::VDIVSSrr:
6771226633Sdim  case X86::VDIVSSrr_Int:
6772226633Sdim  case X86::VSQRTPDm:
6773226633Sdim  case X86::VSQRTPDr:
6774309124Sdim  case X86::VSQRTPDYm:
6775309124Sdim  case X86::VSQRTPDYr:
6776226633Sdim  case X86::VSQRTPSm:
6777226633Sdim  case X86::VSQRTPSr:
6778309124Sdim  case X86::VSQRTPSYm:
6779309124Sdim  case X86::VSQRTPSYr:
6780226633Sdim  case X86::VSQRTSDm:
6781226633Sdim  case X86::VSQRTSDm_Int:
6782226633Sdim  case X86::VSQRTSDr:
6783309124Sdim  case X86::VSQRTSDr_Int:
6784226633Sdim  case X86::VSQRTSSm:
6785226633Sdim  case X86::VSQRTSSm_Int:
6786226633Sdim  case X86::VSQRTSSr:
6787309124Sdim  case X86::VSQRTSSr_Int:
6788309124Sdim  // AVX512 instructions with high latency
6789309124Sdim  case X86::VDIVPDZ128rm:
6790309124Sdim  case X86::VDIVPDZ128rmb:
6791309124Sdim  case X86::VDIVPDZ128rmbk:
6792309124Sdim  case X86::VDIVPDZ128rmbkz:
6793309124Sdim  case X86::VDIVPDZ128rmk:
6794309124Sdim  case X86::VDIVPDZ128rmkz:
6795309124Sdim  case X86::VDIVPDZ128rr:
6796309124Sdim  case X86::VDIVPDZ128rrk:
6797309124Sdim  case X86::VDIVPDZ128rrkz:
6798309124Sdim  case X86::VDIVPDZ256rm:
6799309124Sdim  case X86::VDIVPDZ256rmb:
6800309124Sdim  case X86::VDIVPDZ256rmbk:
6801309124Sdim  case X86::VDIVPDZ256rmbkz:
6802309124Sdim  case X86::VDIVPDZ256rmk:
6803309124Sdim  case X86::VDIVPDZ256rmkz:
6804309124Sdim  case X86::VDIVPDZ256rr:
6805309124Sdim  case X86::VDIVPDZ256rrk:
6806309124Sdim  case X86::VDIVPDZ256rrkz:
6807327952Sdim  case X86::VDIVPDZrrb:
6808327952Sdim  case X86::VDIVPDZrrbk:
6809327952Sdim  case X86::VDIVPDZrrbkz:
6810309124Sdim  case X86::VDIVPDZrm:
6811309124Sdim  case X86::VDIVPDZrmb:
6812309124Sdim  case X86::VDIVPDZrmbk:
6813309124Sdim  case X86::VDIVPDZrmbkz:
6814309124Sdim  case X86::VDIVPDZrmk:
6815309124Sdim  case X86::VDIVPDZrmkz:
6816309124Sdim  case X86::VDIVPDZrr:
6817309124Sdim  case X86::VDIVPDZrrk:
6818309124Sdim  case X86::VDIVPDZrrkz:
6819309124Sdim  case X86::VDIVPSZ128rm:
6820309124Sdim  case X86::VDIVPSZ128rmb:
6821309124Sdim  case X86::VDIVPSZ128rmbk:
6822309124Sdim  case X86::VDIVPSZ128rmbkz:
6823309124Sdim  case X86::VDIVPSZ128rmk:
6824309124Sdim  case X86::VDIVPSZ128rmkz:
6825309124Sdim  case X86::VDIVPSZ128rr:
6826309124Sdim  case X86::VDIVPSZ128rrk:
6827309124Sdim  case X86::VDIVPSZ128rrkz:
6828309124Sdim  case X86::VDIVPSZ256rm:
6829309124Sdim  case X86::VDIVPSZ256rmb:
6830309124Sdim  case X86::VDIVPSZ256rmbk:
6831309124Sdim  case X86::VDIVPSZ256rmbkz:
6832309124Sdim  case X86::VDIVPSZ256rmk:
6833309124Sdim  case X86::VDIVPSZ256rmkz:
6834309124Sdim  case X86::VDIVPSZ256rr:
6835309124Sdim  case X86::VDIVPSZ256rrk:
6836309124Sdim  case X86::VDIVPSZ256rrkz:
6837327952Sdim  case X86::VDIVPSZrrb:
6838327952Sdim  case X86::VDIVPSZrrbk:
6839327952Sdim  case X86::VDIVPSZrrbkz:
6840309124Sdim  case X86::VDIVPSZrm:
6841309124Sdim  case X86::VDIVPSZrmb:
6842309124Sdim  case X86::VDIVPSZrmbk:
6843309124Sdim  case X86::VDIVPSZrmbkz:
6844309124Sdim  case X86::VDIVPSZrmk:
6845309124Sdim  case X86::VDIVPSZrmkz:
6846309124Sdim  case X86::VDIVPSZrr:
6847309124Sdim  case X86::VDIVPSZrrk:
6848309124Sdim  case X86::VDIVPSZrrkz:
6849309124Sdim  case X86::VDIVSDZrm:
6850309124Sdim  case X86::VDIVSDZrr:
6851309124Sdim  case X86::VDIVSDZrm_Int:
6852309124Sdim  case X86::VDIVSDZrm_Intk:
6853309124Sdim  case X86::VDIVSDZrm_Intkz:
6854309124Sdim  case X86::VDIVSDZrr_Int:
6855309124Sdim  case X86::VDIVSDZrr_Intk:
6856309124Sdim  case X86::VDIVSDZrr_Intkz:
6857327952Sdim  case X86::VDIVSDZrrb_Int:
6858327952Sdim  case X86::VDIVSDZrrb_Intk:
6859327952Sdim  case X86::VDIVSDZrrb_Intkz:
6860309124Sdim  case X86::VDIVSSZrm:
6861309124Sdim  case X86::VDIVSSZrr:
6862309124Sdim  case X86::VDIVSSZrm_Int:
6863309124Sdim  case X86::VDIVSSZrm_Intk:
6864309124Sdim  case X86::VDIVSSZrm_Intkz:
6865309124Sdim  case X86::VDIVSSZrr_Int:
6866309124Sdim  case X86::VDIVSSZrr_Intk:
6867309124Sdim  case X86::VDIVSSZrr_Intkz:
6868327952Sdim  case X86::VDIVSSZrrb_Int:
6869327952Sdim  case X86::VDIVSSZrrb_Intk:
6870327952Sdim  case X86::VDIVSSZrrb_Intkz:
6871309124Sdim  case X86::VSQRTPDZ128m:
6872309124Sdim  case X86::VSQRTPDZ128mb:
6873309124Sdim  case X86::VSQRTPDZ128mbk:
6874309124Sdim  case X86::VSQRTPDZ128mbkz:
6875309124Sdim  case X86::VSQRTPDZ128mk:
6876309124Sdim  case X86::VSQRTPDZ128mkz:
6877309124Sdim  case X86::VSQRTPDZ128r:
6878309124Sdim  case X86::VSQRTPDZ128rk:
6879309124Sdim  case X86::VSQRTPDZ128rkz:
6880309124Sdim  case X86::VSQRTPDZ256m:
6881309124Sdim  case X86::VSQRTPDZ256mb:
6882309124Sdim  case X86::VSQRTPDZ256mbk:
6883309124Sdim  case X86::VSQRTPDZ256mbkz:
6884309124Sdim  case X86::VSQRTPDZ256mk:
6885309124Sdim  case X86::VSQRTPDZ256mkz:
6886309124Sdim  case X86::VSQRTPDZ256r:
6887309124Sdim  case X86::VSQRTPDZ256rk:
6888309124Sdim  case X86::VSQRTPDZ256rkz:
6889280031Sdim  case X86::VSQRTPDZm:
6890309124Sdim  case X86::VSQRTPDZmb:
6891309124Sdim  case X86::VSQRTPDZmbk:
6892309124Sdim  case X86::VSQRTPDZmbkz:
6893309124Sdim  case X86::VSQRTPDZmk:
6894309124Sdim  case X86::VSQRTPDZmkz:
6895280031Sdim  case X86::VSQRTPDZr:
6896309124Sdim  case X86::VSQRTPDZrb:
6897309124Sdim  case X86::VSQRTPDZrbk:
6898309124Sdim  case X86::VSQRTPDZrbkz:
6899309124Sdim  case X86::VSQRTPDZrk:
6900309124Sdim  case X86::VSQRTPDZrkz:
6901309124Sdim  case X86::VSQRTPSZ128m:
6902309124Sdim  case X86::VSQRTPSZ128mb:
6903309124Sdim  case X86::VSQRTPSZ128mbk:
6904309124Sdim  case X86::VSQRTPSZ128mbkz:
6905309124Sdim  case X86::VSQRTPSZ128mk:
6906309124Sdim  case X86::VSQRTPSZ128mkz:
6907309124Sdim  case X86::VSQRTPSZ128r:
6908309124Sdim  case X86::VSQRTPSZ128rk:
6909309124Sdim  case X86::VSQRTPSZ128rkz:
6910309124Sdim  case X86::VSQRTPSZ256m:
6911309124Sdim  case X86::VSQRTPSZ256mb:
6912309124Sdim  case X86::VSQRTPSZ256mbk:
6913309124Sdim  case X86::VSQRTPSZ256mbkz:
6914309124Sdim  case X86::VSQRTPSZ256mk:
6915309124Sdim  case X86::VSQRTPSZ256mkz:
6916309124Sdim  case X86::VSQRTPSZ256r:
6917309124Sdim  case X86::VSQRTPSZ256rk:
6918309124Sdim  case X86::VSQRTPSZ256rkz:
6919280031Sdim  case X86::VSQRTPSZm:
6920309124Sdim  case X86::VSQRTPSZmb:
6921309124Sdim  case X86::VSQRTPSZmbk:
6922309124Sdim  case X86::VSQRTPSZmbkz:
6923309124Sdim  case X86::VSQRTPSZmk:
6924309124Sdim  case X86::VSQRTPSZmkz:
6925280031Sdim  case X86::VSQRTPSZr:
6926309124Sdim  case X86::VSQRTPSZrb:
6927309124Sdim  case X86::VSQRTPSZrbk:
6928309124Sdim  case X86::VSQRTPSZrbkz:
6929309124Sdim  case X86::VSQRTPSZrk:
6930309124Sdim  case X86::VSQRTPSZrkz:
6931261991Sdim  case X86::VSQRTSDZm:
6932261991Sdim  case X86::VSQRTSDZm_Int:
6933309124Sdim  case X86::VSQRTSDZm_Intk:
6934309124Sdim  case X86::VSQRTSDZm_Intkz:
6935261991Sdim  case X86::VSQRTSDZr:
6936309124Sdim  case X86::VSQRTSDZr_Int:
6937309124Sdim  case X86::VSQRTSDZr_Intk:
6938309124Sdim  case X86::VSQRTSDZr_Intkz:
6939309124Sdim  case X86::VSQRTSDZrb_Int:
6940309124Sdim  case X86::VSQRTSDZrb_Intk:
6941309124Sdim  case X86::VSQRTSDZrb_Intkz:
6942309124Sdim  case X86::VSQRTSSZm:
6943261991Sdim  case X86::VSQRTSSZm_Int:
6944309124Sdim  case X86::VSQRTSSZm_Intk:
6945309124Sdim  case X86::VSQRTSSZm_Intkz:
6946261991Sdim  case X86::VSQRTSSZr:
6947309124Sdim  case X86::VSQRTSSZr_Int:
6948309124Sdim  case X86::VSQRTSSZr_Intk:
6949309124Sdim  case X86::VSQRTSSZr_Intkz:
6950309124Sdim  case X86::VSQRTSSZrb_Int:
6951309124Sdim  case X86::VSQRTSSZrb_Intk:
6952309124Sdim  case X86::VSQRTSSZrb_Intkz:
6953261991Sdim
6954309124Sdim  case X86::VGATHERDPDYrm:
6955309124Sdim  case X86::VGATHERDPDZ128rm:
6956309124Sdim  case X86::VGATHERDPDZ256rm:
6957261991Sdim  case X86::VGATHERDPDZrm:
6958309124Sdim  case X86::VGATHERDPDrm:
6959309124Sdim  case X86::VGATHERDPSYrm:
6960309124Sdim  case X86::VGATHERDPSZ128rm:
6961309124Sdim  case X86::VGATHERDPSZ256rm:
6962261991Sdim  case X86::VGATHERDPSZrm:
6963309124Sdim  case X86::VGATHERDPSrm:
6964309124Sdim  case X86::VGATHERPF0DPDm:
6965309124Sdim  case X86::VGATHERPF0DPSm:
6966309124Sdim  case X86::VGATHERPF0QPDm:
6967309124Sdim  case X86::VGATHERPF0QPSm:
6968309124Sdim  case X86::VGATHERPF1DPDm:
6969309124Sdim  case X86::VGATHERPF1DPSm:
6970309124Sdim  case X86::VGATHERPF1QPDm:
6971309124Sdim  case X86::VGATHERPF1QPSm:
6972309124Sdim  case X86::VGATHERQPDYrm:
6973309124Sdim  case X86::VGATHERQPDZ128rm:
6974309124Sdim  case X86::VGATHERQPDZ256rm:
6975309124Sdim  case X86::VGATHERQPDZrm:
6976309124Sdim  case X86::VGATHERQPDrm:
6977309124Sdim  case X86::VGATHERQPSYrm:
6978309124Sdim  case X86::VGATHERQPSZ128rm:
6979309124Sdim  case X86::VGATHERQPSZ256rm:
6980309124Sdim  case X86::VGATHERQPSZrm:
6981309124Sdim  case X86::VGATHERQPSrm:
6982309124Sdim  case X86::VPGATHERDDYrm:
6983309124Sdim  case X86::VPGATHERDDZ128rm:
6984309124Sdim  case X86::VPGATHERDDZ256rm:
6985309124Sdim  case X86::VPGATHERDDZrm:
6986309124Sdim  case X86::VPGATHERDDrm:
6987309124Sdim  case X86::VPGATHERDQYrm:
6988309124Sdim  case X86::VPGATHERDQZ128rm:
6989309124Sdim  case X86::VPGATHERDQZ256rm:
6990309124Sdim  case X86::VPGATHERDQZrm:
6991309124Sdim  case X86::VPGATHERDQrm:
6992309124Sdim  case X86::VPGATHERQDYrm:
6993309124Sdim  case X86::VPGATHERQDZ128rm:
6994309124Sdim  case X86::VPGATHERQDZ256rm:
6995261991Sdim  case X86::VPGATHERQDZrm:
6996309124Sdim  case X86::VPGATHERQDrm:
6997309124Sdim  case X86::VPGATHERQQYrm:
6998309124Sdim  case X86::VPGATHERQQZ128rm:
6999309124Sdim  case X86::VPGATHERQQZ256rm:
7000261991Sdim  case X86::VPGATHERQQZrm:
7001309124Sdim  case X86::VPGATHERQQrm:
7002309124Sdim  case X86::VSCATTERDPDZ128mr:
7003309124Sdim  case X86::VSCATTERDPDZ256mr:
7004309124Sdim  case X86::VSCATTERDPDZmr:
7005309124Sdim  case X86::VSCATTERDPSZ128mr:
7006309124Sdim  case X86::VSCATTERDPSZ256mr:
7007309124Sdim  case X86::VSCATTERDPSZmr:
7008309124Sdim  case X86::VSCATTERPF0DPDm:
7009309124Sdim  case X86::VSCATTERPF0DPSm:
7010309124Sdim  case X86::VSCATTERPF0QPDm:
7011309124Sdim  case X86::VSCATTERPF0QPSm:
7012309124Sdim  case X86::VSCATTERPF1DPDm:
7013309124Sdim  case X86::VSCATTERPF1DPSm:
7014309124Sdim  case X86::VSCATTERPF1QPDm:
7015309124Sdim  case X86::VSCATTERPF1QPSm:
7016309124Sdim  case X86::VSCATTERQPDZ128mr:
7017309124Sdim  case X86::VSCATTERQPDZ256mr:
7018261991Sdim  case X86::VSCATTERQPDZmr:
7019309124Sdim  case X86::VSCATTERQPSZ128mr:
7020309124Sdim  case X86::VSCATTERQPSZ256mr:
7021261991Sdim  case X86::VSCATTERQPSZmr:
7022309124Sdim  case X86::VPSCATTERDDZ128mr:
7023309124Sdim  case X86::VPSCATTERDDZ256mr:
7024309124Sdim  case X86::VPSCATTERDDZmr:
7025309124Sdim  case X86::VPSCATTERDQZ128mr:
7026309124Sdim  case X86::VPSCATTERDQZ256mr:
7027309124Sdim  case X86::VPSCATTERDQZmr:
7028309124Sdim  case X86::VPSCATTERQDZ128mr:
7029309124Sdim  case X86::VPSCATTERQDZ256mr:
7030261991Sdim  case X86::VPSCATTERQDZmr:
7031309124Sdim  case X86::VPSCATTERQQZ128mr:
7032309124Sdim  case X86::VPSCATTERQQZ256mr:
7033261991Sdim  case X86::VPSCATTERQQZmr:
7034218893Sdim    return true;
7035218893Sdim  }
7036218893Sdim}
7037218893Sdim
7038309124Sdimbool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
7039309124Sdim                                         const MachineRegisterInfo *MRI,
7040309124Sdim                                         const MachineInstr &DefMI,
7041309124Sdim                                         unsigned DefIdx,
7042309124Sdim                                         const MachineInstr &UseMI,
7043309124Sdim                                         unsigned UseIdx) const {
7044309124Sdim  return isHighLatencyDef(DefMI.getOpcode());
7045221345Sdim}
7046221345Sdim
7047296417Sdimbool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
7048296417Sdim                                           const MachineBasicBlock *MBB) const {
7049296417Sdim  assert((Inst.getNumOperands() == 3 || Inst.getNumOperands() == 4) &&
7050296417Sdim         "Reassociation needs binary operators");
7051288943Sdim
7052296417Sdim  // Integer binary math/logic instructions have a third source operand:
7053296417Sdim  // the EFLAGS register. That operand must be both defined here and never
7054296417Sdim  // used; ie, it must be dead. If the EFLAGS operand is live, then we can
7055296417Sdim  // not change anything because rearranging the operands could affect other
7056296417Sdim  // instructions that depend on the exact status flags (zero, sign, etc.)
7057296417Sdim  // that are set by using these particular operands with this operation.
7058296417Sdim  if (Inst.getNumOperands() == 4) {
7059296417Sdim    assert(Inst.getOperand(3).isReg() &&
7060296417Sdim           Inst.getOperand(3).getReg() == X86::EFLAGS &&
7061296417Sdim           "Unexpected operand in reassociable instruction");
7062296417Sdim    if (!Inst.getOperand(3).isDead())
7063296417Sdim      return false;
7064296417Sdim  }
7065288943Sdim
7066296417Sdim  return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
7067288943Sdim}
7068288943Sdim
7069288943Sdim// TODO: There are many more machine instruction opcodes to match:
7070288943Sdim//       1. Other data types (integer, vectors)
7071296417Sdim//       2. Other math / logic operations (xor, or)
7072296417Sdim//       3. Other forms of the same operation (intrinsics and other variants)
7073296417Sdimbool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
7074296417Sdim  switch (Inst.getOpcode()) {
7075296417Sdim  case X86::AND8rr:
7076296417Sdim  case X86::AND16rr:
7077296417Sdim  case X86::AND32rr:
7078296417Sdim  case X86::AND64rr:
7079296417Sdim  case X86::OR8rr:
7080296417Sdim  case X86::OR16rr:
7081296417Sdim  case X86::OR32rr:
7082296417Sdim  case X86::OR64rr:
7083296417Sdim  case X86::XOR8rr:
7084296417Sdim  case X86::XOR16rr:
7085296417Sdim  case X86::XOR32rr:
7086296417Sdim  case X86::XOR64rr:
7087296417Sdim  case X86::IMUL16rr:
7088296417Sdim  case X86::IMUL32rr:
7089296417Sdim  case X86::IMUL64rr:
7090296417Sdim  case X86::PANDrr:
7091296417Sdim  case X86::PORrr:
7092296417Sdim  case X86::PXORrr:
7093309124Sdim  case X86::ANDPDrr:
7094309124Sdim  case X86::ANDPSrr:
7095309124Sdim  case X86::ORPDrr:
7096309124Sdim  case X86::ORPSrr:
7097309124Sdim  case X86::XORPDrr:
7098309124Sdim  case X86::XORPSrr:
7099309124Sdim  case X86::PADDBrr:
7100309124Sdim  case X86::PADDWrr:
7101309124Sdim  case X86::PADDDrr:
7102309124Sdim  case X86::PADDQrr:
7103353358Sdim  case X86::PMULLWrr:
7104353358Sdim  case X86::PMULLDrr:
7105353358Sdim  case X86::PMAXSBrr:
7106353358Sdim  case X86::PMAXSDrr:
7107353358Sdim  case X86::PMAXSWrr:
7108353358Sdim  case X86::PMAXUBrr:
7109353358Sdim  case X86::PMAXUDrr:
7110353358Sdim  case X86::PMAXUWrr:
7111353358Sdim  case X86::PMINSBrr:
7112353358Sdim  case X86::PMINSDrr:
7113353358Sdim  case X86::PMINSWrr:
7114353358Sdim  case X86::PMINUBrr:
7115353358Sdim  case X86::PMINUDrr:
7116353358Sdim  case X86::PMINUWrr:
7117296417Sdim  case X86::VPANDrr:
7118296417Sdim  case X86::VPANDYrr:
7119309124Sdim  case X86::VPANDDZ128rr:
7120309124Sdim  case X86::VPANDDZ256rr:
7121309124Sdim  case X86::VPANDDZrr:
7122309124Sdim  case X86::VPANDQZ128rr:
7123309124Sdim  case X86::VPANDQZ256rr:
7124309124Sdim  case X86::VPANDQZrr:
7125296417Sdim  case X86::VPORrr:
7126296417Sdim  case X86::VPORYrr:
7127309124Sdim  case X86::VPORDZ128rr:
7128309124Sdim  case X86::VPORDZ256rr:
7129309124Sdim  case X86::VPORDZrr:
7130309124Sdim  case X86::VPORQZ128rr:
7131309124Sdim  case X86::VPORQZ256rr:
7132309124Sdim  case X86::VPORQZrr:
7133296417Sdim  case X86::VPXORrr:
7134296417Sdim  case X86::VPXORYrr:
7135309124Sdim  case X86::VPXORDZ128rr:
7136309124Sdim  case X86::VPXORDZ256rr:
7137309124Sdim  case X86::VPXORDZrr:
7138309124Sdim  case X86::VPXORQZ128rr:
7139309124Sdim  case X86::VPXORQZ256rr:
7140309124Sdim  case X86::VPXORQZrr:
7141309124Sdim  case X86::VANDPDrr:
7142309124Sdim  case X86::VANDPSrr:
7143309124Sdim  case X86::VANDPDYrr:
7144309124Sdim  case X86::VANDPSYrr:
7145309124Sdim  case X86::VANDPDZ128rr:
7146309124Sdim  case X86::VANDPSZ128rr:
7147309124Sdim  case X86::VANDPDZ256rr:
7148309124Sdim  case X86::VANDPSZ256rr:
7149309124Sdim  case X86::VANDPDZrr:
7150309124Sdim  case X86::VANDPSZrr:
7151309124Sdim  case X86::VORPDrr:
7152309124Sdim  case X86::VORPSrr:
7153309124Sdim  case X86::VORPDYrr:
7154309124Sdim  case X86::VORPSYrr:
7155309124Sdim  case X86::VORPDZ128rr:
7156309124Sdim  case X86::VORPSZ128rr:
7157309124Sdim  case X86::VORPDZ256rr:
7158309124Sdim  case X86::VORPSZ256rr:
7159309124Sdim  case X86::VORPDZrr:
7160309124Sdim  case X86::VORPSZrr:
7161309124Sdim  case X86::VXORPDrr:
7162309124Sdim  case X86::VXORPSrr:
7163309124Sdim  case X86::VXORPDYrr:
7164309124Sdim  case X86::VXORPSYrr:
7165309124Sdim  case X86::VXORPDZ128rr:
7166309124Sdim  case X86::VXORPSZ128rr:
7167309124Sdim  case X86::VXORPDZ256rr:
7168309124Sdim  case X86::VXORPSZ256rr:
7169309124Sdim  case X86::VXORPDZrr:
7170309124Sdim  case X86::VXORPSZrr:
7171309124Sdim  case X86::KADDBrr:
7172309124Sdim  case X86::KADDWrr:
7173309124Sdim  case X86::KADDDrr:
7174309124Sdim  case X86::KADDQrr:
7175309124Sdim  case X86::KANDBrr:
7176309124Sdim  case X86::KANDWrr:
7177309124Sdim  case X86::KANDDrr:
7178309124Sdim  case X86::KANDQrr:
7179309124Sdim  case X86::KORBrr:
7180309124Sdim  case X86::KORWrr:
7181309124Sdim  case X86::KORDrr:
7182309124Sdim  case X86::KORQrr:
7183309124Sdim  case X86::KXORBrr:
7184309124Sdim  case X86::KXORWrr:
7185309124Sdim  case X86::KXORDrr:
7186309124Sdim  case X86::KXORQrr:
7187309124Sdim  case X86::VPADDBrr:
7188309124Sdim  case X86::VPADDWrr:
7189309124Sdim  case X86::VPADDDrr:
7190309124Sdim  case X86::VPADDQrr:
7191309124Sdim  case X86::VPADDBYrr:
7192309124Sdim  case X86::VPADDWYrr:
7193309124Sdim  case X86::VPADDDYrr:
7194309124Sdim  case X86::VPADDQYrr:
7195309124Sdim  case X86::VPADDBZ128rr:
7196309124Sdim  case X86::VPADDWZ128rr:
7197309124Sdim  case X86::VPADDDZ128rr:
7198309124Sdim  case X86::VPADDQZ128rr:
7199309124Sdim  case X86::VPADDBZ256rr:
7200309124Sdim  case X86::VPADDWZ256rr:
7201309124Sdim  case X86::VPADDDZ256rr:
7202309124Sdim  case X86::VPADDQZ256rr:
7203309124Sdim  case X86::VPADDBZrr:
7204309124Sdim  case X86::VPADDWZrr:
7205309124Sdim  case X86::VPADDDZrr:
7206309124Sdim  case X86::VPADDQZrr:
7207309124Sdim  case X86::VPMULLWrr:
7208309124Sdim  case X86::VPMULLWYrr:
7209309124Sdim  case X86::VPMULLWZ128rr:
7210309124Sdim  case X86::VPMULLWZ256rr:
7211309124Sdim  case X86::VPMULLWZrr:
7212309124Sdim  case X86::VPMULLDrr:
7213309124Sdim  case X86::VPMULLDYrr:
7214309124Sdim  case X86::VPMULLDZ128rr:
7215309124Sdim  case X86::VPMULLDZ256rr:
7216309124Sdim  case X86::VPMULLDZrr:
7217309124Sdim  case X86::VPMULLQZ128rr:
7218309124Sdim  case X86::VPMULLQZ256rr:
7219309124Sdim  case X86::VPMULLQZrr:
7220353358Sdim  case X86::VPMAXSBrr:
7221353358Sdim  case X86::VPMAXSBYrr:
7222353358Sdim  case X86::VPMAXSBZ128rr:
7223353358Sdim  case X86::VPMAXSBZ256rr:
7224353358Sdim  case X86::VPMAXSBZrr:
7225353358Sdim  case X86::VPMAXSDrr:
7226353358Sdim  case X86::VPMAXSDYrr:
7227353358Sdim  case X86::VPMAXSDZ128rr:
7228353358Sdim  case X86::VPMAXSDZ256rr:
7229353358Sdim  case X86::VPMAXSDZrr:
7230353358Sdim  case X86::VPMAXSQZ128rr:
7231353358Sdim  case X86::VPMAXSQZ256rr:
7232353358Sdim  case X86::VPMAXSQZrr:
7233353358Sdim  case X86::VPMAXSWrr:
7234353358Sdim  case X86::VPMAXSWYrr:
7235353358Sdim  case X86::VPMAXSWZ128rr:
7236353358Sdim  case X86::VPMAXSWZ256rr:
7237353358Sdim  case X86::VPMAXSWZrr:
7238353358Sdim  case X86::VPMAXUBrr:
7239353358Sdim  case X86::VPMAXUBYrr:
7240353358Sdim  case X86::VPMAXUBZ128rr:
7241353358Sdim  case X86::VPMAXUBZ256rr:
7242353358Sdim  case X86::VPMAXUBZrr:
7243353358Sdim  case X86::VPMAXUDrr:
7244353358Sdim  case X86::VPMAXUDYrr:
7245353358Sdim  case X86::VPMAXUDZ128rr:
7246353358Sdim  case X86::VPMAXUDZ256rr:
7247353358Sdim  case X86::VPMAXUDZrr:
7248353358Sdim  case X86::VPMAXUQZ128rr:
7249353358Sdim  case X86::VPMAXUQZ256rr:
7250353358Sdim  case X86::VPMAXUQZrr:
7251353358Sdim  case X86::VPMAXUWrr:
7252353358Sdim  case X86::VPMAXUWYrr:
7253353358Sdim  case X86::VPMAXUWZ128rr:
7254353358Sdim  case X86::VPMAXUWZ256rr:
7255353358Sdim  case X86::VPMAXUWZrr:
7256353358Sdim  case X86::VPMINSBrr:
7257353358Sdim  case X86::VPMINSBYrr:
7258353358Sdim  case X86::VPMINSBZ128rr:
7259353358Sdim  case X86::VPMINSBZ256rr:
7260353358Sdim  case X86::VPMINSBZrr:
7261353358Sdim  case X86::VPMINSDrr:
7262353358Sdim  case X86::VPMINSDYrr:
7263353358Sdim  case X86::VPMINSDZ128rr:
7264353358Sdim  case X86::VPMINSDZ256rr:
7265353358Sdim  case X86::VPMINSDZrr:
7266353358Sdim  case X86::VPMINSQZ128rr:
7267353358Sdim  case X86::VPMINSQZ256rr:
7268353358Sdim  case X86::VPMINSQZrr:
7269353358Sdim  case X86::VPMINSWrr:
7270353358Sdim  case X86::VPMINSWYrr:
7271353358Sdim  case X86::VPMINSWZ128rr:
7272353358Sdim  case X86::VPMINSWZ256rr:
7273353358Sdim  case X86::VPMINSWZrr:
7274353358Sdim  case X86::VPMINUBrr:
7275353358Sdim  case X86::VPMINUBYrr:
7276353358Sdim  case X86::VPMINUBZ128rr:
7277353358Sdim  case X86::VPMINUBZ256rr:
7278353358Sdim  case X86::VPMINUBZrr:
7279353358Sdim  case X86::VPMINUDrr:
7280353358Sdim  case X86::VPMINUDYrr:
7281353358Sdim  case X86::VPMINUDZ128rr:
7282353358Sdim  case X86::VPMINUDZ256rr:
7283353358Sdim  case X86::VPMINUDZrr:
7284353358Sdim  case X86::VPMINUQZ128rr:
7285353358Sdim  case X86::VPMINUQZ256rr:
7286353358Sdim  case X86::VPMINUQZrr:
7287353358Sdim  case X86::VPMINUWrr:
7288353358Sdim  case X86::VPMINUWYrr:
7289353358Sdim  case X86::VPMINUWZ128rr:
7290353358Sdim  case X86::VPMINUWZ256rr:
7291353358Sdim  case X86::VPMINUWZrr:
7292296417Sdim  // Normal min/max instructions are not commutative because of NaN and signed
7293296417Sdim  // zero semantics, but these are. Thus, there's no need to check for global
7294296417Sdim  // relaxed math; the instructions themselves have the properties we need.
7295296417Sdim  case X86::MAXCPDrr:
7296296417Sdim  case X86::MAXCPSrr:
7297296417Sdim  case X86::MAXCSDrr:
7298296417Sdim  case X86::MAXCSSrr:
7299296417Sdim  case X86::MINCPDrr:
7300296417Sdim  case X86::MINCPSrr:
7301296417Sdim  case X86::MINCSDrr:
7302296417Sdim  case X86::MINCSSrr:
7303296417Sdim  case X86::VMAXCPDrr:
7304296417Sdim  case X86::VMAXCPSrr:
7305296417Sdim  case X86::VMAXCPDYrr:
7306296417Sdim  case X86::VMAXCPSYrr:
7307309124Sdim  case X86::VMAXCPDZ128rr:
7308309124Sdim  case X86::VMAXCPSZ128rr:
7309309124Sdim  case X86::VMAXCPDZ256rr:
7310309124Sdim  case X86::VMAXCPSZ256rr:
7311309124Sdim  case X86::VMAXCPDZrr:
7312309124Sdim  case X86::VMAXCPSZrr:
7313296417Sdim  case X86::VMAXCSDrr:
7314296417Sdim  case X86::VMAXCSSrr:
7315309124Sdim  case X86::VMAXCSDZrr:
7316309124Sdim  case X86::VMAXCSSZrr:
7317296417Sdim  case X86::VMINCPDrr:
7318296417Sdim  case X86::VMINCPSrr:
7319296417Sdim  case X86::VMINCPDYrr:
7320296417Sdim  case X86::VMINCPSYrr:
7321309124Sdim  case X86::VMINCPDZ128rr:
7322309124Sdim  case X86::VMINCPSZ128rr:
7323309124Sdim  case X86::VMINCPDZ256rr:
7324309124Sdim  case X86::VMINCPSZ256rr:
7325309124Sdim  case X86::VMINCPDZrr:
7326309124Sdim  case X86::VMINCPSZrr:
7327296417Sdim  case X86::VMINCSDrr:
7328296417Sdim  case X86::VMINCSSrr:
7329309124Sdim  case X86::VMINCSDZrr:
7330309124Sdim  case X86::VMINCSSZrr:
7331296417Sdim    return true;
7332296417Sdim  case X86::ADDPDrr:
7333296417Sdim  case X86::ADDPSrr:
7334288943Sdim  case X86::ADDSDrr:
7335288943Sdim  case X86::ADDSSrr:
7336296417Sdim  case X86::MULPDrr:
7337296417Sdim  case X86::MULPSrr:
7338296417Sdim  case X86::MULSDrr:
7339296417Sdim  case X86::MULSSrr:
7340296417Sdim  case X86::VADDPDrr:
7341296417Sdim  case X86::VADDPSrr:
7342296417Sdim  case X86::VADDPDYrr:
7343296417Sdim  case X86::VADDPSYrr:
7344309124Sdim  case X86::VADDPDZ128rr:
7345309124Sdim  case X86::VADDPSZ128rr:
7346309124Sdim  case X86::VADDPDZ256rr:
7347309124Sdim  case X86::VADDPSZ256rr:
7348309124Sdim  case X86::VADDPDZrr:
7349309124Sdim  case X86::VADDPSZrr:
7350288943Sdim  case X86::VADDSDrr:
7351288943Sdim  case X86::VADDSSrr:
7352309124Sdim  case X86::VADDSDZrr:
7353309124Sdim  case X86::VADDSSZrr:
7354296417Sdim  case X86::VMULPDrr:
7355296417Sdim  case X86::VMULPSrr:
7356296417Sdim  case X86::VMULPDYrr:
7357296417Sdim  case X86::VMULPSYrr:
7358309124Sdim  case X86::VMULPDZ128rr:
7359309124Sdim  case X86::VMULPSZ128rr:
7360309124Sdim  case X86::VMULPDZ256rr:
7361309124Sdim  case X86::VMULPSZ256rr:
7362309124Sdim  case X86::VMULPDZrr:
7363309124Sdim  case X86::VMULPSZrr:
7364288943Sdim  case X86::VMULSDrr:
7365288943Sdim  case X86::VMULSSrr:
7366309124Sdim  case X86::VMULSDZrr:
7367309124Sdim  case X86::VMULSSZrr:
7368296417Sdim    return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath;
7369288943Sdim  default:
7370288943Sdim    return false;
7371288943Sdim  }
7372288943Sdim}
7373288943Sdim
7374296417Sdim/// This is an architecture-specific helper function of reassociateOps.
7375296417Sdim/// Set special operand attributes for new instructions after reassociation.
7376296417Sdimvoid X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
7377296417Sdim                                         MachineInstr &OldMI2,
7378296417Sdim                                         MachineInstr &NewMI1,
7379296417Sdim                                         MachineInstr &NewMI2) const {
7380296417Sdim  // Integer instructions define an implicit EFLAGS source register operand as
7381296417Sdim  // the third source (fourth total) operand.
7382296417Sdim  if (OldMI1.getNumOperands() != 4 || OldMI2.getNumOperands() != 4)
7383296417Sdim    return;
7384288943Sdim
7385296417Sdim  assert(NewMI1.getNumOperands() == 4 && NewMI2.getNumOperands() == 4 &&
7386296417Sdim         "Unexpected instruction type for reassociation");
7387288943Sdim
7388296417Sdim  MachineOperand &OldOp1 = OldMI1.getOperand(3);
7389296417Sdim  MachineOperand &OldOp2 = OldMI2.getOperand(3);
7390296417Sdim  MachineOperand &NewOp1 = NewMI1.getOperand(3);
7391296417Sdim  MachineOperand &NewOp2 = NewMI2.getOperand(3);
7392288943Sdim
7393296417Sdim  assert(OldOp1.isReg() && OldOp1.getReg() == X86::EFLAGS && OldOp1.isDead() &&
7394296417Sdim         "Must have dead EFLAGS operand in reassociable instruction");
7395296417Sdim  assert(OldOp2.isReg() && OldOp2.getReg() == X86::EFLAGS && OldOp2.isDead() &&
7396296417Sdim         "Must have dead EFLAGS operand in reassociable instruction");
7397288943Sdim
7398296417Sdim  (void)OldOp1;
7399296417Sdim  (void)OldOp2;
7400288943Sdim
7401296417Sdim  assert(NewOp1.isReg() && NewOp1.getReg() == X86::EFLAGS &&
7402296417Sdim         "Unexpected operand in reassociable instruction");
7403296417Sdim  assert(NewOp2.isReg() && NewOp2.getReg() == X86::EFLAGS &&
7404296417Sdim         "Unexpected operand in reassociable instruction");
7405288943Sdim
7406296417Sdim  // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
7407296417Sdim  // of this pass or other passes. The EFLAGS operands must be dead in these new
7408296417Sdim  // instructions because the EFLAGS operands in the original instructions must
7409296417Sdim  // be dead in order for reassociation to occur.
7410296417Sdim  NewOp1.setIsDead();
7411296417Sdim  NewOp2.setIsDead();
7412288943Sdim}
7413288943Sdim
7414296417Sdimstd::pair<unsigned, unsigned>
7415296417SdimX86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
7416296417Sdim  return std::make_pair(TF, 0u);
7417288943Sdim}
7418288943Sdim
7419296417SdimArrayRef<std::pair<unsigned, const char *>>
7420296417SdimX86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
7421296417Sdim  using namespace X86II;
7422296417Sdim  static const std::pair<unsigned, const char *> TargetFlags[] = {
7423296417Sdim      {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
7424296417Sdim      {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
7425296417Sdim      {MO_GOT, "x86-got"},
7426296417Sdim      {MO_GOTOFF, "x86-gotoff"},
7427296417Sdim      {MO_GOTPCREL, "x86-gotpcrel"},
7428296417Sdim      {MO_PLT, "x86-plt"},
7429296417Sdim      {MO_TLSGD, "x86-tlsgd"},
7430296417Sdim      {MO_TLSLD, "x86-tlsld"},
7431296417Sdim      {MO_TLSLDM, "x86-tlsldm"},
7432296417Sdim      {MO_GOTTPOFF, "x86-gottpoff"},
7433296417Sdim      {MO_INDNTPOFF, "x86-indntpoff"},
7434296417Sdim      {MO_TPOFF, "x86-tpoff"},
7435296417Sdim      {MO_DTPOFF, "x86-dtpoff"},
7436296417Sdim      {MO_NTPOFF, "x86-ntpoff"},
7437296417Sdim      {MO_GOTNTPOFF, "x86-gotntpoff"},
7438296417Sdim      {MO_DLLIMPORT, "x86-dllimport"},
7439296417Sdim      {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
7440296417Sdim      {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
7441296417Sdim      {MO_TLVP, "x86-tlvp"},
7442296417Sdim      {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
7443344779Sdim      {MO_SECREL, "x86-secrel"},
7444344779Sdim      {MO_COFFSTUB, "x86-coffstub"}};
7445296417Sdim  return makeArrayRef(TargetFlags);
7446288943Sdim}
7447288943Sdim
7448210299Sednamespace {
7449288943Sdim  /// Create Global Base Reg pass. This initializes the PIC
7450210299Sed  /// global base register for x86-32.
7451210299Sed  struct CGBR : public MachineFunctionPass {
7452210299Sed    static char ID;
7453212904Sdim    CGBR() : MachineFunctionPass(ID) {}
7454210299Sed
7455276479Sdim    bool runOnMachineFunction(MachineFunction &MF) override {
7456210299Sed      const X86TargetMachine *TM =
7457210299Sed        static_cast<const X86TargetMachine *>(&MF.getTarget());
7458288943Sdim      const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
7459210299Sed
7460341825Sdim      // Don't do anything in the 64-bit small and kernel code models. They use
7461341825Sdim      // RIP-relative addressing for everything.
7462341825Sdim      if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small ||
7463341825Sdim                            TM->getCodeModel() == CodeModel::Kernel))
7464276479Sdim        return false;
7465210299Sed
7466210299Sed      // Only emit a global base reg in PIC mode.
7467309124Sdim      if (!TM->isPositionIndependent())
7468210299Sed        return false;
7469210299Sed
7470218893Sdim      X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
7471218893Sdim      unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
7472218893Sdim
7473218893Sdim      // If we didn't need a GlobalBaseReg, don't insert code.
7474218893Sdim      if (GlobalBaseReg == 0)
7475218893Sdim        return false;
7476218893Sdim
7477210299Sed      // Insert the set of GlobalBaseReg into the first MBB of the function
7478210299Sed      MachineBasicBlock &FirstMBB = MF.front();
7479210299Sed      MachineBasicBlock::iterator MBBI = FirstMBB.begin();
7480210299Sed      DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
7481210299Sed      MachineRegisterInfo &RegInfo = MF.getRegInfo();
7482288943Sdim      const X86InstrInfo *TII = STI.getInstrInfo();
7483210299Sed
7484210299Sed      unsigned PC;
7485288943Sdim      if (STI.isPICStyleGOT())
7486239462Sdim        PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
7487210299Sed      else
7488218893Sdim        PC = GlobalBaseReg;
7489218893Sdim
7490341825Sdim      if (STI.is64Bit()) {
7491341825Sdim        if (TM->getCodeModel() == CodeModel::Medium) {
7492341825Sdim          // In the medium code model, use a RIP-relative LEA to materialize the
7493341825Sdim          // GOT.
7494341825Sdim          BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
7495341825Sdim              .addReg(X86::RIP)
7496341825Sdim              .addImm(0)
7497341825Sdim              .addReg(0)
7498341825Sdim              .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
7499341825Sdim              .addReg(0);
7500341825Sdim        } else if (TM->getCodeModel() == CodeModel::Large) {
7501344779Sdim          // In the large code model, we are aiming for this code, though the
7502344779Sdim          // register allocation may vary:
7503344779Sdim          //   leaq .LN$pb(%rip), %rax
7504344779Sdim          //   movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
7505344779Sdim          //   addq %rcx, %rax
7506344779Sdim          // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
7507344779Sdim          unsigned PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
7508344779Sdim          unsigned GOTReg =
7509344779Sdim              RegInfo.createVirtualRegister(&X86::GR64RegClass);
7510344779Sdim          BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
7511344779Sdim              .addReg(X86::RIP)
7512344779Sdim              .addImm(0)
7513344779Sdim              .addReg(0)
7514344779Sdim              .addSym(MF.getPICBaseSymbol())
7515344779Sdim              .addReg(0);
7516344779Sdim          std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol());
7517344779Sdim          BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
7518344779Sdim              .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
7519344779Sdim                                 X86II::MO_PIC_BASE_OFFSET);
7520344779Sdim          BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
7521344779Sdim              .addReg(PBReg, RegState::Kill)
7522344779Sdim              .addReg(GOTReg, RegState::Kill);
7523341825Sdim        } else {
7524341825Sdim          llvm_unreachable("unexpected code model");
7525341825Sdim        }
7526341825Sdim      } else {
7527341825Sdim        // Operand of MovePCtoStack is completely ignored by asm printer. It's
7528341825Sdim        // only used in JIT code emission as displacement to pc.
7529341825Sdim        BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
7530218893Sdim
7531341825Sdim        // If we're using vanilla 'GOT' PIC style, we should use relative
7532341825Sdim        // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
7533341825Sdim        if (STI.isPICStyleGOT()) {
7534341825Sdim          // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
7535341825Sdim          // %some_register
7536341825Sdim          BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
7537341825Sdim              .addReg(PC)
7538341825Sdim              .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
7539341825Sdim                                 X86II::MO_GOT_ABSOLUTE_ADDRESS);
7540341825Sdim        }
7541210299Sed      }
7542210299Sed
7543210299Sed      return true;
7544210299Sed    }
7545210299Sed
7546314564Sdim    StringRef getPassName() const override {
7547210299Sed      return "X86 PIC Global Base Reg Initialization";
7548210299Sed    }
7549210299Sed
7550276479Sdim    void getAnalysisUsage(AnalysisUsage &AU) const override {
7551210299Sed      AU.setPreservesCFG();
7552210299Sed      MachineFunctionPass::getAnalysisUsage(AU);
7553210299Sed    }
7554210299Sed  };
7555210299Sed}
7556210299Sed
7557210299Sedchar CGBR::ID = 0;
7558210299SedFunctionPass*
7559276479Sdimllvm::createX86GlobalBaseRegPass() { return new CGBR(); }
7560239462Sdim
7561239462Sdimnamespace {
7562239462Sdim  struct LDTLSCleanup : public MachineFunctionPass {
7563239462Sdim    static char ID;
7564239462Sdim    LDTLSCleanup() : MachineFunctionPass(ID) {}
7565239462Sdim
7566276479Sdim    bool runOnMachineFunction(MachineFunction &MF) override {
7567327952Sdim      if (skipFunction(MF.getFunction()))
7568309124Sdim        return false;
7569309124Sdim
7570309124Sdim      X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
7571239462Sdim      if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
7572239462Sdim        // No point folding accesses if there isn't at least two.
7573239462Sdim        return false;
7574239462Sdim      }
7575239462Sdim
7576239462Sdim      MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
7577239462Sdim      return VisitNode(DT->getRootNode(), 0);
7578239462Sdim    }
7579239462Sdim
7580239462Sdim    // Visit the dominator subtree rooted at Node in pre-order.
7581239462Sdim    // If TLSBaseAddrReg is non-null, then use that to replace any
7582239462Sdim    // TLS_base_addr instructions. Otherwise, create the register
7583239462Sdim    // when the first such instruction is seen, and then use it
7584239462Sdim    // as we encounter more instructions.
7585239462Sdim    bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
7586239462Sdim      MachineBasicBlock *BB = Node->getBlock();
7587239462Sdim      bool Changed = false;
7588239462Sdim
7589239462Sdim      // Traverse the current block.
7590239462Sdim      for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
7591239462Sdim           ++I) {
7592239462Sdim        switch (I->getOpcode()) {
7593239462Sdim          case X86::TLS_base_addr32:
7594239462Sdim          case X86::TLS_base_addr64:
7595239462Sdim            if (TLSBaseAddrReg)
7596309124Sdim              I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
7597239462Sdim            else
7598309124Sdim              I = SetRegister(*I, &TLSBaseAddrReg);
7599239462Sdim            Changed = true;
7600239462Sdim            break;
7601239462Sdim          default:
7602239462Sdim            break;
7603239462Sdim        }
7604239462Sdim      }
7605239462Sdim
7606239462Sdim      // Visit the children of this block in the dominator tree.
7607239462Sdim      for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
7608239462Sdim           I != E; ++I) {
7609239462Sdim        Changed |= VisitNode(*I, TLSBaseAddrReg);
7610239462Sdim      }
7611239462Sdim
7612239462Sdim      return Changed;
7613239462Sdim    }
7614239462Sdim
7615239462Sdim    // Replace the TLS_base_addr instruction I with a copy from
7616239462Sdim    // TLSBaseAddrReg, returning the new instruction.
7617309124Sdim    MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
7618239462Sdim                                         unsigned TLSBaseAddrReg) {
7619309124Sdim      MachineFunction *MF = I.getParent()->getParent();
7620288943Sdim      const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
7621288943Sdim      const bool is64Bit = STI.is64Bit();
7622288943Sdim      const X86InstrInfo *TII = STI.getInstrInfo();
7623239462Sdim
7624239462Sdim      // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
7625309124Sdim      MachineInstr *Copy =
7626309124Sdim          BuildMI(*I.getParent(), I, I.getDebugLoc(),
7627309124Sdim                  TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
7628309124Sdim              .addReg(TLSBaseAddrReg);
7629239462Sdim
7630239462Sdim      // Erase the TLS_base_addr instruction.
7631309124Sdim      I.eraseFromParent();
7632239462Sdim
7633239462Sdim      return Copy;
7634239462Sdim    }
7635239462Sdim
7636321369Sdim    // Create a virtual register in *TLSBaseAddrReg, and populate it by
7637239462Sdim    // inserting a copy instruction after I. Returns the new instruction.
7638309124Sdim    MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
7639309124Sdim      MachineFunction *MF = I.getParent()->getParent();
7640288943Sdim      const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
7641288943Sdim      const bool is64Bit = STI.is64Bit();
7642288943Sdim      const X86InstrInfo *TII = STI.getInstrInfo();
7643239462Sdim
7644239462Sdim      // Create a virtual register for the TLS base address.
7645239462Sdim      MachineRegisterInfo &RegInfo = MF->getRegInfo();
7646239462Sdim      *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
7647239462Sdim                                                      ? &X86::GR64RegClass
7648239462Sdim                                                      : &X86::GR32RegClass);
7649239462Sdim
7650239462Sdim      // Insert a copy from RAX/EAX to TLSBaseAddrReg.
7651309124Sdim      MachineInstr *Next = I.getNextNode();
7652309124Sdim      MachineInstr *Copy =
7653309124Sdim          BuildMI(*I.getParent(), Next, I.getDebugLoc(),
7654309124Sdim                  TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
7655309124Sdim              .addReg(is64Bit ? X86::RAX : X86::EAX);
7656239462Sdim
7657239462Sdim      return Copy;
7658239462Sdim    }
7659239462Sdim
7660314564Sdim    StringRef getPassName() const override {
7661239462Sdim      return "Local Dynamic TLS Access Clean-up";
7662239462Sdim    }
7663239462Sdim
7664276479Sdim    void getAnalysisUsage(AnalysisUsage &AU) const override {
7665239462Sdim      AU.setPreservesCFG();
7666239462Sdim      AU.addRequired<MachineDominatorTree>();
7667239462Sdim      MachineFunctionPass::getAnalysisUsage(AU);
7668239462Sdim    }
7669239462Sdim  };
7670239462Sdim}
7671239462Sdim
7672239462Sdimchar LDTLSCleanup::ID = 0;
7673239462SdimFunctionPass*
7674239462Sdimllvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
7675321369Sdim
7676327952Sdim/// Constants defining how certain sequences should be outlined.
7677327952Sdim///
7678327952Sdim/// \p MachineOutlinerDefault implies that the function is called with a call
7679327952Sdim/// instruction, and a return must be emitted for the outlined function frame.
7680327952Sdim///
7681327952Sdim/// That is,
7682327952Sdim///
7683327952Sdim/// I1                                 OUTLINED_FUNCTION:
7684327952Sdim/// I2 --> call OUTLINED_FUNCTION       I1
7685327952Sdim/// I3                                  I2
7686327952Sdim///                                     I3
7687327952Sdim///                                     ret
7688327952Sdim///
7689327952Sdim/// * Call construction overhead: 1 (call instruction)
7690327952Sdim/// * Frame construction overhead: 1 (return instruction)
7691327952Sdim///
7692327952Sdim/// \p MachineOutlinerTailCall implies that the function is being tail called.
7693327952Sdim/// A jump is emitted instead of a call, and the return is already present in
7694327952Sdim/// the outlined sequence. That is,
7695327952Sdim///
7696327952Sdim/// I1                                 OUTLINED_FUNCTION:
7697327952Sdim/// I2 --> jmp OUTLINED_FUNCTION       I1
7698327952Sdim/// ret                                I2
7699327952Sdim///                                    ret
7700327952Sdim///
7701327952Sdim/// * Call construction overhead: 1 (jump instruction)
7702327952Sdim/// * Frame construction overhead: 0 (don't need to return)
7703327952Sdim///
7704327952Sdimenum MachineOutlinerClass {
7705327952Sdim  MachineOutlinerDefault,
7706327952Sdim  MachineOutlinerTailCall
7707327952Sdim};
7708321369Sdim
7709341825Sdimoutliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo(
7710341825Sdim    std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
7711341825Sdim  unsigned SequenceSize =
7712341825Sdim      std::accumulate(RepeatedSequenceLocs[0].front(),
7713341825Sdim                      std::next(RepeatedSequenceLocs[0].back()), 0,
7714341825Sdim                      [](unsigned Sum, const MachineInstr &MI) {
7715341825Sdim                        // FIXME: x86 doesn't implement getInstSizeInBytes, so
7716341825Sdim                        // we can't tell the cost.  Just assume each instruction
7717341825Sdim                        // is one byte.
7718341825Sdim                        if (MI.isDebugInstr() || MI.isKill())
7719341825Sdim                          return Sum;
7720341825Sdim                        return Sum + 1;
7721341825Sdim                      });
7722321369Sdim
7723341825Sdim  // FIXME: Use real size in bytes for call and ret instructions.
7724341825Sdim  if (RepeatedSequenceLocs[0].back()->isTerminator()) {
7725341825Sdim    for (outliner::Candidate &C : RepeatedSequenceLocs)
7726341825Sdim      C.setCallInfo(MachineOutlinerTailCall, 1);
7727327952Sdim
7728341825Sdim    return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
7729341825Sdim                                      0, // Number of bytes to emit frame.
7730341825Sdim                                      MachineOutlinerTailCall // Type of frame.
7731341825Sdim    );
7732341825Sdim  }
7733341825Sdim
7734341825Sdim  for (outliner::Candidate &C : RepeatedSequenceLocs)
7735341825Sdim    C.setCallInfo(MachineOutlinerDefault, 1);
7736341825Sdim
7737341825Sdim  return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
7738341825Sdim                                    MachineOutlinerDefault);
7739321369Sdim}
7740321369Sdim
7741327952Sdimbool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF,
7742327952Sdim                                           bool OutlineFromLinkOnceODRs) const {
7743327952Sdim  const Function &F = MF.getFunction();
7744327952Sdim
7745327952Sdim  // Does the function use a red zone? If it does, then we can't risk messing
7746327952Sdim  // with the stack.
7747353358Sdim  if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) {
7748341825Sdim    // It could have a red zone. If it does, then we don't want to touch it.
7749341825Sdim    const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
7750341825Sdim    if (!X86FI || X86FI->getUsesRedZone())
7751327952Sdim      return false;
7752341825Sdim  }
7753327952Sdim
7754327952Sdim  // If we *don't* want to outline from things that could potentially be deduped
7755327952Sdim  // then return false.
7756327952Sdim  if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
7757327952Sdim      return false;
7758327952Sdim
7759327952Sdim  // This function is viable for outlining, so return true.
7760327952Sdim  return true;
7761321369Sdim}
7762321369Sdim
7763341825Sdimoutliner::InstrType
7764341825SdimX86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,  unsigned Flags) const {
7765341825Sdim  MachineInstr &MI = *MIT;
7766321369Sdim  // Don't allow debug values to impact outlining type.
7767341825Sdim  if (MI.isDebugInstr() || MI.isIndirectDebugValue())
7768341825Sdim    return outliner::InstrType::Invisible;
7769321369Sdim
7770341825Sdim  // At this point, KILL instructions don't really tell us much so we can go
7771341825Sdim  // ahead and skip over them.
7772341825Sdim  if (MI.isKill())
7773341825Sdim    return outliner::InstrType::Invisible;
7774341825Sdim
7775321369Sdim  // Is this a tail call? If yes, we can outline as a tail call.
7776321369Sdim  if (isTailCall(MI))
7777341825Sdim    return outliner::InstrType::Legal;
7778321369Sdim
7779321369Sdim  // Is this the terminator of a basic block?
7780321369Sdim  if (MI.isTerminator() || MI.isReturn()) {
7781321369Sdim
7782321369Sdim    // Does its parent have any successors in its MachineFunction?
7783321369Sdim    if (MI.getParent()->succ_empty())
7784341825Sdim      return outliner::InstrType::Legal;
7785321369Sdim
7786321369Sdim    // It does, so we can't tail call it.
7787341825Sdim    return outliner::InstrType::Illegal;
7788321369Sdim  }
7789321369Sdim
7790321369Sdim  // Don't outline anything that modifies or reads from the stack pointer.
7791321369Sdim  //
7792321369Sdim  // FIXME: There are instructions which are being manually built without
7793321369Sdim  // explicit uses/defs so we also have to check the MCInstrDesc. We should be
7794321369Sdim  // able to remove the extra checks once those are fixed up. For example,
7795327952Sdim  // sometimes we might get something like %rax = POP64r 1. This won't be
7796321369Sdim  // caught by modifiesRegister or readsRegister even though the instruction
7797321369Sdim  // really ought to be formed so that modifiesRegister/readsRegister would
7798321369Sdim  // catch it.
7799321369Sdim  if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
7800321369Sdim      MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
7801321369Sdim      MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
7802341825Sdim    return outliner::InstrType::Illegal;
7803321369Sdim
7804321369Sdim  // Outlined calls change the instruction pointer, so don't read from it.
7805321369Sdim  if (MI.readsRegister(X86::RIP, &RI) ||
7806321369Sdim      MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
7807321369Sdim      MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
7808341825Sdim    return outliner::InstrType::Illegal;
7809321369Sdim
7810321369Sdim  // Positions can't safely be outlined.
7811321369Sdim  if (MI.isPosition())
7812341825Sdim    return outliner::InstrType::Illegal;
7813321369Sdim
7814321369Sdim  // Make sure none of the operands of this instruction do anything tricky.
7815321369Sdim  for (const MachineOperand &MOP : MI.operands())
7816321369Sdim    if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
7817321369Sdim        MOP.isTargetIndex())
7818341825Sdim      return outliner::InstrType::Illegal;
7819321369Sdim
7820341825Sdim  return outliner::InstrType::Legal;
7821321369Sdim}
7822321369Sdim
7823341825Sdimvoid X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB,
7824321369Sdim                                          MachineFunction &MF,
7825341825Sdim                                          const outliner::OutlinedFunction &OF)
7826327952Sdim                                          const {
7827321369Sdim  // If we're a tail call, we already have a return, so don't do anything.
7828341825Sdim  if (OF.FrameConstructionID == MachineOutlinerTailCall)
7829321369Sdim    return;
7830321369Sdim
7831321369Sdim  // We're a normal call, so our sequence doesn't have a return instruction.
7832321369Sdim  // Add it in.
7833321369Sdim  MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RETQ));
7834321369Sdim  MBB.insert(MBB.end(), retq);
7835321369Sdim}
7836321369Sdim
7837321369SdimMachineBasicBlock::iterator
7838321369SdimX86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
7839321369Sdim                                 MachineBasicBlock::iterator &It,
7840321369Sdim                                 MachineFunction &MF,
7841341825Sdim                                 const outliner::Candidate &C) const {
7842321369Sdim  // Is it a tail call?
7843341825Sdim  if (C.CallConstructionID == MachineOutlinerTailCall) {
7844321369Sdim    // Yes, just insert a JMP.
7845321369Sdim    It = MBB.insert(It,
7846341825Sdim                  BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
7847321369Sdim                      .addGlobalAddress(M.getNamedValue(MF.getName())));
7848321369Sdim  } else {
7849321369Sdim    // No, insert a call.
7850321369Sdim    It = MBB.insert(It,
7851321369Sdim                  BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
7852321369Sdim                      .addGlobalAddress(M.getNamedValue(MF.getName())));
7853321369Sdim  }
7854321369Sdim
7855321369Sdim  return It;
7856321369Sdim}
7857344779Sdim
7858344779Sdim#define GET_INSTRINFO_HELPERS
7859344779Sdim#include "X86GenInstrInfo.inc"
7860