X86InstrInfo.cpp revision 353358
1//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the X86 implementation of the TargetInstrInfo class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "X86InstrInfo.h"
14#include "X86.h"
15#include "X86InstrBuilder.h"
16#include "X86InstrFoldTables.h"
17#include "X86MachineFunctionInfo.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/Sequence.h"
22#include "llvm/CodeGen/LivePhysRegs.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineDominators.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/StackMaps.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/LLVMContext.h"
34#include "llvm/MC/MCAsmInfo.h"
35#include "llvm/MC/MCExpr.h"
36#include "llvm/MC/MCInst.h"
37#include "llvm/Support/CommandLine.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Support/raw_ostream.h"
41#include "llvm/Target/TargetOptions.h"
42
43using namespace llvm;
44
45#define DEBUG_TYPE "x86-instr-info"
46
47#define GET_INSTRINFO_CTOR_DTOR
48#include "X86GenInstrInfo.inc"
49
50static cl::opt<bool>
51    NoFusing("disable-spill-fusing",
52             cl::desc("Disable fusing of spill code into instructions"),
53             cl::Hidden);
54static cl::opt<bool>
55PrintFailedFusing("print-failed-fuse-candidates",
56                  cl::desc("Print instructions that the allocator wants to"
57                           " fuse, but the X86 backend currently can't"),
58                  cl::Hidden);
59static cl::opt<bool>
60ReMatPICStubLoad("remat-pic-stub-load",
61                 cl::desc("Re-materialize load from stub in PIC mode"),
62                 cl::init(false), cl::Hidden);
63static cl::opt<unsigned>
64PartialRegUpdateClearance("partial-reg-update-clearance",
65                          cl::desc("Clearance between two register writes "
66                                   "for inserting XOR to avoid partial "
67                                   "register update"),
68                          cl::init(64), cl::Hidden);
69static cl::opt<unsigned>
70UndefRegClearance("undef-reg-clearance",
71                  cl::desc("How many idle instructions we would like before "
72                           "certain undef register reads"),
73                  cl::init(128), cl::Hidden);
74
75
76// Pin the vtable to this file.
77void X86InstrInfo::anchor() {}
78
79X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
80    : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
81                                               : X86::ADJCALLSTACKDOWN32),
82                      (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
83                                               : X86::ADJCALLSTACKUP32),
84                      X86::CATCHRET,
85                      (STI.is64Bit() ? X86::RETQ : X86::RETL)),
86      Subtarget(STI), RI(STI.getTargetTriple()) {
87}
88
89bool
90X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
91                                    unsigned &SrcReg, unsigned &DstReg,
92                                    unsigned &SubIdx) const {
93  switch (MI.getOpcode()) {
94  default: break;
95  case X86::MOVSX16rr8:
96  case X86::MOVZX16rr8:
97  case X86::MOVSX32rr8:
98  case X86::MOVZX32rr8:
99  case X86::MOVSX64rr8:
100    if (!Subtarget.is64Bit())
101      // It's not always legal to reference the low 8-bit of the larger
102      // register in 32-bit mode.
103      return false;
104    LLVM_FALLTHROUGH;
105  case X86::MOVSX32rr16:
106  case X86::MOVZX32rr16:
107  case X86::MOVSX64rr16:
108  case X86::MOVSX64rr32: {
109    if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
110      // Be conservative.
111      return false;
112    SrcReg = MI.getOperand(1).getReg();
113    DstReg = MI.getOperand(0).getReg();
114    switch (MI.getOpcode()) {
115    default: llvm_unreachable("Unreachable!");
116    case X86::MOVSX16rr8:
117    case X86::MOVZX16rr8:
118    case X86::MOVSX32rr8:
119    case X86::MOVZX32rr8:
120    case X86::MOVSX64rr8:
121      SubIdx = X86::sub_8bit;
122      break;
123    case X86::MOVSX32rr16:
124    case X86::MOVZX32rr16:
125    case X86::MOVSX64rr16:
126      SubIdx = X86::sub_16bit;
127      break;
128    case X86::MOVSX64rr32:
129      SubIdx = X86::sub_32bit;
130      break;
131    }
132    return true;
133  }
134  }
135  return false;
136}
137
138int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
139  const MachineFunction *MF = MI.getParent()->getParent();
140  const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
141
142  if (isFrameInstr(MI)) {
143    unsigned StackAlign = TFI->getStackAlignment();
144    int SPAdj = alignTo(getFrameSize(MI), StackAlign);
145    SPAdj -= getFrameAdjustment(MI);
146    if (!isFrameSetup(MI))
147      SPAdj = -SPAdj;
148    return SPAdj;
149  }
150
151  // To know whether a call adjusts the stack, we need information
152  // that is bound to the following ADJCALLSTACKUP pseudo.
153  // Look for the next ADJCALLSTACKUP that follows the call.
154  if (MI.isCall()) {
155    const MachineBasicBlock *MBB = MI.getParent();
156    auto I = ++MachineBasicBlock::const_iterator(MI);
157    for (auto E = MBB->end(); I != E; ++I) {
158      if (I->getOpcode() == getCallFrameDestroyOpcode() ||
159          I->isCall())
160        break;
161    }
162
163    // If we could not find a frame destroy opcode, then it has already
164    // been simplified, so we don't care.
165    if (I->getOpcode() != getCallFrameDestroyOpcode())
166      return 0;
167
168    return -(I->getOperand(1).getImm());
169  }
170
171  // Currently handle only PUSHes we can reasonably expect to see
172  // in call sequences
173  switch (MI.getOpcode()) {
174  default:
175    return 0;
176  case X86::PUSH32i8:
177  case X86::PUSH32r:
178  case X86::PUSH32rmm:
179  case X86::PUSH32rmr:
180  case X86::PUSHi32:
181    return 4;
182  case X86::PUSH64i8:
183  case X86::PUSH64r:
184  case X86::PUSH64rmm:
185  case X86::PUSH64rmr:
186  case X86::PUSH64i32:
187    return 8;
188  }
189}
190
191/// Return true and the FrameIndex if the specified
192/// operand and follow operands form a reference to the stack frame.
193bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
194                                  int &FrameIndex) const {
195  if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
196      MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
197      MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
198      MI.getOperand(Op + X86::AddrDisp).isImm() &&
199      MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
200      MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
201      MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
202    FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
203    return true;
204  }
205  return false;
206}
207
208static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
209  switch (Opcode) {
210  default:
211    return false;
212  case X86::MOV8rm:
213  case X86::KMOVBkm:
214    MemBytes = 1;
215    return true;
216  case X86::MOV16rm:
217  case X86::KMOVWkm:
218    MemBytes = 2;
219    return true;
220  case X86::MOV32rm:
221  case X86::MOVSSrm:
222  case X86::MOVSSrm_alt:
223  case X86::VMOVSSrm:
224  case X86::VMOVSSrm_alt:
225  case X86::VMOVSSZrm:
226  case X86::VMOVSSZrm_alt:
227  case X86::KMOVDkm:
228    MemBytes = 4;
229    return true;
230  case X86::MOV64rm:
231  case X86::LD_Fp64m:
232  case X86::MOVSDrm:
233  case X86::MOVSDrm_alt:
234  case X86::VMOVSDrm:
235  case X86::VMOVSDrm_alt:
236  case X86::VMOVSDZrm:
237  case X86::VMOVSDZrm_alt:
238  case X86::MMX_MOVD64rm:
239  case X86::MMX_MOVQ64rm:
240  case X86::KMOVQkm:
241    MemBytes = 8;
242    return true;
243  case X86::MOVAPSrm:
244  case X86::MOVUPSrm:
245  case X86::MOVAPDrm:
246  case X86::MOVUPDrm:
247  case X86::MOVDQArm:
248  case X86::MOVDQUrm:
249  case X86::VMOVAPSrm:
250  case X86::VMOVUPSrm:
251  case X86::VMOVAPDrm:
252  case X86::VMOVUPDrm:
253  case X86::VMOVDQArm:
254  case X86::VMOVDQUrm:
255  case X86::VMOVAPSZ128rm:
256  case X86::VMOVUPSZ128rm:
257  case X86::VMOVAPSZ128rm_NOVLX:
258  case X86::VMOVUPSZ128rm_NOVLX:
259  case X86::VMOVAPDZ128rm:
260  case X86::VMOVUPDZ128rm:
261  case X86::VMOVDQU8Z128rm:
262  case X86::VMOVDQU16Z128rm:
263  case X86::VMOVDQA32Z128rm:
264  case X86::VMOVDQU32Z128rm:
265  case X86::VMOVDQA64Z128rm:
266  case X86::VMOVDQU64Z128rm:
267    MemBytes = 16;
268    return true;
269  case X86::VMOVAPSYrm:
270  case X86::VMOVUPSYrm:
271  case X86::VMOVAPDYrm:
272  case X86::VMOVUPDYrm:
273  case X86::VMOVDQAYrm:
274  case X86::VMOVDQUYrm:
275  case X86::VMOVAPSZ256rm:
276  case X86::VMOVUPSZ256rm:
277  case X86::VMOVAPSZ256rm_NOVLX:
278  case X86::VMOVUPSZ256rm_NOVLX:
279  case X86::VMOVAPDZ256rm:
280  case X86::VMOVUPDZ256rm:
281  case X86::VMOVDQU8Z256rm:
282  case X86::VMOVDQU16Z256rm:
283  case X86::VMOVDQA32Z256rm:
284  case X86::VMOVDQU32Z256rm:
285  case X86::VMOVDQA64Z256rm:
286  case X86::VMOVDQU64Z256rm:
287    MemBytes = 32;
288    return true;
289  case X86::VMOVAPSZrm:
290  case X86::VMOVUPSZrm:
291  case X86::VMOVAPDZrm:
292  case X86::VMOVUPDZrm:
293  case X86::VMOVDQU8Zrm:
294  case X86::VMOVDQU16Zrm:
295  case X86::VMOVDQA32Zrm:
296  case X86::VMOVDQU32Zrm:
297  case X86::VMOVDQA64Zrm:
298  case X86::VMOVDQU64Zrm:
299    MemBytes = 64;
300    return true;
301  }
302}
303
304static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
305  switch (Opcode) {
306  default:
307    return false;
308  case X86::MOV8mr:
309  case X86::KMOVBmk:
310    MemBytes = 1;
311    return true;
312  case X86::MOV16mr:
313  case X86::KMOVWmk:
314    MemBytes = 2;
315    return true;
316  case X86::MOV32mr:
317  case X86::MOVSSmr:
318  case X86::VMOVSSmr:
319  case X86::VMOVSSZmr:
320  case X86::KMOVDmk:
321    MemBytes = 4;
322    return true;
323  case X86::MOV64mr:
324  case X86::ST_FpP64m:
325  case X86::MOVSDmr:
326  case X86::VMOVSDmr:
327  case X86::VMOVSDZmr:
328  case X86::MMX_MOVD64mr:
329  case X86::MMX_MOVQ64mr:
330  case X86::MMX_MOVNTQmr:
331  case X86::KMOVQmk:
332    MemBytes = 8;
333    return true;
334  case X86::MOVAPSmr:
335  case X86::MOVUPSmr:
336  case X86::MOVAPDmr:
337  case X86::MOVUPDmr:
338  case X86::MOVDQAmr:
339  case X86::MOVDQUmr:
340  case X86::VMOVAPSmr:
341  case X86::VMOVUPSmr:
342  case X86::VMOVAPDmr:
343  case X86::VMOVUPDmr:
344  case X86::VMOVDQAmr:
345  case X86::VMOVDQUmr:
346  case X86::VMOVUPSZ128mr:
347  case X86::VMOVAPSZ128mr:
348  case X86::VMOVUPSZ128mr_NOVLX:
349  case X86::VMOVAPSZ128mr_NOVLX:
350  case X86::VMOVUPDZ128mr:
351  case X86::VMOVAPDZ128mr:
352  case X86::VMOVDQA32Z128mr:
353  case X86::VMOVDQU32Z128mr:
354  case X86::VMOVDQA64Z128mr:
355  case X86::VMOVDQU64Z128mr:
356  case X86::VMOVDQU8Z128mr:
357  case X86::VMOVDQU16Z128mr:
358    MemBytes = 16;
359    return true;
360  case X86::VMOVUPSYmr:
361  case X86::VMOVAPSYmr:
362  case X86::VMOVUPDYmr:
363  case X86::VMOVAPDYmr:
364  case X86::VMOVDQUYmr:
365  case X86::VMOVDQAYmr:
366  case X86::VMOVUPSZ256mr:
367  case X86::VMOVAPSZ256mr:
368  case X86::VMOVUPSZ256mr_NOVLX:
369  case X86::VMOVAPSZ256mr_NOVLX:
370  case X86::VMOVUPDZ256mr:
371  case X86::VMOVAPDZ256mr:
372  case X86::VMOVDQU8Z256mr:
373  case X86::VMOVDQU16Z256mr:
374  case X86::VMOVDQA32Z256mr:
375  case X86::VMOVDQU32Z256mr:
376  case X86::VMOVDQA64Z256mr:
377  case X86::VMOVDQU64Z256mr:
378    MemBytes = 32;
379    return true;
380  case X86::VMOVUPSZmr:
381  case X86::VMOVAPSZmr:
382  case X86::VMOVUPDZmr:
383  case X86::VMOVAPDZmr:
384  case X86::VMOVDQU8Zmr:
385  case X86::VMOVDQU16Zmr:
386  case X86::VMOVDQA32Zmr:
387  case X86::VMOVDQU32Zmr:
388  case X86::VMOVDQA64Zmr:
389  case X86::VMOVDQU64Zmr:
390    MemBytes = 64;
391    return true;
392  }
393  return false;
394}
395
396unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
397                                           int &FrameIndex) const {
398  unsigned Dummy;
399  return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
400}
401
402unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
403                                           int &FrameIndex,
404                                           unsigned &MemBytes) const {
405  if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
406    if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
407      return MI.getOperand(0).getReg();
408  return 0;
409}
410
411unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
412                                                 int &FrameIndex) const {
413  unsigned Dummy;
414  if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
415    unsigned Reg;
416    if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
417      return Reg;
418    // Check for post-frame index elimination operations
419    SmallVector<const MachineMemOperand *, 1> Accesses;
420    if (hasLoadFromStackSlot(MI, Accesses)) {
421      FrameIndex =
422          cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
423              ->getFrameIndex();
424      return 1;
425    }
426  }
427  return 0;
428}
429
430unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
431                                          int &FrameIndex) const {
432  unsigned Dummy;
433  return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
434}
435
436unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
437                                          int &FrameIndex,
438                                          unsigned &MemBytes) const {
439  if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
440    if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
441        isFrameOperand(MI, 0, FrameIndex))
442      return MI.getOperand(X86::AddrNumOperands).getReg();
443  return 0;
444}
445
446unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
447                                                int &FrameIndex) const {
448  unsigned Dummy;
449  if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
450    unsigned Reg;
451    if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
452      return Reg;
453    // Check for post-frame index elimination operations
454    SmallVector<const MachineMemOperand *, 1> Accesses;
455    if (hasStoreToStackSlot(MI, Accesses)) {
456      FrameIndex =
457          cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
458              ->getFrameIndex();
459      return 1;
460    }
461  }
462  return 0;
463}
464
465/// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
466static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
467  // Don't waste compile time scanning use-def chains of physregs.
468  if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
469    return false;
470  bool isPICBase = false;
471  for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
472         E = MRI.def_instr_end(); I != E; ++I) {
473    MachineInstr *DefMI = &*I;
474    if (DefMI->getOpcode() != X86::MOVPC32r)
475      return false;
476    assert(!isPICBase && "More than one PIC base?");
477    isPICBase = true;
478  }
479  return isPICBase;
480}
481
482bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
483                                                     AliasAnalysis *AA) const {
484  switch (MI.getOpcode()) {
485  default: break;
486  case X86::MOV8rm:
487  case X86::MOV8rm_NOREX:
488  case X86::MOV16rm:
489  case X86::MOV32rm:
490  case X86::MOV64rm:
491  case X86::MOVSSrm:
492  case X86::MOVSSrm_alt:
493  case X86::MOVSDrm:
494  case X86::MOVSDrm_alt:
495  case X86::MOVAPSrm:
496  case X86::MOVUPSrm:
497  case X86::MOVAPDrm:
498  case X86::MOVUPDrm:
499  case X86::MOVDQArm:
500  case X86::MOVDQUrm:
501  case X86::VMOVSSrm:
502  case X86::VMOVSSrm_alt:
503  case X86::VMOVSDrm:
504  case X86::VMOVSDrm_alt:
505  case X86::VMOVAPSrm:
506  case X86::VMOVUPSrm:
507  case X86::VMOVAPDrm:
508  case X86::VMOVUPDrm:
509  case X86::VMOVDQArm:
510  case X86::VMOVDQUrm:
511  case X86::VMOVAPSYrm:
512  case X86::VMOVUPSYrm:
513  case X86::VMOVAPDYrm:
514  case X86::VMOVUPDYrm:
515  case X86::VMOVDQAYrm:
516  case X86::VMOVDQUYrm:
517  case X86::MMX_MOVD64rm:
518  case X86::MMX_MOVQ64rm:
519  // AVX-512
520  case X86::VMOVSSZrm:
521  case X86::VMOVSSZrm_alt:
522  case X86::VMOVSDZrm:
523  case X86::VMOVSDZrm_alt:
524  case X86::VMOVAPDZ128rm:
525  case X86::VMOVAPDZ256rm:
526  case X86::VMOVAPDZrm:
527  case X86::VMOVAPSZ128rm:
528  case X86::VMOVAPSZ256rm:
529  case X86::VMOVAPSZ128rm_NOVLX:
530  case X86::VMOVAPSZ256rm_NOVLX:
531  case X86::VMOVAPSZrm:
532  case X86::VMOVDQA32Z128rm:
533  case X86::VMOVDQA32Z256rm:
534  case X86::VMOVDQA32Zrm:
535  case X86::VMOVDQA64Z128rm:
536  case X86::VMOVDQA64Z256rm:
537  case X86::VMOVDQA64Zrm:
538  case X86::VMOVDQU16Z128rm:
539  case X86::VMOVDQU16Z256rm:
540  case X86::VMOVDQU16Zrm:
541  case X86::VMOVDQU32Z128rm:
542  case X86::VMOVDQU32Z256rm:
543  case X86::VMOVDQU32Zrm:
544  case X86::VMOVDQU64Z128rm:
545  case X86::VMOVDQU64Z256rm:
546  case X86::VMOVDQU64Zrm:
547  case X86::VMOVDQU8Z128rm:
548  case X86::VMOVDQU8Z256rm:
549  case X86::VMOVDQU8Zrm:
550  case X86::VMOVUPDZ128rm:
551  case X86::VMOVUPDZ256rm:
552  case X86::VMOVUPDZrm:
553  case X86::VMOVUPSZ128rm:
554  case X86::VMOVUPSZ256rm:
555  case X86::VMOVUPSZ128rm_NOVLX:
556  case X86::VMOVUPSZ256rm_NOVLX:
557  case X86::VMOVUPSZrm: {
558    // Loads from constant pools are trivially rematerializable.
559    if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
560        MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
561        MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
562        MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
563        MI.isDereferenceableInvariantLoad(AA)) {
564      unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
565      if (BaseReg == 0 || BaseReg == X86::RIP)
566        return true;
567      // Allow re-materialization of PIC load.
568      if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
569        return false;
570      const MachineFunction &MF = *MI.getParent()->getParent();
571      const MachineRegisterInfo &MRI = MF.getRegInfo();
572      return regIsPICBase(BaseReg, MRI);
573    }
574    return false;
575  }
576
577  case X86::LEA32r:
578  case X86::LEA64r: {
579    if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
580        MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
581        MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
582        !MI.getOperand(1 + X86::AddrDisp).isReg()) {
583      // lea fi#, lea GV, etc. are all rematerializable.
584      if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
585        return true;
586      unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
587      if (BaseReg == 0)
588        return true;
589      // Allow re-materialization of lea PICBase + x.
590      const MachineFunction &MF = *MI.getParent()->getParent();
591      const MachineRegisterInfo &MRI = MF.getRegInfo();
592      return regIsPICBase(BaseReg, MRI);
593    }
594    return false;
595  }
596  }
597
598  // All other instructions marked M_REMATERIALIZABLE are always trivially
599  // rematerializable.
600  return true;
601}
602
603void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
604                                 MachineBasicBlock::iterator I,
605                                 unsigned DestReg, unsigned SubIdx,
606                                 const MachineInstr &Orig,
607                                 const TargetRegisterInfo &TRI) const {
608  bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
609  if (ClobbersEFLAGS && !isSafeToClobberEFLAGS(MBB, I)) {
610    // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
611    // effects.
612    int Value;
613    switch (Orig.getOpcode()) {
614    case X86::MOV32r0:  Value = 0; break;
615    case X86::MOV32r1:  Value = 1; break;
616    case X86::MOV32r_1: Value = -1; break;
617    default:
618      llvm_unreachable("Unexpected instruction!");
619    }
620
621    const DebugLoc &DL = Orig.getDebugLoc();
622    BuildMI(MBB, I, DL, get(X86::MOV32ri))
623        .add(Orig.getOperand(0))
624        .addImm(Value);
625  } else {
626    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
627    MBB.insert(I, MI);
628  }
629
630  MachineInstr &NewMI = *std::prev(I);
631  NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
632}
633
634/// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
635bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
636  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
637    MachineOperand &MO = MI.getOperand(i);
638    if (MO.isReg() && MO.isDef() &&
639        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
640      return true;
641    }
642  }
643  return false;
644}
645
646/// Check whether the shift count for a machine operand is non-zero.
647inline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
648                                              unsigned ShiftAmtOperandIdx) {
649  // The shift count is six bits with the REX.W prefix and five bits without.
650  unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
651  unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
652  return Imm & ShiftCountMask;
653}
654
655/// Check whether the given shift count is appropriate
656/// can be represented by a LEA instruction.
657inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
658  // Left shift instructions can be transformed into load-effective-address
659  // instructions if we can encode them appropriately.
660  // A LEA instruction utilizes a SIB byte to encode its scale factor.
661  // The SIB.scale field is two bits wide which means that we can encode any
662  // shift amount less than 4.
663  return ShAmt < 4 && ShAmt > 0;
664}
665
666bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
667                                  unsigned Opc, bool AllowSP, unsigned &NewSrc,
668                                  bool &isKill, MachineOperand &ImplicitOp,
669                                  LiveVariables *LV) const {
670  MachineFunction &MF = *MI.getParent()->getParent();
671  const TargetRegisterClass *RC;
672  if (AllowSP) {
673    RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
674  } else {
675    RC = Opc != X86::LEA32r ?
676      &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
677  }
678  unsigned SrcReg = Src.getReg();
679
680  // For both LEA64 and LEA32 the register already has essentially the right
681  // type (32-bit or 64-bit) we may just need to forbid SP.
682  if (Opc != X86::LEA64_32r) {
683    NewSrc = SrcReg;
684    isKill = Src.isKill();
685    assert(!Src.isUndef() && "Undef op doesn't need optimization");
686
687    if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
688        !MF.getRegInfo().constrainRegClass(NewSrc, RC))
689      return false;
690
691    return true;
692  }
693
694  // This is for an LEA64_32r and incoming registers are 32-bit. One way or
695  // another we need to add 64-bit registers to the final MI.
696  if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
697    ImplicitOp = Src;
698    ImplicitOp.setImplicit();
699
700    NewSrc = getX86SubSuperRegister(Src.getReg(), 64);
701    isKill = Src.isKill();
702    assert(!Src.isUndef() && "Undef op doesn't need optimization");
703  } else {
704    // Virtual register of the wrong class, we have to create a temporary 64-bit
705    // vreg to feed into the LEA.
706    NewSrc = MF.getRegInfo().createVirtualRegister(RC);
707    MachineInstr *Copy =
708        BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
709            .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
710            .add(Src);
711
712    // Which is obviously going to be dead after we're done with it.
713    isKill = true;
714
715    if (LV)
716      LV->replaceKillInstruction(SrcReg, MI, *Copy);
717  }
718
719  // We've set all the parameters without issue.
720  return true;
721}
722
723MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(
724    unsigned MIOpc, MachineFunction::iterator &MFI, MachineInstr &MI,
725    LiveVariables *LV, bool Is8BitOp) const {
726  // We handle 8-bit adds and various 16-bit opcodes in the switch below.
727  MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
728  assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits(
729              *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
730         "Unexpected type for LEA transform");
731
732  // TODO: For a 32-bit target, we need to adjust the LEA variables with
733  // something like this:
734  //   Opcode = X86::LEA32r;
735  //   InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
736  //   OutRegLEA =
737  //       Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
738  //                : RegInfo.createVirtualRegister(&X86::GR32RegClass);
739  if (!Subtarget.is64Bit())
740    return nullptr;
741
742  unsigned Opcode = X86::LEA64_32r;
743  unsigned InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
744  unsigned OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
745
746  // Build and insert into an implicit UNDEF value. This is OK because
747  // we will be shifting and then extracting the lower 8/16-bits.
748  // This has the potential to cause partial register stall. e.g.
749  //   movw    (%rbp,%rcx,2), %dx
750  //   leal    -65(%rdx), %esi
751  // But testing has shown this *does* help performance in 64-bit mode (at
752  // least on modern x86 machines).
753  MachineBasicBlock::iterator MBBI = MI.getIterator();
754  unsigned Dest = MI.getOperand(0).getReg();
755  unsigned Src = MI.getOperand(1).getReg();
756  bool IsDead = MI.getOperand(0).isDead();
757  bool IsKill = MI.getOperand(1).isKill();
758  unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
759  assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization");
760  BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
761  MachineInstr *InsMI =
762      BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
763          .addReg(InRegLEA, RegState::Define, SubReg)
764          .addReg(Src, getKillRegState(IsKill));
765
766  MachineInstrBuilder MIB =
767      BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
768  switch (MIOpc) {
769  default: llvm_unreachable("Unreachable!");
770  case X86::SHL8ri:
771  case X86::SHL16ri: {
772    unsigned ShAmt = MI.getOperand(2).getImm();
773    MIB.addReg(0).addImm(1ULL << ShAmt)
774       .addReg(InRegLEA, RegState::Kill).addImm(0).addReg(0);
775    break;
776  }
777  case X86::INC8r:
778  case X86::INC16r:
779    addRegOffset(MIB, InRegLEA, true, 1);
780    break;
781  case X86::DEC8r:
782  case X86::DEC16r:
783    addRegOffset(MIB, InRegLEA, true, -1);
784    break;
785  case X86::ADD8ri:
786  case X86::ADD8ri_DB:
787  case X86::ADD16ri:
788  case X86::ADD16ri8:
789  case X86::ADD16ri_DB:
790  case X86::ADD16ri8_DB:
791    addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
792    break;
793  case X86::ADD8rr:
794  case X86::ADD8rr_DB:
795  case X86::ADD16rr:
796  case X86::ADD16rr_DB: {
797    unsigned Src2 = MI.getOperand(2).getReg();
798    bool IsKill2 = MI.getOperand(2).isKill();
799    assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization");
800    unsigned InRegLEA2 = 0;
801    MachineInstr *InsMI2 = nullptr;
802    if (Src == Src2) {
803      // ADD8rr/ADD16rr killed %reg1028, %reg1028
804      // just a single insert_subreg.
805      addRegReg(MIB, InRegLEA, true, InRegLEA, false);
806    } else {
807      if (Subtarget.is64Bit())
808        InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
809      else
810        InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
811      // Build and insert into an implicit UNDEF value. This is OK because
812      // we will be shifting and then extracting the lower 8/16-bits.
813      BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA2);
814      InsMI2 = BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
815                   .addReg(InRegLEA2, RegState::Define, SubReg)
816                   .addReg(Src2, getKillRegState(IsKill2));
817      addRegReg(MIB, InRegLEA, true, InRegLEA2, true);
818    }
819    if (LV && IsKill2 && InsMI2)
820      LV->replaceKillInstruction(Src2, MI, *InsMI2);
821    break;
822  }
823  }
824
825  MachineInstr *NewMI = MIB;
826  MachineInstr *ExtMI =
827      BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
828          .addReg(Dest, RegState::Define | getDeadRegState(IsDead))
829          .addReg(OutRegLEA, RegState::Kill, SubReg);
830
831  if (LV) {
832    // Update live variables.
833    LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
834    LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
835    if (IsKill)
836      LV->replaceKillInstruction(Src, MI, *InsMI);
837    if (IsDead)
838      LV->replaceKillInstruction(Dest, MI, *ExtMI);
839  }
840
841  return ExtMI;
842}
843
844/// This method must be implemented by targets that
845/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
846/// may be able to convert a two-address instruction into a true
847/// three-address instruction on demand.  This allows the X86 target (for
848/// example) to convert ADD and SHL instructions into LEA instructions if they
849/// would require register copies due to two-addressness.
850///
851/// This method returns a null pointer if the transformation cannot be
852/// performed, otherwise it returns the new instruction.
853///
854MachineInstr *
855X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
856                                    MachineInstr &MI, LiveVariables *LV) const {
857  // The following opcodes also sets the condition code register(s). Only
858  // convert them to equivalent lea if the condition code register def's
859  // are dead!
860  if (hasLiveCondCodeDef(MI))
861    return nullptr;
862
863  MachineFunction &MF = *MI.getParent()->getParent();
864  // All instructions input are two-addr instructions.  Get the known operands.
865  const MachineOperand &Dest = MI.getOperand(0);
866  const MachineOperand &Src = MI.getOperand(1);
867
868  // Ideally, operations with undef should be folded before we get here, but we
869  // can't guarantee it. Bail out because optimizing undefs is a waste of time.
870  // Without this, we have to forward undef state to new register operands to
871  // avoid machine verifier errors.
872  if (Src.isUndef())
873    return nullptr;
874  if (MI.getNumOperands() > 2)
875    if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
876      return nullptr;
877
878  MachineInstr *NewMI = nullptr;
879  bool Is64Bit = Subtarget.is64Bit();
880
881  bool Is8BitOp = false;
882  unsigned MIOpc = MI.getOpcode();
883  switch (MIOpc) {
884  default: llvm_unreachable("Unreachable!");
885  case X86::SHL64ri: {
886    assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
887    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
888    if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
889
890    // LEA can't handle RSP.
891    if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
892        !MF.getRegInfo().constrainRegClass(Src.getReg(),
893                                           &X86::GR64_NOSPRegClass))
894      return nullptr;
895
896    NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
897                .add(Dest)
898                .addReg(0)
899                .addImm(1ULL << ShAmt)
900                .add(Src)
901                .addImm(0)
902                .addReg(0);
903    break;
904  }
905  case X86::SHL32ri: {
906    assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
907    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
908    if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
909
910    unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
911
912    // LEA can't handle ESP.
913    bool isKill;
914    unsigned SrcReg;
915    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
916    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
917                        SrcReg, isKill, ImplicitOp, LV))
918      return nullptr;
919
920    MachineInstrBuilder MIB =
921        BuildMI(MF, MI.getDebugLoc(), get(Opc))
922            .add(Dest)
923            .addReg(0)
924            .addImm(1ULL << ShAmt)
925            .addReg(SrcReg, getKillRegState(isKill))
926            .addImm(0)
927            .addReg(0);
928    if (ImplicitOp.getReg() != 0)
929      MIB.add(ImplicitOp);
930    NewMI = MIB;
931
932    break;
933  }
934  case X86::SHL8ri:
935    Is8BitOp = true;
936    LLVM_FALLTHROUGH;
937  case X86::SHL16ri: {
938    assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
939    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
940    if (!isTruncatedShiftCountForLEA(ShAmt))
941      return nullptr;
942    return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
943  }
944  case X86::INC64r:
945  case X86::INC32r: {
946    assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
947    unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r :
948        (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
949    bool isKill;
950    unsigned SrcReg;
951    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
952    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill,
953                        ImplicitOp, LV))
954      return nullptr;
955
956    MachineInstrBuilder MIB =
957        BuildMI(MF, MI.getDebugLoc(), get(Opc))
958            .add(Dest)
959            .addReg(SrcReg, getKillRegState(isKill));
960    if (ImplicitOp.getReg() != 0)
961      MIB.add(ImplicitOp);
962
963    NewMI = addOffset(MIB, 1);
964    break;
965  }
966  case X86::DEC64r:
967  case X86::DEC32r: {
968    assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
969    unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
970        : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
971
972    bool isKill;
973    unsigned SrcReg;
974    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
975    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill,
976                        ImplicitOp, LV))
977      return nullptr;
978
979    MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
980                                  .add(Dest)
981                                  .addReg(SrcReg, getKillRegState(isKill));
982    if (ImplicitOp.getReg() != 0)
983      MIB.add(ImplicitOp);
984
985    NewMI = addOffset(MIB, -1);
986
987    break;
988  }
989  case X86::DEC8r:
990  case X86::INC8r:
991    Is8BitOp = true;
992    LLVM_FALLTHROUGH;
993  case X86::DEC16r:
994  case X86::INC16r:
995    return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
996  case X86::ADD64rr:
997  case X86::ADD64rr_DB:
998  case X86::ADD32rr:
999  case X86::ADD32rr_DB: {
1000    assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1001    unsigned Opc;
1002    if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
1003      Opc = X86::LEA64r;
1004    else
1005      Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1006
1007    bool isKill;
1008    unsigned SrcReg;
1009    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1010    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1011                        SrcReg, isKill, ImplicitOp, LV))
1012      return nullptr;
1013
1014    const MachineOperand &Src2 = MI.getOperand(2);
1015    bool isKill2;
1016    unsigned SrcReg2;
1017    MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
1018    if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
1019                        SrcReg2, isKill2, ImplicitOp2, LV))
1020      return nullptr;
1021
1022    MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
1023    if (ImplicitOp.getReg() != 0)
1024      MIB.add(ImplicitOp);
1025    if (ImplicitOp2.getReg() != 0)
1026      MIB.add(ImplicitOp2);
1027
1028    NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
1029    if (LV && Src2.isKill())
1030      LV->replaceKillInstruction(SrcReg2, MI, *NewMI);
1031    break;
1032  }
1033  case X86::ADD8rr:
1034  case X86::ADD8rr_DB:
1035    Is8BitOp = true;
1036    LLVM_FALLTHROUGH;
1037  case X86::ADD16rr:
1038  case X86::ADD16rr_DB:
1039    return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1040  case X86::ADD64ri32:
1041  case X86::ADD64ri8:
1042  case X86::ADD64ri32_DB:
1043  case X86::ADD64ri8_DB:
1044    assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1045    NewMI = addOffset(
1046        BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
1047        MI.getOperand(2));
1048    break;
1049  case X86::ADD32ri:
1050  case X86::ADD32ri8:
1051  case X86::ADD32ri_DB:
1052  case X86::ADD32ri8_DB: {
1053    assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1054    unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1055
1056    bool isKill;
1057    unsigned SrcReg;
1058    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1059    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1060                        SrcReg, isKill, ImplicitOp, LV))
1061      return nullptr;
1062
1063    MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1064                                  .add(Dest)
1065                                  .addReg(SrcReg, getKillRegState(isKill));
1066    if (ImplicitOp.getReg() != 0)
1067      MIB.add(ImplicitOp);
1068
1069    NewMI = addOffset(MIB, MI.getOperand(2));
1070    break;
1071  }
1072  case X86::ADD8ri:
1073  case X86::ADD8ri_DB:
1074    Is8BitOp = true;
1075    LLVM_FALLTHROUGH;
1076  case X86::ADD16ri:
1077  case X86::ADD16ri8:
1078  case X86::ADD16ri_DB:
1079  case X86::ADD16ri8_DB:
1080    return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1081  case X86::SUB8ri:
1082  case X86::SUB16ri8:
1083  case X86::SUB16ri:
1084    /// FIXME: Support these similar to ADD8ri/ADD16ri*.
1085    return nullptr;
1086  case X86::SUB32ri8:
1087  case X86::SUB32ri: {
1088    int64_t Imm = MI.getOperand(2).getImm();
1089    if (!isInt<32>(-Imm))
1090      return nullptr;
1091
1092    assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1093    unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1094
1095    bool isKill;
1096    unsigned SrcReg;
1097    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1098    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1099                        SrcReg, isKill, ImplicitOp, LV))
1100      return nullptr;
1101
1102    MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1103                                  .add(Dest)
1104                                  .addReg(SrcReg, getKillRegState(isKill));
1105    if (ImplicitOp.getReg() != 0)
1106      MIB.add(ImplicitOp);
1107
1108    NewMI = addOffset(MIB, -Imm);
1109    break;
1110  }
1111
1112  case X86::SUB64ri8:
1113  case X86::SUB64ri32: {
1114    int64_t Imm = MI.getOperand(2).getImm();
1115    if (!isInt<32>(-Imm))
1116      return nullptr;
1117
1118    assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!");
1119
1120    MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(),
1121                                      get(X86::LEA64r)).add(Dest).add(Src);
1122    NewMI = addOffset(MIB, -Imm);
1123    break;
1124  }
1125
1126  case X86::VMOVDQU8Z128rmk:
1127  case X86::VMOVDQU8Z256rmk:
1128  case X86::VMOVDQU8Zrmk:
1129  case X86::VMOVDQU16Z128rmk:
1130  case X86::VMOVDQU16Z256rmk:
1131  case X86::VMOVDQU16Zrmk:
1132  case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
1133  case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
1134  case X86::VMOVDQU32Zrmk:    case X86::VMOVDQA32Zrmk:
1135  case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
1136  case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
1137  case X86::VMOVDQU64Zrmk:    case X86::VMOVDQA64Zrmk:
1138  case X86::VMOVUPDZ128rmk:   case X86::VMOVAPDZ128rmk:
1139  case X86::VMOVUPDZ256rmk:   case X86::VMOVAPDZ256rmk:
1140  case X86::VMOVUPDZrmk:      case X86::VMOVAPDZrmk:
1141  case X86::VMOVUPSZ128rmk:   case X86::VMOVAPSZ128rmk:
1142  case X86::VMOVUPSZ256rmk:   case X86::VMOVAPSZ256rmk:
1143  case X86::VMOVUPSZrmk:      case X86::VMOVAPSZrmk: {
1144    unsigned Opc;
1145    switch (MIOpc) {
1146    default: llvm_unreachable("Unreachable!");
1147    case X86::VMOVDQU8Z128rmk:  Opc = X86::VPBLENDMBZ128rmk; break;
1148    case X86::VMOVDQU8Z256rmk:  Opc = X86::VPBLENDMBZ256rmk; break;
1149    case X86::VMOVDQU8Zrmk:     Opc = X86::VPBLENDMBZrmk;    break;
1150    case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break;
1151    case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break;
1152    case X86::VMOVDQU16Zrmk:    Opc = X86::VPBLENDMWZrmk;    break;
1153    case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
1154    case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
1155    case X86::VMOVDQU32Zrmk:    Opc = X86::VPBLENDMDZrmk;    break;
1156    case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
1157    case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
1158    case X86::VMOVDQU64Zrmk:    Opc = X86::VPBLENDMQZrmk;    break;
1159    case X86::VMOVUPDZ128rmk:   Opc = X86::VBLENDMPDZ128rmk; break;
1160    case X86::VMOVUPDZ256rmk:   Opc = X86::VBLENDMPDZ256rmk; break;
1161    case X86::VMOVUPDZrmk:      Opc = X86::VBLENDMPDZrmk;    break;
1162    case X86::VMOVUPSZ128rmk:   Opc = X86::VBLENDMPSZ128rmk; break;
1163    case X86::VMOVUPSZ256rmk:   Opc = X86::VBLENDMPSZ256rmk; break;
1164    case X86::VMOVUPSZrmk:      Opc = X86::VBLENDMPSZrmk;    break;
1165    case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
1166    case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
1167    case X86::VMOVDQA32Zrmk:    Opc = X86::VPBLENDMDZrmk;    break;
1168    case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
1169    case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
1170    case X86::VMOVDQA64Zrmk:    Opc = X86::VPBLENDMQZrmk;    break;
1171    case X86::VMOVAPDZ128rmk:   Opc = X86::VBLENDMPDZ128rmk; break;
1172    case X86::VMOVAPDZ256rmk:   Opc = X86::VBLENDMPDZ256rmk; break;
1173    case X86::VMOVAPDZrmk:      Opc = X86::VBLENDMPDZrmk;    break;
1174    case X86::VMOVAPSZ128rmk:   Opc = X86::VBLENDMPSZ128rmk; break;
1175    case X86::VMOVAPSZ256rmk:   Opc = X86::VBLENDMPSZ256rmk; break;
1176    case X86::VMOVAPSZrmk:      Opc = X86::VBLENDMPSZrmk;    break;
1177    }
1178
1179    NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1180              .add(Dest)
1181              .add(MI.getOperand(2))
1182              .add(Src)
1183              .add(MI.getOperand(3))
1184              .add(MI.getOperand(4))
1185              .add(MI.getOperand(5))
1186              .add(MI.getOperand(6))
1187              .add(MI.getOperand(7));
1188    break;
1189  }
1190  case X86::VMOVDQU8Z128rrk:
1191  case X86::VMOVDQU8Z256rrk:
1192  case X86::VMOVDQU8Zrrk:
1193  case X86::VMOVDQU16Z128rrk:
1194  case X86::VMOVDQU16Z256rrk:
1195  case X86::VMOVDQU16Zrrk:
1196  case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
1197  case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
1198  case X86::VMOVDQU32Zrrk:    case X86::VMOVDQA32Zrrk:
1199  case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
1200  case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
1201  case X86::VMOVDQU64Zrrk:    case X86::VMOVDQA64Zrrk:
1202  case X86::VMOVUPDZ128rrk:   case X86::VMOVAPDZ128rrk:
1203  case X86::VMOVUPDZ256rrk:   case X86::VMOVAPDZ256rrk:
1204  case X86::VMOVUPDZrrk:      case X86::VMOVAPDZrrk:
1205  case X86::VMOVUPSZ128rrk:   case X86::VMOVAPSZ128rrk:
1206  case X86::VMOVUPSZ256rrk:   case X86::VMOVAPSZ256rrk:
1207  case X86::VMOVUPSZrrk:      case X86::VMOVAPSZrrk: {
1208    unsigned Opc;
1209    switch (MIOpc) {
1210    default: llvm_unreachable("Unreachable!");
1211    case X86::VMOVDQU8Z128rrk:  Opc = X86::VPBLENDMBZ128rrk; break;
1212    case X86::VMOVDQU8Z256rrk:  Opc = X86::VPBLENDMBZ256rrk; break;
1213    case X86::VMOVDQU8Zrrk:     Opc = X86::VPBLENDMBZrrk;    break;
1214    case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
1215    case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
1216    case X86::VMOVDQU16Zrrk:    Opc = X86::VPBLENDMWZrrk;    break;
1217    case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1218    case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1219    case X86::VMOVDQU32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break;
1220    case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1221    case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1222    case X86::VMOVDQU64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break;
1223    case X86::VMOVUPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break;
1224    case X86::VMOVUPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break;
1225    case X86::VMOVUPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break;
1226    case X86::VMOVUPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break;
1227    case X86::VMOVUPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break;
1228    case X86::VMOVUPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break;
1229    case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1230    case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1231    case X86::VMOVDQA32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break;
1232    case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1233    case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1234    case X86::VMOVDQA64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break;
1235    case X86::VMOVAPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break;
1236    case X86::VMOVAPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break;
1237    case X86::VMOVAPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break;
1238    case X86::VMOVAPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break;
1239    case X86::VMOVAPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break;
1240    case X86::VMOVAPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break;
1241    }
1242
1243    NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1244              .add(Dest)
1245              .add(MI.getOperand(2))
1246              .add(Src)
1247              .add(MI.getOperand(3));
1248    break;
1249  }
1250  }
1251
1252  if (!NewMI) return nullptr;
1253
1254  if (LV) {  // Update live variables
1255    if (Src.isKill())
1256      LV->replaceKillInstruction(Src.getReg(), MI, *NewMI);
1257    if (Dest.isDead())
1258      LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI);
1259  }
1260
1261  MFI->insert(MI.getIterator(), NewMI); // Insert the new inst
1262  return NewMI;
1263}
1264
1265/// This determines which of three possible cases of a three source commute
1266/// the source indexes correspond to taking into account any mask operands.
1267/// All prevents commuting a passthru operand. Returns -1 if the commute isn't
1268/// possible.
1269/// Case 0 - Possible to commute the first and second operands.
1270/// Case 1 - Possible to commute the first and third operands.
1271/// Case 2 - Possible to commute the second and third operands.
1272static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
1273                                       unsigned SrcOpIdx2) {
1274  // Put the lowest index to SrcOpIdx1 to simplify the checks below.
1275  if (SrcOpIdx1 > SrcOpIdx2)
1276    std::swap(SrcOpIdx1, SrcOpIdx2);
1277
1278  unsigned Op1 = 1, Op2 = 2, Op3 = 3;
1279  if (X86II::isKMasked(TSFlags)) {
1280    Op2++;
1281    Op3++;
1282  }
1283
1284  if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
1285    return 0;
1286  if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
1287    return 1;
1288  if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
1289    return 2;
1290  llvm_unreachable("Unknown three src commute case.");
1291}
1292
1293unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
1294    const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
1295    const X86InstrFMA3Group &FMA3Group) const {
1296
1297  unsigned Opc = MI.getOpcode();
1298
1299  // TODO: Commuting the 1st operand of FMA*_Int requires some additional
1300  // analysis. The commute optimization is legal only if all users of FMA*_Int
1301  // use only the lowest element of the FMA*_Int instruction. Such analysis are
1302  // not implemented yet. So, just return 0 in that case.
1303  // When such analysis are available this place will be the right place for
1304  // calling it.
1305  assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&
1306         "Intrinsic instructions can't commute operand 1");
1307
1308  // Determine which case this commute is or if it can't be done.
1309  unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1310                                         SrcOpIdx2);
1311  assert(Case < 3 && "Unexpected case number!");
1312
1313  // Define the FMA forms mapping array that helps to map input FMA form
1314  // to output FMA form to preserve the operation semantics after
1315  // commuting the operands.
1316  const unsigned Form132Index = 0;
1317  const unsigned Form213Index = 1;
1318  const unsigned Form231Index = 2;
1319  static const unsigned FormMapping[][3] = {
1320    // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
1321    // FMA132 A, C, b; ==> FMA231 C, A, b;
1322    // FMA213 B, A, c; ==> FMA213 A, B, c;
1323    // FMA231 C, A, b; ==> FMA132 A, C, b;
1324    { Form231Index, Form213Index, Form132Index },
1325    // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
1326    // FMA132 A, c, B; ==> FMA132 B, c, A;
1327    // FMA213 B, a, C; ==> FMA231 C, a, B;
1328    // FMA231 C, a, B; ==> FMA213 B, a, C;
1329    { Form132Index, Form231Index, Form213Index },
1330    // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
1331    // FMA132 a, C, B; ==> FMA213 a, B, C;
1332    // FMA213 b, A, C; ==> FMA132 b, C, A;
1333    // FMA231 c, A, B; ==> FMA231 c, B, A;
1334    { Form213Index, Form132Index, Form231Index }
1335  };
1336
1337  unsigned FMAForms[3];
1338  FMAForms[0] = FMA3Group.get132Opcode();
1339  FMAForms[1] = FMA3Group.get213Opcode();
1340  FMAForms[2] = FMA3Group.get231Opcode();
1341  unsigned FormIndex;
1342  for (FormIndex = 0; FormIndex < 3; FormIndex++)
1343    if (Opc == FMAForms[FormIndex])
1344      break;
1345
1346  // Everything is ready, just adjust the FMA opcode and return it.
1347  FormIndex = FormMapping[Case][FormIndex];
1348  return FMAForms[FormIndex];
1349}
1350
1351static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
1352                             unsigned SrcOpIdx2) {
1353  // Determine which case this commute is or if it can't be done.
1354  unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1355                                         SrcOpIdx2);
1356  assert(Case < 3 && "Unexpected case value!");
1357
1358  // For each case we need to swap two pairs of bits in the final immediate.
1359  static const uint8_t SwapMasks[3][4] = {
1360    { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
1361    { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
1362    { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
1363  };
1364
1365  uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
1366  // Clear out the bits we are swapping.
1367  uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
1368                           SwapMasks[Case][2] | SwapMasks[Case][3]);
1369  // If the immediate had a bit of the pair set, then set the opposite bit.
1370  if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
1371  if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
1372  if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
1373  if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
1374  MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
1375}
1376
1377// Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
1378// commuted.
1379static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
1380#define VPERM_CASES(Suffix) \
1381  case X86::VPERMI2##Suffix##128rr:    case X86::VPERMT2##Suffix##128rr:    \
1382  case X86::VPERMI2##Suffix##256rr:    case X86::VPERMT2##Suffix##256rr:    \
1383  case X86::VPERMI2##Suffix##rr:       case X86::VPERMT2##Suffix##rr:       \
1384  case X86::VPERMI2##Suffix##128rm:    case X86::VPERMT2##Suffix##128rm:    \
1385  case X86::VPERMI2##Suffix##256rm:    case X86::VPERMT2##Suffix##256rm:    \
1386  case X86::VPERMI2##Suffix##rm:       case X86::VPERMT2##Suffix##rm:       \
1387  case X86::VPERMI2##Suffix##128rrkz:  case X86::VPERMT2##Suffix##128rrkz:  \
1388  case X86::VPERMI2##Suffix##256rrkz:  case X86::VPERMT2##Suffix##256rrkz:  \
1389  case X86::VPERMI2##Suffix##rrkz:     case X86::VPERMT2##Suffix##rrkz:     \
1390  case X86::VPERMI2##Suffix##128rmkz:  case X86::VPERMT2##Suffix##128rmkz:  \
1391  case X86::VPERMI2##Suffix##256rmkz:  case X86::VPERMT2##Suffix##256rmkz:  \
1392  case X86::VPERMI2##Suffix##rmkz:     case X86::VPERMT2##Suffix##rmkz:
1393
1394#define VPERM_CASES_BROADCAST(Suffix) \
1395  VPERM_CASES(Suffix) \
1396  case X86::VPERMI2##Suffix##128rmb:   case X86::VPERMT2##Suffix##128rmb:   \
1397  case X86::VPERMI2##Suffix##256rmb:   case X86::VPERMT2##Suffix##256rmb:   \
1398  case X86::VPERMI2##Suffix##rmb:      case X86::VPERMT2##Suffix##rmb:      \
1399  case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
1400  case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
1401  case X86::VPERMI2##Suffix##rmbkz:    case X86::VPERMT2##Suffix##rmbkz:
1402
1403  switch (Opcode) {
1404  default: return false;
1405  VPERM_CASES(B)
1406  VPERM_CASES_BROADCAST(D)
1407  VPERM_CASES_BROADCAST(PD)
1408  VPERM_CASES_BROADCAST(PS)
1409  VPERM_CASES_BROADCAST(Q)
1410  VPERM_CASES(W)
1411    return true;
1412  }
1413#undef VPERM_CASES_BROADCAST
1414#undef VPERM_CASES
1415}
1416
1417// Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
1418// from the I opcode to the T opcode and vice versa.
1419static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
1420#define VPERM_CASES(Orig, New) \
1421  case X86::Orig##128rr:    return X86::New##128rr;   \
1422  case X86::Orig##128rrkz:  return X86::New##128rrkz; \
1423  case X86::Orig##128rm:    return X86::New##128rm;   \
1424  case X86::Orig##128rmkz:  return X86::New##128rmkz; \
1425  case X86::Orig##256rr:    return X86::New##256rr;   \
1426  case X86::Orig##256rrkz:  return X86::New##256rrkz; \
1427  case X86::Orig##256rm:    return X86::New##256rm;   \
1428  case X86::Orig##256rmkz:  return X86::New##256rmkz; \
1429  case X86::Orig##rr:       return X86::New##rr;      \
1430  case X86::Orig##rrkz:     return X86::New##rrkz;    \
1431  case X86::Orig##rm:       return X86::New##rm;      \
1432  case X86::Orig##rmkz:     return X86::New##rmkz;
1433
1434#define VPERM_CASES_BROADCAST(Orig, New) \
1435  VPERM_CASES(Orig, New) \
1436  case X86::Orig##128rmb:   return X86::New##128rmb;   \
1437  case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
1438  case X86::Orig##256rmb:   return X86::New##256rmb;   \
1439  case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
1440  case X86::Orig##rmb:      return X86::New##rmb;      \
1441  case X86::Orig##rmbkz:    return X86::New##rmbkz;
1442
1443  switch (Opcode) {
1444  VPERM_CASES(VPERMI2B, VPERMT2B)
1445  VPERM_CASES_BROADCAST(VPERMI2D,  VPERMT2D)
1446  VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
1447  VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
1448  VPERM_CASES_BROADCAST(VPERMI2Q,  VPERMT2Q)
1449  VPERM_CASES(VPERMI2W, VPERMT2W)
1450  VPERM_CASES(VPERMT2B, VPERMI2B)
1451  VPERM_CASES_BROADCAST(VPERMT2D,  VPERMI2D)
1452  VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
1453  VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
1454  VPERM_CASES_BROADCAST(VPERMT2Q,  VPERMI2Q)
1455  VPERM_CASES(VPERMT2W, VPERMI2W)
1456  }
1457
1458  llvm_unreachable("Unreachable!");
1459#undef VPERM_CASES_BROADCAST
1460#undef VPERM_CASES
1461}
1462
1463MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
1464                                                   unsigned OpIdx1,
1465                                                   unsigned OpIdx2) const {
1466  auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
1467    if (NewMI)
1468      return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
1469    return MI;
1470  };
1471
1472  switch (MI.getOpcode()) {
1473  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1474  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1475  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1476  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1477  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1478  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1479    unsigned Opc;
1480    unsigned Size;
1481    switch (MI.getOpcode()) {
1482    default: llvm_unreachable("Unreachable!");
1483    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1484    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1485    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1486    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1487    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1488    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1489    }
1490    unsigned Amt = MI.getOperand(3).getImm();
1491    auto &WorkingMI = cloneIfNew(MI);
1492    WorkingMI.setDesc(get(Opc));
1493    WorkingMI.getOperand(3).setImm(Size - Amt);
1494    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1495                                                   OpIdx1, OpIdx2);
1496  }
1497  case X86::PFSUBrr:
1498  case X86::PFSUBRrr: {
1499    // PFSUB  x, y: x = x - y
1500    // PFSUBR x, y: x = y - x
1501    unsigned Opc =
1502        (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr);
1503    auto &WorkingMI = cloneIfNew(MI);
1504    WorkingMI.setDesc(get(Opc));
1505    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1506                                                   OpIdx1, OpIdx2);
1507  }
1508  case X86::BLENDPDrri:
1509  case X86::BLENDPSrri:
1510  case X86::VBLENDPDrri:
1511  case X86::VBLENDPSrri:
1512    // If we're optimizing for size, try to use MOVSD/MOVSS.
1513    if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
1514      unsigned Mask, Opc;
1515      switch (MI.getOpcode()) {
1516      default: llvm_unreachable("Unreachable!");
1517      case X86::BLENDPDrri:  Opc = X86::MOVSDrr;  Mask = 0x03; break;
1518      case X86::BLENDPSrri:  Opc = X86::MOVSSrr;  Mask = 0x0F; break;
1519      case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break;
1520      case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break;
1521      }
1522      if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
1523        auto &WorkingMI = cloneIfNew(MI);
1524        WorkingMI.setDesc(get(Opc));
1525        WorkingMI.RemoveOperand(3);
1526        return TargetInstrInfo::commuteInstructionImpl(WorkingMI,
1527                                                       /*NewMI=*/false,
1528                                                       OpIdx1, OpIdx2);
1529      }
1530    }
1531    LLVM_FALLTHROUGH;
1532  case X86::PBLENDWrri:
1533  case X86::VBLENDPDYrri:
1534  case X86::VBLENDPSYrri:
1535  case X86::VPBLENDDrri:
1536  case X86::VPBLENDWrri:
1537  case X86::VPBLENDDYrri:
1538  case X86::VPBLENDWYrri:{
1539    int8_t Mask;
1540    switch (MI.getOpcode()) {
1541    default: llvm_unreachable("Unreachable!");
1542    case X86::BLENDPDrri:    Mask = (int8_t)0x03; break;
1543    case X86::BLENDPSrri:    Mask = (int8_t)0x0F; break;
1544    case X86::PBLENDWrri:    Mask = (int8_t)0xFF; break;
1545    case X86::VBLENDPDrri:   Mask = (int8_t)0x03; break;
1546    case X86::VBLENDPSrri:   Mask = (int8_t)0x0F; break;
1547    case X86::VBLENDPDYrri:  Mask = (int8_t)0x0F; break;
1548    case X86::VBLENDPSYrri:  Mask = (int8_t)0xFF; break;
1549    case X86::VPBLENDDrri:   Mask = (int8_t)0x0F; break;
1550    case X86::VPBLENDWrri:   Mask = (int8_t)0xFF; break;
1551    case X86::VPBLENDDYrri:  Mask = (int8_t)0xFF; break;
1552    case X86::VPBLENDWYrri:  Mask = (int8_t)0xFF; break;
1553    }
1554    // Only the least significant bits of Imm are used.
1555    // Using int8_t to ensure it will be sign extended to the int64_t that
1556    // setImm takes in order to match isel behavior.
1557    int8_t Imm = MI.getOperand(3).getImm() & Mask;
1558    auto &WorkingMI = cloneIfNew(MI);
1559    WorkingMI.getOperand(3).setImm(Mask ^ Imm);
1560    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1561                                                   OpIdx1, OpIdx2);
1562  }
1563  case X86::INSERTPSrr:
1564  case X86::VINSERTPSrr:
1565  case X86::VINSERTPSZrr: {
1566    unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
1567    unsigned ZMask = Imm & 15;
1568    unsigned DstIdx = (Imm >> 4) & 3;
1569    unsigned SrcIdx = (Imm >> 6) & 3;
1570
1571    // We can commute insertps if we zero 2 of the elements, the insertion is
1572    // "inline" and we don't override the insertion with a zero.
1573    if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
1574        countPopulation(ZMask) == 2) {
1575      unsigned AltIdx = findFirstSet((ZMask | (1 << DstIdx)) ^ 15);
1576      assert(AltIdx < 4 && "Illegal insertion index");
1577      unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
1578      auto &WorkingMI = cloneIfNew(MI);
1579      WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm);
1580      return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1581                                                     OpIdx1, OpIdx2);
1582    }
1583    return nullptr;
1584  }
1585  case X86::MOVSDrr:
1586  case X86::MOVSSrr:
1587  case X86::VMOVSDrr:
1588  case X86::VMOVSSrr:{
1589    // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
1590    if (Subtarget.hasSSE41()) {
1591      unsigned Mask, Opc;
1592      switch (MI.getOpcode()) {
1593      default: llvm_unreachable("Unreachable!");
1594      case X86::MOVSDrr:  Opc = X86::BLENDPDrri;  Mask = 0x02; break;
1595      case X86::MOVSSrr:  Opc = X86::BLENDPSrri;  Mask = 0x0E; break;
1596      case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
1597      case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
1598      }
1599
1600      auto &WorkingMI = cloneIfNew(MI);
1601      WorkingMI.setDesc(get(Opc));
1602      WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
1603      return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1604                                                     OpIdx1, OpIdx2);
1605    }
1606
1607    // Convert to SHUFPD.
1608    assert(MI.getOpcode() == X86::MOVSDrr &&
1609           "Can only commute MOVSDrr without SSE4.1");
1610
1611    auto &WorkingMI = cloneIfNew(MI);
1612    WorkingMI.setDesc(get(X86::SHUFPDrri));
1613    WorkingMI.addOperand(MachineOperand::CreateImm(0x02));
1614    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1615                                                   OpIdx1, OpIdx2);
1616  }
1617  case X86::SHUFPDrri: {
1618    // Commute to MOVSD.
1619    assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
1620    auto &WorkingMI = cloneIfNew(MI);
1621    WorkingMI.setDesc(get(X86::MOVSDrr));
1622    WorkingMI.RemoveOperand(3);
1623    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1624                                                   OpIdx1, OpIdx2);
1625  }
1626  case X86::PCLMULQDQrr:
1627  case X86::VPCLMULQDQrr:
1628  case X86::VPCLMULQDQYrr:
1629  case X86::VPCLMULQDQZrr:
1630  case X86::VPCLMULQDQZ128rr:
1631  case X86::VPCLMULQDQZ256rr: {
1632    // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
1633    // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
1634    unsigned Imm = MI.getOperand(3).getImm();
1635    unsigned Src1Hi = Imm & 0x01;
1636    unsigned Src2Hi = Imm & 0x10;
1637    auto &WorkingMI = cloneIfNew(MI);
1638    WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
1639    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1640                                                   OpIdx1, OpIdx2);
1641  }
1642  case X86::VPCMPBZ128rri:  case X86::VPCMPUBZ128rri:
1643  case X86::VPCMPBZ256rri:  case X86::VPCMPUBZ256rri:
1644  case X86::VPCMPBZrri:     case X86::VPCMPUBZrri:
1645  case X86::VPCMPDZ128rri:  case X86::VPCMPUDZ128rri:
1646  case X86::VPCMPDZ256rri:  case X86::VPCMPUDZ256rri:
1647  case X86::VPCMPDZrri:     case X86::VPCMPUDZrri:
1648  case X86::VPCMPQZ128rri:  case X86::VPCMPUQZ128rri:
1649  case X86::VPCMPQZ256rri:  case X86::VPCMPUQZ256rri:
1650  case X86::VPCMPQZrri:     case X86::VPCMPUQZrri:
1651  case X86::VPCMPWZ128rri:  case X86::VPCMPUWZ128rri:
1652  case X86::VPCMPWZ256rri:  case X86::VPCMPUWZ256rri:
1653  case X86::VPCMPWZrri:     case X86::VPCMPUWZrri:
1654  case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik:
1655  case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik:
1656  case X86::VPCMPBZrrik:    case X86::VPCMPUBZrrik:
1657  case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik:
1658  case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik:
1659  case X86::VPCMPDZrrik:    case X86::VPCMPUDZrrik:
1660  case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik:
1661  case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik:
1662  case X86::VPCMPQZrrik:    case X86::VPCMPUQZrrik:
1663  case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik:
1664  case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik:
1665  case X86::VPCMPWZrrik:    case X86::VPCMPUWZrrik: {
1666    // Flip comparison mode immediate (if necessary).
1667    unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7;
1668    Imm = X86::getSwappedVPCMPImm(Imm);
1669    auto &WorkingMI = cloneIfNew(MI);
1670    WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm);
1671    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1672                                                   OpIdx1, OpIdx2);
1673  }
1674  case X86::VPCOMBri: case X86::VPCOMUBri:
1675  case X86::VPCOMDri: case X86::VPCOMUDri:
1676  case X86::VPCOMQri: case X86::VPCOMUQri:
1677  case X86::VPCOMWri: case X86::VPCOMUWri: {
1678    // Flip comparison mode immediate (if necessary).
1679    unsigned Imm = MI.getOperand(3).getImm() & 0x7;
1680    Imm = X86::getSwappedVPCOMImm(Imm);
1681    auto &WorkingMI = cloneIfNew(MI);
1682    WorkingMI.getOperand(3).setImm(Imm);
1683    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1684                                                   OpIdx1, OpIdx2);
1685  }
1686  case X86::VPERM2F128rr:
1687  case X86::VPERM2I128rr: {
1688    // Flip permute source immediate.
1689    // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
1690    // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
1691    int8_t Imm = MI.getOperand(3).getImm() & 0xFF;
1692    auto &WorkingMI = cloneIfNew(MI);
1693    WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
1694    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1695                                                   OpIdx1, OpIdx2);
1696  }
1697  case X86::MOVHLPSrr:
1698  case X86::UNPCKHPDrr:
1699  case X86::VMOVHLPSrr:
1700  case X86::VUNPCKHPDrr:
1701  case X86::VMOVHLPSZrr:
1702  case X86::VUNPCKHPDZ128rr: {
1703    assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
1704
1705    unsigned Opc = MI.getOpcode();
1706    switch (Opc) {
1707    default: llvm_unreachable("Unreachable!");
1708    case X86::MOVHLPSrr:       Opc = X86::UNPCKHPDrr;      break;
1709    case X86::UNPCKHPDrr:      Opc = X86::MOVHLPSrr;       break;
1710    case X86::VMOVHLPSrr:      Opc = X86::VUNPCKHPDrr;     break;
1711    case X86::VUNPCKHPDrr:     Opc = X86::VMOVHLPSrr;      break;
1712    case X86::VMOVHLPSZrr:     Opc = X86::VUNPCKHPDZ128rr; break;
1713    case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr;     break;
1714    }
1715    auto &WorkingMI = cloneIfNew(MI);
1716    WorkingMI.setDesc(get(Opc));
1717    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1718                                                   OpIdx1, OpIdx2);
1719  }
1720  case X86::CMOV16rr:  case X86::CMOV32rr:  case X86::CMOV64rr: {
1721    auto &WorkingMI = cloneIfNew(MI);
1722    unsigned OpNo = MI.getDesc().getNumOperands() - 1;
1723    X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
1724    WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC));
1725    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1726                                                   OpIdx1, OpIdx2);
1727  }
1728  case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi:
1729  case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi:
1730  case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi:
1731  case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi:
1732  case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi:
1733  case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi:
1734  case X86::VPTERNLOGDZrrik:
1735  case X86::VPTERNLOGDZ128rrik:
1736  case X86::VPTERNLOGDZ256rrik:
1737  case X86::VPTERNLOGQZrrik:
1738  case X86::VPTERNLOGQZ128rrik:
1739  case X86::VPTERNLOGQZ256rrik:
1740  case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz:
1741  case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
1742  case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
1743  case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz:
1744  case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
1745  case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
1746  case X86::VPTERNLOGDZ128rmbi:
1747  case X86::VPTERNLOGDZ256rmbi:
1748  case X86::VPTERNLOGDZrmbi:
1749  case X86::VPTERNLOGQZ128rmbi:
1750  case X86::VPTERNLOGQZ256rmbi:
1751  case X86::VPTERNLOGQZrmbi:
1752  case X86::VPTERNLOGDZ128rmbikz:
1753  case X86::VPTERNLOGDZ256rmbikz:
1754  case X86::VPTERNLOGDZrmbikz:
1755  case X86::VPTERNLOGQZ128rmbikz:
1756  case X86::VPTERNLOGQZ256rmbikz:
1757  case X86::VPTERNLOGQZrmbikz: {
1758    auto &WorkingMI = cloneIfNew(MI);
1759    commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2);
1760    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1761                                                   OpIdx1, OpIdx2);
1762  }
1763  default: {
1764    if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
1765      unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
1766      auto &WorkingMI = cloneIfNew(MI);
1767      WorkingMI.setDesc(get(Opc));
1768      return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1769                                                     OpIdx1, OpIdx2);
1770    }
1771
1772    const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
1773                                                      MI.getDesc().TSFlags);
1774    if (FMA3Group) {
1775      unsigned Opc =
1776        getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
1777      auto &WorkingMI = cloneIfNew(MI);
1778      WorkingMI.setDesc(get(Opc));
1779      return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1780                                                     OpIdx1, OpIdx2);
1781    }
1782
1783    return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
1784  }
1785  }
1786}
1787
1788bool
1789X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
1790                                            unsigned &SrcOpIdx1,
1791                                            unsigned &SrcOpIdx2,
1792                                            bool IsIntrinsic) const {
1793  uint64_t TSFlags = MI.getDesc().TSFlags;
1794
1795  unsigned FirstCommutableVecOp = 1;
1796  unsigned LastCommutableVecOp = 3;
1797  unsigned KMaskOp = -1U;
1798  if (X86II::isKMasked(TSFlags)) {
1799    // For k-zero-masked operations it is Ok to commute the first vector
1800    // operand.
1801    // For regular k-masked operations a conservative choice is done as the
1802    // elements of the first vector operand, for which the corresponding bit
1803    // in the k-mask operand is set to 0, are copied to the result of the
1804    // instruction.
1805    // TODO/FIXME: The commute still may be legal if it is known that the
1806    // k-mask operand is set to either all ones or all zeroes.
1807    // It is also Ok to commute the 1st operand if all users of MI use only
1808    // the elements enabled by the k-mask operand. For example,
1809    //   v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
1810    //                                                     : v1[i];
1811    //   VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
1812    //                                  // Ok, to commute v1 in FMADD213PSZrk.
1813
1814    // The k-mask operand has index = 2 for masked and zero-masked operations.
1815    KMaskOp = 2;
1816
1817    // The operand with index = 1 is used as a source for those elements for
1818    // which the corresponding bit in the k-mask is set to 0.
1819    if (X86II::isKMergeMasked(TSFlags))
1820      FirstCommutableVecOp = 3;
1821
1822    LastCommutableVecOp++;
1823  } else if (IsIntrinsic) {
1824    // Commuting the first operand of an intrinsic instruction isn't possible
1825    // unless we can prove that only the lowest element of the result is used.
1826    FirstCommutableVecOp = 2;
1827  }
1828
1829  if (isMem(MI, LastCommutableVecOp))
1830    LastCommutableVecOp--;
1831
1832  // Only the first RegOpsNum operands are commutable.
1833  // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
1834  // that the operand is not specified/fixed.
1835  if (SrcOpIdx1 != CommuteAnyOperandIndex &&
1836      (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
1837       SrcOpIdx1 == KMaskOp))
1838    return false;
1839  if (SrcOpIdx2 != CommuteAnyOperandIndex &&
1840      (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
1841       SrcOpIdx2 == KMaskOp))
1842    return false;
1843
1844  // Look for two different register operands assumed to be commutable
1845  // regardless of the FMA opcode. The FMA opcode is adjusted later.
1846  if (SrcOpIdx1 == CommuteAnyOperandIndex ||
1847      SrcOpIdx2 == CommuteAnyOperandIndex) {
1848    unsigned CommutableOpIdx2 = SrcOpIdx2;
1849
1850    // At least one of operands to be commuted is not specified and
1851    // this method is free to choose appropriate commutable operands.
1852    if (SrcOpIdx1 == SrcOpIdx2)
1853      // Both of operands are not fixed. By default set one of commutable
1854      // operands to the last register operand of the instruction.
1855      CommutableOpIdx2 = LastCommutableVecOp;
1856    else if (SrcOpIdx2 == CommuteAnyOperandIndex)
1857      // Only one of operands is not fixed.
1858      CommutableOpIdx2 = SrcOpIdx1;
1859
1860    // CommutableOpIdx2 is well defined now. Let's choose another commutable
1861    // operand and assign its index to CommutableOpIdx1.
1862    unsigned Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
1863
1864    unsigned CommutableOpIdx1;
1865    for (CommutableOpIdx1 = LastCommutableVecOp;
1866         CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
1867      // Just ignore and skip the k-mask operand.
1868      if (CommutableOpIdx1 == KMaskOp)
1869        continue;
1870
1871      // The commuted operands must have different registers.
1872      // Otherwise, the commute transformation does not change anything and
1873      // is useless then.
1874      if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
1875        break;
1876    }
1877
1878    // No appropriate commutable operands were found.
1879    if (CommutableOpIdx1 < FirstCommutableVecOp)
1880      return false;
1881
1882    // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
1883    // to return those values.
1884    if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
1885                              CommutableOpIdx1, CommutableOpIdx2))
1886      return false;
1887  }
1888
1889  return true;
1890}
1891
1892bool X86InstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
1893                                         unsigned &SrcOpIdx2) const {
1894  const MCInstrDesc &Desc = MI.getDesc();
1895  if (!Desc.isCommutable())
1896    return false;
1897
1898  switch (MI.getOpcode()) {
1899  case X86::CMPSDrr:
1900  case X86::CMPSSrr:
1901  case X86::CMPPDrri:
1902  case X86::CMPPSrri:
1903  case X86::VCMPSDrr:
1904  case X86::VCMPSSrr:
1905  case X86::VCMPPDrri:
1906  case X86::VCMPPSrri:
1907  case X86::VCMPPDYrri:
1908  case X86::VCMPPSYrri:
1909  case X86::VCMPSDZrr:
1910  case X86::VCMPSSZrr:
1911  case X86::VCMPPDZrri:
1912  case X86::VCMPPSZrri:
1913  case X86::VCMPPDZ128rri:
1914  case X86::VCMPPSZ128rri:
1915  case X86::VCMPPDZ256rri:
1916  case X86::VCMPPSZ256rri:
1917  case X86::VCMPPDZrrik:
1918  case X86::VCMPPSZrrik:
1919  case X86::VCMPPDZ128rrik:
1920  case X86::VCMPPSZ128rrik:
1921  case X86::VCMPPDZ256rrik:
1922  case X86::VCMPPSZ256rrik: {
1923    unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0;
1924
1925    // Float comparison can be safely commuted for
1926    // Ordered/Unordered/Equal/NotEqual tests
1927    unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7;
1928    switch (Imm) {
1929    case 0x00: // EQUAL
1930    case 0x03: // UNORDERED
1931    case 0x04: // NOT EQUAL
1932    case 0x07: // ORDERED
1933      // The indices of the commutable operands are 1 and 2 (or 2 and 3
1934      // when masked).
1935      // Assign them to the returned operand indices here.
1936      return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
1937                                  2 + OpOffset);
1938    }
1939    return false;
1940  }
1941  case X86::MOVSSrr:
1942    // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
1943    // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
1944    // AVX implies sse4.1.
1945    if (Subtarget.hasSSE41())
1946      return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1947    return false;
1948  case X86::SHUFPDrri:
1949    // We can commute this to MOVSD.
1950    if (MI.getOperand(3).getImm() == 0x02)
1951      return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1952    return false;
1953  case X86::MOVHLPSrr:
1954  case X86::UNPCKHPDrr:
1955  case X86::VMOVHLPSrr:
1956  case X86::VUNPCKHPDrr:
1957  case X86::VMOVHLPSZrr:
1958  case X86::VUNPCKHPDZ128rr:
1959    if (Subtarget.hasSSE2())
1960      return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1961    return false;
1962  case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi:
1963  case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi:
1964  case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi:
1965  case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi:
1966  case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi:
1967  case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi:
1968  case X86::VPTERNLOGDZrrik:
1969  case X86::VPTERNLOGDZ128rrik:
1970  case X86::VPTERNLOGDZ256rrik:
1971  case X86::VPTERNLOGQZrrik:
1972  case X86::VPTERNLOGQZ128rrik:
1973  case X86::VPTERNLOGQZ256rrik:
1974  case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz:
1975  case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
1976  case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
1977  case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz:
1978  case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
1979  case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
1980  case X86::VPTERNLOGDZ128rmbi:
1981  case X86::VPTERNLOGDZ256rmbi:
1982  case X86::VPTERNLOGDZrmbi:
1983  case X86::VPTERNLOGQZ128rmbi:
1984  case X86::VPTERNLOGQZ256rmbi:
1985  case X86::VPTERNLOGQZrmbi:
1986  case X86::VPTERNLOGDZ128rmbikz:
1987  case X86::VPTERNLOGDZ256rmbikz:
1988  case X86::VPTERNLOGDZrmbikz:
1989  case X86::VPTERNLOGQZ128rmbikz:
1990  case X86::VPTERNLOGQZ256rmbikz:
1991  case X86::VPTERNLOGQZrmbikz:
1992    return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1993  case X86::VPMADD52HUQZ128r:
1994  case X86::VPMADD52HUQZ128rk:
1995  case X86::VPMADD52HUQZ128rkz:
1996  case X86::VPMADD52HUQZ256r:
1997  case X86::VPMADD52HUQZ256rk:
1998  case X86::VPMADD52HUQZ256rkz:
1999  case X86::VPMADD52HUQZr:
2000  case X86::VPMADD52HUQZrk:
2001  case X86::VPMADD52HUQZrkz:
2002  case X86::VPMADD52LUQZ128r:
2003  case X86::VPMADD52LUQZ128rk:
2004  case X86::VPMADD52LUQZ128rkz:
2005  case X86::VPMADD52LUQZ256r:
2006  case X86::VPMADD52LUQZ256rk:
2007  case X86::VPMADD52LUQZ256rkz:
2008  case X86::VPMADD52LUQZr:
2009  case X86::VPMADD52LUQZrk:
2010  case X86::VPMADD52LUQZrkz: {
2011    unsigned CommutableOpIdx1 = 2;
2012    unsigned CommutableOpIdx2 = 3;
2013    if (X86II::isKMasked(Desc.TSFlags)) {
2014      // Skip the mask register.
2015      ++CommutableOpIdx1;
2016      ++CommutableOpIdx2;
2017    }
2018    if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2019                              CommutableOpIdx1, CommutableOpIdx2))
2020      return false;
2021    if (!MI.getOperand(SrcOpIdx1).isReg() ||
2022        !MI.getOperand(SrcOpIdx2).isReg())
2023      // No idea.
2024      return false;
2025    return true;
2026  }
2027
2028  default:
2029    const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2030                                                      MI.getDesc().TSFlags);
2031    if (FMA3Group)
2032      return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
2033                                           FMA3Group->isIntrinsic());
2034
2035    // Handled masked instructions since we need to skip over the mask input
2036    // and the preserved input.
2037    if (X86II::isKMasked(Desc.TSFlags)) {
2038      // First assume that the first input is the mask operand and skip past it.
2039      unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
2040      unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
2041      // Check if the first input is tied. If there isn't one then we only
2042      // need to skip the mask operand which we did above.
2043      if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
2044                                             MCOI::TIED_TO) != -1)) {
2045        // If this is zero masking instruction with a tied operand, we need to
2046        // move the first index back to the first input since this must
2047        // be a 3 input instruction and we want the first two non-mask inputs.
2048        // Otherwise this is a 2 input instruction with a preserved input and
2049        // mask, so we need to move the indices to skip one more input.
2050        if (X86II::isKMergeMasked(Desc.TSFlags)) {
2051          ++CommutableOpIdx1;
2052          ++CommutableOpIdx2;
2053        } else {
2054          --CommutableOpIdx1;
2055        }
2056      }
2057
2058      if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2059                                CommutableOpIdx1, CommutableOpIdx2))
2060        return false;
2061
2062      if (!MI.getOperand(SrcOpIdx1).isReg() ||
2063          !MI.getOperand(SrcOpIdx2).isReg())
2064        // No idea.
2065        return false;
2066      return true;
2067    }
2068
2069    return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2070  }
2071  return false;
2072}
2073
2074X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) {
2075  switch (MI.getOpcode()) {
2076  default: return X86::COND_INVALID;
2077  case X86::JCC_1:
2078    return static_cast<X86::CondCode>(
2079        MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2080  }
2081}
2082
2083/// Return condition code of a SETCC opcode.
2084X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) {
2085  switch (MI.getOpcode()) {
2086  default: return X86::COND_INVALID;
2087  case X86::SETCCr: case X86::SETCCm:
2088    return static_cast<X86::CondCode>(
2089        MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2090  }
2091}
2092
2093/// Return condition code of a CMov opcode.
2094X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) {
2095  switch (MI.getOpcode()) {
2096  default: return X86::COND_INVALID;
2097  case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr:
2098  case X86::CMOV16rm: case X86::CMOV32rm: case X86::CMOV64rm:
2099    return static_cast<X86::CondCode>(
2100        MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2101  }
2102}
2103
2104/// Return the inverse of the specified condition,
2105/// e.g. turning COND_E to COND_NE.
2106X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2107  switch (CC) {
2108  default: llvm_unreachable("Illegal condition code!");
2109  case X86::COND_E:  return X86::COND_NE;
2110  case X86::COND_NE: return X86::COND_E;
2111  case X86::COND_L:  return X86::COND_GE;
2112  case X86::COND_LE: return X86::COND_G;
2113  case X86::COND_G:  return X86::COND_LE;
2114  case X86::COND_GE: return X86::COND_L;
2115  case X86::COND_B:  return X86::COND_AE;
2116  case X86::COND_BE: return X86::COND_A;
2117  case X86::COND_A:  return X86::COND_BE;
2118  case X86::COND_AE: return X86::COND_B;
2119  case X86::COND_S:  return X86::COND_NS;
2120  case X86::COND_NS: return X86::COND_S;
2121  case X86::COND_P:  return X86::COND_NP;
2122  case X86::COND_NP: return X86::COND_P;
2123  case X86::COND_O:  return X86::COND_NO;
2124  case X86::COND_NO: return X86::COND_O;
2125  case X86::COND_NE_OR_P:  return X86::COND_E_AND_NP;
2126  case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
2127  }
2128}
2129
2130/// Assuming the flags are set by MI(a,b), return the condition code if we
2131/// modify the instructions such that flags are set by MI(b,a).
2132static X86::CondCode getSwappedCondition(X86::CondCode CC) {
2133  switch (CC) {
2134  default: return X86::COND_INVALID;
2135  case X86::COND_E:  return X86::COND_E;
2136  case X86::COND_NE: return X86::COND_NE;
2137  case X86::COND_L:  return X86::COND_G;
2138  case X86::COND_LE: return X86::COND_GE;
2139  case X86::COND_G:  return X86::COND_L;
2140  case X86::COND_GE: return X86::COND_LE;
2141  case X86::COND_B:  return X86::COND_A;
2142  case X86::COND_BE: return X86::COND_AE;
2143  case X86::COND_A:  return X86::COND_B;
2144  case X86::COND_AE: return X86::COND_BE;
2145  }
2146}
2147
2148std::pair<X86::CondCode, bool>
2149X86::getX86ConditionCode(CmpInst::Predicate Predicate) {
2150  X86::CondCode CC = X86::COND_INVALID;
2151  bool NeedSwap = false;
2152  switch (Predicate) {
2153  default: break;
2154  // Floating-point Predicates
2155  case CmpInst::FCMP_UEQ: CC = X86::COND_E;       break;
2156  case CmpInst::FCMP_OLT: NeedSwap = true;        LLVM_FALLTHROUGH;
2157  case CmpInst::FCMP_OGT: CC = X86::COND_A;       break;
2158  case CmpInst::FCMP_OLE: NeedSwap = true;        LLVM_FALLTHROUGH;
2159  case CmpInst::FCMP_OGE: CC = X86::COND_AE;      break;
2160  case CmpInst::FCMP_UGT: NeedSwap = true;        LLVM_FALLTHROUGH;
2161  case CmpInst::FCMP_ULT: CC = X86::COND_B;       break;
2162  case CmpInst::FCMP_UGE: NeedSwap = true;        LLVM_FALLTHROUGH;
2163  case CmpInst::FCMP_ULE: CC = X86::COND_BE;      break;
2164  case CmpInst::FCMP_ONE: CC = X86::COND_NE;      break;
2165  case CmpInst::FCMP_UNO: CC = X86::COND_P;       break;
2166  case CmpInst::FCMP_ORD: CC = X86::COND_NP;      break;
2167  case CmpInst::FCMP_OEQ:                         LLVM_FALLTHROUGH;
2168  case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
2169
2170  // Integer Predicates
2171  case CmpInst::ICMP_EQ:  CC = X86::COND_E;       break;
2172  case CmpInst::ICMP_NE:  CC = X86::COND_NE;      break;
2173  case CmpInst::ICMP_UGT: CC = X86::COND_A;       break;
2174  case CmpInst::ICMP_UGE: CC = X86::COND_AE;      break;
2175  case CmpInst::ICMP_ULT: CC = X86::COND_B;       break;
2176  case CmpInst::ICMP_ULE: CC = X86::COND_BE;      break;
2177  case CmpInst::ICMP_SGT: CC = X86::COND_G;       break;
2178  case CmpInst::ICMP_SGE: CC = X86::COND_GE;      break;
2179  case CmpInst::ICMP_SLT: CC = X86::COND_L;       break;
2180  case CmpInst::ICMP_SLE: CC = X86::COND_LE;      break;
2181  }
2182
2183  return std::make_pair(CC, NeedSwap);
2184}
2185
2186/// Return a setcc opcode based on whether it has memory operand.
2187unsigned X86::getSETOpc(bool HasMemoryOperand) {
2188  return HasMemoryOperand ? X86::SETCCr : X86::SETCCm;
2189}
2190
2191/// Return a cmov opcode for the given register size in bytes, and operand type.
2192unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) {
2193  switch(RegBytes) {
2194  default: llvm_unreachable("Illegal register size!");
2195  case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr;
2196  case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr;
2197  case 8: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV64rr;
2198  }
2199}
2200
2201/// Get the VPCMP immediate for the given condition.
2202unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
2203  switch (CC) {
2204  default: llvm_unreachable("Unexpected SETCC condition");
2205  case ISD::SETNE:  return 4;
2206  case ISD::SETEQ:  return 0;
2207  case ISD::SETULT:
2208  case ISD::SETLT: return 1;
2209  case ISD::SETUGT:
2210  case ISD::SETGT: return 6;
2211  case ISD::SETUGE:
2212  case ISD::SETGE: return 5;
2213  case ISD::SETULE:
2214  case ISD::SETLE: return 2;
2215  }
2216}
2217
2218/// Get the VPCMP immediate if the opcodes are swapped.
2219unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
2220  switch (Imm) {
2221  default: llvm_unreachable("Unreachable!");
2222  case 0x01: Imm = 0x06; break; // LT  -> NLE
2223  case 0x02: Imm = 0x05; break; // LE  -> NLT
2224  case 0x05: Imm = 0x02; break; // NLT -> LE
2225  case 0x06: Imm = 0x01; break; // NLE -> LT
2226  case 0x00: // EQ
2227  case 0x03: // FALSE
2228  case 0x04: // NE
2229  case 0x07: // TRUE
2230    break;
2231  }
2232
2233  return Imm;
2234}
2235
2236/// Get the VPCOM immediate if the opcodes are swapped.
2237unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
2238  switch (Imm) {
2239  default: llvm_unreachable("Unreachable!");
2240  case 0x00: Imm = 0x02; break; // LT -> GT
2241  case 0x01: Imm = 0x03; break; // LE -> GE
2242  case 0x02: Imm = 0x00; break; // GT -> LT
2243  case 0x03: Imm = 0x01; break; // GE -> LE
2244  case 0x04: // EQ
2245  case 0x05: // NE
2246  case 0x06: // FALSE
2247  case 0x07: // TRUE
2248    break;
2249  }
2250
2251  return Imm;
2252}
2253
2254bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
2255  if (!MI.isTerminator()) return false;
2256
2257  // Conditional branch is a special case.
2258  if (MI.isBranch() && !MI.isBarrier())
2259    return true;
2260  if (!MI.isPredicable())
2261    return true;
2262  return !isPredicated(MI);
2263}
2264
2265bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
2266  switch (MI.getOpcode()) {
2267  case X86::TCRETURNdi:
2268  case X86::TCRETURNri:
2269  case X86::TCRETURNmi:
2270  case X86::TCRETURNdi64:
2271  case X86::TCRETURNri64:
2272  case X86::TCRETURNmi64:
2273    return true;
2274  default:
2275    return false;
2276  }
2277}
2278
2279bool X86InstrInfo::canMakeTailCallConditional(
2280    SmallVectorImpl<MachineOperand> &BranchCond,
2281    const MachineInstr &TailCall) const {
2282  if (TailCall.getOpcode() != X86::TCRETURNdi &&
2283      TailCall.getOpcode() != X86::TCRETURNdi64) {
2284    // Only direct calls can be done with a conditional branch.
2285    return false;
2286  }
2287
2288  const MachineFunction *MF = TailCall.getParent()->getParent();
2289  if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
2290    // Conditional tail calls confuse the Win64 unwinder.
2291    return false;
2292  }
2293
2294  assert(BranchCond.size() == 1);
2295  if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
2296    // Can't make a conditional tail call with this condition.
2297    return false;
2298  }
2299
2300  const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
2301  if (X86FI->getTCReturnAddrDelta() != 0 ||
2302      TailCall.getOperand(1).getImm() != 0) {
2303    // A conditional tail call cannot do any stack adjustment.
2304    return false;
2305  }
2306
2307  return true;
2308}
2309
2310void X86InstrInfo::replaceBranchWithTailCall(
2311    MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
2312    const MachineInstr &TailCall) const {
2313  assert(canMakeTailCallConditional(BranchCond, TailCall));
2314
2315  MachineBasicBlock::iterator I = MBB.end();
2316  while (I != MBB.begin()) {
2317    --I;
2318    if (I->isDebugInstr())
2319      continue;
2320    if (!I->isBranch())
2321      assert(0 && "Can't find the branch to replace!");
2322
2323    X86::CondCode CC = X86::getCondFromBranch(*I);
2324    assert(BranchCond.size() == 1);
2325    if (CC != BranchCond[0].getImm())
2326      continue;
2327
2328    break;
2329  }
2330
2331  unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
2332                                                         : X86::TCRETURNdi64cc;
2333
2334  auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
2335  MIB->addOperand(TailCall.getOperand(0)); // Destination.
2336  MIB.addImm(0); // Stack offset (not used).
2337  MIB->addOperand(BranchCond[0]); // Condition.
2338  MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
2339
2340  // Add implicit uses and defs of all live regs potentially clobbered by the
2341  // call. This way they still appear live across the call.
2342  LivePhysRegs LiveRegs(getRegisterInfo());
2343  LiveRegs.addLiveOuts(MBB);
2344  SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
2345  LiveRegs.stepForward(*MIB, Clobbers);
2346  for (const auto &C : Clobbers) {
2347    MIB.addReg(C.first, RegState::Implicit);
2348    MIB.addReg(C.first, RegState::Implicit | RegState::Define);
2349  }
2350
2351  I->eraseFromParent();
2352}
2353
2354// Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
2355// not be a fallthrough MBB now due to layout changes). Return nullptr if the
2356// fallthrough MBB cannot be identified.
2357static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
2358                                            MachineBasicBlock *TBB) {
2359  // Look for non-EHPad successors other than TBB. If we find exactly one, it
2360  // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
2361  // and fallthrough MBB. If we find more than one, we cannot identify the
2362  // fallthrough MBB and should return nullptr.
2363  MachineBasicBlock *FallthroughBB = nullptr;
2364  for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) {
2365    if ((*SI)->isEHPad() || (*SI == TBB && FallthroughBB))
2366      continue;
2367    // Return a nullptr if we found more than one fallthrough successor.
2368    if (FallthroughBB && FallthroughBB != TBB)
2369      return nullptr;
2370    FallthroughBB = *SI;
2371  }
2372  return FallthroughBB;
2373}
2374
2375bool X86InstrInfo::AnalyzeBranchImpl(
2376    MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
2377    SmallVectorImpl<MachineOperand> &Cond,
2378    SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
2379
2380  // Start from the bottom of the block and work up, examining the
2381  // terminator instructions.
2382  MachineBasicBlock::iterator I = MBB.end();
2383  MachineBasicBlock::iterator UnCondBrIter = MBB.end();
2384  while (I != MBB.begin()) {
2385    --I;
2386    if (I->isDebugInstr())
2387      continue;
2388
2389    // Working from the bottom, when we see a non-terminator instruction, we're
2390    // done.
2391    if (!isUnpredicatedTerminator(*I))
2392      break;
2393
2394    // A terminator that isn't a branch can't easily be handled by this
2395    // analysis.
2396    if (!I->isBranch())
2397      return true;
2398
2399    // Handle unconditional branches.
2400    if (I->getOpcode() == X86::JMP_1) {
2401      UnCondBrIter = I;
2402
2403      if (!AllowModify) {
2404        TBB = I->getOperand(0).getMBB();
2405        continue;
2406      }
2407
2408      // If the block has any instructions after a JMP, delete them.
2409      while (std::next(I) != MBB.end())
2410        std::next(I)->eraseFromParent();
2411
2412      Cond.clear();
2413      FBB = nullptr;
2414
2415      // Delete the JMP if it's equivalent to a fall-through.
2416      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
2417        TBB = nullptr;
2418        I->eraseFromParent();
2419        I = MBB.end();
2420        UnCondBrIter = MBB.end();
2421        continue;
2422      }
2423
2424      // TBB is used to indicate the unconditional destination.
2425      TBB = I->getOperand(0).getMBB();
2426      continue;
2427    }
2428
2429    // Handle conditional branches.
2430    X86::CondCode BranchCode = X86::getCondFromBranch(*I);
2431    if (BranchCode == X86::COND_INVALID)
2432      return true;  // Can't handle indirect branch.
2433
2434    // In practice we should never have an undef eflags operand, if we do
2435    // abort here as we are not prepared to preserve the flag.
2436    if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef())
2437      return true;
2438
2439    // Working from the bottom, handle the first conditional branch.
2440    if (Cond.empty()) {
2441      MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
2442      if (AllowModify && UnCondBrIter != MBB.end() &&
2443          MBB.isLayoutSuccessor(TargetBB)) {
2444        // If we can modify the code and it ends in something like:
2445        //
2446        //     jCC L1
2447        //     jmp L2
2448        //   L1:
2449        //     ...
2450        //   L2:
2451        //
2452        // Then we can change this to:
2453        //
2454        //     jnCC L2
2455        //   L1:
2456        //     ...
2457        //   L2:
2458        //
2459        // Which is a bit more efficient.
2460        // We conditionally jump to the fall-through block.
2461        BranchCode = GetOppositeBranchCondition(BranchCode);
2462        MachineBasicBlock::iterator OldInst = I;
2463
2464        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JCC_1))
2465          .addMBB(UnCondBrIter->getOperand(0).getMBB())
2466          .addImm(BranchCode);
2467        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
2468          .addMBB(TargetBB);
2469
2470        OldInst->eraseFromParent();
2471        UnCondBrIter->eraseFromParent();
2472
2473        // Restart the analysis.
2474        UnCondBrIter = MBB.end();
2475        I = MBB.end();
2476        continue;
2477      }
2478
2479      FBB = TBB;
2480      TBB = I->getOperand(0).getMBB();
2481      Cond.push_back(MachineOperand::CreateImm(BranchCode));
2482      CondBranches.push_back(&*I);
2483      continue;
2484    }
2485
2486    // Handle subsequent conditional branches. Only handle the case where all
2487    // conditional branches branch to the same destination and their condition
2488    // opcodes fit one of the special multi-branch idioms.
2489    assert(Cond.size() == 1);
2490    assert(TBB);
2491
2492    // If the conditions are the same, we can leave them alone.
2493    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
2494    auto NewTBB = I->getOperand(0).getMBB();
2495    if (OldBranchCode == BranchCode && TBB == NewTBB)
2496      continue;
2497
2498    // If they differ, see if they fit one of the known patterns. Theoretically,
2499    // we could handle more patterns here, but we shouldn't expect to see them
2500    // if instruction selection has done a reasonable job.
2501    if (TBB == NewTBB &&
2502               ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
2503                (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
2504      BranchCode = X86::COND_NE_OR_P;
2505    } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
2506               (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
2507      if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
2508        return true;
2509
2510      // X86::COND_E_AND_NP usually has two different branch destinations.
2511      //
2512      // JP B1
2513      // JE B2
2514      // JMP B1
2515      // B1:
2516      // B2:
2517      //
2518      // Here this condition branches to B2 only if NP && E. It has another
2519      // equivalent form:
2520      //
2521      // JNE B1
2522      // JNP B2
2523      // JMP B1
2524      // B1:
2525      // B2:
2526      //
2527      // Similarly it branches to B2 only if E && NP. That is why this condition
2528      // is named with COND_E_AND_NP.
2529      BranchCode = X86::COND_E_AND_NP;
2530    } else
2531      return true;
2532
2533    // Update the MachineOperand.
2534    Cond[0].setImm(BranchCode);
2535    CondBranches.push_back(&*I);
2536  }
2537
2538  return false;
2539}
2540
2541bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
2542                                 MachineBasicBlock *&TBB,
2543                                 MachineBasicBlock *&FBB,
2544                                 SmallVectorImpl<MachineOperand> &Cond,
2545                                 bool AllowModify) const {
2546  SmallVector<MachineInstr *, 4> CondBranches;
2547  return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
2548}
2549
2550bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
2551                                          MachineBranchPredicate &MBP,
2552                                          bool AllowModify) const {
2553  using namespace std::placeholders;
2554
2555  SmallVector<MachineOperand, 4> Cond;
2556  SmallVector<MachineInstr *, 4> CondBranches;
2557  if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
2558                        AllowModify))
2559    return true;
2560
2561  if (Cond.size() != 1)
2562    return true;
2563
2564  assert(MBP.TrueDest && "expected!");
2565
2566  if (!MBP.FalseDest)
2567    MBP.FalseDest = MBB.getNextNode();
2568
2569  const TargetRegisterInfo *TRI = &getRegisterInfo();
2570
2571  MachineInstr *ConditionDef = nullptr;
2572  bool SingleUseCondition = true;
2573
2574  for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) {
2575    if (I->modifiesRegister(X86::EFLAGS, TRI)) {
2576      ConditionDef = &*I;
2577      break;
2578    }
2579
2580    if (I->readsRegister(X86::EFLAGS, TRI))
2581      SingleUseCondition = false;
2582  }
2583
2584  if (!ConditionDef)
2585    return true;
2586
2587  if (SingleUseCondition) {
2588    for (auto *Succ : MBB.successors())
2589      if (Succ->isLiveIn(X86::EFLAGS))
2590        SingleUseCondition = false;
2591  }
2592
2593  MBP.ConditionDef = ConditionDef;
2594  MBP.SingleUseCondition = SingleUseCondition;
2595
2596  // Currently we only recognize the simple pattern:
2597  //
2598  //   test %reg, %reg
2599  //   je %label
2600  //
2601  const unsigned TestOpcode =
2602      Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
2603
2604  if (ConditionDef->getOpcode() == TestOpcode &&
2605      ConditionDef->getNumOperands() == 3 &&
2606      ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
2607      (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
2608    MBP.LHS = ConditionDef->getOperand(0);
2609    MBP.RHS = MachineOperand::CreateImm(0);
2610    MBP.Predicate = Cond[0].getImm() == X86::COND_NE
2611                        ? MachineBranchPredicate::PRED_NE
2612                        : MachineBranchPredicate::PRED_EQ;
2613    return false;
2614  }
2615
2616  return true;
2617}
2618
2619unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
2620                                    int *BytesRemoved) const {
2621  assert(!BytesRemoved && "code size not handled");
2622
2623  MachineBasicBlock::iterator I = MBB.end();
2624  unsigned Count = 0;
2625
2626  while (I != MBB.begin()) {
2627    --I;
2628    if (I->isDebugInstr())
2629      continue;
2630    if (I->getOpcode() != X86::JMP_1 &&
2631        X86::getCondFromBranch(*I) == X86::COND_INVALID)
2632      break;
2633    // Remove the branch.
2634    I->eraseFromParent();
2635    I = MBB.end();
2636    ++Count;
2637  }
2638
2639  return Count;
2640}
2641
2642unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
2643                                    MachineBasicBlock *TBB,
2644                                    MachineBasicBlock *FBB,
2645                                    ArrayRef<MachineOperand> Cond,
2646                                    const DebugLoc &DL,
2647                                    int *BytesAdded) const {
2648  // Shouldn't be a fall through.
2649  assert(TBB && "insertBranch must not be told to insert a fallthrough");
2650  assert((Cond.size() == 1 || Cond.size() == 0) &&
2651         "X86 branch conditions have one component!");
2652  assert(!BytesAdded && "code size not handled");
2653
2654  if (Cond.empty()) {
2655    // Unconditional branch?
2656    assert(!FBB && "Unconditional branch with multiple successors!");
2657    BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
2658    return 1;
2659  }
2660
2661  // If FBB is null, it is implied to be a fall-through block.
2662  bool FallThru = FBB == nullptr;
2663
2664  // Conditional branch.
2665  unsigned Count = 0;
2666  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
2667  switch (CC) {
2668  case X86::COND_NE_OR_P:
2669    // Synthesize NE_OR_P with two branches.
2670    BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
2671    ++Count;
2672    BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
2673    ++Count;
2674    break;
2675  case X86::COND_E_AND_NP:
2676    // Use the next block of MBB as FBB if it is null.
2677    if (FBB == nullptr) {
2678      FBB = getFallThroughMBB(&MBB, TBB);
2679      assert(FBB && "MBB cannot be the last block in function when the false "
2680                    "body is a fall-through.");
2681    }
2682    // Synthesize COND_E_AND_NP with two branches.
2683    BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
2684    ++Count;
2685    BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
2686    ++Count;
2687    break;
2688  default: {
2689    BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
2690    ++Count;
2691  }
2692  }
2693  if (!FallThru) {
2694    // Two-way Conditional branch. Insert the second branch.
2695    BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
2696    ++Count;
2697  }
2698  return Count;
2699}
2700
2701bool X86InstrInfo::
2702canInsertSelect(const MachineBasicBlock &MBB,
2703                ArrayRef<MachineOperand> Cond,
2704                unsigned TrueReg, unsigned FalseReg,
2705                int &CondCycles, int &TrueCycles, int &FalseCycles) const {
2706  // Not all subtargets have cmov instructions.
2707  if (!Subtarget.hasCMov())
2708    return false;
2709  if (Cond.size() != 1)
2710    return false;
2711  // We cannot do the composite conditions, at least not in SSA form.
2712  if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
2713    return false;
2714
2715  // Check register classes.
2716  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2717  const TargetRegisterClass *RC =
2718    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
2719  if (!RC)
2720    return false;
2721
2722  // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
2723  if (X86::GR16RegClass.hasSubClassEq(RC) ||
2724      X86::GR32RegClass.hasSubClassEq(RC) ||
2725      X86::GR64RegClass.hasSubClassEq(RC)) {
2726    // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
2727    // Bridge. Probably Ivy Bridge as well.
2728    CondCycles = 2;
2729    TrueCycles = 2;
2730    FalseCycles = 2;
2731    return true;
2732  }
2733
2734  // Can't do vectors.
2735  return false;
2736}
2737
2738void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
2739                                MachineBasicBlock::iterator I,
2740                                const DebugLoc &DL, unsigned DstReg,
2741                                ArrayRef<MachineOperand> Cond, unsigned TrueReg,
2742                                unsigned FalseReg) const {
2743  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2744  const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
2745  const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
2746  assert(Cond.size() == 1 && "Invalid Cond array");
2747  unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
2748                                    false /*HasMemoryOperand*/);
2749  BuildMI(MBB, I, DL, get(Opc), DstReg)
2750      .addReg(FalseReg)
2751      .addReg(TrueReg)
2752      .addImm(Cond[0].getImm());
2753}
2754
2755/// Test if the given register is a physical h register.
2756static bool isHReg(unsigned Reg) {
2757  return X86::GR8_ABCD_HRegClass.contains(Reg);
2758}
2759
2760// Try and copy between VR128/VR64 and GR64 registers.
2761static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
2762                                        const X86Subtarget &Subtarget) {
2763  bool HasAVX = Subtarget.hasAVX();
2764  bool HasAVX512 = Subtarget.hasAVX512();
2765
2766  // SrcReg(MaskReg) -> DestReg(GR64)
2767  // SrcReg(MaskReg) -> DestReg(GR32)
2768
2769  // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2770  if (X86::VK16RegClass.contains(SrcReg)) {
2771    if (X86::GR64RegClass.contains(DestReg)) {
2772      assert(Subtarget.hasBWI());
2773      return X86::KMOVQrk;
2774    }
2775    if (X86::GR32RegClass.contains(DestReg))
2776      return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
2777  }
2778
2779  // SrcReg(GR64) -> DestReg(MaskReg)
2780  // SrcReg(GR32) -> DestReg(MaskReg)
2781
2782  // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2783  if (X86::VK16RegClass.contains(DestReg)) {
2784    if (X86::GR64RegClass.contains(SrcReg)) {
2785      assert(Subtarget.hasBWI());
2786      return X86::KMOVQkr;
2787    }
2788    if (X86::GR32RegClass.contains(SrcReg))
2789      return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
2790  }
2791
2792
2793  // SrcReg(VR128) -> DestReg(GR64)
2794  // SrcReg(VR64)  -> DestReg(GR64)
2795  // SrcReg(GR64)  -> DestReg(VR128)
2796  // SrcReg(GR64)  -> DestReg(VR64)
2797
2798  if (X86::GR64RegClass.contains(DestReg)) {
2799    if (X86::VR128XRegClass.contains(SrcReg))
2800      // Copy from a VR128 register to a GR64 register.
2801      return HasAVX512 ? X86::VMOVPQIto64Zrr :
2802             HasAVX    ? X86::VMOVPQIto64rr  :
2803                         X86::MOVPQIto64rr;
2804    if (X86::VR64RegClass.contains(SrcReg))
2805      // Copy from a VR64 register to a GR64 register.
2806      return X86::MMX_MOVD64from64rr;
2807  } else if (X86::GR64RegClass.contains(SrcReg)) {
2808    // Copy from a GR64 register to a VR128 register.
2809    if (X86::VR128XRegClass.contains(DestReg))
2810      return HasAVX512 ? X86::VMOV64toPQIZrr :
2811             HasAVX    ? X86::VMOV64toPQIrr  :
2812                         X86::MOV64toPQIrr;
2813    // Copy from a GR64 register to a VR64 register.
2814    if (X86::VR64RegClass.contains(DestReg))
2815      return X86::MMX_MOVD64to64rr;
2816  }
2817
2818  // SrcReg(VR128) -> DestReg(GR32)
2819  // SrcReg(GR32)  -> DestReg(VR128)
2820
2821  if (X86::GR32RegClass.contains(DestReg) &&
2822      X86::VR128XRegClass.contains(SrcReg))
2823    // Copy from a VR128 register to a GR32 register.
2824    return HasAVX512 ? X86::VMOVPDI2DIZrr :
2825           HasAVX    ? X86::VMOVPDI2DIrr  :
2826                       X86::MOVPDI2DIrr;
2827
2828  if (X86::VR128XRegClass.contains(DestReg) &&
2829      X86::GR32RegClass.contains(SrcReg))
2830    // Copy from a VR128 register to a VR128 register.
2831    return HasAVX512 ? X86::VMOVDI2PDIZrr :
2832           HasAVX    ? X86::VMOVDI2PDIrr  :
2833                       X86::MOVDI2PDIrr;
2834  return 0;
2835}
2836
2837void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
2838                               MachineBasicBlock::iterator MI,
2839                               const DebugLoc &DL, unsigned DestReg,
2840                               unsigned SrcReg, bool KillSrc) const {
2841  // First deal with the normal symmetric copies.
2842  bool HasAVX = Subtarget.hasAVX();
2843  bool HasVLX = Subtarget.hasVLX();
2844  unsigned Opc = 0;
2845  if (X86::GR64RegClass.contains(DestReg, SrcReg))
2846    Opc = X86::MOV64rr;
2847  else if (X86::GR32RegClass.contains(DestReg, SrcReg))
2848    Opc = X86::MOV32rr;
2849  else if (X86::GR16RegClass.contains(DestReg, SrcReg))
2850    Opc = X86::MOV16rr;
2851  else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
2852    // Copying to or from a physical H register on x86-64 requires a NOREX
2853    // move.  Otherwise use a normal move.
2854    if ((isHReg(DestReg) || isHReg(SrcReg)) &&
2855        Subtarget.is64Bit()) {
2856      Opc = X86::MOV8rr_NOREX;
2857      // Both operands must be encodable without an REX prefix.
2858      assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
2859             "8-bit H register can not be copied outside GR8_NOREX");
2860    } else
2861      Opc = X86::MOV8rr;
2862  }
2863  else if (X86::VR64RegClass.contains(DestReg, SrcReg))
2864    Opc = X86::MMX_MOVQ64rr;
2865  else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
2866    if (HasVLX)
2867      Opc = X86::VMOVAPSZ128rr;
2868    else if (X86::VR128RegClass.contains(DestReg, SrcReg))
2869      Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
2870    else {
2871      // If this an extended register and we don't have VLX we need to use a
2872      // 512-bit move.
2873      Opc = X86::VMOVAPSZrr;
2874      const TargetRegisterInfo *TRI = &getRegisterInfo();
2875      DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
2876                                         &X86::VR512RegClass);
2877      SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
2878                                        &X86::VR512RegClass);
2879    }
2880  } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
2881    if (HasVLX)
2882      Opc = X86::VMOVAPSZ256rr;
2883    else if (X86::VR256RegClass.contains(DestReg, SrcReg))
2884      Opc = X86::VMOVAPSYrr;
2885    else {
2886      // If this an extended register and we don't have VLX we need to use a
2887      // 512-bit move.
2888      Opc = X86::VMOVAPSZrr;
2889      const TargetRegisterInfo *TRI = &getRegisterInfo();
2890      DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
2891                                         &X86::VR512RegClass);
2892      SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
2893                                        &X86::VR512RegClass);
2894    }
2895  } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
2896    Opc = X86::VMOVAPSZrr;
2897  // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2898  else if (X86::VK16RegClass.contains(DestReg, SrcReg))
2899    Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
2900  if (!Opc)
2901    Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
2902
2903  if (Opc) {
2904    BuildMI(MBB, MI, DL, get(Opc), DestReg)
2905      .addReg(SrcReg, getKillRegState(KillSrc));
2906    return;
2907  }
2908
2909  if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
2910    // FIXME: We use a fatal error here because historically LLVM has tried
2911    // lower some of these physreg copies and we want to ensure we get
2912    // reasonable bug reports if someone encounters a case no other testing
2913    // found. This path should be removed after the LLVM 7 release.
2914    report_fatal_error("Unable to copy EFLAGS physical register!");
2915  }
2916
2917  LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
2918                    << RI.getName(DestReg) << '\n');
2919  report_fatal_error("Cannot emit physreg copy instruction");
2920}
2921
2922bool X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI,
2923                                   const MachineOperand *&Src,
2924                                   const MachineOperand *&Dest) const {
2925  if (MI.isMoveReg()) {
2926    Dest = &MI.getOperand(0);
2927    Src = &MI.getOperand(1);
2928    return true;
2929  }
2930  return false;
2931}
2932
2933static unsigned getLoadStoreRegOpcode(unsigned Reg,
2934                                      const TargetRegisterClass *RC,
2935                                      bool isStackAligned,
2936                                      const X86Subtarget &STI,
2937                                      bool load) {
2938  bool HasAVX = STI.hasAVX();
2939  bool HasAVX512 = STI.hasAVX512();
2940  bool HasVLX = STI.hasVLX();
2941
2942  switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
2943  default:
2944    llvm_unreachable("Unknown spill size");
2945  case 1:
2946    assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
2947    if (STI.is64Bit())
2948      // Copying to or from a physical H register on x86-64 requires a NOREX
2949      // move.  Otherwise use a normal move.
2950      if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
2951        return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
2952    return load ? X86::MOV8rm : X86::MOV8mr;
2953  case 2:
2954    if (X86::VK16RegClass.hasSubClassEq(RC))
2955      return load ? X86::KMOVWkm : X86::KMOVWmk;
2956    assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
2957    return load ? X86::MOV16rm : X86::MOV16mr;
2958  case 4:
2959    if (X86::GR32RegClass.hasSubClassEq(RC))
2960      return load ? X86::MOV32rm : X86::MOV32mr;
2961    if (X86::FR32XRegClass.hasSubClassEq(RC))
2962      return load ?
2963        (HasAVX512 ? X86::VMOVSSZrm_alt :
2964         HasAVX    ? X86::VMOVSSrm_alt :
2965                     X86::MOVSSrm_alt) :
2966        (HasAVX512 ? X86::VMOVSSZmr :
2967         HasAVX    ? X86::VMOVSSmr :
2968                     X86::MOVSSmr);
2969    if (X86::RFP32RegClass.hasSubClassEq(RC))
2970      return load ? X86::LD_Fp32m : X86::ST_Fp32m;
2971    if (X86::VK32RegClass.hasSubClassEq(RC)) {
2972      assert(STI.hasBWI() && "KMOVD requires BWI");
2973      return load ? X86::KMOVDkm : X86::KMOVDmk;
2974    }
2975    // All of these mask pair classes have the same spill size, the same kind
2976    // of kmov instructions can be used with all of them.
2977    if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
2978        X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
2979        X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
2980        X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
2981        X86::VK16PAIRRegClass.hasSubClassEq(RC))
2982      return load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
2983    llvm_unreachable("Unknown 4-byte regclass");
2984  case 8:
2985    if (X86::GR64RegClass.hasSubClassEq(RC))
2986      return load ? X86::MOV64rm : X86::MOV64mr;
2987    if (X86::FR64XRegClass.hasSubClassEq(RC))
2988      return load ?
2989        (HasAVX512 ? X86::VMOVSDZrm_alt :
2990         HasAVX    ? X86::VMOVSDrm_alt :
2991                     X86::MOVSDrm_alt) :
2992        (HasAVX512 ? X86::VMOVSDZmr :
2993         HasAVX    ? X86::VMOVSDmr :
2994                     X86::MOVSDmr);
2995    if (X86::VR64RegClass.hasSubClassEq(RC))
2996      return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
2997    if (X86::RFP64RegClass.hasSubClassEq(RC))
2998      return load ? X86::LD_Fp64m : X86::ST_Fp64m;
2999    if (X86::VK64RegClass.hasSubClassEq(RC)) {
3000      assert(STI.hasBWI() && "KMOVQ requires BWI");
3001      return load ? X86::KMOVQkm : X86::KMOVQmk;
3002    }
3003    llvm_unreachable("Unknown 8-byte regclass");
3004  case 10:
3005    assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
3006    return load ? X86::LD_Fp80m : X86::ST_FpP80m;
3007  case 16: {
3008    if (X86::VR128XRegClass.hasSubClassEq(RC)) {
3009      // If stack is realigned we can use aligned stores.
3010      if (isStackAligned)
3011        return load ?
3012          (HasVLX    ? X86::VMOVAPSZ128rm :
3013           HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
3014           HasAVX    ? X86::VMOVAPSrm :
3015                       X86::MOVAPSrm):
3016          (HasVLX    ? X86::VMOVAPSZ128mr :
3017           HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
3018           HasAVX    ? X86::VMOVAPSmr :
3019                       X86::MOVAPSmr);
3020      else
3021        return load ?
3022          (HasVLX    ? X86::VMOVUPSZ128rm :
3023           HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
3024           HasAVX    ? X86::VMOVUPSrm :
3025                       X86::MOVUPSrm):
3026          (HasVLX    ? X86::VMOVUPSZ128mr :
3027           HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
3028           HasAVX    ? X86::VMOVUPSmr :
3029                       X86::MOVUPSmr);
3030    }
3031    if (X86::BNDRRegClass.hasSubClassEq(RC)) {
3032      if (STI.is64Bit())
3033        return load ? X86::BNDMOV64rm : X86::BNDMOV64mr;
3034      else
3035        return load ? X86::BNDMOV32rm : X86::BNDMOV32mr;
3036    }
3037    llvm_unreachable("Unknown 16-byte regclass");
3038  }
3039  case 32:
3040    assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
3041    // If stack is realigned we can use aligned stores.
3042    if (isStackAligned)
3043      return load ?
3044        (HasVLX    ? X86::VMOVAPSZ256rm :
3045         HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
3046                     X86::VMOVAPSYrm) :
3047        (HasVLX    ? X86::VMOVAPSZ256mr :
3048         HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
3049                     X86::VMOVAPSYmr);
3050    else
3051      return load ?
3052        (HasVLX    ? X86::VMOVUPSZ256rm :
3053         HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
3054                     X86::VMOVUPSYrm) :
3055        (HasVLX    ? X86::VMOVUPSZ256mr :
3056         HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
3057                     X86::VMOVUPSYmr);
3058  case 64:
3059    assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
3060    assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
3061    if (isStackAligned)
3062      return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3063    else
3064      return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3065  }
3066}
3067
3068bool X86InstrInfo::getMemOperandWithOffset(
3069    const MachineInstr &MemOp, const MachineOperand *&BaseOp, int64_t &Offset,
3070    const TargetRegisterInfo *TRI) const {
3071  const MCInstrDesc &Desc = MemOp.getDesc();
3072  int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3073  if (MemRefBegin < 0)
3074    return false;
3075
3076  MemRefBegin += X86II::getOperandBias(Desc);
3077
3078  BaseOp = &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
3079  if (!BaseOp->isReg()) // Can be an MO_FrameIndex
3080    return false;
3081
3082  if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
3083    return false;
3084
3085  if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
3086      X86::NoRegister)
3087    return false;
3088
3089  const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
3090
3091  // Displacement can be symbolic
3092  if (!DispMO.isImm())
3093    return false;
3094
3095  Offset = DispMO.getImm();
3096
3097  assert(BaseOp->isReg() && "getMemOperandWithOffset only supports base "
3098                            "operands of type register.");
3099  return true;
3100}
3101
3102static unsigned getStoreRegOpcode(unsigned SrcReg,
3103                                  const TargetRegisterClass *RC,
3104                                  bool isStackAligned,
3105                                  const X86Subtarget &STI) {
3106  return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false);
3107}
3108
3109
3110static unsigned getLoadRegOpcode(unsigned DestReg,
3111                                 const TargetRegisterClass *RC,
3112                                 bool isStackAligned,
3113                                 const X86Subtarget &STI) {
3114  return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true);
3115}
3116
3117void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3118                                       MachineBasicBlock::iterator MI,
3119                                       unsigned SrcReg, bool isKill, int FrameIdx,
3120                                       const TargetRegisterClass *RC,
3121                                       const TargetRegisterInfo *TRI) const {
3122  const MachineFunction &MF = *MBB.getParent();
3123  assert(MF.getFrameInfo().getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
3124         "Stack slot too small for store");
3125  unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3126  bool isAligned =
3127      (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
3128      RI.canRealignStack(MF);
3129  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3130  addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3131    .addReg(SrcReg, getKillRegState(isKill));
3132}
3133
3134void X86InstrInfo::storeRegToAddr(
3135    MachineFunction &MF, unsigned SrcReg, bool isKill,
3136    SmallVectorImpl<MachineOperand> &Addr, const TargetRegisterClass *RC,
3137    ArrayRef<MachineMemOperand *> MMOs,
3138    SmallVectorImpl<MachineInstr *> &NewMIs) const {
3139  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
3140  unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
3141  bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
3142  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3143  DebugLoc DL;
3144  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
3145  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
3146    MIB.add(Addr[i]);
3147  MIB.addReg(SrcReg, getKillRegState(isKill));
3148  MIB.setMemRefs(MMOs);
3149  NewMIs.push_back(MIB);
3150}
3151
3152
3153void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
3154                                        MachineBasicBlock::iterator MI,
3155                                        unsigned DestReg, int FrameIdx,
3156                                        const TargetRegisterClass *RC,
3157                                        const TargetRegisterInfo *TRI) const {
3158  const MachineFunction &MF = *MBB.getParent();
3159  unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3160  bool isAligned =
3161      (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
3162      RI.canRealignStack(MF);
3163  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
3164  addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg), FrameIdx);
3165}
3166
3167void X86InstrInfo::loadRegFromAddr(
3168    MachineFunction &MF, unsigned DestReg,
3169    SmallVectorImpl<MachineOperand> &Addr, const TargetRegisterClass *RC,
3170    ArrayRef<MachineMemOperand *> MMOs,
3171    SmallVectorImpl<MachineInstr *> &NewMIs) const {
3172  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
3173  unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
3174  bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
3175  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
3176  DebugLoc DL;
3177  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
3178  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
3179    MIB.add(Addr[i]);
3180  MIB.setMemRefs(MMOs);
3181  NewMIs.push_back(MIB);
3182}
3183
3184bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
3185                                  unsigned &SrcReg2, int &CmpMask,
3186                                  int &CmpValue) const {
3187  switch (MI.getOpcode()) {
3188  default: break;
3189  case X86::CMP64ri32:
3190  case X86::CMP64ri8:
3191  case X86::CMP32ri:
3192  case X86::CMP32ri8:
3193  case X86::CMP16ri:
3194  case X86::CMP16ri8:
3195  case X86::CMP8ri:
3196    SrcReg = MI.getOperand(0).getReg();
3197    SrcReg2 = 0;
3198    if (MI.getOperand(1).isImm()) {
3199      CmpMask = ~0;
3200      CmpValue = MI.getOperand(1).getImm();
3201    } else {
3202      CmpMask = CmpValue = 0;
3203    }
3204    return true;
3205  // A SUB can be used to perform comparison.
3206  case X86::SUB64rm:
3207  case X86::SUB32rm:
3208  case X86::SUB16rm:
3209  case X86::SUB8rm:
3210    SrcReg = MI.getOperand(1).getReg();
3211    SrcReg2 = 0;
3212    CmpMask = 0;
3213    CmpValue = 0;
3214    return true;
3215  case X86::SUB64rr:
3216  case X86::SUB32rr:
3217  case X86::SUB16rr:
3218  case X86::SUB8rr:
3219    SrcReg = MI.getOperand(1).getReg();
3220    SrcReg2 = MI.getOperand(2).getReg();
3221    CmpMask = 0;
3222    CmpValue = 0;
3223    return true;
3224  case X86::SUB64ri32:
3225  case X86::SUB64ri8:
3226  case X86::SUB32ri:
3227  case X86::SUB32ri8:
3228  case X86::SUB16ri:
3229  case X86::SUB16ri8:
3230  case X86::SUB8ri:
3231    SrcReg = MI.getOperand(1).getReg();
3232    SrcReg2 = 0;
3233    if (MI.getOperand(2).isImm()) {
3234      CmpMask = ~0;
3235      CmpValue = MI.getOperand(2).getImm();
3236    } else {
3237      CmpMask = CmpValue = 0;
3238    }
3239    return true;
3240  case X86::CMP64rr:
3241  case X86::CMP32rr:
3242  case X86::CMP16rr:
3243  case X86::CMP8rr:
3244    SrcReg = MI.getOperand(0).getReg();
3245    SrcReg2 = MI.getOperand(1).getReg();
3246    CmpMask = 0;
3247    CmpValue = 0;
3248    return true;
3249  case X86::TEST8rr:
3250  case X86::TEST16rr:
3251  case X86::TEST32rr:
3252  case X86::TEST64rr:
3253    SrcReg = MI.getOperand(0).getReg();
3254    if (MI.getOperand(1).getReg() != SrcReg)
3255      return false;
3256    // Compare against zero.
3257    SrcReg2 = 0;
3258    CmpMask = ~0;
3259    CmpValue = 0;
3260    return true;
3261  }
3262  return false;
3263}
3264
3265/// Check whether the first instruction, whose only
3266/// purpose is to update flags, can be made redundant.
3267/// CMPrr can be made redundant by SUBrr if the operands are the same.
3268/// This function can be extended later on.
3269/// SrcReg, SrcRegs: register operands for FlagI.
3270/// ImmValue: immediate for FlagI if it takes an immediate.
3271inline static bool isRedundantFlagInstr(const MachineInstr &FlagI,
3272                                        unsigned SrcReg, unsigned SrcReg2,
3273                                        int ImmMask, int ImmValue,
3274                                        const MachineInstr &OI) {
3275  if (((FlagI.getOpcode() == X86::CMP64rr && OI.getOpcode() == X86::SUB64rr) ||
3276       (FlagI.getOpcode() == X86::CMP32rr && OI.getOpcode() == X86::SUB32rr) ||
3277       (FlagI.getOpcode() == X86::CMP16rr && OI.getOpcode() == X86::SUB16rr) ||
3278       (FlagI.getOpcode() == X86::CMP8rr && OI.getOpcode() == X86::SUB8rr)) &&
3279      ((OI.getOperand(1).getReg() == SrcReg &&
3280        OI.getOperand(2).getReg() == SrcReg2) ||
3281       (OI.getOperand(1).getReg() == SrcReg2 &&
3282        OI.getOperand(2).getReg() == SrcReg)))
3283    return true;
3284
3285  if (ImmMask != 0 &&
3286      ((FlagI.getOpcode() == X86::CMP64ri32 &&
3287        OI.getOpcode() == X86::SUB64ri32) ||
3288       (FlagI.getOpcode() == X86::CMP64ri8 &&
3289        OI.getOpcode() == X86::SUB64ri8) ||
3290       (FlagI.getOpcode() == X86::CMP32ri && OI.getOpcode() == X86::SUB32ri) ||
3291       (FlagI.getOpcode() == X86::CMP32ri8 &&
3292        OI.getOpcode() == X86::SUB32ri8) ||
3293       (FlagI.getOpcode() == X86::CMP16ri && OI.getOpcode() == X86::SUB16ri) ||
3294       (FlagI.getOpcode() == X86::CMP16ri8 &&
3295        OI.getOpcode() == X86::SUB16ri8) ||
3296       (FlagI.getOpcode() == X86::CMP8ri && OI.getOpcode() == X86::SUB8ri)) &&
3297      OI.getOperand(1).getReg() == SrcReg &&
3298      OI.getOperand(2).getImm() == ImmValue)
3299    return true;
3300  return false;
3301}
3302
3303/// Check whether the definition can be converted
3304/// to remove a comparison against zero.
3305inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag) {
3306  NoSignFlag = false;
3307
3308  switch (MI.getOpcode()) {
3309  default: return false;
3310
3311  // The shift instructions only modify ZF if their shift count is non-zero.
3312  // N.B.: The processor truncates the shift count depending on the encoding.
3313  case X86::SAR8ri:    case X86::SAR16ri:  case X86::SAR32ri:case X86::SAR64ri:
3314  case X86::SHR8ri:    case X86::SHR16ri:  case X86::SHR32ri:case X86::SHR64ri:
3315     return getTruncatedShiftCount(MI, 2) != 0;
3316
3317  // Some left shift instructions can be turned into LEA instructions but only
3318  // if their flags aren't used. Avoid transforming such instructions.
3319  case X86::SHL8ri:    case X86::SHL16ri:  case X86::SHL32ri:case X86::SHL64ri:{
3320    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
3321    if (isTruncatedShiftCountForLEA(ShAmt)) return false;
3322    return ShAmt != 0;
3323  }
3324
3325  case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
3326  case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
3327     return getTruncatedShiftCount(MI, 3) != 0;
3328
3329  case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
3330  case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
3331  case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
3332  case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm:
3333  case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm:
3334  case X86::DEC64r:    case X86::DEC32r:   case X86::DEC16r: case X86::DEC8r:
3335  case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
3336  case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8:
3337  case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr:
3338  case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm:
3339  case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm:
3340  case X86::INC64r:    case X86::INC32r:   case X86::INC16r: case X86::INC8r:
3341  case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
3342  case X86::AND32ri8:  case X86::AND16ri:  case X86::AND16ri8:
3343  case X86::AND8ri:    case X86::AND64rr:  case X86::AND32rr:
3344  case X86::AND16rr:   case X86::AND8rr:   case X86::AND64rm:
3345  case X86::AND32rm:   case X86::AND16rm:  case X86::AND8rm:
3346  case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
3347  case X86::XOR32ri8:  case X86::XOR16ri:  case X86::XOR16ri8:
3348  case X86::XOR8ri:    case X86::XOR64rr:  case X86::XOR32rr:
3349  case X86::XOR16rr:   case X86::XOR8rr:   case X86::XOR64rm:
3350  case X86::XOR32rm:   case X86::XOR16rm:  case X86::XOR8rm:
3351  case X86::OR64ri32:  case X86::OR64ri8:  case X86::OR32ri:
3352  case X86::OR32ri8:   case X86::OR16ri:   case X86::OR16ri8:
3353  case X86::OR8ri:     case X86::OR64rr:   case X86::OR32rr:
3354  case X86::OR16rr:    case X86::OR8rr:    case X86::OR64rm:
3355  case X86::OR32rm:    case X86::OR16rm:   case X86::OR8rm:
3356  case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri:
3357  case X86::ADC32ri8:  case X86::ADC16ri:  case X86::ADC16ri8:
3358  case X86::ADC8ri:    case X86::ADC64rr:  case X86::ADC32rr:
3359  case X86::ADC16rr:   case X86::ADC8rr:   case X86::ADC64rm:
3360  case X86::ADC32rm:   case X86::ADC16rm:  case X86::ADC8rm:
3361  case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri:
3362  case X86::SBB32ri8:  case X86::SBB16ri:  case X86::SBB16ri8:
3363  case X86::SBB8ri:    case X86::SBB64rr:  case X86::SBB32rr:
3364  case X86::SBB16rr:   case X86::SBB8rr:   case X86::SBB64rm:
3365  case X86::SBB32rm:   case X86::SBB16rm:  case X86::SBB8rm:
3366  case X86::NEG8r:     case X86::NEG16r:   case X86::NEG32r: case X86::NEG64r:
3367  case X86::SAR8r1:    case X86::SAR16r1:  case X86::SAR32r1:case X86::SAR64r1:
3368  case X86::SHR8r1:    case X86::SHR16r1:  case X86::SHR32r1:case X86::SHR64r1:
3369  case X86::SHL8r1:    case X86::SHL16r1:  case X86::SHL32r1:case X86::SHL64r1:
3370  case X86::ANDN32rr:  case X86::ANDN32rm:
3371  case X86::ANDN64rr:  case X86::ANDN64rm:
3372  case X86::BLSI32rr:  case X86::BLSI32rm:
3373  case X86::BLSI64rr:  case X86::BLSI64rm:
3374  case X86::BLSMSK32rr:case X86::BLSMSK32rm:
3375  case X86::BLSMSK64rr:case X86::BLSMSK64rm:
3376  case X86::BLSR32rr:  case X86::BLSR32rm:
3377  case X86::BLSR64rr:  case X86::BLSR64rm:
3378  case X86::BZHI32rr:  case X86::BZHI32rm:
3379  case X86::BZHI64rr:  case X86::BZHI64rm:
3380  case X86::LZCNT16rr: case X86::LZCNT16rm:
3381  case X86::LZCNT32rr: case X86::LZCNT32rm:
3382  case X86::LZCNT64rr: case X86::LZCNT64rm:
3383  case X86::POPCNT16rr:case X86::POPCNT16rm:
3384  case X86::POPCNT32rr:case X86::POPCNT32rm:
3385  case X86::POPCNT64rr:case X86::POPCNT64rm:
3386  case X86::TZCNT16rr: case X86::TZCNT16rm:
3387  case X86::TZCNT32rr: case X86::TZCNT32rm:
3388  case X86::TZCNT64rr: case X86::TZCNT64rm:
3389  case X86::BLCFILL32rr: case X86::BLCFILL32rm:
3390  case X86::BLCFILL64rr: case X86::BLCFILL64rm:
3391  case X86::BLCI32rr:    case X86::BLCI32rm:
3392  case X86::BLCI64rr:    case X86::BLCI64rm:
3393  case X86::BLCIC32rr:   case X86::BLCIC32rm:
3394  case X86::BLCIC64rr:   case X86::BLCIC64rm:
3395  case X86::BLCMSK32rr:  case X86::BLCMSK32rm:
3396  case X86::BLCMSK64rr:  case X86::BLCMSK64rm:
3397  case X86::BLCS32rr:    case X86::BLCS32rm:
3398  case X86::BLCS64rr:    case X86::BLCS64rm:
3399  case X86::BLSFILL32rr: case X86::BLSFILL32rm:
3400  case X86::BLSFILL64rr: case X86::BLSFILL64rm:
3401  case X86::BLSIC32rr:   case X86::BLSIC32rm:
3402  case X86::BLSIC64rr:   case X86::BLSIC64rm:
3403  case X86::T1MSKC32rr:  case X86::T1MSKC32rm:
3404  case X86::T1MSKC64rr:  case X86::T1MSKC64rm:
3405  case X86::TZMSK32rr:   case X86::TZMSK32rm:
3406  case X86::TZMSK64rr:   case X86::TZMSK64rm:
3407    return true;
3408  case X86::BEXTR32rr:   case X86::BEXTR64rr:
3409  case X86::BEXTR32rm:   case X86::BEXTR64rm:
3410  case X86::BEXTRI32ri:  case X86::BEXTRI32mi:
3411  case X86::BEXTRI64ri:  case X86::BEXTRI64mi:
3412    // BEXTR doesn't update the sign flag so we can't use it.
3413    NoSignFlag = true;
3414    return true;
3415  }
3416}
3417
3418/// Check whether the use can be converted to remove a comparison against zero.
3419static X86::CondCode isUseDefConvertible(const MachineInstr &MI) {
3420  switch (MI.getOpcode()) {
3421  default: return X86::COND_INVALID;
3422  case X86::NEG8r:
3423  case X86::NEG16r:
3424  case X86::NEG32r:
3425  case X86::NEG64r:
3426    return X86::COND_AE;
3427  case X86::LZCNT16rr:
3428  case X86::LZCNT32rr:
3429  case X86::LZCNT64rr:
3430    return X86::COND_B;
3431  case X86::POPCNT16rr:
3432  case X86::POPCNT32rr:
3433  case X86::POPCNT64rr:
3434    return X86::COND_E;
3435  case X86::TZCNT16rr:
3436  case X86::TZCNT32rr:
3437  case X86::TZCNT64rr:
3438    return X86::COND_B;
3439  case X86::BSF16rr:
3440  case X86::BSF32rr:
3441  case X86::BSF64rr:
3442  case X86::BSR16rr:
3443  case X86::BSR32rr:
3444  case X86::BSR64rr:
3445    return X86::COND_E;
3446  case X86::BLSI32rr:
3447  case X86::BLSI64rr:
3448    return X86::COND_AE;
3449  case X86::BLSR32rr:
3450  case X86::BLSR64rr:
3451  case X86::BLSMSK32rr:
3452  case X86::BLSMSK64rr:
3453    return X86::COND_B;
3454  // TODO: TBM instructions.
3455  }
3456}
3457
3458/// Check if there exists an earlier instruction that
3459/// operates on the same source operands and sets flags in the same way as
3460/// Compare; remove Compare if possible.
3461bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
3462                                        unsigned SrcReg2, int CmpMask,
3463                                        int CmpValue,
3464                                        const MachineRegisterInfo *MRI) const {
3465  // Check whether we can replace SUB with CMP.
3466  switch (CmpInstr.getOpcode()) {
3467  default: break;
3468  case X86::SUB64ri32:
3469  case X86::SUB64ri8:
3470  case X86::SUB32ri:
3471  case X86::SUB32ri8:
3472  case X86::SUB16ri:
3473  case X86::SUB16ri8:
3474  case X86::SUB8ri:
3475  case X86::SUB64rm:
3476  case X86::SUB32rm:
3477  case X86::SUB16rm:
3478  case X86::SUB8rm:
3479  case X86::SUB64rr:
3480  case X86::SUB32rr:
3481  case X86::SUB16rr:
3482  case X86::SUB8rr: {
3483    if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
3484      return false;
3485    // There is no use of the destination register, we can replace SUB with CMP.
3486    unsigned NewOpcode = 0;
3487    switch (CmpInstr.getOpcode()) {
3488    default: llvm_unreachable("Unreachable!");
3489    case X86::SUB64rm:   NewOpcode = X86::CMP64rm;   break;
3490    case X86::SUB32rm:   NewOpcode = X86::CMP32rm;   break;
3491    case X86::SUB16rm:   NewOpcode = X86::CMP16rm;   break;
3492    case X86::SUB8rm:    NewOpcode = X86::CMP8rm;    break;
3493    case X86::SUB64rr:   NewOpcode = X86::CMP64rr;   break;
3494    case X86::SUB32rr:   NewOpcode = X86::CMP32rr;   break;
3495    case X86::SUB16rr:   NewOpcode = X86::CMP16rr;   break;
3496    case X86::SUB8rr:    NewOpcode = X86::CMP8rr;    break;
3497    case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
3498    case X86::SUB64ri8:  NewOpcode = X86::CMP64ri8;  break;
3499    case X86::SUB32ri:   NewOpcode = X86::CMP32ri;   break;
3500    case X86::SUB32ri8:  NewOpcode = X86::CMP32ri8;  break;
3501    case X86::SUB16ri:   NewOpcode = X86::CMP16ri;   break;
3502    case X86::SUB16ri8:  NewOpcode = X86::CMP16ri8;  break;
3503    case X86::SUB8ri:    NewOpcode = X86::CMP8ri;    break;
3504    }
3505    CmpInstr.setDesc(get(NewOpcode));
3506    CmpInstr.RemoveOperand(0);
3507    // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
3508    if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
3509        NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
3510      return false;
3511  }
3512  }
3513
3514  // Get the unique definition of SrcReg.
3515  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3516  if (!MI) return false;
3517
3518  // CmpInstr is the first instruction of the BB.
3519  MachineBasicBlock::iterator I = CmpInstr, Def = MI;
3520
3521  // If we are comparing against zero, check whether we can use MI to update
3522  // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
3523  bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
3524  if (IsCmpZero && MI->getParent() != CmpInstr.getParent())
3525    return false;
3526
3527  // If we have a use of the source register between the def and our compare
3528  // instruction we can eliminate the compare iff the use sets EFLAGS in the
3529  // right way.
3530  bool ShouldUpdateCC = false;
3531  bool NoSignFlag = false;
3532  X86::CondCode NewCC = X86::COND_INVALID;
3533  if (IsCmpZero && !isDefConvertible(*MI, NoSignFlag)) {
3534    // Scan forward from the use until we hit the use we're looking for or the
3535    // compare instruction.
3536    for (MachineBasicBlock::iterator J = MI;; ++J) {
3537      // Do we have a convertible instruction?
3538      NewCC = isUseDefConvertible(*J);
3539      if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
3540          J->getOperand(1).getReg() == SrcReg) {
3541        assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
3542        ShouldUpdateCC = true; // Update CC later on.
3543        // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
3544        // with the new def.
3545        Def = J;
3546        MI = &*Def;
3547        break;
3548      }
3549
3550      if (J == I)
3551        return false;
3552    }
3553  }
3554
3555  // We are searching for an earlier instruction that can make CmpInstr
3556  // redundant and that instruction will be saved in Sub.
3557  MachineInstr *Sub = nullptr;
3558  const TargetRegisterInfo *TRI = &getRegisterInfo();
3559
3560  // We iterate backward, starting from the instruction before CmpInstr and
3561  // stop when reaching the definition of a source register or done with the BB.
3562  // RI points to the instruction before CmpInstr.
3563  // If the definition is in this basic block, RE points to the definition;
3564  // otherwise, RE is the rend of the basic block.
3565  MachineBasicBlock::reverse_iterator
3566      RI = ++I.getReverse(),
3567      RE = CmpInstr.getParent() == MI->getParent()
3568               ? Def.getReverse() /* points to MI */
3569               : CmpInstr.getParent()->rend();
3570  MachineInstr *Movr0Inst = nullptr;
3571  for (; RI != RE; ++RI) {
3572    MachineInstr &Instr = *RI;
3573    // Check whether CmpInstr can be made redundant by the current instruction.
3574    if (!IsCmpZero && isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask,
3575                                           CmpValue, Instr)) {
3576      Sub = &Instr;
3577      break;
3578    }
3579
3580    if (Instr.modifiesRegister(X86::EFLAGS, TRI) ||
3581        Instr.readsRegister(X86::EFLAGS, TRI)) {
3582      // This instruction modifies or uses EFLAGS.
3583
3584      // MOV32r0 etc. are implemented with xor which clobbers condition code.
3585      // They are safe to move up, if the definition to EFLAGS is dead and
3586      // earlier instructions do not read or write EFLAGS.
3587      if (!Movr0Inst && Instr.getOpcode() == X86::MOV32r0 &&
3588          Instr.registerDefIsDead(X86::EFLAGS, TRI)) {
3589        Movr0Inst = &Instr;
3590        continue;
3591      }
3592
3593      // We can't remove CmpInstr.
3594      return false;
3595    }
3596  }
3597
3598  // Return false if no candidates exist.
3599  if (!IsCmpZero && !Sub)
3600    return false;
3601
3602  bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
3603                    Sub->getOperand(2).getReg() == SrcReg);
3604
3605  // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
3606  // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
3607  // If we are done with the basic block, we need to check whether EFLAGS is
3608  // live-out.
3609  bool IsSafe = false;
3610  SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate;
3611  MachineBasicBlock::iterator E = CmpInstr.getParent()->end();
3612  for (++I; I != E; ++I) {
3613    const MachineInstr &Instr = *I;
3614    bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
3615    bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
3616    // We should check the usage if this instruction uses and updates EFLAGS.
3617    if (!UseEFLAGS && ModifyEFLAGS) {
3618      // It is safe to remove CmpInstr if EFLAGS is updated again.
3619      IsSafe = true;
3620      break;
3621    }
3622    if (!UseEFLAGS && !ModifyEFLAGS)
3623      continue;
3624
3625    // EFLAGS is used by this instruction.
3626    X86::CondCode OldCC = X86::COND_INVALID;
3627    if (IsCmpZero || IsSwapped) {
3628      // We decode the condition code from opcode.
3629      if (Instr.isBranch())
3630        OldCC = X86::getCondFromBranch(Instr);
3631      else {
3632        OldCC = X86::getCondFromSETCC(Instr);
3633        if (OldCC == X86::COND_INVALID)
3634          OldCC = X86::getCondFromCMov(Instr);
3635      }
3636      if (OldCC == X86::COND_INVALID) return false;
3637    }
3638    X86::CondCode ReplacementCC = X86::COND_INVALID;
3639    if (IsCmpZero) {
3640      switch (OldCC) {
3641      default: break;
3642      case X86::COND_A: case X86::COND_AE:
3643      case X86::COND_B: case X86::COND_BE:
3644      case X86::COND_G: case X86::COND_GE:
3645      case X86::COND_L: case X86::COND_LE:
3646      case X86::COND_O: case X86::COND_NO:
3647        // CF and OF are used, we can't perform this optimization.
3648        return false;
3649      case X86::COND_S: case X86::COND_NS:
3650        // If SF is used, but the instruction doesn't update the SF, then we
3651        // can't do the optimization.
3652        if (NoSignFlag)
3653          return false;
3654        break;
3655      }
3656
3657      // If we're updating the condition code check if we have to reverse the
3658      // condition.
3659      if (ShouldUpdateCC)
3660        switch (OldCC) {
3661        default:
3662          return false;
3663        case X86::COND_E:
3664          ReplacementCC = NewCC;
3665          break;
3666        case X86::COND_NE:
3667          ReplacementCC = GetOppositeBranchCondition(NewCC);
3668          break;
3669        }
3670    } else if (IsSwapped) {
3671      // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
3672      // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3673      // We swap the condition code and synthesize the new opcode.
3674      ReplacementCC = getSwappedCondition(OldCC);
3675      if (ReplacementCC == X86::COND_INVALID) return false;
3676    }
3677
3678    if ((ShouldUpdateCC || IsSwapped) && ReplacementCC != OldCC) {
3679      // Push the MachineInstr to OpsToUpdate.
3680      // If it is safe to remove CmpInstr, the condition code of these
3681      // instructions will be modified.
3682      OpsToUpdate.push_back(std::make_pair(&*I, ReplacementCC));
3683    }
3684    if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
3685      // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
3686      IsSafe = true;
3687      break;
3688    }
3689  }
3690
3691  // If EFLAGS is not killed nor re-defined, we should check whether it is
3692  // live-out. If it is live-out, do not optimize.
3693  if ((IsCmpZero || IsSwapped) && !IsSafe) {
3694    MachineBasicBlock *MBB = CmpInstr.getParent();
3695    for (MachineBasicBlock *Successor : MBB->successors())
3696      if (Successor->isLiveIn(X86::EFLAGS))
3697        return false;
3698  }
3699
3700  // The instruction to be updated is either Sub or MI.
3701  Sub = IsCmpZero ? MI : Sub;
3702  // Move Movr0Inst to the appropriate place before Sub.
3703  if (Movr0Inst) {
3704    // Look backwards until we find a def that doesn't use the current EFLAGS.
3705    Def = Sub;
3706    MachineBasicBlock::reverse_iterator InsertI = Def.getReverse(),
3707                                        InsertE = Sub->getParent()->rend();
3708    for (; InsertI != InsertE; ++InsertI) {
3709      MachineInstr *Instr = &*InsertI;
3710      if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
3711          Instr->modifiesRegister(X86::EFLAGS, TRI)) {
3712        Sub->getParent()->remove(Movr0Inst);
3713        Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
3714                                   Movr0Inst);
3715        break;
3716      }
3717    }
3718    if (InsertI == InsertE)
3719      return false;
3720  }
3721
3722  // Make sure Sub instruction defines EFLAGS and mark the def live.
3723  MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS);
3724  assert(FlagDef && "Unable to locate a def EFLAGS operand");
3725  FlagDef->setIsDead(false);
3726
3727  CmpInstr.eraseFromParent();
3728
3729  // Modify the condition code of instructions in OpsToUpdate.
3730  for (auto &Op : OpsToUpdate) {
3731    Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
3732        .setImm(Op.second);
3733  }
3734  return true;
3735}
3736
3737/// Try to remove the load by folding it to a register
3738/// operand at the use. We fold the load instructions if load defines a virtual
3739/// register, the virtual register is used once in the same BB, and the
3740/// instructions in-between do not load or store, and have no side effects.
3741MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
3742                                              const MachineRegisterInfo *MRI,
3743                                              unsigned &FoldAsLoadDefReg,
3744                                              MachineInstr *&DefMI) const {
3745  // Check whether we can move DefMI here.
3746  DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
3747  assert(DefMI);
3748  bool SawStore = false;
3749  if (!DefMI->isSafeToMove(nullptr, SawStore))
3750    return nullptr;
3751
3752  // Collect information about virtual register operands of MI.
3753  SmallVector<unsigned, 1> SrcOperandIds;
3754  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
3755    MachineOperand &MO = MI.getOperand(i);
3756    if (!MO.isReg())
3757      continue;
3758    unsigned Reg = MO.getReg();
3759    if (Reg != FoldAsLoadDefReg)
3760      continue;
3761    // Do not fold if we have a subreg use or a def.
3762    if (MO.getSubReg() || MO.isDef())
3763      return nullptr;
3764    SrcOperandIds.push_back(i);
3765  }
3766  if (SrcOperandIds.empty())
3767    return nullptr;
3768
3769  // Check whether we can fold the def into SrcOperandId.
3770  if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
3771    FoldAsLoadDefReg = 0;
3772    return FoldMI;
3773  }
3774
3775  return nullptr;
3776}
3777
3778/// Expand a single-def pseudo instruction to a two-addr
3779/// instruction with two undef reads of the register being defined.
3780/// This is used for mapping:
3781///   %xmm4 = V_SET0
3782/// to:
3783///   %xmm4 = PXORrr undef %xmm4, undef %xmm4
3784///
3785static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
3786                             const MCInstrDesc &Desc) {
3787  assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
3788  unsigned Reg = MIB->getOperand(0).getReg();
3789  MIB->setDesc(Desc);
3790
3791  // MachineInstr::addOperand() will insert explicit operands before any
3792  // implicit operands.
3793  MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
3794  // But we don't trust that.
3795  assert(MIB->getOperand(1).getReg() == Reg &&
3796         MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
3797  return true;
3798}
3799
3800/// Expand a single-def pseudo instruction to a two-addr
3801/// instruction with two %k0 reads.
3802/// This is used for mapping:
3803///   %k4 = K_SET1
3804/// to:
3805///   %k4 = KXNORrr %k0, %k0
3806static bool Expand2AddrKreg(MachineInstrBuilder &MIB,
3807                            const MCInstrDesc &Desc, unsigned Reg) {
3808  assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
3809  MIB->setDesc(Desc);
3810  MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
3811  return true;
3812}
3813
3814static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
3815                          bool MinusOne) {
3816  MachineBasicBlock &MBB = *MIB->getParent();
3817  DebugLoc DL = MIB->getDebugLoc();
3818  unsigned Reg = MIB->getOperand(0).getReg();
3819
3820  // Insert the XOR.
3821  BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
3822      .addReg(Reg, RegState::Undef)
3823      .addReg(Reg, RegState::Undef);
3824
3825  // Turn the pseudo into an INC or DEC.
3826  MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
3827  MIB.addReg(Reg);
3828
3829  return true;
3830}
3831
3832static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
3833                               const TargetInstrInfo &TII,
3834                               const X86Subtarget &Subtarget) {
3835  MachineBasicBlock &MBB = *MIB->getParent();
3836  DebugLoc DL = MIB->getDebugLoc();
3837  int64_t Imm = MIB->getOperand(1).getImm();
3838  assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
3839  MachineBasicBlock::iterator I = MIB.getInstr();
3840
3841  int StackAdjustment;
3842
3843  if (Subtarget.is64Bit()) {
3844    assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
3845           MIB->getOpcode() == X86::MOV32ImmSExti8);
3846
3847    // Can't use push/pop lowering if the function might write to the red zone.
3848    X86MachineFunctionInfo *X86FI =
3849        MBB.getParent()->getInfo<X86MachineFunctionInfo>();
3850    if (X86FI->getUsesRedZone()) {
3851      MIB->setDesc(TII.get(MIB->getOpcode() ==
3852                           X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
3853      return true;
3854    }
3855
3856    // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
3857    // widen the register if necessary.
3858    StackAdjustment = 8;
3859    BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm);
3860    MIB->setDesc(TII.get(X86::POP64r));
3861    MIB->getOperand(0)
3862        .setReg(getX86SubSuperRegister(MIB->getOperand(0).getReg(), 64));
3863  } else {
3864    assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
3865    StackAdjustment = 4;
3866    BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm);
3867    MIB->setDesc(TII.get(X86::POP32r));
3868  }
3869
3870  // Build CFI if necessary.
3871  MachineFunction &MF = *MBB.getParent();
3872  const X86FrameLowering *TFL = Subtarget.getFrameLowering();
3873  bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
3874  bool NeedsDwarfCFI =
3875      !IsWin64Prologue &&
3876      (MF.getMMI().hasDebugInfo() || MF.getFunction().needsUnwindTableEntry());
3877  bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
3878  if (EmitCFI) {
3879    TFL->BuildCFI(MBB, I, DL,
3880        MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
3881    TFL->BuildCFI(MBB, std::next(I), DL,
3882        MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
3883  }
3884
3885  return true;
3886}
3887
3888// LoadStackGuard has so far only been implemented for 64-bit MachO. Different
3889// code sequence is needed for other targets.
3890static void expandLoadStackGuard(MachineInstrBuilder &MIB,
3891                                 const TargetInstrInfo &TII) {
3892  MachineBasicBlock &MBB = *MIB->getParent();
3893  DebugLoc DL = MIB->getDebugLoc();
3894  unsigned Reg = MIB->getOperand(0).getReg();
3895  const GlobalValue *GV =
3896      cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
3897  auto Flags = MachineMemOperand::MOLoad |
3898               MachineMemOperand::MODereferenceable |
3899               MachineMemOperand::MOInvariant;
3900  MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
3901      MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, 8);
3902  MachineBasicBlock::iterator I = MIB.getInstr();
3903
3904  BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
3905      .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
3906      .addMemOperand(MMO);
3907  MIB->setDebugLoc(DL);
3908  MIB->setDesc(TII.get(X86::MOV64rm));
3909  MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
3910}
3911
3912static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
3913  MachineBasicBlock &MBB = *MIB->getParent();
3914  MachineFunction &MF = *MBB.getParent();
3915  const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
3916  const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
3917  unsigned XorOp =
3918      MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
3919  MIB->setDesc(TII.get(XorOp));
3920  MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
3921  return true;
3922}
3923
3924// This is used to handle spills for 128/256-bit registers when we have AVX512,
3925// but not VLX. If it uses an extended register we need to use an instruction
3926// that loads the lower 128/256-bit, but is available with only AVX512F.
3927static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
3928                            const TargetRegisterInfo *TRI,
3929                            const MCInstrDesc &LoadDesc,
3930                            const MCInstrDesc &BroadcastDesc,
3931                            unsigned SubIdx) {
3932  unsigned DestReg = MIB->getOperand(0).getReg();
3933  // Check if DestReg is XMM16-31 or YMM16-31.
3934  if (TRI->getEncodingValue(DestReg) < 16) {
3935    // We can use a normal VEX encoded load.
3936    MIB->setDesc(LoadDesc);
3937  } else {
3938    // Use a 128/256-bit VBROADCAST instruction.
3939    MIB->setDesc(BroadcastDesc);
3940    // Change the destination to a 512-bit register.
3941    DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
3942    MIB->getOperand(0).setReg(DestReg);
3943  }
3944  return true;
3945}
3946
3947// This is used to handle spills for 128/256-bit registers when we have AVX512,
3948// but not VLX. If it uses an extended register we need to use an instruction
3949// that stores the lower 128/256-bit, but is available with only AVX512F.
3950static bool expandNOVLXStore(MachineInstrBuilder &MIB,
3951                             const TargetRegisterInfo *TRI,
3952                             const MCInstrDesc &StoreDesc,
3953                             const MCInstrDesc &ExtractDesc,
3954                             unsigned SubIdx) {
3955  unsigned SrcReg = MIB->getOperand(X86::AddrNumOperands).getReg();
3956  // Check if DestReg is XMM16-31 or YMM16-31.
3957  if (TRI->getEncodingValue(SrcReg) < 16) {
3958    // We can use a normal VEX encoded store.
3959    MIB->setDesc(StoreDesc);
3960  } else {
3961    // Use a VEXTRACTF instruction.
3962    MIB->setDesc(ExtractDesc);
3963    // Change the destination to a 512-bit register.
3964    SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
3965    MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
3966    MIB.addImm(0x0); // Append immediate to extract from the lower bits.
3967  }
3968
3969  return true;
3970}
3971
3972static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) {
3973  MIB->setDesc(Desc);
3974  int64_t ShiftAmt = MIB->getOperand(2).getImm();
3975  // Temporarily remove the immediate so we can add another source register.
3976  MIB->RemoveOperand(2);
3977  // Add the register. Don't copy the kill flag if there is one.
3978  MIB.addReg(MIB->getOperand(1).getReg(),
3979             getUndefRegState(MIB->getOperand(1).isUndef()));
3980  // Add back the immediate.
3981  MIB.addImm(ShiftAmt);
3982  return true;
3983}
3984
3985bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
3986  bool HasAVX = Subtarget.hasAVX();
3987  MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
3988  switch (MI.getOpcode()) {
3989  case X86::MOV32r0:
3990    return Expand2AddrUndef(MIB, get(X86::XOR32rr));
3991  case X86::MOV32r1:
3992    return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
3993  case X86::MOV32r_1:
3994    return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
3995  case X86::MOV32ImmSExti8:
3996  case X86::MOV64ImmSExti8:
3997    return ExpandMOVImmSExti8(MIB, *this, Subtarget);
3998  case X86::SETB_C8r:
3999    return Expand2AddrUndef(MIB, get(X86::SBB8rr));
4000  case X86::SETB_C16r:
4001    return Expand2AddrUndef(MIB, get(X86::SBB16rr));
4002  case X86::SETB_C32r:
4003    return Expand2AddrUndef(MIB, get(X86::SBB32rr));
4004  case X86::SETB_C64r:
4005    return Expand2AddrUndef(MIB, get(X86::SBB64rr));
4006  case X86::MMX_SET0:
4007    return Expand2AddrUndef(MIB, get(X86::MMX_PXORirr));
4008  case X86::V_SET0:
4009  case X86::FsFLD0SS:
4010  case X86::FsFLD0SD:
4011    return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
4012  case X86::AVX_SET0: {
4013    assert(HasAVX && "AVX not supported");
4014    const TargetRegisterInfo *TRI = &getRegisterInfo();
4015    unsigned SrcReg = MIB->getOperand(0).getReg();
4016    unsigned XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4017    MIB->getOperand(0).setReg(XReg);
4018    Expand2AddrUndef(MIB, get(X86::VXORPSrr));
4019    MIB.addReg(SrcReg, RegState::ImplicitDefine);
4020    return true;
4021  }
4022  case X86::AVX512_128_SET0:
4023  case X86::AVX512_FsFLD0SS:
4024  case X86::AVX512_FsFLD0SD: {
4025    bool HasVLX = Subtarget.hasVLX();
4026    unsigned SrcReg = MIB->getOperand(0).getReg();
4027    const TargetRegisterInfo *TRI = &getRegisterInfo();
4028    if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
4029      return Expand2AddrUndef(MIB,
4030                              get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4031    // Extended register without VLX. Use a larger XOR.
4032    SrcReg =
4033        TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
4034    MIB->getOperand(0).setReg(SrcReg);
4035    return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4036  }
4037  case X86::AVX512_256_SET0:
4038  case X86::AVX512_512_SET0: {
4039    bool HasVLX = Subtarget.hasVLX();
4040    unsigned SrcReg = MIB->getOperand(0).getReg();
4041    const TargetRegisterInfo *TRI = &getRegisterInfo();
4042    if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
4043      unsigned XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4044      MIB->getOperand(0).setReg(XReg);
4045      Expand2AddrUndef(MIB,
4046                       get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4047      MIB.addReg(SrcReg, RegState::ImplicitDefine);
4048      return true;
4049    }
4050    if (MI.getOpcode() == X86::AVX512_256_SET0) {
4051      // No VLX so we must reference a zmm.
4052      unsigned ZReg =
4053        TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
4054      MIB->getOperand(0).setReg(ZReg);
4055    }
4056    return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4057  }
4058  case X86::V_SETALLONES:
4059    return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
4060  case X86::AVX2_SETALLONES:
4061    return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
4062  case X86::AVX1_SETALLONES: {
4063    unsigned Reg = MIB->getOperand(0).getReg();
4064    // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
4065    MIB->setDesc(get(X86::VCMPPSYrri));
4066    MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
4067    return true;
4068  }
4069  case X86::AVX512_512_SETALLONES: {
4070    unsigned Reg = MIB->getOperand(0).getReg();
4071    MIB->setDesc(get(X86::VPTERNLOGDZrri));
4072    // VPTERNLOGD needs 3 register inputs and an immediate.
4073    // 0xff will return 1s for any input.
4074    MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
4075       .addReg(Reg, RegState::Undef).addImm(0xff);
4076    return true;
4077  }
4078  case X86::AVX512_512_SEXT_MASK_32:
4079  case X86::AVX512_512_SEXT_MASK_64: {
4080    unsigned Reg = MIB->getOperand(0).getReg();
4081    unsigned MaskReg = MIB->getOperand(1).getReg();
4082    unsigned MaskState = getRegState(MIB->getOperand(1));
4083    unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ?
4084                   X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz;
4085    MI.RemoveOperand(1);
4086    MIB->setDesc(get(Opc));
4087    // VPTERNLOG needs 3 register inputs and an immediate.
4088    // 0xff will return 1s for any input.
4089    MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState)
4090       .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff);
4091    return true;
4092  }
4093  case X86::VMOVAPSZ128rm_NOVLX:
4094    return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
4095                           get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4096  case X86::VMOVUPSZ128rm_NOVLX:
4097    return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
4098                           get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4099  case X86::VMOVAPSZ256rm_NOVLX:
4100    return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
4101                           get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4102  case X86::VMOVUPSZ256rm_NOVLX:
4103    return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
4104                           get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4105  case X86::VMOVAPSZ128mr_NOVLX:
4106    return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
4107                            get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4108  case X86::VMOVUPSZ128mr_NOVLX:
4109    return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
4110                            get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4111  case X86::VMOVAPSZ256mr_NOVLX:
4112    return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
4113                            get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
4114  case X86::VMOVUPSZ256mr_NOVLX:
4115    return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
4116                            get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
4117  case X86::MOV32ri64: {
4118    unsigned Reg = MIB->getOperand(0).getReg();
4119    unsigned Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
4120    MI.setDesc(get(X86::MOV32ri));
4121    MIB->getOperand(0).setReg(Reg32);
4122    MIB.addReg(Reg, RegState::ImplicitDefine);
4123    return true;
4124  }
4125
4126  // KNL does not recognize dependency-breaking idioms for mask registers,
4127  // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
4128  // Using %k0 as the undef input register is a performance heuristic based
4129  // on the assumption that %k0 is used less frequently than the other mask
4130  // registers, since it is not usable as a write mask.
4131  // FIXME: A more advanced approach would be to choose the best input mask
4132  // register based on context.
4133  case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
4134  case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
4135  case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
4136  case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
4137  case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
4138  case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
4139  case TargetOpcode::LOAD_STACK_GUARD:
4140    expandLoadStackGuard(MIB, *this);
4141    return true;
4142  case X86::XOR64_FP:
4143  case X86::XOR32_FP:
4144    return expandXorFP(MIB, *this);
4145  case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8));
4146  case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8));
4147  case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8));
4148  case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8));
4149  case X86::ADD8rr_DB:    MIB->setDesc(get(X86::OR8rr));    break;
4150  case X86::ADD16rr_DB:   MIB->setDesc(get(X86::OR16rr));   break;
4151  case X86::ADD32rr_DB:   MIB->setDesc(get(X86::OR32rr));   break;
4152  case X86::ADD64rr_DB:   MIB->setDesc(get(X86::OR64rr));   break;
4153  case X86::ADD8ri_DB:    MIB->setDesc(get(X86::OR8ri));    break;
4154  case X86::ADD16ri_DB:   MIB->setDesc(get(X86::OR16ri));   break;
4155  case X86::ADD32ri_DB:   MIB->setDesc(get(X86::OR32ri));   break;
4156  case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break;
4157  case X86::ADD16ri8_DB:  MIB->setDesc(get(X86::OR16ri8));  break;
4158  case X86::ADD32ri8_DB:  MIB->setDesc(get(X86::OR32ri8));  break;
4159  case X86::ADD64ri8_DB:  MIB->setDesc(get(X86::OR64ri8));  break;
4160  }
4161  return false;
4162}
4163
4164/// Return true for all instructions that only update
4165/// the first 32 or 64-bits of the destination register and leave the rest
4166/// unmodified. This can be used to avoid folding loads if the instructions
4167/// only update part of the destination register, and the non-updated part is
4168/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
4169/// instructions breaks the partial register dependency and it can improve
4170/// performance. e.g.:
4171///
4172///   movss (%rdi), %xmm0
4173///   cvtss2sd %xmm0, %xmm0
4174///
4175/// Instead of
4176///   cvtss2sd (%rdi), %xmm0
4177///
4178/// FIXME: This should be turned into a TSFlags.
4179///
4180static bool hasPartialRegUpdate(unsigned Opcode,
4181                                const X86Subtarget &Subtarget,
4182                                bool ForLoadFold = false) {
4183  switch (Opcode) {
4184  case X86::CVTSI2SSrr:
4185  case X86::CVTSI2SSrm:
4186  case X86::CVTSI642SSrr:
4187  case X86::CVTSI642SSrm:
4188  case X86::CVTSI2SDrr:
4189  case X86::CVTSI2SDrm:
4190  case X86::CVTSI642SDrr:
4191  case X86::CVTSI642SDrm:
4192    // Load folding won't effect the undef register update since the input is
4193    // a GPR.
4194    return !ForLoadFold;
4195  case X86::CVTSD2SSrr:
4196  case X86::CVTSD2SSrm:
4197  case X86::CVTSS2SDrr:
4198  case X86::CVTSS2SDrm:
4199  case X86::MOVHPDrm:
4200  case X86::MOVHPSrm:
4201  case X86::MOVLPDrm:
4202  case X86::MOVLPSrm:
4203  case X86::RCPSSr:
4204  case X86::RCPSSm:
4205  case X86::RCPSSr_Int:
4206  case X86::RCPSSm_Int:
4207  case X86::ROUNDSDr:
4208  case X86::ROUNDSDm:
4209  case X86::ROUNDSSr:
4210  case X86::ROUNDSSm:
4211  case X86::RSQRTSSr:
4212  case X86::RSQRTSSm:
4213  case X86::RSQRTSSr_Int:
4214  case X86::RSQRTSSm_Int:
4215  case X86::SQRTSSr:
4216  case X86::SQRTSSm:
4217  case X86::SQRTSSr_Int:
4218  case X86::SQRTSSm_Int:
4219  case X86::SQRTSDr:
4220  case X86::SQRTSDm:
4221  case X86::SQRTSDr_Int:
4222  case X86::SQRTSDm_Int:
4223    return true;
4224  // GPR
4225  case X86::POPCNT32rm:
4226  case X86::POPCNT32rr:
4227  case X86::POPCNT64rm:
4228  case X86::POPCNT64rr:
4229    return Subtarget.hasPOPCNTFalseDeps();
4230  case X86::LZCNT32rm:
4231  case X86::LZCNT32rr:
4232  case X86::LZCNT64rm:
4233  case X86::LZCNT64rr:
4234  case X86::TZCNT32rm:
4235  case X86::TZCNT32rr:
4236  case X86::TZCNT64rm:
4237  case X86::TZCNT64rr:
4238    return Subtarget.hasLZCNTFalseDeps();
4239  }
4240
4241  return false;
4242}
4243
4244/// Inform the BreakFalseDeps pass how many idle
4245/// instructions we would like before a partial register update.
4246unsigned X86InstrInfo::getPartialRegUpdateClearance(
4247    const MachineInstr &MI, unsigned OpNum,
4248    const TargetRegisterInfo *TRI) const {
4249  if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
4250    return 0;
4251
4252  // If MI is marked as reading Reg, the partial register update is wanted.
4253  const MachineOperand &MO = MI.getOperand(0);
4254  unsigned Reg = MO.getReg();
4255  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4256    if (MO.readsReg() || MI.readsVirtualRegister(Reg))
4257      return 0;
4258  } else {
4259    if (MI.readsRegister(Reg, TRI))
4260      return 0;
4261  }
4262
4263  // If any instructions in the clearance range are reading Reg, insert a
4264  // dependency breaking instruction, which is inexpensive and is likely to
4265  // be hidden in other instruction's cycles.
4266  return PartialRegUpdateClearance;
4267}
4268
4269// Return true for any instruction the copies the high bits of the first source
4270// operand into the unused high bits of the destination operand.
4271static bool hasUndefRegUpdate(unsigned Opcode, bool ForLoadFold = false) {
4272  switch (Opcode) {
4273  case X86::VCVTSI2SSrr:
4274  case X86::VCVTSI2SSrm:
4275  case X86::VCVTSI2SSrr_Int:
4276  case X86::VCVTSI2SSrm_Int:
4277  case X86::VCVTSI642SSrr:
4278  case X86::VCVTSI642SSrm:
4279  case X86::VCVTSI642SSrr_Int:
4280  case X86::VCVTSI642SSrm_Int:
4281  case X86::VCVTSI2SDrr:
4282  case X86::VCVTSI2SDrm:
4283  case X86::VCVTSI2SDrr_Int:
4284  case X86::VCVTSI2SDrm_Int:
4285  case X86::VCVTSI642SDrr:
4286  case X86::VCVTSI642SDrm:
4287  case X86::VCVTSI642SDrr_Int:
4288  case X86::VCVTSI642SDrm_Int:
4289  // AVX-512
4290  case X86::VCVTSI2SSZrr:
4291  case X86::VCVTSI2SSZrm:
4292  case X86::VCVTSI2SSZrr_Int:
4293  case X86::VCVTSI2SSZrrb_Int:
4294  case X86::VCVTSI2SSZrm_Int:
4295  case X86::VCVTSI642SSZrr:
4296  case X86::VCVTSI642SSZrm:
4297  case X86::VCVTSI642SSZrr_Int:
4298  case X86::VCVTSI642SSZrrb_Int:
4299  case X86::VCVTSI642SSZrm_Int:
4300  case X86::VCVTSI2SDZrr:
4301  case X86::VCVTSI2SDZrm:
4302  case X86::VCVTSI2SDZrr_Int:
4303  case X86::VCVTSI2SDZrm_Int:
4304  case X86::VCVTSI642SDZrr:
4305  case X86::VCVTSI642SDZrm:
4306  case X86::VCVTSI642SDZrr_Int:
4307  case X86::VCVTSI642SDZrrb_Int:
4308  case X86::VCVTSI642SDZrm_Int:
4309  case X86::VCVTUSI2SSZrr:
4310  case X86::VCVTUSI2SSZrm:
4311  case X86::VCVTUSI2SSZrr_Int:
4312  case X86::VCVTUSI2SSZrrb_Int:
4313  case X86::VCVTUSI2SSZrm_Int:
4314  case X86::VCVTUSI642SSZrr:
4315  case X86::VCVTUSI642SSZrm:
4316  case X86::VCVTUSI642SSZrr_Int:
4317  case X86::VCVTUSI642SSZrrb_Int:
4318  case X86::VCVTUSI642SSZrm_Int:
4319  case X86::VCVTUSI2SDZrr:
4320  case X86::VCVTUSI2SDZrm:
4321  case X86::VCVTUSI2SDZrr_Int:
4322  case X86::VCVTUSI2SDZrm_Int:
4323  case X86::VCVTUSI642SDZrr:
4324  case X86::VCVTUSI642SDZrm:
4325  case X86::VCVTUSI642SDZrr_Int:
4326  case X86::VCVTUSI642SDZrrb_Int:
4327  case X86::VCVTUSI642SDZrm_Int:
4328    // Load folding won't effect the undef register update since the input is
4329    // a GPR.
4330    return !ForLoadFold;
4331  case X86::VCVTSD2SSrr:
4332  case X86::VCVTSD2SSrm:
4333  case X86::VCVTSD2SSrr_Int:
4334  case X86::VCVTSD2SSrm_Int:
4335  case X86::VCVTSS2SDrr:
4336  case X86::VCVTSS2SDrm:
4337  case X86::VCVTSS2SDrr_Int:
4338  case X86::VCVTSS2SDrm_Int:
4339  case X86::VRCPSSr:
4340  case X86::VRCPSSr_Int:
4341  case X86::VRCPSSm:
4342  case X86::VRCPSSm_Int:
4343  case X86::VROUNDSDr:
4344  case X86::VROUNDSDm:
4345  case X86::VROUNDSDr_Int:
4346  case X86::VROUNDSDm_Int:
4347  case X86::VROUNDSSr:
4348  case X86::VROUNDSSm:
4349  case X86::VROUNDSSr_Int:
4350  case X86::VROUNDSSm_Int:
4351  case X86::VRSQRTSSr:
4352  case X86::VRSQRTSSr_Int:
4353  case X86::VRSQRTSSm:
4354  case X86::VRSQRTSSm_Int:
4355  case X86::VSQRTSSr:
4356  case X86::VSQRTSSr_Int:
4357  case X86::VSQRTSSm:
4358  case X86::VSQRTSSm_Int:
4359  case X86::VSQRTSDr:
4360  case X86::VSQRTSDr_Int:
4361  case X86::VSQRTSDm:
4362  case X86::VSQRTSDm_Int:
4363  // AVX-512
4364  case X86::VCVTSD2SSZrr:
4365  case X86::VCVTSD2SSZrr_Int:
4366  case X86::VCVTSD2SSZrrb_Int:
4367  case X86::VCVTSD2SSZrm:
4368  case X86::VCVTSD2SSZrm_Int:
4369  case X86::VCVTSS2SDZrr:
4370  case X86::VCVTSS2SDZrr_Int:
4371  case X86::VCVTSS2SDZrrb_Int:
4372  case X86::VCVTSS2SDZrm:
4373  case X86::VCVTSS2SDZrm_Int:
4374  case X86::VGETEXPSDZr:
4375  case X86::VGETEXPSDZrb:
4376  case X86::VGETEXPSDZm:
4377  case X86::VGETEXPSSZr:
4378  case X86::VGETEXPSSZrb:
4379  case X86::VGETEXPSSZm:
4380  case X86::VGETMANTSDZrri:
4381  case X86::VGETMANTSDZrrib:
4382  case X86::VGETMANTSDZrmi:
4383  case X86::VGETMANTSSZrri:
4384  case X86::VGETMANTSSZrrib:
4385  case X86::VGETMANTSSZrmi:
4386  case X86::VRNDSCALESDZr:
4387  case X86::VRNDSCALESDZr_Int:
4388  case X86::VRNDSCALESDZrb_Int:
4389  case X86::VRNDSCALESDZm:
4390  case X86::VRNDSCALESDZm_Int:
4391  case X86::VRNDSCALESSZr:
4392  case X86::VRNDSCALESSZr_Int:
4393  case X86::VRNDSCALESSZrb_Int:
4394  case X86::VRNDSCALESSZm:
4395  case X86::VRNDSCALESSZm_Int:
4396  case X86::VRCP14SDZrr:
4397  case X86::VRCP14SDZrm:
4398  case X86::VRCP14SSZrr:
4399  case X86::VRCP14SSZrm:
4400  case X86::VRCP28SDZr:
4401  case X86::VRCP28SDZrb:
4402  case X86::VRCP28SDZm:
4403  case X86::VRCP28SSZr:
4404  case X86::VRCP28SSZrb:
4405  case X86::VRCP28SSZm:
4406  case X86::VREDUCESSZrmi:
4407  case X86::VREDUCESSZrri:
4408  case X86::VREDUCESSZrrib:
4409  case X86::VRSQRT14SDZrr:
4410  case X86::VRSQRT14SDZrm:
4411  case X86::VRSQRT14SSZrr:
4412  case X86::VRSQRT14SSZrm:
4413  case X86::VRSQRT28SDZr:
4414  case X86::VRSQRT28SDZrb:
4415  case X86::VRSQRT28SDZm:
4416  case X86::VRSQRT28SSZr:
4417  case X86::VRSQRT28SSZrb:
4418  case X86::VRSQRT28SSZm:
4419  case X86::VSQRTSSZr:
4420  case X86::VSQRTSSZr_Int:
4421  case X86::VSQRTSSZrb_Int:
4422  case X86::VSQRTSSZm:
4423  case X86::VSQRTSSZm_Int:
4424  case X86::VSQRTSDZr:
4425  case X86::VSQRTSDZr_Int:
4426  case X86::VSQRTSDZrb_Int:
4427  case X86::VSQRTSDZm:
4428  case X86::VSQRTSDZm_Int:
4429    return true;
4430  }
4431
4432  return false;
4433}
4434
4435/// Inform the BreakFalseDeps pass how many idle instructions we would like
4436/// before certain undef register reads.
4437///
4438/// This catches the VCVTSI2SD family of instructions:
4439///
4440/// vcvtsi2sdq %rax, undef %xmm0, %xmm14
4441///
4442/// We should to be careful *not* to catch VXOR idioms which are presumably
4443/// handled specially in the pipeline:
4444///
4445/// vxorps undef %xmm1, undef %xmm1, %xmm1
4446///
4447/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
4448/// high bits that are passed-through are not live.
4449unsigned
4450X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
4451                                   const TargetRegisterInfo *TRI) const {
4452  if (!hasUndefRegUpdate(MI.getOpcode()))
4453    return 0;
4454
4455  // Set the OpNum parameter to the first source operand.
4456  OpNum = 1;
4457
4458  const MachineOperand &MO = MI.getOperand(OpNum);
4459  if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
4460    return UndefRegClearance;
4461  }
4462  return 0;
4463}
4464
4465void X86InstrInfo::breakPartialRegDependency(
4466    MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
4467  unsigned Reg = MI.getOperand(OpNum).getReg();
4468  // If MI kills this register, the false dependence is already broken.
4469  if (MI.killsRegister(Reg, TRI))
4470    return;
4471
4472  if (X86::VR128RegClass.contains(Reg)) {
4473    // These instructions are all floating point domain, so xorps is the best
4474    // choice.
4475    unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
4476    BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
4477        .addReg(Reg, RegState::Undef)
4478        .addReg(Reg, RegState::Undef);
4479    MI.addRegisterKilled(Reg, TRI, true);
4480  } else if (X86::VR256RegClass.contains(Reg)) {
4481    // Use vxorps to clear the full ymm register.
4482    // It wants to read and write the xmm sub-register.
4483    unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
4484    BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
4485        .addReg(XReg, RegState::Undef)
4486        .addReg(XReg, RegState::Undef)
4487        .addReg(Reg, RegState::ImplicitDefine);
4488    MI.addRegisterKilled(Reg, TRI, true);
4489  } else if (X86::GR64RegClass.contains(Reg)) {
4490    // Using XOR32rr because it has shorter encoding and zeros up the upper bits
4491    // as well.
4492    unsigned XReg = TRI->getSubReg(Reg, X86::sub_32bit);
4493    BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
4494        .addReg(XReg, RegState::Undef)
4495        .addReg(XReg, RegState::Undef)
4496        .addReg(Reg, RegState::ImplicitDefine);
4497    MI.addRegisterKilled(Reg, TRI, true);
4498  } else if (X86::GR32RegClass.contains(Reg)) {
4499    BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
4500        .addReg(Reg, RegState::Undef)
4501        .addReg(Reg, RegState::Undef);
4502    MI.addRegisterKilled(Reg, TRI, true);
4503  }
4504}
4505
4506static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
4507                        int PtrOffset = 0) {
4508  unsigned NumAddrOps = MOs.size();
4509
4510  if (NumAddrOps < 4) {
4511    // FrameIndex only - add an immediate offset (whether its zero or not).
4512    for (unsigned i = 0; i != NumAddrOps; ++i)
4513      MIB.add(MOs[i]);
4514    addOffset(MIB, PtrOffset);
4515  } else {
4516    // General Memory Addressing - we need to add any offset to an existing
4517    // offset.
4518    assert(MOs.size() == 5 && "Unexpected memory operand list length");
4519    for (unsigned i = 0; i != NumAddrOps; ++i) {
4520      const MachineOperand &MO = MOs[i];
4521      if (i == 3 && PtrOffset != 0) {
4522        MIB.addDisp(MO, PtrOffset);
4523      } else {
4524        MIB.add(MO);
4525      }
4526    }
4527  }
4528}
4529
4530static void updateOperandRegConstraints(MachineFunction &MF,
4531                                        MachineInstr &NewMI,
4532                                        const TargetInstrInfo &TII) {
4533  MachineRegisterInfo &MRI = MF.getRegInfo();
4534  const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
4535
4536  for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
4537    MachineOperand &MO = NewMI.getOperand(Idx);
4538    // We only need to update constraints on virtual register operands.
4539    if (!MO.isReg())
4540      continue;
4541    unsigned Reg = MO.getReg();
4542    if (!TRI.isVirtualRegister(Reg))
4543      continue;
4544
4545    auto *NewRC = MRI.constrainRegClass(
4546        Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
4547    if (!NewRC) {
4548      LLVM_DEBUG(
4549          dbgs() << "WARNING: Unable to update register constraint for operand "
4550                 << Idx << " of instruction:\n";
4551          NewMI.dump(); dbgs() << "\n");
4552    }
4553  }
4554}
4555
4556static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
4557                                     ArrayRef<MachineOperand> MOs,
4558                                     MachineBasicBlock::iterator InsertPt,
4559                                     MachineInstr &MI,
4560                                     const TargetInstrInfo &TII) {
4561  // Create the base instruction with the memory operand as the first part.
4562  // Omit the implicit operands, something BuildMI can't do.
4563  MachineInstr *NewMI =
4564      MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
4565  MachineInstrBuilder MIB(MF, NewMI);
4566  addOperands(MIB, MOs);
4567
4568  // Loop over the rest of the ri operands, converting them over.
4569  unsigned NumOps = MI.getDesc().getNumOperands() - 2;
4570  for (unsigned i = 0; i != NumOps; ++i) {
4571    MachineOperand &MO = MI.getOperand(i + 2);
4572    MIB.add(MO);
4573  }
4574  for (unsigned i = NumOps + 2, e = MI.getNumOperands(); i != e; ++i) {
4575    MachineOperand &MO = MI.getOperand(i);
4576    MIB.add(MO);
4577  }
4578
4579  updateOperandRegConstraints(MF, *NewMI, TII);
4580
4581  MachineBasicBlock *MBB = InsertPt->getParent();
4582  MBB->insert(InsertPt, NewMI);
4583
4584  return MIB;
4585}
4586
4587static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
4588                              unsigned OpNo, ArrayRef<MachineOperand> MOs,
4589                              MachineBasicBlock::iterator InsertPt,
4590                              MachineInstr &MI, const TargetInstrInfo &TII,
4591                              int PtrOffset = 0) {
4592  // Omit the implicit operands, something BuildMI can't do.
4593  MachineInstr *NewMI =
4594      MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
4595  MachineInstrBuilder MIB(MF, NewMI);
4596
4597  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
4598    MachineOperand &MO = MI.getOperand(i);
4599    if (i == OpNo) {
4600      assert(MO.isReg() && "Expected to fold into reg operand!");
4601      addOperands(MIB, MOs, PtrOffset);
4602    } else {
4603      MIB.add(MO);
4604    }
4605  }
4606
4607  updateOperandRegConstraints(MF, *NewMI, TII);
4608
4609  MachineBasicBlock *MBB = InsertPt->getParent();
4610  MBB->insert(InsertPt, NewMI);
4611
4612  return MIB;
4613}
4614
4615static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
4616                                ArrayRef<MachineOperand> MOs,
4617                                MachineBasicBlock::iterator InsertPt,
4618                                MachineInstr &MI) {
4619  MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
4620                                    MI.getDebugLoc(), TII.get(Opcode));
4621  addOperands(MIB, MOs);
4622  return MIB.addImm(0);
4623}
4624
4625MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
4626    MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
4627    ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
4628    unsigned Size, unsigned Align) const {
4629  switch (MI.getOpcode()) {
4630  case X86::INSERTPSrr:
4631  case X86::VINSERTPSrr:
4632  case X86::VINSERTPSZrr:
4633    // Attempt to convert the load of inserted vector into a fold load
4634    // of a single float.
4635    if (OpNum == 2) {
4636      unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
4637      unsigned ZMask = Imm & 15;
4638      unsigned DstIdx = (Imm >> 4) & 3;
4639      unsigned SrcIdx = (Imm >> 6) & 3;
4640
4641      const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4642      const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4643      unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4644      if ((Size == 0 || Size >= 16) && RCSize >= 16 && 4 <= Align) {
4645        int PtrOffset = SrcIdx * 4;
4646        unsigned NewImm = (DstIdx << 4) | ZMask;
4647        unsigned NewOpCode =
4648            (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm :
4649            (MI.getOpcode() == X86::VINSERTPSrr)  ? X86::VINSERTPSrm  :
4650                                                    X86::INSERTPSrm;
4651        MachineInstr *NewMI =
4652            FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
4653        NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
4654        return NewMI;
4655      }
4656    }
4657    break;
4658  case X86::MOVHLPSrr:
4659  case X86::VMOVHLPSrr:
4660  case X86::VMOVHLPSZrr:
4661    // Move the upper 64-bits of the second operand to the lower 64-bits.
4662    // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
4663    // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
4664    if (OpNum == 2) {
4665      const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4666      const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4667      unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4668      if ((Size == 0 || Size >= 16) && RCSize >= 16 && 8 <= Align) {
4669        unsigned NewOpCode =
4670            (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm :
4671            (MI.getOpcode() == X86::VMOVHLPSrr)  ? X86::VMOVLPSrm     :
4672                                                   X86::MOVLPSrm;
4673        MachineInstr *NewMI =
4674            FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
4675        return NewMI;
4676      }
4677    }
4678    break;
4679  case X86::UNPCKLPDrr:
4680    // If we won't be able to fold this to the memory form of UNPCKL, use
4681    // MOVHPD instead. Done as custom because we can't have this in the load
4682    // table twice.
4683    if (OpNum == 2) {
4684      const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4685      const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4686      unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4687      if ((Size == 0 || Size >= 16) && RCSize >= 16 && Align < 16) {
4688        MachineInstr *NewMI =
4689            FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this);
4690        return NewMI;
4691      }
4692    }
4693    break;
4694  }
4695
4696  return nullptr;
4697}
4698
4699static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF,
4700                                               MachineInstr &MI) {
4701  if (!hasUndefRegUpdate(MI.getOpcode(), /*ForLoadFold*/true) ||
4702      !MI.getOperand(1).isReg())
4703    return false;
4704
4705  // The are two cases we need to handle depending on where in the pipeline
4706  // the folding attempt is being made.
4707  // -Register has the undef flag set.
4708  // -Register is produced by the IMPLICIT_DEF instruction.
4709
4710  if (MI.getOperand(1).isUndef())
4711    return true;
4712
4713  MachineRegisterInfo &RegInfo = MF.getRegInfo();
4714  MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
4715  return VRegDef && VRegDef->isImplicitDef();
4716}
4717
4718
4719MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
4720    MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
4721    ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
4722    unsigned Size, unsigned Align, bool AllowCommute) const {
4723  bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
4724  bool isTwoAddrFold = false;
4725
4726  // For CPUs that favor the register form of a call or push,
4727  // do not fold loads into calls or pushes, unless optimizing for size
4728  // aggressively.
4729  if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
4730      (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
4731       MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
4732       MI.getOpcode() == X86::PUSH64r))
4733    return nullptr;
4734
4735  // Avoid partial and undef register update stalls unless optimizing for size.
4736  if (!MF.getFunction().hasOptSize() &&
4737      (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
4738       shouldPreventUndefRegUpdateMemFold(MF, MI)))
4739    return nullptr;
4740
4741  unsigned NumOps = MI.getDesc().getNumOperands();
4742  bool isTwoAddr =
4743      NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
4744
4745  // FIXME: AsmPrinter doesn't know how to handle
4746  // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
4747  if (MI.getOpcode() == X86::ADD32ri &&
4748      MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
4749    return nullptr;
4750
4751  // GOTTPOFF relocation loads can only be folded into add instructions.
4752  // FIXME: Need to exclude other relocations that only support specific
4753  // instructions.
4754  if (MOs.size() == X86::AddrNumOperands &&
4755      MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
4756      MI.getOpcode() != X86::ADD64rr)
4757    return nullptr;
4758
4759  MachineInstr *NewMI = nullptr;
4760
4761  // Attempt to fold any custom cases we have.
4762  if (MachineInstr *CustomMI =
4763          foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt, Size, Align))
4764    return CustomMI;
4765
4766  const X86MemoryFoldTableEntry *I = nullptr;
4767
4768  // Folding a memory location into the two-address part of a two-address
4769  // instruction is different than folding it other places.  It requires
4770  // replacing the *two* registers with the memory location.
4771  if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
4772      MI.getOperand(1).isReg() &&
4773      MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
4774    I = lookupTwoAddrFoldTable(MI.getOpcode());
4775    isTwoAddrFold = true;
4776  } else {
4777    if (OpNum == 0) {
4778      if (MI.getOpcode() == X86::MOV32r0) {
4779        NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
4780        if (NewMI)
4781          return NewMI;
4782      }
4783    }
4784
4785    I = lookupFoldTable(MI.getOpcode(), OpNum);
4786  }
4787
4788  if (I != nullptr) {
4789    unsigned Opcode = I->DstOp;
4790    unsigned MinAlign = (I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
4791    if (Align < MinAlign)
4792      return nullptr;
4793    bool NarrowToMOV32rm = false;
4794    if (Size) {
4795      const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4796      const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum,
4797                                                  &RI, MF);
4798      unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4799      if (Size < RCSize) {
4800        // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
4801        // Check if it's safe to fold the load. If the size of the object is
4802        // narrower than the load width, then it's not.
4803        if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
4804          return nullptr;
4805        // If this is a 64-bit load, but the spill slot is 32, then we can do
4806        // a 32-bit load which is implicitly zero-extended. This likely is
4807        // due to live interval analysis remat'ing a load from stack slot.
4808        if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
4809          return nullptr;
4810        Opcode = X86::MOV32rm;
4811        NarrowToMOV32rm = true;
4812      }
4813    }
4814
4815    if (isTwoAddrFold)
4816      NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
4817    else
4818      NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
4819
4820    if (NarrowToMOV32rm) {
4821      // If this is the special case where we use a MOV32rm to load a 32-bit
4822      // value and zero-extend the top bits. Change the destination register
4823      // to a 32-bit one.
4824      unsigned DstReg = NewMI->getOperand(0).getReg();
4825      if (TargetRegisterInfo::isPhysicalRegister(DstReg))
4826        NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
4827      else
4828        NewMI->getOperand(0).setSubReg(X86::sub_32bit);
4829    }
4830    return NewMI;
4831  }
4832
4833  // If the instruction and target operand are commutable, commute the
4834  // instruction and try again.
4835  if (AllowCommute) {
4836    unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
4837    if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
4838      bool HasDef = MI.getDesc().getNumDefs();
4839      Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
4840      Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
4841      Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
4842      bool Tied1 =
4843          0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
4844      bool Tied2 =
4845          0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
4846
4847      // If either of the commutable operands are tied to the destination
4848      // then we can not commute + fold.
4849      if ((HasDef && Reg0 == Reg1 && Tied1) ||
4850          (HasDef && Reg0 == Reg2 && Tied2))
4851        return nullptr;
4852
4853      MachineInstr *CommutedMI =
4854          commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
4855      if (!CommutedMI) {
4856        // Unable to commute.
4857        return nullptr;
4858      }
4859      if (CommutedMI != &MI) {
4860        // New instruction. We can't fold from this.
4861        CommutedMI->eraseFromParent();
4862        return nullptr;
4863      }
4864
4865      // Attempt to fold with the commuted version of the instruction.
4866      NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt,
4867                                    Size, Align, /*AllowCommute=*/false);
4868      if (NewMI)
4869        return NewMI;
4870
4871      // Folding failed again - undo the commute before returning.
4872      MachineInstr *UncommutedMI =
4873          commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
4874      if (!UncommutedMI) {
4875        // Unable to commute.
4876        return nullptr;
4877      }
4878      if (UncommutedMI != &MI) {
4879        // New instruction. It doesn't need to be kept.
4880        UncommutedMI->eraseFromParent();
4881        return nullptr;
4882      }
4883
4884      // Return here to prevent duplicate fuse failure report.
4885      return nullptr;
4886    }
4887  }
4888
4889  // No fusion
4890  if (PrintFailedFusing && !MI.isCopy())
4891    dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
4892  return nullptr;
4893}
4894
4895MachineInstr *
4896X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
4897                                    ArrayRef<unsigned> Ops,
4898                                    MachineBasicBlock::iterator InsertPt,
4899                                    int FrameIndex, LiveIntervals *LIS,
4900                                    VirtRegMap *VRM) const {
4901  // Check switch flag
4902  if (NoFusing)
4903    return nullptr;
4904
4905  // Avoid partial and undef register update stalls unless optimizing for size.
4906  if (!MF.getFunction().hasOptSize() &&
4907      (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
4908       shouldPreventUndefRegUpdateMemFold(MF, MI)))
4909    return nullptr;
4910
4911  // Don't fold subreg spills, or reloads that use a high subreg.
4912  for (auto Op : Ops) {
4913    MachineOperand &MO = MI.getOperand(Op);
4914    auto SubReg = MO.getSubReg();
4915    if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
4916      return nullptr;
4917  }
4918
4919  const MachineFrameInfo &MFI = MF.getFrameInfo();
4920  unsigned Size = MFI.getObjectSize(FrameIndex);
4921  unsigned Alignment = MFI.getObjectAlignment(FrameIndex);
4922  // If the function stack isn't realigned we don't want to fold instructions
4923  // that need increased alignment.
4924  if (!RI.needsStackRealignment(MF))
4925    Alignment =
4926        std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment());
4927  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
4928    unsigned NewOpc = 0;
4929    unsigned RCSize = 0;
4930    switch (MI.getOpcode()) {
4931    default: return nullptr;
4932    case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
4933    case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
4934    case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
4935    case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
4936    }
4937    // Check if it's safe to fold the load. If the size of the object is
4938    // narrower than the load width, then it's not.
4939    if (Size < RCSize)
4940      return nullptr;
4941    // Change to CMPXXri r, 0 first.
4942    MI.setDesc(get(NewOpc));
4943    MI.getOperand(1).ChangeToImmediate(0);
4944  } else if (Ops.size() != 1)
4945    return nullptr;
4946
4947  return foldMemoryOperandImpl(MF, MI, Ops[0],
4948                               MachineOperand::CreateFI(FrameIndex), InsertPt,
4949                               Size, Alignment, /*AllowCommute=*/true);
4950}
4951
4952/// Check if \p LoadMI is a partial register load that we can't fold into \p MI
4953/// because the latter uses contents that wouldn't be defined in the folded
4954/// version.  For instance, this transformation isn't legal:
4955///   movss (%rdi), %xmm0
4956///   addps %xmm0, %xmm0
4957/// ->
4958///   addps (%rdi), %xmm0
4959///
4960/// But this one is:
4961///   movss (%rdi), %xmm0
4962///   addss %xmm0, %xmm0
4963/// ->
4964///   addss (%rdi), %xmm0
4965///
4966static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
4967                                             const MachineInstr &UserMI,
4968                                             const MachineFunction &MF) {
4969  unsigned Opc = LoadMI.getOpcode();
4970  unsigned UserOpc = UserMI.getOpcode();
4971  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4972  const TargetRegisterClass *RC =
4973      MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
4974  unsigned RegSize = TRI.getRegSizeInBits(*RC);
4975
4976  if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm ||
4977       Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt ||
4978       Opc == X86::VMOVSSZrm_alt) &&
4979      RegSize > 32) {
4980    // These instructions only load 32 bits, we can't fold them if the
4981    // destination register is wider than 32 bits (4 bytes), and its user
4982    // instruction isn't scalar (SS).
4983    switch (UserOpc) {
4984    case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int:
4985    case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int:
4986    case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int:
4987    case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int:
4988    case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int:
4989    case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int:
4990    case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int:
4991    case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz:
4992    case X86::VCMPSSZrr_Intk:
4993    case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz:
4994    case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz:
4995    case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz:
4996    case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz:
4997    case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz:
4998    case X86::VFMADDSS4rr_Int:   case X86::VFNMADDSS4rr_Int:
4999    case X86::VFMSUBSS4rr_Int:   case X86::VFNMSUBSS4rr_Int:
5000    case X86::VFMADD132SSr_Int:  case X86::VFNMADD132SSr_Int:
5001    case X86::VFMADD213SSr_Int:  case X86::VFNMADD213SSr_Int:
5002    case X86::VFMADD231SSr_Int:  case X86::VFNMADD231SSr_Int:
5003    case X86::VFMSUB132SSr_Int:  case X86::VFNMSUB132SSr_Int:
5004    case X86::VFMSUB213SSr_Int:  case X86::VFNMSUB213SSr_Int:
5005    case X86::VFMSUB231SSr_Int:  case X86::VFNMSUB231SSr_Int:
5006    case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int:
5007    case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int:
5008    case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int:
5009    case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int:
5010    case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int:
5011    case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int:
5012    case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk:
5013    case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk:
5014    case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk:
5015    case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk:
5016    case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk:
5017    case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk:
5018    case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz:
5019    case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz:
5020    case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz:
5021    case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz:
5022    case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz:
5023    case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz:
5024      return false;
5025    default:
5026      return true;
5027    }
5028  }
5029
5030  if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm ||
5031       Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt ||
5032       Opc == X86::VMOVSDZrm_alt) &&
5033      RegSize > 64) {
5034    // These instructions only load 64 bits, we can't fold them if the
5035    // destination register is wider than 64 bits (8 bytes), and its user
5036    // instruction isn't scalar (SD).
5037    switch (UserOpc) {
5038    case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int:
5039    case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int:
5040    case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int:
5041    case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int:
5042    case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int:
5043    case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int:
5044    case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int:
5045    case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz:
5046    case X86::VCMPSDZrr_Intk:
5047    case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz:
5048    case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz:
5049    case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz:
5050    case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz:
5051    case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz:
5052    case X86::VFMADDSD4rr_Int:   case X86::VFNMADDSD4rr_Int:
5053    case X86::VFMSUBSD4rr_Int:   case X86::VFNMSUBSD4rr_Int:
5054    case X86::VFMADD132SDr_Int:  case X86::VFNMADD132SDr_Int:
5055    case X86::VFMADD213SDr_Int:  case X86::VFNMADD213SDr_Int:
5056    case X86::VFMADD231SDr_Int:  case X86::VFNMADD231SDr_Int:
5057    case X86::VFMSUB132SDr_Int:  case X86::VFNMSUB132SDr_Int:
5058    case X86::VFMSUB213SDr_Int:  case X86::VFNMSUB213SDr_Int:
5059    case X86::VFMSUB231SDr_Int:  case X86::VFNMSUB231SDr_Int:
5060    case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int:
5061    case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int:
5062    case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int:
5063    case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int:
5064    case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int:
5065    case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int:
5066    case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk:
5067    case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk:
5068    case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk:
5069    case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk:
5070    case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk:
5071    case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk:
5072    case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz:
5073    case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz:
5074    case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz:
5075    case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz:
5076    case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz:
5077    case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz:
5078      return false;
5079    default:
5080      return true;
5081    }
5082  }
5083
5084  return false;
5085}
5086
5087MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
5088    MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
5089    MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
5090    LiveIntervals *LIS) const {
5091
5092  // TODO: Support the case where LoadMI loads a wide register, but MI
5093  // only uses a subreg.
5094  for (auto Op : Ops) {
5095    if (MI.getOperand(Op).getSubReg())
5096      return nullptr;
5097  }
5098
5099  // If loading from a FrameIndex, fold directly from the FrameIndex.
5100  unsigned NumOps = LoadMI.getDesc().getNumOperands();
5101  int FrameIndex;
5102  if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
5103    if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
5104      return nullptr;
5105    return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
5106  }
5107
5108  // Check switch flag
5109  if (NoFusing) return nullptr;
5110
5111  // Avoid partial and undef register update stalls unless optimizing for size.
5112  if (!MF.getFunction().hasOptSize() &&
5113      (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
5114       shouldPreventUndefRegUpdateMemFold(MF, MI)))
5115    return nullptr;
5116
5117  // Determine the alignment of the load.
5118  unsigned Alignment = 0;
5119  if (LoadMI.hasOneMemOperand())
5120    Alignment = (*LoadMI.memoperands_begin())->getAlignment();
5121  else
5122    switch (LoadMI.getOpcode()) {
5123    case X86::AVX512_512_SET0:
5124    case X86::AVX512_512_SETALLONES:
5125      Alignment = 64;
5126      break;
5127    case X86::AVX2_SETALLONES:
5128    case X86::AVX1_SETALLONES:
5129    case X86::AVX_SET0:
5130    case X86::AVX512_256_SET0:
5131      Alignment = 32;
5132      break;
5133    case X86::V_SET0:
5134    case X86::V_SETALLONES:
5135    case X86::AVX512_128_SET0:
5136      Alignment = 16;
5137      break;
5138    case X86::MMX_SET0:
5139    case X86::FsFLD0SD:
5140    case X86::AVX512_FsFLD0SD:
5141      Alignment = 8;
5142      break;
5143    case X86::FsFLD0SS:
5144    case X86::AVX512_FsFLD0SS:
5145      Alignment = 4;
5146      break;
5147    default:
5148      return nullptr;
5149    }
5150  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5151    unsigned NewOpc = 0;
5152    switch (MI.getOpcode()) {
5153    default: return nullptr;
5154    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
5155    case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
5156    case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
5157    case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
5158    }
5159    // Change to CMPXXri r, 0 first.
5160    MI.setDesc(get(NewOpc));
5161    MI.getOperand(1).ChangeToImmediate(0);
5162  } else if (Ops.size() != 1)
5163    return nullptr;
5164
5165  // Make sure the subregisters match.
5166  // Otherwise we risk changing the size of the load.
5167  if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
5168    return nullptr;
5169
5170  SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
5171  switch (LoadMI.getOpcode()) {
5172  case X86::MMX_SET0:
5173  case X86::V_SET0:
5174  case X86::V_SETALLONES:
5175  case X86::AVX2_SETALLONES:
5176  case X86::AVX1_SETALLONES:
5177  case X86::AVX_SET0:
5178  case X86::AVX512_128_SET0:
5179  case X86::AVX512_256_SET0:
5180  case X86::AVX512_512_SET0:
5181  case X86::AVX512_512_SETALLONES:
5182  case X86::FsFLD0SD:
5183  case X86::AVX512_FsFLD0SD:
5184  case X86::FsFLD0SS:
5185  case X86::AVX512_FsFLD0SS: {
5186    // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
5187    // Create a constant-pool entry and operands to load from it.
5188
5189    // Medium and large mode can't fold loads this way.
5190    if (MF.getTarget().getCodeModel() != CodeModel::Small &&
5191        MF.getTarget().getCodeModel() != CodeModel::Kernel)
5192      return nullptr;
5193
5194    // x86-32 PIC requires a PIC base register for constant pools.
5195    unsigned PICBase = 0;
5196    if (MF.getTarget().isPositionIndependent()) {
5197      if (Subtarget.is64Bit())
5198        PICBase = X86::RIP;
5199      else
5200        // FIXME: PICBase = getGlobalBaseReg(&MF);
5201        // This doesn't work for several reasons.
5202        // 1. GlobalBaseReg may have been spilled.
5203        // 2. It may not be live at MI.
5204        return nullptr;
5205    }
5206
5207    // Create a constant-pool entry.
5208    MachineConstantPool &MCP = *MF.getConstantPool();
5209    Type *Ty;
5210    unsigned Opc = LoadMI.getOpcode();
5211    if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
5212      Ty = Type::getFloatTy(MF.getFunction().getContext());
5213    else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
5214      Ty = Type::getDoubleTy(MF.getFunction().getContext());
5215    else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
5216      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),16);
5217    else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
5218             Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES)
5219      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 8);
5220    else if (Opc == X86::MMX_SET0)
5221      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 2);
5222    else
5223      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 4);
5224
5225    bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
5226                      Opc == X86::AVX512_512_SETALLONES ||
5227                      Opc == X86::AVX1_SETALLONES);
5228    const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
5229                                    Constant::getNullValue(Ty);
5230    unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
5231
5232    // Create operands to load from the constant pool entry.
5233    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
5234    MOs.push_back(MachineOperand::CreateImm(1));
5235    MOs.push_back(MachineOperand::CreateReg(0, false));
5236    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
5237    MOs.push_back(MachineOperand::CreateReg(0, false));
5238    break;
5239  }
5240  default: {
5241    if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
5242      return nullptr;
5243
5244    // Folding a normal load. Just copy the load's address operands.
5245    MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
5246               LoadMI.operands_begin() + NumOps);
5247    break;
5248  }
5249  }
5250  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
5251                               /*Size=*/0, Alignment, /*AllowCommute=*/true);
5252}
5253
5254static SmallVector<MachineMemOperand *, 2>
5255extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
5256  SmallVector<MachineMemOperand *, 2> LoadMMOs;
5257
5258  for (MachineMemOperand *MMO : MMOs) {
5259    if (!MMO->isLoad())
5260      continue;
5261
5262    if (!MMO->isStore()) {
5263      // Reuse the MMO.
5264      LoadMMOs.push_back(MMO);
5265    } else {
5266      // Clone the MMO and unset the store flag.
5267      LoadMMOs.push_back(MF.getMachineMemOperand(
5268          MMO, MMO->getFlags() & ~MachineMemOperand::MOStore));
5269    }
5270  }
5271
5272  return LoadMMOs;
5273}
5274
5275static SmallVector<MachineMemOperand *, 2>
5276extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
5277  SmallVector<MachineMemOperand *, 2> StoreMMOs;
5278
5279  for (MachineMemOperand *MMO : MMOs) {
5280    if (!MMO->isStore())
5281      continue;
5282
5283    if (!MMO->isLoad()) {
5284      // Reuse the MMO.
5285      StoreMMOs.push_back(MMO);
5286    } else {
5287      // Clone the MMO and unset the load flag.
5288      StoreMMOs.push_back(MF.getMachineMemOperand(
5289          MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad));
5290    }
5291  }
5292
5293  return StoreMMOs;
5294}
5295
5296bool X86InstrInfo::unfoldMemoryOperand(
5297    MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
5298    bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
5299  const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
5300  if (I == nullptr)
5301    return false;
5302  unsigned Opc = I->DstOp;
5303  unsigned Index = I->Flags & TB_INDEX_MASK;
5304  bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5305  bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5306  if (UnfoldLoad && !FoldedLoad)
5307    return false;
5308  UnfoldLoad &= FoldedLoad;
5309  if (UnfoldStore && !FoldedStore)
5310    return false;
5311  UnfoldStore &= FoldedStore;
5312
5313  const MCInstrDesc &MCID = get(Opc);
5314  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
5315  // TODO: Check if 32-byte or greater accesses are slow too?
5316  if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
5317      Subtarget.isUnalignedMem16Slow())
5318    // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
5319    // conservatively assume the address is unaligned. That's bad for
5320    // performance.
5321    return false;
5322  SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
5323  SmallVector<MachineOperand,2> BeforeOps;
5324  SmallVector<MachineOperand,2> AfterOps;
5325  SmallVector<MachineOperand,4> ImpOps;
5326  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
5327    MachineOperand &Op = MI.getOperand(i);
5328    if (i >= Index && i < Index + X86::AddrNumOperands)
5329      AddrOps.push_back(Op);
5330    else if (Op.isReg() && Op.isImplicit())
5331      ImpOps.push_back(Op);
5332    else if (i < Index)
5333      BeforeOps.push_back(Op);
5334    else if (i > Index)
5335      AfterOps.push_back(Op);
5336  }
5337
5338  // Emit the load instruction.
5339  if (UnfoldLoad) {
5340    auto MMOs = extractLoadMMOs(MI.memoperands(), MF);
5341    loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs, NewMIs);
5342    if (UnfoldStore) {
5343      // Address operands cannot be marked isKill.
5344      for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
5345        MachineOperand &MO = NewMIs[0]->getOperand(i);
5346        if (MO.isReg())
5347          MO.setIsKill(false);
5348      }
5349    }
5350  }
5351
5352  // Emit the data processing instruction.
5353  MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
5354  MachineInstrBuilder MIB(MF, DataMI);
5355
5356  if (FoldedStore)
5357    MIB.addReg(Reg, RegState::Define);
5358  for (MachineOperand &BeforeOp : BeforeOps)
5359    MIB.add(BeforeOp);
5360  if (FoldedLoad)
5361    MIB.addReg(Reg);
5362  for (MachineOperand &AfterOp : AfterOps)
5363    MIB.add(AfterOp);
5364  for (MachineOperand &ImpOp : ImpOps) {
5365    MIB.addReg(ImpOp.getReg(),
5366               getDefRegState(ImpOp.isDef()) |
5367               RegState::Implicit |
5368               getKillRegState(ImpOp.isKill()) |
5369               getDeadRegState(ImpOp.isDead()) |
5370               getUndefRegState(ImpOp.isUndef()));
5371  }
5372  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5373  switch (DataMI->getOpcode()) {
5374  default: break;
5375  case X86::CMP64ri32:
5376  case X86::CMP64ri8:
5377  case X86::CMP32ri:
5378  case X86::CMP32ri8:
5379  case X86::CMP16ri:
5380  case X86::CMP16ri8:
5381  case X86::CMP8ri: {
5382    MachineOperand &MO0 = DataMI->getOperand(0);
5383    MachineOperand &MO1 = DataMI->getOperand(1);
5384    if (MO1.getImm() == 0) {
5385      unsigned NewOpc;
5386      switch (DataMI->getOpcode()) {
5387      default: llvm_unreachable("Unreachable!");
5388      case X86::CMP64ri8:
5389      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
5390      case X86::CMP32ri8:
5391      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
5392      case X86::CMP16ri8:
5393      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
5394      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
5395      }
5396      DataMI->setDesc(get(NewOpc));
5397      MO1.ChangeToRegister(MO0.getReg(), false);
5398    }
5399  }
5400  }
5401  NewMIs.push_back(DataMI);
5402
5403  // Emit the store instruction.
5404  if (UnfoldStore) {
5405    const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
5406    auto MMOs = extractStoreMMOs(MI.memoperands(), MF);
5407    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs, NewMIs);
5408  }
5409
5410  return true;
5411}
5412
5413bool
5414X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
5415                                  SmallVectorImpl<SDNode*> &NewNodes) const {
5416  if (!N->isMachineOpcode())
5417    return false;
5418
5419  const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
5420  if (I == nullptr)
5421    return false;
5422  unsigned Opc = I->DstOp;
5423  unsigned Index = I->Flags & TB_INDEX_MASK;
5424  bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5425  bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5426  const MCInstrDesc &MCID = get(Opc);
5427  MachineFunction &MF = DAG.getMachineFunction();
5428  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5429  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
5430  unsigned NumDefs = MCID.NumDefs;
5431  std::vector<SDValue> AddrOps;
5432  std::vector<SDValue> BeforeOps;
5433  std::vector<SDValue> AfterOps;
5434  SDLoc dl(N);
5435  unsigned NumOps = N->getNumOperands();
5436  for (unsigned i = 0; i != NumOps-1; ++i) {
5437    SDValue Op = N->getOperand(i);
5438    if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
5439      AddrOps.push_back(Op);
5440    else if (i < Index-NumDefs)
5441      BeforeOps.push_back(Op);
5442    else if (i > Index-NumDefs)
5443      AfterOps.push_back(Op);
5444  }
5445  SDValue Chain = N->getOperand(NumOps-1);
5446  AddrOps.push_back(Chain);
5447
5448  // Emit the load instruction.
5449  SDNode *Load = nullptr;
5450  if (FoldedLoad) {
5451    EVT VT = *TRI.legalclasstypes_begin(*RC);
5452    auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
5453    if (MMOs.empty() && RC == &X86::VR128RegClass &&
5454        Subtarget.isUnalignedMem16Slow())
5455      // Do not introduce a slow unaligned load.
5456      return false;
5457    // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
5458    // memory access is slow above.
5459    unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
5460    bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
5461    Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl,
5462                              VT, MVT::Other, AddrOps);
5463    NewNodes.push_back(Load);
5464
5465    // Preserve memory reference information.
5466    DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs);
5467  }
5468
5469  // Emit the data processing instruction.
5470  std::vector<EVT> VTs;
5471  const TargetRegisterClass *DstRC = nullptr;
5472  if (MCID.getNumDefs() > 0) {
5473    DstRC = getRegClass(MCID, 0, &RI, MF);
5474    VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
5475  }
5476  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
5477    EVT VT = N->getValueType(i);
5478    if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
5479      VTs.push_back(VT);
5480  }
5481  if (Load)
5482    BeforeOps.push_back(SDValue(Load, 0));
5483  BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end());
5484  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5485  switch (Opc) {
5486    default: break;
5487    case X86::CMP64ri32:
5488    case X86::CMP64ri8:
5489    case X86::CMP32ri:
5490    case X86::CMP32ri8:
5491    case X86::CMP16ri:
5492    case X86::CMP16ri8:
5493    case X86::CMP8ri:
5494      if (isNullConstant(BeforeOps[1])) {
5495        switch (Opc) {
5496          default: llvm_unreachable("Unreachable!");
5497          case X86::CMP64ri8:
5498          case X86::CMP64ri32: Opc = X86::TEST64rr; break;
5499          case X86::CMP32ri8:
5500          case X86::CMP32ri:   Opc = X86::TEST32rr; break;
5501          case X86::CMP16ri8:
5502          case X86::CMP16ri:   Opc = X86::TEST16rr; break;
5503          case X86::CMP8ri:    Opc = X86::TEST8rr; break;
5504        }
5505        BeforeOps[1] = BeforeOps[0];
5506      }
5507  }
5508  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
5509  NewNodes.push_back(NewNode);
5510
5511  // Emit the store instruction.
5512  if (FoldedStore) {
5513    AddrOps.pop_back();
5514    AddrOps.push_back(SDValue(NewNode, 0));
5515    AddrOps.push_back(Chain);
5516    auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
5517    if (MMOs.empty() && RC == &X86::VR128RegClass &&
5518        Subtarget.isUnalignedMem16Slow())
5519      // Do not introduce a slow unaligned store.
5520      return false;
5521    // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
5522    // memory access is slow above.
5523    unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
5524    bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
5525    SDNode *Store =
5526        DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
5527                           dl, MVT::Other, AddrOps);
5528    NewNodes.push_back(Store);
5529
5530    // Preserve memory reference information.
5531    DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs);
5532  }
5533
5534  return true;
5535}
5536
5537unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
5538                                      bool UnfoldLoad, bool UnfoldStore,
5539                                      unsigned *LoadRegIndex) const {
5540  const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc);
5541  if (I == nullptr)
5542    return 0;
5543  bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5544  bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5545  if (UnfoldLoad && !FoldedLoad)
5546    return 0;
5547  if (UnfoldStore && !FoldedStore)
5548    return 0;
5549  if (LoadRegIndex)
5550    *LoadRegIndex = I->Flags & TB_INDEX_MASK;
5551  return I->DstOp;
5552}
5553
5554bool
5555X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
5556                                     int64_t &Offset1, int64_t &Offset2) const {
5557  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
5558    return false;
5559  unsigned Opc1 = Load1->getMachineOpcode();
5560  unsigned Opc2 = Load2->getMachineOpcode();
5561  switch (Opc1) {
5562  default: return false;
5563  case X86::MOV8rm:
5564  case X86::MOV16rm:
5565  case X86::MOV32rm:
5566  case X86::MOV64rm:
5567  case X86::LD_Fp32m:
5568  case X86::LD_Fp64m:
5569  case X86::LD_Fp80m:
5570  case X86::MOVSSrm:
5571  case X86::MOVSSrm_alt:
5572  case X86::MOVSDrm:
5573  case X86::MOVSDrm_alt:
5574  case X86::MMX_MOVD64rm:
5575  case X86::MMX_MOVQ64rm:
5576  case X86::MOVAPSrm:
5577  case X86::MOVUPSrm:
5578  case X86::MOVAPDrm:
5579  case X86::MOVUPDrm:
5580  case X86::MOVDQArm:
5581  case X86::MOVDQUrm:
5582  // AVX load instructions
5583  case X86::VMOVSSrm:
5584  case X86::VMOVSSrm_alt:
5585  case X86::VMOVSDrm:
5586  case X86::VMOVSDrm_alt:
5587  case X86::VMOVAPSrm:
5588  case X86::VMOVUPSrm:
5589  case X86::VMOVAPDrm:
5590  case X86::VMOVUPDrm:
5591  case X86::VMOVDQArm:
5592  case X86::VMOVDQUrm:
5593  case X86::VMOVAPSYrm:
5594  case X86::VMOVUPSYrm:
5595  case X86::VMOVAPDYrm:
5596  case X86::VMOVUPDYrm:
5597  case X86::VMOVDQAYrm:
5598  case X86::VMOVDQUYrm:
5599  // AVX512 load instructions
5600  case X86::VMOVSSZrm:
5601  case X86::VMOVSSZrm_alt:
5602  case X86::VMOVSDZrm:
5603  case X86::VMOVSDZrm_alt:
5604  case X86::VMOVAPSZ128rm:
5605  case X86::VMOVUPSZ128rm:
5606  case X86::VMOVAPSZ128rm_NOVLX:
5607  case X86::VMOVUPSZ128rm_NOVLX:
5608  case X86::VMOVAPDZ128rm:
5609  case X86::VMOVUPDZ128rm:
5610  case X86::VMOVDQU8Z128rm:
5611  case X86::VMOVDQU16Z128rm:
5612  case X86::VMOVDQA32Z128rm:
5613  case X86::VMOVDQU32Z128rm:
5614  case X86::VMOVDQA64Z128rm:
5615  case X86::VMOVDQU64Z128rm:
5616  case X86::VMOVAPSZ256rm:
5617  case X86::VMOVUPSZ256rm:
5618  case X86::VMOVAPSZ256rm_NOVLX:
5619  case X86::VMOVUPSZ256rm_NOVLX:
5620  case X86::VMOVAPDZ256rm:
5621  case X86::VMOVUPDZ256rm:
5622  case X86::VMOVDQU8Z256rm:
5623  case X86::VMOVDQU16Z256rm:
5624  case X86::VMOVDQA32Z256rm:
5625  case X86::VMOVDQU32Z256rm:
5626  case X86::VMOVDQA64Z256rm:
5627  case X86::VMOVDQU64Z256rm:
5628  case X86::VMOVAPSZrm:
5629  case X86::VMOVUPSZrm:
5630  case X86::VMOVAPDZrm:
5631  case X86::VMOVUPDZrm:
5632  case X86::VMOVDQU8Zrm:
5633  case X86::VMOVDQU16Zrm:
5634  case X86::VMOVDQA32Zrm:
5635  case X86::VMOVDQU32Zrm:
5636  case X86::VMOVDQA64Zrm:
5637  case X86::VMOVDQU64Zrm:
5638  case X86::KMOVBkm:
5639  case X86::KMOVWkm:
5640  case X86::KMOVDkm:
5641  case X86::KMOVQkm:
5642    break;
5643  }
5644  switch (Opc2) {
5645  default: return false;
5646  case X86::MOV8rm:
5647  case X86::MOV16rm:
5648  case X86::MOV32rm:
5649  case X86::MOV64rm:
5650  case X86::LD_Fp32m:
5651  case X86::LD_Fp64m:
5652  case X86::LD_Fp80m:
5653  case X86::MOVSSrm:
5654  case X86::MOVSSrm_alt:
5655  case X86::MOVSDrm:
5656  case X86::MOVSDrm_alt:
5657  case X86::MMX_MOVD64rm:
5658  case X86::MMX_MOVQ64rm:
5659  case X86::MOVAPSrm:
5660  case X86::MOVUPSrm:
5661  case X86::MOVAPDrm:
5662  case X86::MOVUPDrm:
5663  case X86::MOVDQArm:
5664  case X86::MOVDQUrm:
5665  // AVX load instructions
5666  case X86::VMOVSSrm:
5667  case X86::VMOVSSrm_alt:
5668  case X86::VMOVSDrm:
5669  case X86::VMOVSDrm_alt:
5670  case X86::VMOVAPSrm:
5671  case X86::VMOVUPSrm:
5672  case X86::VMOVAPDrm:
5673  case X86::VMOVUPDrm:
5674  case X86::VMOVDQArm:
5675  case X86::VMOVDQUrm:
5676  case X86::VMOVAPSYrm:
5677  case X86::VMOVUPSYrm:
5678  case X86::VMOVAPDYrm:
5679  case X86::VMOVUPDYrm:
5680  case X86::VMOVDQAYrm:
5681  case X86::VMOVDQUYrm:
5682  // AVX512 load instructions
5683  case X86::VMOVSSZrm:
5684  case X86::VMOVSSZrm_alt:
5685  case X86::VMOVSDZrm:
5686  case X86::VMOVSDZrm_alt:
5687  case X86::VMOVAPSZ128rm:
5688  case X86::VMOVUPSZ128rm:
5689  case X86::VMOVAPSZ128rm_NOVLX:
5690  case X86::VMOVUPSZ128rm_NOVLX:
5691  case X86::VMOVAPDZ128rm:
5692  case X86::VMOVUPDZ128rm:
5693  case X86::VMOVDQU8Z128rm:
5694  case X86::VMOVDQU16Z128rm:
5695  case X86::VMOVDQA32Z128rm:
5696  case X86::VMOVDQU32Z128rm:
5697  case X86::VMOVDQA64Z128rm:
5698  case X86::VMOVDQU64Z128rm:
5699  case X86::VMOVAPSZ256rm:
5700  case X86::VMOVUPSZ256rm:
5701  case X86::VMOVAPSZ256rm_NOVLX:
5702  case X86::VMOVUPSZ256rm_NOVLX:
5703  case X86::VMOVAPDZ256rm:
5704  case X86::VMOVUPDZ256rm:
5705  case X86::VMOVDQU8Z256rm:
5706  case X86::VMOVDQU16Z256rm:
5707  case X86::VMOVDQA32Z256rm:
5708  case X86::VMOVDQU32Z256rm:
5709  case X86::VMOVDQA64Z256rm:
5710  case X86::VMOVDQU64Z256rm:
5711  case X86::VMOVAPSZrm:
5712  case X86::VMOVUPSZrm:
5713  case X86::VMOVAPDZrm:
5714  case X86::VMOVUPDZrm:
5715  case X86::VMOVDQU8Zrm:
5716  case X86::VMOVDQU16Zrm:
5717  case X86::VMOVDQA32Zrm:
5718  case X86::VMOVDQU32Zrm:
5719  case X86::VMOVDQA64Zrm:
5720  case X86::VMOVDQU64Zrm:
5721  case X86::KMOVBkm:
5722  case X86::KMOVWkm:
5723  case X86::KMOVDkm:
5724  case X86::KMOVQkm:
5725    break;
5726  }
5727
5728  // Lambda to check if both the loads have the same value for an operand index.
5729  auto HasSameOp = [&](int I) {
5730    return Load1->getOperand(I) == Load2->getOperand(I);
5731  };
5732
5733  // All operands except the displacement should match.
5734  if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
5735      !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
5736    return false;
5737
5738  // Chain Operand must be the same.
5739  if (!HasSameOp(5))
5740    return false;
5741
5742  // Now let's examine if the displacements are constants.
5743  auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
5744  auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
5745  if (!Disp1 || !Disp2)
5746    return false;
5747
5748  Offset1 = Disp1->getSExtValue();
5749  Offset2 = Disp2->getSExtValue();
5750  return true;
5751}
5752
5753bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
5754                                           int64_t Offset1, int64_t Offset2,
5755                                           unsigned NumLoads) const {
5756  assert(Offset2 > Offset1);
5757  if ((Offset2 - Offset1) / 8 > 64)
5758    return false;
5759
5760  unsigned Opc1 = Load1->getMachineOpcode();
5761  unsigned Opc2 = Load2->getMachineOpcode();
5762  if (Opc1 != Opc2)
5763    return false;  // FIXME: overly conservative?
5764
5765  switch (Opc1) {
5766  default: break;
5767  case X86::LD_Fp32m:
5768  case X86::LD_Fp64m:
5769  case X86::LD_Fp80m:
5770  case X86::MMX_MOVD64rm:
5771  case X86::MMX_MOVQ64rm:
5772    return false;
5773  }
5774
5775  EVT VT = Load1->getValueType(0);
5776  switch (VT.getSimpleVT().SimpleTy) {
5777  default:
5778    // XMM registers. In 64-bit mode we can be a bit more aggressive since we
5779    // have 16 of them to play with.
5780    if (Subtarget.is64Bit()) {
5781      if (NumLoads >= 3)
5782        return false;
5783    } else if (NumLoads) {
5784      return false;
5785    }
5786    break;
5787  case MVT::i8:
5788  case MVT::i16:
5789  case MVT::i32:
5790  case MVT::i64:
5791  case MVT::f32:
5792  case MVT::f64:
5793    if (NumLoads)
5794      return false;
5795    break;
5796  }
5797
5798  return true;
5799}
5800
5801bool X86InstrInfo::
5802reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
5803  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
5804  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
5805  Cond[0].setImm(GetOppositeBranchCondition(CC));
5806  return false;
5807}
5808
5809bool X86InstrInfo::
5810isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
5811  // FIXME: Return false for x87 stack register classes for now. We can't
5812  // allow any loads of these registers before FpGet_ST0_80.
5813  return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
5814           RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
5815           RC == &X86::RFP80RegClass);
5816}
5817
5818/// Return a virtual register initialized with the
5819/// the global base register value. Output instructions required to
5820/// initialize the register in the function entry block, if necessary.
5821///
5822/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
5823///
5824unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
5825  assert((!Subtarget.is64Bit() ||
5826          MF->getTarget().getCodeModel() == CodeModel::Medium ||
5827          MF->getTarget().getCodeModel() == CodeModel::Large) &&
5828         "X86-64 PIC uses RIP relative addressing");
5829
5830  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
5831  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
5832  if (GlobalBaseReg != 0)
5833    return GlobalBaseReg;
5834
5835  // Create the register. The code to initialize it is inserted
5836  // later, by the CGBR pass (below).
5837  MachineRegisterInfo &RegInfo = MF->getRegInfo();
5838  GlobalBaseReg = RegInfo.createVirtualRegister(
5839      Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
5840  X86FI->setGlobalBaseReg(GlobalBaseReg);
5841  return GlobalBaseReg;
5842}
5843
5844// These are the replaceable SSE instructions. Some of these have Int variants
5845// that we don't include here. We don't want to replace instructions selected
5846// by intrinsics.
5847static const uint16_t ReplaceableInstrs[][3] = {
5848  //PackedSingle     PackedDouble    PackedInt
5849  { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
5850  { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
5851  { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
5852  { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
5853  { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
5854  { X86::MOVLPSmr,   X86::MOVLPDmr,  X86::MOVPQI2QImr },
5855  { X86::MOVSDmr,    X86::MOVSDmr,   X86::MOVPQI2QImr },
5856  { X86::MOVSSmr,    X86::MOVSSmr,   X86::MOVPDI2DImr },
5857  { X86::MOVSDrm,    X86::MOVSDrm,   X86::MOVQI2PQIrm },
5858  { X86::MOVSDrm_alt,X86::MOVSDrm_alt,X86::MOVQI2PQIrm },
5859  { X86::MOVSSrm,    X86::MOVSSrm,   X86::MOVDI2PDIrm },
5860  { X86::MOVSSrm_alt,X86::MOVSSrm_alt,X86::MOVDI2PDIrm },
5861  { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
5862  { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
5863  { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
5864  { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
5865  { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
5866  { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
5867  { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
5868  { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
5869  { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
5870  { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm },
5871  { X86::MOVLHPSrr,  X86::UNPCKLPDrr, X86::PUNPCKLQDQrr },
5872  { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm },
5873  { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr },
5874  { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm },
5875  { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr },
5876  { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm },
5877  { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr },
5878  { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr },
5879  { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr },
5880  // AVX 128-bit support
5881  { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
5882  { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
5883  { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
5884  { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
5885  { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
5886  { X86::VMOVLPSmr,  X86::VMOVLPDmr,  X86::VMOVPQI2QImr },
5887  { X86::VMOVSDmr,   X86::VMOVSDmr,   X86::VMOVPQI2QImr },
5888  { X86::VMOVSSmr,   X86::VMOVSSmr,   X86::VMOVPDI2DImr },
5889  { X86::VMOVSDrm,   X86::VMOVSDrm,   X86::VMOVQI2PQIrm },
5890  { X86::VMOVSDrm_alt,X86::VMOVSDrm_alt,X86::VMOVQI2PQIrm },
5891  { X86::VMOVSSrm,   X86::VMOVSSrm,   X86::VMOVDI2PDIrm },
5892  { X86::VMOVSSrm_alt,X86::VMOVSSrm_alt,X86::VMOVDI2PDIrm },
5893  { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
5894  { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
5895  { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
5896  { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
5897  { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
5898  { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
5899  { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
5900  { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
5901  { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
5902  { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm },
5903  { X86::VMOVLHPSrr,  X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr },
5904  { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm },
5905  { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr },
5906  { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm },
5907  { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr },
5908  { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm },
5909  { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr },
5910  { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr },
5911  { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr },
5912  // AVX 256-bit support
5913  { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
5914  { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
5915  { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
5916  { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
5917  { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
5918  { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr },
5919  { X86::VPERMPSYrm,   X86::VPERMPSYrm,   X86::VPERMDYrm },
5920  { X86::VPERMPSYrr,   X86::VPERMPSYrr,   X86::VPERMDYrr },
5921  { X86::VPERMPDYmi,   X86::VPERMPDYmi,   X86::VPERMQYmi },
5922  { X86::VPERMPDYri,   X86::VPERMPDYri,   X86::VPERMQYri },
5923  // AVX512 support
5924  { X86::VMOVLPSZ128mr,  X86::VMOVLPDZ128mr,  X86::VMOVPQI2QIZmr  },
5925  { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
5926  { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr },
5927  { X86::VMOVNTPSZmr,    X86::VMOVNTPDZmr,    X86::VMOVNTDQZmr    },
5928  { X86::VMOVSDZmr,      X86::VMOVSDZmr,      X86::VMOVPQI2QIZmr  },
5929  { X86::VMOVSSZmr,      X86::VMOVSSZmr,      X86::VMOVPDI2DIZmr  },
5930  { X86::VMOVSDZrm,      X86::VMOVSDZrm,      X86::VMOVQI2PQIZrm  },
5931  { X86::VMOVSDZrm_alt,  X86::VMOVSDZrm_alt,  X86::VMOVQI2PQIZrm  },
5932  { X86::VMOVSSZrm,      X86::VMOVSSZrm,      X86::VMOVDI2PDIZrm  },
5933  { X86::VMOVSSZrm_alt,  X86::VMOVSSZrm_alt,  X86::VMOVDI2PDIZrm  },
5934  { X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128r, X86::VPBROADCASTDZ128r },
5935  { X86::VBROADCASTSSZ128m, X86::VBROADCASTSSZ128m, X86::VPBROADCASTDZ128m },
5936  { X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256r, X86::VPBROADCASTDZ256r },
5937  { X86::VBROADCASTSSZ256m, X86::VBROADCASTSSZ256m, X86::VPBROADCASTDZ256m },
5938  { X86::VBROADCASTSSZr,    X86::VBROADCASTSSZr,    X86::VPBROADCASTDZr },
5939  { X86::VBROADCASTSSZm,    X86::VBROADCASTSSZm,    X86::VPBROADCASTDZm },
5940  { X86::VMOVDDUPZ128rr,    X86::VMOVDDUPZ128rr,    X86::VPBROADCASTQZ128r },
5941  { X86::VMOVDDUPZ128rm,    X86::VMOVDDUPZ128rm,    X86::VPBROADCASTQZ128m },
5942  { X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256r, X86::VPBROADCASTQZ256r },
5943  { X86::VBROADCASTSDZ256m, X86::VBROADCASTSDZ256m, X86::VPBROADCASTQZ256m },
5944  { X86::VBROADCASTSDZr,    X86::VBROADCASTSDZr,    X86::VPBROADCASTQZr },
5945  { X86::VBROADCASTSDZm,    X86::VBROADCASTSDZm,    X86::VPBROADCASTQZm },
5946  { X86::VINSERTF32x4Zrr,   X86::VINSERTF32x4Zrr,   X86::VINSERTI32x4Zrr },
5947  { X86::VINSERTF32x4Zrm,   X86::VINSERTF32x4Zrm,   X86::VINSERTI32x4Zrm },
5948  { X86::VINSERTF32x8Zrr,   X86::VINSERTF32x8Zrr,   X86::VINSERTI32x8Zrr },
5949  { X86::VINSERTF32x8Zrm,   X86::VINSERTF32x8Zrm,   X86::VINSERTI32x8Zrm },
5950  { X86::VINSERTF64x2Zrr,   X86::VINSERTF64x2Zrr,   X86::VINSERTI64x2Zrr },
5951  { X86::VINSERTF64x2Zrm,   X86::VINSERTF64x2Zrm,   X86::VINSERTI64x2Zrm },
5952  { X86::VINSERTF64x4Zrr,   X86::VINSERTF64x4Zrr,   X86::VINSERTI64x4Zrr },
5953  { X86::VINSERTF64x4Zrm,   X86::VINSERTF64x4Zrm,   X86::VINSERTI64x4Zrm },
5954  { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr },
5955  { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm },
5956  { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr },
5957  { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm },
5958  { X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTI32x4Zrr },
5959  { X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTI32x4Zmr },
5960  { X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTI32x8Zrr },
5961  { X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTI32x8Zmr },
5962  { X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTI64x2Zrr },
5963  { X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTI64x2Zmr },
5964  { X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTI64x4Zrr },
5965  { X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTI64x4Zmr },
5966  { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr },
5967  { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr },
5968  { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr },
5969  { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr },
5970  { X86::VPERMILPSmi,        X86::VPERMILPSmi,        X86::VPSHUFDmi },
5971  { X86::VPERMILPSri,        X86::VPERMILPSri,        X86::VPSHUFDri },
5972  { X86::VPERMILPSZ128mi,    X86::VPERMILPSZ128mi,    X86::VPSHUFDZ128mi },
5973  { X86::VPERMILPSZ128ri,    X86::VPERMILPSZ128ri,    X86::VPSHUFDZ128ri },
5974  { X86::VPERMILPSZ256mi,    X86::VPERMILPSZ256mi,    X86::VPSHUFDZ256mi },
5975  { X86::VPERMILPSZ256ri,    X86::VPERMILPSZ256ri,    X86::VPSHUFDZ256ri },
5976  { X86::VPERMILPSZmi,       X86::VPERMILPSZmi,       X86::VPSHUFDZmi },
5977  { X86::VPERMILPSZri,       X86::VPERMILPSZri,       X86::VPSHUFDZri },
5978  { X86::VPERMPSZ256rm,      X86::VPERMPSZ256rm,      X86::VPERMDZ256rm },
5979  { X86::VPERMPSZ256rr,      X86::VPERMPSZ256rr,      X86::VPERMDZ256rr },
5980  { X86::VPERMPDZ256mi,      X86::VPERMPDZ256mi,      X86::VPERMQZ256mi },
5981  { X86::VPERMPDZ256ri,      X86::VPERMPDZ256ri,      X86::VPERMQZ256ri },
5982  { X86::VPERMPDZ256rm,      X86::VPERMPDZ256rm,      X86::VPERMQZ256rm },
5983  { X86::VPERMPDZ256rr,      X86::VPERMPDZ256rr,      X86::VPERMQZ256rr },
5984  { X86::VPERMPSZrm,         X86::VPERMPSZrm,         X86::VPERMDZrm },
5985  { X86::VPERMPSZrr,         X86::VPERMPSZrr,         X86::VPERMDZrr },
5986  { X86::VPERMPDZmi,         X86::VPERMPDZmi,         X86::VPERMQZmi },
5987  { X86::VPERMPDZri,         X86::VPERMPDZri,         X86::VPERMQZri },
5988  { X86::VPERMPDZrm,         X86::VPERMPDZrm,         X86::VPERMQZrm },
5989  { X86::VPERMPDZrr,         X86::VPERMPDZrr,         X86::VPERMQZrr },
5990  { X86::VUNPCKLPDZ256rm,    X86::VUNPCKLPDZ256rm,    X86::VPUNPCKLQDQZ256rm },
5991  { X86::VUNPCKLPDZ256rr,    X86::VUNPCKLPDZ256rr,    X86::VPUNPCKLQDQZ256rr },
5992  { X86::VUNPCKHPDZ256rm,    X86::VUNPCKHPDZ256rm,    X86::VPUNPCKHQDQZ256rm },
5993  { X86::VUNPCKHPDZ256rr,    X86::VUNPCKHPDZ256rr,    X86::VPUNPCKHQDQZ256rr },
5994  { X86::VUNPCKLPSZ256rm,    X86::VUNPCKLPSZ256rm,    X86::VPUNPCKLDQZ256rm },
5995  { X86::VUNPCKLPSZ256rr,    X86::VUNPCKLPSZ256rr,    X86::VPUNPCKLDQZ256rr },
5996  { X86::VUNPCKHPSZ256rm,    X86::VUNPCKHPSZ256rm,    X86::VPUNPCKHDQZ256rm },
5997  { X86::VUNPCKHPSZ256rr,    X86::VUNPCKHPSZ256rr,    X86::VPUNPCKHDQZ256rr },
5998  { X86::VUNPCKLPDZ128rm,    X86::VUNPCKLPDZ128rm,    X86::VPUNPCKLQDQZ128rm },
5999  { X86::VMOVLHPSZrr,        X86::VUNPCKLPDZ128rr,    X86::VPUNPCKLQDQZ128rr },
6000  { X86::VUNPCKHPDZ128rm,    X86::VUNPCKHPDZ128rm,    X86::VPUNPCKHQDQZ128rm },
6001  { X86::VUNPCKHPDZ128rr,    X86::VUNPCKHPDZ128rr,    X86::VPUNPCKHQDQZ128rr },
6002  { X86::VUNPCKLPSZ128rm,    X86::VUNPCKLPSZ128rm,    X86::VPUNPCKLDQZ128rm },
6003  { X86::VUNPCKLPSZ128rr,    X86::VUNPCKLPSZ128rr,    X86::VPUNPCKLDQZ128rr },
6004  { X86::VUNPCKHPSZ128rm,    X86::VUNPCKHPSZ128rm,    X86::VPUNPCKHDQZ128rm },
6005  { X86::VUNPCKHPSZ128rr,    X86::VUNPCKHPSZ128rr,    X86::VPUNPCKHDQZ128rr },
6006  { X86::VUNPCKLPDZrm,       X86::VUNPCKLPDZrm,       X86::VPUNPCKLQDQZrm },
6007  { X86::VUNPCKLPDZrr,       X86::VUNPCKLPDZrr,       X86::VPUNPCKLQDQZrr },
6008  { X86::VUNPCKHPDZrm,       X86::VUNPCKHPDZrm,       X86::VPUNPCKHQDQZrm },
6009  { X86::VUNPCKHPDZrr,       X86::VUNPCKHPDZrr,       X86::VPUNPCKHQDQZrr },
6010  { X86::VUNPCKLPSZrm,       X86::VUNPCKLPSZrm,       X86::VPUNPCKLDQZrm },
6011  { X86::VUNPCKLPSZrr,       X86::VUNPCKLPSZrr,       X86::VPUNPCKLDQZrr },
6012  { X86::VUNPCKHPSZrm,       X86::VUNPCKHPSZrm,       X86::VPUNPCKHDQZrm },
6013  { X86::VUNPCKHPSZrr,       X86::VUNPCKHPSZrr,       X86::VPUNPCKHDQZrr },
6014  { X86::VEXTRACTPSZmr,      X86::VEXTRACTPSZmr,      X86::VPEXTRDZmr },
6015  { X86::VEXTRACTPSZrr,      X86::VEXTRACTPSZrr,      X86::VPEXTRDZrr },
6016};
6017
6018static const uint16_t ReplaceableInstrsAVX2[][3] = {
6019  //PackedSingle       PackedDouble       PackedInt
6020  { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
6021  { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
6022  { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
6023  { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
6024  { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
6025  { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
6026  { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
6027  { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
6028  { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
6029  { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr },
6030  { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
6031  { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
6032  { X86::VMOVDDUPrm,     X86::VMOVDDUPrm,     X86::VPBROADCASTQrm},
6033  { X86::VMOVDDUPrr,     X86::VMOVDDUPrr,     X86::VPBROADCASTQrr},
6034  { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
6035  { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
6036  { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
6037  { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm},
6038  { X86::VBROADCASTF128,  X86::VBROADCASTF128,  X86::VBROADCASTI128 },
6039  { X86::VBLENDPSYrri,    X86::VBLENDPSYrri,    X86::VPBLENDDYrri },
6040  { X86::VBLENDPSYrmi,    X86::VBLENDPSYrmi,    X86::VPBLENDDYrmi },
6041  { X86::VPERMILPSYmi,    X86::VPERMILPSYmi,    X86::VPSHUFDYmi },
6042  { X86::VPERMILPSYri,    X86::VPERMILPSYri,    X86::VPSHUFDYri },
6043  { X86::VUNPCKLPDYrm,    X86::VUNPCKLPDYrm,    X86::VPUNPCKLQDQYrm },
6044  { X86::VUNPCKLPDYrr,    X86::VUNPCKLPDYrr,    X86::VPUNPCKLQDQYrr },
6045  { X86::VUNPCKHPDYrm,    X86::VUNPCKHPDYrm,    X86::VPUNPCKHQDQYrm },
6046  { X86::VUNPCKHPDYrr,    X86::VUNPCKHPDYrr,    X86::VPUNPCKHQDQYrr },
6047  { X86::VUNPCKLPSYrm,    X86::VUNPCKLPSYrm,    X86::VPUNPCKLDQYrm },
6048  { X86::VUNPCKLPSYrr,    X86::VUNPCKLPSYrr,    X86::VPUNPCKLDQYrr },
6049  { X86::VUNPCKHPSYrm,    X86::VUNPCKHPSYrm,    X86::VPUNPCKHDQYrm },
6050  { X86::VUNPCKHPSYrr,    X86::VUNPCKHPSYrr,    X86::VPUNPCKHDQYrr },
6051};
6052
6053static const uint16_t ReplaceableInstrsFP[][3] = {
6054  //PackedSingle         PackedDouble
6055  { X86::MOVLPSrm,       X86::MOVLPDrm,      X86::INSTRUCTION_LIST_END },
6056  { X86::MOVHPSrm,       X86::MOVHPDrm,      X86::INSTRUCTION_LIST_END },
6057  { X86::MOVHPSmr,       X86::MOVHPDmr,      X86::INSTRUCTION_LIST_END },
6058  { X86::VMOVLPSrm,      X86::VMOVLPDrm,     X86::INSTRUCTION_LIST_END },
6059  { X86::VMOVHPSrm,      X86::VMOVHPDrm,     X86::INSTRUCTION_LIST_END },
6060  { X86::VMOVHPSmr,      X86::VMOVHPDmr,     X86::INSTRUCTION_LIST_END },
6061  { X86::VMOVLPSZ128rm,  X86::VMOVLPDZ128rm, X86::INSTRUCTION_LIST_END },
6062  { X86::VMOVHPSZ128rm,  X86::VMOVHPDZ128rm, X86::INSTRUCTION_LIST_END },
6063  { X86::VMOVHPSZ128mr,  X86::VMOVHPDZ128mr, X86::INSTRUCTION_LIST_END },
6064};
6065
6066static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = {
6067  //PackedSingle       PackedDouble       PackedInt
6068  { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
6069  { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
6070  { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
6071  { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
6072};
6073
6074static const uint16_t ReplaceableInstrsAVX512[][4] = {
6075  // Two integer columns for 64-bit and 32-bit elements.
6076  //PackedSingle        PackedDouble        PackedInt             PackedInt
6077  { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr  },
6078  { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm  },
6079  { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr  },
6080  { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr  },
6081  { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm  },
6082  { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr  },
6083  { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm  },
6084  { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr  },
6085  { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr  },
6086  { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm  },
6087  { X86::VMOVAPSZmr,    X86::VMOVAPDZmr,    X86::VMOVDQA64Zmr,    X86::VMOVDQA32Zmr     },
6088  { X86::VMOVAPSZrm,    X86::VMOVAPDZrm,    X86::VMOVDQA64Zrm,    X86::VMOVDQA32Zrm     },
6089  { X86::VMOVAPSZrr,    X86::VMOVAPDZrr,    X86::VMOVDQA64Zrr,    X86::VMOVDQA32Zrr     },
6090  { X86::VMOVUPSZmr,    X86::VMOVUPDZmr,    X86::VMOVDQU64Zmr,    X86::VMOVDQU32Zmr     },
6091  { X86::VMOVUPSZrm,    X86::VMOVUPDZrm,    X86::VMOVDQU64Zrm,    X86::VMOVDQU32Zrm     },
6092};
6093
6094static const uint16_t ReplaceableInstrsAVX512DQ[][4] = {
6095  // Two integer columns for 64-bit and 32-bit elements.
6096  //PackedSingle        PackedDouble        PackedInt           PackedInt
6097  { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
6098  { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
6099  { X86::VANDPSZ128rm,  X86::VANDPDZ128rm,  X86::VPANDQZ128rm,  X86::VPANDDZ128rm  },
6100  { X86::VANDPSZ128rr,  X86::VANDPDZ128rr,  X86::VPANDQZ128rr,  X86::VPANDDZ128rr  },
6101  { X86::VORPSZ128rm,   X86::VORPDZ128rm,   X86::VPORQZ128rm,   X86::VPORDZ128rm   },
6102  { X86::VORPSZ128rr,   X86::VORPDZ128rr,   X86::VPORQZ128rr,   X86::VPORDZ128rr   },
6103  { X86::VXORPSZ128rm,  X86::VXORPDZ128rm,  X86::VPXORQZ128rm,  X86::VPXORDZ128rm  },
6104  { X86::VXORPSZ128rr,  X86::VXORPDZ128rr,  X86::VPXORQZ128rr,  X86::VPXORDZ128rr  },
6105  { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
6106  { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
6107  { X86::VANDPSZ256rm,  X86::VANDPDZ256rm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  },
6108  { X86::VANDPSZ256rr,  X86::VANDPDZ256rr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  },
6109  { X86::VORPSZ256rm,   X86::VORPDZ256rm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   },
6110  { X86::VORPSZ256rr,   X86::VORPDZ256rr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   },
6111  { X86::VXORPSZ256rm,  X86::VXORPDZ256rm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  },
6112  { X86::VXORPSZ256rr,  X86::VXORPDZ256rr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  },
6113  { X86::VANDNPSZrm,    X86::VANDNPDZrm,    X86::VPANDNQZrm,    X86::VPANDNDZrm    },
6114  { X86::VANDNPSZrr,    X86::VANDNPDZrr,    X86::VPANDNQZrr,    X86::VPANDNDZrr    },
6115  { X86::VANDPSZrm,     X86::VANDPDZrm,     X86::VPANDQZrm,     X86::VPANDDZrm     },
6116  { X86::VANDPSZrr,     X86::VANDPDZrr,     X86::VPANDQZrr,     X86::VPANDDZrr     },
6117  { X86::VORPSZrm,      X86::VORPDZrm,      X86::VPORQZrm,      X86::VPORDZrm      },
6118  { X86::VORPSZrr,      X86::VORPDZrr,      X86::VPORQZrr,      X86::VPORDZrr      },
6119  { X86::VXORPSZrm,     X86::VXORPDZrm,     X86::VPXORQZrm,     X86::VPXORDZrm     },
6120  { X86::VXORPSZrr,     X86::VXORPDZrr,     X86::VPXORQZrr,     X86::VPXORDZrr     },
6121};
6122
6123static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = {
6124  // Two integer columns for 64-bit and 32-bit elements.
6125  //PackedSingle          PackedDouble
6126  //PackedInt             PackedInt
6127  { X86::VANDNPSZ128rmk,  X86::VANDNPDZ128rmk,
6128    X86::VPANDNQZ128rmk,  X86::VPANDNDZ128rmk  },
6129  { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz,
6130    X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz },
6131  { X86::VANDNPSZ128rrk,  X86::VANDNPDZ128rrk,
6132    X86::VPANDNQZ128rrk,  X86::VPANDNDZ128rrk  },
6133  { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz,
6134    X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz },
6135  { X86::VANDPSZ128rmk,   X86::VANDPDZ128rmk,
6136    X86::VPANDQZ128rmk,   X86::VPANDDZ128rmk   },
6137  { X86::VANDPSZ128rmkz,  X86::VANDPDZ128rmkz,
6138    X86::VPANDQZ128rmkz,  X86::VPANDDZ128rmkz  },
6139  { X86::VANDPSZ128rrk,   X86::VANDPDZ128rrk,
6140    X86::VPANDQZ128rrk,   X86::VPANDDZ128rrk   },
6141  { X86::VANDPSZ128rrkz,  X86::VANDPDZ128rrkz,
6142    X86::VPANDQZ128rrkz,  X86::VPANDDZ128rrkz  },
6143  { X86::VORPSZ128rmk,    X86::VORPDZ128rmk,
6144    X86::VPORQZ128rmk,    X86::VPORDZ128rmk    },
6145  { X86::VORPSZ128rmkz,   X86::VORPDZ128rmkz,
6146    X86::VPORQZ128rmkz,   X86::VPORDZ128rmkz   },
6147  { X86::VORPSZ128rrk,    X86::VORPDZ128rrk,
6148    X86::VPORQZ128rrk,    X86::VPORDZ128rrk    },
6149  { X86::VORPSZ128rrkz,   X86::VORPDZ128rrkz,
6150    X86::VPORQZ128rrkz,   X86::VPORDZ128rrkz   },
6151  { X86::VXORPSZ128rmk,   X86::VXORPDZ128rmk,
6152    X86::VPXORQZ128rmk,   X86::VPXORDZ128rmk   },
6153  { X86::VXORPSZ128rmkz,  X86::VXORPDZ128rmkz,
6154    X86::VPXORQZ128rmkz,  X86::VPXORDZ128rmkz  },
6155  { X86::VXORPSZ128rrk,   X86::VXORPDZ128rrk,
6156    X86::VPXORQZ128rrk,   X86::VPXORDZ128rrk   },
6157  { X86::VXORPSZ128rrkz,  X86::VXORPDZ128rrkz,
6158    X86::VPXORQZ128rrkz,  X86::VPXORDZ128rrkz  },
6159  { X86::VANDNPSZ256rmk,  X86::VANDNPDZ256rmk,
6160    X86::VPANDNQZ256rmk,  X86::VPANDNDZ256rmk  },
6161  { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz,
6162    X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz },
6163  { X86::VANDNPSZ256rrk,  X86::VANDNPDZ256rrk,
6164    X86::VPANDNQZ256rrk,  X86::VPANDNDZ256rrk  },
6165  { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz,
6166    X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz },
6167  { X86::VANDPSZ256rmk,   X86::VANDPDZ256rmk,
6168    X86::VPANDQZ256rmk,   X86::VPANDDZ256rmk   },
6169  { X86::VANDPSZ256rmkz,  X86::VANDPDZ256rmkz,
6170    X86::VPANDQZ256rmkz,  X86::VPANDDZ256rmkz  },
6171  { X86::VANDPSZ256rrk,   X86::VANDPDZ256rrk,
6172    X86::VPANDQZ256rrk,   X86::VPANDDZ256rrk   },
6173  { X86::VANDPSZ256rrkz,  X86::VANDPDZ256rrkz,
6174    X86::VPANDQZ256rrkz,  X86::VPANDDZ256rrkz  },
6175  { X86::VORPSZ256rmk,    X86::VORPDZ256rmk,
6176    X86::VPORQZ256rmk,    X86::VPORDZ256rmk    },
6177  { X86::VORPSZ256rmkz,   X86::VORPDZ256rmkz,
6178    X86::VPORQZ256rmkz,   X86::VPORDZ256rmkz   },
6179  { X86::VORPSZ256rrk,    X86::VORPDZ256rrk,
6180    X86::VPORQZ256rrk,    X86::VPORDZ256rrk    },
6181  { X86::VORPSZ256rrkz,   X86::VORPDZ256rrkz,
6182    X86::VPORQZ256rrkz,   X86::VPORDZ256rrkz   },
6183  { X86::VXORPSZ256rmk,   X86::VXORPDZ256rmk,
6184    X86::VPXORQZ256rmk,   X86::VPXORDZ256rmk   },
6185  { X86::VXORPSZ256rmkz,  X86::VXORPDZ256rmkz,
6186    X86::VPXORQZ256rmkz,  X86::VPXORDZ256rmkz  },
6187  { X86::VXORPSZ256rrk,   X86::VXORPDZ256rrk,
6188    X86::VPXORQZ256rrk,   X86::VPXORDZ256rrk   },
6189  { X86::VXORPSZ256rrkz,  X86::VXORPDZ256rrkz,
6190    X86::VPXORQZ256rrkz,  X86::VPXORDZ256rrkz  },
6191  { X86::VANDNPSZrmk,     X86::VANDNPDZrmk,
6192    X86::VPANDNQZrmk,     X86::VPANDNDZrmk     },
6193  { X86::VANDNPSZrmkz,    X86::VANDNPDZrmkz,
6194    X86::VPANDNQZrmkz,    X86::VPANDNDZrmkz    },
6195  { X86::VANDNPSZrrk,     X86::VANDNPDZrrk,
6196    X86::VPANDNQZrrk,     X86::VPANDNDZrrk     },
6197  { X86::VANDNPSZrrkz,    X86::VANDNPDZrrkz,
6198    X86::VPANDNQZrrkz,    X86::VPANDNDZrrkz    },
6199  { X86::VANDPSZrmk,      X86::VANDPDZrmk,
6200    X86::VPANDQZrmk,      X86::VPANDDZrmk      },
6201  { X86::VANDPSZrmkz,     X86::VANDPDZrmkz,
6202    X86::VPANDQZrmkz,     X86::VPANDDZrmkz     },
6203  { X86::VANDPSZrrk,      X86::VANDPDZrrk,
6204    X86::VPANDQZrrk,      X86::VPANDDZrrk      },
6205  { X86::VANDPSZrrkz,     X86::VANDPDZrrkz,
6206    X86::VPANDQZrrkz,     X86::VPANDDZrrkz     },
6207  { X86::VORPSZrmk,       X86::VORPDZrmk,
6208    X86::VPORQZrmk,       X86::VPORDZrmk       },
6209  { X86::VORPSZrmkz,      X86::VORPDZrmkz,
6210    X86::VPORQZrmkz,      X86::VPORDZrmkz      },
6211  { X86::VORPSZrrk,       X86::VORPDZrrk,
6212    X86::VPORQZrrk,       X86::VPORDZrrk       },
6213  { X86::VORPSZrrkz,      X86::VORPDZrrkz,
6214    X86::VPORQZrrkz,      X86::VPORDZrrkz      },
6215  { X86::VXORPSZrmk,      X86::VXORPDZrmk,
6216    X86::VPXORQZrmk,      X86::VPXORDZrmk      },
6217  { X86::VXORPSZrmkz,     X86::VXORPDZrmkz,
6218    X86::VPXORQZrmkz,     X86::VPXORDZrmkz     },
6219  { X86::VXORPSZrrk,      X86::VXORPDZrrk,
6220    X86::VPXORQZrrk,      X86::VPXORDZrrk      },
6221  { X86::VXORPSZrrkz,     X86::VXORPDZrrkz,
6222    X86::VPXORQZrrkz,     X86::VPXORDZrrkz     },
6223  // Broadcast loads can be handled the same as masked operations to avoid
6224  // changing element size.
6225  { X86::VANDNPSZ128rmb,  X86::VANDNPDZ128rmb,
6226    X86::VPANDNQZ128rmb,  X86::VPANDNDZ128rmb  },
6227  { X86::VANDPSZ128rmb,   X86::VANDPDZ128rmb,
6228    X86::VPANDQZ128rmb,   X86::VPANDDZ128rmb   },
6229  { X86::VORPSZ128rmb,    X86::VORPDZ128rmb,
6230    X86::VPORQZ128rmb,    X86::VPORDZ128rmb    },
6231  { X86::VXORPSZ128rmb,   X86::VXORPDZ128rmb,
6232    X86::VPXORQZ128rmb,   X86::VPXORDZ128rmb   },
6233  { X86::VANDNPSZ256rmb,  X86::VANDNPDZ256rmb,
6234    X86::VPANDNQZ256rmb,  X86::VPANDNDZ256rmb  },
6235  { X86::VANDPSZ256rmb,   X86::VANDPDZ256rmb,
6236    X86::VPANDQZ256rmb,   X86::VPANDDZ256rmb   },
6237  { X86::VORPSZ256rmb,    X86::VORPDZ256rmb,
6238    X86::VPORQZ256rmb,    X86::VPORDZ256rmb    },
6239  { X86::VXORPSZ256rmb,   X86::VXORPDZ256rmb,
6240    X86::VPXORQZ256rmb,   X86::VPXORDZ256rmb   },
6241  { X86::VANDNPSZrmb,     X86::VANDNPDZrmb,
6242    X86::VPANDNQZrmb,     X86::VPANDNDZrmb     },
6243  { X86::VANDPSZrmb,      X86::VANDPDZrmb,
6244    X86::VPANDQZrmb,      X86::VPANDDZrmb      },
6245  { X86::VANDPSZrmb,      X86::VANDPDZrmb,
6246    X86::VPANDQZrmb,      X86::VPANDDZrmb      },
6247  { X86::VORPSZrmb,       X86::VORPDZrmb,
6248    X86::VPORQZrmb,       X86::VPORDZrmb       },
6249  { X86::VXORPSZrmb,      X86::VXORPDZrmb,
6250    X86::VPXORQZrmb,      X86::VPXORDZrmb      },
6251  { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk,
6252    X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk },
6253  { X86::VANDPSZ128rmbk,  X86::VANDPDZ128rmbk,
6254    X86::VPANDQZ128rmbk,  X86::VPANDDZ128rmbk  },
6255  { X86::VORPSZ128rmbk,   X86::VORPDZ128rmbk,
6256    X86::VPORQZ128rmbk,   X86::VPORDZ128rmbk   },
6257  { X86::VXORPSZ128rmbk,  X86::VXORPDZ128rmbk,
6258    X86::VPXORQZ128rmbk,  X86::VPXORDZ128rmbk  },
6259  { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk,
6260    X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk },
6261  { X86::VANDPSZ256rmbk,  X86::VANDPDZ256rmbk,
6262    X86::VPANDQZ256rmbk,  X86::VPANDDZ256rmbk  },
6263  { X86::VORPSZ256rmbk,   X86::VORPDZ256rmbk,
6264    X86::VPORQZ256rmbk,   X86::VPORDZ256rmbk   },
6265  { X86::VXORPSZ256rmbk,  X86::VXORPDZ256rmbk,
6266    X86::VPXORQZ256rmbk,  X86::VPXORDZ256rmbk  },
6267  { X86::VANDNPSZrmbk,    X86::VANDNPDZrmbk,
6268    X86::VPANDNQZrmbk,    X86::VPANDNDZrmbk    },
6269  { X86::VANDPSZrmbk,     X86::VANDPDZrmbk,
6270    X86::VPANDQZrmbk,     X86::VPANDDZrmbk     },
6271  { X86::VANDPSZrmbk,     X86::VANDPDZrmbk,
6272    X86::VPANDQZrmbk,     X86::VPANDDZrmbk     },
6273  { X86::VORPSZrmbk,      X86::VORPDZrmbk,
6274    X86::VPORQZrmbk,      X86::VPORDZrmbk      },
6275  { X86::VXORPSZrmbk,     X86::VXORPDZrmbk,
6276    X86::VPXORQZrmbk,     X86::VPXORDZrmbk     },
6277  { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz,
6278    X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz},
6279  { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz,
6280    X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz },
6281  { X86::VORPSZ128rmbkz,  X86::VORPDZ128rmbkz,
6282    X86::VPORQZ128rmbkz,  X86::VPORDZ128rmbkz  },
6283  { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz,
6284    X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz },
6285  { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz,
6286    X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz},
6287  { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz,
6288    X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz },
6289  { X86::VORPSZ256rmbkz,  X86::VORPDZ256rmbkz,
6290    X86::VPORQZ256rmbkz,  X86::VPORDZ256rmbkz  },
6291  { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz,
6292    X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz },
6293  { X86::VANDNPSZrmbkz,   X86::VANDNPDZrmbkz,
6294    X86::VPANDNQZrmbkz,   X86::VPANDNDZrmbkz   },
6295  { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz,
6296    X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    },
6297  { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz,
6298    X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    },
6299  { X86::VORPSZrmbkz,     X86::VORPDZrmbkz,
6300    X86::VPORQZrmbkz,     X86::VPORDZrmbkz     },
6301  { X86::VXORPSZrmbkz,    X86::VXORPDZrmbkz,
6302    X86::VPXORQZrmbkz,    X86::VPXORDZrmbkz    },
6303};
6304
6305// NOTE: These should only be used by the custom domain methods.
6306static const uint16_t ReplaceableBlendInstrs[][3] = {
6307  //PackedSingle             PackedDouble             PackedInt
6308  { X86::BLENDPSrmi,         X86::BLENDPDrmi,         X86::PBLENDWrmi   },
6309  { X86::BLENDPSrri,         X86::BLENDPDrri,         X86::PBLENDWrri   },
6310  { X86::VBLENDPSrmi,        X86::VBLENDPDrmi,        X86::VPBLENDWrmi  },
6311  { X86::VBLENDPSrri,        X86::VBLENDPDrri,        X86::VPBLENDWrri  },
6312  { X86::VBLENDPSYrmi,       X86::VBLENDPDYrmi,       X86::VPBLENDWYrmi },
6313  { X86::VBLENDPSYrri,       X86::VBLENDPDYrri,       X86::VPBLENDWYrri },
6314};
6315static const uint16_t ReplaceableBlendAVX2Instrs[][3] = {
6316  //PackedSingle             PackedDouble             PackedInt
6317  { X86::VBLENDPSrmi,        X86::VBLENDPDrmi,        X86::VPBLENDDrmi  },
6318  { X86::VBLENDPSrri,        X86::VBLENDPDrri,        X86::VPBLENDDrri  },
6319  { X86::VBLENDPSYrmi,       X86::VBLENDPDYrmi,       X86::VPBLENDDYrmi },
6320  { X86::VBLENDPSYrri,       X86::VBLENDPDYrri,       X86::VPBLENDDYrri },
6321};
6322
6323// Special table for changing EVEX logic instructions to VEX.
6324// TODO: Should we run EVEX->VEX earlier?
6325static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = {
6326  // Two integer columns for 64-bit and 32-bit elements.
6327  //PackedSingle     PackedDouble     PackedInt           PackedInt
6328  { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
6329  { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
6330  { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDQZ128rm,  X86::VPANDDZ128rm  },
6331  { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDQZ128rr,  X86::VPANDDZ128rr  },
6332  { X86::VORPSrm,    X86::VORPDrm,    X86::VPORQZ128rm,   X86::VPORDZ128rm   },
6333  { X86::VORPSrr,    X86::VORPDrr,    X86::VPORQZ128rr,   X86::VPORDZ128rr   },
6334  { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORQZ128rm,  X86::VPXORDZ128rm  },
6335  { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORQZ128rr,  X86::VPXORDZ128rr  },
6336  { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
6337  { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
6338  { X86::VANDPSYrm,  X86::VANDPDYrm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  },
6339  { X86::VANDPSYrr,  X86::VANDPDYrr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  },
6340  { X86::VORPSYrm,   X86::VORPDYrm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   },
6341  { X86::VORPSYrr,   X86::VORPDYrr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   },
6342  { X86::VXORPSYrm,  X86::VXORPDYrm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  },
6343  { X86::VXORPSYrr,  X86::VXORPDYrr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  },
6344};
6345
6346// FIXME: Some shuffle and unpack instructions have equivalents in different
6347// domains, but they require a bit more work than just switching opcodes.
6348
6349static const uint16_t *lookup(unsigned opcode, unsigned domain,
6350                              ArrayRef<uint16_t[3]> Table) {
6351  for (const uint16_t (&Row)[3] : Table)
6352    if (Row[domain-1] == opcode)
6353      return Row;
6354  return nullptr;
6355}
6356
6357static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
6358                                    ArrayRef<uint16_t[4]> Table) {
6359  // If this is the integer domain make sure to check both integer columns.
6360  for (const uint16_t (&Row)[4] : Table)
6361    if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode))
6362      return Row;
6363  return nullptr;
6364}
6365
6366// Helper to attempt to widen/narrow blend masks.
6367static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
6368                            unsigned NewWidth, unsigned *pNewMask = nullptr) {
6369  assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
6370         "Illegal blend mask scale");
6371  unsigned NewMask = 0;
6372
6373  if ((OldWidth % NewWidth) == 0) {
6374    unsigned Scale = OldWidth / NewWidth;
6375    unsigned SubMask = (1u << Scale) - 1;
6376    for (unsigned i = 0; i != NewWidth; ++i) {
6377      unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
6378      if (Sub == SubMask)
6379        NewMask |= (1u << i);
6380      else if (Sub != 0x0)
6381        return false;
6382    }
6383  } else {
6384    unsigned Scale = NewWidth / OldWidth;
6385    unsigned SubMask = (1u << Scale) - 1;
6386    for (unsigned i = 0; i != OldWidth; ++i) {
6387      if (OldMask & (1 << i)) {
6388        NewMask |= (SubMask << (i * Scale));
6389      }
6390    }
6391  }
6392
6393  if (pNewMask)
6394    *pNewMask = NewMask;
6395  return true;
6396}
6397
6398uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
6399  unsigned Opcode = MI.getOpcode();
6400  unsigned NumOperands = MI.getDesc().getNumOperands();
6401
6402  auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
6403    uint16_t validDomains = 0;
6404    if (MI.getOperand(NumOperands - 1).isImm()) {
6405      unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
6406      if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
6407        validDomains |= 0x2; // PackedSingle
6408      if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
6409        validDomains |= 0x4; // PackedDouble
6410      if (!Is256 || Subtarget.hasAVX2())
6411        validDomains |= 0x8; // PackedInt
6412    }
6413    return validDomains;
6414  };
6415
6416  switch (Opcode) {
6417  case X86::BLENDPDrmi:
6418  case X86::BLENDPDrri:
6419  case X86::VBLENDPDrmi:
6420  case X86::VBLENDPDrri:
6421    return GetBlendDomains(2, false);
6422  case X86::VBLENDPDYrmi:
6423  case X86::VBLENDPDYrri:
6424    return GetBlendDomains(4, true);
6425  case X86::BLENDPSrmi:
6426  case X86::BLENDPSrri:
6427  case X86::VBLENDPSrmi:
6428  case X86::VBLENDPSrri:
6429  case X86::VPBLENDDrmi:
6430  case X86::VPBLENDDrri:
6431    return GetBlendDomains(4, false);
6432  case X86::VBLENDPSYrmi:
6433  case X86::VBLENDPSYrri:
6434  case X86::VPBLENDDYrmi:
6435  case X86::VPBLENDDYrri:
6436    return GetBlendDomains(8, true);
6437  case X86::PBLENDWrmi:
6438  case X86::PBLENDWrri:
6439  case X86::VPBLENDWrmi:
6440  case X86::VPBLENDWrri:
6441  // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
6442  case X86::VPBLENDWYrmi:
6443  case X86::VPBLENDWYrri:
6444    return GetBlendDomains(8, false);
6445  case X86::VPANDDZ128rr:  case X86::VPANDDZ128rm:
6446  case X86::VPANDDZ256rr:  case X86::VPANDDZ256rm:
6447  case X86::VPANDQZ128rr:  case X86::VPANDQZ128rm:
6448  case X86::VPANDQZ256rr:  case X86::VPANDQZ256rm:
6449  case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
6450  case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
6451  case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
6452  case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
6453  case X86::VPORDZ128rr:   case X86::VPORDZ128rm:
6454  case X86::VPORDZ256rr:   case X86::VPORDZ256rm:
6455  case X86::VPORQZ128rr:   case X86::VPORQZ128rm:
6456  case X86::VPORQZ256rr:   case X86::VPORQZ256rm:
6457  case X86::VPXORDZ128rr:  case X86::VPXORDZ128rm:
6458  case X86::VPXORDZ256rr:  case X86::VPXORDZ256rm:
6459  case X86::VPXORQZ128rr:  case X86::VPXORQZ128rm:
6460  case X86::VPXORQZ256rr:  case X86::VPXORQZ256rm:
6461    // If we don't have DQI see if we can still switch from an EVEX integer
6462    // instruction to a VEX floating point instruction.
6463    if (Subtarget.hasDQI())
6464      return 0;
6465
6466    if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
6467      return 0;
6468    if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
6469      return 0;
6470    // Register forms will have 3 operands. Memory form will have more.
6471    if (NumOperands == 3 &&
6472        RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
6473      return 0;
6474
6475    // All domains are valid.
6476    return 0xe;
6477  case X86::MOVHLPSrr:
6478    // We can swap domains when both inputs are the same register.
6479    // FIXME: This doesn't catch all the cases we would like. If the input
6480    // register isn't KILLed by the instruction, the two address instruction
6481    // pass puts a COPY on one input. The other input uses the original
6482    // register. This prevents the same physical register from being used by
6483    // both inputs.
6484    if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
6485        MI.getOperand(0).getSubReg() == 0 &&
6486        MI.getOperand(1).getSubReg() == 0 &&
6487        MI.getOperand(2).getSubReg() == 0)
6488      return 0x6;
6489    return 0;
6490  case X86::SHUFPDrri:
6491    return 0x6;
6492  }
6493  return 0;
6494}
6495
6496bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
6497                                            unsigned Domain) const {
6498  assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
6499  uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6500  assert(dom && "Not an SSE instruction");
6501
6502  unsigned Opcode = MI.getOpcode();
6503  unsigned NumOperands = MI.getDesc().getNumOperands();
6504
6505  auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
6506    if (MI.getOperand(NumOperands - 1).isImm()) {
6507      unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
6508      Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
6509      unsigned NewImm = Imm;
6510
6511      const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs);
6512      if (!table)
6513        table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
6514
6515      if (Domain == 1) { // PackedSingle
6516        AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
6517      } else if (Domain == 2) { // PackedDouble
6518        AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
6519      } else if (Domain == 3) { // PackedInt
6520        if (Subtarget.hasAVX2()) {
6521          // If we are already VPBLENDW use that, else use VPBLENDD.
6522          if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
6523            table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
6524            AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
6525          }
6526        } else {
6527          assert(!Is256 && "128-bit vector expected");
6528          AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
6529        }
6530      }
6531
6532      assert(table && table[Domain - 1] && "Unknown domain op");
6533      MI.setDesc(get(table[Domain - 1]));
6534      MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
6535    }
6536    return true;
6537  };
6538
6539  switch (Opcode) {
6540  case X86::BLENDPDrmi:
6541  case X86::BLENDPDrri:
6542  case X86::VBLENDPDrmi:
6543  case X86::VBLENDPDrri:
6544    return SetBlendDomain(2, false);
6545  case X86::VBLENDPDYrmi:
6546  case X86::VBLENDPDYrri:
6547    return SetBlendDomain(4, true);
6548  case X86::BLENDPSrmi:
6549  case X86::BLENDPSrri:
6550  case X86::VBLENDPSrmi:
6551  case X86::VBLENDPSrri:
6552  case X86::VPBLENDDrmi:
6553  case X86::VPBLENDDrri:
6554    return SetBlendDomain(4, false);
6555  case X86::VBLENDPSYrmi:
6556  case X86::VBLENDPSYrri:
6557  case X86::VPBLENDDYrmi:
6558  case X86::VPBLENDDYrri:
6559    return SetBlendDomain(8, true);
6560  case X86::PBLENDWrmi:
6561  case X86::PBLENDWrri:
6562  case X86::VPBLENDWrmi:
6563  case X86::VPBLENDWrri:
6564    return SetBlendDomain(8, false);
6565  case X86::VPBLENDWYrmi:
6566  case X86::VPBLENDWYrri:
6567    return SetBlendDomain(16, true);
6568  case X86::VPANDDZ128rr:  case X86::VPANDDZ128rm:
6569  case X86::VPANDDZ256rr:  case X86::VPANDDZ256rm:
6570  case X86::VPANDQZ128rr:  case X86::VPANDQZ128rm:
6571  case X86::VPANDQZ256rr:  case X86::VPANDQZ256rm:
6572  case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
6573  case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
6574  case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
6575  case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
6576  case X86::VPORDZ128rr:   case X86::VPORDZ128rm:
6577  case X86::VPORDZ256rr:   case X86::VPORDZ256rm:
6578  case X86::VPORQZ128rr:   case X86::VPORQZ128rm:
6579  case X86::VPORQZ256rr:   case X86::VPORQZ256rm:
6580  case X86::VPXORDZ128rr:  case X86::VPXORDZ128rm:
6581  case X86::VPXORDZ256rr:  case X86::VPXORDZ256rm:
6582  case X86::VPXORQZ128rr:  case X86::VPXORQZ128rm:
6583  case X86::VPXORQZ256rr:  case X86::VPXORQZ256rm: {
6584    // Without DQI, convert EVEX instructions to VEX instructions.
6585    if (Subtarget.hasDQI())
6586      return false;
6587
6588    const uint16_t *table = lookupAVX512(MI.getOpcode(), dom,
6589                                         ReplaceableCustomAVX512LogicInstrs);
6590    assert(table && "Instruction not found in table?");
6591    // Don't change integer Q instructions to D instructions and
6592    // use D intructions if we started with a PS instruction.
6593    if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6594      Domain = 4;
6595    MI.setDesc(get(table[Domain - 1]));
6596    return true;
6597  }
6598  case X86::UNPCKHPDrr:
6599  case X86::MOVHLPSrr:
6600    // We just need to commute the instruction which will switch the domains.
6601    if (Domain != dom && Domain != 3 &&
6602        MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
6603        MI.getOperand(0).getSubReg() == 0 &&
6604        MI.getOperand(1).getSubReg() == 0 &&
6605        MI.getOperand(2).getSubReg() == 0) {
6606      commuteInstruction(MI, false);
6607      return true;
6608    }
6609    // We must always return true for MOVHLPSrr.
6610    if (Opcode == X86::MOVHLPSrr)
6611      return true;
6612    break;
6613  case X86::SHUFPDrri: {
6614    if (Domain == 1) {
6615      unsigned Imm = MI.getOperand(3).getImm();
6616      unsigned NewImm = 0x44;
6617      if (Imm & 1) NewImm |= 0x0a;
6618      if (Imm & 2) NewImm |= 0xa0;
6619      MI.getOperand(3).setImm(NewImm);
6620      MI.setDesc(get(X86::SHUFPSrri));
6621    }
6622    return true;
6623  }
6624  }
6625  return false;
6626}
6627
6628std::pair<uint16_t, uint16_t>
6629X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
6630  uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6631  unsigned opcode = MI.getOpcode();
6632  uint16_t validDomains = 0;
6633  if (domain) {
6634    // Attempt to match for custom instructions.
6635    validDomains = getExecutionDomainCustom(MI);
6636    if (validDomains)
6637      return std::make_pair(domain, validDomains);
6638
6639    if (lookup(opcode, domain, ReplaceableInstrs)) {
6640      validDomains = 0xe;
6641    } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
6642      validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
6643    } else if (lookup(opcode, domain, ReplaceableInstrsFP)) {
6644      validDomains = 0x6;
6645    } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
6646      // Insert/extract instructions should only effect domain if AVX2
6647      // is enabled.
6648      if (!Subtarget.hasAVX2())
6649        return std::make_pair(0, 0);
6650      validDomains = 0xe;
6651    } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
6652      validDomains = 0xe;
6653    } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain,
6654                                                  ReplaceableInstrsAVX512DQ)) {
6655      validDomains = 0xe;
6656    } else if (Subtarget.hasDQI()) {
6657      if (const uint16_t *table = lookupAVX512(opcode, domain,
6658                                             ReplaceableInstrsAVX512DQMasked)) {
6659        if (domain == 1 || (domain == 3 && table[3] == opcode))
6660          validDomains = 0xa;
6661        else
6662          validDomains = 0xc;
6663      }
6664    }
6665  }
6666  return std::make_pair(domain, validDomains);
6667}
6668
6669void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
6670  assert(Domain>0 && Domain<4 && "Invalid execution domain");
6671  uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6672  assert(dom && "Not an SSE instruction");
6673
6674  // Attempt to match for custom instructions.
6675  if (setExecutionDomainCustom(MI, Domain))
6676    return;
6677
6678  const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
6679  if (!table) { // try the other table
6680    assert((Subtarget.hasAVX2() || Domain < 3) &&
6681           "256-bit vector operations only available in AVX2");
6682    table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
6683  }
6684  if (!table) { // try the FP table
6685    table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP);
6686    assert((!table || Domain < 3) &&
6687           "Can only select PackedSingle or PackedDouble");
6688  }
6689  if (!table) { // try the other table
6690    assert(Subtarget.hasAVX2() &&
6691           "256-bit insert/extract only available in AVX2");
6692    table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
6693  }
6694  if (!table) { // try the AVX512 table
6695    assert(Subtarget.hasAVX512() && "Requires AVX-512");
6696    table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
6697    // Don't change integer Q instructions to D instructions.
6698    if (table && Domain == 3 && table[3] == MI.getOpcode())
6699      Domain = 4;
6700  }
6701  if (!table) { // try the AVX512DQ table
6702    assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
6703    table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
6704    // Don't change integer Q instructions to D instructions and
6705    // use D intructions if we started with a PS instruction.
6706    if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6707      Domain = 4;
6708  }
6709  if (!table) { // try the AVX512DQMasked table
6710    assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
6711    table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
6712    if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6713      Domain = 4;
6714  }
6715  assert(table && "Cannot change domain");
6716  MI.setDesc(get(table[Domain - 1]));
6717}
6718
6719/// Return the noop instruction to use for a noop.
6720void X86InstrInfo::getNoop(MCInst &NopInst) const {
6721  NopInst.setOpcode(X86::NOOP);
6722}
6723
6724bool X86InstrInfo::isHighLatencyDef(int opc) const {
6725  switch (opc) {
6726  default: return false;
6727  case X86::DIVPDrm:
6728  case X86::DIVPDrr:
6729  case X86::DIVPSrm:
6730  case X86::DIVPSrr:
6731  case X86::DIVSDrm:
6732  case X86::DIVSDrm_Int:
6733  case X86::DIVSDrr:
6734  case X86::DIVSDrr_Int:
6735  case X86::DIVSSrm:
6736  case X86::DIVSSrm_Int:
6737  case X86::DIVSSrr:
6738  case X86::DIVSSrr_Int:
6739  case X86::SQRTPDm:
6740  case X86::SQRTPDr:
6741  case X86::SQRTPSm:
6742  case X86::SQRTPSr:
6743  case X86::SQRTSDm:
6744  case X86::SQRTSDm_Int:
6745  case X86::SQRTSDr:
6746  case X86::SQRTSDr_Int:
6747  case X86::SQRTSSm:
6748  case X86::SQRTSSm_Int:
6749  case X86::SQRTSSr:
6750  case X86::SQRTSSr_Int:
6751  // AVX instructions with high latency
6752  case X86::VDIVPDrm:
6753  case X86::VDIVPDrr:
6754  case X86::VDIVPDYrm:
6755  case X86::VDIVPDYrr:
6756  case X86::VDIVPSrm:
6757  case X86::VDIVPSrr:
6758  case X86::VDIVPSYrm:
6759  case X86::VDIVPSYrr:
6760  case X86::VDIVSDrm:
6761  case X86::VDIVSDrm_Int:
6762  case X86::VDIVSDrr:
6763  case X86::VDIVSDrr_Int:
6764  case X86::VDIVSSrm:
6765  case X86::VDIVSSrm_Int:
6766  case X86::VDIVSSrr:
6767  case X86::VDIVSSrr_Int:
6768  case X86::VSQRTPDm:
6769  case X86::VSQRTPDr:
6770  case X86::VSQRTPDYm:
6771  case X86::VSQRTPDYr:
6772  case X86::VSQRTPSm:
6773  case X86::VSQRTPSr:
6774  case X86::VSQRTPSYm:
6775  case X86::VSQRTPSYr:
6776  case X86::VSQRTSDm:
6777  case X86::VSQRTSDm_Int:
6778  case X86::VSQRTSDr:
6779  case X86::VSQRTSDr_Int:
6780  case X86::VSQRTSSm:
6781  case X86::VSQRTSSm_Int:
6782  case X86::VSQRTSSr:
6783  case X86::VSQRTSSr_Int:
6784  // AVX512 instructions with high latency
6785  case X86::VDIVPDZ128rm:
6786  case X86::VDIVPDZ128rmb:
6787  case X86::VDIVPDZ128rmbk:
6788  case X86::VDIVPDZ128rmbkz:
6789  case X86::VDIVPDZ128rmk:
6790  case X86::VDIVPDZ128rmkz:
6791  case X86::VDIVPDZ128rr:
6792  case X86::VDIVPDZ128rrk:
6793  case X86::VDIVPDZ128rrkz:
6794  case X86::VDIVPDZ256rm:
6795  case X86::VDIVPDZ256rmb:
6796  case X86::VDIVPDZ256rmbk:
6797  case X86::VDIVPDZ256rmbkz:
6798  case X86::VDIVPDZ256rmk:
6799  case X86::VDIVPDZ256rmkz:
6800  case X86::VDIVPDZ256rr:
6801  case X86::VDIVPDZ256rrk:
6802  case X86::VDIVPDZ256rrkz:
6803  case X86::VDIVPDZrrb:
6804  case X86::VDIVPDZrrbk:
6805  case X86::VDIVPDZrrbkz:
6806  case X86::VDIVPDZrm:
6807  case X86::VDIVPDZrmb:
6808  case X86::VDIVPDZrmbk:
6809  case X86::VDIVPDZrmbkz:
6810  case X86::VDIVPDZrmk:
6811  case X86::VDIVPDZrmkz:
6812  case X86::VDIVPDZrr:
6813  case X86::VDIVPDZrrk:
6814  case X86::VDIVPDZrrkz:
6815  case X86::VDIVPSZ128rm:
6816  case X86::VDIVPSZ128rmb:
6817  case X86::VDIVPSZ128rmbk:
6818  case X86::VDIVPSZ128rmbkz:
6819  case X86::VDIVPSZ128rmk:
6820  case X86::VDIVPSZ128rmkz:
6821  case X86::VDIVPSZ128rr:
6822  case X86::VDIVPSZ128rrk:
6823  case X86::VDIVPSZ128rrkz:
6824  case X86::VDIVPSZ256rm:
6825  case X86::VDIVPSZ256rmb:
6826  case X86::VDIVPSZ256rmbk:
6827  case X86::VDIVPSZ256rmbkz:
6828  case X86::VDIVPSZ256rmk:
6829  case X86::VDIVPSZ256rmkz:
6830  case X86::VDIVPSZ256rr:
6831  case X86::VDIVPSZ256rrk:
6832  case X86::VDIVPSZ256rrkz:
6833  case X86::VDIVPSZrrb:
6834  case X86::VDIVPSZrrbk:
6835  case X86::VDIVPSZrrbkz:
6836  case X86::VDIVPSZrm:
6837  case X86::VDIVPSZrmb:
6838  case X86::VDIVPSZrmbk:
6839  case X86::VDIVPSZrmbkz:
6840  case X86::VDIVPSZrmk:
6841  case X86::VDIVPSZrmkz:
6842  case X86::VDIVPSZrr:
6843  case X86::VDIVPSZrrk:
6844  case X86::VDIVPSZrrkz:
6845  case X86::VDIVSDZrm:
6846  case X86::VDIVSDZrr:
6847  case X86::VDIVSDZrm_Int:
6848  case X86::VDIVSDZrm_Intk:
6849  case X86::VDIVSDZrm_Intkz:
6850  case X86::VDIVSDZrr_Int:
6851  case X86::VDIVSDZrr_Intk:
6852  case X86::VDIVSDZrr_Intkz:
6853  case X86::VDIVSDZrrb_Int:
6854  case X86::VDIVSDZrrb_Intk:
6855  case X86::VDIVSDZrrb_Intkz:
6856  case X86::VDIVSSZrm:
6857  case X86::VDIVSSZrr:
6858  case X86::VDIVSSZrm_Int:
6859  case X86::VDIVSSZrm_Intk:
6860  case X86::VDIVSSZrm_Intkz:
6861  case X86::VDIVSSZrr_Int:
6862  case X86::VDIVSSZrr_Intk:
6863  case X86::VDIVSSZrr_Intkz:
6864  case X86::VDIVSSZrrb_Int:
6865  case X86::VDIVSSZrrb_Intk:
6866  case X86::VDIVSSZrrb_Intkz:
6867  case X86::VSQRTPDZ128m:
6868  case X86::VSQRTPDZ128mb:
6869  case X86::VSQRTPDZ128mbk:
6870  case X86::VSQRTPDZ128mbkz:
6871  case X86::VSQRTPDZ128mk:
6872  case X86::VSQRTPDZ128mkz:
6873  case X86::VSQRTPDZ128r:
6874  case X86::VSQRTPDZ128rk:
6875  case X86::VSQRTPDZ128rkz:
6876  case X86::VSQRTPDZ256m:
6877  case X86::VSQRTPDZ256mb:
6878  case X86::VSQRTPDZ256mbk:
6879  case X86::VSQRTPDZ256mbkz:
6880  case X86::VSQRTPDZ256mk:
6881  case X86::VSQRTPDZ256mkz:
6882  case X86::VSQRTPDZ256r:
6883  case X86::VSQRTPDZ256rk:
6884  case X86::VSQRTPDZ256rkz:
6885  case X86::VSQRTPDZm:
6886  case X86::VSQRTPDZmb:
6887  case X86::VSQRTPDZmbk:
6888  case X86::VSQRTPDZmbkz:
6889  case X86::VSQRTPDZmk:
6890  case X86::VSQRTPDZmkz:
6891  case X86::VSQRTPDZr:
6892  case X86::VSQRTPDZrb:
6893  case X86::VSQRTPDZrbk:
6894  case X86::VSQRTPDZrbkz:
6895  case X86::VSQRTPDZrk:
6896  case X86::VSQRTPDZrkz:
6897  case X86::VSQRTPSZ128m:
6898  case X86::VSQRTPSZ128mb:
6899  case X86::VSQRTPSZ128mbk:
6900  case X86::VSQRTPSZ128mbkz:
6901  case X86::VSQRTPSZ128mk:
6902  case X86::VSQRTPSZ128mkz:
6903  case X86::VSQRTPSZ128r:
6904  case X86::VSQRTPSZ128rk:
6905  case X86::VSQRTPSZ128rkz:
6906  case X86::VSQRTPSZ256m:
6907  case X86::VSQRTPSZ256mb:
6908  case X86::VSQRTPSZ256mbk:
6909  case X86::VSQRTPSZ256mbkz:
6910  case X86::VSQRTPSZ256mk:
6911  case X86::VSQRTPSZ256mkz:
6912  case X86::VSQRTPSZ256r:
6913  case X86::VSQRTPSZ256rk:
6914  case X86::VSQRTPSZ256rkz:
6915  case X86::VSQRTPSZm:
6916  case X86::VSQRTPSZmb:
6917  case X86::VSQRTPSZmbk:
6918  case X86::VSQRTPSZmbkz:
6919  case X86::VSQRTPSZmk:
6920  case X86::VSQRTPSZmkz:
6921  case X86::VSQRTPSZr:
6922  case X86::VSQRTPSZrb:
6923  case X86::VSQRTPSZrbk:
6924  case X86::VSQRTPSZrbkz:
6925  case X86::VSQRTPSZrk:
6926  case X86::VSQRTPSZrkz:
6927  case X86::VSQRTSDZm:
6928  case X86::VSQRTSDZm_Int:
6929  case X86::VSQRTSDZm_Intk:
6930  case X86::VSQRTSDZm_Intkz:
6931  case X86::VSQRTSDZr:
6932  case X86::VSQRTSDZr_Int:
6933  case X86::VSQRTSDZr_Intk:
6934  case X86::VSQRTSDZr_Intkz:
6935  case X86::VSQRTSDZrb_Int:
6936  case X86::VSQRTSDZrb_Intk:
6937  case X86::VSQRTSDZrb_Intkz:
6938  case X86::VSQRTSSZm:
6939  case X86::VSQRTSSZm_Int:
6940  case X86::VSQRTSSZm_Intk:
6941  case X86::VSQRTSSZm_Intkz:
6942  case X86::VSQRTSSZr:
6943  case X86::VSQRTSSZr_Int:
6944  case X86::VSQRTSSZr_Intk:
6945  case X86::VSQRTSSZr_Intkz:
6946  case X86::VSQRTSSZrb_Int:
6947  case X86::VSQRTSSZrb_Intk:
6948  case X86::VSQRTSSZrb_Intkz:
6949
6950  case X86::VGATHERDPDYrm:
6951  case X86::VGATHERDPDZ128rm:
6952  case X86::VGATHERDPDZ256rm:
6953  case X86::VGATHERDPDZrm:
6954  case X86::VGATHERDPDrm:
6955  case X86::VGATHERDPSYrm:
6956  case X86::VGATHERDPSZ128rm:
6957  case X86::VGATHERDPSZ256rm:
6958  case X86::VGATHERDPSZrm:
6959  case X86::VGATHERDPSrm:
6960  case X86::VGATHERPF0DPDm:
6961  case X86::VGATHERPF0DPSm:
6962  case X86::VGATHERPF0QPDm:
6963  case X86::VGATHERPF0QPSm:
6964  case X86::VGATHERPF1DPDm:
6965  case X86::VGATHERPF1DPSm:
6966  case X86::VGATHERPF1QPDm:
6967  case X86::VGATHERPF1QPSm:
6968  case X86::VGATHERQPDYrm:
6969  case X86::VGATHERQPDZ128rm:
6970  case X86::VGATHERQPDZ256rm:
6971  case X86::VGATHERQPDZrm:
6972  case X86::VGATHERQPDrm:
6973  case X86::VGATHERQPSYrm:
6974  case X86::VGATHERQPSZ128rm:
6975  case X86::VGATHERQPSZ256rm:
6976  case X86::VGATHERQPSZrm:
6977  case X86::VGATHERQPSrm:
6978  case X86::VPGATHERDDYrm:
6979  case X86::VPGATHERDDZ128rm:
6980  case X86::VPGATHERDDZ256rm:
6981  case X86::VPGATHERDDZrm:
6982  case X86::VPGATHERDDrm:
6983  case X86::VPGATHERDQYrm:
6984  case X86::VPGATHERDQZ128rm:
6985  case X86::VPGATHERDQZ256rm:
6986  case X86::VPGATHERDQZrm:
6987  case X86::VPGATHERDQrm:
6988  case X86::VPGATHERQDYrm:
6989  case X86::VPGATHERQDZ128rm:
6990  case X86::VPGATHERQDZ256rm:
6991  case X86::VPGATHERQDZrm:
6992  case X86::VPGATHERQDrm:
6993  case X86::VPGATHERQQYrm:
6994  case X86::VPGATHERQQZ128rm:
6995  case X86::VPGATHERQQZ256rm:
6996  case X86::VPGATHERQQZrm:
6997  case X86::VPGATHERQQrm:
6998  case X86::VSCATTERDPDZ128mr:
6999  case X86::VSCATTERDPDZ256mr:
7000  case X86::VSCATTERDPDZmr:
7001  case X86::VSCATTERDPSZ128mr:
7002  case X86::VSCATTERDPSZ256mr:
7003  case X86::VSCATTERDPSZmr:
7004  case X86::VSCATTERPF0DPDm:
7005  case X86::VSCATTERPF0DPSm:
7006  case X86::VSCATTERPF0QPDm:
7007  case X86::VSCATTERPF0QPSm:
7008  case X86::VSCATTERPF1DPDm:
7009  case X86::VSCATTERPF1DPSm:
7010  case X86::VSCATTERPF1QPDm:
7011  case X86::VSCATTERPF1QPSm:
7012  case X86::VSCATTERQPDZ128mr:
7013  case X86::VSCATTERQPDZ256mr:
7014  case X86::VSCATTERQPDZmr:
7015  case X86::VSCATTERQPSZ128mr:
7016  case X86::VSCATTERQPSZ256mr:
7017  case X86::VSCATTERQPSZmr:
7018  case X86::VPSCATTERDDZ128mr:
7019  case X86::VPSCATTERDDZ256mr:
7020  case X86::VPSCATTERDDZmr:
7021  case X86::VPSCATTERDQZ128mr:
7022  case X86::VPSCATTERDQZ256mr:
7023  case X86::VPSCATTERDQZmr:
7024  case X86::VPSCATTERQDZ128mr:
7025  case X86::VPSCATTERQDZ256mr:
7026  case X86::VPSCATTERQDZmr:
7027  case X86::VPSCATTERQQZ128mr:
7028  case X86::VPSCATTERQQZ256mr:
7029  case X86::VPSCATTERQQZmr:
7030    return true;
7031  }
7032}
7033
7034bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
7035                                         const MachineRegisterInfo *MRI,
7036                                         const MachineInstr &DefMI,
7037                                         unsigned DefIdx,
7038                                         const MachineInstr &UseMI,
7039                                         unsigned UseIdx) const {
7040  return isHighLatencyDef(DefMI.getOpcode());
7041}
7042
7043bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
7044                                           const MachineBasicBlock *MBB) const {
7045  assert((Inst.getNumOperands() == 3 || Inst.getNumOperands() == 4) &&
7046         "Reassociation needs binary operators");
7047
7048  // Integer binary math/logic instructions have a third source operand:
7049  // the EFLAGS register. That operand must be both defined here and never
7050  // used; ie, it must be dead. If the EFLAGS operand is live, then we can
7051  // not change anything because rearranging the operands could affect other
7052  // instructions that depend on the exact status flags (zero, sign, etc.)
7053  // that are set by using these particular operands with this operation.
7054  if (Inst.getNumOperands() == 4) {
7055    assert(Inst.getOperand(3).isReg() &&
7056           Inst.getOperand(3).getReg() == X86::EFLAGS &&
7057           "Unexpected operand in reassociable instruction");
7058    if (!Inst.getOperand(3).isDead())
7059      return false;
7060  }
7061
7062  return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
7063}
7064
7065// TODO: There are many more machine instruction opcodes to match:
7066//       1. Other data types (integer, vectors)
7067//       2. Other math / logic operations (xor, or)
7068//       3. Other forms of the same operation (intrinsics and other variants)
7069bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
7070  switch (Inst.getOpcode()) {
7071  case X86::AND8rr:
7072  case X86::AND16rr:
7073  case X86::AND32rr:
7074  case X86::AND64rr:
7075  case X86::OR8rr:
7076  case X86::OR16rr:
7077  case X86::OR32rr:
7078  case X86::OR64rr:
7079  case X86::XOR8rr:
7080  case X86::XOR16rr:
7081  case X86::XOR32rr:
7082  case X86::XOR64rr:
7083  case X86::IMUL16rr:
7084  case X86::IMUL32rr:
7085  case X86::IMUL64rr:
7086  case X86::PANDrr:
7087  case X86::PORrr:
7088  case X86::PXORrr:
7089  case X86::ANDPDrr:
7090  case X86::ANDPSrr:
7091  case X86::ORPDrr:
7092  case X86::ORPSrr:
7093  case X86::XORPDrr:
7094  case X86::XORPSrr:
7095  case X86::PADDBrr:
7096  case X86::PADDWrr:
7097  case X86::PADDDrr:
7098  case X86::PADDQrr:
7099  case X86::PMULLWrr:
7100  case X86::PMULLDrr:
7101  case X86::PMAXSBrr:
7102  case X86::PMAXSDrr:
7103  case X86::PMAXSWrr:
7104  case X86::PMAXUBrr:
7105  case X86::PMAXUDrr:
7106  case X86::PMAXUWrr:
7107  case X86::PMINSBrr:
7108  case X86::PMINSDrr:
7109  case X86::PMINSWrr:
7110  case X86::PMINUBrr:
7111  case X86::PMINUDrr:
7112  case X86::PMINUWrr:
7113  case X86::VPANDrr:
7114  case X86::VPANDYrr:
7115  case X86::VPANDDZ128rr:
7116  case X86::VPANDDZ256rr:
7117  case X86::VPANDDZrr:
7118  case X86::VPANDQZ128rr:
7119  case X86::VPANDQZ256rr:
7120  case X86::VPANDQZrr:
7121  case X86::VPORrr:
7122  case X86::VPORYrr:
7123  case X86::VPORDZ128rr:
7124  case X86::VPORDZ256rr:
7125  case X86::VPORDZrr:
7126  case X86::VPORQZ128rr:
7127  case X86::VPORQZ256rr:
7128  case X86::VPORQZrr:
7129  case X86::VPXORrr:
7130  case X86::VPXORYrr:
7131  case X86::VPXORDZ128rr:
7132  case X86::VPXORDZ256rr:
7133  case X86::VPXORDZrr:
7134  case X86::VPXORQZ128rr:
7135  case X86::VPXORQZ256rr:
7136  case X86::VPXORQZrr:
7137  case X86::VANDPDrr:
7138  case X86::VANDPSrr:
7139  case X86::VANDPDYrr:
7140  case X86::VANDPSYrr:
7141  case X86::VANDPDZ128rr:
7142  case X86::VANDPSZ128rr:
7143  case X86::VANDPDZ256rr:
7144  case X86::VANDPSZ256rr:
7145  case X86::VANDPDZrr:
7146  case X86::VANDPSZrr:
7147  case X86::VORPDrr:
7148  case X86::VORPSrr:
7149  case X86::VORPDYrr:
7150  case X86::VORPSYrr:
7151  case X86::VORPDZ128rr:
7152  case X86::VORPSZ128rr:
7153  case X86::VORPDZ256rr:
7154  case X86::VORPSZ256rr:
7155  case X86::VORPDZrr:
7156  case X86::VORPSZrr:
7157  case X86::VXORPDrr:
7158  case X86::VXORPSrr:
7159  case X86::VXORPDYrr:
7160  case X86::VXORPSYrr:
7161  case X86::VXORPDZ128rr:
7162  case X86::VXORPSZ128rr:
7163  case X86::VXORPDZ256rr:
7164  case X86::VXORPSZ256rr:
7165  case X86::VXORPDZrr:
7166  case X86::VXORPSZrr:
7167  case X86::KADDBrr:
7168  case X86::KADDWrr:
7169  case X86::KADDDrr:
7170  case X86::KADDQrr:
7171  case X86::KANDBrr:
7172  case X86::KANDWrr:
7173  case X86::KANDDrr:
7174  case X86::KANDQrr:
7175  case X86::KORBrr:
7176  case X86::KORWrr:
7177  case X86::KORDrr:
7178  case X86::KORQrr:
7179  case X86::KXORBrr:
7180  case X86::KXORWrr:
7181  case X86::KXORDrr:
7182  case X86::KXORQrr:
7183  case X86::VPADDBrr:
7184  case X86::VPADDWrr:
7185  case X86::VPADDDrr:
7186  case X86::VPADDQrr:
7187  case X86::VPADDBYrr:
7188  case X86::VPADDWYrr:
7189  case X86::VPADDDYrr:
7190  case X86::VPADDQYrr:
7191  case X86::VPADDBZ128rr:
7192  case X86::VPADDWZ128rr:
7193  case X86::VPADDDZ128rr:
7194  case X86::VPADDQZ128rr:
7195  case X86::VPADDBZ256rr:
7196  case X86::VPADDWZ256rr:
7197  case X86::VPADDDZ256rr:
7198  case X86::VPADDQZ256rr:
7199  case X86::VPADDBZrr:
7200  case X86::VPADDWZrr:
7201  case X86::VPADDDZrr:
7202  case X86::VPADDQZrr:
7203  case X86::VPMULLWrr:
7204  case X86::VPMULLWYrr:
7205  case X86::VPMULLWZ128rr:
7206  case X86::VPMULLWZ256rr:
7207  case X86::VPMULLWZrr:
7208  case X86::VPMULLDrr:
7209  case X86::VPMULLDYrr:
7210  case X86::VPMULLDZ128rr:
7211  case X86::VPMULLDZ256rr:
7212  case X86::VPMULLDZrr:
7213  case X86::VPMULLQZ128rr:
7214  case X86::VPMULLQZ256rr:
7215  case X86::VPMULLQZrr:
7216  case X86::VPMAXSBrr:
7217  case X86::VPMAXSBYrr:
7218  case X86::VPMAXSBZ128rr:
7219  case X86::VPMAXSBZ256rr:
7220  case X86::VPMAXSBZrr:
7221  case X86::VPMAXSDrr:
7222  case X86::VPMAXSDYrr:
7223  case X86::VPMAXSDZ128rr:
7224  case X86::VPMAXSDZ256rr:
7225  case X86::VPMAXSDZrr:
7226  case X86::VPMAXSQZ128rr:
7227  case X86::VPMAXSQZ256rr:
7228  case X86::VPMAXSQZrr:
7229  case X86::VPMAXSWrr:
7230  case X86::VPMAXSWYrr:
7231  case X86::VPMAXSWZ128rr:
7232  case X86::VPMAXSWZ256rr:
7233  case X86::VPMAXSWZrr:
7234  case X86::VPMAXUBrr:
7235  case X86::VPMAXUBYrr:
7236  case X86::VPMAXUBZ128rr:
7237  case X86::VPMAXUBZ256rr:
7238  case X86::VPMAXUBZrr:
7239  case X86::VPMAXUDrr:
7240  case X86::VPMAXUDYrr:
7241  case X86::VPMAXUDZ128rr:
7242  case X86::VPMAXUDZ256rr:
7243  case X86::VPMAXUDZrr:
7244  case X86::VPMAXUQZ128rr:
7245  case X86::VPMAXUQZ256rr:
7246  case X86::VPMAXUQZrr:
7247  case X86::VPMAXUWrr:
7248  case X86::VPMAXUWYrr:
7249  case X86::VPMAXUWZ128rr:
7250  case X86::VPMAXUWZ256rr:
7251  case X86::VPMAXUWZrr:
7252  case X86::VPMINSBrr:
7253  case X86::VPMINSBYrr:
7254  case X86::VPMINSBZ128rr:
7255  case X86::VPMINSBZ256rr:
7256  case X86::VPMINSBZrr:
7257  case X86::VPMINSDrr:
7258  case X86::VPMINSDYrr:
7259  case X86::VPMINSDZ128rr:
7260  case X86::VPMINSDZ256rr:
7261  case X86::VPMINSDZrr:
7262  case X86::VPMINSQZ128rr:
7263  case X86::VPMINSQZ256rr:
7264  case X86::VPMINSQZrr:
7265  case X86::VPMINSWrr:
7266  case X86::VPMINSWYrr:
7267  case X86::VPMINSWZ128rr:
7268  case X86::VPMINSWZ256rr:
7269  case X86::VPMINSWZrr:
7270  case X86::VPMINUBrr:
7271  case X86::VPMINUBYrr:
7272  case X86::VPMINUBZ128rr:
7273  case X86::VPMINUBZ256rr:
7274  case X86::VPMINUBZrr:
7275  case X86::VPMINUDrr:
7276  case X86::VPMINUDYrr:
7277  case X86::VPMINUDZ128rr:
7278  case X86::VPMINUDZ256rr:
7279  case X86::VPMINUDZrr:
7280  case X86::VPMINUQZ128rr:
7281  case X86::VPMINUQZ256rr:
7282  case X86::VPMINUQZrr:
7283  case X86::VPMINUWrr:
7284  case X86::VPMINUWYrr:
7285  case X86::VPMINUWZ128rr:
7286  case X86::VPMINUWZ256rr:
7287  case X86::VPMINUWZrr:
7288  // Normal min/max instructions are not commutative because of NaN and signed
7289  // zero semantics, but these are. Thus, there's no need to check for global
7290  // relaxed math; the instructions themselves have the properties we need.
7291  case X86::MAXCPDrr:
7292  case X86::MAXCPSrr:
7293  case X86::MAXCSDrr:
7294  case X86::MAXCSSrr:
7295  case X86::MINCPDrr:
7296  case X86::MINCPSrr:
7297  case X86::MINCSDrr:
7298  case X86::MINCSSrr:
7299  case X86::VMAXCPDrr:
7300  case X86::VMAXCPSrr:
7301  case X86::VMAXCPDYrr:
7302  case X86::VMAXCPSYrr:
7303  case X86::VMAXCPDZ128rr:
7304  case X86::VMAXCPSZ128rr:
7305  case X86::VMAXCPDZ256rr:
7306  case X86::VMAXCPSZ256rr:
7307  case X86::VMAXCPDZrr:
7308  case X86::VMAXCPSZrr:
7309  case X86::VMAXCSDrr:
7310  case X86::VMAXCSSrr:
7311  case X86::VMAXCSDZrr:
7312  case X86::VMAXCSSZrr:
7313  case X86::VMINCPDrr:
7314  case X86::VMINCPSrr:
7315  case X86::VMINCPDYrr:
7316  case X86::VMINCPSYrr:
7317  case X86::VMINCPDZ128rr:
7318  case X86::VMINCPSZ128rr:
7319  case X86::VMINCPDZ256rr:
7320  case X86::VMINCPSZ256rr:
7321  case X86::VMINCPDZrr:
7322  case X86::VMINCPSZrr:
7323  case X86::VMINCSDrr:
7324  case X86::VMINCSSrr:
7325  case X86::VMINCSDZrr:
7326  case X86::VMINCSSZrr:
7327    return true;
7328  case X86::ADDPDrr:
7329  case X86::ADDPSrr:
7330  case X86::ADDSDrr:
7331  case X86::ADDSSrr:
7332  case X86::MULPDrr:
7333  case X86::MULPSrr:
7334  case X86::MULSDrr:
7335  case X86::MULSSrr:
7336  case X86::VADDPDrr:
7337  case X86::VADDPSrr:
7338  case X86::VADDPDYrr:
7339  case X86::VADDPSYrr:
7340  case X86::VADDPDZ128rr:
7341  case X86::VADDPSZ128rr:
7342  case X86::VADDPDZ256rr:
7343  case X86::VADDPSZ256rr:
7344  case X86::VADDPDZrr:
7345  case X86::VADDPSZrr:
7346  case X86::VADDSDrr:
7347  case X86::VADDSSrr:
7348  case X86::VADDSDZrr:
7349  case X86::VADDSSZrr:
7350  case X86::VMULPDrr:
7351  case X86::VMULPSrr:
7352  case X86::VMULPDYrr:
7353  case X86::VMULPSYrr:
7354  case X86::VMULPDZ128rr:
7355  case X86::VMULPSZ128rr:
7356  case X86::VMULPDZ256rr:
7357  case X86::VMULPSZ256rr:
7358  case X86::VMULPDZrr:
7359  case X86::VMULPSZrr:
7360  case X86::VMULSDrr:
7361  case X86::VMULSSrr:
7362  case X86::VMULSDZrr:
7363  case X86::VMULSSZrr:
7364    return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath;
7365  default:
7366    return false;
7367  }
7368}
7369
7370/// This is an architecture-specific helper function of reassociateOps.
7371/// Set special operand attributes for new instructions after reassociation.
7372void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
7373                                         MachineInstr &OldMI2,
7374                                         MachineInstr &NewMI1,
7375                                         MachineInstr &NewMI2) const {
7376  // Integer instructions define an implicit EFLAGS source register operand as
7377  // the third source (fourth total) operand.
7378  if (OldMI1.getNumOperands() != 4 || OldMI2.getNumOperands() != 4)
7379    return;
7380
7381  assert(NewMI1.getNumOperands() == 4 && NewMI2.getNumOperands() == 4 &&
7382         "Unexpected instruction type for reassociation");
7383
7384  MachineOperand &OldOp1 = OldMI1.getOperand(3);
7385  MachineOperand &OldOp2 = OldMI2.getOperand(3);
7386  MachineOperand &NewOp1 = NewMI1.getOperand(3);
7387  MachineOperand &NewOp2 = NewMI2.getOperand(3);
7388
7389  assert(OldOp1.isReg() && OldOp1.getReg() == X86::EFLAGS && OldOp1.isDead() &&
7390         "Must have dead EFLAGS operand in reassociable instruction");
7391  assert(OldOp2.isReg() && OldOp2.getReg() == X86::EFLAGS && OldOp2.isDead() &&
7392         "Must have dead EFLAGS operand in reassociable instruction");
7393
7394  (void)OldOp1;
7395  (void)OldOp2;
7396
7397  assert(NewOp1.isReg() && NewOp1.getReg() == X86::EFLAGS &&
7398         "Unexpected operand in reassociable instruction");
7399  assert(NewOp2.isReg() && NewOp2.getReg() == X86::EFLAGS &&
7400         "Unexpected operand in reassociable instruction");
7401
7402  // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
7403  // of this pass or other passes. The EFLAGS operands must be dead in these new
7404  // instructions because the EFLAGS operands in the original instructions must
7405  // be dead in order for reassociation to occur.
7406  NewOp1.setIsDead();
7407  NewOp2.setIsDead();
7408}
7409
7410std::pair<unsigned, unsigned>
7411X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
7412  return std::make_pair(TF, 0u);
7413}
7414
7415ArrayRef<std::pair<unsigned, const char *>>
7416X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
7417  using namespace X86II;
7418  static const std::pair<unsigned, const char *> TargetFlags[] = {
7419      {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
7420      {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
7421      {MO_GOT, "x86-got"},
7422      {MO_GOTOFF, "x86-gotoff"},
7423      {MO_GOTPCREL, "x86-gotpcrel"},
7424      {MO_PLT, "x86-plt"},
7425      {MO_TLSGD, "x86-tlsgd"},
7426      {MO_TLSLD, "x86-tlsld"},
7427      {MO_TLSLDM, "x86-tlsldm"},
7428      {MO_GOTTPOFF, "x86-gottpoff"},
7429      {MO_INDNTPOFF, "x86-indntpoff"},
7430      {MO_TPOFF, "x86-tpoff"},
7431      {MO_DTPOFF, "x86-dtpoff"},
7432      {MO_NTPOFF, "x86-ntpoff"},
7433      {MO_GOTNTPOFF, "x86-gotntpoff"},
7434      {MO_DLLIMPORT, "x86-dllimport"},
7435      {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
7436      {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
7437      {MO_TLVP, "x86-tlvp"},
7438      {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
7439      {MO_SECREL, "x86-secrel"},
7440      {MO_COFFSTUB, "x86-coffstub"}};
7441  return makeArrayRef(TargetFlags);
7442}
7443
7444namespace {
7445  /// Create Global Base Reg pass. This initializes the PIC
7446  /// global base register for x86-32.
7447  struct CGBR : public MachineFunctionPass {
7448    static char ID;
7449    CGBR() : MachineFunctionPass(ID) {}
7450
7451    bool runOnMachineFunction(MachineFunction &MF) override {
7452      const X86TargetMachine *TM =
7453        static_cast<const X86TargetMachine *>(&MF.getTarget());
7454      const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
7455
7456      // Don't do anything in the 64-bit small and kernel code models. They use
7457      // RIP-relative addressing for everything.
7458      if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small ||
7459                            TM->getCodeModel() == CodeModel::Kernel))
7460        return false;
7461
7462      // Only emit a global base reg in PIC mode.
7463      if (!TM->isPositionIndependent())
7464        return false;
7465
7466      X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
7467      unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
7468
7469      // If we didn't need a GlobalBaseReg, don't insert code.
7470      if (GlobalBaseReg == 0)
7471        return false;
7472
7473      // Insert the set of GlobalBaseReg into the first MBB of the function
7474      MachineBasicBlock &FirstMBB = MF.front();
7475      MachineBasicBlock::iterator MBBI = FirstMBB.begin();
7476      DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
7477      MachineRegisterInfo &RegInfo = MF.getRegInfo();
7478      const X86InstrInfo *TII = STI.getInstrInfo();
7479
7480      unsigned PC;
7481      if (STI.isPICStyleGOT())
7482        PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
7483      else
7484        PC = GlobalBaseReg;
7485
7486      if (STI.is64Bit()) {
7487        if (TM->getCodeModel() == CodeModel::Medium) {
7488          // In the medium code model, use a RIP-relative LEA to materialize the
7489          // GOT.
7490          BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
7491              .addReg(X86::RIP)
7492              .addImm(0)
7493              .addReg(0)
7494              .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
7495              .addReg(0);
7496        } else if (TM->getCodeModel() == CodeModel::Large) {
7497          // In the large code model, we are aiming for this code, though the
7498          // register allocation may vary:
7499          //   leaq .LN$pb(%rip), %rax
7500          //   movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
7501          //   addq %rcx, %rax
7502          // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
7503          unsigned PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
7504          unsigned GOTReg =
7505              RegInfo.createVirtualRegister(&X86::GR64RegClass);
7506          BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
7507              .addReg(X86::RIP)
7508              .addImm(0)
7509              .addReg(0)
7510              .addSym(MF.getPICBaseSymbol())
7511              .addReg(0);
7512          std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol());
7513          BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
7514              .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
7515                                 X86II::MO_PIC_BASE_OFFSET);
7516          BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
7517              .addReg(PBReg, RegState::Kill)
7518              .addReg(GOTReg, RegState::Kill);
7519        } else {
7520          llvm_unreachable("unexpected code model");
7521        }
7522      } else {
7523        // Operand of MovePCtoStack is completely ignored by asm printer. It's
7524        // only used in JIT code emission as displacement to pc.
7525        BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
7526
7527        // If we're using vanilla 'GOT' PIC style, we should use relative
7528        // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
7529        if (STI.isPICStyleGOT()) {
7530          // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
7531          // %some_register
7532          BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
7533              .addReg(PC)
7534              .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
7535                                 X86II::MO_GOT_ABSOLUTE_ADDRESS);
7536        }
7537      }
7538
7539      return true;
7540    }
7541
7542    StringRef getPassName() const override {
7543      return "X86 PIC Global Base Reg Initialization";
7544    }
7545
7546    void getAnalysisUsage(AnalysisUsage &AU) const override {
7547      AU.setPreservesCFG();
7548      MachineFunctionPass::getAnalysisUsage(AU);
7549    }
7550  };
7551}
7552
7553char CGBR::ID = 0;
7554FunctionPass*
7555llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
7556
7557namespace {
7558  struct LDTLSCleanup : public MachineFunctionPass {
7559    static char ID;
7560    LDTLSCleanup() : MachineFunctionPass(ID) {}
7561
7562    bool runOnMachineFunction(MachineFunction &MF) override {
7563      if (skipFunction(MF.getFunction()))
7564        return false;
7565
7566      X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
7567      if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
7568        // No point folding accesses if there isn't at least two.
7569        return false;
7570      }
7571
7572      MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
7573      return VisitNode(DT->getRootNode(), 0);
7574    }
7575
7576    // Visit the dominator subtree rooted at Node in pre-order.
7577    // If TLSBaseAddrReg is non-null, then use that to replace any
7578    // TLS_base_addr instructions. Otherwise, create the register
7579    // when the first such instruction is seen, and then use it
7580    // as we encounter more instructions.
7581    bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
7582      MachineBasicBlock *BB = Node->getBlock();
7583      bool Changed = false;
7584
7585      // Traverse the current block.
7586      for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
7587           ++I) {
7588        switch (I->getOpcode()) {
7589          case X86::TLS_base_addr32:
7590          case X86::TLS_base_addr64:
7591            if (TLSBaseAddrReg)
7592              I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
7593            else
7594              I = SetRegister(*I, &TLSBaseAddrReg);
7595            Changed = true;
7596            break;
7597          default:
7598            break;
7599        }
7600      }
7601
7602      // Visit the children of this block in the dominator tree.
7603      for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
7604           I != E; ++I) {
7605        Changed |= VisitNode(*I, TLSBaseAddrReg);
7606      }
7607
7608      return Changed;
7609    }
7610
7611    // Replace the TLS_base_addr instruction I with a copy from
7612    // TLSBaseAddrReg, returning the new instruction.
7613    MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
7614                                         unsigned TLSBaseAddrReg) {
7615      MachineFunction *MF = I.getParent()->getParent();
7616      const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
7617      const bool is64Bit = STI.is64Bit();
7618      const X86InstrInfo *TII = STI.getInstrInfo();
7619
7620      // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
7621      MachineInstr *Copy =
7622          BuildMI(*I.getParent(), I, I.getDebugLoc(),
7623                  TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
7624              .addReg(TLSBaseAddrReg);
7625
7626      // Erase the TLS_base_addr instruction.
7627      I.eraseFromParent();
7628
7629      return Copy;
7630    }
7631
7632    // Create a virtual register in *TLSBaseAddrReg, and populate it by
7633    // inserting a copy instruction after I. Returns the new instruction.
7634    MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
7635      MachineFunction *MF = I.getParent()->getParent();
7636      const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
7637      const bool is64Bit = STI.is64Bit();
7638      const X86InstrInfo *TII = STI.getInstrInfo();
7639
7640      // Create a virtual register for the TLS base address.
7641      MachineRegisterInfo &RegInfo = MF->getRegInfo();
7642      *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
7643                                                      ? &X86::GR64RegClass
7644                                                      : &X86::GR32RegClass);
7645
7646      // Insert a copy from RAX/EAX to TLSBaseAddrReg.
7647      MachineInstr *Next = I.getNextNode();
7648      MachineInstr *Copy =
7649          BuildMI(*I.getParent(), Next, I.getDebugLoc(),
7650                  TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
7651              .addReg(is64Bit ? X86::RAX : X86::EAX);
7652
7653      return Copy;
7654    }
7655
7656    StringRef getPassName() const override {
7657      return "Local Dynamic TLS Access Clean-up";
7658    }
7659
7660    void getAnalysisUsage(AnalysisUsage &AU) const override {
7661      AU.setPreservesCFG();
7662      AU.addRequired<MachineDominatorTree>();
7663      MachineFunctionPass::getAnalysisUsage(AU);
7664    }
7665  };
7666}
7667
7668char LDTLSCleanup::ID = 0;
7669FunctionPass*
7670llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
7671
7672/// Constants defining how certain sequences should be outlined.
7673///
7674/// \p MachineOutlinerDefault implies that the function is called with a call
7675/// instruction, and a return must be emitted for the outlined function frame.
7676///
7677/// That is,
7678///
7679/// I1                                 OUTLINED_FUNCTION:
7680/// I2 --> call OUTLINED_FUNCTION       I1
7681/// I3                                  I2
7682///                                     I3
7683///                                     ret
7684///
7685/// * Call construction overhead: 1 (call instruction)
7686/// * Frame construction overhead: 1 (return instruction)
7687///
7688/// \p MachineOutlinerTailCall implies that the function is being tail called.
7689/// A jump is emitted instead of a call, and the return is already present in
7690/// the outlined sequence. That is,
7691///
7692/// I1                                 OUTLINED_FUNCTION:
7693/// I2 --> jmp OUTLINED_FUNCTION       I1
7694/// ret                                I2
7695///                                    ret
7696///
7697/// * Call construction overhead: 1 (jump instruction)
7698/// * Frame construction overhead: 0 (don't need to return)
7699///
7700enum MachineOutlinerClass {
7701  MachineOutlinerDefault,
7702  MachineOutlinerTailCall
7703};
7704
7705outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo(
7706    std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
7707  unsigned SequenceSize =
7708      std::accumulate(RepeatedSequenceLocs[0].front(),
7709                      std::next(RepeatedSequenceLocs[0].back()), 0,
7710                      [](unsigned Sum, const MachineInstr &MI) {
7711                        // FIXME: x86 doesn't implement getInstSizeInBytes, so
7712                        // we can't tell the cost.  Just assume each instruction
7713                        // is one byte.
7714                        if (MI.isDebugInstr() || MI.isKill())
7715                          return Sum;
7716                        return Sum + 1;
7717                      });
7718
7719  // FIXME: Use real size in bytes for call and ret instructions.
7720  if (RepeatedSequenceLocs[0].back()->isTerminator()) {
7721    for (outliner::Candidate &C : RepeatedSequenceLocs)
7722      C.setCallInfo(MachineOutlinerTailCall, 1);
7723
7724    return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
7725                                      0, // Number of bytes to emit frame.
7726                                      MachineOutlinerTailCall // Type of frame.
7727    );
7728  }
7729
7730  for (outliner::Candidate &C : RepeatedSequenceLocs)
7731    C.setCallInfo(MachineOutlinerDefault, 1);
7732
7733  return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
7734                                    MachineOutlinerDefault);
7735}
7736
7737bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF,
7738                                           bool OutlineFromLinkOnceODRs) const {
7739  const Function &F = MF.getFunction();
7740
7741  // Does the function use a red zone? If it does, then we can't risk messing
7742  // with the stack.
7743  if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) {
7744    // It could have a red zone. If it does, then we don't want to touch it.
7745    const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
7746    if (!X86FI || X86FI->getUsesRedZone())
7747      return false;
7748  }
7749
7750  // If we *don't* want to outline from things that could potentially be deduped
7751  // then return false.
7752  if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
7753      return false;
7754
7755  // This function is viable for outlining, so return true.
7756  return true;
7757}
7758
7759outliner::InstrType
7760X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,  unsigned Flags) const {
7761  MachineInstr &MI = *MIT;
7762  // Don't allow debug values to impact outlining type.
7763  if (MI.isDebugInstr() || MI.isIndirectDebugValue())
7764    return outliner::InstrType::Invisible;
7765
7766  // At this point, KILL instructions don't really tell us much so we can go
7767  // ahead and skip over them.
7768  if (MI.isKill())
7769    return outliner::InstrType::Invisible;
7770
7771  // Is this a tail call? If yes, we can outline as a tail call.
7772  if (isTailCall(MI))
7773    return outliner::InstrType::Legal;
7774
7775  // Is this the terminator of a basic block?
7776  if (MI.isTerminator() || MI.isReturn()) {
7777
7778    // Does its parent have any successors in its MachineFunction?
7779    if (MI.getParent()->succ_empty())
7780      return outliner::InstrType::Legal;
7781
7782    // It does, so we can't tail call it.
7783    return outliner::InstrType::Illegal;
7784  }
7785
7786  // Don't outline anything that modifies or reads from the stack pointer.
7787  //
7788  // FIXME: There are instructions which are being manually built without
7789  // explicit uses/defs so we also have to check the MCInstrDesc. We should be
7790  // able to remove the extra checks once those are fixed up. For example,
7791  // sometimes we might get something like %rax = POP64r 1. This won't be
7792  // caught by modifiesRegister or readsRegister even though the instruction
7793  // really ought to be formed so that modifiesRegister/readsRegister would
7794  // catch it.
7795  if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
7796      MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
7797      MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
7798    return outliner::InstrType::Illegal;
7799
7800  // Outlined calls change the instruction pointer, so don't read from it.
7801  if (MI.readsRegister(X86::RIP, &RI) ||
7802      MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
7803      MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
7804    return outliner::InstrType::Illegal;
7805
7806  // Positions can't safely be outlined.
7807  if (MI.isPosition())
7808    return outliner::InstrType::Illegal;
7809
7810  // Make sure none of the operands of this instruction do anything tricky.
7811  for (const MachineOperand &MOP : MI.operands())
7812    if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
7813        MOP.isTargetIndex())
7814      return outliner::InstrType::Illegal;
7815
7816  return outliner::InstrType::Legal;
7817}
7818
7819void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB,
7820                                          MachineFunction &MF,
7821                                          const outliner::OutlinedFunction &OF)
7822                                          const {
7823  // If we're a tail call, we already have a return, so don't do anything.
7824  if (OF.FrameConstructionID == MachineOutlinerTailCall)
7825    return;
7826
7827  // We're a normal call, so our sequence doesn't have a return instruction.
7828  // Add it in.
7829  MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RETQ));
7830  MBB.insert(MBB.end(), retq);
7831}
7832
7833MachineBasicBlock::iterator
7834X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
7835                                 MachineBasicBlock::iterator &It,
7836                                 MachineFunction &MF,
7837                                 const outliner::Candidate &C) const {
7838  // Is it a tail call?
7839  if (C.CallConstructionID == MachineOutlinerTailCall) {
7840    // Yes, just insert a JMP.
7841    It = MBB.insert(It,
7842                  BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
7843                      .addGlobalAddress(M.getNamedValue(MF.getName())));
7844  } else {
7845    // No, insert a call.
7846    It = MBB.insert(It,
7847                  BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
7848                      .addGlobalAddress(M.getNamedValue(MF.getName())));
7849  }
7850
7851  return It;
7852}
7853
7854#define GET_INSTRINFO_HELPERS
7855#include "X86GenInstrInfo.inc"
7856