X86InstrInfo.cpp revision 341825
1321936Shselasky//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2321936Shselasky//
3321936Shselasky//                     The LLVM Compiler Infrastructure
4321936Shselasky//
5321936Shselasky// This file is distributed under the University of Illinois Open Source
6321936Shselasky// License. See LICENSE.TXT for details.
7321936Shselasky//
8321936Shselasky//===----------------------------------------------------------------------===//
9321936Shselasky//
10321936Shselasky// This file contains the X86 implementation of the TargetInstrInfo class.
11321936Shselasky//
12321936Shselasky//===----------------------------------------------------------------------===//
13321936Shselasky
14321936Shselasky#include "X86InstrInfo.h"
15321936Shselasky#include "X86.h"
16321936Shselasky#include "X86InstrBuilder.h"
17321936Shselasky#include "X86InstrFoldTables.h"
18321936Shselasky#include "X86MachineFunctionInfo.h"
19321936Shselasky#include "X86Subtarget.h"
20321936Shselasky#include "X86TargetMachine.h"
21321936Shselasky#include "llvm/ADT/STLExtras.h"
22321936Shselasky#include "llvm/ADT/Sequence.h"
23321936Shselasky#include "llvm/CodeGen/LivePhysRegs.h"
24321936Shselasky#include "llvm/CodeGen/LiveVariables.h"
25321936Shselasky#include "llvm/CodeGen/MachineConstantPool.h"
26321936Shselasky#include "llvm/CodeGen/MachineDominators.h"
27321936Shselasky#include "llvm/CodeGen/MachineFrameInfo.h"
28321936Shselasky#include "llvm/CodeGen/MachineInstrBuilder.h"
29321936Shselasky#include "llvm/CodeGen/MachineModuleInfo.h"
30321936Shselasky#include "llvm/CodeGen/MachineRegisterInfo.h"
31321936Shselasky#include "llvm/CodeGen/StackMaps.h"
32321936Shselasky#include "llvm/IR/DerivedTypes.h"
33321936Shselasky#include "llvm/IR/Function.h"
34321936Shselasky#include "llvm/IR/LLVMContext.h"
35321936Shselasky#include "llvm/MC/MCAsmInfo.h"
36321936Shselasky#include "llvm/MC/MCExpr.h"
37321936Shselasky#include "llvm/MC/MCInst.h"
38321936Shselasky#include "llvm/Support/CommandLine.h"
39321936Shselasky#include "llvm/Support/Debug.h"
40321936Shselasky#include "llvm/Support/ErrorHandling.h"
41321936Shselasky#include "llvm/Support/raw_ostream.h"
42321936Shselasky#include "llvm/Target/TargetOptions.h"
43321936Shselasky
44321936Shselaskyusing namespace llvm;
45321936Shselasky
46321936Shselasky#define DEBUG_TYPE "x86-instr-info"
47321936Shselasky
48321936Shselasky#define GET_INSTRINFO_CTOR_DTOR
49321936Shselasky#include "X86GenInstrInfo.inc"
50321936Shselasky
51321936Shselaskystatic cl::opt<bool>
52321936Shselasky    NoFusing("disable-spill-fusing",
53321936Shselasky             cl::desc("Disable fusing of spill code into instructions"),
54321936Shselasky             cl::Hidden);
55321936Shselaskystatic cl::opt<bool>
56321936ShselaskyPrintFailedFusing("print-failed-fuse-candidates",
57321936Shselasky                  cl::desc("Print instructions that the allocator wants to"
58321936Shselasky                           " fuse, but the X86 backend currently can't"),
59321936Shselasky                  cl::Hidden);
60321936Shselaskystatic cl::opt<bool>
61321936ShselaskyReMatPICStubLoad("remat-pic-stub-load",
62321936Shselasky                 cl::desc("Re-materialize load from stub in PIC mode"),
63321936Shselasky                 cl::init(false), cl::Hidden);
64321936Shselaskystatic cl::opt<unsigned>
65321936ShselaskyPartialRegUpdateClearance("partial-reg-update-clearance",
66321936Shselasky                          cl::desc("Clearance between two register writes "
67321936Shselasky                                   "for inserting XOR to avoid partial "
68321936Shselasky                                   "register update"),
69321936Shselasky                          cl::init(64), cl::Hidden);
70321936Shselaskystatic cl::opt<unsigned>
71321936ShselaskyUndefRegClearance("undef-reg-clearance",
72321936Shselasky                  cl::desc("How many idle instructions we would like before "
73321936Shselasky                           "certain undef register reads"),
74321936Shselasky                  cl::init(128), cl::Hidden);
75321936Shselasky
76321936Shselasky
77321936Shselasky// Pin the vtable to this file.
78321936Shselaskyvoid X86InstrInfo::anchor() {}
79321936Shselasky
80321936ShselaskyX86InstrInfo::X86InstrInfo(X86Subtarget &STI)
81321936Shselasky    : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
82321936Shselasky                                               : X86::ADJCALLSTACKDOWN32),
83321936Shselasky                      (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
84321936Shselasky                                               : X86::ADJCALLSTACKUP32),
85321936Shselasky                      X86::CATCHRET,
86321936Shselasky                      (STI.is64Bit() ? X86::RETQ : X86::RETL)),
87321936Shselasky      Subtarget(STI), RI(STI.getTargetTriple()) {
88321936Shselasky}
89321936Shselasky
90321936Shselaskybool
91321936ShselaskyX86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
92321936Shselasky                                    unsigned &SrcReg, unsigned &DstReg,
93321936Shselasky                                    unsigned &SubIdx) const {
94321936Shselasky  switch (MI.getOpcode()) {
95321936Shselasky  default: break;
96321936Shselasky  case X86::MOVSX16rr8:
97321936Shselasky  case X86::MOVZX16rr8:
98321936Shselasky  case X86::MOVSX32rr8:
99321936Shselasky  case X86::MOVZX32rr8:
100321936Shselasky  case X86::MOVSX64rr8:
101321936Shselasky    if (!Subtarget.is64Bit())
102321936Shselasky      // It's not always legal to reference the low 8-bit of the larger
103321936Shselasky      // register in 32-bit mode.
104321936Shselasky      return false;
105321936Shselasky    LLVM_FALLTHROUGH;
106321936Shselasky  case X86::MOVSX32rr16:
107321936Shselasky  case X86::MOVZX32rr16:
108321936Shselasky  case X86::MOVSX64rr16:
109321936Shselasky  case X86::MOVSX64rr32: {
110321936Shselasky    if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
111321936Shselasky      // Be conservative.
112321936Shselasky      return false;
113321936Shselasky    SrcReg = MI.getOperand(1).getReg();
114321936Shselasky    DstReg = MI.getOperand(0).getReg();
115321936Shselasky    switch (MI.getOpcode()) {
116321936Shselasky    default: llvm_unreachable("Unreachable!");
117321936Shselasky    case X86::MOVSX16rr8:
118321936Shselasky    case X86::MOVZX16rr8:
119321936Shselasky    case X86::MOVSX32rr8:
120321936Shselasky    case X86::MOVZX32rr8:
121321936Shselasky    case X86::MOVSX64rr8:
122321936Shselasky      SubIdx = X86::sub_8bit;
123321936Shselasky      break;
124321936Shselasky    case X86::MOVSX32rr16:
125321936Shselasky    case X86::MOVZX32rr16:
126321936Shselasky    case X86::MOVSX64rr16:
127321936Shselasky      SubIdx = X86::sub_16bit;
128321936Shselasky      break;
129321936Shselasky    case X86::MOVSX64rr32:
130321936Shselasky      SubIdx = X86::sub_32bit;
131321936Shselasky      break;
132321936Shselasky    }
133321936Shselasky    return true;
134321936Shselasky  }
135321936Shselasky  }
136321936Shselasky  return false;
137321936Shselasky}
138321936Shselasky
139321936Shselaskyint X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
140321936Shselasky  const MachineFunction *MF = MI.getParent()->getParent();
141321936Shselasky  const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
142321936Shselasky
143321936Shselasky  if (isFrameInstr(MI)) {
144321936Shselasky    unsigned StackAlign = TFI->getStackAlignment();
145321936Shselasky    int SPAdj = alignTo(getFrameSize(MI), StackAlign);
146321936Shselasky    SPAdj -= getFrameAdjustment(MI);
147321936Shselasky    if (!isFrameSetup(MI))
148321936Shselasky      SPAdj = -SPAdj;
149321936Shselasky    return SPAdj;
150321936Shselasky  }
151321936Shselasky
152321936Shselasky  // To know whether a call adjusts the stack, we need information
153321936Shselasky  // that is bound to the following ADJCALLSTACKUP pseudo.
154321936Shselasky  // Look for the next ADJCALLSTACKUP that follows the call.
155321936Shselasky  if (MI.isCall()) {
156321936Shselasky    const MachineBasicBlock *MBB = MI.getParent();
157321936Shselasky    auto I = ++MachineBasicBlock::const_iterator(MI);
158    for (auto E = MBB->end(); I != E; ++I) {
159      if (I->getOpcode() == getCallFrameDestroyOpcode() ||
160          I->isCall())
161        break;
162    }
163
164    // If we could not find a frame destroy opcode, then it has already
165    // been simplified, so we don't care.
166    if (I->getOpcode() != getCallFrameDestroyOpcode())
167      return 0;
168
169    return -(I->getOperand(1).getImm());
170  }
171
172  // Currently handle only PUSHes we can reasonably expect to see
173  // in call sequences
174  switch (MI.getOpcode()) {
175  default:
176    return 0;
177  case X86::PUSH32i8:
178  case X86::PUSH32r:
179  case X86::PUSH32rmm:
180  case X86::PUSH32rmr:
181  case X86::PUSHi32:
182    return 4;
183  case X86::PUSH64i8:
184  case X86::PUSH64r:
185  case X86::PUSH64rmm:
186  case X86::PUSH64rmr:
187  case X86::PUSH64i32:
188    return 8;
189  }
190}
191
192/// Return true and the FrameIndex if the specified
193/// operand and follow operands form a reference to the stack frame.
194bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
195                                  int &FrameIndex) const {
196  if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
197      MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
198      MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
199      MI.getOperand(Op + X86::AddrDisp).isImm() &&
200      MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
201      MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
202      MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
203    FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
204    return true;
205  }
206  return false;
207}
208
209static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
210  switch (Opcode) {
211  default:
212    return false;
213  case X86::MOV8rm:
214  case X86::KMOVBkm:
215    MemBytes = 1;
216    return true;
217  case X86::MOV16rm:
218  case X86::KMOVWkm:
219    MemBytes = 2;
220    return true;
221  case X86::MOV32rm:
222  case X86::MOVSSrm:
223  case X86::VMOVSSZrm:
224  case X86::VMOVSSrm:
225  case X86::KMOVDkm:
226    MemBytes = 4;
227    return true;
228  case X86::MOV64rm:
229  case X86::LD_Fp64m:
230  case X86::MOVSDrm:
231  case X86::VMOVSDrm:
232  case X86::VMOVSDZrm:
233  case X86::MMX_MOVD64rm:
234  case X86::MMX_MOVQ64rm:
235  case X86::KMOVQkm:
236    MemBytes = 8;
237    return true;
238  case X86::MOVAPSrm:
239  case X86::MOVUPSrm:
240  case X86::MOVAPDrm:
241  case X86::MOVUPDrm:
242  case X86::MOVDQArm:
243  case X86::MOVDQUrm:
244  case X86::VMOVAPSrm:
245  case X86::VMOVUPSrm:
246  case X86::VMOVAPDrm:
247  case X86::VMOVUPDrm:
248  case X86::VMOVDQArm:
249  case X86::VMOVDQUrm:
250  case X86::VMOVAPSZ128rm:
251  case X86::VMOVUPSZ128rm:
252  case X86::VMOVAPSZ128rm_NOVLX:
253  case X86::VMOVUPSZ128rm_NOVLX:
254  case X86::VMOVAPDZ128rm:
255  case X86::VMOVUPDZ128rm:
256  case X86::VMOVDQU8Z128rm:
257  case X86::VMOVDQU16Z128rm:
258  case X86::VMOVDQA32Z128rm:
259  case X86::VMOVDQU32Z128rm:
260  case X86::VMOVDQA64Z128rm:
261  case X86::VMOVDQU64Z128rm:
262    MemBytes = 16;
263    return true;
264  case X86::VMOVAPSYrm:
265  case X86::VMOVUPSYrm:
266  case X86::VMOVAPDYrm:
267  case X86::VMOVUPDYrm:
268  case X86::VMOVDQAYrm:
269  case X86::VMOVDQUYrm:
270  case X86::VMOVAPSZ256rm:
271  case X86::VMOVUPSZ256rm:
272  case X86::VMOVAPSZ256rm_NOVLX:
273  case X86::VMOVUPSZ256rm_NOVLX:
274  case X86::VMOVAPDZ256rm:
275  case X86::VMOVUPDZ256rm:
276  case X86::VMOVDQU8Z256rm:
277  case X86::VMOVDQU16Z256rm:
278  case X86::VMOVDQA32Z256rm:
279  case X86::VMOVDQU32Z256rm:
280  case X86::VMOVDQA64Z256rm:
281  case X86::VMOVDQU64Z256rm:
282    MemBytes = 32;
283    return true;
284  case X86::VMOVAPSZrm:
285  case X86::VMOVUPSZrm:
286  case X86::VMOVAPDZrm:
287  case X86::VMOVUPDZrm:
288  case X86::VMOVDQU8Zrm:
289  case X86::VMOVDQU16Zrm:
290  case X86::VMOVDQA32Zrm:
291  case X86::VMOVDQU32Zrm:
292  case X86::VMOVDQA64Zrm:
293  case X86::VMOVDQU64Zrm:
294    MemBytes = 64;
295    return true;
296  }
297}
298
299static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
300  switch (Opcode) {
301  default:
302    return false;
303  case X86::MOV8mr:
304  case X86::KMOVBmk:
305    MemBytes = 1;
306    return true;
307  case X86::MOV16mr:
308  case X86::KMOVWmk:
309    MemBytes = 2;
310    return true;
311  case X86::MOV32mr:
312  case X86::MOVSSmr:
313  case X86::VMOVSSmr:
314  case X86::VMOVSSZmr:
315  case X86::KMOVDmk:
316    MemBytes = 4;
317    return true;
318  case X86::MOV64mr:
319  case X86::ST_FpP64m:
320  case X86::MOVSDmr:
321  case X86::VMOVSDmr:
322  case X86::VMOVSDZmr:
323  case X86::MMX_MOVD64mr:
324  case X86::MMX_MOVQ64mr:
325  case X86::MMX_MOVNTQmr:
326  case X86::KMOVQmk:
327    MemBytes = 8;
328    return true;
329  case X86::MOVAPSmr:
330  case X86::MOVUPSmr:
331  case X86::MOVAPDmr:
332  case X86::MOVUPDmr:
333  case X86::MOVDQAmr:
334  case X86::MOVDQUmr:
335  case X86::VMOVAPSmr:
336  case X86::VMOVUPSmr:
337  case X86::VMOVAPDmr:
338  case X86::VMOVUPDmr:
339  case X86::VMOVDQAmr:
340  case X86::VMOVDQUmr:
341  case X86::VMOVUPSZ128mr:
342  case X86::VMOVAPSZ128mr:
343  case X86::VMOVUPSZ128mr_NOVLX:
344  case X86::VMOVAPSZ128mr_NOVLX:
345  case X86::VMOVUPDZ128mr:
346  case X86::VMOVAPDZ128mr:
347  case X86::VMOVDQA32Z128mr:
348  case X86::VMOVDQU32Z128mr:
349  case X86::VMOVDQA64Z128mr:
350  case X86::VMOVDQU64Z128mr:
351  case X86::VMOVDQU8Z128mr:
352  case X86::VMOVDQU16Z128mr:
353    MemBytes = 16;
354    return true;
355  case X86::VMOVUPSYmr:
356  case X86::VMOVAPSYmr:
357  case X86::VMOVUPDYmr:
358  case X86::VMOVAPDYmr:
359  case X86::VMOVDQUYmr:
360  case X86::VMOVDQAYmr:
361  case X86::VMOVUPSZ256mr:
362  case X86::VMOVAPSZ256mr:
363  case X86::VMOVUPSZ256mr_NOVLX:
364  case X86::VMOVAPSZ256mr_NOVLX:
365  case X86::VMOVUPDZ256mr:
366  case X86::VMOVAPDZ256mr:
367  case X86::VMOVDQU8Z256mr:
368  case X86::VMOVDQU16Z256mr:
369  case X86::VMOVDQA32Z256mr:
370  case X86::VMOVDQU32Z256mr:
371  case X86::VMOVDQA64Z256mr:
372  case X86::VMOVDQU64Z256mr:
373    MemBytes = 32;
374    return true;
375  case X86::VMOVUPSZmr:
376  case X86::VMOVAPSZmr:
377  case X86::VMOVUPDZmr:
378  case X86::VMOVAPDZmr:
379  case X86::VMOVDQU8Zmr:
380  case X86::VMOVDQU16Zmr:
381  case X86::VMOVDQA32Zmr:
382  case X86::VMOVDQU32Zmr:
383  case X86::VMOVDQA64Zmr:
384  case X86::VMOVDQU64Zmr:
385    MemBytes = 64;
386    return true;
387  }
388  return false;
389}
390
391unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
392                                           int &FrameIndex) const {
393  unsigned Dummy;
394  return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
395}
396
397unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
398                                           int &FrameIndex,
399                                           unsigned &MemBytes) const {
400  if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
401    if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
402      return MI.getOperand(0).getReg();
403  return 0;
404}
405
406unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
407                                                 int &FrameIndex) const {
408  unsigned Dummy;
409  if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
410    unsigned Reg;
411    if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
412      return Reg;
413    // Check for post-frame index elimination operations
414    const MachineMemOperand *Dummy;
415    return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
416  }
417  return 0;
418}
419
420unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
421                                          int &FrameIndex) const {
422  unsigned Dummy;
423  return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
424}
425
426unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
427                                          int &FrameIndex,
428                                          unsigned &MemBytes) const {
429  if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
430    if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
431        isFrameOperand(MI, 0, FrameIndex))
432      return MI.getOperand(X86::AddrNumOperands).getReg();
433  return 0;
434}
435
436unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
437                                                int &FrameIndex) const {
438  unsigned Dummy;
439  if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
440    unsigned Reg;
441    if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
442      return Reg;
443    // Check for post-frame index elimination operations
444    const MachineMemOperand *Dummy;
445    return hasStoreToStackSlot(MI, Dummy, FrameIndex);
446  }
447  return 0;
448}
449
450/// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
451static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
452  // Don't waste compile time scanning use-def chains of physregs.
453  if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
454    return false;
455  bool isPICBase = false;
456  for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
457         E = MRI.def_instr_end(); I != E; ++I) {
458    MachineInstr *DefMI = &*I;
459    if (DefMI->getOpcode() != X86::MOVPC32r)
460      return false;
461    assert(!isPICBase && "More than one PIC base?");
462    isPICBase = true;
463  }
464  return isPICBase;
465}
466
467bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
468                                                     AliasAnalysis *AA) const {
469  switch (MI.getOpcode()) {
470  default: break;
471  case X86::MOV8rm:
472  case X86::MOV8rm_NOREX:
473  case X86::MOV16rm:
474  case X86::MOV32rm:
475  case X86::MOV64rm:
476  case X86::LD_Fp64m:
477  case X86::MOVSSrm:
478  case X86::MOVSDrm:
479  case X86::MOVAPSrm:
480  case X86::MOVUPSrm:
481  case X86::MOVAPDrm:
482  case X86::MOVUPDrm:
483  case X86::MOVDQArm:
484  case X86::MOVDQUrm:
485  case X86::VMOVSSrm:
486  case X86::VMOVSDrm:
487  case X86::VMOVAPSrm:
488  case X86::VMOVUPSrm:
489  case X86::VMOVAPDrm:
490  case X86::VMOVUPDrm:
491  case X86::VMOVDQArm:
492  case X86::VMOVDQUrm:
493  case X86::VMOVAPSYrm:
494  case X86::VMOVUPSYrm:
495  case X86::VMOVAPDYrm:
496  case X86::VMOVUPDYrm:
497  case X86::VMOVDQAYrm:
498  case X86::VMOVDQUYrm:
499  case X86::MMX_MOVD64rm:
500  case X86::MMX_MOVQ64rm:
501  // AVX-512
502  case X86::VMOVSSZrm:
503  case X86::VMOVSDZrm:
504  case X86::VMOVAPDZ128rm:
505  case X86::VMOVAPDZ256rm:
506  case X86::VMOVAPDZrm:
507  case X86::VMOVAPSZ128rm:
508  case X86::VMOVAPSZ256rm:
509  case X86::VMOVAPSZ128rm_NOVLX:
510  case X86::VMOVAPSZ256rm_NOVLX:
511  case X86::VMOVAPSZrm:
512  case X86::VMOVDQA32Z128rm:
513  case X86::VMOVDQA32Z256rm:
514  case X86::VMOVDQA32Zrm:
515  case X86::VMOVDQA64Z128rm:
516  case X86::VMOVDQA64Z256rm:
517  case X86::VMOVDQA64Zrm:
518  case X86::VMOVDQU16Z128rm:
519  case X86::VMOVDQU16Z256rm:
520  case X86::VMOVDQU16Zrm:
521  case X86::VMOVDQU32Z128rm:
522  case X86::VMOVDQU32Z256rm:
523  case X86::VMOVDQU32Zrm:
524  case X86::VMOVDQU64Z128rm:
525  case X86::VMOVDQU64Z256rm:
526  case X86::VMOVDQU64Zrm:
527  case X86::VMOVDQU8Z128rm:
528  case X86::VMOVDQU8Z256rm:
529  case X86::VMOVDQU8Zrm:
530  case X86::VMOVUPDZ128rm:
531  case X86::VMOVUPDZ256rm:
532  case X86::VMOVUPDZrm:
533  case X86::VMOVUPSZ128rm:
534  case X86::VMOVUPSZ256rm:
535  case X86::VMOVUPSZ128rm_NOVLX:
536  case X86::VMOVUPSZ256rm_NOVLX:
537  case X86::VMOVUPSZrm: {
538    // Loads from constant pools are trivially rematerializable.
539    if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
540        MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
541        MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
542        MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
543        MI.isDereferenceableInvariantLoad(AA)) {
544      unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
545      if (BaseReg == 0 || BaseReg == X86::RIP)
546        return true;
547      // Allow re-materialization of PIC load.
548      if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
549        return false;
550      const MachineFunction &MF = *MI.getParent()->getParent();
551      const MachineRegisterInfo &MRI = MF.getRegInfo();
552      return regIsPICBase(BaseReg, MRI);
553    }
554    return false;
555  }
556
557  case X86::LEA32r:
558  case X86::LEA64r: {
559    if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
560        MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
561        MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
562        !MI.getOperand(1 + X86::AddrDisp).isReg()) {
563      // lea fi#, lea GV, etc. are all rematerializable.
564      if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
565        return true;
566      unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
567      if (BaseReg == 0)
568        return true;
569      // Allow re-materialization of lea PICBase + x.
570      const MachineFunction &MF = *MI.getParent()->getParent();
571      const MachineRegisterInfo &MRI = MF.getRegInfo();
572      return regIsPICBase(BaseReg, MRI);
573    }
574    return false;
575  }
576  }
577
578  // All other instructions marked M_REMATERIALIZABLE are always trivially
579  // rematerializable.
580  return true;
581}
582
583bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
584                                         MachineBasicBlock::iterator I) const {
585  MachineBasicBlock::iterator E = MBB.end();
586
587  // For compile time consideration, if we are not able to determine the
588  // safety after visiting 4 instructions in each direction, we will assume
589  // it's not safe.
590  MachineBasicBlock::iterator Iter = I;
591  for (unsigned i = 0; Iter != E && i < 4; ++i) {
592    bool SeenDef = false;
593    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
594      MachineOperand &MO = Iter->getOperand(j);
595      if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
596        SeenDef = true;
597      if (!MO.isReg())
598        continue;
599      if (MO.getReg() == X86::EFLAGS) {
600        if (MO.isUse())
601          return false;
602        SeenDef = true;
603      }
604    }
605
606    if (SeenDef)
607      // This instruction defines EFLAGS, no need to look any further.
608      return true;
609    ++Iter;
610    // Skip over debug instructions.
611    while (Iter != E && Iter->isDebugInstr())
612      ++Iter;
613  }
614
615  // It is safe to clobber EFLAGS at the end of a block of no successor has it
616  // live in.
617  if (Iter == E) {
618    for (MachineBasicBlock *S : MBB.successors())
619      if (S->isLiveIn(X86::EFLAGS))
620        return false;
621    return true;
622  }
623
624  MachineBasicBlock::iterator B = MBB.begin();
625  Iter = I;
626  for (unsigned i = 0; i < 4; ++i) {
627    // If we make it to the beginning of the block, it's safe to clobber
628    // EFLAGS iff EFLAGS is not live-in.
629    if (Iter == B)
630      return !MBB.isLiveIn(X86::EFLAGS);
631
632    --Iter;
633    // Skip over debug instructions.
634    while (Iter != B && Iter->isDebugInstr())
635      --Iter;
636
637    bool SawKill = false;
638    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
639      MachineOperand &MO = Iter->getOperand(j);
640      // A register mask may clobber EFLAGS, but we should still look for a
641      // live EFLAGS def.
642      if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
643        SawKill = true;
644      if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
645        if (MO.isDef()) return MO.isDead();
646        if (MO.isKill()) SawKill = true;
647      }
648    }
649
650    if (SawKill)
651      // This instruction kills EFLAGS and doesn't redefine it, so
652      // there's no need to look further.
653      return true;
654  }
655
656  // Conservative answer.
657  return false;
658}
659
660void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
661                                 MachineBasicBlock::iterator I,
662                                 unsigned DestReg, unsigned SubIdx,
663                                 const MachineInstr &Orig,
664                                 const TargetRegisterInfo &TRI) const {
665  bool ClobbersEFLAGS = false;
666  for (const MachineOperand &MO : Orig.operands()) {
667    if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
668      ClobbersEFLAGS = true;
669      break;
670    }
671  }
672
673  if (ClobbersEFLAGS && !isSafeToClobberEFLAGS(MBB, I)) {
674    // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
675    // effects.
676    int Value;
677    switch (Orig.getOpcode()) {
678    case X86::MOV32r0:  Value = 0; break;
679    case X86::MOV32r1:  Value = 1; break;
680    case X86::MOV32r_1: Value = -1; break;
681    default:
682      llvm_unreachable("Unexpected instruction!");
683    }
684
685    const DebugLoc &DL = Orig.getDebugLoc();
686    BuildMI(MBB, I, DL, get(X86::MOV32ri))
687        .add(Orig.getOperand(0))
688        .addImm(Value);
689  } else {
690    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
691    MBB.insert(I, MI);
692  }
693
694  MachineInstr &NewMI = *std::prev(I);
695  NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
696}
697
698/// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
699bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
700  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
701    MachineOperand &MO = MI.getOperand(i);
702    if (MO.isReg() && MO.isDef() &&
703        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
704      return true;
705    }
706  }
707  return false;
708}
709
710/// Check whether the shift count for a machine operand is non-zero.
711inline static unsigned getTruncatedShiftCount(MachineInstr &MI,
712                                              unsigned ShiftAmtOperandIdx) {
713  // The shift count is six bits with the REX.W prefix and five bits without.
714  unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
715  unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
716  return Imm & ShiftCountMask;
717}
718
719/// Check whether the given shift count is appropriate
720/// can be represented by a LEA instruction.
721inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
722  // Left shift instructions can be transformed into load-effective-address
723  // instructions if we can encode them appropriately.
724  // A LEA instruction utilizes a SIB byte to encode its scale factor.
725  // The SIB.scale field is two bits wide which means that we can encode any
726  // shift amount less than 4.
727  return ShAmt < 4 && ShAmt > 0;
728}
729
730bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
731                                  unsigned Opc, bool AllowSP, unsigned &NewSrc,
732                                  bool &isKill, bool &isUndef,
733                                  MachineOperand &ImplicitOp,
734                                  LiveVariables *LV) const {
735  MachineFunction &MF = *MI.getParent()->getParent();
736  const TargetRegisterClass *RC;
737  if (AllowSP) {
738    RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
739  } else {
740    RC = Opc != X86::LEA32r ?
741      &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
742  }
743  unsigned SrcReg = Src.getReg();
744
745  // For both LEA64 and LEA32 the register already has essentially the right
746  // type (32-bit or 64-bit) we may just need to forbid SP.
747  if (Opc != X86::LEA64_32r) {
748    NewSrc = SrcReg;
749    isKill = Src.isKill();
750    isUndef = Src.isUndef();
751
752    if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
753        !MF.getRegInfo().constrainRegClass(NewSrc, RC))
754      return false;
755
756    return true;
757  }
758
759  // This is for an LEA64_32r and incoming registers are 32-bit. One way or
760  // another we need to add 64-bit registers to the final MI.
761  if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
762    ImplicitOp = Src;
763    ImplicitOp.setImplicit();
764
765    NewSrc = getX86SubSuperRegister(Src.getReg(), 64);
766    isKill = Src.isKill();
767    isUndef = Src.isUndef();
768  } else {
769    // Virtual register of the wrong class, we have to create a temporary 64-bit
770    // vreg to feed into the LEA.
771    NewSrc = MF.getRegInfo().createVirtualRegister(RC);
772    MachineInstr *Copy =
773        BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
774            .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
775            .add(Src);
776
777    // Which is obviously going to be dead after we're done with it.
778    isKill = true;
779    isUndef = false;
780
781    if (LV)
782      LV->replaceKillInstruction(SrcReg, MI, *Copy);
783  }
784
785  // We've set all the parameters without issue.
786  return true;
787}
788
789/// Helper for convertToThreeAddress when 16-bit LEA is disabled, use 32-bit
790/// LEA to form 3-address code by promoting to a 32-bit superregister and then
791/// truncating back down to a 16-bit subregister.
792MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(
793    unsigned MIOpc, MachineFunction::iterator &MFI, MachineInstr &MI,
794    LiveVariables *LV) const {
795  MachineBasicBlock::iterator MBBI = MI.getIterator();
796  unsigned Dest = MI.getOperand(0).getReg();
797  unsigned Src = MI.getOperand(1).getReg();
798  bool isDead = MI.getOperand(0).isDead();
799  bool isKill = MI.getOperand(1).isKill();
800
801  MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
802  unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
803  unsigned Opc, leaInReg;
804  if (Subtarget.is64Bit()) {
805    Opc = X86::LEA64_32r;
806    leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
807  } else {
808    Opc = X86::LEA32r;
809    leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
810  }
811
812  // Build and insert into an implicit UNDEF value. This is OK because
813  // well be shifting and then extracting the lower 16-bits.
814  // This has the potential to cause partial register stall. e.g.
815  //   movw    (%rbp,%rcx,2), %dx
816  //   leal    -65(%rdx), %esi
817  // But testing has shown this *does* help performance in 64-bit mode (at
818  // least on modern x86 machines).
819  BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
820  MachineInstr *InsMI =
821      BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
822          .addReg(leaInReg, RegState::Define, X86::sub_16bit)
823          .addReg(Src, getKillRegState(isKill));
824
825  MachineInstrBuilder MIB =
826      BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(Opc), leaOutReg);
827  switch (MIOpc) {
828  default: llvm_unreachable("Unreachable!");
829  case X86::SHL16ri: {
830    unsigned ShAmt = MI.getOperand(2).getImm();
831    MIB.addReg(0).addImm(1ULL << ShAmt)
832       .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
833    break;
834  }
835  case X86::INC16r:
836    addRegOffset(MIB, leaInReg, true, 1);
837    break;
838  case X86::DEC16r:
839    addRegOffset(MIB, leaInReg, true, -1);
840    break;
841  case X86::ADD16ri:
842  case X86::ADD16ri8:
843  case X86::ADD16ri_DB:
844  case X86::ADD16ri8_DB:
845    addRegOffset(MIB, leaInReg, true, MI.getOperand(2).getImm());
846    break;
847  case X86::ADD16rr:
848  case X86::ADD16rr_DB: {
849    unsigned Src2 = MI.getOperand(2).getReg();
850    bool isKill2 = MI.getOperand(2).isKill();
851    unsigned leaInReg2 = 0;
852    MachineInstr *InsMI2 = nullptr;
853    if (Src == Src2) {
854      // ADD16rr killed %reg1028, %reg1028
855      // just a single insert_subreg.
856      addRegReg(MIB, leaInReg, true, leaInReg, false);
857    } else {
858      if (Subtarget.is64Bit())
859        leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
860      else
861        leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
862      // Build and insert into an implicit UNDEF value. This is OK because
863      // well be shifting and then extracting the lower 16-bits.
864      BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2);
865      InsMI2 = BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
866                   .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
867                   .addReg(Src2, getKillRegState(isKill2));
868      addRegReg(MIB, leaInReg, true, leaInReg2, true);
869    }
870    if (LV && isKill2 && InsMI2)
871      LV->replaceKillInstruction(Src2, MI, *InsMI2);
872    break;
873  }
874  }
875
876  MachineInstr *NewMI = MIB;
877  MachineInstr *ExtMI =
878      BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
879          .addReg(Dest, RegState::Define | getDeadRegState(isDead))
880          .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
881
882  if (LV) {
883    // Update live variables
884    LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
885    LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
886    if (isKill)
887      LV->replaceKillInstruction(Src, MI, *InsMI);
888    if (isDead)
889      LV->replaceKillInstruction(Dest, MI, *ExtMI);
890  }
891
892  return ExtMI;
893}
894
895/// This method must be implemented by targets that
896/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
897/// may be able to convert a two-address instruction into a true
898/// three-address instruction on demand.  This allows the X86 target (for
899/// example) to convert ADD and SHL instructions into LEA instructions if they
900/// would require register copies due to two-addressness.
901///
902/// This method returns a null pointer if the transformation cannot be
903/// performed, otherwise it returns the new instruction.
904///
905MachineInstr *
906X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
907                                    MachineInstr &MI, LiveVariables *LV) const {
908  // The following opcodes also sets the condition code register(s). Only
909  // convert them to equivalent lea if the condition code register def's
910  // are dead!
911  if (hasLiveCondCodeDef(MI))
912    return nullptr;
913
914  MachineFunction &MF = *MI.getParent()->getParent();
915  // All instructions input are two-addr instructions.  Get the known operands.
916  const MachineOperand &Dest = MI.getOperand(0);
917  const MachineOperand &Src = MI.getOperand(1);
918
919  MachineInstr *NewMI = nullptr;
920  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
921  // we have better subtarget support, enable the 16-bit LEA generation here.
922  // 16-bit LEA is also slow on Core2.
923  bool DisableLEA16 = true;
924  bool is64Bit = Subtarget.is64Bit();
925
926  unsigned MIOpc = MI.getOpcode();
927  switch (MIOpc) {
928  default: return nullptr;
929  case X86::SHL64ri: {
930    assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
931    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
932    if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
933
934    // LEA can't handle RSP.
935    if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
936        !MF.getRegInfo().constrainRegClass(Src.getReg(),
937                                           &X86::GR64_NOSPRegClass))
938      return nullptr;
939
940    NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
941                .add(Dest)
942                .addReg(0)
943                .addImm(1ULL << ShAmt)
944                .add(Src)
945                .addImm(0)
946                .addReg(0);
947    break;
948  }
949  case X86::SHL32ri: {
950    assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
951    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
952    if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
953
954    unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
955
956    // LEA can't handle ESP.
957    bool isKill, isUndef;
958    unsigned SrcReg;
959    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
960    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
961                        SrcReg, isKill, isUndef, ImplicitOp, LV))
962      return nullptr;
963
964    MachineInstrBuilder MIB =
965        BuildMI(MF, MI.getDebugLoc(), get(Opc))
966            .add(Dest)
967            .addReg(0)
968            .addImm(1ULL << ShAmt)
969            .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
970            .addImm(0)
971            .addReg(0);
972    if (ImplicitOp.getReg() != 0)
973      MIB.add(ImplicitOp);
974    NewMI = MIB;
975
976    break;
977  }
978  case X86::SHL16ri: {
979    assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
980    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
981    if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
982
983    if (DisableLEA16)
984      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV)
985                     : nullptr;
986    NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r))
987                .add(Dest)
988                .addReg(0)
989                .addImm(1ULL << ShAmt)
990                .add(Src)
991                .addImm(0)
992                .addReg(0);
993    break;
994  }
995  case X86::INC64r:
996  case X86::INC32r: {
997    assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
998    unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
999      : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1000    bool isKill, isUndef;
1001    unsigned SrcReg;
1002    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1003    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
1004                        SrcReg, isKill, isUndef, ImplicitOp, LV))
1005      return nullptr;
1006
1007    MachineInstrBuilder MIB =
1008        BuildMI(MF, MI.getDebugLoc(), get(Opc))
1009            .add(Dest)
1010            .addReg(SrcReg,
1011                    getKillRegState(isKill) | getUndefRegState(isUndef));
1012    if (ImplicitOp.getReg() != 0)
1013      MIB.add(ImplicitOp);
1014
1015    NewMI = addOffset(MIB, 1);
1016    break;
1017  }
1018  case X86::INC16r:
1019    if (DisableLEA16)
1020      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV)
1021                     : nullptr;
1022    assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
1023    NewMI = addOffset(
1024        BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest).add(Src), 1);
1025    break;
1026  case X86::DEC64r:
1027  case X86::DEC32r: {
1028    assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
1029    unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1030      : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1031
1032    bool isKill, isUndef;
1033    unsigned SrcReg;
1034    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1035    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
1036                        SrcReg, isKill, isUndef, ImplicitOp, LV))
1037      return nullptr;
1038
1039    MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1040                                  .add(Dest)
1041                                  .addReg(SrcReg, getUndefRegState(isUndef) |
1042                                                      getKillRegState(isKill));
1043    if (ImplicitOp.getReg() != 0)
1044      MIB.add(ImplicitOp);
1045
1046    NewMI = addOffset(MIB, -1);
1047
1048    break;
1049  }
1050  case X86::DEC16r:
1051    if (DisableLEA16)
1052      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV)
1053                     : nullptr;
1054    assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
1055    NewMI = addOffset(
1056        BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest).add(Src), -1);
1057    break;
1058  case X86::ADD64rr:
1059  case X86::ADD64rr_DB:
1060  case X86::ADD32rr:
1061  case X86::ADD32rr_DB: {
1062    assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1063    unsigned Opc;
1064    if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
1065      Opc = X86::LEA64r;
1066    else
1067      Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1068
1069    bool isKill, isUndef;
1070    unsigned SrcReg;
1071    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1072    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1073                        SrcReg, isKill, isUndef, ImplicitOp, LV))
1074      return nullptr;
1075
1076    const MachineOperand &Src2 = MI.getOperand(2);
1077    bool isKill2, isUndef2;
1078    unsigned SrcReg2;
1079    MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
1080    if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
1081                        SrcReg2, isKill2, isUndef2, ImplicitOp2, LV))
1082      return nullptr;
1083
1084    MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
1085    if (ImplicitOp.getReg() != 0)
1086      MIB.add(ImplicitOp);
1087    if (ImplicitOp2.getReg() != 0)
1088      MIB.add(ImplicitOp2);
1089
1090    NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
1091
1092    // Preserve undefness of the operands.
1093    NewMI->getOperand(1).setIsUndef(isUndef);
1094    NewMI->getOperand(3).setIsUndef(isUndef2);
1095
1096    if (LV && Src2.isKill())
1097      LV->replaceKillInstruction(SrcReg2, MI, *NewMI);
1098    break;
1099  }
1100  case X86::ADD16rr:
1101  case X86::ADD16rr_DB: {
1102    if (DisableLEA16)
1103      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV)
1104                     : nullptr;
1105    assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1106    unsigned Src2 = MI.getOperand(2).getReg();
1107    bool isKill2 = MI.getOperand(2).isKill();
1108    NewMI = addRegReg(BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest),
1109                      Src.getReg(), Src.isKill(), Src2, isKill2);
1110
1111    // Preserve undefness of the operands.
1112    bool isUndef = MI.getOperand(1).isUndef();
1113    bool isUndef2 = MI.getOperand(2).isUndef();
1114    NewMI->getOperand(1).setIsUndef(isUndef);
1115    NewMI->getOperand(3).setIsUndef(isUndef2);
1116
1117    if (LV && isKill2)
1118      LV->replaceKillInstruction(Src2, MI, *NewMI);
1119    break;
1120  }
1121  case X86::ADD64ri32:
1122  case X86::ADD64ri8:
1123  case X86::ADD64ri32_DB:
1124  case X86::ADD64ri8_DB:
1125    assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1126    NewMI = addOffset(
1127        BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
1128        MI.getOperand(2));
1129    break;
1130  case X86::ADD32ri:
1131  case X86::ADD32ri8:
1132  case X86::ADD32ri_DB:
1133  case X86::ADD32ri8_DB: {
1134    assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1135    unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1136
1137    bool isKill, isUndef;
1138    unsigned SrcReg;
1139    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1140    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1141                        SrcReg, isKill, isUndef, ImplicitOp, LV))
1142      return nullptr;
1143
1144    MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1145                                  .add(Dest)
1146                                  .addReg(SrcReg, getUndefRegState(isUndef) |
1147                                                      getKillRegState(isKill));
1148    if (ImplicitOp.getReg() != 0)
1149      MIB.add(ImplicitOp);
1150
1151    NewMI = addOffset(MIB, MI.getOperand(2));
1152    break;
1153  }
1154  case X86::ADD16ri:
1155  case X86::ADD16ri8:
1156  case X86::ADD16ri_DB:
1157  case X86::ADD16ri8_DB:
1158    if (DisableLEA16)
1159      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV)
1160                     : nullptr;
1161    assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1162    NewMI = addOffset(
1163        BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest).add(Src),
1164        MI.getOperand(2));
1165    break;
1166
1167  case X86::VMOVDQU8Z128rmk:
1168  case X86::VMOVDQU8Z256rmk:
1169  case X86::VMOVDQU8Zrmk:
1170  case X86::VMOVDQU16Z128rmk:
1171  case X86::VMOVDQU16Z256rmk:
1172  case X86::VMOVDQU16Zrmk:
1173  case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
1174  case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
1175  case X86::VMOVDQU32Zrmk:    case X86::VMOVDQA32Zrmk:
1176  case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
1177  case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
1178  case X86::VMOVDQU64Zrmk:    case X86::VMOVDQA64Zrmk:
1179  case X86::VMOVUPDZ128rmk:   case X86::VMOVAPDZ128rmk:
1180  case X86::VMOVUPDZ256rmk:   case X86::VMOVAPDZ256rmk:
1181  case X86::VMOVUPDZrmk:      case X86::VMOVAPDZrmk:
1182  case X86::VMOVUPSZ128rmk:   case X86::VMOVAPSZ128rmk:
1183  case X86::VMOVUPSZ256rmk:   case X86::VMOVAPSZ256rmk:
1184  case X86::VMOVUPSZrmk:      case X86::VMOVAPSZrmk: {
1185    unsigned Opc;
1186    switch (MIOpc) {
1187    default: llvm_unreachable("Unreachable!");
1188    case X86::VMOVDQU8Z128rmk:  Opc = X86::VPBLENDMBZ128rmk; break;
1189    case X86::VMOVDQU8Z256rmk:  Opc = X86::VPBLENDMBZ256rmk; break;
1190    case X86::VMOVDQU8Zrmk:     Opc = X86::VPBLENDMBZrmk;    break;
1191    case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break;
1192    case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break;
1193    case X86::VMOVDQU16Zrmk:    Opc = X86::VPBLENDMWZrmk;    break;
1194    case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
1195    case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
1196    case X86::VMOVDQU32Zrmk:    Opc = X86::VPBLENDMDZrmk;    break;
1197    case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
1198    case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
1199    case X86::VMOVDQU64Zrmk:    Opc = X86::VPBLENDMQZrmk;    break;
1200    case X86::VMOVUPDZ128rmk:   Opc = X86::VBLENDMPDZ128rmk; break;
1201    case X86::VMOVUPDZ256rmk:   Opc = X86::VBLENDMPDZ256rmk; break;
1202    case X86::VMOVUPDZrmk:      Opc = X86::VBLENDMPDZrmk;    break;
1203    case X86::VMOVUPSZ128rmk:   Opc = X86::VBLENDMPSZ128rmk; break;
1204    case X86::VMOVUPSZ256rmk:   Opc = X86::VBLENDMPSZ256rmk; break;
1205    case X86::VMOVUPSZrmk:      Opc = X86::VBLENDMPSZrmk;    break;
1206    case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
1207    case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
1208    case X86::VMOVDQA32Zrmk:    Opc = X86::VPBLENDMDZrmk;    break;
1209    case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
1210    case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
1211    case X86::VMOVDQA64Zrmk:    Opc = X86::VPBLENDMQZrmk;    break;
1212    case X86::VMOVAPDZ128rmk:   Opc = X86::VBLENDMPDZ128rmk; break;
1213    case X86::VMOVAPDZ256rmk:   Opc = X86::VBLENDMPDZ256rmk; break;
1214    case X86::VMOVAPDZrmk:      Opc = X86::VBLENDMPDZrmk;    break;
1215    case X86::VMOVAPSZ128rmk:   Opc = X86::VBLENDMPSZ128rmk; break;
1216    case X86::VMOVAPSZ256rmk:   Opc = X86::VBLENDMPSZ256rmk; break;
1217    case X86::VMOVAPSZrmk:      Opc = X86::VBLENDMPSZrmk;    break;
1218    }
1219
1220    NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1221              .add(Dest)
1222              .add(MI.getOperand(2))
1223              .add(Src)
1224              .add(MI.getOperand(3))
1225              .add(MI.getOperand(4))
1226              .add(MI.getOperand(5))
1227              .add(MI.getOperand(6))
1228              .add(MI.getOperand(7));
1229    break;
1230  }
1231  case X86::VMOVDQU8Z128rrk:
1232  case X86::VMOVDQU8Z256rrk:
1233  case X86::VMOVDQU8Zrrk:
1234  case X86::VMOVDQU16Z128rrk:
1235  case X86::VMOVDQU16Z256rrk:
1236  case X86::VMOVDQU16Zrrk:
1237  case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
1238  case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
1239  case X86::VMOVDQU32Zrrk:    case X86::VMOVDQA32Zrrk:
1240  case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
1241  case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
1242  case X86::VMOVDQU64Zrrk:    case X86::VMOVDQA64Zrrk:
1243  case X86::VMOVUPDZ128rrk:   case X86::VMOVAPDZ128rrk:
1244  case X86::VMOVUPDZ256rrk:   case X86::VMOVAPDZ256rrk:
1245  case X86::VMOVUPDZrrk:      case X86::VMOVAPDZrrk:
1246  case X86::VMOVUPSZ128rrk:   case X86::VMOVAPSZ128rrk:
1247  case X86::VMOVUPSZ256rrk:   case X86::VMOVAPSZ256rrk:
1248  case X86::VMOVUPSZrrk:      case X86::VMOVAPSZrrk: {
1249    unsigned Opc;
1250    switch (MIOpc) {
1251    default: llvm_unreachable("Unreachable!");
1252    case X86::VMOVDQU8Z128rrk:  Opc = X86::VPBLENDMBZ128rrk; break;
1253    case X86::VMOVDQU8Z256rrk:  Opc = X86::VPBLENDMBZ256rrk; break;
1254    case X86::VMOVDQU8Zrrk:     Opc = X86::VPBLENDMBZrrk;    break;
1255    case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
1256    case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
1257    case X86::VMOVDQU16Zrrk:    Opc = X86::VPBLENDMWZrrk;    break;
1258    case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1259    case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1260    case X86::VMOVDQU32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break;
1261    case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1262    case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1263    case X86::VMOVDQU64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break;
1264    case X86::VMOVUPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break;
1265    case X86::VMOVUPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break;
1266    case X86::VMOVUPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break;
1267    case X86::VMOVUPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break;
1268    case X86::VMOVUPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break;
1269    case X86::VMOVUPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break;
1270    case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1271    case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1272    case X86::VMOVDQA32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break;
1273    case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1274    case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1275    case X86::VMOVDQA64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break;
1276    case X86::VMOVAPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break;
1277    case X86::VMOVAPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break;
1278    case X86::VMOVAPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break;
1279    case X86::VMOVAPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break;
1280    case X86::VMOVAPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break;
1281    case X86::VMOVAPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break;
1282    }
1283
1284    NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1285              .add(Dest)
1286              .add(MI.getOperand(2))
1287              .add(Src)
1288              .add(MI.getOperand(3));
1289    break;
1290  }
1291  }
1292
1293  if (!NewMI) return nullptr;
1294
1295  if (LV) {  // Update live variables
1296    if (Src.isKill())
1297      LV->replaceKillInstruction(Src.getReg(), MI, *NewMI);
1298    if (Dest.isDead())
1299      LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI);
1300  }
1301
1302  MFI->insert(MI.getIterator(), NewMI); // Insert the new inst
1303  return NewMI;
1304}
1305
1306/// This determines which of three possible cases of a three source commute
1307/// the source indexes correspond to taking into account any mask operands.
1308/// All prevents commuting a passthru operand. Returns -1 if the commute isn't
1309/// possible.
1310/// Case 0 - Possible to commute the first and second operands.
1311/// Case 1 - Possible to commute the first and third operands.
1312/// Case 2 - Possible to commute the second and third operands.
1313static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
1314                                       unsigned SrcOpIdx2) {
1315  // Put the lowest index to SrcOpIdx1 to simplify the checks below.
1316  if (SrcOpIdx1 > SrcOpIdx2)
1317    std::swap(SrcOpIdx1, SrcOpIdx2);
1318
1319  unsigned Op1 = 1, Op2 = 2, Op3 = 3;
1320  if (X86II::isKMasked(TSFlags)) {
1321    Op2++;
1322    Op3++;
1323  }
1324
1325  if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
1326    return 0;
1327  if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
1328    return 1;
1329  if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
1330    return 2;
1331  llvm_unreachable("Unknown three src commute case.");
1332}
1333
1334unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
1335    const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
1336    const X86InstrFMA3Group &FMA3Group) const {
1337
1338  unsigned Opc = MI.getOpcode();
1339
1340  // TODO: Commuting the 1st operand of FMA*_Int requires some additional
1341  // analysis. The commute optimization is legal only if all users of FMA*_Int
1342  // use only the lowest element of the FMA*_Int instruction. Such analysis are
1343  // not implemented yet. So, just return 0 in that case.
1344  // When such analysis are available this place will be the right place for
1345  // calling it.
1346  assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&
1347         "Intrinsic instructions can't commute operand 1");
1348
1349  // Determine which case this commute is or if it can't be done.
1350  unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1351                                         SrcOpIdx2);
1352  assert(Case < 3 && "Unexpected case number!");
1353
1354  // Define the FMA forms mapping array that helps to map input FMA form
1355  // to output FMA form to preserve the operation semantics after
1356  // commuting the operands.
1357  const unsigned Form132Index = 0;
1358  const unsigned Form213Index = 1;
1359  const unsigned Form231Index = 2;
1360  static const unsigned FormMapping[][3] = {
1361    // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
1362    // FMA132 A, C, b; ==> FMA231 C, A, b;
1363    // FMA213 B, A, c; ==> FMA213 A, B, c;
1364    // FMA231 C, A, b; ==> FMA132 A, C, b;
1365    { Form231Index, Form213Index, Form132Index },
1366    // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
1367    // FMA132 A, c, B; ==> FMA132 B, c, A;
1368    // FMA213 B, a, C; ==> FMA231 C, a, B;
1369    // FMA231 C, a, B; ==> FMA213 B, a, C;
1370    { Form132Index, Form231Index, Form213Index },
1371    // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
1372    // FMA132 a, C, B; ==> FMA213 a, B, C;
1373    // FMA213 b, A, C; ==> FMA132 b, C, A;
1374    // FMA231 c, A, B; ==> FMA231 c, B, A;
1375    { Form213Index, Form132Index, Form231Index }
1376  };
1377
1378  unsigned FMAForms[3];
1379  FMAForms[0] = FMA3Group.get132Opcode();
1380  FMAForms[1] = FMA3Group.get213Opcode();
1381  FMAForms[2] = FMA3Group.get231Opcode();
1382  unsigned FormIndex;
1383  for (FormIndex = 0; FormIndex < 3; FormIndex++)
1384    if (Opc == FMAForms[FormIndex])
1385      break;
1386
1387  // Everything is ready, just adjust the FMA opcode and return it.
1388  FormIndex = FormMapping[Case][FormIndex];
1389  return FMAForms[FormIndex];
1390}
1391
1392static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
1393                             unsigned SrcOpIdx2) {
1394  // Determine which case this commute is or if it can't be done.
1395  unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1396                                         SrcOpIdx2);
1397  assert(Case < 3 && "Unexpected case value!");
1398
1399  // For each case we need to swap two pairs of bits in the final immediate.
1400  static const uint8_t SwapMasks[3][4] = {
1401    { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
1402    { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
1403    { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
1404  };
1405
1406  uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
1407  // Clear out the bits we are swapping.
1408  uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
1409                           SwapMasks[Case][2] | SwapMasks[Case][3]);
1410  // If the immediate had a bit of the pair set, then set the opposite bit.
1411  if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
1412  if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
1413  if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
1414  if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
1415  MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
1416}
1417
1418// Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
1419// commuted.
1420static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
1421#define VPERM_CASES(Suffix) \
1422  case X86::VPERMI2##Suffix##128rr:    case X86::VPERMT2##Suffix##128rr:    \
1423  case X86::VPERMI2##Suffix##256rr:    case X86::VPERMT2##Suffix##256rr:    \
1424  case X86::VPERMI2##Suffix##rr:       case X86::VPERMT2##Suffix##rr:       \
1425  case X86::VPERMI2##Suffix##128rm:    case X86::VPERMT2##Suffix##128rm:    \
1426  case X86::VPERMI2##Suffix##256rm:    case X86::VPERMT2##Suffix##256rm:    \
1427  case X86::VPERMI2##Suffix##rm:       case X86::VPERMT2##Suffix##rm:       \
1428  case X86::VPERMI2##Suffix##128rrkz:  case X86::VPERMT2##Suffix##128rrkz:  \
1429  case X86::VPERMI2##Suffix##256rrkz:  case X86::VPERMT2##Suffix##256rrkz:  \
1430  case X86::VPERMI2##Suffix##rrkz:     case X86::VPERMT2##Suffix##rrkz:     \
1431  case X86::VPERMI2##Suffix##128rmkz:  case X86::VPERMT2##Suffix##128rmkz:  \
1432  case X86::VPERMI2##Suffix##256rmkz:  case X86::VPERMT2##Suffix##256rmkz:  \
1433  case X86::VPERMI2##Suffix##rmkz:     case X86::VPERMT2##Suffix##rmkz:
1434
1435#define VPERM_CASES_BROADCAST(Suffix) \
1436  VPERM_CASES(Suffix) \
1437  case X86::VPERMI2##Suffix##128rmb:   case X86::VPERMT2##Suffix##128rmb:   \
1438  case X86::VPERMI2##Suffix##256rmb:   case X86::VPERMT2##Suffix##256rmb:   \
1439  case X86::VPERMI2##Suffix##rmb:      case X86::VPERMT2##Suffix##rmb:      \
1440  case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
1441  case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
1442  case X86::VPERMI2##Suffix##rmbkz:    case X86::VPERMT2##Suffix##rmbkz:
1443
1444  switch (Opcode) {
1445  default: return false;
1446  VPERM_CASES(B)
1447  VPERM_CASES_BROADCAST(D)
1448  VPERM_CASES_BROADCAST(PD)
1449  VPERM_CASES_BROADCAST(PS)
1450  VPERM_CASES_BROADCAST(Q)
1451  VPERM_CASES(W)
1452    return true;
1453  }
1454#undef VPERM_CASES_BROADCAST
1455#undef VPERM_CASES
1456}
1457
1458// Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
1459// from the I opcode to the T opcode and vice versa.
1460static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
1461#define VPERM_CASES(Orig, New) \
1462  case X86::Orig##128rr:    return X86::New##128rr;   \
1463  case X86::Orig##128rrkz:  return X86::New##128rrkz; \
1464  case X86::Orig##128rm:    return X86::New##128rm;   \
1465  case X86::Orig##128rmkz:  return X86::New##128rmkz; \
1466  case X86::Orig##256rr:    return X86::New##256rr;   \
1467  case X86::Orig##256rrkz:  return X86::New##256rrkz; \
1468  case X86::Orig##256rm:    return X86::New##256rm;   \
1469  case X86::Orig##256rmkz:  return X86::New##256rmkz; \
1470  case X86::Orig##rr:       return X86::New##rr;      \
1471  case X86::Orig##rrkz:     return X86::New##rrkz;    \
1472  case X86::Orig##rm:       return X86::New##rm;      \
1473  case X86::Orig##rmkz:     return X86::New##rmkz;
1474
1475#define VPERM_CASES_BROADCAST(Orig, New) \
1476  VPERM_CASES(Orig, New) \
1477  case X86::Orig##128rmb:   return X86::New##128rmb;   \
1478  case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
1479  case X86::Orig##256rmb:   return X86::New##256rmb;   \
1480  case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
1481  case X86::Orig##rmb:      return X86::New##rmb;      \
1482  case X86::Orig##rmbkz:    return X86::New##rmbkz;
1483
1484  switch (Opcode) {
1485  VPERM_CASES(VPERMI2B, VPERMT2B)
1486  VPERM_CASES_BROADCAST(VPERMI2D,  VPERMT2D)
1487  VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
1488  VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
1489  VPERM_CASES_BROADCAST(VPERMI2Q,  VPERMT2Q)
1490  VPERM_CASES(VPERMI2W, VPERMT2W)
1491  VPERM_CASES(VPERMT2B, VPERMI2B)
1492  VPERM_CASES_BROADCAST(VPERMT2D,  VPERMI2D)
1493  VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
1494  VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
1495  VPERM_CASES_BROADCAST(VPERMT2Q,  VPERMI2Q)
1496  VPERM_CASES(VPERMT2W, VPERMI2W)
1497  }
1498
1499  llvm_unreachable("Unreachable!");
1500#undef VPERM_CASES_BROADCAST
1501#undef VPERM_CASES
1502}
1503
1504MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
1505                                                   unsigned OpIdx1,
1506                                                   unsigned OpIdx2) const {
1507  auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
1508    if (NewMI)
1509      return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
1510    return MI;
1511  };
1512
1513  switch (MI.getOpcode()) {
1514  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1515  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1516  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1517  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1518  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1519  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1520    unsigned Opc;
1521    unsigned Size;
1522    switch (MI.getOpcode()) {
1523    default: llvm_unreachable("Unreachable!");
1524    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1525    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1526    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1527    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1528    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1529    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1530    }
1531    unsigned Amt = MI.getOperand(3).getImm();
1532    auto &WorkingMI = cloneIfNew(MI);
1533    WorkingMI.setDesc(get(Opc));
1534    WorkingMI.getOperand(3).setImm(Size - Amt);
1535    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1536                                                   OpIdx1, OpIdx2);
1537  }
1538  case X86::PFSUBrr:
1539  case X86::PFSUBRrr: {
1540    // PFSUB  x, y: x = x - y
1541    // PFSUBR x, y: x = y - x
1542    unsigned Opc =
1543        (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr);
1544    auto &WorkingMI = cloneIfNew(MI);
1545    WorkingMI.setDesc(get(Opc));
1546    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1547                                                   OpIdx1, OpIdx2);
1548  }
1549  case X86::BLENDPDrri:
1550  case X86::BLENDPSrri:
1551  case X86::VBLENDPDrri:
1552  case X86::VBLENDPSrri:
1553    // If we're optimizing for size, try to use MOVSD/MOVSS.
1554    if (MI.getParent()->getParent()->getFunction().optForSize()) {
1555      unsigned Mask, Opc;
1556      switch (MI.getOpcode()) {
1557      default: llvm_unreachable("Unreachable!");
1558      case X86::BLENDPDrri:  Opc = X86::MOVSDrr;  Mask = 0x03; break;
1559      case X86::BLENDPSrri:  Opc = X86::MOVSSrr;  Mask = 0x0F; break;
1560      case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break;
1561      case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break;
1562      }
1563      if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
1564        auto &WorkingMI = cloneIfNew(MI);
1565        WorkingMI.setDesc(get(Opc));
1566        WorkingMI.RemoveOperand(3);
1567        return TargetInstrInfo::commuteInstructionImpl(WorkingMI,
1568                                                       /*NewMI=*/false,
1569                                                       OpIdx1, OpIdx2);
1570      }
1571    }
1572    LLVM_FALLTHROUGH;
1573  case X86::PBLENDWrri:
1574  case X86::VBLENDPDYrri:
1575  case X86::VBLENDPSYrri:
1576  case X86::VPBLENDDrri:
1577  case X86::VPBLENDWrri:
1578  case X86::VPBLENDDYrri:
1579  case X86::VPBLENDWYrri:{
1580    unsigned Mask;
1581    switch (MI.getOpcode()) {
1582    default: llvm_unreachable("Unreachable!");
1583    case X86::BLENDPDrri:    Mask = 0x03; break;
1584    case X86::BLENDPSrri:    Mask = 0x0F; break;
1585    case X86::PBLENDWrri:    Mask = 0xFF; break;
1586    case X86::VBLENDPDrri:   Mask = 0x03; break;
1587    case X86::VBLENDPSrri:   Mask = 0x0F; break;
1588    case X86::VBLENDPDYrri:  Mask = 0x0F; break;
1589    case X86::VBLENDPSYrri:  Mask = 0xFF; break;
1590    case X86::VPBLENDDrri:   Mask = 0x0F; break;
1591    case X86::VPBLENDWrri:   Mask = 0xFF; break;
1592    case X86::VPBLENDDYrri:  Mask = 0xFF; break;
1593    case X86::VPBLENDWYrri:  Mask = 0xFF; break;
1594    }
1595    // Only the least significant bits of Imm are used.
1596    unsigned Imm = MI.getOperand(3).getImm() & Mask;
1597    auto &WorkingMI = cloneIfNew(MI);
1598    WorkingMI.getOperand(3).setImm(Mask ^ Imm);
1599    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1600                                                   OpIdx1, OpIdx2);
1601  }
1602  case X86::MOVSDrr:
1603  case X86::MOVSSrr:
1604  case X86::VMOVSDrr:
1605  case X86::VMOVSSrr:{
1606    // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
1607    assert(Subtarget.hasSSE41() && "Commuting MOVSD/MOVSS requires SSE41!");
1608
1609    unsigned Mask, Opc;
1610    switch (MI.getOpcode()) {
1611    default: llvm_unreachable("Unreachable!");
1612    case X86::MOVSDrr:  Opc = X86::BLENDPDrri;  Mask = 0x02; break;
1613    case X86::MOVSSrr:  Opc = X86::BLENDPSrri;  Mask = 0x0E; break;
1614    case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
1615    case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
1616    }
1617
1618    auto &WorkingMI = cloneIfNew(MI);
1619    WorkingMI.setDesc(get(Opc));
1620    WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
1621    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1622                                                   OpIdx1, OpIdx2);
1623  }
1624  case X86::PCLMULQDQrr:
1625  case X86::VPCLMULQDQrr:
1626  case X86::VPCLMULQDQYrr:
1627  case X86::VPCLMULQDQZrr:
1628  case X86::VPCLMULQDQZ128rr:
1629  case X86::VPCLMULQDQZ256rr: {
1630    // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
1631    // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
1632    unsigned Imm = MI.getOperand(3).getImm();
1633    unsigned Src1Hi = Imm & 0x01;
1634    unsigned Src2Hi = Imm & 0x10;
1635    auto &WorkingMI = cloneIfNew(MI);
1636    WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
1637    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1638                                                   OpIdx1, OpIdx2);
1639  }
1640  case X86::VPCMPBZ128rri:  case X86::VPCMPUBZ128rri:
1641  case X86::VPCMPBZ256rri:  case X86::VPCMPUBZ256rri:
1642  case X86::VPCMPBZrri:     case X86::VPCMPUBZrri:
1643  case X86::VPCMPDZ128rri:  case X86::VPCMPUDZ128rri:
1644  case X86::VPCMPDZ256rri:  case X86::VPCMPUDZ256rri:
1645  case X86::VPCMPDZrri:     case X86::VPCMPUDZrri:
1646  case X86::VPCMPQZ128rri:  case X86::VPCMPUQZ128rri:
1647  case X86::VPCMPQZ256rri:  case X86::VPCMPUQZ256rri:
1648  case X86::VPCMPQZrri:     case X86::VPCMPUQZrri:
1649  case X86::VPCMPWZ128rri:  case X86::VPCMPUWZ128rri:
1650  case X86::VPCMPWZ256rri:  case X86::VPCMPUWZ256rri:
1651  case X86::VPCMPWZrri:     case X86::VPCMPUWZrri:
1652  case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik:
1653  case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik:
1654  case X86::VPCMPBZrrik:    case X86::VPCMPUBZrrik:
1655  case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik:
1656  case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik:
1657  case X86::VPCMPDZrrik:    case X86::VPCMPUDZrrik:
1658  case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik:
1659  case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik:
1660  case X86::VPCMPQZrrik:    case X86::VPCMPUQZrrik:
1661  case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik:
1662  case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik:
1663  case X86::VPCMPWZrrik:    case X86::VPCMPUWZrrik: {
1664    // Flip comparison mode immediate (if necessary).
1665    unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7;
1666    Imm = X86::getSwappedVPCMPImm(Imm);
1667    auto &WorkingMI = cloneIfNew(MI);
1668    WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm);
1669    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1670                                                   OpIdx1, OpIdx2);
1671  }
1672  case X86::VPCOMBri: case X86::VPCOMUBri:
1673  case X86::VPCOMDri: case X86::VPCOMUDri:
1674  case X86::VPCOMQri: case X86::VPCOMUQri:
1675  case X86::VPCOMWri: case X86::VPCOMUWri: {
1676    // Flip comparison mode immediate (if necessary).
1677    unsigned Imm = MI.getOperand(3).getImm() & 0x7;
1678    Imm = X86::getSwappedVPCOMImm(Imm);
1679    auto &WorkingMI = cloneIfNew(MI);
1680    WorkingMI.getOperand(3).setImm(Imm);
1681    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1682                                                   OpIdx1, OpIdx2);
1683  }
1684  case X86::VPERM2F128rr:
1685  case X86::VPERM2I128rr: {
1686    // Flip permute source immediate.
1687    // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
1688    // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
1689    unsigned Imm = MI.getOperand(3).getImm() & 0xFF;
1690    auto &WorkingMI = cloneIfNew(MI);
1691    WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
1692    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1693                                                   OpIdx1, OpIdx2);
1694  }
1695  case X86::MOVHLPSrr:
1696  case X86::UNPCKHPDrr:
1697  case X86::VMOVHLPSrr:
1698  case X86::VUNPCKHPDrr:
1699  case X86::VMOVHLPSZrr:
1700  case X86::VUNPCKHPDZ128rr: {
1701    assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
1702
1703    unsigned Opc = MI.getOpcode();
1704    switch (Opc) {
1705    default: llvm_unreachable("Unreachable!");
1706    case X86::MOVHLPSrr:       Opc = X86::UNPCKHPDrr;      break;
1707    case X86::UNPCKHPDrr:      Opc = X86::MOVHLPSrr;       break;
1708    case X86::VMOVHLPSrr:      Opc = X86::VUNPCKHPDrr;     break;
1709    case X86::VUNPCKHPDrr:     Opc = X86::VMOVHLPSrr;      break;
1710    case X86::VMOVHLPSZrr:     Opc = X86::VUNPCKHPDZ128rr; break;
1711    case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr;     break;
1712    }
1713    auto &WorkingMI = cloneIfNew(MI);
1714    WorkingMI.setDesc(get(Opc));
1715    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1716                                                   OpIdx1, OpIdx2);
1717  }
1718  case X86::CMOVB16rr:  case X86::CMOVB32rr:  case X86::CMOVB64rr:
1719  case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr:
1720  case X86::CMOVE16rr:  case X86::CMOVE32rr:  case X86::CMOVE64rr:
1721  case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr:
1722  case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr:
1723  case X86::CMOVA16rr:  case X86::CMOVA32rr:  case X86::CMOVA64rr:
1724  case X86::CMOVL16rr:  case X86::CMOVL32rr:  case X86::CMOVL64rr:
1725  case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr:
1726  case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr:
1727  case X86::CMOVG16rr:  case X86::CMOVG32rr:  case X86::CMOVG64rr:
1728  case X86::CMOVS16rr:  case X86::CMOVS32rr:  case X86::CMOVS64rr:
1729  case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr:
1730  case X86::CMOVP16rr:  case X86::CMOVP32rr:  case X86::CMOVP64rr:
1731  case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr:
1732  case X86::CMOVO16rr:  case X86::CMOVO32rr:  case X86::CMOVO64rr:
1733  case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: {
1734    unsigned Opc;
1735    switch (MI.getOpcode()) {
1736    default: llvm_unreachable("Unreachable!");
1737    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
1738    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
1739    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
1740    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1741    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1742    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1743    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
1744    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
1745    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
1746    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1747    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1748    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1749    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1750    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1751    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1752    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
1753    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
1754    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
1755    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
1756    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
1757    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
1758    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1759    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1760    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1761    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1762    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1763    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1764    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
1765    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
1766    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
1767    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
1768    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
1769    case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
1770    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1771    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1772    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1773    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
1774    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
1775    case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
1776    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1777    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1778    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1779    case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
1780    case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
1781    case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
1782    case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1783    case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1784    case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
1785    }
1786    auto &WorkingMI = cloneIfNew(MI);
1787    WorkingMI.setDesc(get(Opc));
1788    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1789                                                   OpIdx1, OpIdx2);
1790  }
1791  case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi:
1792  case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi:
1793  case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi:
1794  case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi:
1795  case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi:
1796  case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi:
1797  case X86::VPTERNLOGDZrrik:
1798  case X86::VPTERNLOGDZ128rrik:
1799  case X86::VPTERNLOGDZ256rrik:
1800  case X86::VPTERNLOGQZrrik:
1801  case X86::VPTERNLOGQZ128rrik:
1802  case X86::VPTERNLOGQZ256rrik:
1803  case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz:
1804  case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
1805  case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
1806  case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz:
1807  case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
1808  case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
1809  case X86::VPTERNLOGDZ128rmbi:
1810  case X86::VPTERNLOGDZ256rmbi:
1811  case X86::VPTERNLOGDZrmbi:
1812  case X86::VPTERNLOGQZ128rmbi:
1813  case X86::VPTERNLOGQZ256rmbi:
1814  case X86::VPTERNLOGQZrmbi:
1815  case X86::VPTERNLOGDZ128rmbikz:
1816  case X86::VPTERNLOGDZ256rmbikz:
1817  case X86::VPTERNLOGDZrmbikz:
1818  case X86::VPTERNLOGQZ128rmbikz:
1819  case X86::VPTERNLOGQZ256rmbikz:
1820  case X86::VPTERNLOGQZrmbikz: {
1821    auto &WorkingMI = cloneIfNew(MI);
1822    commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2);
1823    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1824                                                   OpIdx1, OpIdx2);
1825  }
1826  default: {
1827    if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
1828      unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
1829      auto &WorkingMI = cloneIfNew(MI);
1830      WorkingMI.setDesc(get(Opc));
1831      return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1832                                                     OpIdx1, OpIdx2);
1833    }
1834
1835    const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
1836                                                      MI.getDesc().TSFlags);
1837    if (FMA3Group) {
1838      unsigned Opc =
1839        getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
1840      auto &WorkingMI = cloneIfNew(MI);
1841      WorkingMI.setDesc(get(Opc));
1842      return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1843                                                     OpIdx1, OpIdx2);
1844    }
1845
1846    return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
1847  }
1848  }
1849}
1850
1851bool
1852X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
1853                                            unsigned &SrcOpIdx1,
1854                                            unsigned &SrcOpIdx2,
1855                                            bool IsIntrinsic) const {
1856  uint64_t TSFlags = MI.getDesc().TSFlags;
1857
1858  unsigned FirstCommutableVecOp = 1;
1859  unsigned LastCommutableVecOp = 3;
1860  unsigned KMaskOp = -1U;
1861  if (X86II::isKMasked(TSFlags)) {
1862    // For k-zero-masked operations it is Ok to commute the first vector
1863    // operand.
1864    // For regular k-masked operations a conservative choice is done as the
1865    // elements of the first vector operand, for which the corresponding bit
1866    // in the k-mask operand is set to 0, are copied to the result of the
1867    // instruction.
1868    // TODO/FIXME: The commute still may be legal if it is known that the
1869    // k-mask operand is set to either all ones or all zeroes.
1870    // It is also Ok to commute the 1st operand if all users of MI use only
1871    // the elements enabled by the k-mask operand. For example,
1872    //   v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
1873    //                                                     : v1[i];
1874    //   VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
1875    //                                  // Ok, to commute v1 in FMADD213PSZrk.
1876
1877    // The k-mask operand has index = 2 for masked and zero-masked operations.
1878    KMaskOp = 2;
1879
1880    // The operand with index = 1 is used as a source for those elements for
1881    // which the corresponding bit in the k-mask is set to 0.
1882    if (X86II::isKMergeMasked(TSFlags))
1883      FirstCommutableVecOp = 3;
1884
1885    LastCommutableVecOp++;
1886  } else if (IsIntrinsic) {
1887    // Commuting the first operand of an intrinsic instruction isn't possible
1888    // unless we can prove that only the lowest element of the result is used.
1889    FirstCommutableVecOp = 2;
1890  }
1891
1892  if (isMem(MI, LastCommutableVecOp))
1893    LastCommutableVecOp--;
1894
1895  // Only the first RegOpsNum operands are commutable.
1896  // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
1897  // that the operand is not specified/fixed.
1898  if (SrcOpIdx1 != CommuteAnyOperandIndex &&
1899      (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
1900       SrcOpIdx1 == KMaskOp))
1901    return false;
1902  if (SrcOpIdx2 != CommuteAnyOperandIndex &&
1903      (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
1904       SrcOpIdx2 == KMaskOp))
1905    return false;
1906
1907  // Look for two different register operands assumed to be commutable
1908  // regardless of the FMA opcode. The FMA opcode is adjusted later.
1909  if (SrcOpIdx1 == CommuteAnyOperandIndex ||
1910      SrcOpIdx2 == CommuteAnyOperandIndex) {
1911    unsigned CommutableOpIdx1 = SrcOpIdx1;
1912    unsigned CommutableOpIdx2 = SrcOpIdx2;
1913
1914    // At least one of operands to be commuted is not specified and
1915    // this method is free to choose appropriate commutable operands.
1916    if (SrcOpIdx1 == SrcOpIdx2)
1917      // Both of operands are not fixed. By default set one of commutable
1918      // operands to the last register operand of the instruction.
1919      CommutableOpIdx2 = LastCommutableVecOp;
1920    else if (SrcOpIdx2 == CommuteAnyOperandIndex)
1921      // Only one of operands is not fixed.
1922      CommutableOpIdx2 = SrcOpIdx1;
1923
1924    // CommutableOpIdx2 is well defined now. Let's choose another commutable
1925    // operand and assign its index to CommutableOpIdx1.
1926    unsigned Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
1927    for (CommutableOpIdx1 = LastCommutableVecOp;
1928         CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
1929      // Just ignore and skip the k-mask operand.
1930      if (CommutableOpIdx1 == KMaskOp)
1931        continue;
1932
1933      // The commuted operands must have different registers.
1934      // Otherwise, the commute transformation does not change anything and
1935      // is useless then.
1936      if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
1937        break;
1938    }
1939
1940    // No appropriate commutable operands were found.
1941    if (CommutableOpIdx1 < FirstCommutableVecOp)
1942      return false;
1943
1944    // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
1945    // to return those values.
1946    if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
1947                              CommutableOpIdx1, CommutableOpIdx2))
1948      return false;
1949  }
1950
1951  return true;
1952}
1953
1954bool X86InstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
1955                                         unsigned &SrcOpIdx2) const {
1956  const MCInstrDesc &Desc = MI.getDesc();
1957  if (!Desc.isCommutable())
1958    return false;
1959
1960  switch (MI.getOpcode()) {
1961  case X86::CMPSDrr:
1962  case X86::CMPSSrr:
1963  case X86::CMPPDrri:
1964  case X86::CMPPSrri:
1965  case X86::VCMPSDrr:
1966  case X86::VCMPSSrr:
1967  case X86::VCMPPDrri:
1968  case X86::VCMPPSrri:
1969  case X86::VCMPPDYrri:
1970  case X86::VCMPPSYrri:
1971  case X86::VCMPSDZrr:
1972  case X86::VCMPSSZrr:
1973  case X86::VCMPPDZrri:
1974  case X86::VCMPPSZrri:
1975  case X86::VCMPPDZ128rri:
1976  case X86::VCMPPSZ128rri:
1977  case X86::VCMPPDZ256rri:
1978  case X86::VCMPPSZ256rri: {
1979    // Float comparison can be safely commuted for
1980    // Ordered/Unordered/Equal/NotEqual tests
1981    unsigned Imm = MI.getOperand(3).getImm() & 0x7;
1982    switch (Imm) {
1983    case 0x00: // EQUAL
1984    case 0x03: // UNORDERED
1985    case 0x04: // NOT EQUAL
1986    case 0x07: // ORDERED
1987      // The indices of the commutable operands are 1 and 2.
1988      // Assign them to the returned operand indices here.
1989      return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1, 2);
1990    }
1991    return false;
1992  }
1993  case X86::MOVSDrr:
1994  case X86::MOVSSrr:
1995  case X86::VMOVSDrr:
1996  case X86::VMOVSSrr:
1997    if (Subtarget.hasSSE41())
1998      return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1999    return false;
2000  case X86::MOVHLPSrr:
2001  case X86::UNPCKHPDrr:
2002  case X86::VMOVHLPSrr:
2003  case X86::VUNPCKHPDrr:
2004  case X86::VMOVHLPSZrr:
2005  case X86::VUNPCKHPDZ128rr:
2006    if (Subtarget.hasSSE2())
2007      return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2008    return false;
2009  case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi:
2010  case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi:
2011  case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi:
2012  case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi:
2013  case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi:
2014  case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi:
2015  case X86::VPTERNLOGDZrrik:
2016  case X86::VPTERNLOGDZ128rrik:
2017  case X86::VPTERNLOGDZ256rrik:
2018  case X86::VPTERNLOGQZrrik:
2019  case X86::VPTERNLOGQZ128rrik:
2020  case X86::VPTERNLOGQZ256rrik:
2021  case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz:
2022  case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
2023  case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
2024  case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz:
2025  case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
2026  case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
2027  case X86::VPTERNLOGDZ128rmbi:
2028  case X86::VPTERNLOGDZ256rmbi:
2029  case X86::VPTERNLOGDZrmbi:
2030  case X86::VPTERNLOGQZ128rmbi:
2031  case X86::VPTERNLOGQZ256rmbi:
2032  case X86::VPTERNLOGQZrmbi:
2033  case X86::VPTERNLOGDZ128rmbikz:
2034  case X86::VPTERNLOGDZ256rmbikz:
2035  case X86::VPTERNLOGDZrmbikz:
2036  case X86::VPTERNLOGQZ128rmbikz:
2037  case X86::VPTERNLOGQZ256rmbikz:
2038  case X86::VPTERNLOGQZrmbikz:
2039    return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2040  case X86::VPMADD52HUQZ128r:
2041  case X86::VPMADD52HUQZ128rk:
2042  case X86::VPMADD52HUQZ128rkz:
2043  case X86::VPMADD52HUQZ256r:
2044  case X86::VPMADD52HUQZ256rk:
2045  case X86::VPMADD52HUQZ256rkz:
2046  case X86::VPMADD52HUQZr:
2047  case X86::VPMADD52HUQZrk:
2048  case X86::VPMADD52HUQZrkz:
2049  case X86::VPMADD52LUQZ128r:
2050  case X86::VPMADD52LUQZ128rk:
2051  case X86::VPMADD52LUQZ128rkz:
2052  case X86::VPMADD52LUQZ256r:
2053  case X86::VPMADD52LUQZ256rk:
2054  case X86::VPMADD52LUQZ256rkz:
2055  case X86::VPMADD52LUQZr:
2056  case X86::VPMADD52LUQZrk:
2057  case X86::VPMADD52LUQZrkz: {
2058    unsigned CommutableOpIdx1 = 2;
2059    unsigned CommutableOpIdx2 = 3;
2060    if (X86II::isKMasked(Desc.TSFlags)) {
2061      // Skip the mask register.
2062      ++CommutableOpIdx1;
2063      ++CommutableOpIdx2;
2064    }
2065    if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2066                              CommutableOpIdx1, CommutableOpIdx2))
2067      return false;
2068    if (!MI.getOperand(SrcOpIdx1).isReg() ||
2069        !MI.getOperand(SrcOpIdx2).isReg())
2070      // No idea.
2071      return false;
2072    return true;
2073  }
2074
2075  default:
2076    const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2077                                                      MI.getDesc().TSFlags);
2078    if (FMA3Group)
2079      return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
2080                                           FMA3Group->isIntrinsic());
2081
2082    // Handled masked instructions since we need to skip over the mask input
2083    // and the preserved input.
2084    if (X86II::isKMasked(Desc.TSFlags)) {
2085      // First assume that the first input is the mask operand and skip past it.
2086      unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
2087      unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
2088      // Check if the first input is tied. If there isn't one then we only
2089      // need to skip the mask operand which we did above.
2090      if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
2091                                             MCOI::TIED_TO) != -1)) {
2092        // If this is zero masking instruction with a tied operand, we need to
2093        // move the first index back to the first input since this must
2094        // be a 3 input instruction and we want the first two non-mask inputs.
2095        // Otherwise this is a 2 input instruction with a preserved input and
2096        // mask, so we need to move the indices to skip one more input.
2097        if (X86II::isKMergeMasked(Desc.TSFlags)) {
2098          ++CommutableOpIdx1;
2099          ++CommutableOpIdx2;
2100        } else {
2101          --CommutableOpIdx1;
2102        }
2103      }
2104
2105      if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2106                                CommutableOpIdx1, CommutableOpIdx2))
2107        return false;
2108
2109      if (!MI.getOperand(SrcOpIdx1).isReg() ||
2110          !MI.getOperand(SrcOpIdx2).isReg())
2111        // No idea.
2112        return false;
2113      return true;
2114    }
2115
2116    return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2117  }
2118  return false;
2119}
2120
2121X86::CondCode X86::getCondFromBranchOpc(unsigned BrOpc) {
2122  switch (BrOpc) {
2123  default: return X86::COND_INVALID;
2124  case X86::JE_1:  return X86::COND_E;
2125  case X86::JNE_1: return X86::COND_NE;
2126  case X86::JL_1:  return X86::COND_L;
2127  case X86::JLE_1: return X86::COND_LE;
2128  case X86::JG_1:  return X86::COND_G;
2129  case X86::JGE_1: return X86::COND_GE;
2130  case X86::JB_1:  return X86::COND_B;
2131  case X86::JBE_1: return X86::COND_BE;
2132  case X86::JA_1:  return X86::COND_A;
2133  case X86::JAE_1: return X86::COND_AE;
2134  case X86::JS_1:  return X86::COND_S;
2135  case X86::JNS_1: return X86::COND_NS;
2136  case X86::JP_1:  return X86::COND_P;
2137  case X86::JNP_1: return X86::COND_NP;
2138  case X86::JO_1:  return X86::COND_O;
2139  case X86::JNO_1: return X86::COND_NO;
2140  }
2141}
2142
2143/// Return condition code of a SET opcode.
2144X86::CondCode X86::getCondFromSETOpc(unsigned Opc) {
2145  switch (Opc) {
2146  default: return X86::COND_INVALID;
2147  case X86::SETAr:  case X86::SETAm:  return X86::COND_A;
2148  case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
2149  case X86::SETBr:  case X86::SETBm:  return X86::COND_B;
2150  case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
2151  case X86::SETEr:  case X86::SETEm:  return X86::COND_E;
2152  case X86::SETGr:  case X86::SETGm:  return X86::COND_G;
2153  case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
2154  case X86::SETLr:  case X86::SETLm:  return X86::COND_L;
2155  case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
2156  case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
2157  case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
2158  case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
2159  case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
2160  case X86::SETOr:  case X86::SETOm:  return X86::COND_O;
2161  case X86::SETPr:  case X86::SETPm:  return X86::COND_P;
2162  case X86::SETSr:  case X86::SETSm:  return X86::COND_S;
2163  }
2164}
2165
2166/// Return condition code of a CMov opcode.
2167X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) {
2168  switch (Opc) {
2169  default: return X86::COND_INVALID;
2170  case X86::CMOVA16rm:  case X86::CMOVA16rr:  case X86::CMOVA32rm:
2171  case X86::CMOVA32rr:  case X86::CMOVA64rm:  case X86::CMOVA64rr:
2172    return X86::COND_A;
2173  case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
2174  case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
2175    return X86::COND_AE;
2176  case X86::CMOVB16rm:  case X86::CMOVB16rr:  case X86::CMOVB32rm:
2177  case X86::CMOVB32rr:  case X86::CMOVB64rm:  case X86::CMOVB64rr:
2178    return X86::COND_B;
2179  case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
2180  case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
2181    return X86::COND_BE;
2182  case X86::CMOVE16rm:  case X86::CMOVE16rr:  case X86::CMOVE32rm:
2183  case X86::CMOVE32rr:  case X86::CMOVE64rm:  case X86::CMOVE64rr:
2184    return X86::COND_E;
2185  case X86::CMOVG16rm:  case X86::CMOVG16rr:  case X86::CMOVG32rm:
2186  case X86::CMOVG32rr:  case X86::CMOVG64rm:  case X86::CMOVG64rr:
2187    return X86::COND_G;
2188  case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
2189  case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
2190    return X86::COND_GE;
2191  case X86::CMOVL16rm:  case X86::CMOVL16rr:  case X86::CMOVL32rm:
2192  case X86::CMOVL32rr:  case X86::CMOVL64rm:  case X86::CMOVL64rr:
2193    return X86::COND_L;
2194  case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
2195  case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
2196    return X86::COND_LE;
2197  case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
2198  case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
2199    return X86::COND_NE;
2200  case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
2201  case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
2202    return X86::COND_NO;
2203  case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
2204  case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
2205    return X86::COND_NP;
2206  case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
2207  case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
2208    return X86::COND_NS;
2209  case X86::CMOVO16rm:  case X86::CMOVO16rr:  case X86::CMOVO32rm:
2210  case X86::CMOVO32rr:  case X86::CMOVO64rm:  case X86::CMOVO64rr:
2211    return X86::COND_O;
2212  case X86::CMOVP16rm:  case X86::CMOVP16rr:  case X86::CMOVP32rm:
2213  case X86::CMOVP32rr:  case X86::CMOVP64rm:  case X86::CMOVP64rr:
2214    return X86::COND_P;
2215  case X86::CMOVS16rm:  case X86::CMOVS16rr:  case X86::CMOVS32rm:
2216  case X86::CMOVS32rr:  case X86::CMOVS64rm:  case X86::CMOVS64rr:
2217    return X86::COND_S;
2218  }
2219}
2220
2221unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
2222  switch (CC) {
2223  default: llvm_unreachable("Illegal condition code!");
2224  case X86::COND_E:  return X86::JE_1;
2225  case X86::COND_NE: return X86::JNE_1;
2226  case X86::COND_L:  return X86::JL_1;
2227  case X86::COND_LE: return X86::JLE_1;
2228  case X86::COND_G:  return X86::JG_1;
2229  case X86::COND_GE: return X86::JGE_1;
2230  case X86::COND_B:  return X86::JB_1;
2231  case X86::COND_BE: return X86::JBE_1;
2232  case X86::COND_A:  return X86::JA_1;
2233  case X86::COND_AE: return X86::JAE_1;
2234  case X86::COND_S:  return X86::JS_1;
2235  case X86::COND_NS: return X86::JNS_1;
2236  case X86::COND_P:  return X86::JP_1;
2237  case X86::COND_NP: return X86::JNP_1;
2238  case X86::COND_O:  return X86::JO_1;
2239  case X86::COND_NO: return X86::JNO_1;
2240  }
2241}
2242
2243/// Return the inverse of the specified condition,
2244/// e.g. turning COND_E to COND_NE.
2245X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2246  switch (CC) {
2247  default: llvm_unreachable("Illegal condition code!");
2248  case X86::COND_E:  return X86::COND_NE;
2249  case X86::COND_NE: return X86::COND_E;
2250  case X86::COND_L:  return X86::COND_GE;
2251  case X86::COND_LE: return X86::COND_G;
2252  case X86::COND_G:  return X86::COND_LE;
2253  case X86::COND_GE: return X86::COND_L;
2254  case X86::COND_B:  return X86::COND_AE;
2255  case X86::COND_BE: return X86::COND_A;
2256  case X86::COND_A:  return X86::COND_BE;
2257  case X86::COND_AE: return X86::COND_B;
2258  case X86::COND_S:  return X86::COND_NS;
2259  case X86::COND_NS: return X86::COND_S;
2260  case X86::COND_P:  return X86::COND_NP;
2261  case X86::COND_NP: return X86::COND_P;
2262  case X86::COND_O:  return X86::COND_NO;
2263  case X86::COND_NO: return X86::COND_O;
2264  case X86::COND_NE_OR_P:  return X86::COND_E_AND_NP;
2265  case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
2266  }
2267}
2268
2269/// Assuming the flags are set by MI(a,b), return the condition code if we
2270/// modify the instructions such that flags are set by MI(b,a).
2271static X86::CondCode getSwappedCondition(X86::CondCode CC) {
2272  switch (CC) {
2273  default: return X86::COND_INVALID;
2274  case X86::COND_E:  return X86::COND_E;
2275  case X86::COND_NE: return X86::COND_NE;
2276  case X86::COND_L:  return X86::COND_G;
2277  case X86::COND_LE: return X86::COND_GE;
2278  case X86::COND_G:  return X86::COND_L;
2279  case X86::COND_GE: return X86::COND_LE;
2280  case X86::COND_B:  return X86::COND_A;
2281  case X86::COND_BE: return X86::COND_AE;
2282  case X86::COND_A:  return X86::COND_B;
2283  case X86::COND_AE: return X86::COND_BE;
2284  }
2285}
2286
2287std::pair<X86::CondCode, bool>
2288X86::getX86ConditionCode(CmpInst::Predicate Predicate) {
2289  X86::CondCode CC = X86::COND_INVALID;
2290  bool NeedSwap = false;
2291  switch (Predicate) {
2292  default: break;
2293  // Floating-point Predicates
2294  case CmpInst::FCMP_UEQ: CC = X86::COND_E;       break;
2295  case CmpInst::FCMP_OLT: NeedSwap = true;        LLVM_FALLTHROUGH;
2296  case CmpInst::FCMP_OGT: CC = X86::COND_A;       break;
2297  case CmpInst::FCMP_OLE: NeedSwap = true;        LLVM_FALLTHROUGH;
2298  case CmpInst::FCMP_OGE: CC = X86::COND_AE;      break;
2299  case CmpInst::FCMP_UGT: NeedSwap = true;        LLVM_FALLTHROUGH;
2300  case CmpInst::FCMP_ULT: CC = X86::COND_B;       break;
2301  case CmpInst::FCMP_UGE: NeedSwap = true;        LLVM_FALLTHROUGH;
2302  case CmpInst::FCMP_ULE: CC = X86::COND_BE;      break;
2303  case CmpInst::FCMP_ONE: CC = X86::COND_NE;      break;
2304  case CmpInst::FCMP_UNO: CC = X86::COND_P;       break;
2305  case CmpInst::FCMP_ORD: CC = X86::COND_NP;      break;
2306  case CmpInst::FCMP_OEQ:                         LLVM_FALLTHROUGH;
2307  case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
2308
2309  // Integer Predicates
2310  case CmpInst::ICMP_EQ:  CC = X86::COND_E;       break;
2311  case CmpInst::ICMP_NE:  CC = X86::COND_NE;      break;
2312  case CmpInst::ICMP_UGT: CC = X86::COND_A;       break;
2313  case CmpInst::ICMP_UGE: CC = X86::COND_AE;      break;
2314  case CmpInst::ICMP_ULT: CC = X86::COND_B;       break;
2315  case CmpInst::ICMP_ULE: CC = X86::COND_BE;      break;
2316  case CmpInst::ICMP_SGT: CC = X86::COND_G;       break;
2317  case CmpInst::ICMP_SGE: CC = X86::COND_GE;      break;
2318  case CmpInst::ICMP_SLT: CC = X86::COND_L;       break;
2319  case CmpInst::ICMP_SLE: CC = X86::COND_LE;      break;
2320  }
2321
2322  return std::make_pair(CC, NeedSwap);
2323}
2324
2325/// Return a set opcode for the given condition and
2326/// whether it has memory operand.
2327unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) {
2328  static const uint16_t Opc[16][2] = {
2329    { X86::SETAr,  X86::SETAm  },
2330    { X86::SETAEr, X86::SETAEm },
2331    { X86::SETBr,  X86::SETBm  },
2332    { X86::SETBEr, X86::SETBEm },
2333    { X86::SETEr,  X86::SETEm  },
2334    { X86::SETGr,  X86::SETGm  },
2335    { X86::SETGEr, X86::SETGEm },
2336    { X86::SETLr,  X86::SETLm  },
2337    { X86::SETLEr, X86::SETLEm },
2338    { X86::SETNEr, X86::SETNEm },
2339    { X86::SETNOr, X86::SETNOm },
2340    { X86::SETNPr, X86::SETNPm },
2341    { X86::SETNSr, X86::SETNSm },
2342    { X86::SETOr,  X86::SETOm  },
2343    { X86::SETPr,  X86::SETPm  },
2344    { X86::SETSr,  X86::SETSm  }
2345  };
2346
2347  assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes");
2348  return Opc[CC][HasMemoryOperand ? 1 : 0];
2349}
2350
2351/// Return a cmov opcode for the given condition,
2352/// register size in bytes, and operand type.
2353unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes,
2354                              bool HasMemoryOperand) {
2355  static const uint16_t Opc[32][3] = {
2356    { X86::CMOVA16rr,  X86::CMOVA32rr,  X86::CMOVA64rr  },
2357    { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
2358    { X86::CMOVB16rr,  X86::CMOVB32rr,  X86::CMOVB64rr  },
2359    { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
2360    { X86::CMOVE16rr,  X86::CMOVE32rr,  X86::CMOVE64rr  },
2361    { X86::CMOVG16rr,  X86::CMOVG32rr,  X86::CMOVG64rr  },
2362    { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
2363    { X86::CMOVL16rr,  X86::CMOVL32rr,  X86::CMOVL64rr  },
2364    { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
2365    { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
2366    { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
2367    { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
2368    { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
2369    { X86::CMOVO16rr,  X86::CMOVO32rr,  X86::CMOVO64rr  },
2370    { X86::CMOVP16rr,  X86::CMOVP32rr,  X86::CMOVP64rr  },
2371    { X86::CMOVS16rr,  X86::CMOVS32rr,  X86::CMOVS64rr  },
2372    { X86::CMOVA16rm,  X86::CMOVA32rm,  X86::CMOVA64rm  },
2373    { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
2374    { X86::CMOVB16rm,  X86::CMOVB32rm,  X86::CMOVB64rm  },
2375    { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
2376    { X86::CMOVE16rm,  X86::CMOVE32rm,  X86::CMOVE64rm  },
2377    { X86::CMOVG16rm,  X86::CMOVG32rm,  X86::CMOVG64rm  },
2378    { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
2379    { X86::CMOVL16rm,  X86::CMOVL32rm,  X86::CMOVL64rm  },
2380    { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
2381    { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
2382    { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
2383    { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
2384    { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
2385    { X86::CMOVO16rm,  X86::CMOVO32rm,  X86::CMOVO64rm  },
2386    { X86::CMOVP16rm,  X86::CMOVP32rm,  X86::CMOVP64rm  },
2387    { X86::CMOVS16rm,  X86::CMOVS32rm,  X86::CMOVS64rm  }
2388  };
2389
2390  assert(CC < 16 && "Can only handle standard cond codes");
2391  unsigned Idx = HasMemoryOperand ? 16+CC : CC;
2392  switch(RegBytes) {
2393  default: llvm_unreachable("Illegal register size!");
2394  case 2: return Opc[Idx][0];
2395  case 4: return Opc[Idx][1];
2396  case 8: return Opc[Idx][2];
2397  }
2398}
2399
2400/// Get the VPCMP immediate for the given condition.
2401unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
2402  switch (CC) {
2403  default: llvm_unreachable("Unexpected SETCC condition");
2404  case ISD::SETNE:  return 4;
2405  case ISD::SETEQ:  return 0;
2406  case ISD::SETULT:
2407  case ISD::SETLT: return 1;
2408  case ISD::SETUGT:
2409  case ISD::SETGT: return 6;
2410  case ISD::SETUGE:
2411  case ISD::SETGE: return 5;
2412  case ISD::SETULE:
2413  case ISD::SETLE: return 2;
2414  }
2415}
2416
2417/// Get the VPCMP immediate if the opcodes are swapped.
2418unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
2419  switch (Imm) {
2420  default: llvm_unreachable("Unreachable!");
2421  case 0x01: Imm = 0x06; break; // LT  -> NLE
2422  case 0x02: Imm = 0x05; break; // LE  -> NLT
2423  case 0x05: Imm = 0x02; break; // NLT -> LE
2424  case 0x06: Imm = 0x01; break; // NLE -> LT
2425  case 0x00: // EQ
2426  case 0x03: // FALSE
2427  case 0x04: // NE
2428  case 0x07: // TRUE
2429    break;
2430  }
2431
2432  return Imm;
2433}
2434
2435/// Get the VPCOM immediate if the opcodes are swapped.
2436unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
2437  switch (Imm) {
2438  default: llvm_unreachable("Unreachable!");
2439  case 0x00: Imm = 0x02; break; // LT -> GT
2440  case 0x01: Imm = 0x03; break; // LE -> GE
2441  case 0x02: Imm = 0x00; break; // GT -> LT
2442  case 0x03: Imm = 0x01; break; // GE -> LE
2443  case 0x04: // EQ
2444  case 0x05: // NE
2445  case 0x06: // FALSE
2446  case 0x07: // TRUE
2447    break;
2448  }
2449
2450  return Imm;
2451}
2452
2453bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
2454  if (!MI.isTerminator()) return false;
2455
2456  // Conditional branch is a special case.
2457  if (MI.isBranch() && !MI.isBarrier())
2458    return true;
2459  if (!MI.isPredicable())
2460    return true;
2461  return !isPredicated(MI);
2462}
2463
2464bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
2465  switch (MI.getOpcode()) {
2466  case X86::TCRETURNdi:
2467  case X86::TCRETURNri:
2468  case X86::TCRETURNmi:
2469  case X86::TCRETURNdi64:
2470  case X86::TCRETURNri64:
2471  case X86::TCRETURNmi64:
2472    return true;
2473  default:
2474    return false;
2475  }
2476}
2477
2478bool X86InstrInfo::canMakeTailCallConditional(
2479    SmallVectorImpl<MachineOperand> &BranchCond,
2480    const MachineInstr &TailCall) const {
2481  if (TailCall.getOpcode() != X86::TCRETURNdi &&
2482      TailCall.getOpcode() != X86::TCRETURNdi64) {
2483    // Only direct calls can be done with a conditional branch.
2484    return false;
2485  }
2486
2487  const MachineFunction *MF = TailCall.getParent()->getParent();
2488  if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
2489    // Conditional tail calls confuse the Win64 unwinder.
2490    return false;
2491  }
2492
2493  assert(BranchCond.size() == 1);
2494  if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
2495    // Can't make a conditional tail call with this condition.
2496    return false;
2497  }
2498
2499  const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
2500  if (X86FI->getTCReturnAddrDelta() != 0 ||
2501      TailCall.getOperand(1).getImm() != 0) {
2502    // A conditional tail call cannot do any stack adjustment.
2503    return false;
2504  }
2505
2506  return true;
2507}
2508
2509void X86InstrInfo::replaceBranchWithTailCall(
2510    MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
2511    const MachineInstr &TailCall) const {
2512  assert(canMakeTailCallConditional(BranchCond, TailCall));
2513
2514  MachineBasicBlock::iterator I = MBB.end();
2515  while (I != MBB.begin()) {
2516    --I;
2517    if (I->isDebugInstr())
2518      continue;
2519    if (!I->isBranch())
2520      assert(0 && "Can't find the branch to replace!");
2521
2522    X86::CondCode CC = X86::getCondFromBranchOpc(I->getOpcode());
2523    assert(BranchCond.size() == 1);
2524    if (CC != BranchCond[0].getImm())
2525      continue;
2526
2527    break;
2528  }
2529
2530  unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
2531                                                         : X86::TCRETURNdi64cc;
2532
2533  auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
2534  MIB->addOperand(TailCall.getOperand(0)); // Destination.
2535  MIB.addImm(0); // Stack offset (not used).
2536  MIB->addOperand(BranchCond[0]); // Condition.
2537  MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
2538
2539  // Add implicit uses and defs of all live regs potentially clobbered by the
2540  // call. This way they still appear live across the call.
2541  LivePhysRegs LiveRegs(getRegisterInfo());
2542  LiveRegs.addLiveOuts(MBB);
2543  SmallVector<std::pair<unsigned, const MachineOperand *>, 8> Clobbers;
2544  LiveRegs.stepForward(*MIB, Clobbers);
2545  for (const auto &C : Clobbers) {
2546    MIB.addReg(C.first, RegState::Implicit);
2547    MIB.addReg(C.first, RegState::Implicit | RegState::Define);
2548  }
2549
2550  I->eraseFromParent();
2551}
2552
2553// Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
2554// not be a fallthrough MBB now due to layout changes). Return nullptr if the
2555// fallthrough MBB cannot be identified.
2556static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
2557                                            MachineBasicBlock *TBB) {
2558  // Look for non-EHPad successors other than TBB. If we find exactly one, it
2559  // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
2560  // and fallthrough MBB. If we find more than one, we cannot identify the
2561  // fallthrough MBB and should return nullptr.
2562  MachineBasicBlock *FallthroughBB = nullptr;
2563  for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) {
2564    if ((*SI)->isEHPad() || (*SI == TBB && FallthroughBB))
2565      continue;
2566    // Return a nullptr if we found more than one fallthrough successor.
2567    if (FallthroughBB && FallthroughBB != TBB)
2568      return nullptr;
2569    FallthroughBB = *SI;
2570  }
2571  return FallthroughBB;
2572}
2573
2574bool X86InstrInfo::AnalyzeBranchImpl(
2575    MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
2576    SmallVectorImpl<MachineOperand> &Cond,
2577    SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
2578
2579  // Start from the bottom of the block and work up, examining the
2580  // terminator instructions.
2581  MachineBasicBlock::iterator I = MBB.end();
2582  MachineBasicBlock::iterator UnCondBrIter = MBB.end();
2583  while (I != MBB.begin()) {
2584    --I;
2585    if (I->isDebugInstr())
2586      continue;
2587
2588    // Working from the bottom, when we see a non-terminator instruction, we're
2589    // done.
2590    if (!isUnpredicatedTerminator(*I))
2591      break;
2592
2593    // A terminator that isn't a branch can't easily be handled by this
2594    // analysis.
2595    if (!I->isBranch())
2596      return true;
2597
2598    // Handle unconditional branches.
2599    if (I->getOpcode() == X86::JMP_1) {
2600      UnCondBrIter = I;
2601
2602      if (!AllowModify) {
2603        TBB = I->getOperand(0).getMBB();
2604        continue;
2605      }
2606
2607      // If the block has any instructions after a JMP, delete them.
2608      while (std::next(I) != MBB.end())
2609        std::next(I)->eraseFromParent();
2610
2611      Cond.clear();
2612      FBB = nullptr;
2613
2614      // Delete the JMP if it's equivalent to a fall-through.
2615      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
2616        TBB = nullptr;
2617        I->eraseFromParent();
2618        I = MBB.end();
2619        UnCondBrIter = MBB.end();
2620        continue;
2621      }
2622
2623      // TBB is used to indicate the unconditional destination.
2624      TBB = I->getOperand(0).getMBB();
2625      continue;
2626    }
2627
2628    // Handle conditional branches.
2629    X86::CondCode BranchCode = X86::getCondFromBranchOpc(I->getOpcode());
2630    if (BranchCode == X86::COND_INVALID)
2631      return true;  // Can't handle indirect branch.
2632
2633    // Working from the bottom, handle the first conditional branch.
2634    if (Cond.empty()) {
2635      MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
2636      if (AllowModify && UnCondBrIter != MBB.end() &&
2637          MBB.isLayoutSuccessor(TargetBB)) {
2638        // If we can modify the code and it ends in something like:
2639        //
2640        //     jCC L1
2641        //     jmp L2
2642        //   L1:
2643        //     ...
2644        //   L2:
2645        //
2646        // Then we can change this to:
2647        //
2648        //     jnCC L2
2649        //   L1:
2650        //     ...
2651        //   L2:
2652        //
2653        // Which is a bit more efficient.
2654        // We conditionally jump to the fall-through block.
2655        BranchCode = GetOppositeBranchCondition(BranchCode);
2656        unsigned JNCC = GetCondBranchFromCond(BranchCode);
2657        MachineBasicBlock::iterator OldInst = I;
2658
2659        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
2660          .addMBB(UnCondBrIter->getOperand(0).getMBB());
2661        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
2662          .addMBB(TargetBB);
2663
2664        OldInst->eraseFromParent();
2665        UnCondBrIter->eraseFromParent();
2666
2667        // Restart the analysis.
2668        UnCondBrIter = MBB.end();
2669        I = MBB.end();
2670        continue;
2671      }
2672
2673      FBB = TBB;
2674      TBB = I->getOperand(0).getMBB();
2675      Cond.push_back(MachineOperand::CreateImm(BranchCode));
2676      CondBranches.push_back(&*I);
2677      continue;
2678    }
2679
2680    // Handle subsequent conditional branches. Only handle the case where all
2681    // conditional branches branch to the same destination and their condition
2682    // opcodes fit one of the special multi-branch idioms.
2683    assert(Cond.size() == 1);
2684    assert(TBB);
2685
2686    // If the conditions are the same, we can leave them alone.
2687    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
2688    auto NewTBB = I->getOperand(0).getMBB();
2689    if (OldBranchCode == BranchCode && TBB == NewTBB)
2690      continue;
2691
2692    // If they differ, see if they fit one of the known patterns. Theoretically,
2693    // we could handle more patterns here, but we shouldn't expect to see them
2694    // if instruction selection has done a reasonable job.
2695    if (TBB == NewTBB &&
2696               ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
2697                (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
2698      BranchCode = X86::COND_NE_OR_P;
2699    } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
2700               (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
2701      if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
2702        return true;
2703
2704      // X86::COND_E_AND_NP usually has two different branch destinations.
2705      //
2706      // JP B1
2707      // JE B2
2708      // JMP B1
2709      // B1:
2710      // B2:
2711      //
2712      // Here this condition branches to B2 only if NP && E. It has another
2713      // equivalent form:
2714      //
2715      // JNE B1
2716      // JNP B2
2717      // JMP B1
2718      // B1:
2719      // B2:
2720      //
2721      // Similarly it branches to B2 only if E && NP. That is why this condition
2722      // is named with COND_E_AND_NP.
2723      BranchCode = X86::COND_E_AND_NP;
2724    } else
2725      return true;
2726
2727    // Update the MachineOperand.
2728    Cond[0].setImm(BranchCode);
2729    CondBranches.push_back(&*I);
2730  }
2731
2732  return false;
2733}
2734
2735bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
2736                                 MachineBasicBlock *&TBB,
2737                                 MachineBasicBlock *&FBB,
2738                                 SmallVectorImpl<MachineOperand> &Cond,
2739                                 bool AllowModify) const {
2740  SmallVector<MachineInstr *, 4> CondBranches;
2741  return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
2742}
2743
2744bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
2745                                          MachineBranchPredicate &MBP,
2746                                          bool AllowModify) const {
2747  using namespace std::placeholders;
2748
2749  SmallVector<MachineOperand, 4> Cond;
2750  SmallVector<MachineInstr *, 4> CondBranches;
2751  if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
2752                        AllowModify))
2753    return true;
2754
2755  if (Cond.size() != 1)
2756    return true;
2757
2758  assert(MBP.TrueDest && "expected!");
2759
2760  if (!MBP.FalseDest)
2761    MBP.FalseDest = MBB.getNextNode();
2762
2763  const TargetRegisterInfo *TRI = &getRegisterInfo();
2764
2765  MachineInstr *ConditionDef = nullptr;
2766  bool SingleUseCondition = true;
2767
2768  for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) {
2769    if (I->modifiesRegister(X86::EFLAGS, TRI)) {
2770      ConditionDef = &*I;
2771      break;
2772    }
2773
2774    if (I->readsRegister(X86::EFLAGS, TRI))
2775      SingleUseCondition = false;
2776  }
2777
2778  if (!ConditionDef)
2779    return true;
2780
2781  if (SingleUseCondition) {
2782    for (auto *Succ : MBB.successors())
2783      if (Succ->isLiveIn(X86::EFLAGS))
2784        SingleUseCondition = false;
2785  }
2786
2787  MBP.ConditionDef = ConditionDef;
2788  MBP.SingleUseCondition = SingleUseCondition;
2789
2790  // Currently we only recognize the simple pattern:
2791  //
2792  //   test %reg, %reg
2793  //   je %label
2794  //
2795  const unsigned TestOpcode =
2796      Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
2797
2798  if (ConditionDef->getOpcode() == TestOpcode &&
2799      ConditionDef->getNumOperands() == 3 &&
2800      ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
2801      (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
2802    MBP.LHS = ConditionDef->getOperand(0);
2803    MBP.RHS = MachineOperand::CreateImm(0);
2804    MBP.Predicate = Cond[0].getImm() == X86::COND_NE
2805                        ? MachineBranchPredicate::PRED_NE
2806                        : MachineBranchPredicate::PRED_EQ;
2807    return false;
2808  }
2809
2810  return true;
2811}
2812
2813unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
2814                                    int *BytesRemoved) const {
2815  assert(!BytesRemoved && "code size not handled");
2816
2817  MachineBasicBlock::iterator I = MBB.end();
2818  unsigned Count = 0;
2819
2820  while (I != MBB.begin()) {
2821    --I;
2822    if (I->isDebugInstr())
2823      continue;
2824    if (I->getOpcode() != X86::JMP_1 &&
2825        X86::getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
2826      break;
2827    // Remove the branch.
2828    I->eraseFromParent();
2829    I = MBB.end();
2830    ++Count;
2831  }
2832
2833  return Count;
2834}
2835
2836unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
2837                                    MachineBasicBlock *TBB,
2838                                    MachineBasicBlock *FBB,
2839                                    ArrayRef<MachineOperand> Cond,
2840                                    const DebugLoc &DL,
2841                                    int *BytesAdded) const {
2842  // Shouldn't be a fall through.
2843  assert(TBB && "insertBranch must not be told to insert a fallthrough");
2844  assert((Cond.size() == 1 || Cond.size() == 0) &&
2845         "X86 branch conditions have one component!");
2846  assert(!BytesAdded && "code size not handled");
2847
2848  if (Cond.empty()) {
2849    // Unconditional branch?
2850    assert(!FBB && "Unconditional branch with multiple successors!");
2851    BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
2852    return 1;
2853  }
2854
2855  // If FBB is null, it is implied to be a fall-through block.
2856  bool FallThru = FBB == nullptr;
2857
2858  // Conditional branch.
2859  unsigned Count = 0;
2860  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
2861  switch (CC) {
2862  case X86::COND_NE_OR_P:
2863    // Synthesize NE_OR_P with two branches.
2864    BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(TBB);
2865    ++Count;
2866    BuildMI(&MBB, DL, get(X86::JP_1)).addMBB(TBB);
2867    ++Count;
2868    break;
2869  case X86::COND_E_AND_NP:
2870    // Use the next block of MBB as FBB if it is null.
2871    if (FBB == nullptr) {
2872      FBB = getFallThroughMBB(&MBB, TBB);
2873      assert(FBB && "MBB cannot be the last block in function when the false "
2874                    "body is a fall-through.");
2875    }
2876    // Synthesize COND_E_AND_NP with two branches.
2877    BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(FBB);
2878    ++Count;
2879    BuildMI(&MBB, DL, get(X86::JNP_1)).addMBB(TBB);
2880    ++Count;
2881    break;
2882  default: {
2883    unsigned Opc = GetCondBranchFromCond(CC);
2884    BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
2885    ++Count;
2886  }
2887  }
2888  if (!FallThru) {
2889    // Two-way Conditional branch. Insert the second branch.
2890    BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
2891    ++Count;
2892  }
2893  return Count;
2894}
2895
2896bool X86InstrInfo::
2897canInsertSelect(const MachineBasicBlock &MBB,
2898                ArrayRef<MachineOperand> Cond,
2899                unsigned TrueReg, unsigned FalseReg,
2900                int &CondCycles, int &TrueCycles, int &FalseCycles) const {
2901  // Not all subtargets have cmov instructions.
2902  if (!Subtarget.hasCMov())
2903    return false;
2904  if (Cond.size() != 1)
2905    return false;
2906  // We cannot do the composite conditions, at least not in SSA form.
2907  if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
2908    return false;
2909
2910  // Check register classes.
2911  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2912  const TargetRegisterClass *RC =
2913    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
2914  if (!RC)
2915    return false;
2916
2917  // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
2918  if (X86::GR16RegClass.hasSubClassEq(RC) ||
2919      X86::GR32RegClass.hasSubClassEq(RC) ||
2920      X86::GR64RegClass.hasSubClassEq(RC)) {
2921    // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
2922    // Bridge. Probably Ivy Bridge as well.
2923    CondCycles = 2;
2924    TrueCycles = 2;
2925    FalseCycles = 2;
2926    return true;
2927  }
2928
2929  // Can't do vectors.
2930  return false;
2931}
2932
2933void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
2934                                MachineBasicBlock::iterator I,
2935                                const DebugLoc &DL, unsigned DstReg,
2936                                ArrayRef<MachineOperand> Cond, unsigned TrueReg,
2937                                unsigned FalseReg) const {
2938  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2939  const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
2940  const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
2941  assert(Cond.size() == 1 && "Invalid Cond array");
2942  unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
2943                                 TRI.getRegSizeInBits(RC) / 8,
2944                                 false /*HasMemoryOperand*/);
2945  BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
2946}
2947
2948/// Test if the given register is a physical h register.
2949static bool isHReg(unsigned Reg) {
2950  return X86::GR8_ABCD_HRegClass.contains(Reg);
2951}
2952
2953// Try and copy between VR128/VR64 and GR64 registers.
2954static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
2955                                        const X86Subtarget &Subtarget) {
2956  bool HasAVX = Subtarget.hasAVX();
2957  bool HasAVX512 = Subtarget.hasAVX512();
2958
2959  // SrcReg(MaskReg) -> DestReg(GR64)
2960  // SrcReg(MaskReg) -> DestReg(GR32)
2961
2962  // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2963  if (X86::VK16RegClass.contains(SrcReg)) {
2964    if (X86::GR64RegClass.contains(DestReg)) {
2965      assert(Subtarget.hasBWI());
2966      return X86::KMOVQrk;
2967    }
2968    if (X86::GR32RegClass.contains(DestReg))
2969      return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
2970  }
2971
2972  // SrcReg(GR64) -> DestReg(MaskReg)
2973  // SrcReg(GR32) -> DestReg(MaskReg)
2974
2975  // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2976  if (X86::VK16RegClass.contains(DestReg)) {
2977    if (X86::GR64RegClass.contains(SrcReg)) {
2978      assert(Subtarget.hasBWI());
2979      return X86::KMOVQkr;
2980    }
2981    if (X86::GR32RegClass.contains(SrcReg))
2982      return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
2983  }
2984
2985
2986  // SrcReg(VR128) -> DestReg(GR64)
2987  // SrcReg(VR64)  -> DestReg(GR64)
2988  // SrcReg(GR64)  -> DestReg(VR128)
2989  // SrcReg(GR64)  -> DestReg(VR64)
2990
2991  if (X86::GR64RegClass.contains(DestReg)) {
2992    if (X86::VR128XRegClass.contains(SrcReg))
2993      // Copy from a VR128 register to a GR64 register.
2994      return HasAVX512 ? X86::VMOVPQIto64Zrr :
2995             HasAVX    ? X86::VMOVPQIto64rr  :
2996                         X86::MOVPQIto64rr;
2997    if (X86::VR64RegClass.contains(SrcReg))
2998      // Copy from a VR64 register to a GR64 register.
2999      return X86::MMX_MOVD64from64rr;
3000  } else if (X86::GR64RegClass.contains(SrcReg)) {
3001    // Copy from a GR64 register to a VR128 register.
3002    if (X86::VR128XRegClass.contains(DestReg))
3003      return HasAVX512 ? X86::VMOV64toPQIZrr :
3004             HasAVX    ? X86::VMOV64toPQIrr  :
3005                         X86::MOV64toPQIrr;
3006    // Copy from a GR64 register to a VR64 register.
3007    if (X86::VR64RegClass.contains(DestReg))
3008      return X86::MMX_MOVD64to64rr;
3009  }
3010
3011  // SrcReg(FR32) -> DestReg(GR32)
3012  // SrcReg(GR32) -> DestReg(FR32)
3013
3014  if (X86::GR32RegClass.contains(DestReg) &&
3015      X86::FR32XRegClass.contains(SrcReg))
3016    // Copy from a FR32 register to a GR32 register.
3017    return HasAVX512 ? X86::VMOVSS2DIZrr :
3018           HasAVX    ? X86::VMOVSS2DIrr  :
3019                       X86::MOVSS2DIrr;
3020
3021  if (X86::FR32XRegClass.contains(DestReg) &&
3022      X86::GR32RegClass.contains(SrcReg))
3023    // Copy from a GR32 register to a FR32 register.
3024    return HasAVX512 ? X86::VMOVDI2SSZrr :
3025           HasAVX    ? X86::VMOVDI2SSrr  :
3026                       X86::MOVDI2SSrr;
3027  return 0;
3028}
3029
3030void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
3031                               MachineBasicBlock::iterator MI,
3032                               const DebugLoc &DL, unsigned DestReg,
3033                               unsigned SrcReg, bool KillSrc) const {
3034  // First deal with the normal symmetric copies.
3035  bool HasAVX = Subtarget.hasAVX();
3036  bool HasVLX = Subtarget.hasVLX();
3037  unsigned Opc = 0;
3038  if (X86::GR64RegClass.contains(DestReg, SrcReg))
3039    Opc = X86::MOV64rr;
3040  else if (X86::GR32RegClass.contains(DestReg, SrcReg))
3041    Opc = X86::MOV32rr;
3042  else if (X86::GR16RegClass.contains(DestReg, SrcReg))
3043    Opc = X86::MOV16rr;
3044  else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
3045    // Copying to or from a physical H register on x86-64 requires a NOREX
3046    // move.  Otherwise use a normal move.
3047    if ((isHReg(DestReg) || isHReg(SrcReg)) &&
3048        Subtarget.is64Bit()) {
3049      Opc = X86::MOV8rr_NOREX;
3050      // Both operands must be encodable without an REX prefix.
3051      assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
3052             "8-bit H register can not be copied outside GR8_NOREX");
3053    } else
3054      Opc = X86::MOV8rr;
3055  }
3056  else if (X86::VR64RegClass.contains(DestReg, SrcReg))
3057    Opc = X86::MMX_MOVQ64rr;
3058  else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
3059    if (HasVLX)
3060      Opc = X86::VMOVAPSZ128rr;
3061    else if (X86::VR128RegClass.contains(DestReg, SrcReg))
3062      Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
3063    else {
3064      // If this an extended register and we don't have VLX we need to use a
3065      // 512-bit move.
3066      Opc = X86::VMOVAPSZrr;
3067      const TargetRegisterInfo *TRI = &getRegisterInfo();
3068      DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
3069                                         &X86::VR512RegClass);
3070      SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
3071                                        &X86::VR512RegClass);
3072    }
3073  } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
3074    if (HasVLX)
3075      Opc = X86::VMOVAPSZ256rr;
3076    else if (X86::VR256RegClass.contains(DestReg, SrcReg))
3077      Opc = X86::VMOVAPSYrr;
3078    else {
3079      // If this an extended register and we don't have VLX we need to use a
3080      // 512-bit move.
3081      Opc = X86::VMOVAPSZrr;
3082      const TargetRegisterInfo *TRI = &getRegisterInfo();
3083      DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
3084                                         &X86::VR512RegClass);
3085      SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
3086                                        &X86::VR512RegClass);
3087    }
3088  } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
3089    Opc = X86::VMOVAPSZrr;
3090  // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3091  else if (X86::VK16RegClass.contains(DestReg, SrcReg))
3092    Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
3093  if (!Opc)
3094    Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
3095
3096  if (Opc) {
3097    BuildMI(MBB, MI, DL, get(Opc), DestReg)
3098      .addReg(SrcReg, getKillRegState(KillSrc));
3099    return;
3100  }
3101
3102  if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
3103    // FIXME: We use a fatal error here because historically LLVM has tried
3104    // lower some of these physreg copies and we want to ensure we get
3105    // reasonable bug reports if someone encounters a case no other testing
3106    // found. This path should be removed after the LLVM 7 release.
3107    report_fatal_error("Unable to copy EFLAGS physical register!");
3108  }
3109
3110  LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
3111                    << RI.getName(DestReg) << '\n');
3112  report_fatal_error("Cannot emit physreg copy instruction");
3113}
3114
3115bool X86InstrInfo::isCopyInstr(const MachineInstr &MI,
3116                               const MachineOperand *&Src,
3117                               const MachineOperand *&Dest) const {
3118  if (MI.isMoveReg()) {
3119    Dest = &MI.getOperand(0);
3120    Src = &MI.getOperand(1);
3121    return true;
3122  }
3123  return false;
3124}
3125
3126static unsigned getLoadStoreRegOpcode(unsigned Reg,
3127                                      const TargetRegisterClass *RC,
3128                                      bool isStackAligned,
3129                                      const X86Subtarget &STI,
3130                                      bool load) {
3131  bool HasAVX = STI.hasAVX();
3132  bool HasAVX512 = STI.hasAVX512();
3133  bool HasVLX = STI.hasVLX();
3134
3135  switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
3136  default:
3137    llvm_unreachable("Unknown spill size");
3138  case 1:
3139    assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
3140    if (STI.is64Bit())
3141      // Copying to or from a physical H register on x86-64 requires a NOREX
3142      // move.  Otherwise use a normal move.
3143      if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
3144        return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
3145    return load ? X86::MOV8rm : X86::MOV8mr;
3146  case 2:
3147    if (X86::VK16RegClass.hasSubClassEq(RC))
3148      return load ? X86::KMOVWkm : X86::KMOVWmk;
3149    assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
3150    return load ? X86::MOV16rm : X86::MOV16mr;
3151  case 4:
3152    if (X86::GR32RegClass.hasSubClassEq(RC))
3153      return load ? X86::MOV32rm : X86::MOV32mr;
3154    if (X86::FR32XRegClass.hasSubClassEq(RC))
3155      return load ?
3156        (HasAVX512 ? X86::VMOVSSZrm : HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
3157        (HasAVX512 ? X86::VMOVSSZmr : HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
3158    if (X86::RFP32RegClass.hasSubClassEq(RC))
3159      return load ? X86::LD_Fp32m : X86::ST_Fp32m;
3160    if (X86::VK32RegClass.hasSubClassEq(RC)) {
3161      assert(STI.hasBWI() && "KMOVD requires BWI");
3162      return load ? X86::KMOVDkm : X86::KMOVDmk;
3163    }
3164    llvm_unreachable("Unknown 4-byte regclass");
3165  case 8:
3166    if (X86::GR64RegClass.hasSubClassEq(RC))
3167      return load ? X86::MOV64rm : X86::MOV64mr;
3168    if (X86::FR64XRegClass.hasSubClassEq(RC))
3169      return load ?
3170        (HasAVX512 ? X86::VMOVSDZrm : HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
3171        (HasAVX512 ? X86::VMOVSDZmr : HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
3172    if (X86::VR64RegClass.hasSubClassEq(RC))
3173      return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
3174    if (X86::RFP64RegClass.hasSubClassEq(RC))
3175      return load ? X86::LD_Fp64m : X86::ST_Fp64m;
3176    if (X86::VK64RegClass.hasSubClassEq(RC)) {
3177      assert(STI.hasBWI() && "KMOVQ requires BWI");
3178      return load ? X86::KMOVQkm : X86::KMOVQmk;
3179    }
3180    llvm_unreachable("Unknown 8-byte regclass");
3181  case 10:
3182    assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
3183    return load ? X86::LD_Fp80m : X86::ST_FpP80m;
3184  case 16: {
3185    if (X86::VR128XRegClass.hasSubClassEq(RC)) {
3186      // If stack is realigned we can use aligned stores.
3187      if (isStackAligned)
3188        return load ?
3189          (HasVLX    ? X86::VMOVAPSZ128rm :
3190           HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
3191           HasAVX    ? X86::VMOVAPSrm :
3192                       X86::MOVAPSrm):
3193          (HasVLX    ? X86::VMOVAPSZ128mr :
3194           HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
3195           HasAVX    ? X86::VMOVAPSmr :
3196                       X86::MOVAPSmr);
3197      else
3198        return load ?
3199          (HasVLX    ? X86::VMOVUPSZ128rm :
3200           HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
3201           HasAVX    ? X86::VMOVUPSrm :
3202                       X86::MOVUPSrm):
3203          (HasVLX    ? X86::VMOVUPSZ128mr :
3204           HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
3205           HasAVX    ? X86::VMOVUPSmr :
3206                       X86::MOVUPSmr);
3207    }
3208    if (X86::BNDRRegClass.hasSubClassEq(RC)) {
3209      if (STI.is64Bit())
3210        return load ? X86::BNDMOV64rm : X86::BNDMOV64mr;
3211      else
3212        return load ? X86::BNDMOV32rm : X86::BNDMOV32mr;
3213    }
3214    llvm_unreachable("Unknown 16-byte regclass");
3215  }
3216  case 32:
3217    assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
3218    // If stack is realigned we can use aligned stores.
3219    if (isStackAligned)
3220      return load ?
3221        (HasVLX    ? X86::VMOVAPSZ256rm :
3222         HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
3223                     X86::VMOVAPSYrm) :
3224        (HasVLX    ? X86::VMOVAPSZ256mr :
3225         HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
3226                     X86::VMOVAPSYmr);
3227    else
3228      return load ?
3229        (HasVLX    ? X86::VMOVUPSZ256rm :
3230         HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
3231                     X86::VMOVUPSYrm) :
3232        (HasVLX    ? X86::VMOVUPSZ256mr :
3233         HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
3234                     X86::VMOVUPSYmr);
3235  case 64:
3236    assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
3237    assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
3238    if (isStackAligned)
3239      return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3240    else
3241      return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3242  }
3243}
3244
3245bool X86InstrInfo::getMemOpBaseRegImmOfs(MachineInstr &MemOp, unsigned &BaseReg,
3246                                         int64_t &Offset,
3247                                         const TargetRegisterInfo *TRI) const {
3248  const MCInstrDesc &Desc = MemOp.getDesc();
3249  int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3250  if (MemRefBegin < 0)
3251    return false;
3252
3253  MemRefBegin += X86II::getOperandBias(Desc);
3254
3255  MachineOperand &BaseMO = MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
3256  if (!BaseMO.isReg()) // Can be an MO_FrameIndex
3257    return false;
3258
3259  BaseReg = BaseMO.getReg();
3260  if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
3261    return false;
3262
3263  if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
3264      X86::NoRegister)
3265    return false;
3266
3267  const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
3268
3269  // Displacement can be symbolic
3270  if (!DispMO.isImm())
3271    return false;
3272
3273  Offset = DispMO.getImm();
3274
3275  return true;
3276}
3277
3278static unsigned getStoreRegOpcode(unsigned SrcReg,
3279                                  const TargetRegisterClass *RC,
3280                                  bool isStackAligned,
3281                                  const X86Subtarget &STI) {
3282  return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false);
3283}
3284
3285
3286static unsigned getLoadRegOpcode(unsigned DestReg,
3287                                 const TargetRegisterClass *RC,
3288                                 bool isStackAligned,
3289                                 const X86Subtarget &STI) {
3290  return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true);
3291}
3292
3293void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3294                                       MachineBasicBlock::iterator MI,
3295                                       unsigned SrcReg, bool isKill, int FrameIdx,
3296                                       const TargetRegisterClass *RC,
3297                                       const TargetRegisterInfo *TRI) const {
3298  const MachineFunction &MF = *MBB.getParent();
3299  assert(MF.getFrameInfo().getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
3300         "Stack slot too small for store");
3301  unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3302  bool isAligned =
3303      (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
3304      RI.canRealignStack(MF);
3305  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3306  DebugLoc DL = MBB.findDebugLoc(MI);
3307  addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
3308    .addReg(SrcReg, getKillRegState(isKill));
3309}
3310
3311void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
3312                                  bool isKill,
3313                                  SmallVectorImpl<MachineOperand> &Addr,
3314                                  const TargetRegisterClass *RC,
3315                                  MachineInstr::mmo_iterator MMOBegin,
3316                                  MachineInstr::mmo_iterator MMOEnd,
3317                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
3318  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
3319  unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
3320  bool isAligned = MMOBegin != MMOEnd &&
3321                   (*MMOBegin)->getAlignment() >= Alignment;
3322  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3323  DebugLoc DL;
3324  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
3325  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
3326    MIB.add(Addr[i]);
3327  MIB.addReg(SrcReg, getKillRegState(isKill));
3328  (*MIB).setMemRefs(MMOBegin, MMOEnd);
3329  NewMIs.push_back(MIB);
3330}
3331
3332
3333void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
3334                                        MachineBasicBlock::iterator MI,
3335                                        unsigned DestReg, int FrameIdx,
3336                                        const TargetRegisterClass *RC,
3337                                        const TargetRegisterInfo *TRI) const {
3338  const MachineFunction &MF = *MBB.getParent();
3339  unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3340  bool isAligned =
3341      (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
3342      RI.canRealignStack(MF);
3343  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
3344  DebugLoc DL = MBB.findDebugLoc(MI);
3345  addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
3346}
3347
3348void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
3349                                 SmallVectorImpl<MachineOperand> &Addr,
3350                                 const TargetRegisterClass *RC,
3351                                 MachineInstr::mmo_iterator MMOBegin,
3352                                 MachineInstr::mmo_iterator MMOEnd,
3353                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
3354  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
3355  unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
3356  bool isAligned = MMOBegin != MMOEnd &&
3357                   (*MMOBegin)->getAlignment() >= Alignment;
3358  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
3359  DebugLoc DL;
3360  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
3361  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
3362    MIB.add(Addr[i]);
3363  (*MIB).setMemRefs(MMOBegin, MMOEnd);
3364  NewMIs.push_back(MIB);
3365}
3366
3367bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
3368                                  unsigned &SrcReg2, int &CmpMask,
3369                                  int &CmpValue) const {
3370  switch (MI.getOpcode()) {
3371  default: break;
3372  case X86::CMP64ri32:
3373  case X86::CMP64ri8:
3374  case X86::CMP32ri:
3375  case X86::CMP32ri8:
3376  case X86::CMP16ri:
3377  case X86::CMP16ri8:
3378  case X86::CMP8ri:
3379    SrcReg = MI.getOperand(0).getReg();
3380    SrcReg2 = 0;
3381    if (MI.getOperand(1).isImm()) {
3382      CmpMask = ~0;
3383      CmpValue = MI.getOperand(1).getImm();
3384    } else {
3385      CmpMask = CmpValue = 0;
3386    }
3387    return true;
3388  // A SUB can be used to perform comparison.
3389  case X86::SUB64rm:
3390  case X86::SUB32rm:
3391  case X86::SUB16rm:
3392  case X86::SUB8rm:
3393    SrcReg = MI.getOperand(1).getReg();
3394    SrcReg2 = 0;
3395    CmpMask = 0;
3396    CmpValue = 0;
3397    return true;
3398  case X86::SUB64rr:
3399  case X86::SUB32rr:
3400  case X86::SUB16rr:
3401  case X86::SUB8rr:
3402    SrcReg = MI.getOperand(1).getReg();
3403    SrcReg2 = MI.getOperand(2).getReg();
3404    CmpMask = 0;
3405    CmpValue = 0;
3406    return true;
3407  case X86::SUB64ri32:
3408  case X86::SUB64ri8:
3409  case X86::SUB32ri:
3410  case X86::SUB32ri8:
3411  case X86::SUB16ri:
3412  case X86::SUB16ri8:
3413  case X86::SUB8ri:
3414    SrcReg = MI.getOperand(1).getReg();
3415    SrcReg2 = 0;
3416    if (MI.getOperand(2).isImm()) {
3417      CmpMask = ~0;
3418      CmpValue = MI.getOperand(2).getImm();
3419    } else {
3420      CmpMask = CmpValue = 0;
3421    }
3422    return true;
3423  case X86::CMP64rr:
3424  case X86::CMP32rr:
3425  case X86::CMP16rr:
3426  case X86::CMP8rr:
3427    SrcReg = MI.getOperand(0).getReg();
3428    SrcReg2 = MI.getOperand(1).getReg();
3429    CmpMask = 0;
3430    CmpValue = 0;
3431    return true;
3432  case X86::TEST8rr:
3433  case X86::TEST16rr:
3434  case X86::TEST32rr:
3435  case X86::TEST64rr:
3436    SrcReg = MI.getOperand(0).getReg();
3437    if (MI.getOperand(1).getReg() != SrcReg)
3438      return false;
3439    // Compare against zero.
3440    SrcReg2 = 0;
3441    CmpMask = ~0;
3442    CmpValue = 0;
3443    return true;
3444  }
3445  return false;
3446}
3447
3448/// Check whether the first instruction, whose only
3449/// purpose is to update flags, can be made redundant.
3450/// CMPrr can be made redundant by SUBrr if the operands are the same.
3451/// This function can be extended later on.
3452/// SrcReg, SrcRegs: register operands for FlagI.
3453/// ImmValue: immediate for FlagI if it takes an immediate.
3454inline static bool isRedundantFlagInstr(MachineInstr &FlagI, unsigned SrcReg,
3455                                        unsigned SrcReg2, int ImmMask,
3456                                        int ImmValue, MachineInstr &OI) {
3457  if (((FlagI.getOpcode() == X86::CMP64rr && OI.getOpcode() == X86::SUB64rr) ||
3458       (FlagI.getOpcode() == X86::CMP32rr && OI.getOpcode() == X86::SUB32rr) ||
3459       (FlagI.getOpcode() == X86::CMP16rr && OI.getOpcode() == X86::SUB16rr) ||
3460       (FlagI.getOpcode() == X86::CMP8rr && OI.getOpcode() == X86::SUB8rr)) &&
3461      ((OI.getOperand(1).getReg() == SrcReg &&
3462        OI.getOperand(2).getReg() == SrcReg2) ||
3463       (OI.getOperand(1).getReg() == SrcReg2 &&
3464        OI.getOperand(2).getReg() == SrcReg)))
3465    return true;
3466
3467  if (ImmMask != 0 &&
3468      ((FlagI.getOpcode() == X86::CMP64ri32 &&
3469        OI.getOpcode() == X86::SUB64ri32) ||
3470       (FlagI.getOpcode() == X86::CMP64ri8 &&
3471        OI.getOpcode() == X86::SUB64ri8) ||
3472       (FlagI.getOpcode() == X86::CMP32ri && OI.getOpcode() == X86::SUB32ri) ||
3473       (FlagI.getOpcode() == X86::CMP32ri8 &&
3474        OI.getOpcode() == X86::SUB32ri8) ||
3475       (FlagI.getOpcode() == X86::CMP16ri && OI.getOpcode() == X86::SUB16ri) ||
3476       (FlagI.getOpcode() == X86::CMP16ri8 &&
3477        OI.getOpcode() == X86::SUB16ri8) ||
3478       (FlagI.getOpcode() == X86::CMP8ri && OI.getOpcode() == X86::SUB8ri)) &&
3479      OI.getOperand(1).getReg() == SrcReg &&
3480      OI.getOperand(2).getImm() == ImmValue)
3481    return true;
3482  return false;
3483}
3484
3485/// Check whether the definition can be converted
3486/// to remove a comparison against zero.
3487inline static bool isDefConvertible(MachineInstr &MI) {
3488  switch (MI.getOpcode()) {
3489  default: return false;
3490
3491  // The shift instructions only modify ZF if their shift count is non-zero.
3492  // N.B.: The processor truncates the shift count depending on the encoding.
3493  case X86::SAR8ri:    case X86::SAR16ri:  case X86::SAR32ri:case X86::SAR64ri:
3494  case X86::SHR8ri:    case X86::SHR16ri:  case X86::SHR32ri:case X86::SHR64ri:
3495     return getTruncatedShiftCount(MI, 2) != 0;
3496
3497  // Some left shift instructions can be turned into LEA instructions but only
3498  // if their flags aren't used. Avoid transforming such instructions.
3499  case X86::SHL8ri:    case X86::SHL16ri:  case X86::SHL32ri:case X86::SHL64ri:{
3500    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
3501    if (isTruncatedShiftCountForLEA(ShAmt)) return false;
3502    return ShAmt != 0;
3503  }
3504
3505  case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
3506  case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
3507     return getTruncatedShiftCount(MI, 3) != 0;
3508
3509  case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
3510  case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
3511  case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
3512  case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm:
3513  case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm:
3514  case X86::DEC64r:    case X86::DEC32r:   case X86::DEC16r: case X86::DEC8r:
3515  case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
3516  case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8:
3517  case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr:
3518  case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm:
3519  case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm:
3520  case X86::INC64r:    case X86::INC32r:   case X86::INC16r: case X86::INC8r:
3521  case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
3522  case X86::AND32ri8:  case X86::AND16ri:  case X86::AND16ri8:
3523  case X86::AND8ri:    case X86::AND64rr:  case X86::AND32rr:
3524  case X86::AND16rr:   case X86::AND8rr:   case X86::AND64rm:
3525  case X86::AND32rm:   case X86::AND16rm:  case X86::AND8rm:
3526  case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
3527  case X86::XOR32ri8:  case X86::XOR16ri:  case X86::XOR16ri8:
3528  case X86::XOR8ri:    case X86::XOR64rr:  case X86::XOR32rr:
3529  case X86::XOR16rr:   case X86::XOR8rr:   case X86::XOR64rm:
3530  case X86::XOR32rm:   case X86::XOR16rm:  case X86::XOR8rm:
3531  case X86::OR64ri32:  case X86::OR64ri8:  case X86::OR32ri:
3532  case X86::OR32ri8:   case X86::OR16ri:   case X86::OR16ri8:
3533  case X86::OR8ri:     case X86::OR64rr:   case X86::OR32rr:
3534  case X86::OR16rr:    case X86::OR8rr:    case X86::OR64rm:
3535  case X86::OR32rm:    case X86::OR16rm:   case X86::OR8rm:
3536  case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri:
3537  case X86::ADC32ri8:  case X86::ADC16ri:  case X86::ADC16ri8:
3538  case X86::ADC8ri:    case X86::ADC64rr:  case X86::ADC32rr:
3539  case X86::ADC16rr:   case X86::ADC8rr:   case X86::ADC64rm:
3540  case X86::ADC32rm:   case X86::ADC16rm:  case X86::ADC8rm:
3541  case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri:
3542  case X86::SBB32ri8:  case X86::SBB16ri:  case X86::SBB16ri8:
3543  case X86::SBB8ri:    case X86::SBB64rr:  case X86::SBB32rr:
3544  case X86::SBB16rr:   case X86::SBB8rr:   case X86::SBB64rm:
3545  case X86::SBB32rm:   case X86::SBB16rm:  case X86::SBB8rm:
3546  case X86::NEG8r:     case X86::NEG16r:   case X86::NEG32r: case X86::NEG64r:
3547  case X86::SAR8r1:    case X86::SAR16r1:  case X86::SAR32r1:case X86::SAR64r1:
3548  case X86::SHR8r1:    case X86::SHR16r1:  case X86::SHR32r1:case X86::SHR64r1:
3549  case X86::SHL8r1:    case X86::SHL16r1:  case X86::SHL32r1:case X86::SHL64r1:
3550  case X86::ANDN32rr:  case X86::ANDN32rm:
3551  case X86::ANDN64rr:  case X86::ANDN64rm:
3552  case X86::BEXTR32rr: case X86::BEXTR64rr:
3553  case X86::BEXTR32rm: case X86::BEXTR64rm:
3554  case X86::BLSI32rr:  case X86::BLSI32rm:
3555  case X86::BLSI64rr:  case X86::BLSI64rm:
3556  case X86::BLSMSK32rr:case X86::BLSMSK32rm:
3557  case X86::BLSMSK64rr:case X86::BLSMSK64rm:
3558  case X86::BLSR32rr:  case X86::BLSR32rm:
3559  case X86::BLSR64rr:  case X86::BLSR64rm:
3560  case X86::BZHI32rr:  case X86::BZHI32rm:
3561  case X86::BZHI64rr:  case X86::BZHI64rm:
3562  case X86::LZCNT16rr: case X86::LZCNT16rm:
3563  case X86::LZCNT32rr: case X86::LZCNT32rm:
3564  case X86::LZCNT64rr: case X86::LZCNT64rm:
3565  case X86::POPCNT16rr:case X86::POPCNT16rm:
3566  case X86::POPCNT32rr:case X86::POPCNT32rm:
3567  case X86::POPCNT64rr:case X86::POPCNT64rm:
3568  case X86::TZCNT16rr: case X86::TZCNT16rm:
3569  case X86::TZCNT32rr: case X86::TZCNT32rm:
3570  case X86::TZCNT64rr: case X86::TZCNT64rm:
3571  case X86::BEXTRI32ri:  case X86::BEXTRI32mi:
3572  case X86::BEXTRI64ri:  case X86::BEXTRI64mi:
3573  case X86::BLCFILL32rr: case X86::BLCFILL32rm:
3574  case X86::BLCFILL64rr: case X86::BLCFILL64rm:
3575  case X86::BLCI32rr:    case X86::BLCI32rm:
3576  case X86::BLCI64rr:    case X86::BLCI64rm:
3577  case X86::BLCIC32rr:   case X86::BLCIC32rm:
3578  case X86::BLCIC64rr:   case X86::BLCIC64rm:
3579  case X86::BLCMSK32rr:  case X86::BLCMSK32rm:
3580  case X86::BLCMSK64rr:  case X86::BLCMSK64rm:
3581  case X86::BLCS32rr:    case X86::BLCS32rm:
3582  case X86::BLCS64rr:    case X86::BLCS64rm:
3583  case X86::BLSFILL32rr: case X86::BLSFILL32rm:
3584  case X86::BLSFILL64rr: case X86::BLSFILL64rm:
3585  case X86::BLSIC32rr:   case X86::BLSIC32rm:
3586  case X86::BLSIC64rr:   case X86::BLSIC64rm:
3587    return true;
3588  }
3589}
3590
3591/// Check whether the use can be converted to remove a comparison against zero.
3592static X86::CondCode isUseDefConvertible(MachineInstr &MI) {
3593  switch (MI.getOpcode()) {
3594  default: return X86::COND_INVALID;
3595  case X86::LZCNT16rr: case X86::LZCNT16rm:
3596  case X86::LZCNT32rr: case X86::LZCNT32rm:
3597  case X86::LZCNT64rr: case X86::LZCNT64rm:
3598    return X86::COND_B;
3599  case X86::POPCNT16rr:case X86::POPCNT16rm:
3600  case X86::POPCNT32rr:case X86::POPCNT32rm:
3601  case X86::POPCNT64rr:case X86::POPCNT64rm:
3602    return X86::COND_E;
3603  case X86::TZCNT16rr: case X86::TZCNT16rm:
3604  case X86::TZCNT32rr: case X86::TZCNT32rm:
3605  case X86::TZCNT64rr: case X86::TZCNT64rm:
3606    return X86::COND_B;
3607  case X86::BSF16rr:
3608  case X86::BSF16rm:
3609  case X86::BSF32rr:
3610  case X86::BSF32rm:
3611  case X86::BSF64rr:
3612  case X86::BSF64rm:
3613    return X86::COND_E;
3614  }
3615}
3616
3617/// Check if there exists an earlier instruction that
3618/// operates on the same source operands and sets flags in the same way as
3619/// Compare; remove Compare if possible.
3620bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
3621                                        unsigned SrcReg2, int CmpMask,
3622                                        int CmpValue,
3623                                        const MachineRegisterInfo *MRI) const {
3624  // Check whether we can replace SUB with CMP.
3625  unsigned NewOpcode = 0;
3626  switch (CmpInstr.getOpcode()) {
3627  default: break;
3628  case X86::SUB64ri32:
3629  case X86::SUB64ri8:
3630  case X86::SUB32ri:
3631  case X86::SUB32ri8:
3632  case X86::SUB16ri:
3633  case X86::SUB16ri8:
3634  case X86::SUB8ri:
3635  case X86::SUB64rm:
3636  case X86::SUB32rm:
3637  case X86::SUB16rm:
3638  case X86::SUB8rm:
3639  case X86::SUB64rr:
3640  case X86::SUB32rr:
3641  case X86::SUB16rr:
3642  case X86::SUB8rr: {
3643    if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
3644      return false;
3645    // There is no use of the destination register, we can replace SUB with CMP.
3646    switch (CmpInstr.getOpcode()) {
3647    default: llvm_unreachable("Unreachable!");
3648    case X86::SUB64rm:   NewOpcode = X86::CMP64rm;   break;
3649    case X86::SUB32rm:   NewOpcode = X86::CMP32rm;   break;
3650    case X86::SUB16rm:   NewOpcode = X86::CMP16rm;   break;
3651    case X86::SUB8rm:    NewOpcode = X86::CMP8rm;    break;
3652    case X86::SUB64rr:   NewOpcode = X86::CMP64rr;   break;
3653    case X86::SUB32rr:   NewOpcode = X86::CMP32rr;   break;
3654    case X86::SUB16rr:   NewOpcode = X86::CMP16rr;   break;
3655    case X86::SUB8rr:    NewOpcode = X86::CMP8rr;    break;
3656    case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
3657    case X86::SUB64ri8:  NewOpcode = X86::CMP64ri8;  break;
3658    case X86::SUB32ri:   NewOpcode = X86::CMP32ri;   break;
3659    case X86::SUB32ri8:  NewOpcode = X86::CMP32ri8;  break;
3660    case X86::SUB16ri:   NewOpcode = X86::CMP16ri;   break;
3661    case X86::SUB16ri8:  NewOpcode = X86::CMP16ri8;  break;
3662    case X86::SUB8ri:    NewOpcode = X86::CMP8ri;    break;
3663    }
3664    CmpInstr.setDesc(get(NewOpcode));
3665    CmpInstr.RemoveOperand(0);
3666    // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
3667    if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
3668        NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
3669      return false;
3670  }
3671  }
3672
3673  // Get the unique definition of SrcReg.
3674  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3675  if (!MI) return false;
3676
3677  // CmpInstr is the first instruction of the BB.
3678  MachineBasicBlock::iterator I = CmpInstr, Def = MI;
3679
3680  // If we are comparing against zero, check whether we can use MI to update
3681  // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
3682  bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
3683  if (IsCmpZero && MI->getParent() != CmpInstr.getParent())
3684    return false;
3685
3686  // If we have a use of the source register between the def and our compare
3687  // instruction we can eliminate the compare iff the use sets EFLAGS in the
3688  // right way.
3689  bool ShouldUpdateCC = false;
3690  X86::CondCode NewCC = X86::COND_INVALID;
3691  if (IsCmpZero && !isDefConvertible(*MI)) {
3692    // Scan forward from the use until we hit the use we're looking for or the
3693    // compare instruction.
3694    for (MachineBasicBlock::iterator J = MI;; ++J) {
3695      // Do we have a convertible instruction?
3696      NewCC = isUseDefConvertible(*J);
3697      if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
3698          J->getOperand(1).getReg() == SrcReg) {
3699        assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
3700        ShouldUpdateCC = true; // Update CC later on.
3701        // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
3702        // with the new def.
3703        Def = J;
3704        MI = &*Def;
3705        break;
3706      }
3707
3708      if (J == I)
3709        return false;
3710    }
3711  }
3712
3713  // We are searching for an earlier instruction that can make CmpInstr
3714  // redundant and that instruction will be saved in Sub.
3715  MachineInstr *Sub = nullptr;
3716  const TargetRegisterInfo *TRI = &getRegisterInfo();
3717
3718  // We iterate backward, starting from the instruction before CmpInstr and
3719  // stop when reaching the definition of a source register or done with the BB.
3720  // RI points to the instruction before CmpInstr.
3721  // If the definition is in this basic block, RE points to the definition;
3722  // otherwise, RE is the rend of the basic block.
3723  MachineBasicBlock::reverse_iterator
3724      RI = ++I.getReverse(),
3725      RE = CmpInstr.getParent() == MI->getParent()
3726               ? Def.getReverse() /* points to MI */
3727               : CmpInstr.getParent()->rend();
3728  MachineInstr *Movr0Inst = nullptr;
3729  for (; RI != RE; ++RI) {
3730    MachineInstr &Instr = *RI;
3731    // Check whether CmpInstr can be made redundant by the current instruction.
3732    if (!IsCmpZero && isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask,
3733                                           CmpValue, Instr)) {
3734      Sub = &Instr;
3735      break;
3736    }
3737
3738    if (Instr.modifiesRegister(X86::EFLAGS, TRI) ||
3739        Instr.readsRegister(X86::EFLAGS, TRI)) {
3740      // This instruction modifies or uses EFLAGS.
3741
3742      // MOV32r0 etc. are implemented with xor which clobbers condition code.
3743      // They are safe to move up, if the definition to EFLAGS is dead and
3744      // earlier instructions do not read or write EFLAGS.
3745      if (!Movr0Inst && Instr.getOpcode() == X86::MOV32r0 &&
3746          Instr.registerDefIsDead(X86::EFLAGS, TRI)) {
3747        Movr0Inst = &Instr;
3748        continue;
3749      }
3750
3751      // We can't remove CmpInstr.
3752      return false;
3753    }
3754  }
3755
3756  // Return false if no candidates exist.
3757  if (!IsCmpZero && !Sub)
3758    return false;
3759
3760  bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
3761                    Sub->getOperand(2).getReg() == SrcReg);
3762
3763  // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
3764  // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
3765  // If we are done with the basic block, we need to check whether EFLAGS is
3766  // live-out.
3767  bool IsSafe = false;
3768  SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate;
3769  MachineBasicBlock::iterator E = CmpInstr.getParent()->end();
3770  for (++I; I != E; ++I) {
3771    const MachineInstr &Instr = *I;
3772    bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
3773    bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
3774    // We should check the usage if this instruction uses and updates EFLAGS.
3775    if (!UseEFLAGS && ModifyEFLAGS) {
3776      // It is safe to remove CmpInstr if EFLAGS is updated again.
3777      IsSafe = true;
3778      break;
3779    }
3780    if (!UseEFLAGS && !ModifyEFLAGS)
3781      continue;
3782
3783    // EFLAGS is used by this instruction.
3784    X86::CondCode OldCC = X86::COND_INVALID;
3785    bool OpcIsSET = false;
3786    if (IsCmpZero || IsSwapped) {
3787      // We decode the condition code from opcode.
3788      if (Instr.isBranch())
3789        OldCC = X86::getCondFromBranchOpc(Instr.getOpcode());
3790      else {
3791        OldCC = X86::getCondFromSETOpc(Instr.getOpcode());
3792        if (OldCC != X86::COND_INVALID)
3793          OpcIsSET = true;
3794        else
3795          OldCC = X86::getCondFromCMovOpc(Instr.getOpcode());
3796      }
3797      if (OldCC == X86::COND_INVALID) return false;
3798    }
3799    X86::CondCode ReplacementCC = X86::COND_INVALID;
3800    if (IsCmpZero) {
3801      switch (OldCC) {
3802      default: break;
3803      case X86::COND_A: case X86::COND_AE:
3804      case X86::COND_B: case X86::COND_BE:
3805      case X86::COND_G: case X86::COND_GE:
3806      case X86::COND_L: case X86::COND_LE:
3807      case X86::COND_O: case X86::COND_NO:
3808        // CF and OF are used, we can't perform this optimization.
3809        return false;
3810      }
3811
3812      // If we're updating the condition code check if we have to reverse the
3813      // condition.
3814      if (ShouldUpdateCC)
3815        switch (OldCC) {
3816        default:
3817          return false;
3818        case X86::COND_E:
3819          ReplacementCC = NewCC;
3820          break;
3821        case X86::COND_NE:
3822          ReplacementCC = GetOppositeBranchCondition(NewCC);
3823          break;
3824        }
3825    } else if (IsSwapped) {
3826      // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
3827      // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3828      // We swap the condition code and synthesize the new opcode.
3829      ReplacementCC = getSwappedCondition(OldCC);
3830      if (ReplacementCC == X86::COND_INVALID) return false;
3831    }
3832
3833    if ((ShouldUpdateCC || IsSwapped) && ReplacementCC != OldCC) {
3834      // Synthesize the new opcode.
3835      bool HasMemoryOperand = Instr.hasOneMemOperand();
3836      unsigned NewOpc;
3837      if (Instr.isBranch())
3838        NewOpc = GetCondBranchFromCond(ReplacementCC);
3839      else if(OpcIsSET)
3840        NewOpc = getSETFromCond(ReplacementCC, HasMemoryOperand);
3841      else {
3842        unsigned DstReg = Instr.getOperand(0).getReg();
3843        const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
3844        NewOpc = getCMovFromCond(ReplacementCC, TRI->getRegSizeInBits(*DstRC)/8,
3845                                 HasMemoryOperand);
3846      }
3847
3848      // Push the MachineInstr to OpsToUpdate.
3849      // If it is safe to remove CmpInstr, the condition code of these
3850      // instructions will be modified.
3851      OpsToUpdate.push_back(std::make_pair(&*I, NewOpc));
3852    }
3853    if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
3854      // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
3855      IsSafe = true;
3856      break;
3857    }
3858  }
3859
3860  // If EFLAGS is not killed nor re-defined, we should check whether it is
3861  // live-out. If it is live-out, do not optimize.
3862  if ((IsCmpZero || IsSwapped) && !IsSafe) {
3863    MachineBasicBlock *MBB = CmpInstr.getParent();
3864    for (MachineBasicBlock *Successor : MBB->successors())
3865      if (Successor->isLiveIn(X86::EFLAGS))
3866        return false;
3867  }
3868
3869  // The instruction to be updated is either Sub or MI.
3870  Sub = IsCmpZero ? MI : Sub;
3871  // Move Movr0Inst to the appropriate place before Sub.
3872  if (Movr0Inst) {
3873    // Look backwards until we find a def that doesn't use the current EFLAGS.
3874    Def = Sub;
3875    MachineBasicBlock::reverse_iterator InsertI = Def.getReverse(),
3876                                        InsertE = Sub->getParent()->rend();
3877    for (; InsertI != InsertE; ++InsertI) {
3878      MachineInstr *Instr = &*InsertI;
3879      if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
3880          Instr->modifiesRegister(X86::EFLAGS, TRI)) {
3881        Sub->getParent()->remove(Movr0Inst);
3882        Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
3883                                   Movr0Inst);
3884        break;
3885      }
3886    }
3887    if (InsertI == InsertE)
3888      return false;
3889  }
3890
3891  // Make sure Sub instruction defines EFLAGS and mark the def live.
3892  unsigned i = 0, e = Sub->getNumOperands();
3893  for (; i != e; ++i) {
3894    MachineOperand &MO = Sub->getOperand(i);
3895    if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
3896      MO.setIsDead(false);
3897      break;
3898    }
3899  }
3900  assert(i != e && "Unable to locate a def EFLAGS operand");
3901
3902  CmpInstr.eraseFromParent();
3903
3904  // Modify the condition code of instructions in OpsToUpdate.
3905  for (auto &Op : OpsToUpdate)
3906    Op.first->setDesc(get(Op.second));
3907  return true;
3908}
3909
3910/// Try to remove the load by folding it to a register
3911/// operand at the use. We fold the load instructions if load defines a virtual
3912/// register, the virtual register is used once in the same BB, and the
3913/// instructions in-between do not load or store, and have no side effects.
3914MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
3915                                              const MachineRegisterInfo *MRI,
3916                                              unsigned &FoldAsLoadDefReg,
3917                                              MachineInstr *&DefMI) const {
3918  // Check whether we can move DefMI here.
3919  DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
3920  assert(DefMI);
3921  bool SawStore = false;
3922  if (!DefMI->isSafeToMove(nullptr, SawStore))
3923    return nullptr;
3924
3925  // Collect information about virtual register operands of MI.
3926  SmallVector<unsigned, 1> SrcOperandIds;
3927  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
3928    MachineOperand &MO = MI.getOperand(i);
3929    if (!MO.isReg())
3930      continue;
3931    unsigned Reg = MO.getReg();
3932    if (Reg != FoldAsLoadDefReg)
3933      continue;
3934    // Do not fold if we have a subreg use or a def.
3935    if (MO.getSubReg() || MO.isDef())
3936      return nullptr;
3937    SrcOperandIds.push_back(i);
3938  }
3939  if (SrcOperandIds.empty())
3940    return nullptr;
3941
3942  // Check whether we can fold the def into SrcOperandId.
3943  if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
3944    FoldAsLoadDefReg = 0;
3945    return FoldMI;
3946  }
3947
3948  return nullptr;
3949}
3950
3951/// Expand a single-def pseudo instruction to a two-addr
3952/// instruction with two undef reads of the register being defined.
3953/// This is used for mapping:
3954///   %xmm4 = V_SET0
3955/// to:
3956///   %xmm4 = PXORrr undef %xmm4, undef %xmm4
3957///
3958static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
3959                             const MCInstrDesc &Desc) {
3960  assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
3961  unsigned Reg = MIB->getOperand(0).getReg();
3962  MIB->setDesc(Desc);
3963
3964  // MachineInstr::addOperand() will insert explicit operands before any
3965  // implicit operands.
3966  MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
3967  // But we don't trust that.
3968  assert(MIB->getOperand(1).getReg() == Reg &&
3969         MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
3970  return true;
3971}
3972
3973/// Expand a single-def pseudo instruction to a two-addr
3974/// instruction with two %k0 reads.
3975/// This is used for mapping:
3976///   %k4 = K_SET1
3977/// to:
3978///   %k4 = KXNORrr %k0, %k0
3979static bool Expand2AddrKreg(MachineInstrBuilder &MIB,
3980                            const MCInstrDesc &Desc, unsigned Reg) {
3981  assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
3982  MIB->setDesc(Desc);
3983  MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
3984  return true;
3985}
3986
3987static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
3988                          bool MinusOne) {
3989  MachineBasicBlock &MBB = *MIB->getParent();
3990  DebugLoc DL = MIB->getDebugLoc();
3991  unsigned Reg = MIB->getOperand(0).getReg();
3992
3993  // Insert the XOR.
3994  BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
3995      .addReg(Reg, RegState::Undef)
3996      .addReg(Reg, RegState::Undef);
3997
3998  // Turn the pseudo into an INC or DEC.
3999  MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
4000  MIB.addReg(Reg);
4001
4002  return true;
4003}
4004
4005static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
4006                               const TargetInstrInfo &TII,
4007                               const X86Subtarget &Subtarget) {
4008  MachineBasicBlock &MBB = *MIB->getParent();
4009  DebugLoc DL = MIB->getDebugLoc();
4010  int64_t Imm = MIB->getOperand(1).getImm();
4011  assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
4012  MachineBasicBlock::iterator I = MIB.getInstr();
4013
4014  int StackAdjustment;
4015
4016  if (Subtarget.is64Bit()) {
4017    assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
4018           MIB->getOpcode() == X86::MOV32ImmSExti8);
4019
4020    // Can't use push/pop lowering if the function might write to the red zone.
4021    X86MachineFunctionInfo *X86FI =
4022        MBB.getParent()->getInfo<X86MachineFunctionInfo>();
4023    if (X86FI->getUsesRedZone()) {
4024      MIB->setDesc(TII.get(MIB->getOpcode() ==
4025                           X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
4026      return true;
4027    }
4028
4029    // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
4030    // widen the register if necessary.
4031    StackAdjustment = 8;
4032    BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm);
4033    MIB->setDesc(TII.get(X86::POP64r));
4034    MIB->getOperand(0)
4035        .setReg(getX86SubSuperRegister(MIB->getOperand(0).getReg(), 64));
4036  } else {
4037    assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
4038    StackAdjustment = 4;
4039    BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm);
4040    MIB->setDesc(TII.get(X86::POP32r));
4041  }
4042
4043  // Build CFI if necessary.
4044  MachineFunction &MF = *MBB.getParent();
4045  const X86FrameLowering *TFL = Subtarget.getFrameLowering();
4046  bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
4047  bool NeedsDwarfCFI =
4048      !IsWin64Prologue &&
4049      (MF.getMMI().hasDebugInfo() || MF.getFunction().needsUnwindTableEntry());
4050  bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
4051  if (EmitCFI) {
4052    TFL->BuildCFI(MBB, I, DL,
4053        MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
4054    TFL->BuildCFI(MBB, std::next(I), DL,
4055        MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
4056  }
4057
4058  return true;
4059}
4060
4061// LoadStackGuard has so far only been implemented for 64-bit MachO. Different
4062// code sequence is needed for other targets.
4063static void expandLoadStackGuard(MachineInstrBuilder &MIB,
4064                                 const TargetInstrInfo &TII) {
4065  MachineBasicBlock &MBB = *MIB->getParent();
4066  DebugLoc DL = MIB->getDebugLoc();
4067  unsigned Reg = MIB->getOperand(0).getReg();
4068  const GlobalValue *GV =
4069      cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
4070  auto Flags = MachineMemOperand::MOLoad |
4071               MachineMemOperand::MODereferenceable |
4072               MachineMemOperand::MOInvariant;
4073  MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4074      MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, 8);
4075  MachineBasicBlock::iterator I = MIB.getInstr();
4076
4077  BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
4078      .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
4079      .addMemOperand(MMO);
4080  MIB->setDebugLoc(DL);
4081  MIB->setDesc(TII.get(X86::MOV64rm));
4082  MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
4083}
4084
4085static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
4086  MachineBasicBlock &MBB = *MIB->getParent();
4087  MachineFunction &MF = *MBB.getParent();
4088  const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
4089  const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
4090  unsigned XorOp =
4091      MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
4092  MIB->setDesc(TII.get(XorOp));
4093  MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
4094  return true;
4095}
4096
4097// This is used to handle spills for 128/256-bit registers when we have AVX512,
4098// but not VLX. If it uses an extended register we need to use an instruction
4099// that loads the lower 128/256-bit, but is available with only AVX512F.
4100static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
4101                            const TargetRegisterInfo *TRI,
4102                            const MCInstrDesc &LoadDesc,
4103                            const MCInstrDesc &BroadcastDesc,
4104                            unsigned SubIdx) {
4105  unsigned DestReg = MIB->getOperand(0).getReg();
4106  // Check if DestReg is XMM16-31 or YMM16-31.
4107  if (TRI->getEncodingValue(DestReg) < 16) {
4108    // We can use a normal VEX encoded load.
4109    MIB->setDesc(LoadDesc);
4110  } else {
4111    // Use a 128/256-bit VBROADCAST instruction.
4112    MIB->setDesc(BroadcastDesc);
4113    // Change the destination to a 512-bit register.
4114    DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
4115    MIB->getOperand(0).setReg(DestReg);
4116  }
4117  return true;
4118}
4119
4120// This is used to handle spills for 128/256-bit registers when we have AVX512,
4121// but not VLX. If it uses an extended register we need to use an instruction
4122// that stores the lower 128/256-bit, but is available with only AVX512F.
4123static bool expandNOVLXStore(MachineInstrBuilder &MIB,
4124                             const TargetRegisterInfo *TRI,
4125                             const MCInstrDesc &StoreDesc,
4126                             const MCInstrDesc &ExtractDesc,
4127                             unsigned SubIdx) {
4128  unsigned SrcReg = MIB->getOperand(X86::AddrNumOperands).getReg();
4129  // Check if DestReg is XMM16-31 or YMM16-31.
4130  if (TRI->getEncodingValue(SrcReg) < 16) {
4131    // We can use a normal VEX encoded store.
4132    MIB->setDesc(StoreDesc);
4133  } else {
4134    // Use a VEXTRACTF instruction.
4135    MIB->setDesc(ExtractDesc);
4136    // Change the destination to a 512-bit register.
4137    SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
4138    MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
4139    MIB.addImm(0x0); // Append immediate to extract from the lower bits.
4140  }
4141
4142  return true;
4143}
4144bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
4145  bool HasAVX = Subtarget.hasAVX();
4146  MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4147  switch (MI.getOpcode()) {
4148  case X86::MOV32r0:
4149    return Expand2AddrUndef(MIB, get(X86::XOR32rr));
4150  case X86::MOV32r1:
4151    return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
4152  case X86::MOV32r_1:
4153    return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
4154  case X86::MOV32ImmSExti8:
4155  case X86::MOV64ImmSExti8:
4156    return ExpandMOVImmSExti8(MIB, *this, Subtarget);
4157  case X86::SETB_C8r:
4158    return Expand2AddrUndef(MIB, get(X86::SBB8rr));
4159  case X86::SETB_C16r:
4160    return Expand2AddrUndef(MIB, get(X86::SBB16rr));
4161  case X86::SETB_C32r:
4162    return Expand2AddrUndef(MIB, get(X86::SBB32rr));
4163  case X86::SETB_C64r:
4164    return Expand2AddrUndef(MIB, get(X86::SBB64rr));
4165  case X86::MMX_SET0:
4166    return Expand2AddrUndef(MIB, get(X86::MMX_PXORirr));
4167  case X86::V_SET0:
4168  case X86::FsFLD0SS:
4169  case X86::FsFLD0SD:
4170    return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
4171  case X86::AVX_SET0: {
4172    assert(HasAVX && "AVX not supported");
4173    const TargetRegisterInfo *TRI = &getRegisterInfo();
4174    unsigned SrcReg = MIB->getOperand(0).getReg();
4175    unsigned XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4176    MIB->getOperand(0).setReg(XReg);
4177    Expand2AddrUndef(MIB, get(X86::VXORPSrr));
4178    MIB.addReg(SrcReg, RegState::ImplicitDefine);
4179    return true;
4180  }
4181  case X86::AVX512_128_SET0:
4182  case X86::AVX512_FsFLD0SS:
4183  case X86::AVX512_FsFLD0SD: {
4184    bool HasVLX = Subtarget.hasVLX();
4185    unsigned SrcReg = MIB->getOperand(0).getReg();
4186    const TargetRegisterInfo *TRI = &getRegisterInfo();
4187    if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
4188      return Expand2AddrUndef(MIB,
4189                              get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4190    // Extended register without VLX. Use a larger XOR.
4191    SrcReg =
4192        TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
4193    MIB->getOperand(0).setReg(SrcReg);
4194    return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4195  }
4196  case X86::AVX512_256_SET0:
4197  case X86::AVX512_512_SET0: {
4198    bool HasVLX = Subtarget.hasVLX();
4199    unsigned SrcReg = MIB->getOperand(0).getReg();
4200    const TargetRegisterInfo *TRI = &getRegisterInfo();
4201    if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
4202      unsigned XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4203      MIB->getOperand(0).setReg(XReg);
4204      Expand2AddrUndef(MIB,
4205                       get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4206      MIB.addReg(SrcReg, RegState::ImplicitDefine);
4207      return true;
4208    }
4209    return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4210  }
4211  case X86::V_SETALLONES:
4212    return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
4213  case X86::AVX2_SETALLONES:
4214    return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
4215  case X86::AVX1_SETALLONES: {
4216    unsigned Reg = MIB->getOperand(0).getReg();
4217    // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
4218    MIB->setDesc(get(X86::VCMPPSYrri));
4219    MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
4220    return true;
4221  }
4222  case X86::AVX512_512_SETALLONES: {
4223    unsigned Reg = MIB->getOperand(0).getReg();
4224    MIB->setDesc(get(X86::VPTERNLOGDZrri));
4225    // VPTERNLOGD needs 3 register inputs and an immediate.
4226    // 0xff will return 1s for any input.
4227    MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
4228       .addReg(Reg, RegState::Undef).addImm(0xff);
4229    return true;
4230  }
4231  case X86::AVX512_512_SEXT_MASK_32:
4232  case X86::AVX512_512_SEXT_MASK_64: {
4233    unsigned Reg = MIB->getOperand(0).getReg();
4234    unsigned MaskReg = MIB->getOperand(1).getReg();
4235    unsigned MaskState = getRegState(MIB->getOperand(1));
4236    unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ?
4237                   X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz;
4238    MI.RemoveOperand(1);
4239    MIB->setDesc(get(Opc));
4240    // VPTERNLOG needs 3 register inputs and an immediate.
4241    // 0xff will return 1s for any input.
4242    MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState)
4243       .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff);
4244    return true;
4245  }
4246  case X86::VMOVAPSZ128rm_NOVLX:
4247    return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
4248                           get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4249  case X86::VMOVUPSZ128rm_NOVLX:
4250    return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
4251                           get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4252  case X86::VMOVAPSZ256rm_NOVLX:
4253    return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
4254                           get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4255  case X86::VMOVUPSZ256rm_NOVLX:
4256    return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
4257                           get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4258  case X86::VMOVAPSZ128mr_NOVLX:
4259    return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
4260                            get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4261  case X86::VMOVUPSZ128mr_NOVLX:
4262    return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
4263                            get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4264  case X86::VMOVAPSZ256mr_NOVLX:
4265    return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
4266                            get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
4267  case X86::VMOVUPSZ256mr_NOVLX:
4268    return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
4269                            get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
4270  case X86::MOV32ri64:
4271    MI.setDesc(get(X86::MOV32ri));
4272    return true;
4273
4274  // KNL does not recognize dependency-breaking idioms for mask registers,
4275  // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
4276  // Using %k0 as the undef input register is a performance heuristic based
4277  // on the assumption that %k0 is used less frequently than the other mask
4278  // registers, since it is not usable as a write mask.
4279  // FIXME: A more advanced approach would be to choose the best input mask
4280  // register based on context.
4281  case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
4282  case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
4283  case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
4284  case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
4285  case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
4286  case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
4287  case TargetOpcode::LOAD_STACK_GUARD:
4288    expandLoadStackGuard(MIB, *this);
4289    return true;
4290  case X86::XOR64_FP:
4291  case X86::XOR32_FP:
4292    return expandXorFP(MIB, *this);
4293  }
4294  return false;
4295}
4296
4297/// Return true for all instructions that only update
4298/// the first 32 or 64-bits of the destination register and leave the rest
4299/// unmodified. This can be used to avoid folding loads if the instructions
4300/// only update part of the destination register, and the non-updated part is
4301/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
4302/// instructions breaks the partial register dependency and it can improve
4303/// performance. e.g.:
4304///
4305///   movss (%rdi), %xmm0
4306///   cvtss2sd %xmm0, %xmm0
4307///
4308/// Instead of
4309///   cvtss2sd (%rdi), %xmm0
4310///
4311/// FIXME: This should be turned into a TSFlags.
4312///
4313static bool hasPartialRegUpdate(unsigned Opcode,
4314                                const X86Subtarget &Subtarget) {
4315  switch (Opcode) {
4316  case X86::CVTSI2SSrr:
4317  case X86::CVTSI2SSrm:
4318  case X86::CVTSI642SSrr:
4319  case X86::CVTSI642SSrm:
4320  case X86::CVTSI2SDrr:
4321  case X86::CVTSI2SDrm:
4322  case X86::CVTSI642SDrr:
4323  case X86::CVTSI642SDrm:
4324  case X86::CVTSD2SSrr:
4325  case X86::CVTSD2SSrm:
4326  case X86::CVTSS2SDrr:
4327  case X86::CVTSS2SDrm:
4328  case X86::MOVHPDrm:
4329  case X86::MOVHPSrm:
4330  case X86::MOVLPDrm:
4331  case X86::MOVLPSrm:
4332  case X86::RCPSSr:
4333  case X86::RCPSSm:
4334  case X86::RCPSSr_Int:
4335  case X86::RCPSSm_Int:
4336  case X86::ROUNDSDr:
4337  case X86::ROUNDSDm:
4338  case X86::ROUNDSSr:
4339  case X86::ROUNDSSm:
4340  case X86::RSQRTSSr:
4341  case X86::RSQRTSSm:
4342  case X86::RSQRTSSr_Int:
4343  case X86::RSQRTSSm_Int:
4344  case X86::SQRTSSr:
4345  case X86::SQRTSSm:
4346  case X86::SQRTSSr_Int:
4347  case X86::SQRTSSm_Int:
4348  case X86::SQRTSDr:
4349  case X86::SQRTSDm:
4350  case X86::SQRTSDr_Int:
4351  case X86::SQRTSDm_Int:
4352    return true;
4353  // GPR
4354  case X86::POPCNT32rm:
4355  case X86::POPCNT32rr:
4356  case X86::POPCNT64rm:
4357  case X86::POPCNT64rr:
4358    return Subtarget.hasPOPCNTFalseDeps();
4359  case X86::LZCNT32rm:
4360  case X86::LZCNT32rr:
4361  case X86::LZCNT64rm:
4362  case X86::LZCNT64rr:
4363  case X86::TZCNT32rm:
4364  case X86::TZCNT32rr:
4365  case X86::TZCNT64rm:
4366  case X86::TZCNT64rr:
4367    return Subtarget.hasLZCNTFalseDeps();
4368  }
4369
4370  return false;
4371}
4372
4373/// Inform the BreakFalseDeps pass how many idle
4374/// instructions we would like before a partial register update.
4375unsigned X86InstrInfo::getPartialRegUpdateClearance(
4376    const MachineInstr &MI, unsigned OpNum,
4377    const TargetRegisterInfo *TRI) const {
4378  if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
4379    return 0;
4380
4381  // If MI is marked as reading Reg, the partial register update is wanted.
4382  const MachineOperand &MO = MI.getOperand(0);
4383  unsigned Reg = MO.getReg();
4384  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4385    if (MO.readsReg() || MI.readsVirtualRegister(Reg))
4386      return 0;
4387  } else {
4388    if (MI.readsRegister(Reg, TRI))
4389      return 0;
4390  }
4391
4392  // If any instructions in the clearance range are reading Reg, insert a
4393  // dependency breaking instruction, which is inexpensive and is likely to
4394  // be hidden in other instruction's cycles.
4395  return PartialRegUpdateClearance;
4396}
4397
4398// Return true for any instruction the copies the high bits of the first source
4399// operand into the unused high bits of the destination operand.
4400static bool hasUndefRegUpdate(unsigned Opcode) {
4401  switch (Opcode) {
4402  case X86::VCVTSI2SSrr:
4403  case X86::VCVTSI2SSrm:
4404  case X86::VCVTSI2SSrr_Int:
4405  case X86::VCVTSI2SSrm_Int:
4406  case X86::VCVTSI642SSrr:
4407  case X86::VCVTSI642SSrm:
4408  case X86::VCVTSI642SSrr_Int:
4409  case X86::VCVTSI642SSrm_Int:
4410  case X86::VCVTSI2SDrr:
4411  case X86::VCVTSI2SDrm:
4412  case X86::VCVTSI2SDrr_Int:
4413  case X86::VCVTSI2SDrm_Int:
4414  case X86::VCVTSI642SDrr:
4415  case X86::VCVTSI642SDrm:
4416  case X86::VCVTSI642SDrr_Int:
4417  case X86::VCVTSI642SDrm_Int:
4418  case X86::VCVTSD2SSrr:
4419  case X86::VCVTSD2SSrm:
4420  case X86::VCVTSD2SSrr_Int:
4421  case X86::VCVTSD2SSrm_Int:
4422  case X86::VCVTSS2SDrr:
4423  case X86::VCVTSS2SDrm:
4424  case X86::VCVTSS2SDrr_Int:
4425  case X86::VCVTSS2SDrm_Int:
4426  case X86::VRCPSSr:
4427  case X86::VRCPSSr_Int:
4428  case X86::VRCPSSm:
4429  case X86::VRCPSSm_Int:
4430  case X86::VROUNDSDr:
4431  case X86::VROUNDSDm:
4432  case X86::VROUNDSDr_Int:
4433  case X86::VROUNDSDm_Int:
4434  case X86::VROUNDSSr:
4435  case X86::VROUNDSSm:
4436  case X86::VROUNDSSr_Int:
4437  case X86::VROUNDSSm_Int:
4438  case X86::VRSQRTSSr:
4439  case X86::VRSQRTSSr_Int:
4440  case X86::VRSQRTSSm:
4441  case X86::VRSQRTSSm_Int:
4442  case X86::VSQRTSSr:
4443  case X86::VSQRTSSr_Int:
4444  case X86::VSQRTSSm:
4445  case X86::VSQRTSSm_Int:
4446  case X86::VSQRTSDr:
4447  case X86::VSQRTSDr_Int:
4448  case X86::VSQRTSDm:
4449  case X86::VSQRTSDm_Int:
4450  // AVX-512
4451  case X86::VCVTSI2SSZrr:
4452  case X86::VCVTSI2SSZrm:
4453  case X86::VCVTSI2SSZrr_Int:
4454  case X86::VCVTSI2SSZrrb_Int:
4455  case X86::VCVTSI2SSZrm_Int:
4456  case X86::VCVTSI642SSZrr:
4457  case X86::VCVTSI642SSZrm:
4458  case X86::VCVTSI642SSZrr_Int:
4459  case X86::VCVTSI642SSZrrb_Int:
4460  case X86::VCVTSI642SSZrm_Int:
4461  case X86::VCVTSI2SDZrr:
4462  case X86::VCVTSI2SDZrm:
4463  case X86::VCVTSI2SDZrr_Int:
4464  case X86::VCVTSI2SDZrrb_Int:
4465  case X86::VCVTSI2SDZrm_Int:
4466  case X86::VCVTSI642SDZrr:
4467  case X86::VCVTSI642SDZrm:
4468  case X86::VCVTSI642SDZrr_Int:
4469  case X86::VCVTSI642SDZrrb_Int:
4470  case X86::VCVTSI642SDZrm_Int:
4471  case X86::VCVTUSI2SSZrr:
4472  case X86::VCVTUSI2SSZrm:
4473  case X86::VCVTUSI2SSZrr_Int:
4474  case X86::VCVTUSI2SSZrrb_Int:
4475  case X86::VCVTUSI2SSZrm_Int:
4476  case X86::VCVTUSI642SSZrr:
4477  case X86::VCVTUSI642SSZrm:
4478  case X86::VCVTUSI642SSZrr_Int:
4479  case X86::VCVTUSI642SSZrrb_Int:
4480  case X86::VCVTUSI642SSZrm_Int:
4481  case X86::VCVTUSI2SDZrr:
4482  case X86::VCVTUSI2SDZrm:
4483  case X86::VCVTUSI2SDZrr_Int:
4484  case X86::VCVTUSI2SDZrm_Int:
4485  case X86::VCVTUSI642SDZrr:
4486  case X86::VCVTUSI642SDZrm:
4487  case X86::VCVTUSI642SDZrr_Int:
4488  case X86::VCVTUSI642SDZrrb_Int:
4489  case X86::VCVTUSI642SDZrm_Int:
4490  case X86::VCVTSD2SSZrr:
4491  case X86::VCVTSD2SSZrr_Int:
4492  case X86::VCVTSD2SSZrrb_Int:
4493  case X86::VCVTSD2SSZrm:
4494  case X86::VCVTSD2SSZrm_Int:
4495  case X86::VCVTSS2SDZrr:
4496  case X86::VCVTSS2SDZrr_Int:
4497  case X86::VCVTSS2SDZrrb_Int:
4498  case X86::VCVTSS2SDZrm:
4499  case X86::VCVTSS2SDZrm_Int:
4500  case X86::VGETEXPSDZr:
4501  case X86::VGETEXPSDZrb:
4502  case X86::VGETEXPSDZm:
4503  case X86::VGETEXPSSZr:
4504  case X86::VGETEXPSSZrb:
4505  case X86::VGETEXPSSZm:
4506  case X86::VGETMANTSDZrri:
4507  case X86::VGETMANTSDZrrib:
4508  case X86::VGETMANTSDZrmi:
4509  case X86::VGETMANTSSZrri:
4510  case X86::VGETMANTSSZrrib:
4511  case X86::VGETMANTSSZrmi:
4512  case X86::VRNDSCALESDZr:
4513  case X86::VRNDSCALESDZr_Int:
4514  case X86::VRNDSCALESDZrb_Int:
4515  case X86::VRNDSCALESDZm:
4516  case X86::VRNDSCALESDZm_Int:
4517  case X86::VRNDSCALESSZr:
4518  case X86::VRNDSCALESSZr_Int:
4519  case X86::VRNDSCALESSZrb_Int:
4520  case X86::VRNDSCALESSZm:
4521  case X86::VRNDSCALESSZm_Int:
4522  case X86::VRCP14SDZrr:
4523  case X86::VRCP14SDZrm:
4524  case X86::VRCP14SSZrr:
4525  case X86::VRCP14SSZrm:
4526  case X86::VRCP28SDZr:
4527  case X86::VRCP28SDZrb:
4528  case X86::VRCP28SDZm:
4529  case X86::VRCP28SSZr:
4530  case X86::VRCP28SSZrb:
4531  case X86::VRCP28SSZm:
4532  case X86::VREDUCESSZrmi:
4533  case X86::VREDUCESSZrri:
4534  case X86::VREDUCESSZrrib:
4535  case X86::VRSQRT14SDZrr:
4536  case X86::VRSQRT14SDZrm:
4537  case X86::VRSQRT14SSZrr:
4538  case X86::VRSQRT14SSZrm:
4539  case X86::VRSQRT28SDZr:
4540  case X86::VRSQRT28SDZrb:
4541  case X86::VRSQRT28SDZm:
4542  case X86::VRSQRT28SSZr:
4543  case X86::VRSQRT28SSZrb:
4544  case X86::VRSQRT28SSZm:
4545  case X86::VSQRTSSZr:
4546  case X86::VSQRTSSZr_Int:
4547  case X86::VSQRTSSZrb_Int:
4548  case X86::VSQRTSSZm:
4549  case X86::VSQRTSSZm_Int:
4550  case X86::VSQRTSDZr:
4551  case X86::VSQRTSDZr_Int:
4552  case X86::VSQRTSDZrb_Int:
4553  case X86::VSQRTSDZm:
4554  case X86::VSQRTSDZm_Int:
4555    return true;
4556  }
4557
4558  return false;
4559}
4560
4561/// Inform the BreakFalseDeps pass how many idle instructions we would like
4562/// before certain undef register reads.
4563///
4564/// This catches the VCVTSI2SD family of instructions:
4565///
4566/// vcvtsi2sdq %rax, undef %xmm0, %xmm14
4567///
4568/// We should to be careful *not* to catch VXOR idioms which are presumably
4569/// handled specially in the pipeline:
4570///
4571/// vxorps undef %xmm1, undef %xmm1, %xmm1
4572///
4573/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
4574/// high bits that are passed-through are not live.
4575unsigned
4576X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
4577                                   const TargetRegisterInfo *TRI) const {
4578  if (!hasUndefRegUpdate(MI.getOpcode()))
4579    return 0;
4580
4581  // Set the OpNum parameter to the first source operand.
4582  OpNum = 1;
4583
4584  const MachineOperand &MO = MI.getOperand(OpNum);
4585  if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
4586    return UndefRegClearance;
4587  }
4588  return 0;
4589}
4590
4591void X86InstrInfo::breakPartialRegDependency(
4592    MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
4593  unsigned Reg = MI.getOperand(OpNum).getReg();
4594  // If MI kills this register, the false dependence is already broken.
4595  if (MI.killsRegister(Reg, TRI))
4596    return;
4597
4598  if (X86::VR128RegClass.contains(Reg)) {
4599    // These instructions are all floating point domain, so xorps is the best
4600    // choice.
4601    unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
4602    BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
4603        .addReg(Reg, RegState::Undef)
4604        .addReg(Reg, RegState::Undef);
4605    MI.addRegisterKilled(Reg, TRI, true);
4606  } else if (X86::VR256RegClass.contains(Reg)) {
4607    // Use vxorps to clear the full ymm register.
4608    // It wants to read and write the xmm sub-register.
4609    unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
4610    BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
4611        .addReg(XReg, RegState::Undef)
4612        .addReg(XReg, RegState::Undef)
4613        .addReg(Reg, RegState::ImplicitDefine);
4614    MI.addRegisterKilled(Reg, TRI, true);
4615  } else if (X86::GR64RegClass.contains(Reg)) {
4616    // Using XOR32rr because it has shorter encoding and zeros up the upper bits
4617    // as well.
4618    unsigned XReg = TRI->getSubReg(Reg, X86::sub_32bit);
4619    BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
4620        .addReg(XReg, RegState::Undef)
4621        .addReg(XReg, RegState::Undef)
4622        .addReg(Reg, RegState::ImplicitDefine);
4623    MI.addRegisterKilled(Reg, TRI, true);
4624  } else if (X86::GR32RegClass.contains(Reg)) {
4625    BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
4626        .addReg(Reg, RegState::Undef)
4627        .addReg(Reg, RegState::Undef);
4628    MI.addRegisterKilled(Reg, TRI, true);
4629  }
4630}
4631
4632static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
4633                        int PtrOffset = 0) {
4634  unsigned NumAddrOps = MOs.size();
4635
4636  if (NumAddrOps < 4) {
4637    // FrameIndex only - add an immediate offset (whether its zero or not).
4638    for (unsigned i = 0; i != NumAddrOps; ++i)
4639      MIB.add(MOs[i]);
4640    addOffset(MIB, PtrOffset);
4641  } else {
4642    // General Memory Addressing - we need to add any offset to an existing
4643    // offset.
4644    assert(MOs.size() == 5 && "Unexpected memory operand list length");
4645    for (unsigned i = 0; i != NumAddrOps; ++i) {
4646      const MachineOperand &MO = MOs[i];
4647      if (i == 3 && PtrOffset != 0) {
4648        MIB.addDisp(MO, PtrOffset);
4649      } else {
4650        MIB.add(MO);
4651      }
4652    }
4653  }
4654}
4655
4656static void updateOperandRegConstraints(MachineFunction &MF,
4657                                        MachineInstr &NewMI,
4658                                        const TargetInstrInfo &TII) {
4659  MachineRegisterInfo &MRI = MF.getRegInfo();
4660  const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
4661
4662  for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
4663    MachineOperand &MO = NewMI.getOperand(Idx);
4664    // We only need to update constraints on virtual register operands.
4665    if (!MO.isReg())
4666      continue;
4667    unsigned Reg = MO.getReg();
4668    if (!TRI.isVirtualRegister(Reg))
4669      continue;
4670
4671    auto *NewRC = MRI.constrainRegClass(
4672        Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
4673    if (!NewRC) {
4674      LLVM_DEBUG(
4675          dbgs() << "WARNING: Unable to update register constraint for operand "
4676                 << Idx << " of instruction:\n";
4677          NewMI.dump(); dbgs() << "\n");
4678    }
4679  }
4680}
4681
4682static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
4683                                     ArrayRef<MachineOperand> MOs,
4684                                     MachineBasicBlock::iterator InsertPt,
4685                                     MachineInstr &MI,
4686                                     const TargetInstrInfo &TII) {
4687  // Create the base instruction with the memory operand as the first part.
4688  // Omit the implicit operands, something BuildMI can't do.
4689  MachineInstr *NewMI =
4690      MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
4691  MachineInstrBuilder MIB(MF, NewMI);
4692  addOperands(MIB, MOs);
4693
4694  // Loop over the rest of the ri operands, converting them over.
4695  unsigned NumOps = MI.getDesc().getNumOperands() - 2;
4696  for (unsigned i = 0; i != NumOps; ++i) {
4697    MachineOperand &MO = MI.getOperand(i + 2);
4698    MIB.add(MO);
4699  }
4700  for (unsigned i = NumOps + 2, e = MI.getNumOperands(); i != e; ++i) {
4701    MachineOperand &MO = MI.getOperand(i);
4702    MIB.add(MO);
4703  }
4704
4705  updateOperandRegConstraints(MF, *NewMI, TII);
4706
4707  MachineBasicBlock *MBB = InsertPt->getParent();
4708  MBB->insert(InsertPt, NewMI);
4709
4710  return MIB;
4711}
4712
4713static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
4714                              unsigned OpNo, ArrayRef<MachineOperand> MOs,
4715                              MachineBasicBlock::iterator InsertPt,
4716                              MachineInstr &MI, const TargetInstrInfo &TII,
4717                              int PtrOffset = 0) {
4718  // Omit the implicit operands, something BuildMI can't do.
4719  MachineInstr *NewMI =
4720      MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
4721  MachineInstrBuilder MIB(MF, NewMI);
4722
4723  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
4724    MachineOperand &MO = MI.getOperand(i);
4725    if (i == OpNo) {
4726      assert(MO.isReg() && "Expected to fold into reg operand!");
4727      addOperands(MIB, MOs, PtrOffset);
4728    } else {
4729      MIB.add(MO);
4730    }
4731  }
4732
4733  updateOperandRegConstraints(MF, *NewMI, TII);
4734
4735  MachineBasicBlock *MBB = InsertPt->getParent();
4736  MBB->insert(InsertPt, NewMI);
4737
4738  return MIB;
4739}
4740
4741static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
4742                                ArrayRef<MachineOperand> MOs,
4743                                MachineBasicBlock::iterator InsertPt,
4744                                MachineInstr &MI) {
4745  MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
4746                                    MI.getDebugLoc(), TII.get(Opcode));
4747  addOperands(MIB, MOs);
4748  return MIB.addImm(0);
4749}
4750
4751MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
4752    MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
4753    ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
4754    unsigned Size, unsigned Align) const {
4755  switch (MI.getOpcode()) {
4756  case X86::INSERTPSrr:
4757  case X86::VINSERTPSrr:
4758  case X86::VINSERTPSZrr:
4759    // Attempt to convert the load of inserted vector into a fold load
4760    // of a single float.
4761    if (OpNum == 2) {
4762      unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
4763      unsigned ZMask = Imm & 15;
4764      unsigned DstIdx = (Imm >> 4) & 3;
4765      unsigned SrcIdx = (Imm >> 6) & 3;
4766
4767      const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4768      const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4769      unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4770      if (Size <= RCSize && 4 <= Align) {
4771        int PtrOffset = SrcIdx * 4;
4772        unsigned NewImm = (DstIdx << 4) | ZMask;
4773        unsigned NewOpCode =
4774            (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm :
4775            (MI.getOpcode() == X86::VINSERTPSrr)  ? X86::VINSERTPSrm  :
4776                                                    X86::INSERTPSrm;
4777        MachineInstr *NewMI =
4778            FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
4779        NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
4780        return NewMI;
4781      }
4782    }
4783    break;
4784  case X86::MOVHLPSrr:
4785  case X86::VMOVHLPSrr:
4786  case X86::VMOVHLPSZrr:
4787    // Move the upper 64-bits of the second operand to the lower 64-bits.
4788    // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
4789    // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
4790    if (OpNum == 2) {
4791      const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4792      const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4793      unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4794      if (Size <= RCSize && 8 <= Align) {
4795        unsigned NewOpCode =
4796            (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm :
4797            (MI.getOpcode() == X86::VMOVHLPSrr)  ? X86::VMOVLPSrm     :
4798                                                   X86::MOVLPSrm;
4799        MachineInstr *NewMI =
4800            FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
4801        return NewMI;
4802      }
4803    }
4804    break;
4805  };
4806
4807  return nullptr;
4808}
4809
4810static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF, MachineInstr &MI) {
4811  if (MF.getFunction().optForSize() || !hasUndefRegUpdate(MI.getOpcode()) ||
4812      !MI.getOperand(1).isReg())
4813    return false;
4814
4815  // The are two cases we need to handle depending on where in the pipeline
4816  // the folding attempt is being made.
4817  // -Register has the undef flag set.
4818  // -Register is produced by the IMPLICIT_DEF instruction.
4819
4820  if (MI.getOperand(1).isUndef())
4821    return true;
4822
4823  MachineRegisterInfo &RegInfo = MF.getRegInfo();
4824  MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
4825  return VRegDef && VRegDef->isImplicitDef();
4826}
4827
4828
4829MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
4830    MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
4831    ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
4832    unsigned Size, unsigned Align, bool AllowCommute) const {
4833  bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
4834  bool isTwoAddrFold = false;
4835
4836  // For CPUs that favor the register form of a call or push,
4837  // do not fold loads into calls or pushes, unless optimizing for size
4838  // aggressively.
4839  if (isSlowTwoMemOps && !MF.getFunction().optForMinSize() &&
4840      (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
4841       MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
4842       MI.getOpcode() == X86::PUSH64r))
4843    return nullptr;
4844
4845  // Avoid partial and undef register update stalls unless optimizing for size.
4846  if (!MF.getFunction().optForSize() &&
4847      (hasPartialRegUpdate(MI.getOpcode(), Subtarget) ||
4848       shouldPreventUndefRegUpdateMemFold(MF, MI)))
4849    return nullptr;
4850
4851  unsigned NumOps = MI.getDesc().getNumOperands();
4852  bool isTwoAddr =
4853      NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
4854
4855  // FIXME: AsmPrinter doesn't know how to handle
4856  // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
4857  if (MI.getOpcode() == X86::ADD32ri &&
4858      MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
4859    return nullptr;
4860
4861  // GOTTPOFF relocation loads can only be folded into add instructions.
4862  // FIXME: Need to exclude other relocations that only support specific
4863  // instructions.
4864  if (MOs.size() == X86::AddrNumOperands &&
4865      MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
4866      MI.getOpcode() != X86::ADD64rr)
4867    return nullptr;
4868
4869  MachineInstr *NewMI = nullptr;
4870
4871  // Attempt to fold any custom cases we have.
4872  if (MachineInstr *CustomMI =
4873          foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt, Size, Align))
4874    return CustomMI;
4875
4876  const X86MemoryFoldTableEntry *I = nullptr;
4877
4878  // Folding a memory location into the two-address part of a two-address
4879  // instruction is different than folding it other places.  It requires
4880  // replacing the *two* registers with the memory location.
4881  if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
4882      MI.getOperand(1).isReg() &&
4883      MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
4884    I = lookupTwoAddrFoldTable(MI.getOpcode());
4885    isTwoAddrFold = true;
4886  } else {
4887    if (OpNum == 0) {
4888      if (MI.getOpcode() == X86::MOV32r0) {
4889        NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
4890        if (NewMI)
4891          return NewMI;
4892      }
4893    }
4894
4895    I = lookupFoldTable(MI.getOpcode(), OpNum);
4896  }
4897
4898  if (I != nullptr) {
4899    unsigned Opcode = I->DstOp;
4900    unsigned MinAlign = (I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
4901    if (Align < MinAlign)
4902      return nullptr;
4903    bool NarrowToMOV32rm = false;
4904    if (Size) {
4905      const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4906      const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum,
4907                                                  &RI, MF);
4908      unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4909      if (Size < RCSize) {
4910        // Check if it's safe to fold the load. If the size of the object is
4911        // narrower than the load width, then it's not.
4912        if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
4913          return nullptr;
4914        // If this is a 64-bit load, but the spill slot is 32, then we can do
4915        // a 32-bit load which is implicitly zero-extended. This likely is
4916        // due to live interval analysis remat'ing a load from stack slot.
4917        if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
4918          return nullptr;
4919        Opcode = X86::MOV32rm;
4920        NarrowToMOV32rm = true;
4921      }
4922    }
4923
4924    if (isTwoAddrFold)
4925      NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
4926    else
4927      NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
4928
4929    if (NarrowToMOV32rm) {
4930      // If this is the special case where we use a MOV32rm to load a 32-bit
4931      // value and zero-extend the top bits. Change the destination register
4932      // to a 32-bit one.
4933      unsigned DstReg = NewMI->getOperand(0).getReg();
4934      if (TargetRegisterInfo::isPhysicalRegister(DstReg))
4935        NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
4936      else
4937        NewMI->getOperand(0).setSubReg(X86::sub_32bit);
4938    }
4939    return NewMI;
4940  }
4941
4942  // If the instruction and target operand are commutable, commute the
4943  // instruction and try again.
4944  if (AllowCommute) {
4945    unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
4946    if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
4947      bool HasDef = MI.getDesc().getNumDefs();
4948      unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0;
4949      unsigned Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
4950      unsigned Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
4951      bool Tied1 =
4952          0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
4953      bool Tied2 =
4954          0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
4955
4956      // If either of the commutable operands are tied to the destination
4957      // then we can not commute + fold.
4958      if ((HasDef && Reg0 == Reg1 && Tied1) ||
4959          (HasDef && Reg0 == Reg2 && Tied2))
4960        return nullptr;
4961
4962      MachineInstr *CommutedMI =
4963          commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
4964      if (!CommutedMI) {
4965        // Unable to commute.
4966        return nullptr;
4967      }
4968      if (CommutedMI != &MI) {
4969        // New instruction. We can't fold from this.
4970        CommutedMI->eraseFromParent();
4971        return nullptr;
4972      }
4973
4974      // Attempt to fold with the commuted version of the instruction.
4975      NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt,
4976                                    Size, Align, /*AllowCommute=*/false);
4977      if (NewMI)
4978        return NewMI;
4979
4980      // Folding failed again - undo the commute before returning.
4981      MachineInstr *UncommutedMI =
4982          commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
4983      if (!UncommutedMI) {
4984        // Unable to commute.
4985        return nullptr;
4986      }
4987      if (UncommutedMI != &MI) {
4988        // New instruction. It doesn't need to be kept.
4989        UncommutedMI->eraseFromParent();
4990        return nullptr;
4991      }
4992
4993      // Return here to prevent duplicate fuse failure report.
4994      return nullptr;
4995    }
4996  }
4997
4998  // No fusion
4999  if (PrintFailedFusing && !MI.isCopy())
5000    dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
5001  return nullptr;
5002}
5003
5004MachineInstr *
5005X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
5006                                    ArrayRef<unsigned> Ops,
5007                                    MachineBasicBlock::iterator InsertPt,
5008                                    int FrameIndex, LiveIntervals *LIS) const {
5009  // Check switch flag
5010  if (NoFusing)
5011    return nullptr;
5012
5013  // Avoid partial and undef register update stalls unless optimizing for size.
5014  if (!MF.getFunction().optForSize() &&
5015      (hasPartialRegUpdate(MI.getOpcode(), Subtarget) ||
5016       shouldPreventUndefRegUpdateMemFold(MF, MI)))
5017    return nullptr;
5018
5019  // Don't fold subreg spills, or reloads that use a high subreg.
5020  for (auto Op : Ops) {
5021    MachineOperand &MO = MI.getOperand(Op);
5022    auto SubReg = MO.getSubReg();
5023    if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
5024      return nullptr;
5025  }
5026
5027  const MachineFrameInfo &MFI = MF.getFrameInfo();
5028  unsigned Size = MFI.getObjectSize(FrameIndex);
5029  unsigned Alignment = MFI.getObjectAlignment(FrameIndex);
5030  // If the function stack isn't realigned we don't want to fold instructions
5031  // that need increased alignment.
5032  if (!RI.needsStackRealignment(MF))
5033    Alignment =
5034        std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment());
5035  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5036    unsigned NewOpc = 0;
5037    unsigned RCSize = 0;
5038    switch (MI.getOpcode()) {
5039    default: return nullptr;
5040    case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
5041    case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
5042    case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
5043    case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
5044    }
5045    // Check if it's safe to fold the load. If the size of the object is
5046    // narrower than the load width, then it's not.
5047    if (Size < RCSize)
5048      return nullptr;
5049    // Change to CMPXXri r, 0 first.
5050    MI.setDesc(get(NewOpc));
5051    MI.getOperand(1).ChangeToImmediate(0);
5052  } else if (Ops.size() != 1)
5053    return nullptr;
5054
5055  return foldMemoryOperandImpl(MF, MI, Ops[0],
5056                               MachineOperand::CreateFI(FrameIndex), InsertPt,
5057                               Size, Alignment, /*AllowCommute=*/true);
5058}
5059
5060/// Check if \p LoadMI is a partial register load that we can't fold into \p MI
5061/// because the latter uses contents that wouldn't be defined in the folded
5062/// version.  For instance, this transformation isn't legal:
5063///   movss (%rdi), %xmm0
5064///   addps %xmm0, %xmm0
5065/// ->
5066///   addps (%rdi), %xmm0
5067///
5068/// But this one is:
5069///   movss (%rdi), %xmm0
5070///   addss %xmm0, %xmm0
5071/// ->
5072///   addss (%rdi), %xmm0
5073///
5074static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
5075                                             const MachineInstr &UserMI,
5076                                             const MachineFunction &MF) {
5077  unsigned Opc = LoadMI.getOpcode();
5078  unsigned UserOpc = UserMI.getOpcode();
5079  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5080  const TargetRegisterClass *RC =
5081      MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
5082  unsigned RegSize = TRI.getRegSizeInBits(*RC);
5083
5084  if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm) &&
5085      RegSize > 32) {
5086    // These instructions only load 32 bits, we can't fold them if the
5087    // destination register is wider than 32 bits (4 bytes), and its user
5088    // instruction isn't scalar (SS).
5089    switch (UserOpc) {
5090    case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int:
5091    case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int:
5092    case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int:
5093    case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int:
5094    case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int:
5095    case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int:
5096    case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int:
5097    case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz:
5098    case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz:
5099    case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz:
5100    case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz:
5101    case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz:
5102    case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz:
5103    case X86::VFMADDSS4rr_Int:   case X86::VFNMADDSS4rr_Int:
5104    case X86::VFMSUBSS4rr_Int:   case X86::VFNMSUBSS4rr_Int:
5105    case X86::VFMADD132SSr_Int:  case X86::VFNMADD132SSr_Int:
5106    case X86::VFMADD213SSr_Int:  case X86::VFNMADD213SSr_Int:
5107    case X86::VFMADD231SSr_Int:  case X86::VFNMADD231SSr_Int:
5108    case X86::VFMSUB132SSr_Int:  case X86::VFNMSUB132SSr_Int:
5109    case X86::VFMSUB213SSr_Int:  case X86::VFNMSUB213SSr_Int:
5110    case X86::VFMSUB231SSr_Int:  case X86::VFNMSUB231SSr_Int:
5111    case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int:
5112    case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int:
5113    case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int:
5114    case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int:
5115    case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int:
5116    case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int:
5117    case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk:
5118    case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk:
5119    case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk:
5120    case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk:
5121    case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk:
5122    case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk:
5123    case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz:
5124    case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz:
5125    case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz:
5126    case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz:
5127    case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz:
5128    case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz:
5129      return false;
5130    default:
5131      return true;
5132    }
5133  }
5134
5135  if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm) &&
5136      RegSize > 64) {
5137    // These instructions only load 64 bits, we can't fold them if the
5138    // destination register is wider than 64 bits (8 bytes), and its user
5139    // instruction isn't scalar (SD).
5140    switch (UserOpc) {
5141    case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int:
5142    case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int:
5143    case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int:
5144    case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int:
5145    case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int:
5146    case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int:
5147    case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int:
5148    case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz:
5149    case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz:
5150    case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz:
5151    case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz:
5152    case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz:
5153    case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz:
5154    case X86::VFMADDSD4rr_Int:   case X86::VFNMADDSD4rr_Int:
5155    case X86::VFMSUBSD4rr_Int:   case X86::VFNMSUBSD4rr_Int:
5156    case X86::VFMADD132SDr_Int:  case X86::VFNMADD132SDr_Int:
5157    case X86::VFMADD213SDr_Int:  case X86::VFNMADD213SDr_Int:
5158    case X86::VFMADD231SDr_Int:  case X86::VFNMADD231SDr_Int:
5159    case X86::VFMSUB132SDr_Int:  case X86::VFNMSUB132SDr_Int:
5160    case X86::VFMSUB213SDr_Int:  case X86::VFNMSUB213SDr_Int:
5161    case X86::VFMSUB231SDr_Int:  case X86::VFNMSUB231SDr_Int:
5162    case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int:
5163    case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int:
5164    case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int:
5165    case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int:
5166    case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int:
5167    case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int:
5168    case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk:
5169    case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk:
5170    case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk:
5171    case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk:
5172    case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk:
5173    case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk:
5174    case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz:
5175    case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz:
5176    case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz:
5177    case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz:
5178    case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz:
5179    case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz:
5180      return false;
5181    default:
5182      return true;
5183    }
5184  }
5185
5186  return false;
5187}
5188
5189MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
5190    MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
5191    MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
5192    LiveIntervals *LIS) const {
5193
5194  // TODO: Support the case where LoadMI loads a wide register, but MI
5195  // only uses a subreg.
5196  for (auto Op : Ops) {
5197    if (MI.getOperand(Op).getSubReg())
5198      return nullptr;
5199  }
5200
5201  // If loading from a FrameIndex, fold directly from the FrameIndex.
5202  unsigned NumOps = LoadMI.getDesc().getNumOperands();
5203  int FrameIndex;
5204  if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
5205    if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
5206      return nullptr;
5207    return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
5208  }
5209
5210  // Check switch flag
5211  if (NoFusing) return nullptr;
5212
5213  // Avoid partial and undef register update stalls unless optimizing for size.
5214  if (!MF.getFunction().optForSize() &&
5215      (hasPartialRegUpdate(MI.getOpcode(), Subtarget) ||
5216       shouldPreventUndefRegUpdateMemFold(MF, MI)))
5217    return nullptr;
5218
5219  // Determine the alignment of the load.
5220  unsigned Alignment = 0;
5221  if (LoadMI.hasOneMemOperand())
5222    Alignment = (*LoadMI.memoperands_begin())->getAlignment();
5223  else
5224    switch (LoadMI.getOpcode()) {
5225    case X86::AVX512_512_SET0:
5226    case X86::AVX512_512_SETALLONES:
5227      Alignment = 64;
5228      break;
5229    case X86::AVX2_SETALLONES:
5230    case X86::AVX1_SETALLONES:
5231    case X86::AVX_SET0:
5232    case X86::AVX512_256_SET0:
5233      Alignment = 32;
5234      break;
5235    case X86::V_SET0:
5236    case X86::V_SETALLONES:
5237    case X86::AVX512_128_SET0:
5238      Alignment = 16;
5239      break;
5240    case X86::MMX_SET0:
5241    case X86::FsFLD0SD:
5242    case X86::AVX512_FsFLD0SD:
5243      Alignment = 8;
5244      break;
5245    case X86::FsFLD0SS:
5246    case X86::AVX512_FsFLD0SS:
5247      Alignment = 4;
5248      break;
5249    default:
5250      return nullptr;
5251    }
5252  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5253    unsigned NewOpc = 0;
5254    switch (MI.getOpcode()) {
5255    default: return nullptr;
5256    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
5257    case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
5258    case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
5259    case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
5260    }
5261    // Change to CMPXXri r, 0 first.
5262    MI.setDesc(get(NewOpc));
5263    MI.getOperand(1).ChangeToImmediate(0);
5264  } else if (Ops.size() != 1)
5265    return nullptr;
5266
5267  // Make sure the subregisters match.
5268  // Otherwise we risk changing the size of the load.
5269  if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
5270    return nullptr;
5271
5272  SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
5273  switch (LoadMI.getOpcode()) {
5274  case X86::MMX_SET0:
5275  case X86::V_SET0:
5276  case X86::V_SETALLONES:
5277  case X86::AVX2_SETALLONES:
5278  case X86::AVX1_SETALLONES:
5279  case X86::AVX_SET0:
5280  case X86::AVX512_128_SET0:
5281  case X86::AVX512_256_SET0:
5282  case X86::AVX512_512_SET0:
5283  case X86::AVX512_512_SETALLONES:
5284  case X86::FsFLD0SD:
5285  case X86::AVX512_FsFLD0SD:
5286  case X86::FsFLD0SS:
5287  case X86::AVX512_FsFLD0SS: {
5288    // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
5289    // Create a constant-pool entry and operands to load from it.
5290
5291    // Medium and large mode can't fold loads this way.
5292    if (MF.getTarget().getCodeModel() != CodeModel::Small &&
5293        MF.getTarget().getCodeModel() != CodeModel::Kernel)
5294      return nullptr;
5295
5296    // x86-32 PIC requires a PIC base register for constant pools.
5297    unsigned PICBase = 0;
5298    if (MF.getTarget().isPositionIndependent()) {
5299      if (Subtarget.is64Bit())
5300        PICBase = X86::RIP;
5301      else
5302        // FIXME: PICBase = getGlobalBaseReg(&MF);
5303        // This doesn't work for several reasons.
5304        // 1. GlobalBaseReg may have been spilled.
5305        // 2. It may not be live at MI.
5306        return nullptr;
5307    }
5308
5309    // Create a constant-pool entry.
5310    MachineConstantPool &MCP = *MF.getConstantPool();
5311    Type *Ty;
5312    unsigned Opc = LoadMI.getOpcode();
5313    if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
5314      Ty = Type::getFloatTy(MF.getFunction().getContext());
5315    else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
5316      Ty = Type::getDoubleTy(MF.getFunction().getContext());
5317    else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
5318      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),16);
5319    else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
5320             Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES)
5321      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 8);
5322    else if (Opc == X86::MMX_SET0)
5323      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 2);
5324    else
5325      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 4);
5326
5327    bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
5328                      Opc == X86::AVX512_512_SETALLONES ||
5329                      Opc == X86::AVX1_SETALLONES);
5330    const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
5331                                    Constant::getNullValue(Ty);
5332    unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
5333
5334    // Create operands to load from the constant pool entry.
5335    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
5336    MOs.push_back(MachineOperand::CreateImm(1));
5337    MOs.push_back(MachineOperand::CreateReg(0, false));
5338    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
5339    MOs.push_back(MachineOperand::CreateReg(0, false));
5340    break;
5341  }
5342  default: {
5343    if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
5344      return nullptr;
5345
5346    // Folding a normal load. Just copy the load's address operands.
5347    MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
5348               LoadMI.operands_begin() + NumOps);
5349    break;
5350  }
5351  }
5352  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
5353                               /*Size=*/0, Alignment, /*AllowCommute=*/true);
5354}
5355
5356bool X86InstrInfo::unfoldMemoryOperand(
5357    MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
5358    bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
5359  const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
5360  if (I == nullptr)
5361    return false;
5362  unsigned Opc = I->DstOp;
5363  unsigned Index = I->Flags & TB_INDEX_MASK;
5364  bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5365  bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5366  if (UnfoldLoad && !FoldedLoad)
5367    return false;
5368  UnfoldLoad &= FoldedLoad;
5369  if (UnfoldStore && !FoldedStore)
5370    return false;
5371  UnfoldStore &= FoldedStore;
5372
5373  const MCInstrDesc &MCID = get(Opc);
5374  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
5375  // TODO: Check if 32-byte or greater accesses are slow too?
5376  if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
5377      Subtarget.isUnalignedMem16Slow())
5378    // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
5379    // conservatively assume the address is unaligned. That's bad for
5380    // performance.
5381    return false;
5382  SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
5383  SmallVector<MachineOperand,2> BeforeOps;
5384  SmallVector<MachineOperand,2> AfterOps;
5385  SmallVector<MachineOperand,4> ImpOps;
5386  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
5387    MachineOperand &Op = MI.getOperand(i);
5388    if (i >= Index && i < Index + X86::AddrNumOperands)
5389      AddrOps.push_back(Op);
5390    else if (Op.isReg() && Op.isImplicit())
5391      ImpOps.push_back(Op);
5392    else if (i < Index)
5393      BeforeOps.push_back(Op);
5394    else if (i > Index)
5395      AfterOps.push_back(Op);
5396  }
5397
5398  // Emit the load instruction.
5399  if (UnfoldLoad) {
5400    std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> MMOs =
5401        MF.extractLoadMemRefs(MI.memoperands_begin(), MI.memoperands_end());
5402    loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
5403    if (UnfoldStore) {
5404      // Address operands cannot be marked isKill.
5405      for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
5406        MachineOperand &MO = NewMIs[0]->getOperand(i);
5407        if (MO.isReg())
5408          MO.setIsKill(false);
5409      }
5410    }
5411  }
5412
5413  // Emit the data processing instruction.
5414  MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
5415  MachineInstrBuilder MIB(MF, DataMI);
5416
5417  if (FoldedStore)
5418    MIB.addReg(Reg, RegState::Define);
5419  for (MachineOperand &BeforeOp : BeforeOps)
5420    MIB.add(BeforeOp);
5421  if (FoldedLoad)
5422    MIB.addReg(Reg);
5423  for (MachineOperand &AfterOp : AfterOps)
5424    MIB.add(AfterOp);
5425  for (MachineOperand &ImpOp : ImpOps) {
5426    MIB.addReg(ImpOp.getReg(),
5427               getDefRegState(ImpOp.isDef()) |
5428               RegState::Implicit |
5429               getKillRegState(ImpOp.isKill()) |
5430               getDeadRegState(ImpOp.isDead()) |
5431               getUndefRegState(ImpOp.isUndef()));
5432  }
5433  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5434  switch (DataMI->getOpcode()) {
5435  default: break;
5436  case X86::CMP64ri32:
5437  case X86::CMP64ri8:
5438  case X86::CMP32ri:
5439  case X86::CMP32ri8:
5440  case X86::CMP16ri:
5441  case X86::CMP16ri8:
5442  case X86::CMP8ri: {
5443    MachineOperand &MO0 = DataMI->getOperand(0);
5444    MachineOperand &MO1 = DataMI->getOperand(1);
5445    if (MO1.getImm() == 0) {
5446      unsigned NewOpc;
5447      switch (DataMI->getOpcode()) {
5448      default: llvm_unreachable("Unreachable!");
5449      case X86::CMP64ri8:
5450      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
5451      case X86::CMP32ri8:
5452      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
5453      case X86::CMP16ri8:
5454      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
5455      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
5456      }
5457      DataMI->setDesc(get(NewOpc));
5458      MO1.ChangeToRegister(MO0.getReg(), false);
5459    }
5460  }
5461  }
5462  NewMIs.push_back(DataMI);
5463
5464  // Emit the store instruction.
5465  if (UnfoldStore) {
5466    const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
5467    std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> MMOs =
5468        MF.extractStoreMemRefs(MI.memoperands_begin(), MI.memoperands_end());
5469    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
5470  }
5471
5472  return true;
5473}
5474
5475bool
5476X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
5477                                  SmallVectorImpl<SDNode*> &NewNodes) const {
5478  if (!N->isMachineOpcode())
5479    return false;
5480
5481  const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
5482  if (I == nullptr)
5483    return false;
5484  unsigned Opc = I->DstOp;
5485  unsigned Index = I->Flags & TB_INDEX_MASK;
5486  bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5487  bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5488  const MCInstrDesc &MCID = get(Opc);
5489  MachineFunction &MF = DAG.getMachineFunction();
5490  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5491  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
5492  unsigned NumDefs = MCID.NumDefs;
5493  std::vector<SDValue> AddrOps;
5494  std::vector<SDValue> BeforeOps;
5495  std::vector<SDValue> AfterOps;
5496  SDLoc dl(N);
5497  unsigned NumOps = N->getNumOperands();
5498  for (unsigned i = 0; i != NumOps-1; ++i) {
5499    SDValue Op = N->getOperand(i);
5500    if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
5501      AddrOps.push_back(Op);
5502    else if (i < Index-NumDefs)
5503      BeforeOps.push_back(Op);
5504    else if (i > Index-NumDefs)
5505      AfterOps.push_back(Op);
5506  }
5507  SDValue Chain = N->getOperand(NumOps-1);
5508  AddrOps.push_back(Chain);
5509
5510  // Emit the load instruction.
5511  SDNode *Load = nullptr;
5512  if (FoldedLoad) {
5513    EVT VT = *TRI.legalclasstypes_begin(*RC);
5514    std::pair<MachineInstr::mmo_iterator,
5515              MachineInstr::mmo_iterator> MMOs =
5516      MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
5517                            cast<MachineSDNode>(N)->memoperands_end());
5518    if (!(*MMOs.first) &&
5519        RC == &X86::VR128RegClass &&
5520        Subtarget.isUnalignedMem16Slow())
5521      // Do not introduce a slow unaligned load.
5522      return false;
5523    // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
5524    // memory access is slow above.
5525    unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
5526    bool isAligned = (*MMOs.first) &&
5527                     (*MMOs.first)->getAlignment() >= Alignment;
5528    Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl,
5529                              VT, MVT::Other, AddrOps);
5530    NewNodes.push_back(Load);
5531
5532    // Preserve memory reference information.
5533    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
5534  }
5535
5536  // Emit the data processing instruction.
5537  std::vector<EVT> VTs;
5538  const TargetRegisterClass *DstRC = nullptr;
5539  if (MCID.getNumDefs() > 0) {
5540    DstRC = getRegClass(MCID, 0, &RI, MF);
5541    VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
5542  }
5543  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
5544    EVT VT = N->getValueType(i);
5545    if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
5546      VTs.push_back(VT);
5547  }
5548  if (Load)
5549    BeforeOps.push_back(SDValue(Load, 0));
5550  BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end());
5551  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5552  switch (Opc) {
5553    default: break;
5554    case X86::CMP64ri32:
5555    case X86::CMP64ri8:
5556    case X86::CMP32ri:
5557    case X86::CMP32ri8:
5558    case X86::CMP16ri:
5559    case X86::CMP16ri8:
5560    case X86::CMP8ri:
5561      if (isNullConstant(BeforeOps[1])) {
5562        switch (Opc) {
5563          default: llvm_unreachable("Unreachable!");
5564          case X86::CMP64ri8:
5565          case X86::CMP64ri32: Opc = X86::TEST64rr; break;
5566          case X86::CMP32ri8:
5567          case X86::CMP32ri:   Opc = X86::TEST32rr; break;
5568          case X86::CMP16ri8:
5569          case X86::CMP16ri:   Opc = X86::TEST16rr; break;
5570          case X86::CMP8ri:    Opc = X86::TEST8rr; break;
5571        }
5572        BeforeOps[1] = BeforeOps[0];
5573      }
5574  }
5575  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
5576  NewNodes.push_back(NewNode);
5577
5578  // Emit the store instruction.
5579  if (FoldedStore) {
5580    AddrOps.pop_back();
5581    AddrOps.push_back(SDValue(NewNode, 0));
5582    AddrOps.push_back(Chain);
5583    std::pair<MachineInstr::mmo_iterator,
5584              MachineInstr::mmo_iterator> MMOs =
5585      MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
5586                             cast<MachineSDNode>(N)->memoperands_end());
5587    if (!(*MMOs.first) &&
5588        RC == &X86::VR128RegClass &&
5589        Subtarget.isUnalignedMem16Slow())
5590      // Do not introduce a slow unaligned store.
5591      return false;
5592    // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
5593    // memory access is slow above.
5594    unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
5595    bool isAligned = (*MMOs.first) &&
5596                     (*MMOs.first)->getAlignment() >= Alignment;
5597    SDNode *Store =
5598        DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
5599                           dl, MVT::Other, AddrOps);
5600    NewNodes.push_back(Store);
5601
5602    // Preserve memory reference information.
5603    cast<MachineSDNode>(Store)->setMemRefs(MMOs.first, MMOs.second);
5604  }
5605
5606  return true;
5607}
5608
5609unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
5610                                      bool UnfoldLoad, bool UnfoldStore,
5611                                      unsigned *LoadRegIndex) const {
5612  const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc);
5613  if (I == nullptr)
5614    return 0;
5615  bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5616  bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5617  if (UnfoldLoad && !FoldedLoad)
5618    return 0;
5619  if (UnfoldStore && !FoldedStore)
5620    return 0;
5621  if (LoadRegIndex)
5622    *LoadRegIndex = I->Flags & TB_INDEX_MASK;
5623  return I->DstOp;
5624}
5625
5626bool
5627X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
5628                                     int64_t &Offset1, int64_t &Offset2) const {
5629  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
5630    return false;
5631  unsigned Opc1 = Load1->getMachineOpcode();
5632  unsigned Opc2 = Load2->getMachineOpcode();
5633  switch (Opc1) {
5634  default: return false;
5635  case X86::MOV8rm:
5636  case X86::MOV16rm:
5637  case X86::MOV32rm:
5638  case X86::MOV64rm:
5639  case X86::LD_Fp32m:
5640  case X86::LD_Fp64m:
5641  case X86::LD_Fp80m:
5642  case X86::MOVSSrm:
5643  case X86::MOVSDrm:
5644  case X86::MMX_MOVD64rm:
5645  case X86::MMX_MOVQ64rm:
5646  case X86::MOVAPSrm:
5647  case X86::MOVUPSrm:
5648  case X86::MOVAPDrm:
5649  case X86::MOVUPDrm:
5650  case X86::MOVDQArm:
5651  case X86::MOVDQUrm:
5652  // AVX load instructions
5653  case X86::VMOVSSrm:
5654  case X86::VMOVSDrm:
5655  case X86::VMOVAPSrm:
5656  case X86::VMOVUPSrm:
5657  case X86::VMOVAPDrm:
5658  case X86::VMOVUPDrm:
5659  case X86::VMOVDQArm:
5660  case X86::VMOVDQUrm:
5661  case X86::VMOVAPSYrm:
5662  case X86::VMOVUPSYrm:
5663  case X86::VMOVAPDYrm:
5664  case X86::VMOVUPDYrm:
5665  case X86::VMOVDQAYrm:
5666  case X86::VMOVDQUYrm:
5667  // AVX512 load instructions
5668  case X86::VMOVSSZrm:
5669  case X86::VMOVSDZrm:
5670  case X86::VMOVAPSZ128rm:
5671  case X86::VMOVUPSZ128rm:
5672  case X86::VMOVAPSZ128rm_NOVLX:
5673  case X86::VMOVUPSZ128rm_NOVLX:
5674  case X86::VMOVAPDZ128rm:
5675  case X86::VMOVUPDZ128rm:
5676  case X86::VMOVDQU8Z128rm:
5677  case X86::VMOVDQU16Z128rm:
5678  case X86::VMOVDQA32Z128rm:
5679  case X86::VMOVDQU32Z128rm:
5680  case X86::VMOVDQA64Z128rm:
5681  case X86::VMOVDQU64Z128rm:
5682  case X86::VMOVAPSZ256rm:
5683  case X86::VMOVUPSZ256rm:
5684  case X86::VMOVAPSZ256rm_NOVLX:
5685  case X86::VMOVUPSZ256rm_NOVLX:
5686  case X86::VMOVAPDZ256rm:
5687  case X86::VMOVUPDZ256rm:
5688  case X86::VMOVDQU8Z256rm:
5689  case X86::VMOVDQU16Z256rm:
5690  case X86::VMOVDQA32Z256rm:
5691  case X86::VMOVDQU32Z256rm:
5692  case X86::VMOVDQA64Z256rm:
5693  case X86::VMOVDQU64Z256rm:
5694  case X86::VMOVAPSZrm:
5695  case X86::VMOVUPSZrm:
5696  case X86::VMOVAPDZrm:
5697  case X86::VMOVUPDZrm:
5698  case X86::VMOVDQU8Zrm:
5699  case X86::VMOVDQU16Zrm:
5700  case X86::VMOVDQA32Zrm:
5701  case X86::VMOVDQU32Zrm:
5702  case X86::VMOVDQA64Zrm:
5703  case X86::VMOVDQU64Zrm:
5704  case X86::KMOVBkm:
5705  case X86::KMOVWkm:
5706  case X86::KMOVDkm:
5707  case X86::KMOVQkm:
5708    break;
5709  }
5710  switch (Opc2) {
5711  default: return false;
5712  case X86::MOV8rm:
5713  case X86::MOV16rm:
5714  case X86::MOV32rm:
5715  case X86::MOV64rm:
5716  case X86::LD_Fp32m:
5717  case X86::LD_Fp64m:
5718  case X86::LD_Fp80m:
5719  case X86::MOVSSrm:
5720  case X86::MOVSDrm:
5721  case X86::MMX_MOVD64rm:
5722  case X86::MMX_MOVQ64rm:
5723  case X86::MOVAPSrm:
5724  case X86::MOVUPSrm:
5725  case X86::MOVAPDrm:
5726  case X86::MOVUPDrm:
5727  case X86::MOVDQArm:
5728  case X86::MOVDQUrm:
5729  // AVX load instructions
5730  case X86::VMOVSSrm:
5731  case X86::VMOVSDrm:
5732  case X86::VMOVAPSrm:
5733  case X86::VMOVUPSrm:
5734  case X86::VMOVAPDrm:
5735  case X86::VMOVUPDrm:
5736  case X86::VMOVDQArm:
5737  case X86::VMOVDQUrm:
5738  case X86::VMOVAPSYrm:
5739  case X86::VMOVUPSYrm:
5740  case X86::VMOVAPDYrm:
5741  case X86::VMOVUPDYrm:
5742  case X86::VMOVDQAYrm:
5743  case X86::VMOVDQUYrm:
5744  // AVX512 load instructions
5745  case X86::VMOVSSZrm:
5746  case X86::VMOVSDZrm:
5747  case X86::VMOVAPSZ128rm:
5748  case X86::VMOVUPSZ128rm:
5749  case X86::VMOVAPSZ128rm_NOVLX:
5750  case X86::VMOVUPSZ128rm_NOVLX:
5751  case X86::VMOVAPDZ128rm:
5752  case X86::VMOVUPDZ128rm:
5753  case X86::VMOVDQU8Z128rm:
5754  case X86::VMOVDQU16Z128rm:
5755  case X86::VMOVDQA32Z128rm:
5756  case X86::VMOVDQU32Z128rm:
5757  case X86::VMOVDQA64Z128rm:
5758  case X86::VMOVDQU64Z128rm:
5759  case X86::VMOVAPSZ256rm:
5760  case X86::VMOVUPSZ256rm:
5761  case X86::VMOVAPSZ256rm_NOVLX:
5762  case X86::VMOVUPSZ256rm_NOVLX:
5763  case X86::VMOVAPDZ256rm:
5764  case X86::VMOVUPDZ256rm:
5765  case X86::VMOVDQU8Z256rm:
5766  case X86::VMOVDQU16Z256rm:
5767  case X86::VMOVDQA32Z256rm:
5768  case X86::VMOVDQU32Z256rm:
5769  case X86::VMOVDQA64Z256rm:
5770  case X86::VMOVDQU64Z256rm:
5771  case X86::VMOVAPSZrm:
5772  case X86::VMOVUPSZrm:
5773  case X86::VMOVAPDZrm:
5774  case X86::VMOVUPDZrm:
5775  case X86::VMOVDQU8Zrm:
5776  case X86::VMOVDQU16Zrm:
5777  case X86::VMOVDQA32Zrm:
5778  case X86::VMOVDQU32Zrm:
5779  case X86::VMOVDQA64Zrm:
5780  case X86::VMOVDQU64Zrm:
5781  case X86::KMOVBkm:
5782  case X86::KMOVWkm:
5783  case X86::KMOVDkm:
5784  case X86::KMOVQkm:
5785    break;
5786  }
5787
5788  // Lambda to check if both the loads have the same value for an operand index.
5789  auto HasSameOp = [&](int I) {
5790    return Load1->getOperand(I) == Load2->getOperand(I);
5791  };
5792
5793  // All operands except the displacement should match.
5794  if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
5795      !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
5796    return false;
5797
5798  // Chain Operand must be the same.
5799  if (!HasSameOp(5))
5800    return false;
5801
5802  // Now let's examine if the displacements are constants.
5803  auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
5804  auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
5805  if (!Disp1 || !Disp2)
5806    return false;
5807
5808  Offset1 = Disp1->getSExtValue();
5809  Offset2 = Disp2->getSExtValue();
5810  return true;
5811}
5812
5813bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
5814                                           int64_t Offset1, int64_t Offset2,
5815                                           unsigned NumLoads) const {
5816  assert(Offset2 > Offset1);
5817  if ((Offset2 - Offset1) / 8 > 64)
5818    return false;
5819
5820  unsigned Opc1 = Load1->getMachineOpcode();
5821  unsigned Opc2 = Load2->getMachineOpcode();
5822  if (Opc1 != Opc2)
5823    return false;  // FIXME: overly conservative?
5824
5825  switch (Opc1) {
5826  default: break;
5827  case X86::LD_Fp32m:
5828  case X86::LD_Fp64m:
5829  case X86::LD_Fp80m:
5830  case X86::MMX_MOVD64rm:
5831  case X86::MMX_MOVQ64rm:
5832    return false;
5833  }
5834
5835  EVT VT = Load1->getValueType(0);
5836  switch (VT.getSimpleVT().SimpleTy) {
5837  default:
5838    // XMM registers. In 64-bit mode we can be a bit more aggressive since we
5839    // have 16 of them to play with.
5840    if (Subtarget.is64Bit()) {
5841      if (NumLoads >= 3)
5842        return false;
5843    } else if (NumLoads) {
5844      return false;
5845    }
5846    break;
5847  case MVT::i8:
5848  case MVT::i16:
5849  case MVT::i32:
5850  case MVT::i64:
5851  case MVT::f32:
5852  case MVT::f64:
5853    if (NumLoads)
5854      return false;
5855    break;
5856  }
5857
5858  return true;
5859}
5860
5861bool X86InstrInfo::
5862reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
5863  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
5864  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
5865  Cond[0].setImm(GetOppositeBranchCondition(CC));
5866  return false;
5867}
5868
5869bool X86InstrInfo::
5870isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
5871  // FIXME: Return false for x87 stack register classes for now. We can't
5872  // allow any loads of these registers before FpGet_ST0_80.
5873  return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
5874           RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
5875           RC == &X86::RFP80RegClass);
5876}
5877
5878/// Return a virtual register initialized with the
5879/// the global base register value. Output instructions required to
5880/// initialize the register in the function entry block, if necessary.
5881///
5882/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
5883///
5884unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
5885  assert((!Subtarget.is64Bit() ||
5886          MF->getTarget().getCodeModel() == CodeModel::Medium ||
5887          MF->getTarget().getCodeModel() == CodeModel::Large) &&
5888         "X86-64 PIC uses RIP relative addressing");
5889
5890  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
5891  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
5892  if (GlobalBaseReg != 0)
5893    return GlobalBaseReg;
5894
5895  // Create the register. The code to initialize it is inserted
5896  // later, by the CGBR pass (below).
5897  MachineRegisterInfo &RegInfo = MF->getRegInfo();
5898  GlobalBaseReg = RegInfo.createVirtualRegister(
5899      Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
5900  X86FI->setGlobalBaseReg(GlobalBaseReg);
5901  return GlobalBaseReg;
5902}
5903
5904// These are the replaceable SSE instructions. Some of these have Int variants
5905// that we don't include here. We don't want to replace instructions selected
5906// by intrinsics.
5907static const uint16_t ReplaceableInstrs[][3] = {
5908  //PackedSingle     PackedDouble    PackedInt
5909  { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
5910  { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
5911  { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
5912  { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
5913  { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
5914  { X86::MOVLPSmr,   X86::MOVLPDmr,  X86::MOVPQI2QImr },
5915  { X86::MOVSDmr,    X86::MOVSDmr,   X86::MOVPQI2QImr },
5916  { X86::MOVSSmr,    X86::MOVSSmr,   X86::MOVPDI2DImr },
5917  { X86::MOVSDrm,    X86::MOVSDrm,   X86::MOVQI2PQIrm },
5918  { X86::MOVSSrm,    X86::MOVSSrm,   X86::MOVDI2PDIrm },
5919  { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
5920  { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
5921  { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
5922  { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
5923  { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
5924  { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
5925  { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
5926  { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
5927  { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
5928  { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm },
5929  { X86::MOVLHPSrr,  X86::UNPCKLPDrr, X86::PUNPCKLQDQrr },
5930  { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm },
5931  { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr },
5932  { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm },
5933  { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr },
5934  { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm },
5935  { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr },
5936  { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr },
5937  { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr },
5938  // AVX 128-bit support
5939  { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
5940  { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
5941  { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
5942  { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
5943  { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
5944  { X86::VMOVLPSmr,  X86::VMOVLPDmr,  X86::VMOVPQI2QImr },
5945  { X86::VMOVSDmr,   X86::VMOVSDmr,   X86::VMOVPQI2QImr },
5946  { X86::VMOVSSmr,   X86::VMOVSSmr,   X86::VMOVPDI2DImr },
5947  { X86::VMOVSDrm,   X86::VMOVSDrm,   X86::VMOVQI2PQIrm },
5948  { X86::VMOVSSrm,   X86::VMOVSSrm,   X86::VMOVDI2PDIrm },
5949  { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
5950  { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
5951  { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
5952  { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
5953  { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
5954  { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
5955  { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
5956  { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
5957  { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
5958  { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm },
5959  { X86::VMOVLHPSrr,  X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr },
5960  { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm },
5961  { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr },
5962  { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm },
5963  { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr },
5964  { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm },
5965  { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr },
5966  { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr },
5967  { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr },
5968  // AVX 256-bit support
5969  { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
5970  { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
5971  { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
5972  { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
5973  { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
5974  { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr },
5975  { X86::VPERMPSYrm,   X86::VPERMPSYrm,   X86::VPERMDYrm },
5976  { X86::VPERMPSYrr,   X86::VPERMPSYrr,   X86::VPERMDYrr },
5977  { X86::VPERMPDYmi,   X86::VPERMPDYmi,   X86::VPERMQYmi },
5978  { X86::VPERMPDYri,   X86::VPERMPDYri,   X86::VPERMQYri },
5979  // AVX512 support
5980  { X86::VMOVLPSZ128mr,  X86::VMOVLPDZ128mr,  X86::VMOVPQI2QIZmr  },
5981  { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
5982  { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr },
5983  { X86::VMOVNTPSZmr,    X86::VMOVNTPDZmr,    X86::VMOVNTDQZmr    },
5984  { X86::VMOVSDZmr,      X86::VMOVSDZmr,      X86::VMOVPQI2QIZmr  },
5985  { X86::VMOVSSZmr,      X86::VMOVSSZmr,      X86::VMOVPDI2DIZmr  },
5986  { X86::VMOVSDZrm,      X86::VMOVSDZrm,      X86::VMOVQI2PQIZrm  },
5987  { X86::VMOVSSZrm,      X86::VMOVSSZrm,      X86::VMOVDI2PDIZrm  },
5988  { X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128r, X86::VPBROADCASTDZ128r },
5989  { X86::VBROADCASTSSZ128m, X86::VBROADCASTSSZ128m, X86::VPBROADCASTDZ128m },
5990  { X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256r, X86::VPBROADCASTDZ256r },
5991  { X86::VBROADCASTSSZ256m, X86::VBROADCASTSSZ256m, X86::VPBROADCASTDZ256m },
5992  { X86::VBROADCASTSSZr,    X86::VBROADCASTSSZr,    X86::VPBROADCASTDZr },
5993  { X86::VBROADCASTSSZm,    X86::VBROADCASTSSZm,    X86::VPBROADCASTDZm },
5994  { X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256r, X86::VPBROADCASTQZ256r },
5995  { X86::VBROADCASTSDZ256m, X86::VBROADCASTSDZ256m, X86::VPBROADCASTQZ256m },
5996  { X86::VBROADCASTSDZr,    X86::VBROADCASTSDZr,    X86::VPBROADCASTQZr },
5997  { X86::VBROADCASTSDZm,    X86::VBROADCASTSDZm,    X86::VPBROADCASTQZm },
5998  { X86::VINSERTF32x4Zrr,   X86::VINSERTF32x4Zrr,   X86::VINSERTI32x4Zrr },
5999  { X86::VINSERTF32x4Zrm,   X86::VINSERTF32x4Zrm,   X86::VINSERTI32x4Zrm },
6000  { X86::VINSERTF32x8Zrr,   X86::VINSERTF32x8Zrr,   X86::VINSERTI32x8Zrr },
6001  { X86::VINSERTF32x8Zrm,   X86::VINSERTF32x8Zrm,   X86::VINSERTI32x8Zrm },
6002  { X86::VINSERTF64x2Zrr,   X86::VINSERTF64x2Zrr,   X86::VINSERTI64x2Zrr },
6003  { X86::VINSERTF64x2Zrm,   X86::VINSERTF64x2Zrm,   X86::VINSERTI64x2Zrm },
6004  { X86::VINSERTF64x4Zrr,   X86::VINSERTF64x4Zrr,   X86::VINSERTI64x4Zrr },
6005  { X86::VINSERTF64x4Zrm,   X86::VINSERTF64x4Zrm,   X86::VINSERTI64x4Zrm },
6006  { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr },
6007  { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm },
6008  { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr },
6009  { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm },
6010  { X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTI32x4Zrr },
6011  { X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTI32x4Zmr },
6012  { X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTI32x8Zrr },
6013  { X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTI32x8Zmr },
6014  { X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTI64x2Zrr },
6015  { X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTI64x2Zmr },
6016  { X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTI64x4Zrr },
6017  { X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTI64x4Zmr },
6018  { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr },
6019  { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr },
6020  { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr },
6021  { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr },
6022  { X86::VPERMILPSmi,        X86::VPERMILPSmi,        X86::VPSHUFDmi },
6023  { X86::VPERMILPSri,        X86::VPERMILPSri,        X86::VPSHUFDri },
6024  { X86::VPERMILPSZ128mi,    X86::VPERMILPSZ128mi,    X86::VPSHUFDZ128mi },
6025  { X86::VPERMILPSZ128ri,    X86::VPERMILPSZ128ri,    X86::VPSHUFDZ128ri },
6026  { X86::VPERMILPSZ256mi,    X86::VPERMILPSZ256mi,    X86::VPSHUFDZ256mi },
6027  { X86::VPERMILPSZ256ri,    X86::VPERMILPSZ256ri,    X86::VPSHUFDZ256ri },
6028  { X86::VPERMILPSZmi,       X86::VPERMILPSZmi,       X86::VPSHUFDZmi },
6029  { X86::VPERMILPSZri,       X86::VPERMILPSZri,       X86::VPSHUFDZri },
6030  { X86::VPERMPSZ256rm,      X86::VPERMPSZ256rm,      X86::VPERMDZ256rm },
6031  { X86::VPERMPSZ256rr,      X86::VPERMPSZ256rr,      X86::VPERMDZ256rr },
6032  { X86::VPERMPDZ256mi,      X86::VPERMPDZ256mi,      X86::VPERMQZ256mi },
6033  { X86::VPERMPDZ256ri,      X86::VPERMPDZ256ri,      X86::VPERMQZ256ri },
6034  { X86::VPERMPDZ256rm,      X86::VPERMPDZ256rm,      X86::VPERMQZ256rm },
6035  { X86::VPERMPDZ256rr,      X86::VPERMPDZ256rr,      X86::VPERMQZ256rr },
6036  { X86::VPERMPSZrm,         X86::VPERMPSZrm,         X86::VPERMDZrm },
6037  { X86::VPERMPSZrr,         X86::VPERMPSZrr,         X86::VPERMDZrr },
6038  { X86::VPERMPDZmi,         X86::VPERMPDZmi,         X86::VPERMQZmi },
6039  { X86::VPERMPDZri,         X86::VPERMPDZri,         X86::VPERMQZri },
6040  { X86::VPERMPDZrm,         X86::VPERMPDZrm,         X86::VPERMQZrm },
6041  { X86::VPERMPDZrr,         X86::VPERMPDZrr,         X86::VPERMQZrr },
6042  { X86::VUNPCKLPDZ256rm,    X86::VUNPCKLPDZ256rm,    X86::VPUNPCKLQDQZ256rm },
6043  { X86::VUNPCKLPDZ256rr,    X86::VUNPCKLPDZ256rr,    X86::VPUNPCKLQDQZ256rr },
6044  { X86::VUNPCKHPDZ256rm,    X86::VUNPCKHPDZ256rm,    X86::VPUNPCKHQDQZ256rm },
6045  { X86::VUNPCKHPDZ256rr,    X86::VUNPCKHPDZ256rr,    X86::VPUNPCKHQDQZ256rr },
6046  { X86::VUNPCKLPSZ256rm,    X86::VUNPCKLPSZ256rm,    X86::VPUNPCKLDQZ256rm },
6047  { X86::VUNPCKLPSZ256rr,    X86::VUNPCKLPSZ256rr,    X86::VPUNPCKLDQZ256rr },
6048  { X86::VUNPCKHPSZ256rm,    X86::VUNPCKHPSZ256rm,    X86::VPUNPCKHDQZ256rm },
6049  { X86::VUNPCKHPSZ256rr,    X86::VUNPCKHPSZ256rr,    X86::VPUNPCKHDQZ256rr },
6050  { X86::VUNPCKLPDZ128rm,    X86::VUNPCKLPDZ128rm,    X86::VPUNPCKLQDQZ128rm },
6051  { X86::VMOVLHPSZrr,        X86::VUNPCKLPDZ128rr,    X86::VPUNPCKLQDQZ128rr },
6052  { X86::VUNPCKHPDZ128rm,    X86::VUNPCKHPDZ128rm,    X86::VPUNPCKHQDQZ128rm },
6053  { X86::VUNPCKHPDZ128rr,    X86::VUNPCKHPDZ128rr,    X86::VPUNPCKHQDQZ128rr },
6054  { X86::VUNPCKLPSZ128rm,    X86::VUNPCKLPSZ128rm,    X86::VPUNPCKLDQZ128rm },
6055  { X86::VUNPCKLPSZ128rr,    X86::VUNPCKLPSZ128rr,    X86::VPUNPCKLDQZ128rr },
6056  { X86::VUNPCKHPSZ128rm,    X86::VUNPCKHPSZ128rm,    X86::VPUNPCKHDQZ128rm },
6057  { X86::VUNPCKHPSZ128rr,    X86::VUNPCKHPSZ128rr,    X86::VPUNPCKHDQZ128rr },
6058  { X86::VUNPCKLPDZrm,       X86::VUNPCKLPDZrm,       X86::VPUNPCKLQDQZrm },
6059  { X86::VUNPCKLPDZrr,       X86::VUNPCKLPDZrr,       X86::VPUNPCKLQDQZrr },
6060  { X86::VUNPCKHPDZrm,       X86::VUNPCKHPDZrm,       X86::VPUNPCKHQDQZrm },
6061  { X86::VUNPCKHPDZrr,       X86::VUNPCKHPDZrr,       X86::VPUNPCKHQDQZrr },
6062  { X86::VUNPCKLPSZrm,       X86::VUNPCKLPSZrm,       X86::VPUNPCKLDQZrm },
6063  { X86::VUNPCKLPSZrr,       X86::VUNPCKLPSZrr,       X86::VPUNPCKLDQZrr },
6064  { X86::VUNPCKHPSZrm,       X86::VUNPCKHPSZrm,       X86::VPUNPCKHDQZrm },
6065  { X86::VUNPCKHPSZrr,       X86::VUNPCKHPSZrr,       X86::VPUNPCKHDQZrr },
6066  { X86::VEXTRACTPSZmr,      X86::VEXTRACTPSZmr,      X86::VPEXTRDZmr },
6067  { X86::VEXTRACTPSZrr,      X86::VEXTRACTPSZrr,      X86::VPEXTRDZrr },
6068};
6069
6070static const uint16_t ReplaceableInstrsAVX2[][3] = {
6071  //PackedSingle       PackedDouble       PackedInt
6072  { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
6073  { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
6074  { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
6075  { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
6076  { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
6077  { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
6078  { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
6079  { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
6080  { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
6081  { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr },
6082  { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
6083  { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
6084  { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
6085  { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
6086  { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
6087  { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm},
6088  { X86::VBROADCASTF128,  X86::VBROADCASTF128,  X86::VBROADCASTI128 },
6089  { X86::VBLENDPSYrri,    X86::VBLENDPSYrri,    X86::VPBLENDDYrri },
6090  { X86::VBLENDPSYrmi,    X86::VBLENDPSYrmi,    X86::VPBLENDDYrmi },
6091  { X86::VPERMILPSYmi,    X86::VPERMILPSYmi,    X86::VPSHUFDYmi },
6092  { X86::VPERMILPSYri,    X86::VPERMILPSYri,    X86::VPSHUFDYri },
6093  { X86::VUNPCKLPDYrm,    X86::VUNPCKLPDYrm,    X86::VPUNPCKLQDQYrm },
6094  { X86::VUNPCKLPDYrr,    X86::VUNPCKLPDYrr,    X86::VPUNPCKLQDQYrr },
6095  { X86::VUNPCKHPDYrm,    X86::VUNPCKHPDYrm,    X86::VPUNPCKHQDQYrm },
6096  { X86::VUNPCKHPDYrr,    X86::VUNPCKHPDYrr,    X86::VPUNPCKHQDQYrr },
6097  { X86::VUNPCKLPSYrm,    X86::VUNPCKLPSYrm,    X86::VPUNPCKLDQYrm },
6098  { X86::VUNPCKLPSYrr,    X86::VUNPCKLPSYrr,    X86::VPUNPCKLDQYrr },
6099  { X86::VUNPCKHPSYrm,    X86::VUNPCKHPSYrm,    X86::VPUNPCKHDQYrm },
6100  { X86::VUNPCKHPSYrr,    X86::VUNPCKHPSYrr,    X86::VPUNPCKHDQYrr },
6101};
6102
6103static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = {
6104  //PackedSingle       PackedDouble       PackedInt
6105  { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
6106  { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
6107  { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
6108  { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
6109};
6110
6111static const uint16_t ReplaceableInstrsAVX512[][4] = {
6112  // Two integer columns for 64-bit and 32-bit elements.
6113  //PackedSingle        PackedDouble        PackedInt             PackedInt
6114  { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr  },
6115  { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm  },
6116  { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr  },
6117  { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr  },
6118  { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm  },
6119  { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr  },
6120  { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm  },
6121  { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr  },
6122  { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr  },
6123  { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm  },
6124  { X86::VMOVAPSZmr,    X86::VMOVAPDZmr,    X86::VMOVDQA64Zmr,    X86::VMOVDQA32Zmr     },
6125  { X86::VMOVAPSZrm,    X86::VMOVAPDZrm,    X86::VMOVDQA64Zrm,    X86::VMOVDQA32Zrm     },
6126  { X86::VMOVAPSZrr,    X86::VMOVAPDZrr,    X86::VMOVDQA64Zrr,    X86::VMOVDQA32Zrr     },
6127  { X86::VMOVUPSZmr,    X86::VMOVUPDZmr,    X86::VMOVDQU64Zmr,    X86::VMOVDQU32Zmr     },
6128  { X86::VMOVUPSZrm,    X86::VMOVUPDZrm,    X86::VMOVDQU64Zrm,    X86::VMOVDQU32Zrm     },
6129};
6130
6131static const uint16_t ReplaceableInstrsAVX512DQ[][4] = {
6132  // Two integer columns for 64-bit and 32-bit elements.
6133  //PackedSingle        PackedDouble        PackedInt           PackedInt
6134  { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
6135  { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
6136  { X86::VANDPSZ128rm,  X86::VANDPDZ128rm,  X86::VPANDQZ128rm,  X86::VPANDDZ128rm  },
6137  { X86::VANDPSZ128rr,  X86::VANDPDZ128rr,  X86::VPANDQZ128rr,  X86::VPANDDZ128rr  },
6138  { X86::VORPSZ128rm,   X86::VORPDZ128rm,   X86::VPORQZ128rm,   X86::VPORDZ128rm   },
6139  { X86::VORPSZ128rr,   X86::VORPDZ128rr,   X86::VPORQZ128rr,   X86::VPORDZ128rr   },
6140  { X86::VXORPSZ128rm,  X86::VXORPDZ128rm,  X86::VPXORQZ128rm,  X86::VPXORDZ128rm  },
6141  { X86::VXORPSZ128rr,  X86::VXORPDZ128rr,  X86::VPXORQZ128rr,  X86::VPXORDZ128rr  },
6142  { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
6143  { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
6144  { X86::VANDPSZ256rm,  X86::VANDPDZ256rm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  },
6145  { X86::VANDPSZ256rr,  X86::VANDPDZ256rr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  },
6146  { X86::VORPSZ256rm,   X86::VORPDZ256rm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   },
6147  { X86::VORPSZ256rr,   X86::VORPDZ256rr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   },
6148  { X86::VXORPSZ256rm,  X86::VXORPDZ256rm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  },
6149  { X86::VXORPSZ256rr,  X86::VXORPDZ256rr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  },
6150  { X86::VANDNPSZrm,    X86::VANDNPDZrm,    X86::VPANDNQZrm,    X86::VPANDNDZrm    },
6151  { X86::VANDNPSZrr,    X86::VANDNPDZrr,    X86::VPANDNQZrr,    X86::VPANDNDZrr    },
6152  { X86::VANDPSZrm,     X86::VANDPDZrm,     X86::VPANDQZrm,     X86::VPANDDZrm     },
6153  { X86::VANDPSZrr,     X86::VANDPDZrr,     X86::VPANDQZrr,     X86::VPANDDZrr     },
6154  { X86::VORPSZrm,      X86::VORPDZrm,      X86::VPORQZrm,      X86::VPORDZrm      },
6155  { X86::VORPSZrr,      X86::VORPDZrr,      X86::VPORQZrr,      X86::VPORDZrr      },
6156  { X86::VXORPSZrm,     X86::VXORPDZrm,     X86::VPXORQZrm,     X86::VPXORDZrm     },
6157  { X86::VXORPSZrr,     X86::VXORPDZrr,     X86::VPXORQZrr,     X86::VPXORDZrr     },
6158};
6159
6160static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = {
6161  // Two integer columns for 64-bit and 32-bit elements.
6162  //PackedSingle          PackedDouble
6163  //PackedInt             PackedInt
6164  { X86::VANDNPSZ128rmk,  X86::VANDNPDZ128rmk,
6165    X86::VPANDNQZ128rmk,  X86::VPANDNDZ128rmk  },
6166  { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz,
6167    X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz },
6168  { X86::VANDNPSZ128rrk,  X86::VANDNPDZ128rrk,
6169    X86::VPANDNQZ128rrk,  X86::VPANDNDZ128rrk  },
6170  { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz,
6171    X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz },
6172  { X86::VANDPSZ128rmk,   X86::VANDPDZ128rmk,
6173    X86::VPANDQZ128rmk,   X86::VPANDDZ128rmk   },
6174  { X86::VANDPSZ128rmkz,  X86::VANDPDZ128rmkz,
6175    X86::VPANDQZ128rmkz,  X86::VPANDDZ128rmkz  },
6176  { X86::VANDPSZ128rrk,   X86::VANDPDZ128rrk,
6177    X86::VPANDQZ128rrk,   X86::VPANDDZ128rrk   },
6178  { X86::VANDPSZ128rrkz,  X86::VANDPDZ128rrkz,
6179    X86::VPANDQZ128rrkz,  X86::VPANDDZ128rrkz  },
6180  { X86::VORPSZ128rmk,    X86::VORPDZ128rmk,
6181    X86::VPORQZ128rmk,    X86::VPORDZ128rmk    },
6182  { X86::VORPSZ128rmkz,   X86::VORPDZ128rmkz,
6183    X86::VPORQZ128rmkz,   X86::VPORDZ128rmkz   },
6184  { X86::VORPSZ128rrk,    X86::VORPDZ128rrk,
6185    X86::VPORQZ128rrk,    X86::VPORDZ128rrk    },
6186  { X86::VORPSZ128rrkz,   X86::VORPDZ128rrkz,
6187    X86::VPORQZ128rrkz,   X86::VPORDZ128rrkz   },
6188  { X86::VXORPSZ128rmk,   X86::VXORPDZ128rmk,
6189    X86::VPXORQZ128rmk,   X86::VPXORDZ128rmk   },
6190  { X86::VXORPSZ128rmkz,  X86::VXORPDZ128rmkz,
6191    X86::VPXORQZ128rmkz,  X86::VPXORDZ128rmkz  },
6192  { X86::VXORPSZ128rrk,   X86::VXORPDZ128rrk,
6193    X86::VPXORQZ128rrk,   X86::VPXORDZ128rrk   },
6194  { X86::VXORPSZ128rrkz,  X86::VXORPDZ128rrkz,
6195    X86::VPXORQZ128rrkz,  X86::VPXORDZ128rrkz  },
6196  { X86::VANDNPSZ256rmk,  X86::VANDNPDZ256rmk,
6197    X86::VPANDNQZ256rmk,  X86::VPANDNDZ256rmk  },
6198  { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz,
6199    X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz },
6200  { X86::VANDNPSZ256rrk,  X86::VANDNPDZ256rrk,
6201    X86::VPANDNQZ256rrk,  X86::VPANDNDZ256rrk  },
6202  { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz,
6203    X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz },
6204  { X86::VANDPSZ256rmk,   X86::VANDPDZ256rmk,
6205    X86::VPANDQZ256rmk,   X86::VPANDDZ256rmk   },
6206  { X86::VANDPSZ256rmkz,  X86::VANDPDZ256rmkz,
6207    X86::VPANDQZ256rmkz,  X86::VPANDDZ256rmkz  },
6208  { X86::VANDPSZ256rrk,   X86::VANDPDZ256rrk,
6209    X86::VPANDQZ256rrk,   X86::VPANDDZ256rrk   },
6210  { X86::VANDPSZ256rrkz,  X86::VANDPDZ256rrkz,
6211    X86::VPANDQZ256rrkz,  X86::VPANDDZ256rrkz  },
6212  { X86::VORPSZ256rmk,    X86::VORPDZ256rmk,
6213    X86::VPORQZ256rmk,    X86::VPORDZ256rmk    },
6214  { X86::VORPSZ256rmkz,   X86::VORPDZ256rmkz,
6215    X86::VPORQZ256rmkz,   X86::VPORDZ256rmkz   },
6216  { X86::VORPSZ256rrk,    X86::VORPDZ256rrk,
6217    X86::VPORQZ256rrk,    X86::VPORDZ256rrk    },
6218  { X86::VORPSZ256rrkz,   X86::VORPDZ256rrkz,
6219    X86::VPORQZ256rrkz,   X86::VPORDZ256rrkz   },
6220  { X86::VXORPSZ256rmk,   X86::VXORPDZ256rmk,
6221    X86::VPXORQZ256rmk,   X86::VPXORDZ256rmk   },
6222  { X86::VXORPSZ256rmkz,  X86::VXORPDZ256rmkz,
6223    X86::VPXORQZ256rmkz,  X86::VPXORDZ256rmkz  },
6224  { X86::VXORPSZ256rrk,   X86::VXORPDZ256rrk,
6225    X86::VPXORQZ256rrk,   X86::VPXORDZ256rrk   },
6226  { X86::VXORPSZ256rrkz,  X86::VXORPDZ256rrkz,
6227    X86::VPXORQZ256rrkz,  X86::VPXORDZ256rrkz  },
6228  { X86::VANDNPSZrmk,     X86::VANDNPDZrmk,
6229    X86::VPANDNQZrmk,     X86::VPANDNDZrmk     },
6230  { X86::VANDNPSZrmkz,    X86::VANDNPDZrmkz,
6231    X86::VPANDNQZrmkz,    X86::VPANDNDZrmkz    },
6232  { X86::VANDNPSZrrk,     X86::VANDNPDZrrk,
6233    X86::VPANDNQZrrk,     X86::VPANDNDZrrk     },
6234  { X86::VANDNPSZrrkz,    X86::VANDNPDZrrkz,
6235    X86::VPANDNQZrrkz,    X86::VPANDNDZrrkz    },
6236  { X86::VANDPSZrmk,      X86::VANDPDZrmk,
6237    X86::VPANDQZrmk,      X86::VPANDDZrmk      },
6238  { X86::VANDPSZrmkz,     X86::VANDPDZrmkz,
6239    X86::VPANDQZrmkz,     X86::VPANDDZrmkz     },
6240  { X86::VANDPSZrrk,      X86::VANDPDZrrk,
6241    X86::VPANDQZrrk,      X86::VPANDDZrrk      },
6242  { X86::VANDPSZrrkz,     X86::VANDPDZrrkz,
6243    X86::VPANDQZrrkz,     X86::VPANDDZrrkz     },
6244  { X86::VORPSZrmk,       X86::VORPDZrmk,
6245    X86::VPORQZrmk,       X86::VPORDZrmk       },
6246  { X86::VORPSZrmkz,      X86::VORPDZrmkz,
6247    X86::VPORQZrmkz,      X86::VPORDZrmkz      },
6248  { X86::VORPSZrrk,       X86::VORPDZrrk,
6249    X86::VPORQZrrk,       X86::VPORDZrrk       },
6250  { X86::VORPSZrrkz,      X86::VORPDZrrkz,
6251    X86::VPORQZrrkz,      X86::VPORDZrrkz      },
6252  { X86::VXORPSZrmk,      X86::VXORPDZrmk,
6253    X86::VPXORQZrmk,      X86::VPXORDZrmk      },
6254  { X86::VXORPSZrmkz,     X86::VXORPDZrmkz,
6255    X86::VPXORQZrmkz,     X86::VPXORDZrmkz     },
6256  { X86::VXORPSZrrk,      X86::VXORPDZrrk,
6257    X86::VPXORQZrrk,      X86::VPXORDZrrk      },
6258  { X86::VXORPSZrrkz,     X86::VXORPDZrrkz,
6259    X86::VPXORQZrrkz,     X86::VPXORDZrrkz     },
6260  // Broadcast loads can be handled the same as masked operations to avoid
6261  // changing element size.
6262  { X86::VANDNPSZ128rmb,  X86::VANDNPDZ128rmb,
6263    X86::VPANDNQZ128rmb,  X86::VPANDNDZ128rmb  },
6264  { X86::VANDPSZ128rmb,   X86::VANDPDZ128rmb,
6265    X86::VPANDQZ128rmb,   X86::VPANDDZ128rmb   },
6266  { X86::VORPSZ128rmb,    X86::VORPDZ128rmb,
6267    X86::VPORQZ128rmb,    X86::VPORDZ128rmb    },
6268  { X86::VXORPSZ128rmb,   X86::VXORPDZ128rmb,
6269    X86::VPXORQZ128rmb,   X86::VPXORDZ128rmb   },
6270  { X86::VANDNPSZ256rmb,  X86::VANDNPDZ256rmb,
6271    X86::VPANDNQZ256rmb,  X86::VPANDNDZ256rmb  },
6272  { X86::VANDPSZ256rmb,   X86::VANDPDZ256rmb,
6273    X86::VPANDQZ256rmb,   X86::VPANDDZ256rmb   },
6274  { X86::VORPSZ256rmb,    X86::VORPDZ256rmb,
6275    X86::VPORQZ256rmb,    X86::VPORDZ256rmb    },
6276  { X86::VXORPSZ256rmb,   X86::VXORPDZ256rmb,
6277    X86::VPXORQZ256rmb,   X86::VPXORDZ256rmb   },
6278  { X86::VANDNPSZrmb,     X86::VANDNPDZrmb,
6279    X86::VPANDNQZrmb,     X86::VPANDNDZrmb     },
6280  { X86::VANDPSZrmb,      X86::VANDPDZrmb,
6281    X86::VPANDQZrmb,      X86::VPANDDZrmb      },
6282  { X86::VANDPSZrmb,      X86::VANDPDZrmb,
6283    X86::VPANDQZrmb,      X86::VPANDDZrmb      },
6284  { X86::VORPSZrmb,       X86::VORPDZrmb,
6285    X86::VPORQZrmb,       X86::VPORDZrmb       },
6286  { X86::VXORPSZrmb,      X86::VXORPDZrmb,
6287    X86::VPXORQZrmb,      X86::VPXORDZrmb      },
6288  { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk,
6289    X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk },
6290  { X86::VANDPSZ128rmbk,  X86::VANDPDZ128rmbk,
6291    X86::VPANDQZ128rmbk,  X86::VPANDDZ128rmbk  },
6292  { X86::VORPSZ128rmbk,   X86::VORPDZ128rmbk,
6293    X86::VPORQZ128rmbk,   X86::VPORDZ128rmbk   },
6294  { X86::VXORPSZ128rmbk,  X86::VXORPDZ128rmbk,
6295    X86::VPXORQZ128rmbk,  X86::VPXORDZ128rmbk  },
6296  { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk,
6297    X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk },
6298  { X86::VANDPSZ256rmbk,  X86::VANDPDZ256rmbk,
6299    X86::VPANDQZ256rmbk,  X86::VPANDDZ256rmbk  },
6300  { X86::VORPSZ256rmbk,   X86::VORPDZ256rmbk,
6301    X86::VPORQZ256rmbk,   X86::VPORDZ256rmbk   },
6302  { X86::VXORPSZ256rmbk,  X86::VXORPDZ256rmbk,
6303    X86::VPXORQZ256rmbk,  X86::VPXORDZ256rmbk  },
6304  { X86::VANDNPSZrmbk,    X86::VANDNPDZrmbk,
6305    X86::VPANDNQZrmbk,    X86::VPANDNDZrmbk    },
6306  { X86::VANDPSZrmbk,     X86::VANDPDZrmbk,
6307    X86::VPANDQZrmbk,     X86::VPANDDZrmbk     },
6308  { X86::VANDPSZrmbk,     X86::VANDPDZrmbk,
6309    X86::VPANDQZrmbk,     X86::VPANDDZrmbk     },
6310  { X86::VORPSZrmbk,      X86::VORPDZrmbk,
6311    X86::VPORQZrmbk,      X86::VPORDZrmbk      },
6312  { X86::VXORPSZrmbk,     X86::VXORPDZrmbk,
6313    X86::VPXORQZrmbk,     X86::VPXORDZrmbk     },
6314  { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz,
6315    X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz},
6316  { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz,
6317    X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz },
6318  { X86::VORPSZ128rmbkz,  X86::VORPDZ128rmbkz,
6319    X86::VPORQZ128rmbkz,  X86::VPORDZ128rmbkz  },
6320  { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz,
6321    X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz },
6322  { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz,
6323    X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz},
6324  { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz,
6325    X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz },
6326  { X86::VORPSZ256rmbkz,  X86::VORPDZ256rmbkz,
6327    X86::VPORQZ256rmbkz,  X86::VPORDZ256rmbkz  },
6328  { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz,
6329    X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz },
6330  { X86::VANDNPSZrmbkz,   X86::VANDNPDZrmbkz,
6331    X86::VPANDNQZrmbkz,   X86::VPANDNDZrmbkz   },
6332  { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz,
6333    X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    },
6334  { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz,
6335    X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    },
6336  { X86::VORPSZrmbkz,     X86::VORPDZrmbkz,
6337    X86::VPORQZrmbkz,     X86::VPORDZrmbkz     },
6338  { X86::VXORPSZrmbkz,    X86::VXORPDZrmbkz,
6339    X86::VPXORQZrmbkz,    X86::VPXORDZrmbkz    },
6340};
6341
6342// NOTE: These should only be used by the custom domain methods.
6343static const uint16_t ReplaceableCustomInstrs[][3] = {
6344  //PackedSingle             PackedDouble             PackedInt
6345  { X86::BLENDPSrmi,         X86::BLENDPDrmi,         X86::PBLENDWrmi   },
6346  { X86::BLENDPSrri,         X86::BLENDPDrri,         X86::PBLENDWrri   },
6347  { X86::VBLENDPSrmi,        X86::VBLENDPDrmi,        X86::VPBLENDWrmi  },
6348  { X86::VBLENDPSrri,        X86::VBLENDPDrri,        X86::VPBLENDWrri  },
6349  { X86::VBLENDPSYrmi,       X86::VBLENDPDYrmi,       X86::VPBLENDWYrmi },
6350  { X86::VBLENDPSYrri,       X86::VBLENDPDYrri,       X86::VPBLENDWYrri },
6351};
6352static const uint16_t ReplaceableCustomAVX2Instrs[][3] = {
6353  //PackedSingle             PackedDouble             PackedInt
6354  { X86::VBLENDPSrmi,        X86::VBLENDPDrmi,        X86::VPBLENDDrmi  },
6355  { X86::VBLENDPSrri,        X86::VBLENDPDrri,        X86::VPBLENDDrri  },
6356  { X86::VBLENDPSYrmi,       X86::VBLENDPDYrmi,       X86::VPBLENDDYrmi },
6357  { X86::VBLENDPSYrri,       X86::VBLENDPDYrri,       X86::VPBLENDDYrri },
6358};
6359
6360// Special table for changing EVEX logic instructions to VEX.
6361// TODO: Should we run EVEX->VEX earlier?
6362static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = {
6363  // Two integer columns for 64-bit and 32-bit elements.
6364  //PackedSingle     PackedDouble     PackedInt           PackedInt
6365  { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
6366  { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
6367  { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDQZ128rm,  X86::VPANDDZ128rm  },
6368  { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDQZ128rr,  X86::VPANDDZ128rr  },
6369  { X86::VORPSrm,    X86::VORPDrm,    X86::VPORQZ128rm,   X86::VPORDZ128rm   },
6370  { X86::VORPSrr,    X86::VORPDrr,    X86::VPORQZ128rr,   X86::VPORDZ128rr   },
6371  { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORQZ128rm,  X86::VPXORDZ128rm  },
6372  { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORQZ128rr,  X86::VPXORDZ128rr  },
6373  { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
6374  { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
6375  { X86::VANDPSYrm,  X86::VANDPDYrm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  },
6376  { X86::VANDPSYrr,  X86::VANDPDYrr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  },
6377  { X86::VORPSYrm,   X86::VORPDYrm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   },
6378  { X86::VORPSYrr,   X86::VORPDYrr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   },
6379  { X86::VXORPSYrm,  X86::VXORPDYrm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  },
6380  { X86::VXORPSYrr,  X86::VXORPDYrr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  },
6381};
6382
6383// FIXME: Some shuffle and unpack instructions have equivalents in different
6384// domains, but they require a bit more work than just switching opcodes.
6385
6386static const uint16_t *lookup(unsigned opcode, unsigned domain,
6387                              ArrayRef<uint16_t[3]> Table) {
6388  for (const uint16_t (&Row)[3] : Table)
6389    if (Row[domain-1] == opcode)
6390      return Row;
6391  return nullptr;
6392}
6393
6394static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
6395                                    ArrayRef<uint16_t[4]> Table) {
6396  // If this is the integer domain make sure to check both integer columns.
6397  for (const uint16_t (&Row)[4] : Table)
6398    if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode))
6399      return Row;
6400  return nullptr;
6401}
6402
6403// Helper to attempt to widen/narrow blend masks.
6404static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
6405                            unsigned NewWidth, unsigned *pNewMask = nullptr) {
6406  assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
6407         "Illegal blend mask scale");
6408  unsigned NewMask = 0;
6409
6410  if ((OldWidth % NewWidth) == 0) {
6411    unsigned Scale = OldWidth / NewWidth;
6412    unsigned SubMask = (1u << Scale) - 1;
6413    for (unsigned i = 0; i != NewWidth; ++i) {
6414      unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
6415      if (Sub == SubMask)
6416        NewMask |= (1u << i);
6417      else if (Sub != 0x0)
6418        return false;
6419    }
6420  } else {
6421    unsigned Scale = NewWidth / OldWidth;
6422    unsigned SubMask = (1u << Scale) - 1;
6423    for (unsigned i = 0; i != OldWidth; ++i) {
6424      if (OldMask & (1 << i)) {
6425        NewMask |= (SubMask << (i * Scale));
6426      }
6427    }
6428  }
6429
6430  if (pNewMask)
6431    *pNewMask = NewMask;
6432  return true;
6433}
6434
6435uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
6436  unsigned Opcode = MI.getOpcode();
6437  unsigned NumOperands = MI.getDesc().getNumOperands();
6438
6439  auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
6440    uint16_t validDomains = 0;
6441    if (MI.getOperand(NumOperands - 1).isImm()) {
6442      unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
6443      if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
6444        validDomains |= 0x2; // PackedSingle
6445      if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
6446        validDomains |= 0x4; // PackedDouble
6447      if (!Is256 || Subtarget.hasAVX2())
6448        validDomains |= 0x8; // PackedInt
6449    }
6450    return validDomains;
6451  };
6452
6453  switch (Opcode) {
6454  case X86::BLENDPDrmi:
6455  case X86::BLENDPDrri:
6456  case X86::VBLENDPDrmi:
6457  case X86::VBLENDPDrri:
6458    return GetBlendDomains(2, false);
6459  case X86::VBLENDPDYrmi:
6460  case X86::VBLENDPDYrri:
6461    return GetBlendDomains(4, true);
6462  case X86::BLENDPSrmi:
6463  case X86::BLENDPSrri:
6464  case X86::VBLENDPSrmi:
6465  case X86::VBLENDPSrri:
6466  case X86::VPBLENDDrmi:
6467  case X86::VPBLENDDrri:
6468    return GetBlendDomains(4, false);
6469  case X86::VBLENDPSYrmi:
6470  case X86::VBLENDPSYrri:
6471  case X86::VPBLENDDYrmi:
6472  case X86::VPBLENDDYrri:
6473    return GetBlendDomains(8, true);
6474  case X86::PBLENDWrmi:
6475  case X86::PBLENDWrri:
6476  case X86::VPBLENDWrmi:
6477  case X86::VPBLENDWrri:
6478  // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
6479  case X86::VPBLENDWYrmi:
6480  case X86::VPBLENDWYrri:
6481    return GetBlendDomains(8, false);
6482  case X86::VPANDDZ128rr:  case X86::VPANDDZ128rm:
6483  case X86::VPANDDZ256rr:  case X86::VPANDDZ256rm:
6484  case X86::VPANDQZ128rr:  case X86::VPANDQZ128rm:
6485  case X86::VPANDQZ256rr:  case X86::VPANDQZ256rm:
6486  case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
6487  case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
6488  case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
6489  case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
6490  case X86::VPORDZ128rr:   case X86::VPORDZ128rm:
6491  case X86::VPORDZ256rr:   case X86::VPORDZ256rm:
6492  case X86::VPORQZ128rr:   case X86::VPORQZ128rm:
6493  case X86::VPORQZ256rr:   case X86::VPORQZ256rm:
6494  case X86::VPXORDZ128rr:  case X86::VPXORDZ128rm:
6495  case X86::VPXORDZ256rr:  case X86::VPXORDZ256rm:
6496  case X86::VPXORQZ128rr:  case X86::VPXORQZ128rm:
6497  case X86::VPXORQZ256rr:  case X86::VPXORQZ256rm:
6498    // If we don't have DQI see if we can still switch from an EVEX integer
6499    // instruction to a VEX floating point instruction.
6500    if (Subtarget.hasDQI())
6501      return 0;
6502
6503    if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
6504      return 0;
6505    if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
6506      return 0;
6507    // Register forms will have 3 operands. Memory form will have more.
6508    if (NumOperands == 3 &&
6509        RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
6510      return 0;
6511
6512    // All domains are valid.
6513    return 0xe;
6514  }
6515  return 0;
6516}
6517
6518bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
6519                                            unsigned Domain) const {
6520  assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
6521  uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6522  assert(dom && "Not an SSE instruction");
6523
6524  unsigned Opcode = MI.getOpcode();
6525  unsigned NumOperands = MI.getDesc().getNumOperands();
6526
6527  auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
6528    if (MI.getOperand(NumOperands - 1).isImm()) {
6529      unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
6530      Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
6531      unsigned NewImm = Imm;
6532
6533      const uint16_t *table = lookup(Opcode, dom, ReplaceableCustomInstrs);
6534      if (!table)
6535        table = lookup(Opcode, dom, ReplaceableCustomAVX2Instrs);
6536
6537      if (Domain == 1) { // PackedSingle
6538        AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
6539      } else if (Domain == 2) { // PackedDouble
6540        AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
6541      } else if (Domain == 3) { // PackedInt
6542        if (Subtarget.hasAVX2()) {
6543          // If we are already VPBLENDW use that, else use VPBLENDD.
6544          if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
6545            table = lookup(Opcode, dom, ReplaceableCustomAVX2Instrs);
6546            AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
6547          }
6548        } else {
6549          assert(!Is256 && "128-bit vector expected");
6550          AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
6551        }
6552      }
6553
6554      assert(table && table[Domain - 1] && "Unknown domain op");
6555      MI.setDesc(get(table[Domain - 1]));
6556      MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
6557    }
6558    return true;
6559  };
6560
6561  switch (Opcode) {
6562  case X86::BLENDPDrmi:
6563  case X86::BLENDPDrri:
6564  case X86::VBLENDPDrmi:
6565  case X86::VBLENDPDrri:
6566    return SetBlendDomain(2, false);
6567  case X86::VBLENDPDYrmi:
6568  case X86::VBLENDPDYrri:
6569    return SetBlendDomain(4, true);
6570  case X86::BLENDPSrmi:
6571  case X86::BLENDPSrri:
6572  case X86::VBLENDPSrmi:
6573  case X86::VBLENDPSrri:
6574  case X86::VPBLENDDrmi:
6575  case X86::VPBLENDDrri:
6576    return SetBlendDomain(4, false);
6577  case X86::VBLENDPSYrmi:
6578  case X86::VBLENDPSYrri:
6579  case X86::VPBLENDDYrmi:
6580  case X86::VPBLENDDYrri:
6581    return SetBlendDomain(8, true);
6582  case X86::PBLENDWrmi:
6583  case X86::PBLENDWrri:
6584  case X86::VPBLENDWrmi:
6585  case X86::VPBLENDWrri:
6586    return SetBlendDomain(8, false);
6587  case X86::VPBLENDWYrmi:
6588  case X86::VPBLENDWYrri:
6589    return SetBlendDomain(16, true);
6590  case X86::VPANDDZ128rr:  case X86::VPANDDZ128rm:
6591  case X86::VPANDDZ256rr:  case X86::VPANDDZ256rm:
6592  case X86::VPANDQZ128rr:  case X86::VPANDQZ128rm:
6593  case X86::VPANDQZ256rr:  case X86::VPANDQZ256rm:
6594  case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
6595  case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
6596  case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
6597  case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
6598  case X86::VPORDZ128rr:   case X86::VPORDZ128rm:
6599  case X86::VPORDZ256rr:   case X86::VPORDZ256rm:
6600  case X86::VPORQZ128rr:   case X86::VPORQZ128rm:
6601  case X86::VPORQZ256rr:   case X86::VPORQZ256rm:
6602  case X86::VPXORDZ128rr:  case X86::VPXORDZ128rm:
6603  case X86::VPXORDZ256rr:  case X86::VPXORDZ256rm:
6604  case X86::VPXORQZ128rr:  case X86::VPXORQZ128rm:
6605  case X86::VPXORQZ256rr:  case X86::VPXORQZ256rm: {
6606    // Without DQI, convert EVEX instructions to VEX instructions.
6607    if (Subtarget.hasDQI())
6608      return false;
6609
6610    const uint16_t *table = lookupAVX512(MI.getOpcode(), dom,
6611                                         ReplaceableCustomAVX512LogicInstrs);
6612    assert(table && "Instruction not found in table?");
6613    // Don't change integer Q instructions to D instructions and
6614    // use D intructions if we started with a PS instruction.
6615    if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6616      Domain = 4;
6617    MI.setDesc(get(table[Domain - 1]));
6618    return true;
6619  }
6620  }
6621  return false;
6622}
6623
6624std::pair<uint16_t, uint16_t>
6625X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
6626  uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6627  unsigned opcode = MI.getOpcode();
6628  uint16_t validDomains = 0;
6629  if (domain) {
6630    // Attempt to match for custom instructions.
6631    validDomains = getExecutionDomainCustom(MI);
6632    if (validDomains)
6633      return std::make_pair(domain, validDomains);
6634
6635    if (lookup(opcode, domain, ReplaceableInstrs)) {
6636      validDomains = 0xe;
6637    } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
6638      validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
6639    } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
6640      // Insert/extract instructions should only effect domain if AVX2
6641      // is enabled.
6642      if (!Subtarget.hasAVX2())
6643        return std::make_pair(0, 0);
6644      validDomains = 0xe;
6645    } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
6646      validDomains = 0xe;
6647    } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain,
6648                                                  ReplaceableInstrsAVX512DQ)) {
6649      validDomains = 0xe;
6650    } else if (Subtarget.hasDQI()) {
6651      if (const uint16_t *table = lookupAVX512(opcode, domain,
6652                                             ReplaceableInstrsAVX512DQMasked)) {
6653        if (domain == 1 || (domain == 3 && table[3] == opcode))
6654          validDomains = 0xa;
6655        else
6656          validDomains = 0xc;
6657      }
6658    }
6659  }
6660  return std::make_pair(domain, validDomains);
6661}
6662
6663void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
6664  assert(Domain>0 && Domain<4 && "Invalid execution domain");
6665  uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6666  assert(dom && "Not an SSE instruction");
6667
6668  // Attempt to match for custom instructions.
6669  if (setExecutionDomainCustom(MI, Domain))
6670    return;
6671
6672  const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
6673  if (!table) { // try the other table
6674    assert((Subtarget.hasAVX2() || Domain < 3) &&
6675           "256-bit vector operations only available in AVX2");
6676    table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
6677  }
6678  if (!table) { // try the other table
6679    assert(Subtarget.hasAVX2() &&
6680           "256-bit insert/extract only available in AVX2");
6681    table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
6682  }
6683  if (!table) { // try the AVX512 table
6684    assert(Subtarget.hasAVX512() && "Requires AVX-512");
6685    table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
6686    // Don't change integer Q instructions to D instructions.
6687    if (table && Domain == 3 && table[3] == MI.getOpcode())
6688      Domain = 4;
6689  }
6690  if (!table) { // try the AVX512DQ table
6691    assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
6692    table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
6693    // Don't change integer Q instructions to D instructions and
6694    // use D intructions if we started with a PS instruction.
6695    if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6696      Domain = 4;
6697  }
6698  if (!table) { // try the AVX512DQMasked table
6699    assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
6700    table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
6701    if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6702      Domain = 4;
6703  }
6704  assert(table && "Cannot change domain");
6705  MI.setDesc(get(table[Domain - 1]));
6706}
6707
6708/// Return the noop instruction to use for a noop.
6709void X86InstrInfo::getNoop(MCInst &NopInst) const {
6710  NopInst.setOpcode(X86::NOOP);
6711}
6712
6713bool X86InstrInfo::isHighLatencyDef(int opc) const {
6714  switch (opc) {
6715  default: return false;
6716  case X86::DIVPDrm:
6717  case X86::DIVPDrr:
6718  case X86::DIVPSrm:
6719  case X86::DIVPSrr:
6720  case X86::DIVSDrm:
6721  case X86::DIVSDrm_Int:
6722  case X86::DIVSDrr:
6723  case X86::DIVSDrr_Int:
6724  case X86::DIVSSrm:
6725  case X86::DIVSSrm_Int:
6726  case X86::DIVSSrr:
6727  case X86::DIVSSrr_Int:
6728  case X86::SQRTPDm:
6729  case X86::SQRTPDr:
6730  case X86::SQRTPSm:
6731  case X86::SQRTPSr:
6732  case X86::SQRTSDm:
6733  case X86::SQRTSDm_Int:
6734  case X86::SQRTSDr:
6735  case X86::SQRTSDr_Int:
6736  case X86::SQRTSSm:
6737  case X86::SQRTSSm_Int:
6738  case X86::SQRTSSr:
6739  case X86::SQRTSSr_Int:
6740  // AVX instructions with high latency
6741  case X86::VDIVPDrm:
6742  case X86::VDIVPDrr:
6743  case X86::VDIVPDYrm:
6744  case X86::VDIVPDYrr:
6745  case X86::VDIVPSrm:
6746  case X86::VDIVPSrr:
6747  case X86::VDIVPSYrm:
6748  case X86::VDIVPSYrr:
6749  case X86::VDIVSDrm:
6750  case X86::VDIVSDrm_Int:
6751  case X86::VDIVSDrr:
6752  case X86::VDIVSDrr_Int:
6753  case X86::VDIVSSrm:
6754  case X86::VDIVSSrm_Int:
6755  case X86::VDIVSSrr:
6756  case X86::VDIVSSrr_Int:
6757  case X86::VSQRTPDm:
6758  case X86::VSQRTPDr:
6759  case X86::VSQRTPDYm:
6760  case X86::VSQRTPDYr:
6761  case X86::VSQRTPSm:
6762  case X86::VSQRTPSr:
6763  case X86::VSQRTPSYm:
6764  case X86::VSQRTPSYr:
6765  case X86::VSQRTSDm:
6766  case X86::VSQRTSDm_Int:
6767  case X86::VSQRTSDr:
6768  case X86::VSQRTSDr_Int:
6769  case X86::VSQRTSSm:
6770  case X86::VSQRTSSm_Int:
6771  case X86::VSQRTSSr:
6772  case X86::VSQRTSSr_Int:
6773  // AVX512 instructions with high latency
6774  case X86::VDIVPDZ128rm:
6775  case X86::VDIVPDZ128rmb:
6776  case X86::VDIVPDZ128rmbk:
6777  case X86::VDIVPDZ128rmbkz:
6778  case X86::VDIVPDZ128rmk:
6779  case X86::VDIVPDZ128rmkz:
6780  case X86::VDIVPDZ128rr:
6781  case X86::VDIVPDZ128rrk:
6782  case X86::VDIVPDZ128rrkz:
6783  case X86::VDIVPDZ256rm:
6784  case X86::VDIVPDZ256rmb:
6785  case X86::VDIVPDZ256rmbk:
6786  case X86::VDIVPDZ256rmbkz:
6787  case X86::VDIVPDZ256rmk:
6788  case X86::VDIVPDZ256rmkz:
6789  case X86::VDIVPDZ256rr:
6790  case X86::VDIVPDZ256rrk:
6791  case X86::VDIVPDZ256rrkz:
6792  case X86::VDIVPDZrrb:
6793  case X86::VDIVPDZrrbk:
6794  case X86::VDIVPDZrrbkz:
6795  case X86::VDIVPDZrm:
6796  case X86::VDIVPDZrmb:
6797  case X86::VDIVPDZrmbk:
6798  case X86::VDIVPDZrmbkz:
6799  case X86::VDIVPDZrmk:
6800  case X86::VDIVPDZrmkz:
6801  case X86::VDIVPDZrr:
6802  case X86::VDIVPDZrrk:
6803  case X86::VDIVPDZrrkz:
6804  case X86::VDIVPSZ128rm:
6805  case X86::VDIVPSZ128rmb:
6806  case X86::VDIVPSZ128rmbk:
6807  case X86::VDIVPSZ128rmbkz:
6808  case X86::VDIVPSZ128rmk:
6809  case X86::VDIVPSZ128rmkz:
6810  case X86::VDIVPSZ128rr:
6811  case X86::VDIVPSZ128rrk:
6812  case X86::VDIVPSZ128rrkz:
6813  case X86::VDIVPSZ256rm:
6814  case X86::VDIVPSZ256rmb:
6815  case X86::VDIVPSZ256rmbk:
6816  case X86::VDIVPSZ256rmbkz:
6817  case X86::VDIVPSZ256rmk:
6818  case X86::VDIVPSZ256rmkz:
6819  case X86::VDIVPSZ256rr:
6820  case X86::VDIVPSZ256rrk:
6821  case X86::VDIVPSZ256rrkz:
6822  case X86::VDIVPSZrrb:
6823  case X86::VDIVPSZrrbk:
6824  case X86::VDIVPSZrrbkz:
6825  case X86::VDIVPSZrm:
6826  case X86::VDIVPSZrmb:
6827  case X86::VDIVPSZrmbk:
6828  case X86::VDIVPSZrmbkz:
6829  case X86::VDIVPSZrmk:
6830  case X86::VDIVPSZrmkz:
6831  case X86::VDIVPSZrr:
6832  case X86::VDIVPSZrrk:
6833  case X86::VDIVPSZrrkz:
6834  case X86::VDIVSDZrm:
6835  case X86::VDIVSDZrr:
6836  case X86::VDIVSDZrm_Int:
6837  case X86::VDIVSDZrm_Intk:
6838  case X86::VDIVSDZrm_Intkz:
6839  case X86::VDIVSDZrr_Int:
6840  case X86::VDIVSDZrr_Intk:
6841  case X86::VDIVSDZrr_Intkz:
6842  case X86::VDIVSDZrrb_Int:
6843  case X86::VDIVSDZrrb_Intk:
6844  case X86::VDIVSDZrrb_Intkz:
6845  case X86::VDIVSSZrm:
6846  case X86::VDIVSSZrr:
6847  case X86::VDIVSSZrm_Int:
6848  case X86::VDIVSSZrm_Intk:
6849  case X86::VDIVSSZrm_Intkz:
6850  case X86::VDIVSSZrr_Int:
6851  case X86::VDIVSSZrr_Intk:
6852  case X86::VDIVSSZrr_Intkz:
6853  case X86::VDIVSSZrrb_Int:
6854  case X86::VDIVSSZrrb_Intk:
6855  case X86::VDIVSSZrrb_Intkz:
6856  case X86::VSQRTPDZ128m:
6857  case X86::VSQRTPDZ128mb:
6858  case X86::VSQRTPDZ128mbk:
6859  case X86::VSQRTPDZ128mbkz:
6860  case X86::VSQRTPDZ128mk:
6861  case X86::VSQRTPDZ128mkz:
6862  case X86::VSQRTPDZ128r:
6863  case X86::VSQRTPDZ128rk:
6864  case X86::VSQRTPDZ128rkz:
6865  case X86::VSQRTPDZ256m:
6866  case X86::VSQRTPDZ256mb:
6867  case X86::VSQRTPDZ256mbk:
6868  case X86::VSQRTPDZ256mbkz:
6869  case X86::VSQRTPDZ256mk:
6870  case X86::VSQRTPDZ256mkz:
6871  case X86::VSQRTPDZ256r:
6872  case X86::VSQRTPDZ256rk:
6873  case X86::VSQRTPDZ256rkz:
6874  case X86::VSQRTPDZm:
6875  case X86::VSQRTPDZmb:
6876  case X86::VSQRTPDZmbk:
6877  case X86::VSQRTPDZmbkz:
6878  case X86::VSQRTPDZmk:
6879  case X86::VSQRTPDZmkz:
6880  case X86::VSQRTPDZr:
6881  case X86::VSQRTPDZrb:
6882  case X86::VSQRTPDZrbk:
6883  case X86::VSQRTPDZrbkz:
6884  case X86::VSQRTPDZrk:
6885  case X86::VSQRTPDZrkz:
6886  case X86::VSQRTPSZ128m:
6887  case X86::VSQRTPSZ128mb:
6888  case X86::VSQRTPSZ128mbk:
6889  case X86::VSQRTPSZ128mbkz:
6890  case X86::VSQRTPSZ128mk:
6891  case X86::VSQRTPSZ128mkz:
6892  case X86::VSQRTPSZ128r:
6893  case X86::VSQRTPSZ128rk:
6894  case X86::VSQRTPSZ128rkz:
6895  case X86::VSQRTPSZ256m:
6896  case X86::VSQRTPSZ256mb:
6897  case X86::VSQRTPSZ256mbk:
6898  case X86::VSQRTPSZ256mbkz:
6899  case X86::VSQRTPSZ256mk:
6900  case X86::VSQRTPSZ256mkz:
6901  case X86::VSQRTPSZ256r:
6902  case X86::VSQRTPSZ256rk:
6903  case X86::VSQRTPSZ256rkz:
6904  case X86::VSQRTPSZm:
6905  case X86::VSQRTPSZmb:
6906  case X86::VSQRTPSZmbk:
6907  case X86::VSQRTPSZmbkz:
6908  case X86::VSQRTPSZmk:
6909  case X86::VSQRTPSZmkz:
6910  case X86::VSQRTPSZr:
6911  case X86::VSQRTPSZrb:
6912  case X86::VSQRTPSZrbk:
6913  case X86::VSQRTPSZrbkz:
6914  case X86::VSQRTPSZrk:
6915  case X86::VSQRTPSZrkz:
6916  case X86::VSQRTSDZm:
6917  case X86::VSQRTSDZm_Int:
6918  case X86::VSQRTSDZm_Intk:
6919  case X86::VSQRTSDZm_Intkz:
6920  case X86::VSQRTSDZr:
6921  case X86::VSQRTSDZr_Int:
6922  case X86::VSQRTSDZr_Intk:
6923  case X86::VSQRTSDZr_Intkz:
6924  case X86::VSQRTSDZrb_Int:
6925  case X86::VSQRTSDZrb_Intk:
6926  case X86::VSQRTSDZrb_Intkz:
6927  case X86::VSQRTSSZm:
6928  case X86::VSQRTSSZm_Int:
6929  case X86::VSQRTSSZm_Intk:
6930  case X86::VSQRTSSZm_Intkz:
6931  case X86::VSQRTSSZr:
6932  case X86::VSQRTSSZr_Int:
6933  case X86::VSQRTSSZr_Intk:
6934  case X86::VSQRTSSZr_Intkz:
6935  case X86::VSQRTSSZrb_Int:
6936  case X86::VSQRTSSZrb_Intk:
6937  case X86::VSQRTSSZrb_Intkz:
6938
6939  case X86::VGATHERDPDYrm:
6940  case X86::VGATHERDPDZ128rm:
6941  case X86::VGATHERDPDZ256rm:
6942  case X86::VGATHERDPDZrm:
6943  case X86::VGATHERDPDrm:
6944  case X86::VGATHERDPSYrm:
6945  case X86::VGATHERDPSZ128rm:
6946  case X86::VGATHERDPSZ256rm:
6947  case X86::VGATHERDPSZrm:
6948  case X86::VGATHERDPSrm:
6949  case X86::VGATHERPF0DPDm:
6950  case X86::VGATHERPF0DPSm:
6951  case X86::VGATHERPF0QPDm:
6952  case X86::VGATHERPF0QPSm:
6953  case X86::VGATHERPF1DPDm:
6954  case X86::VGATHERPF1DPSm:
6955  case X86::VGATHERPF1QPDm:
6956  case X86::VGATHERPF1QPSm:
6957  case X86::VGATHERQPDYrm:
6958  case X86::VGATHERQPDZ128rm:
6959  case X86::VGATHERQPDZ256rm:
6960  case X86::VGATHERQPDZrm:
6961  case X86::VGATHERQPDrm:
6962  case X86::VGATHERQPSYrm:
6963  case X86::VGATHERQPSZ128rm:
6964  case X86::VGATHERQPSZ256rm:
6965  case X86::VGATHERQPSZrm:
6966  case X86::VGATHERQPSrm:
6967  case X86::VPGATHERDDYrm:
6968  case X86::VPGATHERDDZ128rm:
6969  case X86::VPGATHERDDZ256rm:
6970  case X86::VPGATHERDDZrm:
6971  case X86::VPGATHERDDrm:
6972  case X86::VPGATHERDQYrm:
6973  case X86::VPGATHERDQZ128rm:
6974  case X86::VPGATHERDQZ256rm:
6975  case X86::VPGATHERDQZrm:
6976  case X86::VPGATHERDQrm:
6977  case X86::VPGATHERQDYrm:
6978  case X86::VPGATHERQDZ128rm:
6979  case X86::VPGATHERQDZ256rm:
6980  case X86::VPGATHERQDZrm:
6981  case X86::VPGATHERQDrm:
6982  case X86::VPGATHERQQYrm:
6983  case X86::VPGATHERQQZ128rm:
6984  case X86::VPGATHERQQZ256rm:
6985  case X86::VPGATHERQQZrm:
6986  case X86::VPGATHERQQrm:
6987  case X86::VSCATTERDPDZ128mr:
6988  case X86::VSCATTERDPDZ256mr:
6989  case X86::VSCATTERDPDZmr:
6990  case X86::VSCATTERDPSZ128mr:
6991  case X86::VSCATTERDPSZ256mr:
6992  case X86::VSCATTERDPSZmr:
6993  case X86::VSCATTERPF0DPDm:
6994  case X86::VSCATTERPF0DPSm:
6995  case X86::VSCATTERPF0QPDm:
6996  case X86::VSCATTERPF0QPSm:
6997  case X86::VSCATTERPF1DPDm:
6998  case X86::VSCATTERPF1DPSm:
6999  case X86::VSCATTERPF1QPDm:
7000  case X86::VSCATTERPF1QPSm:
7001  case X86::VSCATTERQPDZ128mr:
7002  case X86::VSCATTERQPDZ256mr:
7003  case X86::VSCATTERQPDZmr:
7004  case X86::VSCATTERQPSZ128mr:
7005  case X86::VSCATTERQPSZ256mr:
7006  case X86::VSCATTERQPSZmr:
7007  case X86::VPSCATTERDDZ128mr:
7008  case X86::VPSCATTERDDZ256mr:
7009  case X86::VPSCATTERDDZmr:
7010  case X86::VPSCATTERDQZ128mr:
7011  case X86::VPSCATTERDQZ256mr:
7012  case X86::VPSCATTERDQZmr:
7013  case X86::VPSCATTERQDZ128mr:
7014  case X86::VPSCATTERQDZ256mr:
7015  case X86::VPSCATTERQDZmr:
7016  case X86::VPSCATTERQQZ128mr:
7017  case X86::VPSCATTERQQZ256mr:
7018  case X86::VPSCATTERQQZmr:
7019    return true;
7020  }
7021}
7022
7023bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
7024                                         const MachineRegisterInfo *MRI,
7025                                         const MachineInstr &DefMI,
7026                                         unsigned DefIdx,
7027                                         const MachineInstr &UseMI,
7028                                         unsigned UseIdx) const {
7029  return isHighLatencyDef(DefMI.getOpcode());
7030}
7031
7032bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
7033                                           const MachineBasicBlock *MBB) const {
7034  assert((Inst.getNumOperands() == 3 || Inst.getNumOperands() == 4) &&
7035         "Reassociation needs binary operators");
7036
7037  // Integer binary math/logic instructions have a third source operand:
7038  // the EFLAGS register. That operand must be both defined here and never
7039  // used; ie, it must be dead. If the EFLAGS operand is live, then we can
7040  // not change anything because rearranging the operands could affect other
7041  // instructions that depend on the exact status flags (zero, sign, etc.)
7042  // that are set by using these particular operands with this operation.
7043  if (Inst.getNumOperands() == 4) {
7044    assert(Inst.getOperand(3).isReg() &&
7045           Inst.getOperand(3).getReg() == X86::EFLAGS &&
7046           "Unexpected operand in reassociable instruction");
7047    if (!Inst.getOperand(3).isDead())
7048      return false;
7049  }
7050
7051  return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
7052}
7053
7054// TODO: There are many more machine instruction opcodes to match:
7055//       1. Other data types (integer, vectors)
7056//       2. Other math / logic operations (xor, or)
7057//       3. Other forms of the same operation (intrinsics and other variants)
7058bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
7059  switch (Inst.getOpcode()) {
7060  case X86::AND8rr:
7061  case X86::AND16rr:
7062  case X86::AND32rr:
7063  case X86::AND64rr:
7064  case X86::OR8rr:
7065  case X86::OR16rr:
7066  case X86::OR32rr:
7067  case X86::OR64rr:
7068  case X86::XOR8rr:
7069  case X86::XOR16rr:
7070  case X86::XOR32rr:
7071  case X86::XOR64rr:
7072  case X86::IMUL16rr:
7073  case X86::IMUL32rr:
7074  case X86::IMUL64rr:
7075  case X86::PANDrr:
7076  case X86::PORrr:
7077  case X86::PXORrr:
7078  case X86::ANDPDrr:
7079  case X86::ANDPSrr:
7080  case X86::ORPDrr:
7081  case X86::ORPSrr:
7082  case X86::XORPDrr:
7083  case X86::XORPSrr:
7084  case X86::PADDBrr:
7085  case X86::PADDWrr:
7086  case X86::PADDDrr:
7087  case X86::PADDQrr:
7088  case X86::VPANDrr:
7089  case X86::VPANDYrr:
7090  case X86::VPANDDZ128rr:
7091  case X86::VPANDDZ256rr:
7092  case X86::VPANDDZrr:
7093  case X86::VPANDQZ128rr:
7094  case X86::VPANDQZ256rr:
7095  case X86::VPANDQZrr:
7096  case X86::VPORrr:
7097  case X86::VPORYrr:
7098  case X86::VPORDZ128rr:
7099  case X86::VPORDZ256rr:
7100  case X86::VPORDZrr:
7101  case X86::VPORQZ128rr:
7102  case X86::VPORQZ256rr:
7103  case X86::VPORQZrr:
7104  case X86::VPXORrr:
7105  case X86::VPXORYrr:
7106  case X86::VPXORDZ128rr:
7107  case X86::VPXORDZ256rr:
7108  case X86::VPXORDZrr:
7109  case X86::VPXORQZ128rr:
7110  case X86::VPXORQZ256rr:
7111  case X86::VPXORQZrr:
7112  case X86::VANDPDrr:
7113  case X86::VANDPSrr:
7114  case X86::VANDPDYrr:
7115  case X86::VANDPSYrr:
7116  case X86::VANDPDZ128rr:
7117  case X86::VANDPSZ128rr:
7118  case X86::VANDPDZ256rr:
7119  case X86::VANDPSZ256rr:
7120  case X86::VANDPDZrr:
7121  case X86::VANDPSZrr:
7122  case X86::VORPDrr:
7123  case X86::VORPSrr:
7124  case X86::VORPDYrr:
7125  case X86::VORPSYrr:
7126  case X86::VORPDZ128rr:
7127  case X86::VORPSZ128rr:
7128  case X86::VORPDZ256rr:
7129  case X86::VORPSZ256rr:
7130  case X86::VORPDZrr:
7131  case X86::VORPSZrr:
7132  case X86::VXORPDrr:
7133  case X86::VXORPSrr:
7134  case X86::VXORPDYrr:
7135  case X86::VXORPSYrr:
7136  case X86::VXORPDZ128rr:
7137  case X86::VXORPSZ128rr:
7138  case X86::VXORPDZ256rr:
7139  case X86::VXORPSZ256rr:
7140  case X86::VXORPDZrr:
7141  case X86::VXORPSZrr:
7142  case X86::KADDBrr:
7143  case X86::KADDWrr:
7144  case X86::KADDDrr:
7145  case X86::KADDQrr:
7146  case X86::KANDBrr:
7147  case X86::KANDWrr:
7148  case X86::KANDDrr:
7149  case X86::KANDQrr:
7150  case X86::KORBrr:
7151  case X86::KORWrr:
7152  case X86::KORDrr:
7153  case X86::KORQrr:
7154  case X86::KXORBrr:
7155  case X86::KXORWrr:
7156  case X86::KXORDrr:
7157  case X86::KXORQrr:
7158  case X86::VPADDBrr:
7159  case X86::VPADDWrr:
7160  case X86::VPADDDrr:
7161  case X86::VPADDQrr:
7162  case X86::VPADDBYrr:
7163  case X86::VPADDWYrr:
7164  case X86::VPADDDYrr:
7165  case X86::VPADDQYrr:
7166  case X86::VPADDBZ128rr:
7167  case X86::VPADDWZ128rr:
7168  case X86::VPADDDZ128rr:
7169  case X86::VPADDQZ128rr:
7170  case X86::VPADDBZ256rr:
7171  case X86::VPADDWZ256rr:
7172  case X86::VPADDDZ256rr:
7173  case X86::VPADDQZ256rr:
7174  case X86::VPADDBZrr:
7175  case X86::VPADDWZrr:
7176  case X86::VPADDDZrr:
7177  case X86::VPADDQZrr:
7178  case X86::VPMULLWrr:
7179  case X86::VPMULLWYrr:
7180  case X86::VPMULLWZ128rr:
7181  case X86::VPMULLWZ256rr:
7182  case X86::VPMULLWZrr:
7183  case X86::VPMULLDrr:
7184  case X86::VPMULLDYrr:
7185  case X86::VPMULLDZ128rr:
7186  case X86::VPMULLDZ256rr:
7187  case X86::VPMULLDZrr:
7188  case X86::VPMULLQZ128rr:
7189  case X86::VPMULLQZ256rr:
7190  case X86::VPMULLQZrr:
7191  // Normal min/max instructions are not commutative because of NaN and signed
7192  // zero semantics, but these are. Thus, there's no need to check for global
7193  // relaxed math; the instructions themselves have the properties we need.
7194  case X86::MAXCPDrr:
7195  case X86::MAXCPSrr:
7196  case X86::MAXCSDrr:
7197  case X86::MAXCSSrr:
7198  case X86::MINCPDrr:
7199  case X86::MINCPSrr:
7200  case X86::MINCSDrr:
7201  case X86::MINCSSrr:
7202  case X86::VMAXCPDrr:
7203  case X86::VMAXCPSrr:
7204  case X86::VMAXCPDYrr:
7205  case X86::VMAXCPSYrr:
7206  case X86::VMAXCPDZ128rr:
7207  case X86::VMAXCPSZ128rr:
7208  case X86::VMAXCPDZ256rr:
7209  case X86::VMAXCPSZ256rr:
7210  case X86::VMAXCPDZrr:
7211  case X86::VMAXCPSZrr:
7212  case X86::VMAXCSDrr:
7213  case X86::VMAXCSSrr:
7214  case X86::VMAXCSDZrr:
7215  case X86::VMAXCSSZrr:
7216  case X86::VMINCPDrr:
7217  case X86::VMINCPSrr:
7218  case X86::VMINCPDYrr:
7219  case X86::VMINCPSYrr:
7220  case X86::VMINCPDZ128rr:
7221  case X86::VMINCPSZ128rr:
7222  case X86::VMINCPDZ256rr:
7223  case X86::VMINCPSZ256rr:
7224  case X86::VMINCPDZrr:
7225  case X86::VMINCPSZrr:
7226  case X86::VMINCSDrr:
7227  case X86::VMINCSSrr:
7228  case X86::VMINCSDZrr:
7229  case X86::VMINCSSZrr:
7230    return true;
7231  case X86::ADDPDrr:
7232  case X86::ADDPSrr:
7233  case X86::ADDSDrr:
7234  case X86::ADDSSrr:
7235  case X86::MULPDrr:
7236  case X86::MULPSrr:
7237  case X86::MULSDrr:
7238  case X86::MULSSrr:
7239  case X86::VADDPDrr:
7240  case X86::VADDPSrr:
7241  case X86::VADDPDYrr:
7242  case X86::VADDPSYrr:
7243  case X86::VADDPDZ128rr:
7244  case X86::VADDPSZ128rr:
7245  case X86::VADDPDZ256rr:
7246  case X86::VADDPSZ256rr:
7247  case X86::VADDPDZrr:
7248  case X86::VADDPSZrr:
7249  case X86::VADDSDrr:
7250  case X86::VADDSSrr:
7251  case X86::VADDSDZrr:
7252  case X86::VADDSSZrr:
7253  case X86::VMULPDrr:
7254  case X86::VMULPSrr:
7255  case X86::VMULPDYrr:
7256  case X86::VMULPSYrr:
7257  case X86::VMULPDZ128rr:
7258  case X86::VMULPSZ128rr:
7259  case X86::VMULPDZ256rr:
7260  case X86::VMULPSZ256rr:
7261  case X86::VMULPDZrr:
7262  case X86::VMULPSZrr:
7263  case X86::VMULSDrr:
7264  case X86::VMULSSrr:
7265  case X86::VMULSDZrr:
7266  case X86::VMULSSZrr:
7267    return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath;
7268  default:
7269    return false;
7270  }
7271}
7272
7273/// This is an architecture-specific helper function of reassociateOps.
7274/// Set special operand attributes for new instructions after reassociation.
7275void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
7276                                         MachineInstr &OldMI2,
7277                                         MachineInstr &NewMI1,
7278                                         MachineInstr &NewMI2) const {
7279  // Integer instructions define an implicit EFLAGS source register operand as
7280  // the third source (fourth total) operand.
7281  if (OldMI1.getNumOperands() != 4 || OldMI2.getNumOperands() != 4)
7282    return;
7283
7284  assert(NewMI1.getNumOperands() == 4 && NewMI2.getNumOperands() == 4 &&
7285         "Unexpected instruction type for reassociation");
7286
7287  MachineOperand &OldOp1 = OldMI1.getOperand(3);
7288  MachineOperand &OldOp2 = OldMI2.getOperand(3);
7289  MachineOperand &NewOp1 = NewMI1.getOperand(3);
7290  MachineOperand &NewOp2 = NewMI2.getOperand(3);
7291
7292  assert(OldOp1.isReg() && OldOp1.getReg() == X86::EFLAGS && OldOp1.isDead() &&
7293         "Must have dead EFLAGS operand in reassociable instruction");
7294  assert(OldOp2.isReg() && OldOp2.getReg() == X86::EFLAGS && OldOp2.isDead() &&
7295         "Must have dead EFLAGS operand in reassociable instruction");
7296
7297  (void)OldOp1;
7298  (void)OldOp2;
7299
7300  assert(NewOp1.isReg() && NewOp1.getReg() == X86::EFLAGS &&
7301         "Unexpected operand in reassociable instruction");
7302  assert(NewOp2.isReg() && NewOp2.getReg() == X86::EFLAGS &&
7303         "Unexpected operand in reassociable instruction");
7304
7305  // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
7306  // of this pass or other passes. The EFLAGS operands must be dead in these new
7307  // instructions because the EFLAGS operands in the original instructions must
7308  // be dead in order for reassociation to occur.
7309  NewOp1.setIsDead();
7310  NewOp2.setIsDead();
7311}
7312
7313std::pair<unsigned, unsigned>
7314X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
7315  return std::make_pair(TF, 0u);
7316}
7317
7318ArrayRef<std::pair<unsigned, const char *>>
7319X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
7320  using namespace X86II;
7321  static const std::pair<unsigned, const char *> TargetFlags[] = {
7322      {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
7323      {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
7324      {MO_GOT, "x86-got"},
7325      {MO_GOTOFF, "x86-gotoff"},
7326      {MO_GOTPCREL, "x86-gotpcrel"},
7327      {MO_PLT, "x86-plt"},
7328      {MO_TLSGD, "x86-tlsgd"},
7329      {MO_TLSLD, "x86-tlsld"},
7330      {MO_TLSLDM, "x86-tlsldm"},
7331      {MO_GOTTPOFF, "x86-gottpoff"},
7332      {MO_INDNTPOFF, "x86-indntpoff"},
7333      {MO_TPOFF, "x86-tpoff"},
7334      {MO_DTPOFF, "x86-dtpoff"},
7335      {MO_NTPOFF, "x86-ntpoff"},
7336      {MO_GOTNTPOFF, "x86-gotntpoff"},
7337      {MO_DLLIMPORT, "x86-dllimport"},
7338      {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
7339      {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
7340      {MO_TLVP, "x86-tlvp"},
7341      {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
7342      {MO_SECREL, "x86-secrel"}};
7343  return makeArrayRef(TargetFlags);
7344}
7345
7346namespace {
7347  /// Create Global Base Reg pass. This initializes the PIC
7348  /// global base register for x86-32.
7349  struct CGBR : public MachineFunctionPass {
7350    static char ID;
7351    CGBR() : MachineFunctionPass(ID) {}
7352
7353    bool runOnMachineFunction(MachineFunction &MF) override {
7354      const X86TargetMachine *TM =
7355        static_cast<const X86TargetMachine *>(&MF.getTarget());
7356      const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
7357
7358      // Don't do anything in the 64-bit small and kernel code models. They use
7359      // RIP-relative addressing for everything.
7360      if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small ||
7361                            TM->getCodeModel() == CodeModel::Kernel))
7362        return false;
7363
7364      // Only emit a global base reg in PIC mode.
7365      if (!TM->isPositionIndependent())
7366        return false;
7367
7368      X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
7369      unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
7370
7371      // If we didn't need a GlobalBaseReg, don't insert code.
7372      if (GlobalBaseReg == 0)
7373        return false;
7374
7375      // Insert the set of GlobalBaseReg into the first MBB of the function
7376      MachineBasicBlock &FirstMBB = MF.front();
7377      MachineBasicBlock::iterator MBBI = FirstMBB.begin();
7378      DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
7379      MachineRegisterInfo &RegInfo = MF.getRegInfo();
7380      const X86InstrInfo *TII = STI.getInstrInfo();
7381
7382      unsigned PC;
7383      if (STI.isPICStyleGOT())
7384        PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
7385      else
7386        PC = GlobalBaseReg;
7387
7388      if (STI.is64Bit()) {
7389        if (TM->getCodeModel() == CodeModel::Medium) {
7390          // In the medium code model, use a RIP-relative LEA to materialize the
7391          // GOT.
7392          BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
7393              .addReg(X86::RIP)
7394              .addImm(0)
7395              .addReg(0)
7396              .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
7397              .addReg(0);
7398        } else if (TM->getCodeModel() == CodeModel::Large) {
7399          // Loading the GOT in the large code model requires math with labels,
7400          // so we use a pseudo instruction and expand it during MC emission.
7401          unsigned Scratch = RegInfo.createVirtualRegister(&X86::GR64RegClass);
7402          BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVGOT64r), PC)
7403              .addReg(Scratch, RegState::Undef | RegState::Define)
7404              .addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
7405        } else {
7406          llvm_unreachable("unexpected code model");
7407        }
7408      } else {
7409        // Operand of MovePCtoStack is completely ignored by asm printer. It's
7410        // only used in JIT code emission as displacement to pc.
7411        BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
7412
7413        // If we're using vanilla 'GOT' PIC style, we should use relative
7414        // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
7415        if (STI.isPICStyleGOT()) {
7416          // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
7417          // %some_register
7418          BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
7419              .addReg(PC)
7420              .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
7421                                 X86II::MO_GOT_ABSOLUTE_ADDRESS);
7422        }
7423      }
7424
7425      return true;
7426    }
7427
7428    StringRef getPassName() const override {
7429      return "X86 PIC Global Base Reg Initialization";
7430    }
7431
7432    void getAnalysisUsage(AnalysisUsage &AU) const override {
7433      AU.setPreservesCFG();
7434      MachineFunctionPass::getAnalysisUsage(AU);
7435    }
7436  };
7437}
7438
7439char CGBR::ID = 0;
7440FunctionPass*
7441llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
7442
7443namespace {
7444  struct LDTLSCleanup : public MachineFunctionPass {
7445    static char ID;
7446    LDTLSCleanup() : MachineFunctionPass(ID) {}
7447
7448    bool runOnMachineFunction(MachineFunction &MF) override {
7449      if (skipFunction(MF.getFunction()))
7450        return false;
7451
7452      X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
7453      if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
7454        // No point folding accesses if there isn't at least two.
7455        return false;
7456      }
7457
7458      MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
7459      return VisitNode(DT->getRootNode(), 0);
7460    }
7461
7462    // Visit the dominator subtree rooted at Node in pre-order.
7463    // If TLSBaseAddrReg is non-null, then use that to replace any
7464    // TLS_base_addr instructions. Otherwise, create the register
7465    // when the first such instruction is seen, and then use it
7466    // as we encounter more instructions.
7467    bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
7468      MachineBasicBlock *BB = Node->getBlock();
7469      bool Changed = false;
7470
7471      // Traverse the current block.
7472      for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
7473           ++I) {
7474        switch (I->getOpcode()) {
7475          case X86::TLS_base_addr32:
7476          case X86::TLS_base_addr64:
7477            if (TLSBaseAddrReg)
7478              I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
7479            else
7480              I = SetRegister(*I, &TLSBaseAddrReg);
7481            Changed = true;
7482            break;
7483          default:
7484            break;
7485        }
7486      }
7487
7488      // Visit the children of this block in the dominator tree.
7489      for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
7490           I != E; ++I) {
7491        Changed |= VisitNode(*I, TLSBaseAddrReg);
7492      }
7493
7494      return Changed;
7495    }
7496
7497    // Replace the TLS_base_addr instruction I with a copy from
7498    // TLSBaseAddrReg, returning the new instruction.
7499    MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
7500                                         unsigned TLSBaseAddrReg) {
7501      MachineFunction *MF = I.getParent()->getParent();
7502      const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
7503      const bool is64Bit = STI.is64Bit();
7504      const X86InstrInfo *TII = STI.getInstrInfo();
7505
7506      // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
7507      MachineInstr *Copy =
7508          BuildMI(*I.getParent(), I, I.getDebugLoc(),
7509                  TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
7510              .addReg(TLSBaseAddrReg);
7511
7512      // Erase the TLS_base_addr instruction.
7513      I.eraseFromParent();
7514
7515      return Copy;
7516    }
7517
7518    // Create a virtual register in *TLSBaseAddrReg, and populate it by
7519    // inserting a copy instruction after I. Returns the new instruction.
7520    MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
7521      MachineFunction *MF = I.getParent()->getParent();
7522      const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
7523      const bool is64Bit = STI.is64Bit();
7524      const X86InstrInfo *TII = STI.getInstrInfo();
7525
7526      // Create a virtual register for the TLS base address.
7527      MachineRegisterInfo &RegInfo = MF->getRegInfo();
7528      *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
7529                                                      ? &X86::GR64RegClass
7530                                                      : &X86::GR32RegClass);
7531
7532      // Insert a copy from RAX/EAX to TLSBaseAddrReg.
7533      MachineInstr *Next = I.getNextNode();
7534      MachineInstr *Copy =
7535          BuildMI(*I.getParent(), Next, I.getDebugLoc(),
7536                  TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
7537              .addReg(is64Bit ? X86::RAX : X86::EAX);
7538
7539      return Copy;
7540    }
7541
7542    StringRef getPassName() const override {
7543      return "Local Dynamic TLS Access Clean-up";
7544    }
7545
7546    void getAnalysisUsage(AnalysisUsage &AU) const override {
7547      AU.setPreservesCFG();
7548      AU.addRequired<MachineDominatorTree>();
7549      MachineFunctionPass::getAnalysisUsage(AU);
7550    }
7551  };
7552}
7553
7554char LDTLSCleanup::ID = 0;
7555FunctionPass*
7556llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
7557
7558/// Constants defining how certain sequences should be outlined.
7559///
7560/// \p MachineOutlinerDefault implies that the function is called with a call
7561/// instruction, and a return must be emitted for the outlined function frame.
7562///
7563/// That is,
7564///
7565/// I1                                 OUTLINED_FUNCTION:
7566/// I2 --> call OUTLINED_FUNCTION       I1
7567/// I3                                  I2
7568///                                     I3
7569///                                     ret
7570///
7571/// * Call construction overhead: 1 (call instruction)
7572/// * Frame construction overhead: 1 (return instruction)
7573///
7574/// \p MachineOutlinerTailCall implies that the function is being tail called.
7575/// A jump is emitted instead of a call, and the return is already present in
7576/// the outlined sequence. That is,
7577///
7578/// I1                                 OUTLINED_FUNCTION:
7579/// I2 --> jmp OUTLINED_FUNCTION       I1
7580/// ret                                I2
7581///                                    ret
7582///
7583/// * Call construction overhead: 1 (jump instruction)
7584/// * Frame construction overhead: 0 (don't need to return)
7585///
7586enum MachineOutlinerClass {
7587  MachineOutlinerDefault,
7588  MachineOutlinerTailCall
7589};
7590
7591outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo(
7592    std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
7593  unsigned SequenceSize =
7594      std::accumulate(RepeatedSequenceLocs[0].front(),
7595                      std::next(RepeatedSequenceLocs[0].back()), 0,
7596                      [](unsigned Sum, const MachineInstr &MI) {
7597                        // FIXME: x86 doesn't implement getInstSizeInBytes, so
7598                        // we can't tell the cost.  Just assume each instruction
7599                        // is one byte.
7600                        if (MI.isDebugInstr() || MI.isKill())
7601                          return Sum;
7602                        return Sum + 1;
7603                      });
7604
7605  // FIXME: Use real size in bytes for call and ret instructions.
7606  if (RepeatedSequenceLocs[0].back()->isTerminator()) {
7607    for (outliner::Candidate &C : RepeatedSequenceLocs)
7608      C.setCallInfo(MachineOutlinerTailCall, 1);
7609
7610    return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
7611                                      0, // Number of bytes to emit frame.
7612                                      MachineOutlinerTailCall // Type of frame.
7613    );
7614  }
7615
7616  for (outliner::Candidate &C : RepeatedSequenceLocs)
7617    C.setCallInfo(MachineOutlinerDefault, 1);
7618
7619  return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
7620                                    MachineOutlinerDefault);
7621}
7622
7623bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF,
7624                                           bool OutlineFromLinkOnceODRs) const {
7625  const Function &F = MF.getFunction();
7626
7627  // Does the function use a red zone? If it does, then we can't risk messing
7628  // with the stack.
7629  if (!F.hasFnAttribute(Attribute::NoRedZone)) {
7630    // It could have a red zone. If it does, then we don't want to touch it.
7631    const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
7632    if (!X86FI || X86FI->getUsesRedZone())
7633      return false;
7634  }
7635
7636  // If we *don't* want to outline from things that could potentially be deduped
7637  // then return false.
7638  if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
7639      return false;
7640
7641  // This function is viable for outlining, so return true.
7642  return true;
7643}
7644
7645outliner::InstrType
7646X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,  unsigned Flags) const {
7647  MachineInstr &MI = *MIT;
7648  // Don't allow debug values to impact outlining type.
7649  if (MI.isDebugInstr() || MI.isIndirectDebugValue())
7650    return outliner::InstrType::Invisible;
7651
7652  // At this point, KILL instructions don't really tell us much so we can go
7653  // ahead and skip over them.
7654  if (MI.isKill())
7655    return outliner::InstrType::Invisible;
7656
7657  // Is this a tail call? If yes, we can outline as a tail call.
7658  if (isTailCall(MI))
7659    return outliner::InstrType::Legal;
7660
7661  // Is this the terminator of a basic block?
7662  if (MI.isTerminator() || MI.isReturn()) {
7663
7664    // Does its parent have any successors in its MachineFunction?
7665    if (MI.getParent()->succ_empty())
7666      return outliner::InstrType::Legal;
7667
7668    // It does, so we can't tail call it.
7669    return outliner::InstrType::Illegal;
7670  }
7671
7672  // Don't outline anything that modifies or reads from the stack pointer.
7673  //
7674  // FIXME: There are instructions which are being manually built without
7675  // explicit uses/defs so we also have to check the MCInstrDesc. We should be
7676  // able to remove the extra checks once those are fixed up. For example,
7677  // sometimes we might get something like %rax = POP64r 1. This won't be
7678  // caught by modifiesRegister or readsRegister even though the instruction
7679  // really ought to be formed so that modifiesRegister/readsRegister would
7680  // catch it.
7681  if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
7682      MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
7683      MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
7684    return outliner::InstrType::Illegal;
7685
7686  // Outlined calls change the instruction pointer, so don't read from it.
7687  if (MI.readsRegister(X86::RIP, &RI) ||
7688      MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
7689      MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
7690    return outliner::InstrType::Illegal;
7691
7692  // Positions can't safely be outlined.
7693  if (MI.isPosition())
7694    return outliner::InstrType::Illegal;
7695
7696  // Make sure none of the operands of this instruction do anything tricky.
7697  for (const MachineOperand &MOP : MI.operands())
7698    if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
7699        MOP.isTargetIndex())
7700      return outliner::InstrType::Illegal;
7701
7702  return outliner::InstrType::Legal;
7703}
7704
7705void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB,
7706                                          MachineFunction &MF,
7707                                          const outliner::OutlinedFunction &OF)
7708                                          const {
7709  // If we're a tail call, we already have a return, so don't do anything.
7710  if (OF.FrameConstructionID == MachineOutlinerTailCall)
7711    return;
7712
7713  // We're a normal call, so our sequence doesn't have a return instruction.
7714  // Add it in.
7715  MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RETQ));
7716  MBB.insert(MBB.end(), retq);
7717}
7718
7719MachineBasicBlock::iterator
7720X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
7721                                 MachineBasicBlock::iterator &It,
7722                                 MachineFunction &MF,
7723                                 const outliner::Candidate &C) const {
7724  // Is it a tail call?
7725  if (C.CallConstructionID == MachineOutlinerTailCall) {
7726    // Yes, just insert a JMP.
7727    It = MBB.insert(It,
7728                  BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
7729                      .addGlobalAddress(M.getNamedValue(MF.getName())));
7730  } else {
7731    // No, insert a call.
7732    It = MBB.insert(It,
7733                  BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
7734                      .addGlobalAddress(M.getNamedValue(MF.getName())));
7735  }
7736
7737  return It;
7738}
7739