X86InstrInfo.cpp revision 332833
1//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86MachineFunctionInfo.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/CodeGen/LivePhysRegs.h"
22#include "llvm/CodeGen/LiveVariables.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineDominators.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineModuleInfo.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/StackMaps.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/LLVMContext.h"
33#include "llvm/MC/MCAsmInfo.h"
34#include "llvm/MC/MCExpr.h"
35#include "llvm/MC/MCInst.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/raw_ostream.h"
40#include "llvm/Target/TargetOptions.h"
41
42using namespace llvm;
43
44#define DEBUG_TYPE "x86-instr-info"
45
46#define GET_INSTRINFO_CTOR_DTOR
47#include "X86GenInstrInfo.inc"
48
49static cl::opt<bool>
50    NoFusing("disable-spill-fusing",
51             cl::desc("Disable fusing of spill code into instructions"),
52             cl::Hidden);
53static cl::opt<bool>
54PrintFailedFusing("print-failed-fuse-candidates",
55                  cl::desc("Print instructions that the allocator wants to"
56                           " fuse, but the X86 backend currently can't"),
57                  cl::Hidden);
58static cl::opt<bool>
59ReMatPICStubLoad("remat-pic-stub-load",
60                 cl::desc("Re-materialize load from stub in PIC mode"),
61                 cl::init(false), cl::Hidden);
62static cl::opt<unsigned>
63PartialRegUpdateClearance("partial-reg-update-clearance",
64                          cl::desc("Clearance between two register writes "
65                                   "for inserting XOR to avoid partial "
66                                   "register update"),
67                          cl::init(64), cl::Hidden);
68static cl::opt<unsigned>
69UndefRegClearance("undef-reg-clearance",
70                  cl::desc("How many idle instructions we would like before "
71                           "certain undef register reads"),
72                  cl::init(128), cl::Hidden);
73
74enum {
75  // Select which memory operand is being unfolded.
76  // (stored in bits 0 - 3)
77  TB_INDEX_0    = 0,
78  TB_INDEX_1    = 1,
79  TB_INDEX_2    = 2,
80  TB_INDEX_3    = 3,
81  TB_INDEX_4    = 4,
82  TB_INDEX_MASK = 0xf,
83
84  // Do not insert the reverse map (MemOp -> RegOp) into the table.
85  // This may be needed because there is a many -> one mapping.
86  TB_NO_REVERSE   = 1 << 4,
87
88  // Do not insert the forward map (RegOp -> MemOp) into the table.
89  // This is needed for Native Client, which prohibits branch
90  // instructions from using a memory operand.
91  TB_NO_FORWARD   = 1 << 5,
92
93  TB_FOLDED_LOAD  = 1 << 6,
94  TB_FOLDED_STORE = 1 << 7,
95
96  // Minimum alignment required for load/store.
97  // Used for RegOp->MemOp conversion.
98  // (stored in bits 8 - 15)
99  TB_ALIGN_SHIFT = 8,
100  TB_ALIGN_NONE  =    0 << TB_ALIGN_SHIFT,
101  TB_ALIGN_16    =   16 << TB_ALIGN_SHIFT,
102  TB_ALIGN_32    =   32 << TB_ALIGN_SHIFT,
103  TB_ALIGN_64    =   64 << TB_ALIGN_SHIFT,
104  TB_ALIGN_MASK  = 0xff << TB_ALIGN_SHIFT
105};
106
107struct X86MemoryFoldTableEntry {
108  uint16_t RegOp;
109  uint16_t MemOp;
110  uint16_t Flags;
111};
112
113// Pin the vtable to this file.
114void X86InstrInfo::anchor() {}
115
116X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
117    : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
118                                               : X86::ADJCALLSTACKDOWN32),
119                      (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
120                                               : X86::ADJCALLSTACKUP32),
121                      X86::CATCHRET,
122                      (STI.is64Bit() ? X86::RETQ : X86::RETL)),
123      Subtarget(STI), RI(STI.getTargetTriple()) {
124
125  static const X86MemoryFoldTableEntry MemoryFoldTable2Addr[] = {
126    { X86::ADC16ri,     X86::ADC16mi,    0 },
127    { X86::ADC16ri8,    X86::ADC16mi8,   0 },
128    { X86::ADC16rr,     X86::ADC16mr,    0 },
129    { X86::ADC32ri,     X86::ADC32mi,    0 },
130    { X86::ADC32ri8,    X86::ADC32mi8,   0 },
131    { X86::ADC32rr,     X86::ADC32mr,    0 },
132    { X86::ADC64ri32,   X86::ADC64mi32,  0 },
133    { X86::ADC64ri8,    X86::ADC64mi8,   0 },
134    { X86::ADC64rr,     X86::ADC64mr,    0 },
135    { X86::ADC8ri,      X86::ADC8mi,     0 },
136    { X86::ADC8ri8,     X86::ADC8mi8,    0 },
137    { X86::ADC8rr,      X86::ADC8mr,     0 },
138    { X86::ADD16ri,     X86::ADD16mi,    0 },
139    { X86::ADD16ri8,    X86::ADD16mi8,   0 },
140    { X86::ADD16ri_DB,  X86::ADD16mi,    TB_NO_REVERSE },
141    { X86::ADD16ri8_DB, X86::ADD16mi8,   TB_NO_REVERSE },
142    { X86::ADD16rr,     X86::ADD16mr,    0 },
143    { X86::ADD16rr_DB,  X86::ADD16mr,    TB_NO_REVERSE },
144    { X86::ADD32ri,     X86::ADD32mi,    0 },
145    { X86::ADD32ri8,    X86::ADD32mi8,   0 },
146    { X86::ADD32ri_DB,  X86::ADD32mi,    TB_NO_REVERSE },
147    { X86::ADD32ri8_DB, X86::ADD32mi8,   TB_NO_REVERSE },
148    { X86::ADD32rr,     X86::ADD32mr,    0 },
149    { X86::ADD32rr_DB,  X86::ADD32mr,    TB_NO_REVERSE },
150    { X86::ADD64ri32,   X86::ADD64mi32,  0 },
151    { X86::ADD64ri8,    X86::ADD64mi8,   0 },
152    { X86::ADD64ri32_DB,X86::ADD64mi32,  TB_NO_REVERSE },
153    { X86::ADD64ri8_DB, X86::ADD64mi8,   TB_NO_REVERSE },
154    { X86::ADD64rr,     X86::ADD64mr,    0 },
155    { X86::ADD64rr_DB,  X86::ADD64mr,    TB_NO_REVERSE },
156    { X86::ADD8ri,      X86::ADD8mi,     0 },
157    { X86::ADD8ri8,     X86::ADD8mi8,    0 },
158    { X86::ADD8rr,      X86::ADD8mr,     0 },
159    { X86::AND16ri,     X86::AND16mi,    0 },
160    { X86::AND16ri8,    X86::AND16mi8,   0 },
161    { X86::AND16rr,     X86::AND16mr,    0 },
162    { X86::AND32ri,     X86::AND32mi,    0 },
163    { X86::AND32ri8,    X86::AND32mi8,   0 },
164    { X86::AND32rr,     X86::AND32mr,    0 },
165    { X86::AND64ri32,   X86::AND64mi32,  0 },
166    { X86::AND64ri8,    X86::AND64mi8,   0 },
167    { X86::AND64rr,     X86::AND64mr,    0 },
168    { X86::AND8ri,      X86::AND8mi,     0 },
169    { X86::AND8ri8,     X86::AND8mi8,    0 },
170    { X86::AND8rr,      X86::AND8mr,     0 },
171    { X86::BTC16ri8,    X86::BTC16mi8,   0 },
172    { X86::BTC32ri8,    X86::BTC32mi8,   0 },
173    { X86::BTC64ri8,    X86::BTC64mi8,   0 },
174    { X86::BTR16ri8,    X86::BTR16mi8,   0 },
175    { X86::BTR32ri8,    X86::BTR32mi8,   0 },
176    { X86::BTR64ri8,    X86::BTR64mi8,   0 },
177    { X86::BTS16ri8,    X86::BTS16mi8,   0 },
178    { X86::BTS32ri8,    X86::BTS32mi8,   0 },
179    { X86::BTS64ri8,    X86::BTS64mi8,   0 },
180    { X86::DEC16r,      X86::DEC16m,     0 },
181    { X86::DEC32r,      X86::DEC32m,     0 },
182    { X86::DEC64r,      X86::DEC64m,     0 },
183    { X86::DEC8r,       X86::DEC8m,      0 },
184    { X86::INC16r,      X86::INC16m,     0 },
185    { X86::INC32r,      X86::INC32m,     0 },
186    { X86::INC64r,      X86::INC64m,     0 },
187    { X86::INC8r,       X86::INC8m,      0 },
188    { X86::NEG16r,      X86::NEG16m,     0 },
189    { X86::NEG32r,      X86::NEG32m,     0 },
190    { X86::NEG64r,      X86::NEG64m,     0 },
191    { X86::NEG8r,       X86::NEG8m,      0 },
192    { X86::NOT16r,      X86::NOT16m,     0 },
193    { X86::NOT32r,      X86::NOT32m,     0 },
194    { X86::NOT64r,      X86::NOT64m,     0 },
195    { X86::NOT8r,       X86::NOT8m,      0 },
196    { X86::OR16ri,      X86::OR16mi,     0 },
197    { X86::OR16ri8,     X86::OR16mi8,    0 },
198    { X86::OR16rr,      X86::OR16mr,     0 },
199    { X86::OR32ri,      X86::OR32mi,     0 },
200    { X86::OR32ri8,     X86::OR32mi8,    0 },
201    { X86::OR32rr,      X86::OR32mr,     0 },
202    { X86::OR64ri32,    X86::OR64mi32,   0 },
203    { X86::OR64ri8,     X86::OR64mi8,    0 },
204    { X86::OR64rr,      X86::OR64mr,     0 },
205    { X86::OR8ri,       X86::OR8mi,      0 },
206    { X86::OR8ri8,      X86::OR8mi8,     0 },
207    { X86::OR8rr,       X86::OR8mr,      0 },
208    { X86::RCL16r1,     X86::RCL16m1,    0 },
209    { X86::RCL16rCL,    X86::RCL16mCL,   0 },
210    { X86::RCL16ri,     X86::RCL16mi,    0 },
211    { X86::RCL32r1,     X86::RCL32m1,    0 },
212    { X86::RCL32rCL,    X86::RCL32mCL,   0 },
213    { X86::RCL32ri,     X86::RCL32mi,    0 },
214    { X86::RCL64r1,     X86::RCL64m1,    0 },
215    { X86::RCL64rCL,    X86::RCL64mCL,   0 },
216    { X86::RCL64ri,     X86::RCL64mi,    0 },
217    { X86::RCL8r1,      X86::RCL8m1,     0 },
218    { X86::RCL8rCL,     X86::RCL8mCL,    0 },
219    { X86::RCL8ri,      X86::RCL8mi,     0 },
220    { X86::RCR16r1,     X86::RCR16m1,    0 },
221    { X86::RCR16rCL,    X86::RCR16mCL,   0 },
222    { X86::RCR16ri,     X86::RCR16mi,    0 },
223    { X86::RCR32r1,     X86::RCR32m1,    0 },
224    { X86::RCR32rCL,    X86::RCR32mCL,   0 },
225    { X86::RCR32ri,     X86::RCR32mi,    0 },
226    { X86::RCR64r1,     X86::RCR64m1,    0 },
227    { X86::RCR64rCL,    X86::RCR64mCL,   0 },
228    { X86::RCR64ri,     X86::RCR64mi,    0 },
229    { X86::RCR8r1,      X86::RCR8m1,     0 },
230    { X86::RCR8rCL,     X86::RCR8mCL,    0 },
231    { X86::RCR8ri,      X86::RCR8mi,     0 },
232    { X86::ROL16r1,     X86::ROL16m1,    0 },
233    { X86::ROL16rCL,    X86::ROL16mCL,   0 },
234    { X86::ROL16ri,     X86::ROL16mi,    0 },
235    { X86::ROL32r1,     X86::ROL32m1,    0 },
236    { X86::ROL32rCL,    X86::ROL32mCL,   0 },
237    { X86::ROL32ri,     X86::ROL32mi,    0 },
238    { X86::ROL64r1,     X86::ROL64m1,    0 },
239    { X86::ROL64rCL,    X86::ROL64mCL,   0 },
240    { X86::ROL64ri,     X86::ROL64mi,    0 },
241    { X86::ROL8r1,      X86::ROL8m1,     0 },
242    { X86::ROL8rCL,     X86::ROL8mCL,    0 },
243    { X86::ROL8ri,      X86::ROL8mi,     0 },
244    { X86::ROR16r1,     X86::ROR16m1,    0 },
245    { X86::ROR16rCL,    X86::ROR16mCL,   0 },
246    { X86::ROR16ri,     X86::ROR16mi,    0 },
247    { X86::ROR32r1,     X86::ROR32m1,    0 },
248    { X86::ROR32rCL,    X86::ROR32mCL,   0 },
249    { X86::ROR32ri,     X86::ROR32mi,    0 },
250    { X86::ROR64r1,     X86::ROR64m1,    0 },
251    { X86::ROR64rCL,    X86::ROR64mCL,   0 },
252    { X86::ROR64ri,     X86::ROR64mi,    0 },
253    { X86::ROR8r1,      X86::ROR8m1,     0 },
254    { X86::ROR8rCL,     X86::ROR8mCL,    0 },
255    { X86::ROR8ri,      X86::ROR8mi,     0 },
256    { X86::SAR16r1,     X86::SAR16m1,    0 },
257    { X86::SAR16rCL,    X86::SAR16mCL,   0 },
258    { X86::SAR16ri,     X86::SAR16mi,    0 },
259    { X86::SAR32r1,     X86::SAR32m1,    0 },
260    { X86::SAR32rCL,    X86::SAR32mCL,   0 },
261    { X86::SAR32ri,     X86::SAR32mi,    0 },
262    { X86::SAR64r1,     X86::SAR64m1,    0 },
263    { X86::SAR64rCL,    X86::SAR64mCL,   0 },
264    { X86::SAR64ri,     X86::SAR64mi,    0 },
265    { X86::SAR8r1,      X86::SAR8m1,     0 },
266    { X86::SAR8rCL,     X86::SAR8mCL,    0 },
267    { X86::SAR8ri,      X86::SAR8mi,     0 },
268    { X86::SBB16ri,     X86::SBB16mi,    0 },
269    { X86::SBB16ri8,    X86::SBB16mi8,   0 },
270    { X86::SBB16rr,     X86::SBB16mr,    0 },
271    { X86::SBB32ri,     X86::SBB32mi,    0 },
272    { X86::SBB32ri8,    X86::SBB32mi8,   0 },
273    { X86::SBB32rr,     X86::SBB32mr,    0 },
274    { X86::SBB64ri32,   X86::SBB64mi32,  0 },
275    { X86::SBB64ri8,    X86::SBB64mi8,   0 },
276    { X86::SBB64rr,     X86::SBB64mr,    0 },
277    { X86::SBB8ri,      X86::SBB8mi,     0 },
278    { X86::SBB8ri8,     X86::SBB8mi8,    0 },
279    { X86::SBB8rr,      X86::SBB8mr,     0 },
280    { X86::SHL16r1,     X86::SHL16m1,    0 },
281    { X86::SHL16rCL,    X86::SHL16mCL,   0 },
282    { X86::SHL16ri,     X86::SHL16mi,    0 },
283    { X86::SHL32r1,     X86::SHL32m1,    0 },
284    { X86::SHL32rCL,    X86::SHL32mCL,   0 },
285    { X86::SHL32ri,     X86::SHL32mi,    0 },
286    { X86::SHL64r1,     X86::SHL64m1,    0 },
287    { X86::SHL64rCL,    X86::SHL64mCL,   0 },
288    { X86::SHL64ri,     X86::SHL64mi,    0 },
289    { X86::SHL8r1,      X86::SHL8m1,     0 },
290    { X86::SHL8rCL,     X86::SHL8mCL,    0 },
291    { X86::SHL8ri,      X86::SHL8mi,     0 },
292    { X86::SHLD16rrCL,  X86::SHLD16mrCL, 0 },
293    { X86::SHLD16rri8,  X86::SHLD16mri8, 0 },
294    { X86::SHLD32rrCL,  X86::SHLD32mrCL, 0 },
295    { X86::SHLD32rri8,  X86::SHLD32mri8, 0 },
296    { X86::SHLD64rrCL,  X86::SHLD64mrCL, 0 },
297    { X86::SHLD64rri8,  X86::SHLD64mri8, 0 },
298    { X86::SHR16r1,     X86::SHR16m1,    0 },
299    { X86::SHR16rCL,    X86::SHR16mCL,   0 },
300    { X86::SHR16ri,     X86::SHR16mi,    0 },
301    { X86::SHR32r1,     X86::SHR32m1,    0 },
302    { X86::SHR32rCL,    X86::SHR32mCL,   0 },
303    { X86::SHR32ri,     X86::SHR32mi,    0 },
304    { X86::SHR64r1,     X86::SHR64m1,    0 },
305    { X86::SHR64rCL,    X86::SHR64mCL,   0 },
306    { X86::SHR64ri,     X86::SHR64mi,    0 },
307    { X86::SHR8r1,      X86::SHR8m1,     0 },
308    { X86::SHR8rCL,     X86::SHR8mCL,    0 },
309    { X86::SHR8ri,      X86::SHR8mi,     0 },
310    { X86::SHRD16rrCL,  X86::SHRD16mrCL, 0 },
311    { X86::SHRD16rri8,  X86::SHRD16mri8, 0 },
312    { X86::SHRD32rrCL,  X86::SHRD32mrCL, 0 },
313    { X86::SHRD32rri8,  X86::SHRD32mri8, 0 },
314    { X86::SHRD64rrCL,  X86::SHRD64mrCL, 0 },
315    { X86::SHRD64rri8,  X86::SHRD64mri8, 0 },
316    { X86::SUB16ri,     X86::SUB16mi,    0 },
317    { X86::SUB16ri8,    X86::SUB16mi8,   0 },
318    { X86::SUB16rr,     X86::SUB16mr,    0 },
319    { X86::SUB32ri,     X86::SUB32mi,    0 },
320    { X86::SUB32ri8,    X86::SUB32mi8,   0 },
321    { X86::SUB32rr,     X86::SUB32mr,    0 },
322    { X86::SUB64ri32,   X86::SUB64mi32,  0 },
323    { X86::SUB64ri8,    X86::SUB64mi8,   0 },
324    { X86::SUB64rr,     X86::SUB64mr,    0 },
325    { X86::SUB8ri,      X86::SUB8mi,     0 },
326    { X86::SUB8ri8,     X86::SUB8mi8,    0 },
327    { X86::SUB8rr,      X86::SUB8mr,     0 },
328    { X86::XOR16ri,     X86::XOR16mi,    0 },
329    { X86::XOR16ri8,    X86::XOR16mi8,   0 },
330    { X86::XOR16rr,     X86::XOR16mr,    0 },
331    { X86::XOR32ri,     X86::XOR32mi,    0 },
332    { X86::XOR32ri8,    X86::XOR32mi8,   0 },
333    { X86::XOR32rr,     X86::XOR32mr,    0 },
334    { X86::XOR64ri32,   X86::XOR64mi32,  0 },
335    { X86::XOR64ri8,    X86::XOR64mi8,   0 },
336    { X86::XOR64rr,     X86::XOR64mr,    0 },
337    { X86::XOR8ri,      X86::XOR8mi,     0 },
338    { X86::XOR8ri8,     X86::XOR8mi8,    0 },
339    { X86::XOR8rr,      X86::XOR8mr,     0 }
340  };
341
342  for (X86MemoryFoldTableEntry Entry : MemoryFoldTable2Addr) {
343    AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
344                  Entry.RegOp, Entry.MemOp,
345                  // Index 0, folded load and store, no alignment requirement.
346                  Entry.Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
347  }
348
349  static const X86MemoryFoldTableEntry MemoryFoldTable0[] = {
350    { X86::BT16ri8,     X86::BT16mi8,       TB_FOLDED_LOAD },
351    { X86::BT32ri8,     X86::BT32mi8,       TB_FOLDED_LOAD },
352    { X86::BT64ri8,     X86::BT64mi8,       TB_FOLDED_LOAD },
353    { X86::CALL32r,     X86::CALL32m,       TB_FOLDED_LOAD },
354    { X86::CALL64r,     X86::CALL64m,       TB_FOLDED_LOAD },
355    { X86::CMP16ri,     X86::CMP16mi,       TB_FOLDED_LOAD },
356    { X86::CMP16ri8,    X86::CMP16mi8,      TB_FOLDED_LOAD },
357    { X86::CMP16rr,     X86::CMP16mr,       TB_FOLDED_LOAD },
358    { X86::CMP32ri,     X86::CMP32mi,       TB_FOLDED_LOAD },
359    { X86::CMP32ri8,    X86::CMP32mi8,      TB_FOLDED_LOAD },
360    { X86::CMP32rr,     X86::CMP32mr,       TB_FOLDED_LOAD },
361    { X86::CMP64ri32,   X86::CMP64mi32,     TB_FOLDED_LOAD },
362    { X86::CMP64ri8,    X86::CMP64mi8,      TB_FOLDED_LOAD },
363    { X86::CMP64rr,     X86::CMP64mr,       TB_FOLDED_LOAD },
364    { X86::CMP8ri,      X86::CMP8mi,        TB_FOLDED_LOAD },
365    { X86::CMP8rr,      X86::CMP8mr,        TB_FOLDED_LOAD },
366    { X86::DIV16r,      X86::DIV16m,        TB_FOLDED_LOAD },
367    { X86::DIV32r,      X86::DIV32m,        TB_FOLDED_LOAD },
368    { X86::DIV64r,      X86::DIV64m,        TB_FOLDED_LOAD },
369    { X86::DIV8r,       X86::DIV8m,         TB_FOLDED_LOAD },
370    { X86::EXTRACTPSrr, X86::EXTRACTPSmr,   TB_FOLDED_STORE },
371    { X86::IDIV16r,     X86::IDIV16m,       TB_FOLDED_LOAD },
372    { X86::IDIV32r,     X86::IDIV32m,       TB_FOLDED_LOAD },
373    { X86::IDIV64r,     X86::IDIV64m,       TB_FOLDED_LOAD },
374    { X86::IDIV8r,      X86::IDIV8m,        TB_FOLDED_LOAD },
375    { X86::IMUL16r,     X86::IMUL16m,       TB_FOLDED_LOAD },
376    { X86::IMUL32r,     X86::IMUL32m,       TB_FOLDED_LOAD },
377    { X86::IMUL64r,     X86::IMUL64m,       TB_FOLDED_LOAD },
378    { X86::IMUL8r,      X86::IMUL8m,        TB_FOLDED_LOAD },
379    { X86::JMP32r,      X86::JMP32m,        TB_FOLDED_LOAD },
380    { X86::JMP64r,      X86::JMP64m,        TB_FOLDED_LOAD },
381    { X86::MOV16ri,     X86::MOV16mi,       TB_FOLDED_STORE },
382    { X86::MOV16rr,     X86::MOV16mr,       TB_FOLDED_STORE },
383    { X86::MOV32ri,     X86::MOV32mi,       TB_FOLDED_STORE },
384    { X86::MOV32rr,     X86::MOV32mr,       TB_FOLDED_STORE },
385    { X86::MOV64ri32,   X86::MOV64mi32,     TB_FOLDED_STORE },
386    { X86::MOV64rr,     X86::MOV64mr,       TB_FOLDED_STORE },
387    { X86::MOV8ri,      X86::MOV8mi,        TB_FOLDED_STORE },
388    { X86::MOV8rr,      X86::MOV8mr,        TB_FOLDED_STORE },
389    { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
390    { X86::MOVAPDrr,    X86::MOVAPDmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
391    { X86::MOVAPSrr,    X86::MOVAPSmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
392    { X86::MOVDQArr,    X86::MOVDQAmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
393    { X86::MOVDQUrr,    X86::MOVDQUmr,      TB_FOLDED_STORE },
394    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr,   TB_FOLDED_STORE },
395    { X86::MOVPQIto64rr,X86::MOVPQI2QImr,   TB_FOLDED_STORE },
396    { X86::MOVSDto64rr, X86::MOVSDto64mr,   TB_FOLDED_STORE },
397    { X86::MOVSS2DIrr,  X86::MOVSS2DImr,    TB_FOLDED_STORE },
398    { X86::MOVUPDrr,    X86::MOVUPDmr,      TB_FOLDED_STORE },
399    { X86::MOVUPSrr,    X86::MOVUPSmr,      TB_FOLDED_STORE },
400    { X86::MUL16r,      X86::MUL16m,        TB_FOLDED_LOAD },
401    { X86::MUL32r,      X86::MUL32m,        TB_FOLDED_LOAD },
402    { X86::MUL64r,      X86::MUL64m,        TB_FOLDED_LOAD },
403    { X86::MUL8r,       X86::MUL8m,         TB_FOLDED_LOAD },
404    { X86::PEXTRDrr,    X86::PEXTRDmr,      TB_FOLDED_STORE },
405    { X86::PEXTRQrr,    X86::PEXTRQmr,      TB_FOLDED_STORE },
406    { X86::PUSH16r,     X86::PUSH16rmm,     TB_FOLDED_LOAD },
407    { X86::PUSH32r,     X86::PUSH32rmm,     TB_FOLDED_LOAD },
408    { X86::PUSH64r,     X86::PUSH64rmm,     TB_FOLDED_LOAD },
409    { X86::SETAEr,      X86::SETAEm,        TB_FOLDED_STORE },
410    { X86::SETAr,       X86::SETAm,         TB_FOLDED_STORE },
411    { X86::SETBEr,      X86::SETBEm,        TB_FOLDED_STORE },
412    { X86::SETBr,       X86::SETBm,         TB_FOLDED_STORE },
413    { X86::SETEr,       X86::SETEm,         TB_FOLDED_STORE },
414    { X86::SETGEr,      X86::SETGEm,        TB_FOLDED_STORE },
415    { X86::SETGr,       X86::SETGm,         TB_FOLDED_STORE },
416    { X86::SETLEr,      X86::SETLEm,        TB_FOLDED_STORE },
417    { X86::SETLr,       X86::SETLm,         TB_FOLDED_STORE },
418    { X86::SETNEr,      X86::SETNEm,        TB_FOLDED_STORE },
419    { X86::SETNOr,      X86::SETNOm,        TB_FOLDED_STORE },
420    { X86::SETNPr,      X86::SETNPm,        TB_FOLDED_STORE },
421    { X86::SETNSr,      X86::SETNSm,        TB_FOLDED_STORE },
422    { X86::SETOr,       X86::SETOm,         TB_FOLDED_STORE },
423    { X86::SETPr,       X86::SETPm,         TB_FOLDED_STORE },
424    { X86::SETSr,       X86::SETSm,         TB_FOLDED_STORE },
425    { X86::TAILJMPr,    X86::TAILJMPm,      TB_FOLDED_LOAD },
426    { X86::TAILJMPr64,  X86::TAILJMPm64,    TB_FOLDED_LOAD },
427    { X86::TAILJMPr64_REX, X86::TAILJMPm64_REX, TB_FOLDED_LOAD },
428    { X86::TEST16ri,    X86::TEST16mi,      TB_FOLDED_LOAD },
429    { X86::TEST16rr,    X86::TEST16mr,      TB_FOLDED_LOAD },
430    { X86::TEST32ri,    X86::TEST32mi,      TB_FOLDED_LOAD },
431    { X86::TEST32rr,    X86::TEST32mr,      TB_FOLDED_LOAD },
432    { X86::TEST64ri32,  X86::TEST64mi32,    TB_FOLDED_LOAD },
433    { X86::TEST64rr,    X86::TEST64mr,      TB_FOLDED_LOAD },
434    { X86::TEST8ri,     X86::TEST8mi,       TB_FOLDED_LOAD },
435    { X86::TEST8rr,     X86::TEST8mr,       TB_FOLDED_LOAD },
436
437    // AVX 128-bit versions of foldable instructions
438    { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr,  TB_FOLDED_STORE  },
439    { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
440    { X86::VMOVAPDrr,   X86::VMOVAPDmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
441    { X86::VMOVAPSrr,   X86::VMOVAPSmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
442    { X86::VMOVDQArr,   X86::VMOVDQAmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
443    { X86::VMOVDQUrr,   X86::VMOVDQUmr,     TB_FOLDED_STORE },
444    { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr,  TB_FOLDED_STORE },
445    { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
446    { X86::VMOVSDto64rr,X86::VMOVSDto64mr,  TB_FOLDED_STORE },
447    { X86::VMOVSS2DIrr, X86::VMOVSS2DImr,   TB_FOLDED_STORE },
448    { X86::VMOVUPDrr,   X86::VMOVUPDmr,     TB_FOLDED_STORE },
449    { X86::VMOVUPSrr,   X86::VMOVUPSmr,     TB_FOLDED_STORE },
450    { X86::VPEXTRDrr,   X86::VPEXTRDmr,     TB_FOLDED_STORE },
451    { X86::VPEXTRQrr,   X86::VPEXTRQmr,     TB_FOLDED_STORE },
452
453    // AVX 256-bit foldable instructions
454    { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
455    { X86::VMOVAPDYrr,  X86::VMOVAPDYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
456    { X86::VMOVAPSYrr,  X86::VMOVAPSYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
457    { X86::VMOVDQAYrr,  X86::VMOVDQAYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
458    { X86::VMOVDQUYrr,  X86::VMOVDQUYmr,    TB_FOLDED_STORE },
459    { X86::VMOVUPDYrr,  X86::VMOVUPDYmr,    TB_FOLDED_STORE },
460    { X86::VMOVUPSYrr,  X86::VMOVUPSYmr,    TB_FOLDED_STORE },
461
462    // AVX-512 foldable instructions
463    { X86::VEXTRACTF32x4Zrr,X86::VEXTRACTF32x4Zmr, TB_FOLDED_STORE },
464    { X86::VEXTRACTF32x8Zrr,X86::VEXTRACTF32x8Zmr, TB_FOLDED_STORE },
465    { X86::VEXTRACTF64x2Zrr,X86::VEXTRACTF64x2Zmr, TB_FOLDED_STORE },
466    { X86::VEXTRACTF64x4Zrr,X86::VEXTRACTF64x4Zmr, TB_FOLDED_STORE },
467    { X86::VEXTRACTI32x4Zrr,X86::VEXTRACTI32x4Zmr, TB_FOLDED_STORE },
468    { X86::VEXTRACTI32x8Zrr,X86::VEXTRACTI32x8Zmr, TB_FOLDED_STORE },
469    { X86::VEXTRACTI64x2Zrr,X86::VEXTRACTI64x2Zmr, TB_FOLDED_STORE },
470    { X86::VEXTRACTI64x4Zrr,X86::VEXTRACTI64x4Zmr, TB_FOLDED_STORE },
471    { X86::VEXTRACTPSZrr,   X86::VEXTRACTPSZmr,    TB_FOLDED_STORE },
472    { X86::VMOVAPDZrr,      X86::VMOVAPDZmr,    TB_FOLDED_STORE | TB_ALIGN_64 },
473    { X86::VMOVAPSZrr,      X86::VMOVAPSZmr,    TB_FOLDED_STORE | TB_ALIGN_64 },
474    { X86::VMOVDQA32Zrr,    X86::VMOVDQA32Zmr,  TB_FOLDED_STORE | TB_ALIGN_64 },
475    { X86::VMOVDQA64Zrr,    X86::VMOVDQA64Zmr,  TB_FOLDED_STORE | TB_ALIGN_64 },
476    { X86::VMOVDQU8Zrr,     X86::VMOVDQU8Zmr,   TB_FOLDED_STORE },
477    { X86::VMOVDQU16Zrr,    X86::VMOVDQU16Zmr,  TB_FOLDED_STORE },
478    { X86::VMOVDQU32Zrr,    X86::VMOVDQU32Zmr,  TB_FOLDED_STORE },
479    { X86::VMOVDQU64Zrr,    X86::VMOVDQU64Zmr,  TB_FOLDED_STORE },
480    { X86::VMOVPDI2DIZrr,   X86::VMOVPDI2DIZmr, TB_FOLDED_STORE },
481    { X86::VMOVPQIto64Zrr,  X86::VMOVPQI2QIZmr, TB_FOLDED_STORE },
482    { X86::VMOVSDto64Zrr,   X86::VMOVSDto64Zmr, TB_FOLDED_STORE },
483    { X86::VMOVSS2DIZrr,    X86::VMOVSS2DIZmr,  TB_FOLDED_STORE },
484    { X86::VMOVUPDZrr,      X86::VMOVUPDZmr,    TB_FOLDED_STORE },
485    { X86::VMOVUPSZrr,      X86::VMOVUPSZmr,    TB_FOLDED_STORE },
486    { X86::VPEXTRDZrr,      X86::VPEXTRDZmr,    TB_FOLDED_STORE },
487    { X86::VPEXTRQZrr,      X86::VPEXTRQZmr,    TB_FOLDED_STORE },
488    { X86::VPMOVDBZrr,      X86::VPMOVDBZmr,    TB_FOLDED_STORE },
489    { X86::VPMOVDWZrr,      X86::VPMOVDWZmr,    TB_FOLDED_STORE },
490    { X86::VPMOVQDZrr,      X86::VPMOVQDZmr,    TB_FOLDED_STORE },
491    { X86::VPMOVQWZrr,      X86::VPMOVQWZmr,    TB_FOLDED_STORE },
492    { X86::VPMOVWBZrr,      X86::VPMOVWBZmr,    TB_FOLDED_STORE },
493    { X86::VPMOVSDBZrr,     X86::VPMOVSDBZmr,   TB_FOLDED_STORE },
494    { X86::VPMOVSDWZrr,     X86::VPMOVSDWZmr,   TB_FOLDED_STORE },
495    { X86::VPMOVSQDZrr,     X86::VPMOVSQDZmr,   TB_FOLDED_STORE },
496    { X86::VPMOVSQWZrr,     X86::VPMOVSQWZmr,   TB_FOLDED_STORE },
497    { X86::VPMOVSWBZrr,     X86::VPMOVSWBZmr,   TB_FOLDED_STORE },
498    { X86::VPMOVUSDBZrr,    X86::VPMOVUSDBZmr,  TB_FOLDED_STORE },
499    { X86::VPMOVUSDWZrr,    X86::VPMOVUSDWZmr,  TB_FOLDED_STORE },
500    { X86::VPMOVUSQDZrr,    X86::VPMOVUSQDZmr,  TB_FOLDED_STORE },
501    { X86::VPMOVUSQWZrr,    X86::VPMOVUSQWZmr,  TB_FOLDED_STORE },
502    { X86::VPMOVUSWBZrr,    X86::VPMOVUSWBZmr,  TB_FOLDED_STORE },
503
504    // AVX-512 foldable instructions (256-bit versions)
505    { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256mr, TB_FOLDED_STORE },
506    { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256mr, TB_FOLDED_STORE },
507    { X86::VEXTRACTI32x4Z256rr,X86::VEXTRACTI32x4Z256mr, TB_FOLDED_STORE },
508    { X86::VEXTRACTI64x2Z256rr,X86::VEXTRACTI64x2Z256mr, TB_FOLDED_STORE },
509    { X86::VMOVAPDZ256rr,      X86::VMOVAPDZ256mr,    TB_FOLDED_STORE | TB_ALIGN_32 },
510    { X86::VMOVAPSZ256rr,      X86::VMOVAPSZ256mr,    TB_FOLDED_STORE | TB_ALIGN_32 },
511    { X86::VMOVDQA32Z256rr,    X86::VMOVDQA32Z256mr,  TB_FOLDED_STORE | TB_ALIGN_32 },
512    { X86::VMOVDQA64Z256rr,    X86::VMOVDQA64Z256mr,  TB_FOLDED_STORE | TB_ALIGN_32 },
513    { X86::VMOVUPDZ256rr,      X86::VMOVUPDZ256mr,    TB_FOLDED_STORE },
514    { X86::VMOVUPSZ256rr,      X86::VMOVUPSZ256mr,    TB_FOLDED_STORE },
515    { X86::VMOVDQU8Z256rr,     X86::VMOVDQU8Z256mr,   TB_FOLDED_STORE },
516    { X86::VMOVDQU16Z256rr,    X86::VMOVDQU16Z256mr,  TB_FOLDED_STORE },
517    { X86::VMOVDQU32Z256rr,    X86::VMOVDQU32Z256mr,  TB_FOLDED_STORE },
518    { X86::VMOVDQU64Z256rr,    X86::VMOVDQU64Z256mr,  TB_FOLDED_STORE },
519    { X86::VPMOVDWZ256rr,      X86::VPMOVDWZ256mr,    TB_FOLDED_STORE },
520    { X86::VPMOVQDZ256rr,      X86::VPMOVQDZ256mr,    TB_FOLDED_STORE },
521    { X86::VPMOVWBZ256rr,      X86::VPMOVWBZ256mr,    TB_FOLDED_STORE },
522    { X86::VPMOVSDWZ256rr,     X86::VPMOVSDWZ256mr,   TB_FOLDED_STORE },
523    { X86::VPMOVSQDZ256rr,     X86::VPMOVSQDZ256mr,   TB_FOLDED_STORE },
524    { X86::VPMOVSWBZ256rr,     X86::VPMOVSWBZ256mr,   TB_FOLDED_STORE },
525    { X86::VPMOVUSDWZ256rr,    X86::VPMOVUSDWZ256mr,  TB_FOLDED_STORE },
526    { X86::VPMOVUSQDZ256rr,    X86::VPMOVUSQDZ256mr,  TB_FOLDED_STORE },
527    { X86::VPMOVUSWBZ256rr,    X86::VPMOVUSWBZ256mr,  TB_FOLDED_STORE },
528
529    // AVX-512 foldable instructions (128-bit versions)
530    { X86::VMOVAPDZ128rr,      X86::VMOVAPDZ128mr,    TB_FOLDED_STORE | TB_ALIGN_16 },
531    { X86::VMOVAPSZ128rr,      X86::VMOVAPSZ128mr,    TB_FOLDED_STORE | TB_ALIGN_16 },
532    { X86::VMOVDQA32Z128rr,    X86::VMOVDQA32Z128mr,  TB_FOLDED_STORE | TB_ALIGN_16 },
533    { X86::VMOVDQA64Z128rr,    X86::VMOVDQA64Z128mr,  TB_FOLDED_STORE | TB_ALIGN_16 },
534    { X86::VMOVUPDZ128rr,      X86::VMOVUPDZ128mr,    TB_FOLDED_STORE },
535    { X86::VMOVUPSZ128rr,      X86::VMOVUPSZ128mr,    TB_FOLDED_STORE },
536    { X86::VMOVDQU8Z128rr,     X86::VMOVDQU8Z128mr,   TB_FOLDED_STORE },
537    { X86::VMOVDQU16Z128rr,    X86::VMOVDQU16Z128mr,  TB_FOLDED_STORE },
538    { X86::VMOVDQU32Z128rr,    X86::VMOVDQU32Z128mr,  TB_FOLDED_STORE },
539    { X86::VMOVDQU64Z128rr,    X86::VMOVDQU64Z128mr,  TB_FOLDED_STORE },
540
541    // F16C foldable instructions
542    { X86::VCVTPS2PHrr,        X86::VCVTPS2PHmr,      TB_FOLDED_STORE },
543    { X86::VCVTPS2PHYrr,       X86::VCVTPS2PHYmr,     TB_FOLDED_STORE }
544  };
545
546  for (X86MemoryFoldTableEntry Entry : MemoryFoldTable0) {
547    AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
548                  Entry.RegOp, Entry.MemOp, TB_INDEX_0 | Entry.Flags);
549  }
550
551  static const X86MemoryFoldTableEntry MemoryFoldTable1[] = {
552    { X86::BSF16rr,         X86::BSF16rm,             0 },
553    { X86::BSF32rr,         X86::BSF32rm,             0 },
554    { X86::BSF64rr,         X86::BSF64rm,             0 },
555    { X86::BSR16rr,         X86::BSR16rm,             0 },
556    { X86::BSR32rr,         X86::BSR32rm,             0 },
557    { X86::BSR64rr,         X86::BSR64rm,             0 },
558    { X86::CMP16rr,         X86::CMP16rm,             0 },
559    { X86::CMP32rr,         X86::CMP32rm,             0 },
560    { X86::CMP64rr,         X86::CMP64rm,             0 },
561    { X86::CMP8rr,          X86::CMP8rm,              0 },
562    { X86::CVTDQ2PDrr,      X86::CVTDQ2PDrm,          TB_NO_REVERSE },
563    { X86::CVTDQ2PSrr,      X86::CVTDQ2PSrm,          TB_ALIGN_16 },
564    { X86::CVTPD2DQrr,      X86::CVTPD2DQrm,          TB_ALIGN_16 },
565    { X86::CVTPD2PSrr,      X86::CVTPD2PSrm,          TB_ALIGN_16 },
566    { X86::CVTPS2DQrr,      X86::CVTPS2DQrm,          TB_ALIGN_16 },
567    { X86::CVTPS2PDrr,      X86::CVTPS2PDrm,          TB_NO_REVERSE },
568    { X86::CVTSD2SI64rr_Int, X86::CVTSD2SI64rm_Int,   TB_NO_REVERSE },
569    { X86::CVTSD2SIrr_Int,  X86::CVTSD2SIrm_Int,      TB_NO_REVERSE },
570    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm,          0 },
571    { X86::CVTSI642SDrr,    X86::CVTSI642SDrm,        0 },
572    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm,          0 },
573    { X86::CVTSI642SSrr,    X86::CVTSI642SSrm,        0 },
574    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm,          0 },
575    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm,          0 },
576    { X86::CVTSS2SI64rr_Int, X86::CVTSS2SI64rm_Int,   TB_NO_REVERSE },
577    { X86::CVTSS2SIrr_Int,  X86::CVTSS2SIrm_Int,      TB_NO_REVERSE },
578    { X86::CVTTPD2DQrr,     X86::CVTTPD2DQrm,         TB_ALIGN_16 },
579    { X86::CVTTPS2DQrr,     X86::CVTTPS2DQrm,         TB_ALIGN_16 },
580    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm,       0 },
581    { X86::CVTTSD2SI64rr_Int,X86::CVTTSD2SI64rm_Int,  TB_NO_REVERSE },
582    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm,         0 },
583    { X86::CVTTSD2SIrr_Int, X86::CVTTSD2SIrm_Int,     TB_NO_REVERSE },
584    { X86::CVTTSS2SI64rr_Int,X86::CVTTSS2SI64rm_Int,  TB_NO_REVERSE },
585    { X86::CVTTSS2SIrr_Int, X86::CVTTSS2SIrm_Int,     TB_NO_REVERSE },
586    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm,       0 },
587    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm,         0 },
588    { X86::IMUL16rri,       X86::IMUL16rmi,           0 },
589    { X86::IMUL16rri8,      X86::IMUL16rmi8,          0 },
590    { X86::IMUL32rri,       X86::IMUL32rmi,           0 },
591    { X86::IMUL32rri8,      X86::IMUL32rmi8,          0 },
592    { X86::IMUL64rri32,     X86::IMUL64rmi32,         0 },
593    { X86::IMUL64rri8,      X86::IMUL64rmi8,          0 },
594    { X86::Int_COMISDrr,    X86::Int_COMISDrm,        TB_NO_REVERSE },
595    { X86::Int_COMISSrr,    X86::Int_COMISSrm,        TB_NO_REVERSE },
596    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm,       TB_NO_REVERSE },
597    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm,       TB_NO_REVERSE },
598    { X86::MOV16rr,         X86::MOV16rm,             0 },
599    { X86::MOV32rr,         X86::MOV32rm,             0 },
600    { X86::MOV64rr,         X86::MOV64rm,             0 },
601    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm,         0 },
602    { X86::MOV64toSDrr,     X86::MOV64toSDrm,         0 },
603    { X86::MOV8rr,          X86::MOV8rm,              0 },
604    { X86::MOVAPDrr,        X86::MOVAPDrm,            TB_ALIGN_16 },
605    { X86::MOVAPSrr,        X86::MOVAPSrm,            TB_ALIGN_16 },
606    { X86::MOVDDUPrr,       X86::MOVDDUPrm,           TB_NO_REVERSE },
607    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm,         0 },
608    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm,          0 },
609    { X86::MOVDQArr,        X86::MOVDQArm,            TB_ALIGN_16 },
610    { X86::MOVDQUrr,        X86::MOVDQUrm,            0 },
611    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm,          TB_ALIGN_16 },
612    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm,          TB_ALIGN_16 },
613    { X86::MOVSX16rr8,      X86::MOVSX16rm8,          0 },
614    { X86::MOVSX32rr16,     X86::MOVSX32rm16,         0 },
615    { X86::MOVSX32rr8,      X86::MOVSX32rm8,          0 },
616    { X86::MOVSX64rr16,     X86::MOVSX64rm16,         0 },
617    { X86::MOVSX64rr32,     X86::MOVSX64rm32,         0 },
618    { X86::MOVSX64rr8,      X86::MOVSX64rm8,          0 },
619    { X86::MOVUPDrr,        X86::MOVUPDrm,            0 },
620    { X86::MOVUPSrr,        X86::MOVUPSrm,            0 },
621    { X86::MOVZPQILo2PQIrr, X86::MOVQI2PQIrm,         TB_NO_REVERSE },
622    { X86::MOVZX16rr8,      X86::MOVZX16rm8,          0 },
623    { X86::MOVZX32rr16,     X86::MOVZX32rm16,         0 },
624    { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8,   0 },
625    { X86::MOVZX32rr8,      X86::MOVZX32rm8,          0 },
626    { X86::PABSBrr,         X86::PABSBrm,             TB_ALIGN_16 },
627    { X86::PABSDrr,         X86::PABSDrm,             TB_ALIGN_16 },
628    { X86::PABSWrr,         X86::PABSWrm,             TB_ALIGN_16 },
629    { X86::PCMPESTRIrr,     X86::PCMPESTRIrm,         TB_ALIGN_16 },
630    { X86::PCMPESTRM128rr,  X86::PCMPESTRM128rm,      TB_ALIGN_16 },
631    { X86::PCMPISTRIrr,     X86::PCMPISTRIrm,         TB_ALIGN_16 },
632    { X86::PCMPISTRM128rr,  X86::PCMPISTRM128rm,      TB_ALIGN_16 },
633    { X86::PHMINPOSUWrr128, X86::PHMINPOSUWrm128,     TB_ALIGN_16 },
634    { X86::PMOVSXBDrr,      X86::PMOVSXBDrm,          TB_NO_REVERSE },
635    { X86::PMOVSXBQrr,      X86::PMOVSXBQrm,          TB_NO_REVERSE },
636    { X86::PMOVSXBWrr,      X86::PMOVSXBWrm,          TB_NO_REVERSE },
637    { X86::PMOVSXDQrr,      X86::PMOVSXDQrm,          TB_NO_REVERSE },
638    { X86::PMOVSXWDrr,      X86::PMOVSXWDrm,          TB_NO_REVERSE },
639    { X86::PMOVSXWQrr,      X86::PMOVSXWQrm,          TB_NO_REVERSE },
640    { X86::PMOVZXBDrr,      X86::PMOVZXBDrm,          TB_NO_REVERSE },
641    { X86::PMOVZXBQrr,      X86::PMOVZXBQrm,          TB_NO_REVERSE },
642    { X86::PMOVZXBWrr,      X86::PMOVZXBWrm,          TB_NO_REVERSE },
643    { X86::PMOVZXDQrr,      X86::PMOVZXDQrm,          TB_NO_REVERSE },
644    { X86::PMOVZXWDrr,      X86::PMOVZXWDrm,          TB_NO_REVERSE },
645    { X86::PMOVZXWQrr,      X86::PMOVZXWQrm,          TB_NO_REVERSE },
646    { X86::PSHUFDri,        X86::PSHUFDmi,            TB_ALIGN_16 },
647    { X86::PSHUFHWri,       X86::PSHUFHWmi,           TB_ALIGN_16 },
648    { X86::PSHUFLWri,       X86::PSHUFLWmi,           TB_ALIGN_16 },
649    { X86::PTESTrr,         X86::PTESTrm,             TB_ALIGN_16 },
650    { X86::RCPPSr,          X86::RCPPSm,              TB_ALIGN_16 },
651    { X86::RCPSSr,          X86::RCPSSm,              0 },
652    { X86::RCPSSr_Int,      X86::RCPSSm_Int,          TB_NO_REVERSE },
653    { X86::ROUNDPDr,        X86::ROUNDPDm,            TB_ALIGN_16 },
654    { X86::ROUNDPSr,        X86::ROUNDPSm,            TB_ALIGN_16 },
655    { X86::ROUNDSDr,        X86::ROUNDSDm,            0 },
656    { X86::ROUNDSSr,        X86::ROUNDSSm,            0 },
657    { X86::RSQRTPSr,        X86::RSQRTPSm,            TB_ALIGN_16 },
658    { X86::RSQRTSSr,        X86::RSQRTSSm,            0 },
659    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int,        TB_NO_REVERSE },
660    { X86::SQRTPDr,         X86::SQRTPDm,             TB_ALIGN_16 },
661    { X86::SQRTPSr,         X86::SQRTPSm,             TB_ALIGN_16 },
662    { X86::SQRTSDr,         X86::SQRTSDm,             0 },
663    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int,         TB_NO_REVERSE },
664    { X86::SQRTSSr,         X86::SQRTSSm,             0 },
665    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int,         TB_NO_REVERSE },
666    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
667    { X86::UCOMISDrr,       X86::UCOMISDrm,           0 },
668    { X86::UCOMISSrr,       X86::UCOMISSrm,           0 },
669
670    // MMX version of foldable instructions
671    { X86::MMX_CVTPD2PIirr,   X86::MMX_CVTPD2PIirm,   0 },
672    { X86::MMX_CVTPI2PDirr,   X86::MMX_CVTPI2PDirm,   0 },
673    { X86::MMX_CVTPS2PIirr,   X86::MMX_CVTPS2PIirm,   0 },
674    { X86::MMX_CVTTPD2PIirr,  X86::MMX_CVTTPD2PIirm,  0 },
675    { X86::MMX_CVTTPS2PIirr,  X86::MMX_CVTTPS2PIirm,  0 },
676    { X86::MMX_MOVD64to64rr,  X86::MMX_MOVQ64rm,      0 },
677    { X86::MMX_PABSBrr64,     X86::MMX_PABSBrm64,     0 },
678    { X86::MMX_PABSDrr64,     X86::MMX_PABSDrm64,     0 },
679    { X86::MMX_PABSWrr64,     X86::MMX_PABSWrm64,     0 },
680    { X86::MMX_PSHUFWri,      X86::MMX_PSHUFWmi,      0 },
681
682    // 3DNow! version of foldable instructions
683    { X86::PF2IDrr,         X86::PF2IDrm,             0 },
684    { X86::PF2IWrr,         X86::PF2IWrm,             0 },
685    { X86::PFRCPrr,         X86::PFRCPrm,             0 },
686    { X86::PFRSQRTrr,       X86::PFRSQRTrm,           0 },
687    { X86::PI2FDrr,         X86::PI2FDrm,             0 },
688    { X86::PI2FWrr,         X86::PI2FWrm,             0 },
689    { X86::PSWAPDrr,        X86::PSWAPDrm,            0 },
690
691    // AVX 128-bit versions of foldable instructions
692    { X86::Int_VCOMISDrr,   X86::Int_VCOMISDrm,       TB_NO_REVERSE },
693    { X86::Int_VCOMISSrr,   X86::Int_VCOMISSrm,       TB_NO_REVERSE },
694    { X86::Int_VUCOMISDrr,  X86::Int_VUCOMISDrm,      TB_NO_REVERSE },
695    { X86::Int_VUCOMISSrr,  X86::Int_VUCOMISSrm,      TB_NO_REVERSE },
696    { X86::VCVTTSD2SI64rr,  X86::VCVTTSD2SI64rm,      0 },
697    { X86::VCVTTSD2SI64rr_Int,X86::VCVTTSD2SI64rm_Int,TB_NO_REVERSE },
698    { X86::VCVTTSD2SIrr,    X86::VCVTTSD2SIrm,        0 },
699    { X86::VCVTTSD2SIrr_Int,X86::VCVTTSD2SIrm_Int,    TB_NO_REVERSE },
700    { X86::VCVTTSS2SI64rr,  X86::VCVTTSS2SI64rm,      0 },
701    { X86::VCVTTSS2SI64rr_Int,X86::VCVTTSS2SI64rm_Int,TB_NO_REVERSE },
702    { X86::VCVTTSS2SIrr,    X86::VCVTTSS2SIrm,        0 },
703    { X86::VCVTTSS2SIrr_Int,X86::VCVTTSS2SIrm_Int,    TB_NO_REVERSE },
704    { X86::VCVTSD2SI64rr_Int, X86::VCVTSD2SI64rm_Int, TB_NO_REVERSE },
705    { X86::VCVTSD2SIrr_Int,   X86::VCVTSD2SIrm_Int,   TB_NO_REVERSE },
706    { X86::VCVTSS2SI64rr_Int, X86::VCVTSS2SI64rm_Int, TB_NO_REVERSE },
707    { X86::VCVTSS2SIrr_Int, X86::VCVTSS2SIrm_Int,     TB_NO_REVERSE },
708    { X86::VCVTDQ2PDrr,     X86::VCVTDQ2PDrm,         TB_NO_REVERSE },
709    { X86::VCVTDQ2PSrr,     X86::VCVTDQ2PSrm,         0 },
710    { X86::VCVTPD2DQrr,     X86::VCVTPD2DQrm,         0 },
711    { X86::VCVTPD2PSrr,     X86::VCVTPD2PSrm,         0 },
712    { X86::VCVTPS2DQrr,     X86::VCVTPS2DQrm,         0 },
713    { X86::VCVTPS2PDrr,     X86::VCVTPS2PDrm,         TB_NO_REVERSE },
714    { X86::VCVTTPD2DQrr,    X86::VCVTTPD2DQrm,        0 },
715    { X86::VCVTTPS2DQrr,    X86::VCVTTPS2DQrm,        0 },
716    { X86::VMOV64toPQIrr,   X86::VMOVQI2PQIrm,        0 },
717    { X86::VMOV64toSDrr,    X86::VMOV64toSDrm,        0 },
718    { X86::VMOVAPDrr,       X86::VMOVAPDrm,           TB_ALIGN_16 },
719    { X86::VMOVAPSrr,       X86::VMOVAPSrm,           TB_ALIGN_16 },
720    { X86::VMOVDDUPrr,      X86::VMOVDDUPrm,          TB_NO_REVERSE },
721    { X86::VMOVDI2PDIrr,    X86::VMOVDI2PDIrm,        0 },
722    { X86::VMOVDI2SSrr,     X86::VMOVDI2SSrm,         0 },
723    { X86::VMOVDQArr,       X86::VMOVDQArm,           TB_ALIGN_16 },
724    { X86::VMOVDQUrr,       X86::VMOVDQUrm,           0 },
725    { X86::VMOVSLDUPrr,     X86::VMOVSLDUPrm,         0 },
726    { X86::VMOVSHDUPrr,     X86::VMOVSHDUPrm,         0 },
727    { X86::VMOVUPDrr,       X86::VMOVUPDrm,           0 },
728    { X86::VMOVUPSrr,       X86::VMOVUPSrm,           0 },
729    { X86::VMOVZPQILo2PQIrr,X86::VMOVQI2PQIrm,        TB_NO_REVERSE },
730    { X86::VPABSBrr,        X86::VPABSBrm,            0 },
731    { X86::VPABSDrr,        X86::VPABSDrm,            0 },
732    { X86::VPABSWrr,        X86::VPABSWrm,            0 },
733    { X86::VPCMPESTRIrr,    X86::VPCMPESTRIrm,        0 },
734    { X86::VPCMPESTRM128rr, X86::VPCMPESTRM128rm,     0 },
735    { X86::VPCMPISTRIrr,    X86::VPCMPISTRIrm,        0 },
736    { X86::VPCMPISTRM128rr, X86::VPCMPISTRM128rm,     0 },
737    { X86::VPHMINPOSUWrr128, X86::VPHMINPOSUWrm128,   0 },
738    { X86::VPERMILPDri,     X86::VPERMILPDmi,         0 },
739    { X86::VPERMILPSri,     X86::VPERMILPSmi,         0 },
740    { X86::VPMOVSXBDrr,     X86::VPMOVSXBDrm,         TB_NO_REVERSE },
741    { X86::VPMOVSXBQrr,     X86::VPMOVSXBQrm,         TB_NO_REVERSE },
742    { X86::VPMOVSXBWrr,     X86::VPMOVSXBWrm,         TB_NO_REVERSE },
743    { X86::VPMOVSXDQrr,     X86::VPMOVSXDQrm,         TB_NO_REVERSE },
744    { X86::VPMOVSXWDrr,     X86::VPMOVSXWDrm,         TB_NO_REVERSE },
745    { X86::VPMOVSXWQrr,     X86::VPMOVSXWQrm,         TB_NO_REVERSE },
746    { X86::VPMOVZXBDrr,     X86::VPMOVZXBDrm,         TB_NO_REVERSE },
747    { X86::VPMOVZXBQrr,     X86::VPMOVZXBQrm,         TB_NO_REVERSE },
748    { X86::VPMOVZXBWrr,     X86::VPMOVZXBWrm,         TB_NO_REVERSE },
749    { X86::VPMOVZXDQrr,     X86::VPMOVZXDQrm,         TB_NO_REVERSE },
750    { X86::VPMOVZXWDrr,     X86::VPMOVZXWDrm,         TB_NO_REVERSE },
751    { X86::VPMOVZXWQrr,     X86::VPMOVZXWQrm,         TB_NO_REVERSE },
752    { X86::VPSHUFDri,       X86::VPSHUFDmi,           0 },
753    { X86::VPSHUFHWri,      X86::VPSHUFHWmi,          0 },
754    { X86::VPSHUFLWri,      X86::VPSHUFLWmi,          0 },
755    { X86::VPTESTrr,        X86::VPTESTrm,            0 },
756    { X86::VRCPPSr,         X86::VRCPPSm,             0 },
757    { X86::VROUNDPDr,       X86::VROUNDPDm,           0 },
758    { X86::VROUNDPSr,       X86::VROUNDPSm,           0 },
759    { X86::VRSQRTPSr,       X86::VRSQRTPSm,           0 },
760    { X86::VSQRTPDr,        X86::VSQRTPDm,            0 },
761    { X86::VSQRTPSr,        X86::VSQRTPSm,            0 },
762    { X86::VTESTPDrr,       X86::VTESTPDrm,           0 },
763    { X86::VTESTPSrr,       X86::VTESTPSrm,           0 },
764    { X86::VUCOMISDrr,      X86::VUCOMISDrm,          0 },
765    { X86::VUCOMISSrr,      X86::VUCOMISSrm,          0 },
766
767    // AVX 256-bit foldable instructions
768    { X86::VCVTDQ2PDYrr,    X86::VCVTDQ2PDYrm,        0 },
769    { X86::VCVTDQ2PSYrr,    X86::VCVTDQ2PSYrm,        0 },
770    { X86::VCVTPD2DQYrr,    X86::VCVTPD2DQYrm,        0 },
771    { X86::VCVTPD2PSYrr,    X86::VCVTPD2PSYrm,        0 },
772    { X86::VCVTPS2DQYrr,    X86::VCVTPS2DQYrm,        0 },
773    { X86::VCVTPS2PDYrr,    X86::VCVTPS2PDYrm,        0 },
774    { X86::VCVTTPD2DQYrr,   X86::VCVTTPD2DQYrm,       0 },
775    { X86::VCVTTPS2DQYrr,   X86::VCVTTPS2DQYrm,       0 },
776    { X86::VMOVAPDYrr,      X86::VMOVAPDYrm,          TB_ALIGN_32 },
777    { X86::VMOVAPSYrr,      X86::VMOVAPSYrm,          TB_ALIGN_32 },
778    { X86::VMOVDDUPYrr,     X86::VMOVDDUPYrm,         0 },
779    { X86::VMOVDQAYrr,      X86::VMOVDQAYrm,          TB_ALIGN_32 },
780    { X86::VMOVDQUYrr,      X86::VMOVDQUYrm,          0 },
781    { X86::VMOVSLDUPYrr,    X86::VMOVSLDUPYrm,        0 },
782    { X86::VMOVSHDUPYrr,    X86::VMOVSHDUPYrm,        0 },
783    { X86::VMOVUPDYrr,      X86::VMOVUPDYrm,          0 },
784    { X86::VMOVUPSYrr,      X86::VMOVUPSYrm,          0 },
785    { X86::VPERMILPDYri,    X86::VPERMILPDYmi,        0 },
786    { X86::VPERMILPSYri,    X86::VPERMILPSYmi,        0 },
787    { X86::VPTESTYrr,       X86::VPTESTYrm,           0 },
788    { X86::VRCPPSYr,        X86::VRCPPSYm,            0 },
789    { X86::VROUNDYPDr,      X86::VROUNDYPDm,          0 },
790    { X86::VROUNDYPSr,      X86::VROUNDYPSm,          0 },
791    { X86::VRSQRTPSYr,      X86::VRSQRTPSYm,          0 },
792    { X86::VSQRTPDYr,       X86::VSQRTPDYm,           0 },
793    { X86::VSQRTPSYr,       X86::VSQRTPSYm,           0 },
794    { X86::VTESTPDYrr,      X86::VTESTPDYrm,          0 },
795    { X86::VTESTPSYrr,      X86::VTESTPSYrm,          0 },
796
797    // AVX2 foldable instructions
798
799    // VBROADCASTS{SD}rr register instructions were an AVX2 addition while the
800    // VBROADCASTS{SD}rm memory instructions were available from AVX1.
801    // TB_NO_REVERSE prevents unfolding from introducing an illegal instruction
802    // on AVX1 targets. The VPBROADCAST instructions are all AVX2 instructions
803    // so they don't need an equivalent limitation.
804    { X86::VBROADCASTSSrr,  X86::VBROADCASTSSrm,      TB_NO_REVERSE },
805    { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm,     TB_NO_REVERSE },
806    { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm,     TB_NO_REVERSE },
807    { X86::VPABSBYrr,       X86::VPABSBYrm,           0 },
808    { X86::VPABSDYrr,       X86::VPABSDYrm,           0 },
809    { X86::VPABSWYrr,       X86::VPABSWYrm,           0 },
810    { X86::VPBROADCASTBrr,  X86::VPBROADCASTBrm,      TB_NO_REVERSE },
811    { X86::VPBROADCASTBYrr, X86::VPBROADCASTBYrm,     TB_NO_REVERSE },
812    { X86::VPBROADCASTDrr,  X86::VPBROADCASTDrm,      TB_NO_REVERSE },
813    { X86::VPBROADCASTDYrr, X86::VPBROADCASTDYrm,     TB_NO_REVERSE },
814    { X86::VPBROADCASTQrr,  X86::VPBROADCASTQrm,      TB_NO_REVERSE },
815    { X86::VPBROADCASTQYrr, X86::VPBROADCASTQYrm,     TB_NO_REVERSE },
816    { X86::VPBROADCASTWrr,  X86::VPBROADCASTWrm,      TB_NO_REVERSE },
817    { X86::VPBROADCASTWYrr, X86::VPBROADCASTWYrm,     TB_NO_REVERSE },
818    { X86::VPERMPDYri,      X86::VPERMPDYmi,          0 },
819    { X86::VPERMQYri,       X86::VPERMQYmi,           0 },
820    { X86::VPMOVSXBDYrr,    X86::VPMOVSXBDYrm,        TB_NO_REVERSE },
821    { X86::VPMOVSXBQYrr,    X86::VPMOVSXBQYrm,        TB_NO_REVERSE },
822    { X86::VPMOVSXBWYrr,    X86::VPMOVSXBWYrm,        0 },
823    { X86::VPMOVSXDQYrr,    X86::VPMOVSXDQYrm,        0 },
824    { X86::VPMOVSXWDYrr,    X86::VPMOVSXWDYrm,        0 },
825    { X86::VPMOVSXWQYrr,    X86::VPMOVSXWQYrm,        TB_NO_REVERSE },
826    { X86::VPMOVZXBDYrr,    X86::VPMOVZXBDYrm,        TB_NO_REVERSE },
827    { X86::VPMOVZXBQYrr,    X86::VPMOVZXBQYrm,        TB_NO_REVERSE },
828    { X86::VPMOVZXBWYrr,    X86::VPMOVZXBWYrm,        0 },
829    { X86::VPMOVZXDQYrr,    X86::VPMOVZXDQYrm,        0 },
830    { X86::VPMOVZXWDYrr,    X86::VPMOVZXWDYrm,        0 },
831    { X86::VPMOVZXWQYrr,    X86::VPMOVZXWQYrm,        TB_NO_REVERSE },
832    { X86::VPSHUFDYri,      X86::VPSHUFDYmi,          0 },
833    { X86::VPSHUFHWYri,     X86::VPSHUFHWYmi,         0 },
834    { X86::VPSHUFLWYri,     X86::VPSHUFLWYmi,         0 },
835
836    // XOP foldable instructions
837    { X86::VFRCZPDrr,          X86::VFRCZPDrm,        0 },
838    { X86::VFRCZPDrrY,         X86::VFRCZPDrmY,       0 },
839    { X86::VFRCZPSrr,          X86::VFRCZPSrm,        0 },
840    { X86::VFRCZPSrrY,         X86::VFRCZPSrmY,       0 },
841    { X86::VFRCZSDrr,          X86::VFRCZSDrm,        0 },
842    { X86::VFRCZSSrr,          X86::VFRCZSSrm,        0 },
843    { X86::VPHADDBDrr,         X86::VPHADDBDrm,       0 },
844    { X86::VPHADDBQrr,         X86::VPHADDBQrm,       0 },
845    { X86::VPHADDBWrr,         X86::VPHADDBWrm,       0 },
846    { X86::VPHADDDQrr,         X86::VPHADDDQrm,       0 },
847    { X86::VPHADDWDrr,         X86::VPHADDWDrm,       0 },
848    { X86::VPHADDWQrr,         X86::VPHADDWQrm,       0 },
849    { X86::VPHADDUBDrr,        X86::VPHADDUBDrm,      0 },
850    { X86::VPHADDUBQrr,        X86::VPHADDUBQrm,      0 },
851    { X86::VPHADDUBWrr,        X86::VPHADDUBWrm,      0 },
852    { X86::VPHADDUDQrr,        X86::VPHADDUDQrm,      0 },
853    { X86::VPHADDUWDrr,        X86::VPHADDUWDrm,      0 },
854    { X86::VPHADDUWQrr,        X86::VPHADDUWQrm,      0 },
855    { X86::VPHSUBBWrr,         X86::VPHSUBBWrm,       0 },
856    { X86::VPHSUBDQrr,         X86::VPHSUBDQrm,       0 },
857    { X86::VPHSUBWDrr,         X86::VPHSUBWDrm,       0 },
858    { X86::VPROTBri,           X86::VPROTBmi,         0 },
859    { X86::VPROTBrr,           X86::VPROTBmr,         0 },
860    { X86::VPROTDri,           X86::VPROTDmi,         0 },
861    { X86::VPROTDrr,           X86::VPROTDmr,         0 },
862    { X86::VPROTQri,           X86::VPROTQmi,         0 },
863    { X86::VPROTQrr,           X86::VPROTQmr,         0 },
864    { X86::VPROTWri,           X86::VPROTWmi,         0 },
865    { X86::VPROTWrr,           X86::VPROTWmr,         0 },
866    { X86::VPSHABrr,           X86::VPSHABmr,         0 },
867    { X86::VPSHADrr,           X86::VPSHADmr,         0 },
868    { X86::VPSHAQrr,           X86::VPSHAQmr,         0 },
869    { X86::VPSHAWrr,           X86::VPSHAWmr,         0 },
870    { X86::VPSHLBrr,           X86::VPSHLBmr,         0 },
871    { X86::VPSHLDrr,           X86::VPSHLDmr,         0 },
872    { X86::VPSHLQrr,           X86::VPSHLQmr,         0 },
873    { X86::VPSHLWrr,           X86::VPSHLWmr,         0 },
874
875    // LWP foldable instructions
876    { X86::LWPINS32rri,        X86::LWPINS32rmi,      0 },
877    { X86::LWPINS64rri,        X86::LWPINS64rmi,      0 },
878    { X86::LWPVAL32rri,        X86::LWPVAL32rmi,      0 },
879    { X86::LWPVAL64rri,        X86::LWPVAL64rmi,      0 },
880
881    // BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions
882    { X86::BEXTR32rr,       X86::BEXTR32rm,           0 },
883    { X86::BEXTR64rr,       X86::BEXTR64rm,           0 },
884    { X86::BEXTRI32ri,      X86::BEXTRI32mi,          0 },
885    { X86::BEXTRI64ri,      X86::BEXTRI64mi,          0 },
886    { X86::BLCFILL32rr,     X86::BLCFILL32rm,         0 },
887    { X86::BLCFILL64rr,     X86::BLCFILL64rm,         0 },
888    { X86::BLCI32rr,        X86::BLCI32rm,            0 },
889    { X86::BLCI64rr,        X86::BLCI64rm,            0 },
890    { X86::BLCIC32rr,       X86::BLCIC32rm,           0 },
891    { X86::BLCIC64rr,       X86::BLCIC64rm,           0 },
892    { X86::BLCMSK32rr,      X86::BLCMSK32rm,          0 },
893    { X86::BLCMSK64rr,      X86::BLCMSK64rm,          0 },
894    { X86::BLCS32rr,        X86::BLCS32rm,            0 },
895    { X86::BLCS64rr,        X86::BLCS64rm,            0 },
896    { X86::BLSFILL32rr,     X86::BLSFILL32rm,         0 },
897    { X86::BLSFILL64rr,     X86::BLSFILL64rm,         0 },
898    { X86::BLSI32rr,        X86::BLSI32rm,            0 },
899    { X86::BLSI64rr,        X86::BLSI64rm,            0 },
900    { X86::BLSIC32rr,       X86::BLSIC32rm,           0 },
901    { X86::BLSIC64rr,       X86::BLSIC64rm,           0 },
902    { X86::BLSMSK32rr,      X86::BLSMSK32rm,          0 },
903    { X86::BLSMSK64rr,      X86::BLSMSK64rm,          0 },
904    { X86::BLSR32rr,        X86::BLSR32rm,            0 },
905    { X86::BLSR64rr,        X86::BLSR64rm,            0 },
906    { X86::BZHI32rr,        X86::BZHI32rm,            0 },
907    { X86::BZHI64rr,        X86::BZHI64rm,            0 },
908    { X86::LZCNT16rr,       X86::LZCNT16rm,           0 },
909    { X86::LZCNT32rr,       X86::LZCNT32rm,           0 },
910    { X86::LZCNT64rr,       X86::LZCNT64rm,           0 },
911    { X86::POPCNT16rr,      X86::POPCNT16rm,          0 },
912    { X86::POPCNT32rr,      X86::POPCNT32rm,          0 },
913    { X86::POPCNT64rr,      X86::POPCNT64rm,          0 },
914    { X86::RORX32ri,        X86::RORX32mi,            0 },
915    { X86::RORX64ri,        X86::RORX64mi,            0 },
916    { X86::SARX32rr,        X86::SARX32rm,            0 },
917    { X86::SARX64rr,        X86::SARX64rm,            0 },
918    { X86::SHRX32rr,        X86::SHRX32rm,            0 },
919    { X86::SHRX64rr,        X86::SHRX64rm,            0 },
920    { X86::SHLX32rr,        X86::SHLX32rm,            0 },
921    { X86::SHLX64rr,        X86::SHLX64rm,            0 },
922    { X86::T1MSKC32rr,      X86::T1MSKC32rm,          0 },
923    { X86::T1MSKC64rr,      X86::T1MSKC64rm,          0 },
924    { X86::TZCNT16rr,       X86::TZCNT16rm,           0 },
925    { X86::TZCNT32rr,       X86::TZCNT32rm,           0 },
926    { X86::TZCNT64rr,       X86::TZCNT64rm,           0 },
927    { X86::TZMSK32rr,       X86::TZMSK32rm,           0 },
928    { X86::TZMSK64rr,       X86::TZMSK64rm,           0 },
929
930    // AVX-512 foldable instructions
931    { X86::VBROADCASTSSZr,   X86::VBROADCASTSSZm,     TB_NO_REVERSE },
932    { X86::VBROADCASTSDZr,   X86::VBROADCASTSDZm,     TB_NO_REVERSE },
933    { X86::VCVTDQ2PDZrr,     X86::VCVTDQ2PDZrm,       0 },
934    { X86::VCVTPD2PSZrr,     X86::VCVTPD2PSZrm,       0 },
935    { X86::VCVTUDQ2PDZrr,    X86::VCVTUDQ2PDZrm,      0 },
936    { X86::VMOV64toPQIZrr,   X86::VMOVQI2PQIZrm,      0 },
937    { X86::VMOV64toSDZrr,    X86::VMOV64toSDZrm,      0 },
938    { X86::VMOVDI2PDIZrr,    X86::VMOVDI2PDIZrm,      0 },
939    { X86::VMOVDI2SSZrr,     X86::VMOVDI2SSZrm,       0 },
940    { X86::VMOVAPDZrr,       X86::VMOVAPDZrm,         TB_ALIGN_64 },
941    { X86::VMOVAPSZrr,       X86::VMOVAPSZrm,         TB_ALIGN_64 },
942    { X86::VMOVDQA32Zrr,     X86::VMOVDQA32Zrm,       TB_ALIGN_64 },
943    { X86::VMOVDQA64Zrr,     X86::VMOVDQA64Zrm,       TB_ALIGN_64 },
944    { X86::VMOVDQU8Zrr,      X86::VMOVDQU8Zrm,        0 },
945    { X86::VMOVDQU16Zrr,     X86::VMOVDQU16Zrm,       0 },
946    { X86::VMOVDQU32Zrr,     X86::VMOVDQU32Zrm,       0 },
947    { X86::VMOVDQU64Zrr,     X86::VMOVDQU64Zrm,       0 },
948    { X86::VMOVUPDZrr,       X86::VMOVUPDZrm,         0 },
949    { X86::VMOVUPSZrr,       X86::VMOVUPSZrm,         0 },
950    { X86::VMOVZPQILo2PQIZrr,X86::VMOVQI2PQIZrm,      TB_NO_REVERSE },
951    { X86::VPABSBZrr,        X86::VPABSBZrm,          0 },
952    { X86::VPABSDZrr,        X86::VPABSDZrm,          0 },
953    { X86::VPABSQZrr,        X86::VPABSQZrm,          0 },
954    { X86::VPABSWZrr,        X86::VPABSWZrm,          0 },
955    { X86::VPCONFLICTDZrr,   X86::VPCONFLICTDZrm,     0 },
956    { X86::VPCONFLICTQZrr,   X86::VPCONFLICTQZrm,     0 },
957    { X86::VPERMILPDZri,     X86::VPERMILPDZmi,       0 },
958    { X86::VPERMILPSZri,     X86::VPERMILPSZmi,       0 },
959    { X86::VPERMPDZri,       X86::VPERMPDZmi,         0 },
960    { X86::VPERMQZri,        X86::VPERMQZmi,          0 },
961    { X86::VPLZCNTDZrr,      X86::VPLZCNTDZrm,        0 },
962    { X86::VPLZCNTQZrr,      X86::VPLZCNTQZrm,        0 },
963    { X86::VPMOVSXBDZrr,     X86::VPMOVSXBDZrm,       0 },
964    { X86::VPMOVSXBQZrr,     X86::VPMOVSXBQZrm,       TB_NO_REVERSE },
965    { X86::VPMOVSXBWZrr,     X86::VPMOVSXBWZrm,       0 },
966    { X86::VPMOVSXDQZrr,     X86::VPMOVSXDQZrm,       0 },
967    { X86::VPMOVSXWDZrr,     X86::VPMOVSXWDZrm,       0 },
968    { X86::VPMOVSXWQZrr,     X86::VPMOVSXWQZrm,       0 },
969    { X86::VPMOVZXBDZrr,     X86::VPMOVZXBDZrm,       0 },
970    { X86::VPMOVZXBQZrr,     X86::VPMOVZXBQZrm,       TB_NO_REVERSE },
971    { X86::VPMOVZXBWZrr,     X86::VPMOVZXBWZrm,       0 },
972    { X86::VPMOVZXDQZrr,     X86::VPMOVZXDQZrm,       0 },
973    { X86::VPMOVZXWDZrr,     X86::VPMOVZXWDZrm,       0 },
974    { X86::VPMOVZXWQZrr,     X86::VPMOVZXWQZrm,       0 },
975    { X86::VPOPCNTDZrr,      X86::VPOPCNTDZrm,        0 },
976    { X86::VPOPCNTQZrr,      X86::VPOPCNTQZrm,        0 },
977    { X86::VPSHUFDZri,       X86::VPSHUFDZmi,         0 },
978    { X86::VPSHUFHWZri,      X86::VPSHUFHWZmi,        0 },
979    { X86::VPSHUFLWZri,      X86::VPSHUFLWZmi,        0 },
980    { X86::VPSLLDQZrr,       X86::VPSLLDQZrm,         0 },
981    { X86::VPSLLDZri,        X86::VPSLLDZmi,          0 },
982    { X86::VPSLLQZri,        X86::VPSLLQZmi,          0 },
983    { X86::VPSLLWZri,        X86::VPSLLWZmi,          0 },
984    { X86::VPSRADZri,        X86::VPSRADZmi,          0 },
985    { X86::VPSRAQZri,        X86::VPSRAQZmi,          0 },
986    { X86::VPSRAWZri,        X86::VPSRAWZmi,          0 },
987    { X86::VPSRLDQZrr,       X86::VPSRLDQZrm,         0 },
988    { X86::VPSRLDZri,        X86::VPSRLDZmi,          0 },
989    { X86::VPSRLQZri,        X86::VPSRLQZmi,          0 },
990    { X86::VPSRLWZri,        X86::VPSRLWZmi,          0 },
991
992    // AVX-512 foldable instructions (256-bit versions)
993    { X86::VBROADCASTSSZ256r,    X86::VBROADCASTSSZ256m,    TB_NO_REVERSE },
994    { X86::VBROADCASTSDZ256r,    X86::VBROADCASTSDZ256m,    TB_NO_REVERSE },
995    { X86::VCVTDQ2PDZ256rr,      X86::VCVTDQ2PDZ256rm,      0 },
996    { X86::VCVTPD2PSZ256rr,      X86::VCVTPD2PSZ256rm,      0 },
997    { X86::VCVTUDQ2PDZ256rr,     X86::VCVTUDQ2PDZ256rm,     0 },
998    { X86::VMOVAPDZ256rr,        X86::VMOVAPDZ256rm,        TB_ALIGN_32 },
999    { X86::VMOVAPSZ256rr,        X86::VMOVAPSZ256rm,        TB_ALIGN_32 },
1000    { X86::VMOVDQA32Z256rr,      X86::VMOVDQA32Z256rm,      TB_ALIGN_32 },
1001    { X86::VMOVDQA64Z256rr,      X86::VMOVDQA64Z256rm,      TB_ALIGN_32 },
1002    { X86::VMOVDQU8Z256rr,       X86::VMOVDQU8Z256rm,       0 },
1003    { X86::VMOVDQU16Z256rr,      X86::VMOVDQU16Z256rm,      0 },
1004    { X86::VMOVDQU32Z256rr,      X86::VMOVDQU32Z256rm,      0 },
1005    { X86::VMOVDQU64Z256rr,      X86::VMOVDQU64Z256rm,      0 },
1006    { X86::VMOVUPDZ256rr,        X86::VMOVUPDZ256rm,        0 },
1007    { X86::VMOVUPSZ256rr,        X86::VMOVUPSZ256rm,        0 },
1008    { X86::VPABSBZ256rr,         X86::VPABSBZ256rm,         0 },
1009    { X86::VPABSDZ256rr,         X86::VPABSDZ256rm,         0 },
1010    { X86::VPABSQZ256rr,         X86::VPABSQZ256rm,         0 },
1011    { X86::VPABSWZ256rr,         X86::VPABSWZ256rm,         0 },
1012    { X86::VPCONFLICTDZ256rr,    X86::VPCONFLICTDZ256rm,    0 },
1013    { X86::VPCONFLICTQZ256rr,    X86::VPCONFLICTQZ256rm,    0 },
1014    { X86::VPERMILPDZ256ri,      X86::VPERMILPDZ256mi,      0 },
1015    { X86::VPERMILPSZ256ri,      X86::VPERMILPSZ256mi,      0 },
1016    { X86::VPERMPDZ256ri,        X86::VPERMPDZ256mi,        0 },
1017    { X86::VPERMQZ256ri,         X86::VPERMQZ256mi,         0 },
1018    { X86::VPLZCNTDZ256rr,       X86::VPLZCNTDZ256rm,       0 },
1019    { X86::VPLZCNTQZ256rr,       X86::VPLZCNTQZ256rm,       0 },
1020    { X86::VPMOVSXBDZ256rr,      X86::VPMOVSXBDZ256rm,      TB_NO_REVERSE },
1021    { X86::VPMOVSXBQZ256rr,      X86::VPMOVSXBQZ256rm,      TB_NO_REVERSE },
1022    { X86::VPMOVSXBWZ256rr,      X86::VPMOVSXBWZ256rm,      0 },
1023    { X86::VPMOVSXDQZ256rr,      X86::VPMOVSXDQZ256rm,      0 },
1024    { X86::VPMOVSXWDZ256rr,      X86::VPMOVSXWDZ256rm,      0 },
1025    { X86::VPMOVSXWQZ256rr,      X86::VPMOVSXWQZ256rm,      TB_NO_REVERSE },
1026    { X86::VPMOVZXBDZ256rr,      X86::VPMOVZXBDZ256rm,      TB_NO_REVERSE },
1027    { X86::VPMOVZXBQZ256rr,      X86::VPMOVZXBQZ256rm,      TB_NO_REVERSE },
1028    { X86::VPMOVZXBWZ256rr,      X86::VPMOVZXBWZ256rm,      0 },
1029    { X86::VPMOVZXDQZ256rr,      X86::VPMOVZXDQZ256rm,      0 },
1030    { X86::VPMOVZXWDZ256rr,      X86::VPMOVZXWDZ256rm,      0 },
1031    { X86::VPMOVZXWQZ256rr,      X86::VPMOVZXWQZ256rm,      TB_NO_REVERSE },
1032    { X86::VPSHUFDZ256ri,        X86::VPSHUFDZ256mi,        0 },
1033    { X86::VPSHUFHWZ256ri,       X86::VPSHUFHWZ256mi,       0 },
1034    { X86::VPSHUFLWZ256ri,       X86::VPSHUFLWZ256mi,       0 },
1035    { X86::VPSLLDQZ256rr,        X86::VPSLLDQZ256rm,        0 },
1036    { X86::VPSLLDZ256ri,         X86::VPSLLDZ256mi,         0 },
1037    { X86::VPSLLQZ256ri,         X86::VPSLLQZ256mi,         0 },
1038    { X86::VPSLLWZ256ri,         X86::VPSLLWZ256mi,         0 },
1039    { X86::VPSRADZ256ri,         X86::VPSRADZ256mi,         0 },
1040    { X86::VPSRAQZ256ri,         X86::VPSRAQZ256mi,         0 },
1041    { X86::VPSRAWZ256ri,         X86::VPSRAWZ256mi,         0 },
1042    { X86::VPSRLDQZ256rr,        X86::VPSRLDQZ256rm,        0 },
1043    { X86::VPSRLDZ256ri,         X86::VPSRLDZ256mi,         0 },
1044    { X86::VPSRLQZ256ri,         X86::VPSRLQZ256mi,         0 },
1045    { X86::VPSRLWZ256ri,         X86::VPSRLWZ256mi,         0 },
1046
1047    // AVX-512 foldable instructions (128-bit versions)
1048    { X86::VBROADCASTSSZ128r,    X86::VBROADCASTSSZ128m,    TB_NO_REVERSE },
1049    { X86::VCVTDQ2PDZ128rr,      X86::VCVTDQ2PDZ128rm,      TB_NO_REVERSE },
1050    { X86::VCVTPD2PSZ128rr,      X86::VCVTPD2PSZ128rm,      0 },
1051    { X86::VCVTUDQ2PDZ128rr,     X86::VCVTUDQ2PDZ128rm,     TB_NO_REVERSE },
1052    { X86::VMOVAPDZ128rr,        X86::VMOVAPDZ128rm,        TB_ALIGN_16 },
1053    { X86::VMOVAPSZ128rr,        X86::VMOVAPSZ128rm,        TB_ALIGN_16 },
1054    { X86::VMOVDQA32Z128rr,      X86::VMOVDQA32Z128rm,      TB_ALIGN_16 },
1055    { X86::VMOVDQA64Z128rr,      X86::VMOVDQA64Z128rm,      TB_ALIGN_16 },
1056    { X86::VMOVDQU8Z128rr,       X86::VMOVDQU8Z128rm,       0 },
1057    { X86::VMOVDQU16Z128rr,      X86::VMOVDQU16Z128rm,      0 },
1058    { X86::VMOVDQU32Z128rr,      X86::VMOVDQU32Z128rm,      0 },
1059    { X86::VMOVDQU64Z128rr,      X86::VMOVDQU64Z128rm,      0 },
1060    { X86::VMOVUPDZ128rr,        X86::VMOVUPDZ128rm,        0 },
1061    { X86::VMOVUPSZ128rr,        X86::VMOVUPSZ128rm,        0 },
1062    { X86::VPABSBZ128rr,         X86::VPABSBZ128rm,         0 },
1063    { X86::VPABSDZ128rr,         X86::VPABSDZ128rm,         0 },
1064    { X86::VPABSQZ128rr,         X86::VPABSQZ128rm,         0 },
1065    { X86::VPABSWZ128rr,         X86::VPABSWZ128rm,         0 },
1066    { X86::VPCONFLICTDZ128rr,    X86::VPCONFLICTDZ128rm,    0 },
1067    { X86::VPCONFLICTQZ128rr,    X86::VPCONFLICTQZ128rm,    0 },
1068    { X86::VPERMILPDZ128ri,      X86::VPERMILPDZ128mi,      0 },
1069    { X86::VPERMILPSZ128ri,      X86::VPERMILPSZ128mi,      0 },
1070    { X86::VPLZCNTDZ128rr,       X86::VPLZCNTDZ128rm,       0 },
1071    { X86::VPLZCNTQZ128rr,       X86::VPLZCNTQZ128rm,       0 },
1072    { X86::VPMOVSXBDZ128rr,      X86::VPMOVSXBDZ128rm,      TB_NO_REVERSE },
1073    { X86::VPMOVSXBQZ128rr,      X86::VPMOVSXBQZ128rm,      TB_NO_REVERSE },
1074    { X86::VPMOVSXBWZ128rr,      X86::VPMOVSXBWZ128rm,      TB_NO_REVERSE },
1075    { X86::VPMOVSXDQZ128rr,      X86::VPMOVSXDQZ128rm,      TB_NO_REVERSE },
1076    { X86::VPMOVSXWDZ128rr,      X86::VPMOVSXWDZ128rm,      TB_NO_REVERSE },
1077    { X86::VPMOVSXWQZ128rr,      X86::VPMOVSXWQZ128rm,      TB_NO_REVERSE },
1078    { X86::VPMOVZXBDZ128rr,      X86::VPMOVZXBDZ128rm,      TB_NO_REVERSE },
1079    { X86::VPMOVZXBQZ128rr,      X86::VPMOVZXBQZ128rm,      TB_NO_REVERSE },
1080    { X86::VPMOVZXBWZ128rr,      X86::VPMOVZXBWZ128rm,      TB_NO_REVERSE },
1081    { X86::VPMOVZXDQZ128rr,      X86::VPMOVZXDQZ128rm,      TB_NO_REVERSE },
1082    { X86::VPMOVZXWDZ128rr,      X86::VPMOVZXWDZ128rm,      TB_NO_REVERSE },
1083    { X86::VPMOVZXWQZ128rr,      X86::VPMOVZXWQZ128rm,      TB_NO_REVERSE },
1084    { X86::VPSHUFDZ128ri,        X86::VPSHUFDZ128mi,        0 },
1085    { X86::VPSHUFHWZ128ri,       X86::VPSHUFHWZ128mi,       0 },
1086    { X86::VPSHUFLWZ128ri,       X86::VPSHUFLWZ128mi,       0 },
1087    { X86::VPSLLDQZ128rr,        X86::VPSLLDQZ128rm,        0 },
1088    { X86::VPSLLDZ128ri,         X86::VPSLLDZ128mi,         0 },
1089    { X86::VPSLLQZ128ri,         X86::VPSLLQZ128mi,         0 },
1090    { X86::VPSLLWZ128ri,         X86::VPSLLWZ128mi,         0 },
1091    { X86::VPSRADZ128ri,         X86::VPSRADZ128mi,         0 },
1092    { X86::VPSRAQZ128ri,         X86::VPSRAQZ128mi,         0 },
1093    { X86::VPSRAWZ128ri,         X86::VPSRAWZ128mi,         0 },
1094    { X86::VPSRLDQZ128rr,        X86::VPSRLDQZ128rm,        0 },
1095    { X86::VPSRLDZ128ri,         X86::VPSRLDZ128mi,         0 },
1096    { X86::VPSRLQZ128ri,         X86::VPSRLQZ128mi,         0 },
1097    { X86::VPSRLWZ128ri,         X86::VPSRLWZ128mi,         0 },
1098
1099    // F16C foldable instructions
1100    { X86::VCVTPH2PSrr,        X86::VCVTPH2PSrm,            0 },
1101    { X86::VCVTPH2PSYrr,       X86::VCVTPH2PSYrm,           0 },
1102
1103    // AES foldable instructions
1104    { X86::AESIMCrr,              X86::AESIMCrm,              TB_ALIGN_16 },
1105    { X86::AESKEYGENASSIST128rr,  X86::AESKEYGENASSIST128rm,  TB_ALIGN_16 },
1106    { X86::VAESIMCrr,             X86::VAESIMCrm,             0 },
1107    { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, 0 }
1108  };
1109
1110  for (X86MemoryFoldTableEntry Entry : MemoryFoldTable1) {
1111    AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
1112                  Entry.RegOp, Entry.MemOp,
1113                  // Index 1, folded load
1114                  Entry.Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
1115  }
1116
1117  static const X86MemoryFoldTableEntry MemoryFoldTable2[] = {
1118    { X86::ADC32rr,         X86::ADC32rm,       0 },
1119    { X86::ADC64rr,         X86::ADC64rm,       0 },
1120    { X86::ADD16rr,         X86::ADD16rm,       0 },
1121    { X86::ADD16rr_DB,      X86::ADD16rm,       TB_NO_REVERSE },
1122    { X86::ADD32rr,         X86::ADD32rm,       0 },
1123    { X86::ADD32rr_DB,      X86::ADD32rm,       TB_NO_REVERSE },
1124    { X86::ADD64rr,         X86::ADD64rm,       0 },
1125    { X86::ADD64rr_DB,      X86::ADD64rm,       TB_NO_REVERSE },
1126    { X86::ADD8rr,          X86::ADD8rm,        0 },
1127    { X86::ADDPDrr,         X86::ADDPDrm,       TB_ALIGN_16 },
1128    { X86::ADDPSrr,         X86::ADDPSrm,       TB_ALIGN_16 },
1129    { X86::ADDSDrr,         X86::ADDSDrm,       0 },
1130    { X86::ADDSDrr_Int,     X86::ADDSDrm_Int,   TB_NO_REVERSE },
1131    { X86::ADDSSrr,         X86::ADDSSrm,       0 },
1132    { X86::ADDSSrr_Int,     X86::ADDSSrm_Int,   TB_NO_REVERSE },
1133    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm,    TB_ALIGN_16 },
1134    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm,    TB_ALIGN_16 },
1135    { X86::AND16rr,         X86::AND16rm,       0 },
1136    { X86::AND32rr,         X86::AND32rm,       0 },
1137    { X86::AND64rr,         X86::AND64rm,       0 },
1138    { X86::AND8rr,          X86::AND8rm,        0 },
1139    { X86::ANDNPDrr,        X86::ANDNPDrm,      TB_ALIGN_16 },
1140    { X86::ANDNPSrr,        X86::ANDNPSrm,      TB_ALIGN_16 },
1141    { X86::ANDPDrr,         X86::ANDPDrm,       TB_ALIGN_16 },
1142    { X86::ANDPSrr,         X86::ANDPSrm,       TB_ALIGN_16 },
1143    { X86::BLENDPDrri,      X86::BLENDPDrmi,    TB_ALIGN_16 },
1144    { X86::BLENDPSrri,      X86::BLENDPSrmi,    TB_ALIGN_16 },
1145    { X86::BLENDVPDrr0,     X86::BLENDVPDrm0,   TB_ALIGN_16 },
1146    { X86::BLENDVPSrr0,     X86::BLENDVPSrm0,   TB_ALIGN_16 },
1147    { X86::CMOVA16rr,       X86::CMOVA16rm,     0 },
1148    { X86::CMOVA32rr,       X86::CMOVA32rm,     0 },
1149    { X86::CMOVA64rr,       X86::CMOVA64rm,     0 },
1150    { X86::CMOVAE16rr,      X86::CMOVAE16rm,    0 },
1151    { X86::CMOVAE32rr,      X86::CMOVAE32rm,    0 },
1152    { X86::CMOVAE64rr,      X86::CMOVAE64rm,    0 },
1153    { X86::CMOVB16rr,       X86::CMOVB16rm,     0 },
1154    { X86::CMOVB32rr,       X86::CMOVB32rm,     0 },
1155    { X86::CMOVB64rr,       X86::CMOVB64rm,     0 },
1156    { X86::CMOVBE16rr,      X86::CMOVBE16rm,    0 },
1157    { X86::CMOVBE32rr,      X86::CMOVBE32rm,    0 },
1158    { X86::CMOVBE64rr,      X86::CMOVBE64rm,    0 },
1159    { X86::CMOVE16rr,       X86::CMOVE16rm,     0 },
1160    { X86::CMOVE32rr,       X86::CMOVE32rm,     0 },
1161    { X86::CMOVE64rr,       X86::CMOVE64rm,     0 },
1162    { X86::CMOVG16rr,       X86::CMOVG16rm,     0 },
1163    { X86::CMOVG32rr,       X86::CMOVG32rm,     0 },
1164    { X86::CMOVG64rr,       X86::CMOVG64rm,     0 },
1165    { X86::CMOVGE16rr,      X86::CMOVGE16rm,    0 },
1166    { X86::CMOVGE32rr,      X86::CMOVGE32rm,    0 },
1167    { X86::CMOVGE64rr,      X86::CMOVGE64rm,    0 },
1168    { X86::CMOVL16rr,       X86::CMOVL16rm,     0 },
1169    { X86::CMOVL32rr,       X86::CMOVL32rm,     0 },
1170    { X86::CMOVL64rr,       X86::CMOVL64rm,     0 },
1171    { X86::CMOVLE16rr,      X86::CMOVLE16rm,    0 },
1172    { X86::CMOVLE32rr,      X86::CMOVLE32rm,    0 },
1173    { X86::CMOVLE64rr,      X86::CMOVLE64rm,    0 },
1174    { X86::CMOVNE16rr,      X86::CMOVNE16rm,    0 },
1175    { X86::CMOVNE32rr,      X86::CMOVNE32rm,    0 },
1176    { X86::CMOVNE64rr,      X86::CMOVNE64rm,    0 },
1177    { X86::CMOVNO16rr,      X86::CMOVNO16rm,    0 },
1178    { X86::CMOVNO32rr,      X86::CMOVNO32rm,    0 },
1179    { X86::CMOVNO64rr,      X86::CMOVNO64rm,    0 },
1180    { X86::CMOVNP16rr,      X86::CMOVNP16rm,    0 },
1181    { X86::CMOVNP32rr,      X86::CMOVNP32rm,    0 },
1182    { X86::CMOVNP64rr,      X86::CMOVNP64rm,    0 },
1183    { X86::CMOVNS16rr,      X86::CMOVNS16rm,    0 },
1184    { X86::CMOVNS32rr,      X86::CMOVNS32rm,    0 },
1185    { X86::CMOVNS64rr,      X86::CMOVNS64rm,    0 },
1186    { X86::CMOVO16rr,       X86::CMOVO16rm,     0 },
1187    { X86::CMOVO32rr,       X86::CMOVO32rm,     0 },
1188    { X86::CMOVO64rr,       X86::CMOVO64rm,     0 },
1189    { X86::CMOVP16rr,       X86::CMOVP16rm,     0 },
1190    { X86::CMOVP32rr,       X86::CMOVP32rm,     0 },
1191    { X86::CMOVP64rr,       X86::CMOVP64rm,     0 },
1192    { X86::CMOVS16rr,       X86::CMOVS16rm,     0 },
1193    { X86::CMOVS32rr,       X86::CMOVS32rm,     0 },
1194    { X86::CMOVS64rr,       X86::CMOVS64rm,     0 },
1195    { X86::CMPPDrri,        X86::CMPPDrmi,      TB_ALIGN_16 },
1196    { X86::CMPPSrri,        X86::CMPPSrmi,      TB_ALIGN_16 },
1197    { X86::CMPSDrr,         X86::CMPSDrm,       0 },
1198    { X86::CMPSDrr_Int,     X86::CMPSDrm_Int,   TB_NO_REVERSE },
1199    { X86::CMPSSrr,         X86::CMPSSrm,       0 },
1200    { X86::CMPSSrr_Int,     X86::CMPSSrm_Int,   TB_NO_REVERSE },
1201    { X86::CRC32r32r32,     X86::CRC32r32m32,   0 },
1202    { X86::CRC32r64r64,     X86::CRC32r64m64,   0 },
1203    { X86::CVTSD2SSrr_Int,  X86::CVTSD2SSrm_Int,      TB_NO_REVERSE },
1204    { X86::CVTSS2SDrr_Int,  X86::CVTSS2SDrm_Int,      TB_NO_REVERSE },
1205    { X86::DIVPDrr,         X86::DIVPDrm,       TB_ALIGN_16 },
1206    { X86::DIVPSrr,         X86::DIVPSrm,       TB_ALIGN_16 },
1207    { X86::DIVSDrr,         X86::DIVSDrm,       0 },
1208    { X86::DIVSDrr_Int,     X86::DIVSDrm_Int,   TB_NO_REVERSE },
1209    { X86::DIVSSrr,         X86::DIVSSrm,       0 },
1210    { X86::DIVSSrr_Int,     X86::DIVSSrm_Int,   TB_NO_REVERSE },
1211    { X86::DPPDrri,         X86::DPPDrmi,       TB_ALIGN_16 },
1212    { X86::DPPSrri,         X86::DPPSrmi,       TB_ALIGN_16 },
1213    { X86::HADDPDrr,        X86::HADDPDrm,      TB_ALIGN_16 },
1214    { X86::HADDPSrr,        X86::HADDPSrm,      TB_ALIGN_16 },
1215    { X86::HSUBPDrr,        X86::HSUBPDrm,      TB_ALIGN_16 },
1216    { X86::HSUBPSrr,        X86::HSUBPSrm,      TB_ALIGN_16 },
1217    { X86::IMUL16rr,        X86::IMUL16rm,      0 },
1218    { X86::IMUL32rr,        X86::IMUL32rm,      0 },
1219    { X86::IMUL64rr,        X86::IMUL64rm,      0 },
1220    { X86::CVTSI642SDrr_Int,X86::CVTSI642SDrm_Int,    0 },
1221    { X86::CVTSI2SDrr_Int,  X86::CVTSI2SDrm_Int,      0 },
1222    { X86::CVTSI642SSrr_Int,X86::CVTSI642SSrm_Int,    0 },
1223    { X86::CVTSI2SSrr_Int,  X86::CVTSI2SSrm_Int,      0 },
1224    { X86::MAXPDrr,         X86::MAXPDrm,       TB_ALIGN_16 },
1225    { X86::MAXCPDrr,        X86::MAXCPDrm,      TB_ALIGN_16 },
1226    { X86::MAXPSrr,         X86::MAXPSrm,       TB_ALIGN_16 },
1227    { X86::MAXCPSrr,        X86::MAXCPSrm,      TB_ALIGN_16 },
1228    { X86::MAXSDrr,         X86::MAXSDrm,       0 },
1229    { X86::MAXCSDrr,        X86::MAXCSDrm,      0 },
1230    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int,   TB_NO_REVERSE },
1231    { X86::MAXSSrr,         X86::MAXSSrm,       0 },
1232    { X86::MAXCSSrr,        X86::MAXCSSrm,      0 },
1233    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int,   TB_NO_REVERSE },
1234    { X86::MINPDrr,         X86::MINPDrm,       TB_ALIGN_16 },
1235    { X86::MINCPDrr,        X86::MINCPDrm,      TB_ALIGN_16 },
1236    { X86::MINPSrr,         X86::MINPSrm,       TB_ALIGN_16 },
1237    { X86::MINCPSrr,        X86::MINCPSrm,      TB_ALIGN_16 },
1238    { X86::MINSDrr,         X86::MINSDrm,       0 },
1239    { X86::MINCSDrr,        X86::MINCSDrm,      0 },
1240    { X86::MINSDrr_Int,     X86::MINSDrm_Int,   TB_NO_REVERSE },
1241    { X86::MINSSrr,         X86::MINSSrm,       0 },
1242    { X86::MINCSSrr,        X86::MINCSSrm,      0 },
1243    { X86::MINSSrr_Int,     X86::MINSSrm_Int,   TB_NO_REVERSE },
1244    { X86::MOVLHPSrr,       X86::MOVHPSrm,      TB_NO_REVERSE },
1245    { X86::MPSADBWrri,      X86::MPSADBWrmi,    TB_ALIGN_16 },
1246    { X86::MULPDrr,         X86::MULPDrm,       TB_ALIGN_16 },
1247    { X86::MULPSrr,         X86::MULPSrm,       TB_ALIGN_16 },
1248    { X86::MULSDrr,         X86::MULSDrm,       0 },
1249    { X86::MULSDrr_Int,     X86::MULSDrm_Int,   TB_NO_REVERSE },
1250    { X86::MULSSrr,         X86::MULSSrm,       0 },
1251    { X86::MULSSrr_Int,     X86::MULSSrm_Int,   TB_NO_REVERSE },
1252    { X86::OR16rr,          X86::OR16rm,        0 },
1253    { X86::OR32rr,          X86::OR32rm,        0 },
1254    { X86::OR64rr,          X86::OR64rm,        0 },
1255    { X86::OR8rr,           X86::OR8rm,         0 },
1256    { X86::ORPDrr,          X86::ORPDrm,        TB_ALIGN_16 },
1257    { X86::ORPSrr,          X86::ORPSrm,        TB_ALIGN_16 },
1258    { X86::PACKSSDWrr,      X86::PACKSSDWrm,    TB_ALIGN_16 },
1259    { X86::PACKSSWBrr,      X86::PACKSSWBrm,    TB_ALIGN_16 },
1260    { X86::PACKUSDWrr,      X86::PACKUSDWrm,    TB_ALIGN_16 },
1261    { X86::PACKUSWBrr,      X86::PACKUSWBrm,    TB_ALIGN_16 },
1262    { X86::PADDBrr,         X86::PADDBrm,       TB_ALIGN_16 },
1263    { X86::PADDDrr,         X86::PADDDrm,       TB_ALIGN_16 },
1264    { X86::PADDQrr,         X86::PADDQrm,       TB_ALIGN_16 },
1265    { X86::PADDSBrr,        X86::PADDSBrm,      TB_ALIGN_16 },
1266    { X86::PADDSWrr,        X86::PADDSWrm,      TB_ALIGN_16 },
1267    { X86::PADDUSBrr,       X86::PADDUSBrm,     TB_ALIGN_16 },
1268    { X86::PADDUSWrr,       X86::PADDUSWrm,     TB_ALIGN_16 },
1269    { X86::PADDWrr,         X86::PADDWrm,       TB_ALIGN_16 },
1270    { X86::PALIGNRrri,      X86::PALIGNRrmi,    TB_ALIGN_16 },
1271    { X86::PANDNrr,         X86::PANDNrm,       TB_ALIGN_16 },
1272    { X86::PANDrr,          X86::PANDrm,        TB_ALIGN_16 },
1273    { X86::PAVGBrr,         X86::PAVGBrm,       TB_ALIGN_16 },
1274    { X86::PAVGWrr,         X86::PAVGWrm,       TB_ALIGN_16 },
1275    { X86::PBLENDVBrr0,     X86::PBLENDVBrm0,   TB_ALIGN_16 },
1276    { X86::PBLENDWrri,      X86::PBLENDWrmi,    TB_ALIGN_16 },
1277    { X86::PCLMULQDQrr,     X86::PCLMULQDQrm,   TB_ALIGN_16 },
1278    { X86::PCMPEQBrr,       X86::PCMPEQBrm,     TB_ALIGN_16 },
1279    { X86::PCMPEQDrr,       X86::PCMPEQDrm,     TB_ALIGN_16 },
1280    { X86::PCMPEQQrr,       X86::PCMPEQQrm,     TB_ALIGN_16 },
1281    { X86::PCMPEQWrr,       X86::PCMPEQWrm,     TB_ALIGN_16 },
1282    { X86::PCMPGTBrr,       X86::PCMPGTBrm,     TB_ALIGN_16 },
1283    { X86::PCMPGTDrr,       X86::PCMPGTDrm,     TB_ALIGN_16 },
1284    { X86::PCMPGTQrr,       X86::PCMPGTQrm,     TB_ALIGN_16 },
1285    { X86::PCMPGTWrr,       X86::PCMPGTWrm,     TB_ALIGN_16 },
1286    { X86::PHADDDrr,        X86::PHADDDrm,      TB_ALIGN_16 },
1287    { X86::PHADDWrr,        X86::PHADDWrm,      TB_ALIGN_16 },
1288    { X86::PHADDSWrr128,    X86::PHADDSWrm128,  TB_ALIGN_16 },
1289    { X86::PHSUBDrr,        X86::PHSUBDrm,      TB_ALIGN_16 },
1290    { X86::PHSUBSWrr128,    X86::PHSUBSWrm128,  TB_ALIGN_16 },
1291    { X86::PHSUBWrr,        X86::PHSUBWrm,      TB_ALIGN_16 },
1292    { X86::PINSRBrr,        X86::PINSRBrm,      0 },
1293    { X86::PINSRDrr,        X86::PINSRDrm,      0 },
1294    { X86::PINSRQrr,        X86::PINSRQrm,      0 },
1295    { X86::PINSRWrri,       X86::PINSRWrmi,     0 },
1296    { X86::PMADDUBSWrr,     X86::PMADDUBSWrm,   TB_ALIGN_16 },
1297    { X86::PMADDWDrr,       X86::PMADDWDrm,     TB_ALIGN_16 },
1298    { X86::PMAXSBrr,        X86::PMAXSBrm,      TB_ALIGN_16 },
1299    { X86::PMAXSDrr,        X86::PMAXSDrm,      TB_ALIGN_16 },
1300    { X86::PMAXSWrr,        X86::PMAXSWrm,      TB_ALIGN_16 },
1301    { X86::PMAXUBrr,        X86::PMAXUBrm,      TB_ALIGN_16 },
1302    { X86::PMAXUDrr,        X86::PMAXUDrm,      TB_ALIGN_16 },
1303    { X86::PMAXUWrr,        X86::PMAXUWrm,      TB_ALIGN_16 },
1304    { X86::PMINSBrr,        X86::PMINSBrm,      TB_ALIGN_16 },
1305    { X86::PMINSDrr,        X86::PMINSDrm,      TB_ALIGN_16 },
1306    { X86::PMINSWrr,        X86::PMINSWrm,      TB_ALIGN_16 },
1307    { X86::PMINUBrr,        X86::PMINUBrm,      TB_ALIGN_16 },
1308    { X86::PMINUDrr,        X86::PMINUDrm,      TB_ALIGN_16 },
1309    { X86::PMINUWrr,        X86::PMINUWrm,      TB_ALIGN_16 },
1310    { X86::PMULDQrr,        X86::PMULDQrm,      TB_ALIGN_16 },
1311    { X86::PMULHRSWrr,      X86::PMULHRSWrm,    TB_ALIGN_16 },
1312    { X86::PMULHUWrr,       X86::PMULHUWrm,     TB_ALIGN_16 },
1313    { X86::PMULHWrr,        X86::PMULHWrm,      TB_ALIGN_16 },
1314    { X86::PMULLDrr,        X86::PMULLDrm,      TB_ALIGN_16 },
1315    { X86::PMULLWrr,        X86::PMULLWrm,      TB_ALIGN_16 },
1316    { X86::PMULUDQrr,       X86::PMULUDQrm,     TB_ALIGN_16 },
1317    { X86::PORrr,           X86::PORrm,         TB_ALIGN_16 },
1318    { X86::PSADBWrr,        X86::PSADBWrm,      TB_ALIGN_16 },
1319    { X86::PSHUFBrr,        X86::PSHUFBrm,      TB_ALIGN_16 },
1320    { X86::PSIGNBrr128,     X86::PSIGNBrm128,   TB_ALIGN_16 },
1321    { X86::PSIGNWrr128,     X86::PSIGNWrm128,   TB_ALIGN_16 },
1322    { X86::PSIGNDrr128,     X86::PSIGNDrm128,   TB_ALIGN_16 },
1323    { X86::PSLLDrr,         X86::PSLLDrm,       TB_ALIGN_16 },
1324    { X86::PSLLQrr,         X86::PSLLQrm,       TB_ALIGN_16 },
1325    { X86::PSLLWrr,         X86::PSLLWrm,       TB_ALIGN_16 },
1326    { X86::PSRADrr,         X86::PSRADrm,       TB_ALIGN_16 },
1327    { X86::PSRAWrr,         X86::PSRAWrm,       TB_ALIGN_16 },
1328    { X86::PSRLDrr,         X86::PSRLDrm,       TB_ALIGN_16 },
1329    { X86::PSRLQrr,         X86::PSRLQrm,       TB_ALIGN_16 },
1330    { X86::PSRLWrr,         X86::PSRLWrm,       TB_ALIGN_16 },
1331    { X86::PSUBBrr,         X86::PSUBBrm,       TB_ALIGN_16 },
1332    { X86::PSUBDrr,         X86::PSUBDrm,       TB_ALIGN_16 },
1333    { X86::PSUBQrr,         X86::PSUBQrm,       TB_ALIGN_16 },
1334    { X86::PSUBSBrr,        X86::PSUBSBrm,      TB_ALIGN_16 },
1335    { X86::PSUBSWrr,        X86::PSUBSWrm,      TB_ALIGN_16 },
1336    { X86::PSUBUSBrr,       X86::PSUBUSBrm,     TB_ALIGN_16 },
1337    { X86::PSUBUSWrr,       X86::PSUBUSWrm,     TB_ALIGN_16 },
1338    { X86::PSUBWrr,         X86::PSUBWrm,       TB_ALIGN_16 },
1339    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm,   TB_ALIGN_16 },
1340    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm,   TB_ALIGN_16 },
1341    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm,  TB_ALIGN_16 },
1342    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm,   TB_ALIGN_16 },
1343    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm,   TB_ALIGN_16 },
1344    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm,   TB_ALIGN_16 },
1345    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm,  TB_ALIGN_16 },
1346    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm,   TB_ALIGN_16 },
1347    { X86::PXORrr,          X86::PXORrm,        TB_ALIGN_16 },
1348    { X86::ROUNDSDr_Int,    X86::ROUNDSDm_Int,  TB_NO_REVERSE },
1349    { X86::ROUNDSSr_Int,    X86::ROUNDSSm_Int,  TB_NO_REVERSE },
1350    { X86::SBB32rr,         X86::SBB32rm,       0 },
1351    { X86::SBB64rr,         X86::SBB64rm,       0 },
1352    { X86::SHUFPDrri,       X86::SHUFPDrmi,     TB_ALIGN_16 },
1353    { X86::SHUFPSrri,       X86::SHUFPSrmi,     TB_ALIGN_16 },
1354    { X86::SUB16rr,         X86::SUB16rm,       0 },
1355    { X86::SUB32rr,         X86::SUB32rm,       0 },
1356    { X86::SUB64rr,         X86::SUB64rm,       0 },
1357    { X86::SUB8rr,          X86::SUB8rm,        0 },
1358    { X86::SUBPDrr,         X86::SUBPDrm,       TB_ALIGN_16 },
1359    { X86::SUBPSrr,         X86::SUBPSrm,       TB_ALIGN_16 },
1360    { X86::SUBSDrr,         X86::SUBSDrm,       0 },
1361    { X86::SUBSDrr_Int,     X86::SUBSDrm_Int,   TB_NO_REVERSE },
1362    { X86::SUBSSrr,         X86::SUBSSrm,       0 },
1363    { X86::SUBSSrr_Int,     X86::SUBSSrm_Int,   TB_NO_REVERSE },
1364    // FIXME: TEST*rr -> swapped operand of TEST*mr.
1365    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm,    TB_ALIGN_16 },
1366    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm,    TB_ALIGN_16 },
1367    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm,    TB_ALIGN_16 },
1368    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm,    TB_ALIGN_16 },
1369    { X86::XOR16rr,         X86::XOR16rm,       0 },
1370    { X86::XOR32rr,         X86::XOR32rm,       0 },
1371    { X86::XOR64rr,         X86::XOR64rm,       0 },
1372    { X86::XOR8rr,          X86::XOR8rm,        0 },
1373    { X86::XORPDrr,         X86::XORPDrm,       TB_ALIGN_16 },
1374    { X86::XORPSrr,         X86::XORPSrm,       TB_ALIGN_16 },
1375
1376    // MMX version of foldable instructions
1377    { X86::MMX_CVTPI2PSirr,   X86::MMX_CVTPI2PSirm,   0 },
1378    { X86::MMX_PACKSSDWirr,   X86::MMX_PACKSSDWirm,   0 },
1379    { X86::MMX_PACKSSWBirr,   X86::MMX_PACKSSWBirm,   0 },
1380    { X86::MMX_PACKUSWBirr,   X86::MMX_PACKUSWBirm,   0 },
1381    { X86::MMX_PADDBirr,      X86::MMX_PADDBirm,      0 },
1382    { X86::MMX_PADDDirr,      X86::MMX_PADDDirm,      0 },
1383    { X86::MMX_PADDQirr,      X86::MMX_PADDQirm,      0 },
1384    { X86::MMX_PADDSBirr,     X86::MMX_PADDSBirm,     0 },
1385    { X86::MMX_PADDSWirr,     X86::MMX_PADDSWirm,     0 },
1386    { X86::MMX_PADDUSBirr,    X86::MMX_PADDUSBirm,    0 },
1387    { X86::MMX_PADDUSWirr,    X86::MMX_PADDUSWirm,    0 },
1388    { X86::MMX_PADDWirr,      X86::MMX_PADDWirm,      0 },
1389    { X86::MMX_PALIGNR64irr,  X86::MMX_PALIGNR64irm,  0 },
1390    { X86::MMX_PANDNirr,      X86::MMX_PANDNirm,      0 },
1391    { X86::MMX_PANDirr,       X86::MMX_PANDirm,       0 },
1392    { X86::MMX_PAVGBirr,      X86::MMX_PAVGBirm,      0 },
1393    { X86::MMX_PAVGWirr,      X86::MMX_PAVGWirm,      0 },
1394    { X86::MMX_PCMPEQBirr,    X86::MMX_PCMPEQBirm,    0 },
1395    { X86::MMX_PCMPEQDirr,    X86::MMX_PCMPEQDirm,    0 },
1396    { X86::MMX_PCMPEQWirr,    X86::MMX_PCMPEQWirm,    0 },
1397    { X86::MMX_PCMPGTBirr,    X86::MMX_PCMPGTBirm,    0 },
1398    { X86::MMX_PCMPGTDirr,    X86::MMX_PCMPGTDirm,    0 },
1399    { X86::MMX_PCMPGTWirr,    X86::MMX_PCMPGTWirm,    0 },
1400    { X86::MMX_PHADDSWrr64,   X86::MMX_PHADDSWrm64,   0 },
1401    { X86::MMX_PHADDWrr64,    X86::MMX_PHADDWrm64,    0 },
1402    { X86::MMX_PHADDrr64,     X86::MMX_PHADDrm64,     0 },
1403    { X86::MMX_PHSUBDrr64,    X86::MMX_PHSUBDrm64,    0 },
1404    { X86::MMX_PHSUBSWrr64,   X86::MMX_PHSUBSWrm64,   0 },
1405    { X86::MMX_PHSUBWrr64,    X86::MMX_PHSUBWrm64,    0 },
1406    { X86::MMX_PINSRWirri,    X86::MMX_PINSRWirmi,    0 },
1407    { X86::MMX_PMADDUBSWrr64, X86::MMX_PMADDUBSWrm64, 0 },
1408    { X86::MMX_PMADDWDirr,    X86::MMX_PMADDWDirm,    0 },
1409    { X86::MMX_PMAXSWirr,     X86::MMX_PMAXSWirm,     0 },
1410    { X86::MMX_PMAXUBirr,     X86::MMX_PMAXUBirm,     0 },
1411    { X86::MMX_PMINSWirr,     X86::MMX_PMINSWirm,     0 },
1412    { X86::MMX_PMINUBirr,     X86::MMX_PMINUBirm,     0 },
1413    { X86::MMX_PMULHRSWrr64,  X86::MMX_PMULHRSWrm64,  0 },
1414    { X86::MMX_PMULHUWirr,    X86::MMX_PMULHUWirm,    0 },
1415    { X86::MMX_PMULHWirr,     X86::MMX_PMULHWirm,     0 },
1416    { X86::MMX_PMULLWirr,     X86::MMX_PMULLWirm,     0 },
1417    { X86::MMX_PMULUDQirr,    X86::MMX_PMULUDQirm,    0 },
1418    { X86::MMX_PORirr,        X86::MMX_PORirm,        0 },
1419    { X86::MMX_PSADBWirr,     X86::MMX_PSADBWirm,     0 },
1420    { X86::MMX_PSHUFBrr64,    X86::MMX_PSHUFBrm64,    0 },
1421    { X86::MMX_PSIGNBrr64,    X86::MMX_PSIGNBrm64,    0 },
1422    { X86::MMX_PSIGNDrr64,    X86::MMX_PSIGNDrm64,    0 },
1423    { X86::MMX_PSIGNWrr64,    X86::MMX_PSIGNWrm64,    0 },
1424    { X86::MMX_PSLLDrr,       X86::MMX_PSLLDrm,       0 },
1425    { X86::MMX_PSLLQrr,       X86::MMX_PSLLQrm,       0 },
1426    { X86::MMX_PSLLWrr,       X86::MMX_PSLLWrm,       0 },
1427    { X86::MMX_PSRADrr,       X86::MMX_PSRADrm,       0 },
1428    { X86::MMX_PSRAWrr,       X86::MMX_PSRAWrm,       0 },
1429    { X86::MMX_PSRLDrr,       X86::MMX_PSRLDrm,       0 },
1430    { X86::MMX_PSRLQrr,       X86::MMX_PSRLQrm,       0 },
1431    { X86::MMX_PSRLWrr,       X86::MMX_PSRLWrm,       0 },
1432    { X86::MMX_PSUBBirr,      X86::MMX_PSUBBirm,      0 },
1433    { X86::MMX_PSUBDirr,      X86::MMX_PSUBDirm,      0 },
1434    { X86::MMX_PSUBQirr,      X86::MMX_PSUBQirm,      0 },
1435    { X86::MMX_PSUBSBirr,     X86::MMX_PSUBSBirm,     0 },
1436    { X86::MMX_PSUBSWirr,     X86::MMX_PSUBSWirm,     0 },
1437    { X86::MMX_PSUBUSBirr,    X86::MMX_PSUBUSBirm,    0 },
1438    { X86::MMX_PSUBUSWirr,    X86::MMX_PSUBUSWirm,    0 },
1439    { X86::MMX_PSUBWirr,      X86::MMX_PSUBWirm,      0 },
1440    { X86::MMX_PUNPCKHBWirr,  X86::MMX_PUNPCKHBWirm,  0 },
1441    { X86::MMX_PUNPCKHDQirr,  X86::MMX_PUNPCKHDQirm,  0 },
1442    { X86::MMX_PUNPCKHWDirr,  X86::MMX_PUNPCKHWDirm,  0 },
1443    { X86::MMX_PUNPCKLBWirr,  X86::MMX_PUNPCKLBWirm,  0 },
1444    { X86::MMX_PUNPCKLDQirr,  X86::MMX_PUNPCKLDQirm,  0 },
1445    { X86::MMX_PUNPCKLWDirr,  X86::MMX_PUNPCKLWDirm,  0 },
1446    { X86::MMX_PXORirr,       X86::MMX_PXORirm,       0 },
1447
1448    // 3DNow! version of foldable instructions
1449    { X86::PAVGUSBrr,         X86::PAVGUSBrm,         0 },
1450    { X86::PFACCrr,           X86::PFACCrm,           0 },
1451    { X86::PFADDrr,           X86::PFADDrm,           0 },
1452    { X86::PFCMPEQrr,         X86::PFCMPEQrm,         0 },
1453    { X86::PFCMPGErr,         X86::PFCMPGErm,         0 },
1454    { X86::PFCMPGTrr,         X86::PFCMPGTrm,         0 },
1455    { X86::PFMAXrr,           X86::PFMAXrm,           0 },
1456    { X86::PFMINrr,           X86::PFMINrm,           0 },
1457    { X86::PFMULrr,           X86::PFMULrm,           0 },
1458    { X86::PFNACCrr,          X86::PFNACCrm,          0 },
1459    { X86::PFPNACCrr,         X86::PFPNACCrm,         0 },
1460    { X86::PFRCPIT1rr,        X86::PFRCPIT1rm,        0 },
1461    { X86::PFRCPIT2rr,        X86::PFRCPIT2rm,        0 },
1462    { X86::PFRSQIT1rr,        X86::PFRSQIT1rm,        0 },
1463    { X86::PFSUBrr,           X86::PFSUBrm,           0 },
1464    { X86::PFSUBRrr,          X86::PFSUBRrm,          0 },
1465    { X86::PMULHRWrr,         X86::PMULHRWrm,         0 },
1466
1467    // AVX 128-bit versions of foldable instructions
1468    { X86::VCVTSI642SDrr,     X86::VCVTSI642SDrm,      0 },
1469    { X86::VCVTSI642SDrr_Int, X86::VCVTSI642SDrm_Int,  0 },
1470    { X86::VCVTSI2SDrr,       X86::VCVTSI2SDrm,        0 },
1471    { X86::VCVTSI2SDrr_Int,   X86::VCVTSI2SDrm_Int,    0 },
1472    { X86::VCVTSI642SSrr,     X86::VCVTSI642SSrm,      0 },
1473    { X86::VCVTSI642SSrr_Int, X86::VCVTSI642SSrm_Int,  0 },
1474    { X86::VCVTSI2SSrr,       X86::VCVTSI2SSrm,        0 },
1475    { X86::VCVTSI2SSrr_Int,   X86::VCVTSI2SSrm_Int,    0 },
1476    { X86::VADDPDrr,          X86::VADDPDrm,           0 },
1477    { X86::VADDPSrr,          X86::VADDPSrm,           0 },
1478    { X86::VADDSDrr,          X86::VADDSDrm,           0 },
1479    { X86::VADDSDrr_Int,      X86::VADDSDrm_Int,       TB_NO_REVERSE },
1480    { X86::VADDSSrr,          X86::VADDSSrm,           0 },
1481    { X86::VADDSSrr_Int,      X86::VADDSSrm_Int,       TB_NO_REVERSE },
1482    { X86::VADDSUBPDrr,       X86::VADDSUBPDrm,        0 },
1483    { X86::VADDSUBPSrr,       X86::VADDSUBPSrm,        0 },
1484    { X86::VANDNPDrr,         X86::VANDNPDrm,          0 },
1485    { X86::VANDNPSrr,         X86::VANDNPSrm,          0 },
1486    { X86::VANDPDrr,          X86::VANDPDrm,           0 },
1487    { X86::VANDPSrr,          X86::VANDPSrm,           0 },
1488    { X86::VBLENDPDrri,       X86::VBLENDPDrmi,        0 },
1489    { X86::VBLENDPSrri,       X86::VBLENDPSrmi,        0 },
1490    { X86::VBLENDVPDrr,       X86::VBLENDVPDrm,        0 },
1491    { X86::VBLENDVPSrr,       X86::VBLENDVPSrm,        0 },
1492    { X86::VCMPPDrri,         X86::VCMPPDrmi,          0 },
1493    { X86::VCMPPSrri,         X86::VCMPPSrmi,          0 },
1494    { X86::VCMPSDrr,          X86::VCMPSDrm,           0 },
1495    { X86::VCMPSDrr_Int,      X86::VCMPSDrm_Int,       TB_NO_REVERSE },
1496    { X86::VCMPSSrr,          X86::VCMPSSrm,           0 },
1497    { X86::VCMPSSrr_Int,      X86::VCMPSSrm_Int,       TB_NO_REVERSE },
1498    { X86::VDIVPDrr,          X86::VDIVPDrm,           0 },
1499    { X86::VDIVPSrr,          X86::VDIVPSrm,           0 },
1500    { X86::VDIVSDrr,          X86::VDIVSDrm,           0 },
1501    { X86::VDIVSDrr_Int,      X86::VDIVSDrm_Int,       TB_NO_REVERSE },
1502    { X86::VDIVSSrr,          X86::VDIVSSrm,           0 },
1503    { X86::VDIVSSrr_Int,      X86::VDIVSSrm_Int,       TB_NO_REVERSE },
1504    { X86::VDPPDrri,          X86::VDPPDrmi,           0 },
1505    { X86::VDPPSrri,          X86::VDPPSrmi,           0 },
1506    { X86::VHADDPDrr,         X86::VHADDPDrm,          0 },
1507    { X86::VHADDPSrr,         X86::VHADDPSrm,          0 },
1508    { X86::VHSUBPDrr,         X86::VHSUBPDrm,          0 },
1509    { X86::VHSUBPSrr,         X86::VHSUBPSrm,          0 },
1510    { X86::VMAXCPDrr,         X86::VMAXCPDrm,          0 },
1511    { X86::VMAXCPSrr,         X86::VMAXCPSrm,          0 },
1512    { X86::VMAXCSDrr,         X86::VMAXCSDrm,          0 },
1513    { X86::VMAXCSSrr,         X86::VMAXCSSrm,          0 },
1514    { X86::VMAXPDrr,          X86::VMAXPDrm,           0 },
1515    { X86::VMAXPSrr,          X86::VMAXPSrm,           0 },
1516    { X86::VMAXSDrr,          X86::VMAXSDrm,           0 },
1517    { X86::VMAXSDrr_Int,      X86::VMAXSDrm_Int,       TB_NO_REVERSE },
1518    { X86::VMAXSSrr,          X86::VMAXSSrm,           0 },
1519    { X86::VMAXSSrr_Int,      X86::VMAXSSrm_Int,       TB_NO_REVERSE },
1520    { X86::VMINCPDrr,         X86::VMINCPDrm,          0 },
1521    { X86::VMINCPSrr,         X86::VMINCPSrm,          0 },
1522    { X86::VMINCSDrr,         X86::VMINCSDrm,          0 },
1523    { X86::VMINCSSrr,         X86::VMINCSSrm,          0 },
1524    { X86::VMINPDrr,          X86::VMINPDrm,           0 },
1525    { X86::VMINPSrr,          X86::VMINPSrm,           0 },
1526    { X86::VMINSDrr,          X86::VMINSDrm,           0 },
1527    { X86::VMINSDrr_Int,      X86::VMINSDrm_Int,       TB_NO_REVERSE },
1528    { X86::VMINSSrr,          X86::VMINSSrm,           0 },
1529    { X86::VMINSSrr_Int,      X86::VMINSSrm_Int,       TB_NO_REVERSE },
1530    { X86::VMOVLHPSrr,        X86::VMOVHPSrm,          TB_NO_REVERSE },
1531    { X86::VMPSADBWrri,       X86::VMPSADBWrmi,        0 },
1532    { X86::VMULPDrr,          X86::VMULPDrm,           0 },
1533    { X86::VMULPSrr,          X86::VMULPSrm,           0 },
1534    { X86::VMULSDrr,          X86::VMULSDrm,           0 },
1535    { X86::VMULSDrr_Int,      X86::VMULSDrm_Int,       TB_NO_REVERSE },
1536    { X86::VMULSSrr,          X86::VMULSSrm,           0 },
1537    { X86::VMULSSrr_Int,      X86::VMULSSrm_Int,       TB_NO_REVERSE },
1538    { X86::VORPDrr,           X86::VORPDrm,            0 },
1539    { X86::VORPSrr,           X86::VORPSrm,            0 },
1540    { X86::VPACKSSDWrr,       X86::VPACKSSDWrm,        0 },
1541    { X86::VPACKSSWBrr,       X86::VPACKSSWBrm,        0 },
1542    { X86::VPACKUSDWrr,       X86::VPACKUSDWrm,        0 },
1543    { X86::VPACKUSWBrr,       X86::VPACKUSWBrm,        0 },
1544    { X86::VPADDBrr,          X86::VPADDBrm,           0 },
1545    { X86::VPADDDrr,          X86::VPADDDrm,           0 },
1546    { X86::VPADDQrr,          X86::VPADDQrm,           0 },
1547    { X86::VPADDSBrr,         X86::VPADDSBrm,          0 },
1548    { X86::VPADDSWrr,         X86::VPADDSWrm,          0 },
1549    { X86::VPADDUSBrr,        X86::VPADDUSBrm,         0 },
1550    { X86::VPADDUSWrr,        X86::VPADDUSWrm,         0 },
1551    { X86::VPADDWrr,          X86::VPADDWrm,           0 },
1552    { X86::VPALIGNRrri,       X86::VPALIGNRrmi,        0 },
1553    { X86::VPANDNrr,          X86::VPANDNrm,           0 },
1554    { X86::VPANDrr,           X86::VPANDrm,            0 },
1555    { X86::VPAVGBrr,          X86::VPAVGBrm,           0 },
1556    { X86::VPAVGWrr,          X86::VPAVGWrm,           0 },
1557    { X86::VPBLENDVBrr,       X86::VPBLENDVBrm,        0 },
1558    { X86::VPBLENDWrri,       X86::VPBLENDWrmi,        0 },
1559    { X86::VPCLMULQDQrr,      X86::VPCLMULQDQrm,       0 },
1560    { X86::VPCMPEQBrr,        X86::VPCMPEQBrm,         0 },
1561    { X86::VPCMPEQDrr,        X86::VPCMPEQDrm,         0 },
1562    { X86::VPCMPEQQrr,        X86::VPCMPEQQrm,         0 },
1563    { X86::VPCMPEQWrr,        X86::VPCMPEQWrm,         0 },
1564    { X86::VPCMPGTBrr,        X86::VPCMPGTBrm,         0 },
1565    { X86::VPCMPGTDrr,        X86::VPCMPGTDrm,         0 },
1566    { X86::VPCMPGTQrr,        X86::VPCMPGTQrm,         0 },
1567    { X86::VPCMPGTWrr,        X86::VPCMPGTWrm,         0 },
1568    { X86::VPHADDDrr,         X86::VPHADDDrm,          0 },
1569    { X86::VPHADDSWrr128,     X86::VPHADDSWrm128,      0 },
1570    { X86::VPHADDWrr,         X86::VPHADDWrm,          0 },
1571    { X86::VPHSUBDrr,         X86::VPHSUBDrm,          0 },
1572    { X86::VPHSUBSWrr128,     X86::VPHSUBSWrm128,      0 },
1573    { X86::VPHSUBWrr,         X86::VPHSUBWrm,          0 },
1574    { X86::VPERMILPDrr,       X86::VPERMILPDrm,        0 },
1575    { X86::VPERMILPSrr,       X86::VPERMILPSrm,        0 },
1576    { X86::VPINSRBrr,         X86::VPINSRBrm,          0 },
1577    { X86::VPINSRDrr,         X86::VPINSRDrm,          0 },
1578    { X86::VPINSRQrr,         X86::VPINSRQrm,          0 },
1579    { X86::VPINSRWrri,        X86::VPINSRWrmi,         0 },
1580    { X86::VPMADDUBSWrr,      X86::VPMADDUBSWrm,       0 },
1581    { X86::VPMADDWDrr,        X86::VPMADDWDrm,         0 },
1582    { X86::VPMAXSBrr,         X86::VPMAXSBrm,          0 },
1583    { X86::VPMAXSDrr,         X86::VPMAXSDrm,          0 },
1584    { X86::VPMAXSWrr,         X86::VPMAXSWrm,          0 },
1585    { X86::VPMAXUBrr,         X86::VPMAXUBrm,          0 },
1586    { X86::VPMAXUDrr,         X86::VPMAXUDrm,          0 },
1587    { X86::VPMAXUWrr,         X86::VPMAXUWrm,          0 },
1588    { X86::VPMINSBrr,         X86::VPMINSBrm,          0 },
1589    { X86::VPMINSDrr,         X86::VPMINSDrm,          0 },
1590    { X86::VPMINSWrr,         X86::VPMINSWrm,          0 },
1591    { X86::VPMINUBrr,         X86::VPMINUBrm,          0 },
1592    { X86::VPMINUDrr,         X86::VPMINUDrm,          0 },
1593    { X86::VPMINUWrr,         X86::VPMINUWrm,          0 },
1594    { X86::VPMULDQrr,         X86::VPMULDQrm,          0 },
1595    { X86::VPMULHRSWrr,       X86::VPMULHRSWrm,        0 },
1596    { X86::VPMULHUWrr,        X86::VPMULHUWrm,         0 },
1597    { X86::VPMULHWrr,         X86::VPMULHWrm,          0 },
1598    { X86::VPMULLDrr,         X86::VPMULLDrm,          0 },
1599    { X86::VPMULLWrr,         X86::VPMULLWrm,          0 },
1600    { X86::VPMULUDQrr,        X86::VPMULUDQrm,         0 },
1601    { X86::VPORrr,            X86::VPORrm,             0 },
1602    { X86::VPSADBWrr,         X86::VPSADBWrm,          0 },
1603    { X86::VPSHUFBrr,         X86::VPSHUFBrm,          0 },
1604    { X86::VPSIGNBrr128,      X86::VPSIGNBrm128,       0 },
1605    { X86::VPSIGNWrr128,      X86::VPSIGNWrm128,       0 },
1606    { X86::VPSIGNDrr128,      X86::VPSIGNDrm128,       0 },
1607    { X86::VPSLLDrr,          X86::VPSLLDrm,           0 },
1608    { X86::VPSLLQrr,          X86::VPSLLQrm,           0 },
1609    { X86::VPSLLWrr,          X86::VPSLLWrm,           0 },
1610    { X86::VPSRADrr,          X86::VPSRADrm,           0 },
1611    { X86::VPSRAWrr,          X86::VPSRAWrm,           0 },
1612    { X86::VPSRLDrr,          X86::VPSRLDrm,           0 },
1613    { X86::VPSRLQrr,          X86::VPSRLQrm,           0 },
1614    { X86::VPSRLWrr,          X86::VPSRLWrm,           0 },
1615    { X86::VPSUBBrr,          X86::VPSUBBrm,           0 },
1616    { X86::VPSUBDrr,          X86::VPSUBDrm,           0 },
1617    { X86::VPSUBQrr,          X86::VPSUBQrm,           0 },
1618    { X86::VPSUBSBrr,         X86::VPSUBSBrm,          0 },
1619    { X86::VPSUBSWrr,         X86::VPSUBSWrm,          0 },
1620    { X86::VPSUBUSBrr,        X86::VPSUBUSBrm,         0 },
1621    { X86::VPSUBUSWrr,        X86::VPSUBUSWrm,         0 },
1622    { X86::VPSUBWrr,          X86::VPSUBWrm,           0 },
1623    { X86::VPUNPCKHBWrr,      X86::VPUNPCKHBWrm,       0 },
1624    { X86::VPUNPCKHDQrr,      X86::VPUNPCKHDQrm,       0 },
1625    { X86::VPUNPCKHQDQrr,     X86::VPUNPCKHQDQrm,      0 },
1626    { X86::VPUNPCKHWDrr,      X86::VPUNPCKHWDrm,       0 },
1627    { X86::VPUNPCKLBWrr,      X86::VPUNPCKLBWrm,       0 },
1628    { X86::VPUNPCKLDQrr,      X86::VPUNPCKLDQrm,       0 },
1629    { X86::VPUNPCKLQDQrr,     X86::VPUNPCKLQDQrm,      0 },
1630    { X86::VPUNPCKLWDrr,      X86::VPUNPCKLWDrm,       0 },
1631    { X86::VPXORrr,           X86::VPXORrm,            0 },
1632    { X86::VRCPSSr,           X86::VRCPSSm,            0 },
1633    { X86::VRCPSSr_Int,       X86::VRCPSSm_Int,        TB_NO_REVERSE },
1634    { X86::VRSQRTSSr,         X86::VRSQRTSSm,          0 },
1635    { X86::VRSQRTSSr_Int,     X86::VRSQRTSSm_Int,      TB_NO_REVERSE },
1636    { X86::VROUNDSDr,         X86::VROUNDSDm,          0 },
1637    { X86::VROUNDSDr_Int,     X86::VROUNDSDm_Int,      TB_NO_REVERSE },
1638    { X86::VROUNDSSr,         X86::VROUNDSSm,          0 },
1639    { X86::VROUNDSSr_Int,     X86::VROUNDSSm_Int,      TB_NO_REVERSE },
1640    { X86::VSHUFPDrri,        X86::VSHUFPDrmi,         0 },
1641    { X86::VSHUFPSrri,        X86::VSHUFPSrmi,         0 },
1642    { X86::VSQRTSDr,          X86::VSQRTSDm,           0 },
1643    { X86::VSQRTSDr_Int,      X86::VSQRTSDm_Int,       TB_NO_REVERSE },
1644    { X86::VSQRTSSr,          X86::VSQRTSSm,           0 },
1645    { X86::VSQRTSSr_Int,      X86::VSQRTSSm_Int,       TB_NO_REVERSE },
1646    { X86::VSUBPDrr,          X86::VSUBPDrm,           0 },
1647    { X86::VSUBPSrr,          X86::VSUBPSrm,           0 },
1648    { X86::VSUBSDrr,          X86::VSUBSDrm,           0 },
1649    { X86::VSUBSDrr_Int,      X86::VSUBSDrm_Int,       TB_NO_REVERSE },
1650    { X86::VSUBSSrr,          X86::VSUBSSrm,           0 },
1651    { X86::VSUBSSrr_Int,      X86::VSUBSSrm_Int,       TB_NO_REVERSE },
1652    { X86::VUNPCKHPDrr,       X86::VUNPCKHPDrm,        0 },
1653    { X86::VUNPCKHPSrr,       X86::VUNPCKHPSrm,        0 },
1654    { X86::VUNPCKLPDrr,       X86::VUNPCKLPDrm,        0 },
1655    { X86::VUNPCKLPSrr,       X86::VUNPCKLPSrm,        0 },
1656    { X86::VXORPDrr,          X86::VXORPDrm,           0 },
1657    { X86::VXORPSrr,          X86::VXORPSrm,           0 },
1658
1659    // AVX 256-bit foldable instructions
1660    { X86::VADDPDYrr,         X86::VADDPDYrm,          0 },
1661    { X86::VADDPSYrr,         X86::VADDPSYrm,          0 },
1662    { X86::VADDSUBPDYrr,      X86::VADDSUBPDYrm,       0 },
1663    { X86::VADDSUBPSYrr,      X86::VADDSUBPSYrm,       0 },
1664    { X86::VANDNPDYrr,        X86::VANDNPDYrm,         0 },
1665    { X86::VANDNPSYrr,        X86::VANDNPSYrm,         0 },
1666    { X86::VANDPDYrr,         X86::VANDPDYrm,          0 },
1667    { X86::VANDPSYrr,         X86::VANDPSYrm,          0 },
1668    { X86::VBLENDPDYrri,      X86::VBLENDPDYrmi,       0 },
1669    { X86::VBLENDPSYrri,      X86::VBLENDPSYrmi,       0 },
1670    { X86::VBLENDVPDYrr,      X86::VBLENDVPDYrm,       0 },
1671    { X86::VBLENDVPSYrr,      X86::VBLENDVPSYrm,       0 },
1672    { X86::VCMPPDYrri,        X86::VCMPPDYrmi,         0 },
1673    { X86::VCMPPSYrri,        X86::VCMPPSYrmi,         0 },
1674    { X86::VDIVPDYrr,         X86::VDIVPDYrm,          0 },
1675    { X86::VDIVPSYrr,         X86::VDIVPSYrm,          0 },
1676    { X86::VDPPSYrri,         X86::VDPPSYrmi,          0 },
1677    { X86::VHADDPDYrr,        X86::VHADDPDYrm,         0 },
1678    { X86::VHADDPSYrr,        X86::VHADDPSYrm,         0 },
1679    { X86::VHSUBPDYrr,        X86::VHSUBPDYrm,         0 },
1680    { X86::VHSUBPSYrr,        X86::VHSUBPSYrm,         0 },
1681    { X86::VINSERTF128rr,     X86::VINSERTF128rm,      0 },
1682    { X86::VMAXCPDYrr,        X86::VMAXCPDYrm,         0 },
1683    { X86::VMAXCPSYrr,        X86::VMAXCPSYrm,         0 },
1684    { X86::VMAXPDYrr,         X86::VMAXPDYrm,          0 },
1685    { X86::VMAXPSYrr,         X86::VMAXPSYrm,          0 },
1686    { X86::VMINCPDYrr,        X86::VMINCPDYrm,         0 },
1687    { X86::VMINCPSYrr,        X86::VMINCPSYrm,         0 },
1688    { X86::VMINPDYrr,         X86::VMINPDYrm,          0 },
1689    { X86::VMINPSYrr,         X86::VMINPSYrm,          0 },
1690    { X86::VMULPDYrr,         X86::VMULPDYrm,          0 },
1691    { X86::VMULPSYrr,         X86::VMULPSYrm,          0 },
1692    { X86::VORPDYrr,          X86::VORPDYrm,           0 },
1693    { X86::VORPSYrr,          X86::VORPSYrm,           0 },
1694    { X86::VPERM2F128rr,      X86::VPERM2F128rm,       0 },
1695    { X86::VPERMILPDYrr,      X86::VPERMILPDYrm,       0 },
1696    { X86::VPERMILPSYrr,      X86::VPERMILPSYrm,       0 },
1697    { X86::VSHUFPDYrri,       X86::VSHUFPDYrmi,        0 },
1698    { X86::VSHUFPSYrri,       X86::VSHUFPSYrmi,        0 },
1699    { X86::VSUBPDYrr,         X86::VSUBPDYrm,          0 },
1700    { X86::VSUBPSYrr,         X86::VSUBPSYrm,          0 },
1701    { X86::VUNPCKHPDYrr,      X86::VUNPCKHPDYrm,       0 },
1702    { X86::VUNPCKHPSYrr,      X86::VUNPCKHPSYrm,       0 },
1703    { X86::VUNPCKLPDYrr,      X86::VUNPCKLPDYrm,       0 },
1704    { X86::VUNPCKLPSYrr,      X86::VUNPCKLPSYrm,       0 },
1705    { X86::VXORPDYrr,         X86::VXORPDYrm,          0 },
1706    { X86::VXORPSYrr,         X86::VXORPSYrm,          0 },
1707
1708    // AVX2 foldable instructions
1709    { X86::VINSERTI128rr,     X86::VINSERTI128rm,      0 },
1710    { X86::VPACKSSDWYrr,      X86::VPACKSSDWYrm,       0 },
1711    { X86::VPACKSSWBYrr,      X86::VPACKSSWBYrm,       0 },
1712    { X86::VPACKUSDWYrr,      X86::VPACKUSDWYrm,       0 },
1713    { X86::VPACKUSWBYrr,      X86::VPACKUSWBYrm,       0 },
1714    { X86::VPADDBYrr,         X86::VPADDBYrm,          0 },
1715    { X86::VPADDDYrr,         X86::VPADDDYrm,          0 },
1716    { X86::VPADDQYrr,         X86::VPADDQYrm,          0 },
1717    { X86::VPADDSBYrr,        X86::VPADDSBYrm,         0 },
1718    { X86::VPADDSWYrr,        X86::VPADDSWYrm,         0 },
1719    { X86::VPADDUSBYrr,       X86::VPADDUSBYrm,        0 },
1720    { X86::VPADDUSWYrr,       X86::VPADDUSWYrm,        0 },
1721    { X86::VPADDWYrr,         X86::VPADDWYrm,          0 },
1722    { X86::VPALIGNRYrri,      X86::VPALIGNRYrmi,       0 },
1723    { X86::VPANDNYrr,         X86::VPANDNYrm,          0 },
1724    { X86::VPANDYrr,          X86::VPANDYrm,           0 },
1725    { X86::VPAVGBYrr,         X86::VPAVGBYrm,          0 },
1726    { X86::VPAVGWYrr,         X86::VPAVGWYrm,          0 },
1727    { X86::VPBLENDDrri,       X86::VPBLENDDrmi,        0 },
1728    { X86::VPBLENDDYrri,      X86::VPBLENDDYrmi,       0 },
1729    { X86::VPBLENDVBYrr,      X86::VPBLENDVBYrm,       0 },
1730    { X86::VPBLENDWYrri,      X86::VPBLENDWYrmi,       0 },
1731    { X86::VPCMPEQBYrr,       X86::VPCMPEQBYrm,        0 },
1732    { X86::VPCMPEQDYrr,       X86::VPCMPEQDYrm,        0 },
1733    { X86::VPCMPEQQYrr,       X86::VPCMPEQQYrm,        0 },
1734    { X86::VPCMPEQWYrr,       X86::VPCMPEQWYrm,        0 },
1735    { X86::VPCMPGTBYrr,       X86::VPCMPGTBYrm,        0 },
1736    { X86::VPCMPGTDYrr,       X86::VPCMPGTDYrm,        0 },
1737    { X86::VPCMPGTQYrr,       X86::VPCMPGTQYrm,        0 },
1738    { X86::VPCMPGTWYrr,       X86::VPCMPGTWYrm,        0 },
1739    { X86::VPERM2I128rr,      X86::VPERM2I128rm,       0 },
1740    { X86::VPERMDYrr,         X86::VPERMDYrm,          0 },
1741    { X86::VPERMPSYrr,        X86::VPERMPSYrm,         0 },
1742    { X86::VPHADDDYrr,        X86::VPHADDDYrm,         0 },
1743    { X86::VPHADDSWrr256,     X86::VPHADDSWrm256,      0 },
1744    { X86::VPHADDWYrr,        X86::VPHADDWYrm,         0 },
1745    { X86::VPHSUBDYrr,        X86::VPHSUBDYrm,         0 },
1746    { X86::VPHSUBSWrr256,     X86::VPHSUBSWrm256,      0 },
1747    { X86::VPHSUBWYrr,        X86::VPHSUBWYrm,         0 },
1748    { X86::VPMADDUBSWYrr,     X86::VPMADDUBSWYrm,      0 },
1749    { X86::VPMADDWDYrr,       X86::VPMADDWDYrm,        0 },
1750    { X86::VPMAXSBYrr,        X86::VPMAXSBYrm,         0 },
1751    { X86::VPMAXSDYrr,        X86::VPMAXSDYrm,         0 },
1752    { X86::VPMAXSWYrr,        X86::VPMAXSWYrm,         0 },
1753    { X86::VPMAXUBYrr,        X86::VPMAXUBYrm,         0 },
1754    { X86::VPMAXUDYrr,        X86::VPMAXUDYrm,         0 },
1755    { X86::VPMAXUWYrr,        X86::VPMAXUWYrm,         0 },
1756    { X86::VPMINSBYrr,        X86::VPMINSBYrm,         0 },
1757    { X86::VPMINSDYrr,        X86::VPMINSDYrm,         0 },
1758    { X86::VPMINSWYrr,        X86::VPMINSWYrm,         0 },
1759    { X86::VPMINUBYrr,        X86::VPMINUBYrm,         0 },
1760    { X86::VPMINUDYrr,        X86::VPMINUDYrm,         0 },
1761    { X86::VPMINUWYrr,        X86::VPMINUWYrm,         0 },
1762    { X86::VMPSADBWYrri,      X86::VMPSADBWYrmi,       0 },
1763    { X86::VPMULDQYrr,        X86::VPMULDQYrm,         0 },
1764    { X86::VPMULHRSWYrr,      X86::VPMULHRSWYrm,       0 },
1765    { X86::VPMULHUWYrr,       X86::VPMULHUWYrm,        0 },
1766    { X86::VPMULHWYrr,        X86::VPMULHWYrm,         0 },
1767    { X86::VPMULLDYrr,        X86::VPMULLDYrm,         0 },
1768    { X86::VPMULLWYrr,        X86::VPMULLWYrm,         0 },
1769    { X86::VPMULUDQYrr,       X86::VPMULUDQYrm,        0 },
1770    { X86::VPORYrr,           X86::VPORYrm,            0 },
1771    { X86::VPSADBWYrr,        X86::VPSADBWYrm,         0 },
1772    { X86::VPSHUFBYrr,        X86::VPSHUFBYrm,         0 },
1773    { X86::VPSIGNBYrr256,     X86::VPSIGNBYrm256,      0 },
1774    { X86::VPSIGNWYrr256,     X86::VPSIGNWYrm256,      0 },
1775    { X86::VPSIGNDYrr256,     X86::VPSIGNDYrm256,      0 },
1776    { X86::VPSLLDYrr,         X86::VPSLLDYrm,          0 },
1777    { X86::VPSLLQYrr,         X86::VPSLLQYrm,          0 },
1778    { X86::VPSLLWYrr,         X86::VPSLLWYrm,          0 },
1779    { X86::VPSLLVDrr,         X86::VPSLLVDrm,          0 },
1780    { X86::VPSLLVDYrr,        X86::VPSLLVDYrm,         0 },
1781    { X86::VPSLLVQrr,         X86::VPSLLVQrm,          0 },
1782    { X86::VPSLLVQYrr,        X86::VPSLLVQYrm,         0 },
1783    { X86::VPSRADYrr,         X86::VPSRADYrm,          0 },
1784    { X86::VPSRAWYrr,         X86::VPSRAWYrm,          0 },
1785    { X86::VPSRAVDrr,         X86::VPSRAVDrm,          0 },
1786    { X86::VPSRAVDYrr,        X86::VPSRAVDYrm,         0 },
1787    { X86::VPSRLDYrr,         X86::VPSRLDYrm,          0 },
1788    { X86::VPSRLQYrr,         X86::VPSRLQYrm,          0 },
1789    { X86::VPSRLWYrr,         X86::VPSRLWYrm,          0 },
1790    { X86::VPSRLVDrr,         X86::VPSRLVDrm,          0 },
1791    { X86::VPSRLVDYrr,        X86::VPSRLVDYrm,         0 },
1792    { X86::VPSRLVQrr,         X86::VPSRLVQrm,          0 },
1793    { X86::VPSRLVQYrr,        X86::VPSRLVQYrm,         0 },
1794    { X86::VPSUBBYrr,         X86::VPSUBBYrm,          0 },
1795    { X86::VPSUBDYrr,         X86::VPSUBDYrm,          0 },
1796    { X86::VPSUBQYrr,         X86::VPSUBQYrm,          0 },
1797    { X86::VPSUBSBYrr,        X86::VPSUBSBYrm,         0 },
1798    { X86::VPSUBSWYrr,        X86::VPSUBSWYrm,         0 },
1799    { X86::VPSUBUSBYrr,       X86::VPSUBUSBYrm,        0 },
1800    { X86::VPSUBUSWYrr,       X86::VPSUBUSWYrm,        0 },
1801    { X86::VPSUBWYrr,         X86::VPSUBWYrm,          0 },
1802    { X86::VPUNPCKHBWYrr,     X86::VPUNPCKHBWYrm,      0 },
1803    { X86::VPUNPCKHDQYrr,     X86::VPUNPCKHDQYrm,      0 },
1804    { X86::VPUNPCKHQDQYrr,    X86::VPUNPCKHQDQYrm,     0 },
1805    { X86::VPUNPCKHWDYrr,     X86::VPUNPCKHWDYrm,      0 },
1806    { X86::VPUNPCKLBWYrr,     X86::VPUNPCKLBWYrm,      0 },
1807    { X86::VPUNPCKLDQYrr,     X86::VPUNPCKLDQYrm,      0 },
1808    { X86::VPUNPCKLQDQYrr,    X86::VPUNPCKLQDQYrm,     0 },
1809    { X86::VPUNPCKLWDYrr,     X86::VPUNPCKLWDYrm,      0 },
1810    { X86::VPXORYrr,          X86::VPXORYrm,           0 },
1811
1812    // FMA4 foldable patterns
1813    { X86::VFMADDSS4rr,       X86::VFMADDSS4mr,        TB_ALIGN_NONE },
1814    { X86::VFMADDSS4rr_Int,   X86::VFMADDSS4mr_Int,    TB_NO_REVERSE },
1815    { X86::VFMADDSD4rr,       X86::VFMADDSD4mr,        TB_ALIGN_NONE },
1816    { X86::VFMADDSD4rr_Int,   X86::VFMADDSD4mr_Int,    TB_NO_REVERSE },
1817    { X86::VFMADDPS4rr,       X86::VFMADDPS4mr,        TB_ALIGN_NONE },
1818    { X86::VFMADDPD4rr,       X86::VFMADDPD4mr,        TB_ALIGN_NONE },
1819    { X86::VFMADDPS4Yrr,      X86::VFMADDPS4Ymr,       TB_ALIGN_NONE },
1820    { X86::VFMADDPD4Yrr,      X86::VFMADDPD4Ymr,       TB_ALIGN_NONE },
1821    { X86::VFNMADDSS4rr,      X86::VFNMADDSS4mr,       TB_ALIGN_NONE },
1822    { X86::VFNMADDSS4rr_Int,  X86::VFNMADDSS4mr_Int,   TB_NO_REVERSE },
1823    { X86::VFNMADDSD4rr,      X86::VFNMADDSD4mr,       TB_ALIGN_NONE },
1824    { X86::VFNMADDSD4rr_Int,  X86::VFNMADDSD4mr_Int,   TB_NO_REVERSE },
1825    { X86::VFNMADDPS4rr,      X86::VFNMADDPS4mr,       TB_ALIGN_NONE },
1826    { X86::VFNMADDPD4rr,      X86::VFNMADDPD4mr,       TB_ALIGN_NONE },
1827    { X86::VFNMADDPS4Yrr,     X86::VFNMADDPS4Ymr,      TB_ALIGN_NONE },
1828    { X86::VFNMADDPD4Yrr,     X86::VFNMADDPD4Ymr,      TB_ALIGN_NONE },
1829    { X86::VFMSUBSS4rr,       X86::VFMSUBSS4mr,        TB_ALIGN_NONE },
1830    { X86::VFMSUBSS4rr_Int,   X86::VFMSUBSS4mr_Int,    TB_NO_REVERSE },
1831    { X86::VFMSUBSD4rr,       X86::VFMSUBSD4mr,        TB_ALIGN_NONE },
1832    { X86::VFMSUBSD4rr_Int,   X86::VFMSUBSD4mr_Int,    TB_NO_REVERSE },
1833    { X86::VFMSUBPS4rr,       X86::VFMSUBPS4mr,        TB_ALIGN_NONE },
1834    { X86::VFMSUBPD4rr,       X86::VFMSUBPD4mr,        TB_ALIGN_NONE },
1835    { X86::VFMSUBPS4Yrr,      X86::VFMSUBPS4Ymr,       TB_ALIGN_NONE },
1836    { X86::VFMSUBPD4Yrr,      X86::VFMSUBPD4Ymr,       TB_ALIGN_NONE },
1837    { X86::VFNMSUBSS4rr,      X86::VFNMSUBSS4mr,       TB_ALIGN_NONE },
1838    { X86::VFNMSUBSS4rr_Int,  X86::VFNMSUBSS4mr_Int,   TB_NO_REVERSE },
1839    { X86::VFNMSUBSD4rr,      X86::VFNMSUBSD4mr,       TB_ALIGN_NONE },
1840    { X86::VFNMSUBSD4rr_Int,  X86::VFNMSUBSD4mr_Int,   TB_NO_REVERSE },
1841    { X86::VFNMSUBPS4rr,      X86::VFNMSUBPS4mr,       TB_ALIGN_NONE },
1842    { X86::VFNMSUBPD4rr,      X86::VFNMSUBPD4mr,       TB_ALIGN_NONE },
1843    { X86::VFNMSUBPS4Yrr,     X86::VFNMSUBPS4Ymr,      TB_ALIGN_NONE },
1844    { X86::VFNMSUBPD4Yrr,     X86::VFNMSUBPD4Ymr,      TB_ALIGN_NONE },
1845    { X86::VFMADDSUBPS4rr,    X86::VFMADDSUBPS4mr,     TB_ALIGN_NONE },
1846    { X86::VFMADDSUBPD4rr,    X86::VFMADDSUBPD4mr,     TB_ALIGN_NONE },
1847    { X86::VFMADDSUBPS4Yrr,   X86::VFMADDSUBPS4Ymr,    TB_ALIGN_NONE },
1848    { X86::VFMADDSUBPD4Yrr,   X86::VFMADDSUBPD4Ymr,    TB_ALIGN_NONE },
1849    { X86::VFMSUBADDPS4rr,    X86::VFMSUBADDPS4mr,     TB_ALIGN_NONE },
1850    { X86::VFMSUBADDPD4rr,    X86::VFMSUBADDPD4mr,     TB_ALIGN_NONE },
1851    { X86::VFMSUBADDPS4Yrr,   X86::VFMSUBADDPS4Ymr,    TB_ALIGN_NONE },
1852    { X86::VFMSUBADDPD4Yrr,   X86::VFMSUBADDPD4Ymr,    TB_ALIGN_NONE },
1853
1854    // XOP foldable instructions
1855    { X86::VPCMOVrrr,         X86::VPCMOVrmr,           0 },
1856    { X86::VPCMOVYrrr,        X86::VPCMOVYrmr,          0 },
1857    { X86::VPCOMBri,          X86::VPCOMBmi,            0 },
1858    { X86::VPCOMDri,          X86::VPCOMDmi,            0 },
1859    { X86::VPCOMQri,          X86::VPCOMQmi,            0 },
1860    { X86::VPCOMWri,          X86::VPCOMWmi,            0 },
1861    { X86::VPCOMUBri,         X86::VPCOMUBmi,           0 },
1862    { X86::VPCOMUDri,         X86::VPCOMUDmi,           0 },
1863    { X86::VPCOMUQri,         X86::VPCOMUQmi,           0 },
1864    { X86::VPCOMUWri,         X86::VPCOMUWmi,           0 },
1865    { X86::VPERMIL2PDrr,      X86::VPERMIL2PDmr,        0 },
1866    { X86::VPERMIL2PDYrr,     X86::VPERMIL2PDYmr,       0 },
1867    { X86::VPERMIL2PSrr,      X86::VPERMIL2PSmr,        0 },
1868    { X86::VPERMIL2PSYrr,     X86::VPERMIL2PSYmr,       0 },
1869    { X86::VPMACSDDrr,        X86::VPMACSDDrm,          0 },
1870    { X86::VPMACSDQHrr,       X86::VPMACSDQHrm,         0 },
1871    { X86::VPMACSDQLrr,       X86::VPMACSDQLrm,         0 },
1872    { X86::VPMACSSDDrr,       X86::VPMACSSDDrm,         0 },
1873    { X86::VPMACSSDQHrr,      X86::VPMACSSDQHrm,        0 },
1874    { X86::VPMACSSDQLrr,      X86::VPMACSSDQLrm,        0 },
1875    { X86::VPMACSSWDrr,       X86::VPMACSSWDrm,         0 },
1876    { X86::VPMACSSWWrr,       X86::VPMACSSWWrm,         0 },
1877    { X86::VPMACSWDrr,        X86::VPMACSWDrm,          0 },
1878    { X86::VPMACSWWrr,        X86::VPMACSWWrm,          0 },
1879    { X86::VPMADCSSWDrr,      X86::VPMADCSSWDrm,        0 },
1880    { X86::VPMADCSWDrr,       X86::VPMADCSWDrm,         0 },
1881    { X86::VPPERMrrr,         X86::VPPERMrmr,           0 },
1882    { X86::VPROTBrr,          X86::VPROTBrm,            0 },
1883    { X86::VPROTDrr,          X86::VPROTDrm,            0 },
1884    { X86::VPROTQrr,          X86::VPROTQrm,            0 },
1885    { X86::VPROTWrr,          X86::VPROTWrm,            0 },
1886    { X86::VPSHABrr,          X86::VPSHABrm,            0 },
1887    { X86::VPSHADrr,          X86::VPSHADrm,            0 },
1888    { X86::VPSHAQrr,          X86::VPSHAQrm,            0 },
1889    { X86::VPSHAWrr,          X86::VPSHAWrm,            0 },
1890    { X86::VPSHLBrr,          X86::VPSHLBrm,            0 },
1891    { X86::VPSHLDrr,          X86::VPSHLDrm,            0 },
1892    { X86::VPSHLQrr,          X86::VPSHLQrm,            0 },
1893    { X86::VPSHLWrr,          X86::VPSHLWrm,            0 },
1894
1895    // BMI/BMI2 foldable instructions
1896    { X86::ANDN32rr,          X86::ANDN32rm,            0 },
1897    { X86::ANDN64rr,          X86::ANDN64rm,            0 },
1898    { X86::MULX32rr,          X86::MULX32rm,            0 },
1899    { X86::MULX64rr,          X86::MULX64rm,            0 },
1900    { X86::PDEP32rr,          X86::PDEP32rm,            0 },
1901    { X86::PDEP64rr,          X86::PDEP64rm,            0 },
1902    { X86::PEXT32rr,          X86::PEXT32rm,            0 },
1903    { X86::PEXT64rr,          X86::PEXT64rm,            0 },
1904
1905    // ADX foldable instructions
1906    { X86::ADCX32rr,          X86::ADCX32rm,            0 },
1907    { X86::ADCX64rr,          X86::ADCX64rm,            0 },
1908    { X86::ADOX32rr,          X86::ADOX32rm,            0 },
1909    { X86::ADOX64rr,          X86::ADOX64rm,            0 },
1910
1911    // AVX-512 foldable instructions
1912    { X86::VADDPDZrr,         X86::VADDPDZrm,           0 },
1913    { X86::VADDPSZrr,         X86::VADDPSZrm,           0 },
1914    { X86::VADDSDZrr,         X86::VADDSDZrm,           0 },
1915    { X86::VADDSDZrr_Int,     X86::VADDSDZrm_Int,       TB_NO_REVERSE },
1916    { X86::VADDSSZrr,         X86::VADDSSZrm,           0 },
1917    { X86::VADDSSZrr_Int,     X86::VADDSSZrm_Int,       TB_NO_REVERSE },
1918    { X86::VALIGNDZrri,       X86::VALIGNDZrmi,         0 },
1919    { X86::VALIGNQZrri,       X86::VALIGNQZrmi,         0 },
1920    { X86::VANDNPDZrr,        X86::VANDNPDZrm,          0 },
1921    { X86::VANDNPSZrr,        X86::VANDNPSZrm,          0 },
1922    { X86::VANDPDZrr,         X86::VANDPDZrm,           0 },
1923    { X86::VANDPSZrr,         X86::VANDPSZrm,           0 },
1924    { X86::VCMPPDZrri,        X86::VCMPPDZrmi,          0 },
1925    { X86::VCMPPSZrri,        X86::VCMPPSZrmi,          0 },
1926    { X86::VCMPSDZrr,         X86::VCMPSDZrm,           0 },
1927    { X86::VCMPSDZrr_Int,     X86::VCMPSDZrm_Int,       TB_NO_REVERSE },
1928    { X86::VCMPSSZrr,         X86::VCMPSSZrm,           0 },
1929    { X86::VCMPSSZrr_Int,     X86::VCMPSSZrm_Int,       TB_NO_REVERSE },
1930    { X86::VDIVPDZrr,         X86::VDIVPDZrm,           0 },
1931    { X86::VDIVPSZrr,         X86::VDIVPSZrm,           0 },
1932    { X86::VDIVSDZrr,         X86::VDIVSDZrm,           0 },
1933    { X86::VDIVSDZrr_Int,     X86::VDIVSDZrm_Int,       TB_NO_REVERSE },
1934    { X86::VDIVSSZrr,         X86::VDIVSSZrm,           0 },
1935    { X86::VDIVSSZrr_Int,     X86::VDIVSSZrm_Int,       TB_NO_REVERSE },
1936    { X86::VINSERTF32x4Zrr,   X86::VINSERTF32x4Zrm,     0 },
1937    { X86::VINSERTF32x8Zrr,   X86::VINSERTF32x8Zrm,     0 },
1938    { X86::VINSERTF64x2Zrr,   X86::VINSERTF64x2Zrm,     0 },
1939    { X86::VINSERTF64x4Zrr,   X86::VINSERTF64x4Zrm,     0 },
1940    { X86::VINSERTI32x4Zrr,   X86::VINSERTI32x4Zrm,     0 },
1941    { X86::VINSERTI32x8Zrr,   X86::VINSERTI32x8Zrm,     0 },
1942    { X86::VINSERTI64x2Zrr,   X86::VINSERTI64x2Zrm,     0 },
1943    { X86::VINSERTI64x4Zrr,   X86::VINSERTI64x4Zrm,     0 },
1944    { X86::VMAXCPDZrr,        X86::VMAXCPDZrm,          0 },
1945    { X86::VMAXCPSZrr,        X86::VMAXCPSZrm,          0 },
1946    { X86::VMAXCSDZrr,        X86::VMAXCSDZrm,          0 },
1947    { X86::VMAXCSSZrr,        X86::VMAXCSSZrm,          0 },
1948    { X86::VMAXPDZrr,         X86::VMAXPDZrm,           0 },
1949    { X86::VMAXPSZrr,         X86::VMAXPSZrm,           0 },
1950    { X86::VMAXSDZrr,         X86::VMAXSDZrm,           0 },
1951    { X86::VMAXSDZrr_Int,     X86::VMAXSDZrm_Int,       TB_NO_REVERSE },
1952    { X86::VMAXSSZrr,         X86::VMAXSSZrm,           0 },
1953    { X86::VMAXSSZrr_Int,     X86::VMAXSSZrm_Int,       TB_NO_REVERSE },
1954    { X86::VMINCPDZrr,        X86::VMINCPDZrm,          0 },
1955    { X86::VMINCPSZrr,        X86::VMINCPSZrm,          0 },
1956    { X86::VMINCSDZrr,        X86::VMINCSDZrm,          0 },
1957    { X86::VMINCSSZrr,        X86::VMINCSSZrm,          0 },
1958    { X86::VMINPDZrr,         X86::VMINPDZrm,           0 },
1959    { X86::VMINPSZrr,         X86::VMINPSZrm,           0 },
1960    { X86::VMINSDZrr,         X86::VMINSDZrm,           0 },
1961    { X86::VMINSDZrr_Int,     X86::VMINSDZrm_Int,       TB_NO_REVERSE },
1962    { X86::VMINSSZrr,         X86::VMINSSZrm,           0 },
1963    { X86::VMINSSZrr_Int,     X86::VMINSSZrm_Int,       TB_NO_REVERSE },
1964    { X86::VMOVLHPSZrr,       X86::VMOVHPSZ128rm,       TB_NO_REVERSE },
1965    { X86::VMULPDZrr,         X86::VMULPDZrm,           0 },
1966    { X86::VMULPSZrr,         X86::VMULPSZrm,           0 },
1967    { X86::VMULSDZrr,         X86::VMULSDZrm,           0 },
1968    { X86::VMULSDZrr_Int,     X86::VMULSDZrm_Int,       TB_NO_REVERSE },
1969    { X86::VMULSSZrr,         X86::VMULSSZrm,           0 },
1970    { X86::VMULSSZrr_Int,     X86::VMULSSZrm_Int,       TB_NO_REVERSE },
1971    { X86::VORPDZrr,          X86::VORPDZrm,            0 },
1972    { X86::VORPSZrr,          X86::VORPSZrm,            0 },
1973    { X86::VPACKSSDWZrr,      X86::VPACKSSDWZrm,        0 },
1974    { X86::VPACKSSWBZrr,      X86::VPACKSSWBZrm,        0 },
1975    { X86::VPACKUSDWZrr,      X86::VPACKUSDWZrm,        0 },
1976    { X86::VPACKUSWBZrr,      X86::VPACKUSWBZrm,        0 },
1977    { X86::VPADDBZrr,         X86::VPADDBZrm,           0 },
1978    { X86::VPADDDZrr,         X86::VPADDDZrm,           0 },
1979    { X86::VPADDQZrr,         X86::VPADDQZrm,           0 },
1980    { X86::VPADDSBZrr,        X86::VPADDSBZrm,          0 },
1981    { X86::VPADDSWZrr,        X86::VPADDSWZrm,          0 },
1982    { X86::VPADDUSBZrr,       X86::VPADDUSBZrm,         0 },
1983    { X86::VPADDUSWZrr,       X86::VPADDUSWZrm,         0 },
1984    { X86::VPADDWZrr,         X86::VPADDWZrm,           0 },
1985    { X86::VPALIGNRZrri,      X86::VPALIGNRZrmi,        0 },
1986    { X86::VPANDDZrr,         X86::VPANDDZrm,           0 },
1987    { X86::VPANDNDZrr,        X86::VPANDNDZrm,          0 },
1988    { X86::VPANDNQZrr,        X86::VPANDNQZrm,          0 },
1989    { X86::VPANDQZrr,         X86::VPANDQZrm,           0 },
1990    { X86::VPAVGBZrr,         X86::VPAVGBZrm,           0 },
1991    { X86::VPAVGWZrr,         X86::VPAVGWZrm,           0 },
1992    { X86::VPCMPBZrri,        X86::VPCMPBZrmi,          0 },
1993    { X86::VPCMPDZrri,        X86::VPCMPDZrmi,          0 },
1994    { X86::VPCMPEQBZrr,       X86::VPCMPEQBZrm,         0 },
1995    { X86::VPCMPEQDZrr,       X86::VPCMPEQDZrm,         0 },
1996    { X86::VPCMPEQQZrr,       X86::VPCMPEQQZrm,         0 },
1997    { X86::VPCMPEQWZrr,       X86::VPCMPEQWZrm,         0 },
1998    { X86::VPCMPGTBZrr,       X86::VPCMPGTBZrm,         0 },
1999    { X86::VPCMPGTDZrr,       X86::VPCMPGTDZrm,         0 },
2000    { X86::VPCMPGTQZrr,       X86::VPCMPGTQZrm,         0 },
2001    { X86::VPCMPGTWZrr,       X86::VPCMPGTWZrm,         0 },
2002    { X86::VPCMPQZrri,        X86::VPCMPQZrmi,          0 },
2003    { X86::VPCMPUBZrri,       X86::VPCMPUBZrmi,         0 },
2004    { X86::VPCMPUDZrri,       X86::VPCMPUDZrmi,         0 },
2005    { X86::VPCMPUQZrri,       X86::VPCMPUQZrmi,         0 },
2006    { X86::VPCMPUWZrri,       X86::VPCMPUWZrmi,         0 },
2007    { X86::VPCMPWZrri,        X86::VPCMPWZrmi,          0 },
2008    { X86::VPERMBZrr,         X86::VPERMBZrm,           0 },
2009    { X86::VPERMDZrr,         X86::VPERMDZrm,           0 },
2010    { X86::VPERMILPDZrr,      X86::VPERMILPDZrm,        0 },
2011    { X86::VPERMILPSZrr,      X86::VPERMILPSZrm,        0 },
2012    { X86::VPERMPDZrr,        X86::VPERMPDZrm,          0 },
2013    { X86::VPERMPSZrr,        X86::VPERMPSZrm,          0 },
2014    { X86::VPERMQZrr,         X86::VPERMQZrm,           0 },
2015    { X86::VPERMWZrr,         X86::VPERMWZrm,           0 },
2016    { X86::VPINSRBZrr,        X86::VPINSRBZrm,          0 },
2017    { X86::VPINSRDZrr,        X86::VPINSRDZrm,          0 },
2018    { X86::VPINSRQZrr,        X86::VPINSRQZrm,          0 },
2019    { X86::VPINSRWZrr,        X86::VPINSRWZrm,          0 },
2020    { X86::VPMADDUBSWZrr,     X86::VPMADDUBSWZrm,       0 },
2021    { X86::VPMADDWDZrr,       X86::VPMADDWDZrm,         0 },
2022    { X86::VPMAXSBZrr,        X86::VPMAXSBZrm,          0 },
2023    { X86::VPMAXSDZrr,        X86::VPMAXSDZrm,          0 },
2024    { X86::VPMAXSQZrr,        X86::VPMAXSQZrm,          0 },
2025    { X86::VPMAXSWZrr,        X86::VPMAXSWZrm,          0 },
2026    { X86::VPMAXUBZrr,        X86::VPMAXUBZrm,          0 },
2027    { X86::VPMAXUDZrr,        X86::VPMAXUDZrm,          0 },
2028    { X86::VPMAXUQZrr,        X86::VPMAXUQZrm,          0 },
2029    { X86::VPMAXUWZrr,        X86::VPMAXUWZrm,          0 },
2030    { X86::VPMINSBZrr,        X86::VPMINSBZrm,          0 },
2031    { X86::VPMINSDZrr,        X86::VPMINSDZrm,          0 },
2032    { X86::VPMINSQZrr,        X86::VPMINSQZrm,          0 },
2033    { X86::VPMINSWZrr,        X86::VPMINSWZrm,          0 },
2034    { X86::VPMINUBZrr,        X86::VPMINUBZrm,          0 },
2035    { X86::VPMINUDZrr,        X86::VPMINUDZrm,          0 },
2036    { X86::VPMINUQZrr,        X86::VPMINUQZrm,          0 },
2037    { X86::VPMINUWZrr,        X86::VPMINUWZrm,          0 },
2038    { X86::VPMULDQZrr,        X86::VPMULDQZrm,          0 },
2039    { X86::VPMULLDZrr,        X86::VPMULLDZrm,          0 },
2040    { X86::VPMULLQZrr,        X86::VPMULLQZrm,          0 },
2041    { X86::VPMULLWZrr,        X86::VPMULLWZrm,          0 },
2042    { X86::VPMULUDQZrr,       X86::VPMULUDQZrm,         0 },
2043    { X86::VPORDZrr,          X86::VPORDZrm,            0 },
2044    { X86::VPORQZrr,          X86::VPORQZrm,            0 },
2045    { X86::VPSADBWZrr,        X86::VPSADBWZrm,          0 },
2046    { X86::VPSHUFBZrr,        X86::VPSHUFBZrm,          0 },
2047    { X86::VPSLLDZrr,         X86::VPSLLDZrm,           0 },
2048    { X86::VPSLLQZrr,         X86::VPSLLQZrm,           0 },
2049    { X86::VPSLLVDZrr,        X86::VPSLLVDZrm,          0 },
2050    { X86::VPSLLVQZrr,        X86::VPSLLVQZrm,          0 },
2051    { X86::VPSLLVWZrr,        X86::VPSLLVWZrm,          0 },
2052    { X86::VPSLLWZrr,         X86::VPSLLWZrm,           0 },
2053    { X86::VPSRADZrr,         X86::VPSRADZrm,           0 },
2054    { X86::VPSRAQZrr,         X86::VPSRAQZrm,           0 },
2055    { X86::VPSRAVDZrr,        X86::VPSRAVDZrm,          0 },
2056    { X86::VPSRAVQZrr,        X86::VPSRAVQZrm,          0 },
2057    { X86::VPSRAVWZrr,        X86::VPSRAVWZrm,          0 },
2058    { X86::VPSRAWZrr,         X86::VPSRAWZrm,           0 },
2059    { X86::VPSRLDZrr,         X86::VPSRLDZrm,           0 },
2060    { X86::VPSRLQZrr,         X86::VPSRLQZrm,           0 },
2061    { X86::VPSRLVDZrr,        X86::VPSRLVDZrm,          0 },
2062    { X86::VPSRLVQZrr,        X86::VPSRLVQZrm,          0 },
2063    { X86::VPSRLVWZrr,        X86::VPSRLVWZrm,          0 },
2064    { X86::VPSRLWZrr,         X86::VPSRLWZrm,           0 },
2065    { X86::VPSUBBZrr,         X86::VPSUBBZrm,           0 },
2066    { X86::VPSUBDZrr,         X86::VPSUBDZrm,           0 },
2067    { X86::VPSUBQZrr,         X86::VPSUBQZrm,           0 },
2068    { X86::VPSUBSBZrr,        X86::VPSUBSBZrm,          0 },
2069    { X86::VPSUBSWZrr,        X86::VPSUBSWZrm,          0 },
2070    { X86::VPSUBUSBZrr,       X86::VPSUBUSBZrm,         0 },
2071    { X86::VPSUBUSWZrr,       X86::VPSUBUSWZrm,         0 },
2072    { X86::VPSUBWZrr,         X86::VPSUBWZrm,           0 },
2073    { X86::VPUNPCKHBWZrr,     X86::VPUNPCKHBWZrm,       0 },
2074    { X86::VPUNPCKHDQZrr,     X86::VPUNPCKHDQZrm,       0 },
2075    { X86::VPUNPCKHQDQZrr,    X86::VPUNPCKHQDQZrm,      0 },
2076    { X86::VPUNPCKHWDZrr,     X86::VPUNPCKHWDZrm,       0 },
2077    { X86::VPUNPCKLBWZrr,     X86::VPUNPCKLBWZrm,       0 },
2078    { X86::VPUNPCKLDQZrr,     X86::VPUNPCKLDQZrm,       0 },
2079    { X86::VPUNPCKLQDQZrr,    X86::VPUNPCKLQDQZrm,      0 },
2080    { X86::VPUNPCKLWDZrr,     X86::VPUNPCKLWDZrm,       0 },
2081    { X86::VPXORDZrr,         X86::VPXORDZrm,           0 },
2082    { X86::VPXORQZrr,         X86::VPXORQZrm,           0 },
2083    { X86::VSHUFPDZrri,       X86::VSHUFPDZrmi,         0 },
2084    { X86::VSHUFPSZrri,       X86::VSHUFPSZrmi,         0 },
2085    { X86::VSUBPDZrr,         X86::VSUBPDZrm,           0 },
2086    { X86::VSUBPSZrr,         X86::VSUBPSZrm,           0 },
2087    { X86::VSUBSDZrr,         X86::VSUBSDZrm,           0 },
2088    { X86::VSUBSDZrr_Int,     X86::VSUBSDZrm_Int,       TB_NO_REVERSE },
2089    { X86::VSUBSSZrr,         X86::VSUBSSZrm,           0 },
2090    { X86::VSUBSSZrr_Int,     X86::VSUBSSZrm_Int,       TB_NO_REVERSE },
2091    { X86::VUNPCKHPDZrr,      X86::VUNPCKHPDZrm,        0 },
2092    { X86::VUNPCKHPSZrr,      X86::VUNPCKHPSZrm,        0 },
2093    { X86::VUNPCKLPDZrr,      X86::VUNPCKLPDZrm,        0 },
2094    { X86::VUNPCKLPSZrr,      X86::VUNPCKLPSZrm,        0 },
2095    { X86::VXORPDZrr,         X86::VXORPDZrm,           0 },
2096    { X86::VXORPSZrr,         X86::VXORPSZrm,           0 },
2097
2098    // AVX-512{F,VL} foldable instructions
2099    { X86::VADDPDZ128rr,      X86::VADDPDZ128rm,        0 },
2100    { X86::VADDPDZ256rr,      X86::VADDPDZ256rm,        0 },
2101    { X86::VADDPSZ128rr,      X86::VADDPSZ128rm,        0 },
2102    { X86::VADDPSZ256rr,      X86::VADDPSZ256rm,        0 },
2103    { X86::VALIGNDZ128rri,    X86::VALIGNDZ128rmi,      0 },
2104    { X86::VALIGNDZ256rri,    X86::VALIGNDZ256rmi,      0 },
2105    { X86::VALIGNQZ128rri,    X86::VALIGNQZ128rmi,      0 },
2106    { X86::VALIGNQZ256rri,    X86::VALIGNQZ256rmi,      0 },
2107    { X86::VANDNPDZ128rr,     X86::VANDNPDZ128rm,       0 },
2108    { X86::VANDNPDZ256rr,     X86::VANDNPDZ256rm,       0 },
2109    { X86::VANDNPSZ128rr,     X86::VANDNPSZ128rm,       0 },
2110    { X86::VANDNPSZ256rr,     X86::VANDNPSZ256rm,       0 },
2111    { X86::VANDPDZ128rr,      X86::VANDPDZ128rm,        0 },
2112    { X86::VANDPDZ256rr,      X86::VANDPDZ256rm,        0 },
2113    { X86::VANDPSZ128rr,      X86::VANDPSZ128rm,        0 },
2114    { X86::VANDPSZ256rr,      X86::VANDPSZ256rm,        0 },
2115    { X86::VCMPPDZ128rri,     X86::VCMPPDZ128rmi,       0 },
2116    { X86::VCMPPDZ256rri,     X86::VCMPPDZ256rmi,       0 },
2117    { X86::VCMPPSZ128rri,     X86::VCMPPSZ128rmi,       0 },
2118    { X86::VCMPPSZ256rri,     X86::VCMPPSZ256rmi,       0 },
2119    { X86::VDIVPDZ128rr,      X86::VDIVPDZ128rm,        0 },
2120    { X86::VDIVPDZ256rr,      X86::VDIVPDZ256rm,        0 },
2121    { X86::VDIVPSZ128rr,      X86::VDIVPSZ128rm,        0 },
2122    { X86::VDIVPSZ256rr,      X86::VDIVPSZ256rm,        0 },
2123    { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rm,  0 },
2124    { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rm,  0 },
2125    { X86::VINSERTI32x4Z256rr,X86::VINSERTI32x4Z256rm,  0 },
2126    { X86::VINSERTI64x2Z256rr,X86::VINSERTI64x2Z256rm,  0 },
2127    { X86::VMAXCPDZ128rr,     X86::VMAXCPDZ128rm,       0 },
2128    { X86::VMAXCPDZ256rr,     X86::VMAXCPDZ256rm,       0 },
2129    { X86::VMAXCPSZ128rr,     X86::VMAXCPSZ128rm,       0 },
2130    { X86::VMAXCPSZ256rr,     X86::VMAXCPSZ256rm,       0 },
2131    { X86::VMAXPDZ128rr,      X86::VMAXPDZ128rm,        0 },
2132    { X86::VMAXPDZ256rr,      X86::VMAXPDZ256rm,        0 },
2133    { X86::VMAXPSZ128rr,      X86::VMAXPSZ128rm,        0 },
2134    { X86::VMAXPSZ256rr,      X86::VMAXPSZ256rm,        0 },
2135    { X86::VMINCPDZ128rr,     X86::VMINCPDZ128rm,       0 },
2136    { X86::VMINCPDZ256rr,     X86::VMINCPDZ256rm,       0 },
2137    { X86::VMINCPSZ128rr,     X86::VMINCPSZ128rm,       0 },
2138    { X86::VMINCPSZ256rr,     X86::VMINCPSZ256rm,       0 },
2139    { X86::VMINPDZ128rr,      X86::VMINPDZ128rm,        0 },
2140    { X86::VMINPDZ256rr,      X86::VMINPDZ256rm,        0 },
2141    { X86::VMINPSZ128rr,      X86::VMINPSZ128rm,        0 },
2142    { X86::VMINPSZ256rr,      X86::VMINPSZ256rm,        0 },
2143    { X86::VMULPDZ128rr,      X86::VMULPDZ128rm,        0 },
2144    { X86::VMULPDZ256rr,      X86::VMULPDZ256rm,        0 },
2145    { X86::VMULPSZ128rr,      X86::VMULPSZ128rm,        0 },
2146    { X86::VMULPSZ256rr,      X86::VMULPSZ256rm,        0 },
2147    { X86::VORPDZ128rr,       X86::VORPDZ128rm,         0 },
2148    { X86::VORPDZ256rr,       X86::VORPDZ256rm,         0 },
2149    { X86::VORPSZ128rr,       X86::VORPSZ128rm,         0 },
2150    { X86::VORPSZ256rr,       X86::VORPSZ256rm,         0 },
2151    { X86::VPACKSSDWZ256rr,   X86::VPACKSSDWZ256rm,     0 },
2152    { X86::VPACKSSDWZ128rr,   X86::VPACKSSDWZ128rm,     0 },
2153    { X86::VPACKSSWBZ256rr,   X86::VPACKSSWBZ256rm,     0 },
2154    { X86::VPACKSSWBZ128rr,   X86::VPACKSSWBZ128rm,     0 },
2155    { X86::VPACKUSDWZ256rr,   X86::VPACKUSDWZ256rm,     0 },
2156    { X86::VPACKUSDWZ128rr,   X86::VPACKUSDWZ128rm,     0 },
2157    { X86::VPACKUSWBZ256rr,   X86::VPACKUSWBZ256rm,     0 },
2158    { X86::VPACKUSWBZ128rr,   X86::VPACKUSWBZ128rm,     0 },
2159    { X86::VPADDBZ128rr,      X86::VPADDBZ128rm,        0 },
2160    { X86::VPADDBZ256rr,      X86::VPADDBZ256rm,        0 },
2161    { X86::VPADDDZ128rr,      X86::VPADDDZ128rm,        0 },
2162    { X86::VPADDDZ256rr,      X86::VPADDDZ256rm,        0 },
2163    { X86::VPADDQZ128rr,      X86::VPADDQZ128rm,        0 },
2164    { X86::VPADDQZ256rr,      X86::VPADDQZ256rm,        0 },
2165    { X86::VPADDSBZ128rr,     X86::VPADDSBZ128rm,       0 },
2166    { X86::VPADDSBZ256rr,     X86::VPADDSBZ256rm,       0 },
2167    { X86::VPADDSWZ128rr,     X86::VPADDSWZ128rm,       0 },
2168    { X86::VPADDSWZ256rr,     X86::VPADDSWZ256rm,       0 },
2169    { X86::VPADDUSBZ128rr,    X86::VPADDUSBZ128rm,      0 },
2170    { X86::VPADDUSBZ256rr,    X86::VPADDUSBZ256rm,      0 },
2171    { X86::VPADDUSWZ128rr,    X86::VPADDUSWZ128rm,      0 },
2172    { X86::VPADDUSWZ256rr,    X86::VPADDUSWZ256rm,      0 },
2173    { X86::VPADDWZ128rr,      X86::VPADDWZ128rm,        0 },
2174    { X86::VPADDWZ256rr,      X86::VPADDWZ256rm,        0 },
2175    { X86::VPALIGNRZ128rri,   X86::VPALIGNRZ128rmi,     0 },
2176    { X86::VPALIGNRZ256rri,   X86::VPALIGNRZ256rmi,     0 },
2177    { X86::VPANDDZ128rr,      X86::VPANDDZ128rm,        0 },
2178    { X86::VPANDDZ256rr,      X86::VPANDDZ256rm,        0 },
2179    { X86::VPANDNDZ128rr,     X86::VPANDNDZ128rm,       0 },
2180    { X86::VPANDNDZ256rr,     X86::VPANDNDZ256rm,       0 },
2181    { X86::VPANDNQZ128rr,     X86::VPANDNQZ128rm,       0 },
2182    { X86::VPANDNQZ256rr,     X86::VPANDNQZ256rm,       0 },
2183    { X86::VPANDQZ128rr,      X86::VPANDQZ128rm,        0 },
2184    { X86::VPANDQZ256rr,      X86::VPANDQZ256rm,        0 },
2185    { X86::VPAVGBZ128rr,      X86::VPAVGBZ128rm,        0 },
2186    { X86::VPAVGBZ256rr,      X86::VPAVGBZ256rm,        0 },
2187    { X86::VPAVGWZ128rr,      X86::VPAVGWZ128rm,        0 },
2188    { X86::VPAVGWZ256rr,      X86::VPAVGWZ256rm,        0 },
2189    { X86::VPCMPBZ128rri,     X86::VPCMPBZ128rmi,       0 },
2190    { X86::VPCMPBZ256rri,     X86::VPCMPBZ256rmi,       0 },
2191    { X86::VPCMPDZ128rri,     X86::VPCMPDZ128rmi,       0 },
2192    { X86::VPCMPDZ256rri,     X86::VPCMPDZ256rmi,       0 },
2193    { X86::VPCMPEQBZ128rr,    X86::VPCMPEQBZ128rm,      0 },
2194    { X86::VPCMPEQBZ256rr,    X86::VPCMPEQBZ256rm,      0 },
2195    { X86::VPCMPEQDZ128rr,    X86::VPCMPEQDZ128rm,      0 },
2196    { X86::VPCMPEQDZ256rr,    X86::VPCMPEQDZ256rm,      0 },
2197    { X86::VPCMPEQQZ128rr,    X86::VPCMPEQQZ128rm,      0 },
2198    { X86::VPCMPEQQZ256rr,    X86::VPCMPEQQZ256rm,      0 },
2199    { X86::VPCMPEQWZ128rr,    X86::VPCMPEQWZ128rm,      0 },
2200    { X86::VPCMPEQWZ256rr,    X86::VPCMPEQWZ256rm,      0 },
2201    { X86::VPCMPGTBZ128rr,    X86::VPCMPGTBZ128rm,      0 },
2202    { X86::VPCMPGTBZ256rr,    X86::VPCMPGTBZ256rm,      0 },
2203    { X86::VPCMPGTDZ128rr,    X86::VPCMPGTDZ128rm,      0 },
2204    { X86::VPCMPGTDZ256rr,    X86::VPCMPGTDZ256rm,      0 },
2205    { X86::VPCMPGTQZ128rr,    X86::VPCMPGTQZ128rm,      0 },
2206    { X86::VPCMPGTQZ256rr,    X86::VPCMPGTQZ256rm,      0 },
2207    { X86::VPCMPGTWZ128rr,    X86::VPCMPGTWZ128rm,      0 },
2208    { X86::VPCMPGTWZ256rr,    X86::VPCMPGTWZ256rm,      0 },
2209    { X86::VPCMPQZ128rri,     X86::VPCMPQZ128rmi,       0 },
2210    { X86::VPCMPQZ256rri,     X86::VPCMPQZ256rmi,       0 },
2211    { X86::VPCMPUBZ128rri,    X86::VPCMPUBZ128rmi,      0 },
2212    { X86::VPCMPUBZ256rri,    X86::VPCMPUBZ256rmi,      0 },
2213    { X86::VPCMPUDZ128rri,    X86::VPCMPUDZ128rmi,      0 },
2214    { X86::VPCMPUDZ256rri,    X86::VPCMPUDZ256rmi,      0 },
2215    { X86::VPCMPUQZ128rri,    X86::VPCMPUQZ128rmi,      0 },
2216    { X86::VPCMPUQZ256rri,    X86::VPCMPUQZ256rmi,      0 },
2217    { X86::VPCMPUWZ128rri,    X86::VPCMPUWZ128rmi,      0 },
2218    { X86::VPCMPUWZ256rri,    X86::VPCMPUWZ256rmi,      0 },
2219    { X86::VPCMPWZ128rri,     X86::VPCMPWZ128rmi,       0 },
2220    { X86::VPCMPWZ256rri,     X86::VPCMPWZ256rmi,       0 },
2221    { X86::VPERMBZ128rr,      X86::VPERMBZ128rm,        0 },
2222    { X86::VPERMBZ256rr,      X86::VPERMBZ256rm,        0 },
2223    { X86::VPERMDZ256rr,      X86::VPERMDZ256rm,        0 },
2224    { X86::VPERMILPDZ128rr,   X86::VPERMILPDZ128rm,     0 },
2225    { X86::VPERMILPDZ256rr,   X86::VPERMILPDZ256rm,     0 },
2226    { X86::VPERMILPSZ128rr,   X86::VPERMILPSZ128rm,     0 },
2227    { X86::VPERMILPSZ256rr,   X86::VPERMILPSZ256rm,     0 },
2228    { X86::VPERMPDZ256rr,     X86::VPERMPDZ256rm,       0 },
2229    { X86::VPERMPSZ256rr,     X86::VPERMPSZ256rm,       0 },
2230    { X86::VPERMQZ256rr,      X86::VPERMQZ256rm,        0 },
2231    { X86::VPERMWZ128rr,      X86::VPERMWZ128rm,        0 },
2232    { X86::VPERMWZ256rr,      X86::VPERMWZ256rm,        0 },
2233    { X86::VPMADDUBSWZ128rr,  X86::VPMADDUBSWZ128rm,    0 },
2234    { X86::VPMADDUBSWZ256rr,  X86::VPMADDUBSWZ256rm,    0 },
2235    { X86::VPMADDWDZ128rr,    X86::VPMADDWDZ128rm,      0 },
2236    { X86::VPMADDWDZ256rr,    X86::VPMADDWDZ256rm,      0 },
2237    { X86::VPMAXSBZ128rr,     X86::VPMAXSBZ128rm,       0 },
2238    { X86::VPMAXSBZ256rr,     X86::VPMAXSBZ256rm,       0 },
2239    { X86::VPMAXSDZ128rr,     X86::VPMAXSDZ128rm,       0 },
2240    { X86::VPMAXSDZ256rr,     X86::VPMAXSDZ256rm,       0 },
2241    { X86::VPMAXSQZ128rr,     X86::VPMAXSQZ128rm,       0 },
2242    { X86::VPMAXSQZ256rr,     X86::VPMAXSQZ256rm,       0 },
2243    { X86::VPMAXSWZ128rr,     X86::VPMAXSWZ128rm,       0 },
2244    { X86::VPMAXSWZ256rr,     X86::VPMAXSWZ256rm,       0 },
2245    { X86::VPMAXUBZ128rr,     X86::VPMAXUBZ128rm,       0 },
2246    { X86::VPMAXUBZ256rr,     X86::VPMAXUBZ256rm,       0 },
2247    { X86::VPMAXUDZ128rr,     X86::VPMAXUDZ128rm,       0 },
2248    { X86::VPMAXUDZ256rr,     X86::VPMAXUDZ256rm,       0 },
2249    { X86::VPMAXUQZ128rr,     X86::VPMAXUQZ128rm,       0 },
2250    { X86::VPMAXUQZ256rr,     X86::VPMAXUQZ256rm,       0 },
2251    { X86::VPMAXUWZ128rr,     X86::VPMAXUWZ128rm,       0 },
2252    { X86::VPMAXUWZ256rr,     X86::VPMAXUWZ256rm,       0 },
2253    { X86::VPMINSBZ128rr,     X86::VPMINSBZ128rm,       0 },
2254    { X86::VPMINSBZ256rr,     X86::VPMINSBZ256rm,       0 },
2255    { X86::VPMINSDZ128rr,     X86::VPMINSDZ128rm,       0 },
2256    { X86::VPMINSDZ256rr,     X86::VPMINSDZ256rm,       0 },
2257    { X86::VPMINSQZ128rr,     X86::VPMINSQZ128rm,       0 },
2258    { X86::VPMINSQZ256rr,     X86::VPMINSQZ256rm,       0 },
2259    { X86::VPMINSWZ128rr,     X86::VPMINSWZ128rm,       0 },
2260    { X86::VPMINSWZ256rr,     X86::VPMINSWZ256rm,       0 },
2261    { X86::VPMINUBZ128rr,     X86::VPMINUBZ128rm,       0 },
2262    { X86::VPMINUBZ256rr,     X86::VPMINUBZ256rm,       0 },
2263    { X86::VPMINUDZ128rr,     X86::VPMINUDZ128rm,       0 },
2264    { X86::VPMINUDZ256rr,     X86::VPMINUDZ256rm,       0 },
2265    { X86::VPMINUQZ128rr,     X86::VPMINUQZ128rm,       0 },
2266    { X86::VPMINUQZ256rr,     X86::VPMINUQZ256rm,       0 },
2267    { X86::VPMINUWZ128rr,     X86::VPMINUWZ128rm,       0 },
2268    { X86::VPMINUWZ256rr,     X86::VPMINUWZ256rm,       0 },
2269    { X86::VPMULDQZ128rr,     X86::VPMULDQZ128rm,       0 },
2270    { X86::VPMULDQZ256rr,     X86::VPMULDQZ256rm,       0 },
2271    { X86::VPMULLDZ128rr,     X86::VPMULLDZ128rm,       0 },
2272    { X86::VPMULLDZ256rr,     X86::VPMULLDZ256rm,       0 },
2273    { X86::VPMULLQZ128rr,     X86::VPMULLQZ128rm,       0 },
2274    { X86::VPMULLQZ256rr,     X86::VPMULLQZ256rm,       0 },
2275    { X86::VPMULLWZ128rr,     X86::VPMULLWZ128rm,       0 },
2276    { X86::VPMULLWZ256rr,     X86::VPMULLWZ256rm,       0 },
2277    { X86::VPMULUDQZ128rr,    X86::VPMULUDQZ128rm,      0 },
2278    { X86::VPMULUDQZ256rr,    X86::VPMULUDQZ256rm,      0 },
2279    { X86::VPORDZ128rr,       X86::VPORDZ128rm,         0 },
2280    { X86::VPORDZ256rr,       X86::VPORDZ256rm,         0 },
2281    { X86::VPORQZ128rr,       X86::VPORQZ128rm,         0 },
2282    { X86::VPORQZ256rr,       X86::VPORQZ256rm,         0 },
2283    { X86::VPSADBWZ128rr,     X86::VPSADBWZ128rm,       0 },
2284    { X86::VPSADBWZ256rr,     X86::VPSADBWZ256rm,       0 },
2285    { X86::VPSHUFBZ128rr,     X86::VPSHUFBZ128rm,       0 },
2286    { X86::VPSHUFBZ256rr,     X86::VPSHUFBZ256rm,       0 },
2287    { X86::VPSLLDZ128rr,      X86::VPSLLDZ128rm,        0 },
2288    { X86::VPSLLDZ256rr,      X86::VPSLLDZ256rm,        0 },
2289    { X86::VPSLLQZ128rr,      X86::VPSLLQZ128rm,        0 },
2290    { X86::VPSLLQZ256rr,      X86::VPSLLQZ256rm,        0 },
2291    { X86::VPSLLVDZ128rr,     X86::VPSLLVDZ128rm,       0 },
2292    { X86::VPSLLVDZ256rr,     X86::VPSLLVDZ256rm,       0 },
2293    { X86::VPSLLVQZ128rr,     X86::VPSLLVQZ128rm,       0 },
2294    { X86::VPSLLVQZ256rr,     X86::VPSLLVQZ256rm,       0 },
2295    { X86::VPSLLVWZ128rr,     X86::VPSLLVWZ128rm,       0 },
2296    { X86::VPSLLVWZ256rr,     X86::VPSLLVWZ256rm,       0 },
2297    { X86::VPSLLWZ128rr,      X86::VPSLLWZ128rm,        0 },
2298    { X86::VPSLLWZ256rr,      X86::VPSLLWZ256rm,        0 },
2299    { X86::VPSRADZ128rr,      X86::VPSRADZ128rm,        0 },
2300    { X86::VPSRADZ256rr,      X86::VPSRADZ256rm,        0 },
2301    { X86::VPSRAQZ128rr,      X86::VPSRAQZ128rm,        0 },
2302    { X86::VPSRAQZ256rr,      X86::VPSRAQZ256rm,        0 },
2303    { X86::VPSRAVDZ128rr,     X86::VPSRAVDZ128rm,       0 },
2304    { X86::VPSRAVDZ256rr,     X86::VPSRAVDZ256rm,       0 },
2305    { X86::VPSRAVQZ128rr,     X86::VPSRAVQZ128rm,       0 },
2306    { X86::VPSRAVQZ256rr,     X86::VPSRAVQZ256rm,       0 },
2307    { X86::VPSRAVWZ128rr,     X86::VPSRAVWZ128rm,       0 },
2308    { X86::VPSRAVWZ256rr,     X86::VPSRAVWZ256rm,       0 },
2309    { X86::VPSRAWZ128rr,      X86::VPSRAWZ128rm,        0 },
2310    { X86::VPSRAWZ256rr,      X86::VPSRAWZ256rm,        0 },
2311    { X86::VPSRLDZ128rr,      X86::VPSRLDZ128rm,        0 },
2312    { X86::VPSRLDZ256rr,      X86::VPSRLDZ256rm,        0 },
2313    { X86::VPSRLQZ128rr,      X86::VPSRLQZ128rm,        0 },
2314    { X86::VPSRLQZ256rr,      X86::VPSRLQZ256rm,        0 },
2315    { X86::VPSRLVDZ128rr,     X86::VPSRLVDZ128rm,       0 },
2316    { X86::VPSRLVDZ256rr,     X86::VPSRLVDZ256rm,       0 },
2317    { X86::VPSRLVQZ128rr,     X86::VPSRLVQZ128rm,       0 },
2318    { X86::VPSRLVQZ256rr,     X86::VPSRLVQZ256rm,       0 },
2319    { X86::VPSRLVWZ128rr,     X86::VPSRLVWZ128rm,       0 },
2320    { X86::VPSRLVWZ256rr,     X86::VPSRLVWZ256rm,       0 },
2321    { X86::VPSRLWZ128rr,      X86::VPSRLWZ128rm,        0 },
2322    { X86::VPSRLWZ256rr,      X86::VPSRLWZ256rm,        0 },
2323    { X86::VPSUBBZ128rr,      X86::VPSUBBZ128rm,        0 },
2324    { X86::VPSUBBZ256rr,      X86::VPSUBBZ256rm,        0 },
2325    { X86::VPSUBDZ128rr,      X86::VPSUBDZ128rm,        0 },
2326    { X86::VPSUBDZ256rr,      X86::VPSUBDZ256rm,        0 },
2327    { X86::VPSUBQZ128rr,      X86::VPSUBQZ128rm,        0 },
2328    { X86::VPSUBQZ256rr,      X86::VPSUBQZ256rm,        0 },
2329    { X86::VPSUBSBZ128rr,     X86::VPSUBSBZ128rm,       0 },
2330    { X86::VPSUBSBZ256rr,     X86::VPSUBSBZ256rm,       0 },
2331    { X86::VPSUBSWZ128rr,     X86::VPSUBSWZ128rm,       0 },
2332    { X86::VPSUBSWZ256rr,     X86::VPSUBSWZ256rm,       0 },
2333    { X86::VPSUBUSBZ128rr,    X86::VPSUBUSBZ128rm,      0 },
2334    { X86::VPSUBUSBZ256rr,    X86::VPSUBUSBZ256rm,      0 },
2335    { X86::VPSUBUSWZ128rr,    X86::VPSUBUSWZ128rm,      0 },
2336    { X86::VPSUBUSWZ256rr,    X86::VPSUBUSWZ256rm,      0 },
2337    { X86::VPSUBWZ128rr,      X86::VPSUBWZ128rm,        0 },
2338    { X86::VPSUBWZ256rr,      X86::VPSUBWZ256rm,        0 },
2339    { X86::VPUNPCKHBWZ128rr,  X86::VPUNPCKHBWZ128rm,    0 },
2340    { X86::VPUNPCKHBWZ256rr,  X86::VPUNPCKHBWZ256rm,    0 },
2341    { X86::VPUNPCKHDQZ128rr,  X86::VPUNPCKHDQZ128rm,    0 },
2342    { X86::VPUNPCKHDQZ256rr,  X86::VPUNPCKHDQZ256rm,    0 },
2343    { X86::VPUNPCKHQDQZ128rr, X86::VPUNPCKHQDQZ128rm,   0 },
2344    { X86::VPUNPCKHQDQZ256rr, X86::VPUNPCKHQDQZ256rm,   0 },
2345    { X86::VPUNPCKHWDZ128rr,  X86::VPUNPCKHWDZ128rm,    0 },
2346    { X86::VPUNPCKHWDZ256rr,  X86::VPUNPCKHWDZ256rm,    0 },
2347    { X86::VPUNPCKLBWZ128rr,  X86::VPUNPCKLBWZ128rm,    0 },
2348    { X86::VPUNPCKLBWZ256rr,  X86::VPUNPCKLBWZ256rm,    0 },
2349    { X86::VPUNPCKLDQZ128rr,  X86::VPUNPCKLDQZ128rm,    0 },
2350    { X86::VPUNPCKLDQZ256rr,  X86::VPUNPCKLDQZ256rm,    0 },
2351    { X86::VPUNPCKLQDQZ128rr, X86::VPUNPCKLQDQZ128rm,   0 },
2352    { X86::VPUNPCKLQDQZ256rr, X86::VPUNPCKLQDQZ256rm,   0 },
2353    { X86::VPUNPCKLWDZ128rr,  X86::VPUNPCKLWDZ128rm,    0 },
2354    { X86::VPUNPCKLWDZ256rr,  X86::VPUNPCKLWDZ256rm,    0 },
2355    { X86::VPXORDZ128rr,      X86::VPXORDZ128rm,        0 },
2356    { X86::VPXORDZ256rr,      X86::VPXORDZ256rm,        0 },
2357    { X86::VPXORQZ128rr,      X86::VPXORQZ128rm,        0 },
2358    { X86::VPXORQZ256rr,      X86::VPXORQZ256rm,        0 },
2359    { X86::VSHUFPDZ128rri,    X86::VSHUFPDZ128rmi,      0 },
2360    { X86::VSHUFPDZ256rri,    X86::VSHUFPDZ256rmi,      0 },
2361    { X86::VSHUFPSZ128rri,    X86::VSHUFPSZ128rmi,      0 },
2362    { X86::VSHUFPSZ256rri,    X86::VSHUFPSZ256rmi,      0 },
2363    { X86::VSUBPDZ128rr,      X86::VSUBPDZ128rm,        0 },
2364    { X86::VSUBPDZ256rr,      X86::VSUBPDZ256rm,        0 },
2365    { X86::VSUBPSZ128rr,      X86::VSUBPSZ128rm,        0 },
2366    { X86::VSUBPSZ256rr,      X86::VSUBPSZ256rm,        0 },
2367    { X86::VUNPCKHPDZ128rr,   X86::VUNPCKHPDZ128rm,     0 },
2368    { X86::VUNPCKHPDZ256rr,   X86::VUNPCKHPDZ256rm,     0 },
2369    { X86::VUNPCKHPSZ128rr,   X86::VUNPCKHPSZ128rm,     0 },
2370    { X86::VUNPCKHPSZ256rr,   X86::VUNPCKHPSZ256rm,     0 },
2371    { X86::VUNPCKLPDZ128rr,   X86::VUNPCKLPDZ128rm,     0 },
2372    { X86::VUNPCKLPDZ256rr,   X86::VUNPCKLPDZ256rm,     0 },
2373    { X86::VUNPCKLPSZ128rr,   X86::VUNPCKLPSZ128rm,     0 },
2374    { X86::VUNPCKLPSZ256rr,   X86::VUNPCKLPSZ256rm,     0 },
2375    { X86::VXORPDZ128rr,      X86::VXORPDZ128rm,        0 },
2376    { X86::VXORPDZ256rr,      X86::VXORPDZ256rm,        0 },
2377    { X86::VXORPSZ128rr,      X86::VXORPSZ128rm,        0 },
2378    { X86::VXORPSZ256rr,      X86::VXORPSZ256rm,        0 },
2379
2380    // AVX-512 masked foldable instructions
2381    { X86::VBROADCASTSSZrkz,  X86::VBROADCASTSSZmkz,    TB_NO_REVERSE },
2382    { X86::VBROADCASTSDZrkz,  X86::VBROADCASTSDZmkz,    TB_NO_REVERSE },
2383    { X86::VPABSBZrrkz,       X86::VPABSBZrmkz,         0 },
2384    { X86::VPABSDZrrkz,       X86::VPABSDZrmkz,         0 },
2385    { X86::VPABSQZrrkz,       X86::VPABSQZrmkz,         0 },
2386    { X86::VPABSWZrrkz,       X86::VPABSWZrmkz,         0 },
2387    { X86::VPCONFLICTDZrrkz,  X86::VPCONFLICTDZrmkz,    0 },
2388    { X86::VPCONFLICTQZrrkz,  X86::VPCONFLICTQZrmkz,    0 },
2389    { X86::VPERMILPDZrikz,    X86::VPERMILPDZmikz,      0 },
2390    { X86::VPERMILPSZrikz,    X86::VPERMILPSZmikz,      0 },
2391    { X86::VPERMPDZrikz,      X86::VPERMPDZmikz,        0 },
2392    { X86::VPERMQZrikz,       X86::VPERMQZmikz,         0 },
2393    { X86::VPLZCNTDZrrkz,     X86::VPLZCNTDZrmkz,       0 },
2394    { X86::VPLZCNTQZrrkz,     X86::VPLZCNTQZrmkz,       0 },
2395    { X86::VPMOVSXBDZrrkz,    X86::VPMOVSXBDZrmkz,      0 },
2396    { X86::VPMOVSXBQZrrkz,    X86::VPMOVSXBQZrmkz,      TB_NO_REVERSE },
2397    { X86::VPMOVSXBWZrrkz,    X86::VPMOVSXBWZrmkz,      0 },
2398    { X86::VPMOVSXDQZrrkz,    X86::VPMOVSXDQZrmkz,      0 },
2399    { X86::VPMOVSXWDZrrkz,    X86::VPMOVSXWDZrmkz,      0 },
2400    { X86::VPMOVSXWQZrrkz,    X86::VPMOVSXWQZrmkz,      0 },
2401    { X86::VPMOVZXBDZrrkz,    X86::VPMOVZXBDZrmkz,      0 },
2402    { X86::VPMOVZXBQZrrkz,    X86::VPMOVZXBQZrmkz,      TB_NO_REVERSE },
2403    { X86::VPMOVZXBWZrrkz,    X86::VPMOVZXBWZrmkz,      0 },
2404    { X86::VPMOVZXDQZrrkz,    X86::VPMOVZXDQZrmkz,      0 },
2405    { X86::VPMOVZXWDZrrkz,    X86::VPMOVZXWDZrmkz,      0 },
2406    { X86::VPMOVZXWQZrrkz,    X86::VPMOVZXWQZrmkz,      0 },
2407    { X86::VPOPCNTDZrrkz,     X86::VPOPCNTDZrmkz,       0 },
2408    { X86::VPOPCNTQZrrkz,     X86::VPOPCNTQZrmkz,       0 },
2409    { X86::VPSHUFDZrikz,      X86::VPSHUFDZmikz,        0 },
2410    { X86::VPSHUFHWZrikz,     X86::VPSHUFHWZmikz,       0 },
2411    { X86::VPSHUFLWZrikz,     X86::VPSHUFLWZmikz,       0 },
2412    { X86::VPSLLDZrikz,       X86::VPSLLDZmikz,         0 },
2413    { X86::VPSLLQZrikz,       X86::VPSLLQZmikz,         0 },
2414    { X86::VPSLLWZrikz,       X86::VPSLLWZmikz,         0 },
2415    { X86::VPSRADZrikz,       X86::VPSRADZmikz,         0 },
2416    { X86::VPSRAQZrikz,       X86::VPSRAQZmikz,         0 },
2417    { X86::VPSRAWZrikz,       X86::VPSRAWZmikz,         0 },
2418    { X86::VPSRLDZrikz,       X86::VPSRLDZmikz,         0 },
2419    { X86::VPSRLQZrikz,       X86::VPSRLQZmikz,         0 },
2420    { X86::VPSRLWZrikz,       X86::VPSRLWZmikz,         0 },
2421
2422    // AVX-512VL 256-bit masked foldable instructions
2423    { X86::VBROADCASTSDZ256rkz,  X86::VBROADCASTSDZ256mkz,      TB_NO_REVERSE },
2424    { X86::VBROADCASTSSZ256rkz,  X86::VBROADCASTSSZ256mkz,      TB_NO_REVERSE },
2425    { X86::VPABSBZ256rrkz,    X86::VPABSBZ256rmkz,      0 },
2426    { X86::VPABSDZ256rrkz,    X86::VPABSDZ256rmkz,      0 },
2427    { X86::VPABSQZ256rrkz,    X86::VPABSQZ256rmkz,      0 },
2428    { X86::VPABSWZ256rrkz,    X86::VPABSWZ256rmkz,      0 },
2429    { X86::VPCONFLICTDZ256rrkz, X86::VPCONFLICTDZ256rmkz, 0 },
2430    { X86::VPCONFLICTQZ256rrkz, X86::VPCONFLICTQZ256rmkz, 0 },
2431    { X86::VPERMILPDZ256rikz, X86::VPERMILPDZ256mikz,   0 },
2432    { X86::VPERMILPSZ256rikz, X86::VPERMILPSZ256mikz,   0 },
2433    { X86::VPERMPDZ256rikz,   X86::VPERMPDZ256mikz,     0 },
2434    { X86::VPERMQZ256rikz,    X86::VPERMQZ256mikz,      0 },
2435    { X86::VPLZCNTDZ256rrkz,  X86::VPLZCNTDZ256rmkz,    0 },
2436    { X86::VPLZCNTQZ256rrkz,  X86::VPLZCNTQZ256rmkz,    0 },
2437    { X86::VPMOVSXBDZ256rrkz, X86::VPMOVSXBDZ256rmkz,   TB_NO_REVERSE },
2438    { X86::VPMOVSXBQZ256rrkz, X86::VPMOVSXBQZ256rmkz,   TB_NO_REVERSE },
2439    { X86::VPMOVSXBWZ256rrkz, X86::VPMOVSXBWZ256rmkz,   0 },
2440    { X86::VPMOVSXDQZ256rrkz, X86::VPMOVSXDQZ256rmkz,   0 },
2441    { X86::VPMOVSXWDZ256rrkz, X86::VPMOVSXWDZ256rmkz,   0 },
2442    { X86::VPMOVSXWQZ256rrkz, X86::VPMOVSXWQZ256rmkz,   TB_NO_REVERSE },
2443    { X86::VPMOVZXBDZ256rrkz, X86::VPMOVZXBDZ256rmkz,   TB_NO_REVERSE },
2444    { X86::VPMOVZXBQZ256rrkz, X86::VPMOVZXBQZ256rmkz,   TB_NO_REVERSE },
2445    { X86::VPMOVZXBWZ256rrkz, X86::VPMOVZXBWZ256rmkz,   0 },
2446    { X86::VPMOVZXDQZ256rrkz, X86::VPMOVZXDQZ256rmkz,   0 },
2447    { X86::VPMOVZXWDZ256rrkz, X86::VPMOVZXWDZ256rmkz,   0 },
2448    { X86::VPMOVZXWQZ256rrkz, X86::VPMOVZXWQZ256rmkz,   TB_NO_REVERSE },
2449    { X86::VPSHUFDZ256rikz,   X86::VPSHUFDZ256mikz,     0 },
2450    { X86::VPSHUFHWZ256rikz,  X86::VPSHUFHWZ256mikz,    0 },
2451    { X86::VPSHUFLWZ256rikz,  X86::VPSHUFLWZ256mikz,    0 },
2452    { X86::VPSLLDZ256rikz,    X86::VPSLLDZ256mikz,      0 },
2453    { X86::VPSLLQZ256rikz,    X86::VPSLLQZ256mikz,      0 },
2454    { X86::VPSLLWZ256rikz,    X86::VPSLLWZ256mikz,      0 },
2455    { X86::VPSRADZ256rikz,    X86::VPSRADZ256mikz,      0 },
2456    { X86::VPSRAQZ256rikz,    X86::VPSRAQZ256mikz,      0 },
2457    { X86::VPSRAWZ256rikz,    X86::VPSRAWZ256mikz,      0 },
2458    { X86::VPSRLDZ256rikz,    X86::VPSRLDZ256mikz,      0 },
2459    { X86::VPSRLQZ256rikz,    X86::VPSRLQZ256mikz,      0 },
2460    { X86::VPSRLWZ256rikz,    X86::VPSRLWZ256mikz,      0 },
2461
2462    // AVX-512VL 128-bit masked foldable instructions
2463    { X86::VBROADCASTSSZ128rkz,  X86::VBROADCASTSSZ128mkz,      TB_NO_REVERSE },
2464    { X86::VPABSBZ128rrkz,    X86::VPABSBZ128rmkz,      0 },
2465    { X86::VPABSDZ128rrkz,    X86::VPABSDZ128rmkz,      0 },
2466    { X86::VPABSQZ128rrkz,    X86::VPABSQZ128rmkz,      0 },
2467    { X86::VPABSWZ128rrkz,    X86::VPABSWZ128rmkz,      0 },
2468    { X86::VPCONFLICTDZ128rrkz, X86::VPCONFLICTDZ128rmkz, 0 },
2469    { X86::VPCONFLICTQZ128rrkz, X86::VPCONFLICTQZ128rmkz, 0 },
2470    { X86::VPERMILPDZ128rikz, X86::VPERMILPDZ128mikz,   0 },
2471    { X86::VPERMILPSZ128rikz, X86::VPERMILPSZ128mikz,   0 },
2472    { X86::VPLZCNTDZ128rrkz,  X86::VPLZCNTDZ128rmkz,    0 },
2473    { X86::VPLZCNTQZ128rrkz,  X86::VPLZCNTQZ128rmkz,    0 },
2474    { X86::VPMOVSXBDZ128rrkz, X86::VPMOVSXBDZ128rmkz,   TB_NO_REVERSE },
2475    { X86::VPMOVSXBQZ128rrkz, X86::VPMOVSXBQZ128rmkz,   TB_NO_REVERSE },
2476    { X86::VPMOVSXBWZ128rrkz, X86::VPMOVSXBWZ128rmkz,   TB_NO_REVERSE },
2477    { X86::VPMOVSXDQZ128rrkz, X86::VPMOVSXDQZ128rmkz,   TB_NO_REVERSE },
2478    { X86::VPMOVSXWDZ128rrkz, X86::VPMOVSXWDZ128rmkz,   TB_NO_REVERSE },
2479    { X86::VPMOVSXWQZ128rrkz, X86::VPMOVSXWQZ128rmkz,   TB_NO_REVERSE },
2480    { X86::VPMOVZXBDZ128rrkz, X86::VPMOVZXBDZ128rmkz,   TB_NO_REVERSE },
2481    { X86::VPMOVZXBQZ128rrkz, X86::VPMOVZXBQZ128rmkz,   TB_NO_REVERSE },
2482    { X86::VPMOVZXBWZ128rrkz, X86::VPMOVZXBWZ128rmkz,   TB_NO_REVERSE },
2483    { X86::VPMOVZXDQZ128rrkz, X86::VPMOVZXDQZ128rmkz,   TB_NO_REVERSE },
2484    { X86::VPMOVZXWDZ128rrkz, X86::VPMOVZXWDZ128rmkz,   TB_NO_REVERSE },
2485    { X86::VPMOVZXWQZ128rrkz, X86::VPMOVZXWQZ128rmkz,   TB_NO_REVERSE },
2486    { X86::VPSHUFDZ128rikz,   X86::VPSHUFDZ128mikz,     0 },
2487    { X86::VPSHUFHWZ128rikz,  X86::VPSHUFHWZ128mikz,    0 },
2488    { X86::VPSHUFLWZ128rikz,  X86::VPSHUFLWZ128mikz,    0 },
2489    { X86::VPSLLDZ128rikz,    X86::VPSLLDZ128mikz,      0 },
2490    { X86::VPSLLQZ128rikz,    X86::VPSLLQZ128mikz,      0 },
2491    { X86::VPSLLWZ128rikz,    X86::VPSLLWZ128mikz,      0 },
2492    { X86::VPSRADZ128rikz,    X86::VPSRADZ128mikz,      0 },
2493    { X86::VPSRAQZ128rikz,    X86::VPSRAQZ128mikz,      0 },
2494    { X86::VPSRAWZ128rikz,    X86::VPSRAWZ128mikz,      0 },
2495    { X86::VPSRLDZ128rikz,    X86::VPSRLDZ128mikz,      0 },
2496    { X86::VPSRLQZ128rikz,    X86::VPSRLQZ128mikz,      0 },
2497    { X86::VPSRLWZ128rikz,    X86::VPSRLWZ128mikz,      0 },
2498
2499    // AES foldable instructions
2500    { X86::AESDECLASTrr,      X86::AESDECLASTrm,        TB_ALIGN_16 },
2501    { X86::AESDECrr,          X86::AESDECrm,            TB_ALIGN_16 },
2502    { X86::AESENCLASTrr,      X86::AESENCLASTrm,        TB_ALIGN_16 },
2503    { X86::AESENCrr,          X86::AESENCrm,            TB_ALIGN_16 },
2504    { X86::VAESDECLASTrr,     X86::VAESDECLASTrm,       0 },
2505    { X86::VAESDECrr,         X86::VAESDECrm,           0 },
2506    { X86::VAESENCLASTrr,     X86::VAESENCLASTrm,       0 },
2507    { X86::VAESENCrr,         X86::VAESENCrm,           0 },
2508
2509    // SHA foldable instructions
2510    { X86::SHA1MSG1rr,        X86::SHA1MSG1rm,          TB_ALIGN_16 },
2511    { X86::SHA1MSG2rr,        X86::SHA1MSG2rm,          TB_ALIGN_16 },
2512    { X86::SHA1NEXTErr,       X86::SHA1NEXTErm,         TB_ALIGN_16 },
2513    { X86::SHA1RNDS4rri,      X86::SHA1RNDS4rmi,        TB_ALIGN_16 },
2514    { X86::SHA256MSG1rr,      X86::SHA256MSG1rm,        TB_ALIGN_16 },
2515    { X86::SHA256MSG2rr,      X86::SHA256MSG2rm,        TB_ALIGN_16 },
2516    { X86::SHA256RNDS2rr,     X86::SHA256RNDS2rm,       TB_ALIGN_16 }
2517  };
2518
2519  for (X86MemoryFoldTableEntry Entry : MemoryFoldTable2) {
2520    AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
2521                  Entry.RegOp, Entry.MemOp,
2522                  // Index 2, folded load
2523                  Entry.Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
2524  }
2525
2526  static const X86MemoryFoldTableEntry MemoryFoldTable3[] = {
2527    // FMA4 foldable patterns
2528    { X86::VFMADDSS4rr,           X86::VFMADDSS4rm,           TB_ALIGN_NONE },
2529    { X86::VFMADDSS4rr_Int,       X86::VFMADDSS4rm_Int,       TB_NO_REVERSE },
2530    { X86::VFMADDSD4rr,           X86::VFMADDSD4rm,           TB_ALIGN_NONE },
2531    { X86::VFMADDSD4rr_Int,       X86::VFMADDSD4rm_Int,       TB_NO_REVERSE },
2532    { X86::VFMADDPS4rr,           X86::VFMADDPS4rm,           TB_ALIGN_NONE },
2533    { X86::VFMADDPD4rr,           X86::VFMADDPD4rm,           TB_ALIGN_NONE },
2534    { X86::VFMADDPS4Yrr,          X86::VFMADDPS4Yrm,          TB_ALIGN_NONE },
2535    { X86::VFMADDPD4Yrr,          X86::VFMADDPD4Yrm,          TB_ALIGN_NONE },
2536    { X86::VFNMADDSS4rr,          X86::VFNMADDSS4rm,          TB_ALIGN_NONE },
2537    { X86::VFNMADDSS4rr_Int,      X86::VFNMADDSS4rm_Int,      TB_NO_REVERSE },
2538    { X86::VFNMADDSD4rr,          X86::VFNMADDSD4rm,          TB_ALIGN_NONE },
2539    { X86::VFNMADDSD4rr_Int,      X86::VFNMADDSD4rm_Int,      TB_NO_REVERSE },
2540    { X86::VFNMADDPS4rr,          X86::VFNMADDPS4rm,          TB_ALIGN_NONE },
2541    { X86::VFNMADDPD4rr,          X86::VFNMADDPD4rm,          TB_ALIGN_NONE },
2542    { X86::VFNMADDPS4Yrr,         X86::VFNMADDPS4Yrm,         TB_ALIGN_NONE },
2543    { X86::VFNMADDPD4Yrr,         X86::VFNMADDPD4Yrm,         TB_ALIGN_NONE },
2544    { X86::VFMSUBSS4rr,           X86::VFMSUBSS4rm,           TB_ALIGN_NONE },
2545    { X86::VFMSUBSS4rr_Int,       X86::VFMSUBSS4rm_Int,       TB_NO_REVERSE },
2546    { X86::VFMSUBSD4rr,           X86::VFMSUBSD4rm,           TB_ALIGN_NONE },
2547    { X86::VFMSUBSD4rr_Int,       X86::VFMSUBSD4rm_Int,       TB_NO_REVERSE },
2548    { X86::VFMSUBPS4rr,           X86::VFMSUBPS4rm,           TB_ALIGN_NONE },
2549    { X86::VFMSUBPD4rr,           X86::VFMSUBPD4rm,           TB_ALIGN_NONE },
2550    { X86::VFMSUBPS4Yrr,          X86::VFMSUBPS4Yrm,          TB_ALIGN_NONE },
2551    { X86::VFMSUBPD4Yrr,          X86::VFMSUBPD4Yrm,          TB_ALIGN_NONE },
2552    { X86::VFNMSUBSS4rr,          X86::VFNMSUBSS4rm,          TB_ALIGN_NONE },
2553    { X86::VFNMSUBSS4rr_Int,      X86::VFNMSUBSS4rm_Int,      TB_NO_REVERSE },
2554    { X86::VFNMSUBSD4rr,          X86::VFNMSUBSD4rm,          TB_ALIGN_NONE },
2555    { X86::VFNMSUBSD4rr_Int,      X86::VFNMSUBSD4rm_Int,      TB_NO_REVERSE },
2556    { X86::VFNMSUBPS4rr,          X86::VFNMSUBPS4rm,          TB_ALIGN_NONE },
2557    { X86::VFNMSUBPD4rr,          X86::VFNMSUBPD4rm,          TB_ALIGN_NONE },
2558    { X86::VFNMSUBPS4Yrr,         X86::VFNMSUBPS4Yrm,         TB_ALIGN_NONE },
2559    { X86::VFNMSUBPD4Yrr,         X86::VFNMSUBPD4Yrm,         TB_ALIGN_NONE },
2560    { X86::VFMADDSUBPS4rr,        X86::VFMADDSUBPS4rm,        TB_ALIGN_NONE },
2561    { X86::VFMADDSUBPD4rr,        X86::VFMADDSUBPD4rm,        TB_ALIGN_NONE },
2562    { X86::VFMADDSUBPS4Yrr,       X86::VFMADDSUBPS4Yrm,       TB_ALIGN_NONE },
2563    { X86::VFMADDSUBPD4Yrr,       X86::VFMADDSUBPD4Yrm,       TB_ALIGN_NONE },
2564    { X86::VFMSUBADDPS4rr,        X86::VFMSUBADDPS4rm,        TB_ALIGN_NONE },
2565    { X86::VFMSUBADDPD4rr,        X86::VFMSUBADDPD4rm,        TB_ALIGN_NONE },
2566    { X86::VFMSUBADDPS4Yrr,       X86::VFMSUBADDPS4Yrm,       TB_ALIGN_NONE },
2567    { X86::VFMSUBADDPD4Yrr,       X86::VFMSUBADDPD4Yrm,       TB_ALIGN_NONE },
2568
2569    // XOP foldable instructions
2570    { X86::VPCMOVrrr,             X86::VPCMOVrrm,             0 },
2571    { X86::VPCMOVYrrr,            X86::VPCMOVYrrm,            0 },
2572    { X86::VPERMIL2PDrr,          X86::VPERMIL2PDrm,          0 },
2573    { X86::VPERMIL2PDYrr,         X86::VPERMIL2PDYrm,         0 },
2574    { X86::VPERMIL2PSrr,          X86::VPERMIL2PSrm,          0 },
2575    { X86::VPERMIL2PSYrr,         X86::VPERMIL2PSYrm,         0 },
2576    { X86::VPPERMrrr,             X86::VPPERMrrm,             0 },
2577
2578    // AVX-512 instructions with 3 source operands.
2579    { X86::VPERMI2Brr,            X86::VPERMI2Brm,            0 },
2580    { X86::VPERMI2Drr,            X86::VPERMI2Drm,            0 },
2581    { X86::VPERMI2PSrr,           X86::VPERMI2PSrm,           0 },
2582    { X86::VPERMI2PDrr,           X86::VPERMI2PDrm,           0 },
2583    { X86::VPERMI2Qrr,            X86::VPERMI2Qrm,            0 },
2584    { X86::VPERMI2Wrr,            X86::VPERMI2Wrm,            0 },
2585    { X86::VPERMT2Brr,            X86::VPERMT2Brm,            0 },
2586    { X86::VPERMT2Drr,            X86::VPERMT2Drm,            0 },
2587    { X86::VPERMT2PSrr,           X86::VPERMT2PSrm,           0 },
2588    { X86::VPERMT2PDrr,           X86::VPERMT2PDrm,           0 },
2589    { X86::VPERMT2Qrr,            X86::VPERMT2Qrm,            0 },
2590    { X86::VPERMT2Wrr,            X86::VPERMT2Wrm,            0 },
2591    { X86::VPMADD52HUQZr,         X86::VPMADD52HUQZm,         0 },
2592    { X86::VPMADD52LUQZr,         X86::VPMADD52LUQZm,         0 },
2593    { X86::VPTERNLOGDZrri,        X86::VPTERNLOGDZrmi,        0 },
2594    { X86::VPTERNLOGQZrri,        X86::VPTERNLOGQZrmi,        0 },
2595
2596    // AVX-512VL 256-bit instructions with 3 source operands.
2597    { X86::VPERMI2B256rr,         X86::VPERMI2B256rm,         0 },
2598    { X86::VPERMI2D256rr,         X86::VPERMI2D256rm,         0 },
2599    { X86::VPERMI2PD256rr,        X86::VPERMI2PD256rm,        0 },
2600    { X86::VPERMI2PS256rr,        X86::VPERMI2PS256rm,        0 },
2601    { X86::VPERMI2Q256rr,         X86::VPERMI2Q256rm,         0 },
2602    { X86::VPERMI2W256rr,         X86::VPERMI2W256rm,         0 },
2603    { X86::VPERMT2B256rr,         X86::VPERMT2B256rm,         0 },
2604    { X86::VPERMT2D256rr,         X86::VPERMT2D256rm,         0 },
2605    { X86::VPERMT2PD256rr,        X86::VPERMT2PD256rm,        0 },
2606    { X86::VPERMT2PS256rr,        X86::VPERMT2PS256rm,        0 },
2607    { X86::VPERMT2Q256rr,         X86::VPERMT2Q256rm,         0 },
2608    { X86::VPERMT2W256rr,         X86::VPERMT2W256rm,         0 },
2609    { X86::VPMADD52HUQZ256r,      X86::VPMADD52HUQZ256m,      0 },
2610    { X86::VPMADD52LUQZ256r,      X86::VPMADD52LUQZ256m,      0 },
2611    { X86::VPTERNLOGDZ256rri,     X86::VPTERNLOGDZ256rmi,     0 },
2612    { X86::VPTERNLOGQZ256rri,     X86::VPTERNLOGQZ256rmi,     0 },
2613
2614    // AVX-512VL 128-bit instructions with 3 source operands.
2615    { X86::VPERMI2B128rr,         X86::VPERMI2B128rm,         0 },
2616    { X86::VPERMI2D128rr,         X86::VPERMI2D128rm,         0 },
2617    { X86::VPERMI2PD128rr,        X86::VPERMI2PD128rm,        0 },
2618    { X86::VPERMI2PS128rr,        X86::VPERMI2PS128rm,        0 },
2619    { X86::VPERMI2Q128rr,         X86::VPERMI2Q128rm,         0 },
2620    { X86::VPERMI2W128rr,         X86::VPERMI2W128rm,         0 },
2621    { X86::VPERMT2B128rr,         X86::VPERMT2B128rm,         0 },
2622    { X86::VPERMT2D128rr,         X86::VPERMT2D128rm,         0 },
2623    { X86::VPERMT2PD128rr,        X86::VPERMT2PD128rm,        0 },
2624    { X86::VPERMT2PS128rr,        X86::VPERMT2PS128rm,        0 },
2625    { X86::VPERMT2Q128rr,         X86::VPERMT2Q128rm,         0 },
2626    { X86::VPERMT2W128rr,         X86::VPERMT2W128rm,         0 },
2627    { X86::VPMADD52HUQZ128r,      X86::VPMADD52HUQZ128m,      0 },
2628    { X86::VPMADD52LUQZ128r,      X86::VPMADD52LUQZ128m,      0 },
2629    { X86::VPTERNLOGDZ128rri,     X86::VPTERNLOGDZ128rmi,     0 },
2630    { X86::VPTERNLOGQZ128rri,     X86::VPTERNLOGQZ128rmi,     0 },
2631
2632    // AVX-512 masked instructions
2633    { X86::VADDPDZrrkz,           X86::VADDPDZrmkz,           0 },
2634    { X86::VADDPSZrrkz,           X86::VADDPSZrmkz,           0 },
2635    { X86::VADDSDZrr_Intkz,       X86::VADDSDZrm_Intkz,       TB_NO_REVERSE },
2636    { X86::VADDSSZrr_Intkz,       X86::VADDSSZrm_Intkz,       TB_NO_REVERSE },
2637    { X86::VALIGNDZrrikz,         X86::VALIGNDZrmikz,         0 },
2638    { X86::VALIGNQZrrikz,         X86::VALIGNQZrmikz,         0 },
2639    { X86::VANDNPDZrrkz,          X86::VANDNPDZrmkz,          0 },
2640    { X86::VANDNPSZrrkz,          X86::VANDNPSZrmkz,          0 },
2641    { X86::VANDPDZrrkz,           X86::VANDPDZrmkz,           0 },
2642    { X86::VANDPSZrrkz,           X86::VANDPSZrmkz,           0 },
2643    { X86::VDIVPDZrrkz,           X86::VDIVPDZrmkz,           0 },
2644    { X86::VDIVPSZrrkz,           X86::VDIVPSZrmkz,           0 },
2645    { X86::VDIVSDZrr_Intkz,       X86::VDIVSDZrm_Intkz,       TB_NO_REVERSE },
2646    { X86::VDIVSSZrr_Intkz,       X86::VDIVSSZrm_Intkz,       TB_NO_REVERSE },
2647    { X86::VINSERTF32x4Zrrkz,     X86::VINSERTF32x4Zrmkz,     0 },
2648    { X86::VINSERTF32x8Zrrkz,     X86::VINSERTF32x8Zrmkz,     0 },
2649    { X86::VINSERTF64x2Zrrkz,     X86::VINSERTF64x2Zrmkz,     0 },
2650    { X86::VINSERTF64x4Zrrkz,     X86::VINSERTF64x4Zrmkz,     0 },
2651    { X86::VINSERTI32x4Zrrkz,     X86::VINSERTI32x4Zrmkz,     0 },
2652    { X86::VINSERTI32x8Zrrkz,     X86::VINSERTI32x8Zrmkz,     0 },
2653    { X86::VINSERTI64x2Zrrkz,     X86::VINSERTI64x2Zrmkz,     0 },
2654    { X86::VINSERTI64x4Zrrkz,     X86::VINSERTI64x4Zrmkz,     0 },
2655    { X86::VMAXCPDZrrkz,          X86::VMAXCPDZrmkz,          0 },
2656    { X86::VMAXCPSZrrkz,          X86::VMAXCPSZrmkz,          0 },
2657    { X86::VMAXPDZrrkz,           X86::VMAXPDZrmkz,           0 },
2658    { X86::VMAXPSZrrkz,           X86::VMAXPSZrmkz,           0 },
2659    { X86::VMAXSDZrr_Intkz,       X86::VMAXSDZrm_Intkz,       0 },
2660    { X86::VMAXSSZrr_Intkz,       X86::VMAXSSZrm_Intkz,       0 },
2661    { X86::VMINCPDZrrkz,          X86::VMINCPDZrmkz,          0 },
2662    { X86::VMINCPSZrrkz,          X86::VMINCPSZrmkz,          0 },
2663    { X86::VMINPDZrrkz,           X86::VMINPDZrmkz,           0 },
2664    { X86::VMINPSZrrkz,           X86::VMINPSZrmkz,           0 },
2665    { X86::VMINSDZrr_Intkz,       X86::VMINSDZrm_Intkz,       0 },
2666    { X86::VMINSSZrr_Intkz,       X86::VMINSSZrm_Intkz,       0 },
2667    { X86::VMULPDZrrkz,           X86::VMULPDZrmkz,           0 },
2668    { X86::VMULPSZrrkz,           X86::VMULPSZrmkz,           0 },
2669    { X86::VMULSDZrr_Intkz,       X86::VMULSDZrm_Intkz,       TB_NO_REVERSE },
2670    { X86::VMULSSZrr_Intkz,       X86::VMULSSZrm_Intkz,       TB_NO_REVERSE },
2671    { X86::VORPDZrrkz,            X86::VORPDZrmkz,            0 },
2672    { X86::VORPSZrrkz,            X86::VORPSZrmkz,            0 },
2673    { X86::VPACKSSDWZrrkz,        X86::VPACKSSDWZrmkz,        0 },
2674    { X86::VPACKSSWBZrrkz,        X86::VPACKSSWBZrmkz,        0 },
2675    { X86::VPACKUSDWZrrkz,        X86::VPACKUSDWZrmkz,        0 },
2676    { X86::VPACKUSWBZrrkz,        X86::VPACKUSWBZrmkz,        0 },
2677    { X86::VPADDBZrrkz,           X86::VPADDBZrmkz,           0 },
2678    { X86::VPADDDZrrkz,           X86::VPADDDZrmkz,           0 },
2679    { X86::VPADDQZrrkz,           X86::VPADDQZrmkz,           0 },
2680    { X86::VPADDSBZrrkz,          X86::VPADDSBZrmkz,          0 },
2681    { X86::VPADDSWZrrkz,          X86::VPADDSWZrmkz,          0 },
2682    { X86::VPADDUSBZrrkz,         X86::VPADDUSBZrmkz,         0 },
2683    { X86::VPADDUSWZrrkz,         X86::VPADDUSWZrmkz,         0 },
2684    { X86::VPADDWZrrkz,           X86::VPADDWZrmkz,           0 },
2685    { X86::VPALIGNRZrrikz,        X86::VPALIGNRZrmikz,        0 },
2686    { X86::VPANDDZrrkz,           X86::VPANDDZrmkz,           0 },
2687    { X86::VPANDNDZrrkz,          X86::VPANDNDZrmkz,          0 },
2688    { X86::VPANDNQZrrkz,          X86::VPANDNQZrmkz,          0 },
2689    { X86::VPANDQZrrkz,           X86::VPANDQZrmkz,           0 },
2690    { X86::VPAVGBZrrkz,           X86::VPAVGBZrmkz,           0 },
2691    { X86::VPAVGWZrrkz,           X86::VPAVGWZrmkz,           0 },
2692    { X86::VPERMBZrrkz,           X86::VPERMBZrmkz,           0 },
2693    { X86::VPERMDZrrkz,           X86::VPERMDZrmkz,           0 },
2694    { X86::VPERMILPDZrrkz,        X86::VPERMILPDZrmkz,        0 },
2695    { X86::VPERMILPSZrrkz,        X86::VPERMILPSZrmkz,        0 },
2696    { X86::VPERMPDZrrkz,          X86::VPERMPDZrmkz,          0 },
2697    { X86::VPERMPSZrrkz,          X86::VPERMPSZrmkz,          0 },
2698    { X86::VPERMQZrrkz,           X86::VPERMQZrmkz,           0 },
2699    { X86::VPERMWZrrkz,           X86::VPERMWZrmkz,           0 },
2700    { X86::VPMADDUBSWZrrkz,       X86::VPMADDUBSWZrmkz,       0 },
2701    { X86::VPMADDWDZrrkz,         X86::VPMADDWDZrmkz,         0 },
2702    { X86::VPMAXSBZrrkz,          X86::VPMAXSBZrmkz,          0 },
2703    { X86::VPMAXSDZrrkz,          X86::VPMAXSDZrmkz,          0 },
2704    { X86::VPMAXSQZrrkz,          X86::VPMAXSQZrmkz,          0 },
2705    { X86::VPMAXSWZrrkz,          X86::VPMAXSWZrmkz,          0 },
2706    { X86::VPMAXUBZrrkz,          X86::VPMAXUBZrmkz,          0 },
2707    { X86::VPMAXUDZrrkz,          X86::VPMAXUDZrmkz,          0 },
2708    { X86::VPMAXUQZrrkz,          X86::VPMAXUQZrmkz,          0 },
2709    { X86::VPMAXUWZrrkz,          X86::VPMAXUWZrmkz,          0 },
2710    { X86::VPMINSBZrrkz,          X86::VPMINSBZrmkz,          0 },
2711    { X86::VPMINSDZrrkz,          X86::VPMINSDZrmkz,          0 },
2712    { X86::VPMINSQZrrkz,          X86::VPMINSQZrmkz,          0 },
2713    { X86::VPMINSWZrrkz,          X86::VPMINSWZrmkz,          0 },
2714    { X86::VPMINUBZrrkz,          X86::VPMINUBZrmkz,          0 },
2715    { X86::VPMINUDZrrkz,          X86::VPMINUDZrmkz,          0 },
2716    { X86::VPMINUQZrrkz,          X86::VPMINUQZrmkz,          0 },
2717    { X86::VPMINUWZrrkz,          X86::VPMINUWZrmkz,          0 },
2718    { X86::VPMULLDZrrkz,          X86::VPMULLDZrmkz,          0 },
2719    { X86::VPMULLQZrrkz,          X86::VPMULLQZrmkz,          0 },
2720    { X86::VPMULLWZrrkz,          X86::VPMULLWZrmkz,          0 },
2721    { X86::VPMULDQZrrkz,          X86::VPMULDQZrmkz,          0 },
2722    { X86::VPMULUDQZrrkz,         X86::VPMULUDQZrmkz,         0 },
2723    { X86::VPORDZrrkz,            X86::VPORDZrmkz,            0 },
2724    { X86::VPORQZrrkz,            X86::VPORQZrmkz,            0 },
2725    { X86::VPSHUFBZrrkz,          X86::VPSHUFBZrmkz,          0 },
2726    { X86::VPSLLDZrrkz,           X86::VPSLLDZrmkz,           0 },
2727    { X86::VPSLLQZrrkz,           X86::VPSLLQZrmkz,           0 },
2728    { X86::VPSLLVDZrrkz,          X86::VPSLLVDZrmkz,          0 },
2729    { X86::VPSLLVQZrrkz,          X86::VPSLLVQZrmkz,          0 },
2730    { X86::VPSLLVWZrrkz,          X86::VPSLLVWZrmkz,          0 },
2731    { X86::VPSLLWZrrkz,           X86::VPSLLWZrmkz,           0 },
2732    { X86::VPSRADZrrkz,           X86::VPSRADZrmkz,           0 },
2733    { X86::VPSRAQZrrkz,           X86::VPSRAQZrmkz,           0 },
2734    { X86::VPSRAVDZrrkz,          X86::VPSRAVDZrmkz,          0 },
2735    { X86::VPSRAVQZrrkz,          X86::VPSRAVQZrmkz,          0 },
2736    { X86::VPSRAVWZrrkz,          X86::VPSRAVWZrmkz,          0 },
2737    { X86::VPSRAWZrrkz,           X86::VPSRAWZrmkz,           0 },
2738    { X86::VPSRLDZrrkz,           X86::VPSRLDZrmkz,           0 },
2739    { X86::VPSRLQZrrkz,           X86::VPSRLQZrmkz,           0 },
2740    { X86::VPSRLVDZrrkz,          X86::VPSRLVDZrmkz,          0 },
2741    { X86::VPSRLVQZrrkz,          X86::VPSRLVQZrmkz,          0 },
2742    { X86::VPSRLVWZrrkz,          X86::VPSRLVWZrmkz,          0 },
2743    { X86::VPSRLWZrrkz,           X86::VPSRLWZrmkz,           0 },
2744    { X86::VPSUBBZrrkz,           X86::VPSUBBZrmkz,           0 },
2745    { X86::VPSUBDZrrkz,           X86::VPSUBDZrmkz,           0 },
2746    { X86::VPSUBQZrrkz,           X86::VPSUBQZrmkz,           0 },
2747    { X86::VPSUBSBZrrkz,          X86::VPSUBSBZrmkz,          0 },
2748    { X86::VPSUBSWZrrkz,          X86::VPSUBSWZrmkz,          0 },
2749    { X86::VPSUBUSBZrrkz,         X86::VPSUBUSBZrmkz,         0 },
2750    { X86::VPSUBUSWZrrkz,         X86::VPSUBUSWZrmkz,         0 },
2751    { X86::VPSUBWZrrkz,           X86::VPSUBWZrmkz,           0 },
2752    { X86::VPUNPCKHBWZrrkz,       X86::VPUNPCKHBWZrmkz,       0 },
2753    { X86::VPUNPCKHDQZrrkz,       X86::VPUNPCKHDQZrmkz,       0 },
2754    { X86::VPUNPCKHQDQZrrkz,      X86::VPUNPCKHQDQZrmkz,      0 },
2755    { X86::VPUNPCKHWDZrrkz,       X86::VPUNPCKHWDZrmkz,       0 },
2756    { X86::VPUNPCKLBWZrrkz,       X86::VPUNPCKLBWZrmkz,       0 },
2757    { X86::VPUNPCKLDQZrrkz,       X86::VPUNPCKLDQZrmkz,       0 },
2758    { X86::VPUNPCKLQDQZrrkz,      X86::VPUNPCKLQDQZrmkz,      0 },
2759    { X86::VPUNPCKLWDZrrkz,       X86::VPUNPCKLWDZrmkz,       0 },
2760    { X86::VPXORDZrrkz,           X86::VPXORDZrmkz,           0 },
2761    { X86::VPXORQZrrkz,           X86::VPXORQZrmkz,           0 },
2762    { X86::VSHUFPDZrrikz,         X86::VSHUFPDZrmikz,         0 },
2763    { X86::VSHUFPSZrrikz,         X86::VSHUFPSZrmikz,         0 },
2764    { X86::VSUBPDZrrkz,           X86::VSUBPDZrmkz,           0 },
2765    { X86::VSUBPSZrrkz,           X86::VSUBPSZrmkz,           0 },
2766    { X86::VSUBSDZrr_Intkz,       X86::VSUBSDZrm_Intkz,       TB_NO_REVERSE },
2767    { X86::VSUBSSZrr_Intkz,       X86::VSUBSSZrm_Intkz,       TB_NO_REVERSE },
2768    { X86::VUNPCKHPDZrrkz,        X86::VUNPCKHPDZrmkz,        0 },
2769    { X86::VUNPCKHPSZrrkz,        X86::VUNPCKHPSZrmkz,        0 },
2770    { X86::VUNPCKLPDZrrkz,        X86::VUNPCKLPDZrmkz,        0 },
2771    { X86::VUNPCKLPSZrrkz,        X86::VUNPCKLPSZrmkz,        0 },
2772    { X86::VXORPDZrrkz,           X86::VXORPDZrmkz,           0 },
2773    { X86::VXORPSZrrkz,           X86::VXORPSZrmkz,           0 },
2774
2775    // AVX-512{F,VL} masked arithmetic instructions 256-bit
2776    { X86::VADDPDZ256rrkz,        X86::VADDPDZ256rmkz,        0 },
2777    { X86::VADDPSZ256rrkz,        X86::VADDPSZ256rmkz,        0 },
2778    { X86::VALIGNDZ256rrikz,      X86::VALIGNDZ256rmikz,      0 },
2779    { X86::VALIGNQZ256rrikz,      X86::VALIGNQZ256rmikz,      0 },
2780    { X86::VANDNPDZ256rrkz,       X86::VANDNPDZ256rmkz,       0 },
2781    { X86::VANDNPSZ256rrkz,       X86::VANDNPSZ256rmkz,       0 },
2782    { X86::VANDPDZ256rrkz,        X86::VANDPDZ256rmkz,        0 },
2783    { X86::VANDPSZ256rrkz,        X86::VANDPSZ256rmkz,        0 },
2784    { X86::VDIVPDZ256rrkz,        X86::VDIVPDZ256rmkz,        0 },
2785    { X86::VDIVPSZ256rrkz,        X86::VDIVPSZ256rmkz,        0 },
2786    { X86::VINSERTF32x4Z256rrkz,  X86::VINSERTF32x4Z256rmkz,  0 },
2787    { X86::VINSERTF64x2Z256rrkz,  X86::VINSERTF64x2Z256rmkz,  0 },
2788    { X86::VINSERTI32x4Z256rrkz,  X86::VINSERTI32x4Z256rmkz,  0 },
2789    { X86::VINSERTI64x2Z256rrkz,  X86::VINSERTI64x2Z256rmkz,  0 },
2790    { X86::VMAXCPDZ256rrkz,       X86::VMAXCPDZ256rmkz,       0 },
2791    { X86::VMAXCPSZ256rrkz,       X86::VMAXCPSZ256rmkz,       0 },
2792    { X86::VMAXPDZ256rrkz,        X86::VMAXPDZ256rmkz,        0 },
2793    { X86::VMAXPSZ256rrkz,        X86::VMAXPSZ256rmkz,        0 },
2794    { X86::VMINCPDZ256rrkz,       X86::VMINCPDZ256rmkz,       0 },
2795    { X86::VMINCPSZ256rrkz,       X86::VMINCPSZ256rmkz,       0 },
2796    { X86::VMINPDZ256rrkz,        X86::VMINPDZ256rmkz,        0 },
2797    { X86::VMINPSZ256rrkz,        X86::VMINPSZ256rmkz,        0 },
2798    { X86::VMULPDZ256rrkz,        X86::VMULPDZ256rmkz,        0 },
2799    { X86::VMULPSZ256rrkz,        X86::VMULPSZ256rmkz,        0 },
2800    { X86::VORPDZ256rrkz,         X86::VORPDZ256rmkz,         0 },
2801    { X86::VORPSZ256rrkz,         X86::VORPSZ256rmkz,         0 },
2802    { X86::VPACKSSDWZ256rrkz,     X86::VPACKSSDWZ256rmkz,     0 },
2803    { X86::VPACKSSWBZ256rrkz,     X86::VPACKSSWBZ256rmkz,     0 },
2804    { X86::VPACKUSDWZ256rrkz,     X86::VPACKUSDWZ256rmkz,     0 },
2805    { X86::VPACKUSWBZ256rrkz,     X86::VPACKUSWBZ256rmkz,     0 },
2806    { X86::VPADDBZ256rrkz,        X86::VPADDBZ256rmkz,        0 },
2807    { X86::VPADDDZ256rrkz,        X86::VPADDDZ256rmkz,        0 },
2808    { X86::VPADDQZ256rrkz,        X86::VPADDQZ256rmkz,        0 },
2809    { X86::VPADDSBZ256rrkz,       X86::VPADDSBZ256rmkz,       0 },
2810    { X86::VPADDSWZ256rrkz,       X86::VPADDSWZ256rmkz,       0 },
2811    { X86::VPADDUSBZ256rrkz,      X86::VPADDUSBZ256rmkz,      0 },
2812    { X86::VPADDUSWZ256rrkz,      X86::VPADDUSWZ256rmkz,      0 },
2813    { X86::VPADDWZ256rrkz,        X86::VPADDWZ256rmkz,        0 },
2814    { X86::VPALIGNRZ256rrikz,     X86::VPALIGNRZ256rmikz,     0 },
2815    { X86::VPANDDZ256rrkz,        X86::VPANDDZ256rmkz,        0 },
2816    { X86::VPANDNDZ256rrkz,       X86::VPANDNDZ256rmkz,       0 },
2817    { X86::VPANDNQZ256rrkz,       X86::VPANDNQZ256rmkz,       0 },
2818    { X86::VPANDQZ256rrkz,        X86::VPANDQZ256rmkz,        0 },
2819    { X86::VPAVGBZ256rrkz,        X86::VPAVGBZ256rmkz,        0 },
2820    { X86::VPAVGWZ256rrkz,        X86::VPAVGWZ256rmkz,        0 },
2821    { X86::VPERMBZ256rrkz,        X86::VPERMBZ256rmkz,        0 },
2822    { X86::VPERMDZ256rrkz,        X86::VPERMDZ256rmkz,        0 },
2823    { X86::VPERMILPDZ256rrkz,     X86::VPERMILPDZ256rmkz,     0 },
2824    { X86::VPERMILPSZ256rrkz,     X86::VPERMILPSZ256rmkz,     0 },
2825    { X86::VPERMPDZ256rrkz,       X86::VPERMPDZ256rmkz,       0 },
2826    { X86::VPERMPSZ256rrkz,       X86::VPERMPSZ256rmkz,       0 },
2827    { X86::VPERMQZ256rrkz,        X86::VPERMQZ256rmkz,        0 },
2828    { X86::VPERMWZ256rrkz,        X86::VPERMWZ256rmkz,        0 },
2829    { X86::VPMADDUBSWZ256rrkz,    X86::VPMADDUBSWZ256rmkz,    0 },
2830    { X86::VPMADDWDZ256rrkz,      X86::VPMADDWDZ256rmkz,      0 },
2831    { X86::VPMAXSBZ256rrkz,       X86::VPMAXSBZ256rmkz,       0 },
2832    { X86::VPMAXSDZ256rrkz,       X86::VPMAXSDZ256rmkz,       0 },
2833    { X86::VPMAXSQZ256rrkz,       X86::VPMAXSQZ256rmkz,       0 },
2834    { X86::VPMAXSWZ256rrkz,       X86::VPMAXSWZ256rmkz,       0 },
2835    { X86::VPMAXUBZ256rrkz,       X86::VPMAXUBZ256rmkz,       0 },
2836    { X86::VPMAXUDZ256rrkz,       X86::VPMAXUDZ256rmkz,       0 },
2837    { X86::VPMAXUQZ256rrkz,       X86::VPMAXUQZ256rmkz,       0 },
2838    { X86::VPMAXUWZ256rrkz,       X86::VPMAXUWZ256rmkz,       0 },
2839    { X86::VPMINSBZ256rrkz,       X86::VPMINSBZ256rmkz,       0 },
2840    { X86::VPMINSDZ256rrkz,       X86::VPMINSDZ256rmkz,       0 },
2841    { X86::VPMINSQZ256rrkz,       X86::VPMINSQZ256rmkz,       0 },
2842    { X86::VPMINSWZ256rrkz,       X86::VPMINSWZ256rmkz,       0 },
2843    { X86::VPMINUBZ256rrkz,       X86::VPMINUBZ256rmkz,       0 },
2844    { X86::VPMINUDZ256rrkz,       X86::VPMINUDZ256rmkz,       0 },
2845    { X86::VPMINUQZ256rrkz,       X86::VPMINUQZ256rmkz,       0 },
2846    { X86::VPMINUWZ256rrkz,       X86::VPMINUWZ256rmkz,       0 },
2847    { X86::VPMULDQZ256rrkz,       X86::VPMULDQZ256rmkz,       0 },
2848    { X86::VPMULLDZ256rrkz,       X86::VPMULLDZ256rmkz,       0 },
2849    { X86::VPMULLQZ256rrkz,       X86::VPMULLQZ256rmkz,       0 },
2850    { X86::VPMULLWZ256rrkz,       X86::VPMULLWZ256rmkz,       0 },
2851    { X86::VPMULUDQZ256rrkz,      X86::VPMULUDQZ256rmkz,      0 },
2852    { X86::VPORDZ256rrkz,         X86::VPORDZ256rmkz,         0 },
2853    { X86::VPORQZ256rrkz,         X86::VPORQZ256rmkz,         0 },
2854    { X86::VPSHUFBZ256rrkz,       X86::VPSHUFBZ256rmkz,       0 },
2855    { X86::VPSLLDZ256rrkz,        X86::VPSLLDZ256rmkz,        0 },
2856    { X86::VPSLLQZ256rrkz,        X86::VPSLLQZ256rmkz,        0 },
2857    { X86::VPSLLVDZ256rrkz,       X86::VPSLLVDZ256rmkz,       0 },
2858    { X86::VPSLLVQZ256rrkz,       X86::VPSLLVQZ256rmkz,       0 },
2859    { X86::VPSLLVWZ256rrkz,       X86::VPSLLVWZ256rmkz,       0 },
2860    { X86::VPSLLWZ256rrkz,        X86::VPSLLWZ256rmkz,        0 },
2861    { X86::VPSRADZ256rrkz,        X86::VPSRADZ256rmkz,        0 },
2862    { X86::VPSRAQZ256rrkz,        X86::VPSRAQZ256rmkz,        0 },
2863    { X86::VPSRAVDZ256rrkz,       X86::VPSRAVDZ256rmkz,       0 },
2864    { X86::VPSRAVQZ256rrkz,       X86::VPSRAVQZ256rmkz,       0 },
2865    { X86::VPSRAVWZ256rrkz,       X86::VPSRAVWZ256rmkz,       0 },
2866    { X86::VPSRAWZ256rrkz,        X86::VPSRAWZ256rmkz,        0 },
2867    { X86::VPSRLDZ256rrkz,        X86::VPSRLDZ256rmkz,        0 },
2868    { X86::VPSRLQZ256rrkz,        X86::VPSRLQZ256rmkz,        0 },
2869    { X86::VPSRLVDZ256rrkz,       X86::VPSRLVDZ256rmkz,       0 },
2870    { X86::VPSRLVQZ256rrkz,       X86::VPSRLVQZ256rmkz,       0 },
2871    { X86::VPSRLVWZ256rrkz,       X86::VPSRLVWZ256rmkz,       0 },
2872    { X86::VPSRLWZ256rrkz,        X86::VPSRLWZ256rmkz,        0 },
2873    { X86::VPSUBBZ256rrkz,        X86::VPSUBBZ256rmkz,        0 },
2874    { X86::VPSUBDZ256rrkz,        X86::VPSUBDZ256rmkz,        0 },
2875    { X86::VPSUBQZ256rrkz,        X86::VPSUBQZ256rmkz,        0 },
2876    { X86::VPSUBSBZ256rrkz,       X86::VPSUBSBZ256rmkz,       0 },
2877    { X86::VPSUBSWZ256rrkz,       X86::VPSUBSWZ256rmkz,       0 },
2878    { X86::VPSUBUSBZ256rrkz,      X86::VPSUBUSBZ256rmkz,      0 },
2879    { X86::VPSUBUSWZ256rrkz,      X86::VPSUBUSWZ256rmkz,      0 },
2880    { X86::VPSUBWZ256rrkz,        X86::VPSUBWZ256rmkz,        0 },
2881    { X86::VPUNPCKHBWZ256rrkz,    X86::VPUNPCKHBWZ256rmkz,    0 },
2882    { X86::VPUNPCKHDQZ256rrkz,    X86::VPUNPCKHDQZ256rmkz,    0 },
2883    { X86::VPUNPCKHQDQZ256rrkz,   X86::VPUNPCKHQDQZ256rmkz,   0 },
2884    { X86::VPUNPCKHWDZ256rrkz,    X86::VPUNPCKHWDZ256rmkz,    0 },
2885    { X86::VPUNPCKLBWZ256rrkz,    X86::VPUNPCKLBWZ256rmkz,    0 },
2886    { X86::VPUNPCKLDQZ256rrkz,    X86::VPUNPCKLDQZ256rmkz,    0 },
2887    { X86::VPUNPCKLQDQZ256rrkz,   X86::VPUNPCKLQDQZ256rmkz,   0 },
2888    { X86::VPUNPCKLWDZ256rrkz,    X86::VPUNPCKLWDZ256rmkz,    0 },
2889    { X86::VPXORDZ256rrkz,        X86::VPXORDZ256rmkz,        0 },
2890    { X86::VPXORQZ256rrkz,        X86::VPXORQZ256rmkz,        0 },
2891    { X86::VSHUFPDZ256rrikz,      X86::VSHUFPDZ256rmikz,      0 },
2892    { X86::VSHUFPSZ256rrikz,      X86::VSHUFPSZ256rmikz,      0 },
2893    { X86::VSUBPDZ256rrkz,        X86::VSUBPDZ256rmkz,        0 },
2894    { X86::VSUBPSZ256rrkz,        X86::VSUBPSZ256rmkz,        0 },
2895    { X86::VUNPCKHPDZ256rrkz,     X86::VUNPCKHPDZ256rmkz,     0 },
2896    { X86::VUNPCKHPSZ256rrkz,     X86::VUNPCKHPSZ256rmkz,     0 },
2897    { X86::VUNPCKLPDZ256rrkz,     X86::VUNPCKLPDZ256rmkz,     0 },
2898    { X86::VUNPCKLPSZ256rrkz,     X86::VUNPCKLPSZ256rmkz,     0 },
2899    { X86::VXORPDZ256rrkz,        X86::VXORPDZ256rmkz,        0 },
2900    { X86::VXORPSZ256rrkz,        X86::VXORPSZ256rmkz,        0 },
2901
2902    // AVX-512{F,VL} masked arithmetic instructions 128-bit
2903    { X86::VADDPDZ128rrkz,        X86::VADDPDZ128rmkz,        0 },
2904    { X86::VADDPSZ128rrkz,        X86::VADDPSZ128rmkz,        0 },
2905    { X86::VALIGNDZ128rrikz,      X86::VALIGNDZ128rmikz,      0 },
2906    { X86::VALIGNQZ128rrikz,      X86::VALIGNQZ128rmikz,      0 },
2907    { X86::VANDNPDZ128rrkz,       X86::VANDNPDZ128rmkz,       0 },
2908    { X86::VANDNPSZ128rrkz,       X86::VANDNPSZ128rmkz,       0 },
2909    { X86::VANDPDZ128rrkz,        X86::VANDPDZ128rmkz,        0 },
2910    { X86::VANDPSZ128rrkz,        X86::VANDPSZ128rmkz,        0 },
2911    { X86::VDIVPDZ128rrkz,        X86::VDIVPDZ128rmkz,        0 },
2912    { X86::VDIVPSZ128rrkz,        X86::VDIVPSZ128rmkz,        0 },
2913    { X86::VMAXCPDZ128rrkz,       X86::VMAXCPDZ128rmkz,       0 },
2914    { X86::VMAXCPSZ128rrkz,       X86::VMAXCPSZ128rmkz,       0 },
2915    { X86::VMAXPDZ128rrkz,        X86::VMAXPDZ128rmkz,        0 },
2916    { X86::VMAXPSZ128rrkz,        X86::VMAXPSZ128rmkz,        0 },
2917    { X86::VMINCPDZ128rrkz,       X86::VMINCPDZ128rmkz,       0 },
2918    { X86::VMINCPSZ128rrkz,       X86::VMINCPSZ128rmkz,       0 },
2919    { X86::VMINPDZ128rrkz,        X86::VMINPDZ128rmkz,        0 },
2920    { X86::VMINPSZ128rrkz,        X86::VMINPSZ128rmkz,        0 },
2921    { X86::VMULPDZ128rrkz,        X86::VMULPDZ128rmkz,        0 },
2922    { X86::VMULPSZ128rrkz,        X86::VMULPSZ128rmkz,        0 },
2923    { X86::VORPDZ128rrkz,         X86::VORPDZ128rmkz,         0 },
2924    { X86::VORPSZ128rrkz,         X86::VORPSZ128rmkz,         0 },
2925    { X86::VPACKSSDWZ128rrkz,     X86::VPACKSSDWZ128rmkz,     0 },
2926    { X86::VPACKSSWBZ128rrkz,     X86::VPACKSSWBZ128rmkz,     0 },
2927    { X86::VPACKUSDWZ128rrkz,     X86::VPACKUSDWZ128rmkz,     0 },
2928    { X86::VPACKUSWBZ128rrkz,     X86::VPACKUSWBZ128rmkz,     0 },
2929    { X86::VPADDBZ128rrkz,        X86::VPADDBZ128rmkz,        0 },
2930    { X86::VPADDDZ128rrkz,        X86::VPADDDZ128rmkz,        0 },
2931    { X86::VPADDQZ128rrkz,        X86::VPADDQZ128rmkz,        0 },
2932    { X86::VPADDSBZ128rrkz,       X86::VPADDSBZ128rmkz,       0 },
2933    { X86::VPADDSWZ128rrkz,       X86::VPADDSWZ128rmkz,       0 },
2934    { X86::VPADDUSBZ128rrkz,      X86::VPADDUSBZ128rmkz,      0 },
2935    { X86::VPADDUSWZ128rrkz,      X86::VPADDUSWZ128rmkz,      0 },
2936    { X86::VPADDWZ128rrkz,        X86::VPADDWZ128rmkz,        0 },
2937    { X86::VPALIGNRZ128rrikz,     X86::VPALIGNRZ128rmikz,     0 },
2938    { X86::VPANDDZ128rrkz,        X86::VPANDDZ128rmkz,        0 },
2939    { X86::VPANDNDZ128rrkz,       X86::VPANDNDZ128rmkz,       0 },
2940    { X86::VPANDNQZ128rrkz,       X86::VPANDNQZ128rmkz,       0 },
2941    { X86::VPANDQZ128rrkz,        X86::VPANDQZ128rmkz,        0 },
2942    { X86::VPAVGBZ128rrkz,        X86::VPAVGBZ128rmkz,        0 },
2943    { X86::VPAVGWZ128rrkz,        X86::VPAVGWZ128rmkz,        0 },
2944    { X86::VPERMBZ128rrkz,        X86::VPERMBZ128rmkz,        0 },
2945    { X86::VPERMILPDZ128rrkz,     X86::VPERMILPDZ128rmkz,     0 },
2946    { X86::VPERMILPSZ128rrkz,     X86::VPERMILPSZ128rmkz,     0 },
2947    { X86::VPERMWZ128rrkz,        X86::VPERMWZ128rmkz,        0 },
2948    { X86::VPMADDUBSWZ128rrkz,    X86::VPMADDUBSWZ128rmkz,    0 },
2949    { X86::VPMADDWDZ128rrkz,      X86::VPMADDWDZ128rmkz,      0 },
2950    { X86::VPMAXSBZ128rrkz,       X86::VPMAXSBZ128rmkz,       0 },
2951    { X86::VPMAXSDZ128rrkz,       X86::VPMAXSDZ128rmkz,       0 },
2952    { X86::VPMAXSQZ128rrkz,       X86::VPMAXSQZ128rmkz,       0 },
2953    { X86::VPMAXSWZ128rrkz,       X86::VPMAXSWZ128rmkz,       0 },
2954    { X86::VPMAXUBZ128rrkz,       X86::VPMAXUBZ128rmkz,       0 },
2955    { X86::VPMAXUDZ128rrkz,       X86::VPMAXUDZ128rmkz,       0 },
2956    { X86::VPMAXUQZ128rrkz,       X86::VPMAXUQZ128rmkz,       0 },
2957    { X86::VPMAXUWZ128rrkz,       X86::VPMAXUWZ128rmkz,       0 },
2958    { X86::VPMINSBZ128rrkz,       X86::VPMINSBZ128rmkz,       0 },
2959    { X86::VPMINSDZ128rrkz,       X86::VPMINSDZ128rmkz,       0 },
2960    { X86::VPMINSQZ128rrkz,       X86::VPMINSQZ128rmkz,       0 },
2961    { X86::VPMINSWZ128rrkz,       X86::VPMINSWZ128rmkz,       0 },
2962    { X86::VPMINUBZ128rrkz,       X86::VPMINUBZ128rmkz,       0 },
2963    { X86::VPMINUDZ128rrkz,       X86::VPMINUDZ128rmkz,       0 },
2964    { X86::VPMINUQZ128rrkz,       X86::VPMINUQZ128rmkz,       0 },
2965    { X86::VPMINUWZ128rrkz,       X86::VPMINUWZ128rmkz,       0 },
2966    { X86::VPMULDQZ128rrkz,       X86::VPMULDQZ128rmkz,       0 },
2967    { X86::VPMULLDZ128rrkz,       X86::VPMULLDZ128rmkz,       0 },
2968    { X86::VPMULLQZ128rrkz,       X86::VPMULLQZ128rmkz,       0 },
2969    { X86::VPMULLWZ128rrkz,       X86::VPMULLWZ128rmkz,       0 },
2970    { X86::VPMULUDQZ128rrkz,      X86::VPMULUDQZ128rmkz,      0 },
2971    { X86::VPORDZ128rrkz,         X86::VPORDZ128rmkz,         0 },
2972    { X86::VPORQZ128rrkz,         X86::VPORQZ128rmkz,         0 },
2973    { X86::VPSHUFBZ128rrkz,       X86::VPSHUFBZ128rmkz,       0 },
2974    { X86::VPSLLDZ128rrkz,        X86::VPSLLDZ128rmkz,        0 },
2975    { X86::VPSLLQZ128rrkz,        X86::VPSLLQZ128rmkz,        0 },
2976    { X86::VPSLLVDZ128rrkz,       X86::VPSLLVDZ128rmkz,       0 },
2977    { X86::VPSLLVQZ128rrkz,       X86::VPSLLVQZ128rmkz,       0 },
2978    { X86::VPSLLVWZ128rrkz,       X86::VPSLLVWZ128rmkz,       0 },
2979    { X86::VPSLLWZ128rrkz,        X86::VPSLLWZ128rmkz,        0 },
2980    { X86::VPSRADZ128rrkz,        X86::VPSRADZ128rmkz,        0 },
2981    { X86::VPSRAQZ128rrkz,        X86::VPSRAQZ128rmkz,        0 },
2982    { X86::VPSRAVDZ128rrkz,       X86::VPSRAVDZ128rmkz,       0 },
2983    { X86::VPSRAVQZ128rrkz,       X86::VPSRAVQZ128rmkz,       0 },
2984    { X86::VPSRAVWZ128rrkz,       X86::VPSRAVWZ128rmkz,       0 },
2985    { X86::VPSRAWZ128rrkz,        X86::VPSRAWZ128rmkz,        0 },
2986    { X86::VPSRLDZ128rrkz,        X86::VPSRLDZ128rmkz,        0 },
2987    { X86::VPSRLQZ128rrkz,        X86::VPSRLQZ128rmkz,        0 },
2988    { X86::VPSRLVDZ128rrkz,       X86::VPSRLVDZ128rmkz,       0 },
2989    { X86::VPSRLVQZ128rrkz,       X86::VPSRLVQZ128rmkz,       0 },
2990    { X86::VPSRLVWZ128rrkz,       X86::VPSRLVWZ128rmkz,       0 },
2991    { X86::VPSRLWZ128rrkz,        X86::VPSRLWZ128rmkz,        0 },
2992    { X86::VPSUBBZ128rrkz,        X86::VPSUBBZ128rmkz,        0 },
2993    { X86::VPSUBDZ128rrkz,        X86::VPSUBDZ128rmkz,        0 },
2994    { X86::VPSUBQZ128rrkz,        X86::VPSUBQZ128rmkz,        0 },
2995    { X86::VPSUBSBZ128rrkz,       X86::VPSUBSBZ128rmkz,       0 },
2996    { X86::VPSUBSWZ128rrkz,       X86::VPSUBSWZ128rmkz,       0 },
2997    { X86::VPSUBUSBZ128rrkz,      X86::VPSUBUSBZ128rmkz,      0 },
2998    { X86::VPSUBUSWZ128rrkz,      X86::VPSUBUSWZ128rmkz,      0 },
2999    { X86::VPSUBWZ128rrkz,        X86::VPSUBWZ128rmkz,        0 },
3000    { X86::VPUNPCKHBWZ128rrkz,    X86::VPUNPCKHBWZ128rmkz,    0 },
3001    { X86::VPUNPCKHDQZ128rrkz,    X86::VPUNPCKHDQZ128rmkz,    0 },
3002    { X86::VPUNPCKHQDQZ128rrkz,   X86::VPUNPCKHQDQZ128rmkz,   0 },
3003    { X86::VPUNPCKHWDZ128rrkz,    X86::VPUNPCKHWDZ128rmkz,    0 },
3004    { X86::VPUNPCKLBWZ128rrkz,    X86::VPUNPCKLBWZ128rmkz,    0 },
3005    { X86::VPUNPCKLDQZ128rrkz,    X86::VPUNPCKLDQZ128rmkz,    0 },
3006    { X86::VPUNPCKLQDQZ128rrkz,   X86::VPUNPCKLQDQZ128rmkz,   0 },
3007    { X86::VPUNPCKLWDZ128rrkz,    X86::VPUNPCKLWDZ128rmkz,    0 },
3008    { X86::VPXORDZ128rrkz,        X86::VPXORDZ128rmkz,        0 },
3009    { X86::VPXORQZ128rrkz,        X86::VPXORQZ128rmkz,        0 },
3010    { X86::VSHUFPDZ128rrikz,      X86::VSHUFPDZ128rmikz,      0 },
3011    { X86::VSHUFPSZ128rrikz,      X86::VSHUFPSZ128rmikz,      0 },
3012    { X86::VSUBPDZ128rrkz,        X86::VSUBPDZ128rmkz,        0 },
3013    { X86::VSUBPSZ128rrkz,        X86::VSUBPSZ128rmkz,        0 },
3014    { X86::VUNPCKHPDZ128rrkz,     X86::VUNPCKHPDZ128rmkz,     0 },
3015    { X86::VUNPCKHPSZ128rrkz,     X86::VUNPCKHPSZ128rmkz,     0 },
3016    { X86::VUNPCKLPDZ128rrkz,     X86::VUNPCKLPDZ128rmkz,     0 },
3017    { X86::VUNPCKLPSZ128rrkz,     X86::VUNPCKLPSZ128rmkz,     0 },
3018    { X86::VXORPDZ128rrkz,        X86::VXORPDZ128rmkz,        0 },
3019    { X86::VXORPSZ128rrkz,        X86::VXORPSZ128rmkz,        0 },
3020
3021    // AVX-512 masked foldable instructions
3022    { X86::VBROADCASTSSZrk,       X86::VBROADCASTSSZmk,       TB_NO_REVERSE },
3023    { X86::VBROADCASTSDZrk,       X86::VBROADCASTSDZmk,       TB_NO_REVERSE },
3024    { X86::VPABSBZrrk,            X86::VPABSBZrmk,            0 },
3025    { X86::VPABSDZrrk,            X86::VPABSDZrmk,            0 },
3026    { X86::VPABSQZrrk,            X86::VPABSQZrmk,            0 },
3027    { X86::VPABSWZrrk,            X86::VPABSWZrmk,            0 },
3028    { X86::VPCONFLICTDZrrk,       X86::VPCONFLICTDZrmk,       0 },
3029    { X86::VPCONFLICTQZrrk,       X86::VPCONFLICTQZrmk,       0 },
3030    { X86::VPERMILPDZrik,         X86::VPERMILPDZmik,         0 },
3031    { X86::VPERMILPSZrik,         X86::VPERMILPSZmik,         0 },
3032    { X86::VPERMPDZrik,           X86::VPERMPDZmik,           0 },
3033    { X86::VPERMQZrik,            X86::VPERMQZmik,            0 },
3034    { X86::VPLZCNTDZrrk,          X86::VPLZCNTDZrmk,          0 },
3035    { X86::VPLZCNTQZrrk,          X86::VPLZCNTQZrmk,          0 },
3036    { X86::VPMOVSXBDZrrk,         X86::VPMOVSXBDZrmk,         0 },
3037    { X86::VPMOVSXBQZrrk,         X86::VPMOVSXBQZrmk,         TB_NO_REVERSE },
3038    { X86::VPMOVSXBWZrrk,         X86::VPMOVSXBWZrmk,         0 },
3039    { X86::VPMOVSXDQZrrk,         X86::VPMOVSXDQZrmk,         0 },
3040    { X86::VPMOVSXWDZrrk,         X86::VPMOVSXWDZrmk,         0 },
3041    { X86::VPMOVSXWQZrrk,         X86::VPMOVSXWQZrmk,         0 },
3042    { X86::VPMOVZXBDZrrk,         X86::VPMOVZXBDZrmk,         0 },
3043    { X86::VPMOVZXBQZrrk,         X86::VPMOVZXBQZrmk,         TB_NO_REVERSE },
3044    { X86::VPMOVZXBWZrrk,         X86::VPMOVZXBWZrmk,         0 },
3045    { X86::VPMOVZXDQZrrk,         X86::VPMOVZXDQZrmk,         0 },
3046    { X86::VPMOVZXWDZrrk,         X86::VPMOVZXWDZrmk,         0 },
3047    { X86::VPMOVZXWQZrrk,         X86::VPMOVZXWQZrmk,         0 },
3048    { X86::VPOPCNTDZrrk,          X86::VPOPCNTDZrmk,          0 },
3049    { X86::VPOPCNTQZrrk,          X86::VPOPCNTQZrmk,          0 },
3050    { X86::VPSHUFDZrik,           X86::VPSHUFDZmik,           0 },
3051    { X86::VPSHUFHWZrik,          X86::VPSHUFHWZmik,          0 },
3052    { X86::VPSHUFLWZrik,          X86::VPSHUFLWZmik,          0 },
3053    { X86::VPSLLDZrik,            X86::VPSLLDZmik,            0 },
3054    { X86::VPSLLQZrik,            X86::VPSLLQZmik,            0 },
3055    { X86::VPSLLWZrik,            X86::VPSLLWZmik,            0 },
3056    { X86::VPSRADZrik,            X86::VPSRADZmik,            0 },
3057    { X86::VPSRAQZrik,            X86::VPSRAQZmik,            0 },
3058    { X86::VPSRAWZrik,            X86::VPSRAWZmik,            0 },
3059    { X86::VPSRLDZrik,            X86::VPSRLDZmik,            0 },
3060    { X86::VPSRLQZrik,            X86::VPSRLQZmik,            0 },
3061    { X86::VPSRLWZrik,            X86::VPSRLWZmik,            0 },
3062
3063    // AVX-512VL 256-bit masked foldable instructions
3064    { X86::VBROADCASTSSZ256rk,    X86::VBROADCASTSSZ256mk,    TB_NO_REVERSE },
3065    { X86::VBROADCASTSDZ256rk,    X86::VBROADCASTSDZ256mk,    TB_NO_REVERSE },
3066    { X86::VPABSBZ256rrk,         X86::VPABSBZ256rmk,         0 },
3067    { X86::VPABSDZ256rrk,         X86::VPABSDZ256rmk,         0 },
3068    { X86::VPABSQZ256rrk,         X86::VPABSQZ256rmk,         0 },
3069    { X86::VPABSWZ256rrk,         X86::VPABSWZ256rmk,         0 },
3070    { X86::VPCONFLICTDZ256rrk,    X86::VPCONFLICTDZ256rmk,    0 },
3071    { X86::VPCONFLICTQZ256rrk,    X86::VPCONFLICTQZ256rmk,    0 },
3072    { X86::VPERMILPDZ256rik,      X86::VPERMILPDZ256mik,      0 },
3073    { X86::VPERMILPSZ256rik,      X86::VPERMILPSZ256mik,      0 },
3074    { X86::VPERMPDZ256rik,        X86::VPERMPDZ256mik,        0 },
3075    { X86::VPERMQZ256rik,         X86::VPERMQZ256mik,         0 },
3076    { X86::VPLZCNTDZ256rrk,       X86::VPLZCNTDZ256rmk,       0 },
3077    { X86::VPLZCNTQZ256rrk,       X86::VPLZCNTQZ256rmk,       0 },
3078    { X86::VPMOVSXBDZ256rrk,      X86::VPMOVSXBDZ256rmk,      TB_NO_REVERSE },
3079    { X86::VPMOVSXBQZ256rrk,      X86::VPMOVSXBQZ256rmk,      TB_NO_REVERSE },
3080    { X86::VPMOVSXBWZ256rrk,      X86::VPMOVSXBWZ256rmk,      0 },
3081    { X86::VPMOVSXDQZ256rrk,      X86::VPMOVSXDQZ256rmk,      0 },
3082    { X86::VPMOVSXWDZ256rrk,      X86::VPMOVSXWDZ256rmk,      0 },
3083    { X86::VPMOVSXWQZ256rrk,      X86::VPMOVSXWQZ256rmk,      TB_NO_REVERSE },
3084    { X86::VPMOVZXBDZ256rrk,      X86::VPMOVZXBDZ256rmk,      TB_NO_REVERSE },
3085    { X86::VPMOVZXBQZ256rrk,      X86::VPMOVZXBQZ256rmk,      TB_NO_REVERSE },
3086    { X86::VPMOVZXBWZ256rrk,      X86::VPMOVZXBWZ256rmk,      0 },
3087    { X86::VPMOVZXDQZ256rrk,      X86::VPMOVZXDQZ256rmk,      0 },
3088    { X86::VPMOVZXWDZ256rrk,      X86::VPMOVZXWDZ256rmk,      0 },
3089    { X86::VPMOVZXWQZ256rrk,      X86::VPMOVZXWQZ256rmk,      TB_NO_REVERSE },
3090    { X86::VPSHUFDZ256rik,        X86::VPSHUFDZ256mik,        0 },
3091    { X86::VPSHUFHWZ256rik,       X86::VPSHUFHWZ256mik,       0 },
3092    { X86::VPSHUFLWZ256rik,       X86::VPSHUFLWZ256mik,       0 },
3093    { X86::VPSLLDZ256rik,         X86::VPSLLDZ256mik,         0 },
3094    { X86::VPSLLQZ256rik,         X86::VPSLLQZ256mik,         0 },
3095    { X86::VPSLLWZ256rik,         X86::VPSLLWZ256mik,         0 },
3096    { X86::VPSRADZ256rik,         X86::VPSRADZ256mik,         0 },
3097    { X86::VPSRAQZ256rik,         X86::VPSRAQZ256mik,         0 },
3098    { X86::VPSRAWZ256rik,         X86::VPSRAWZ256mik,         0 },
3099    { X86::VPSRLDZ256rik,         X86::VPSRLDZ256mik,         0 },
3100    { X86::VPSRLQZ256rik,         X86::VPSRLQZ256mik,         0 },
3101    { X86::VPSRLWZ256rik,         X86::VPSRLWZ256mik,         0 },
3102
3103    // AVX-512VL 128-bit masked foldable instructions
3104    { X86::VBROADCASTSSZ128rk,    X86::VBROADCASTSSZ128mk,    TB_NO_REVERSE },
3105    { X86::VPABSBZ128rrk,         X86::VPABSBZ128rmk,         0 },
3106    { X86::VPABSDZ128rrk,         X86::VPABSDZ128rmk,         0 },
3107    { X86::VPABSQZ128rrk,         X86::VPABSQZ128rmk,         0 },
3108    { X86::VPABSWZ128rrk,         X86::VPABSWZ128rmk,         0 },
3109    { X86::VPCONFLICTDZ128rrk,    X86::VPCONFLICTDZ128rmk,    0 },
3110    { X86::VPCONFLICTQZ128rrk,    X86::VPCONFLICTQZ128rmk,    0 },
3111    { X86::VPERMILPDZ128rik,      X86::VPERMILPDZ128mik,      0 },
3112    { X86::VPERMILPSZ128rik,      X86::VPERMILPSZ128mik,      0 },
3113    { X86::VPLZCNTDZ128rrk,       X86::VPLZCNTDZ128rmk,       0 },
3114    { X86::VPLZCNTQZ128rrk,       X86::VPLZCNTQZ128rmk,       0 },
3115    { X86::VPMOVSXBDZ128rrk,      X86::VPMOVSXBDZ128rmk,      TB_NO_REVERSE },
3116    { X86::VPMOVSXBQZ128rrk,      X86::VPMOVSXBQZ128rmk,      TB_NO_REVERSE },
3117    { X86::VPMOVSXBWZ128rrk,      X86::VPMOVSXBWZ128rmk,      TB_NO_REVERSE },
3118    { X86::VPMOVSXDQZ128rrk,      X86::VPMOVSXDQZ128rmk,      TB_NO_REVERSE },
3119    { X86::VPMOVSXWDZ128rrk,      X86::VPMOVSXWDZ128rmk,      TB_NO_REVERSE },
3120    { X86::VPMOVSXWQZ128rrk,      X86::VPMOVSXWQZ128rmk,      TB_NO_REVERSE },
3121    { X86::VPMOVZXBDZ128rrk,      X86::VPMOVZXBDZ128rmk,      TB_NO_REVERSE },
3122    { X86::VPMOVZXBQZ128rrk,      X86::VPMOVZXBQZ128rmk,      TB_NO_REVERSE },
3123    { X86::VPMOVZXBWZ128rrk,      X86::VPMOVZXBWZ128rmk,      TB_NO_REVERSE },
3124    { X86::VPMOVZXDQZ128rrk,      X86::VPMOVZXDQZ128rmk,      TB_NO_REVERSE },
3125    { X86::VPMOVZXWDZ128rrk,      X86::VPMOVZXWDZ128rmk,      TB_NO_REVERSE },
3126    { X86::VPMOVZXWQZ128rrk,      X86::VPMOVZXWQZ128rmk,      TB_NO_REVERSE },
3127    { X86::VPSHUFDZ128rik,        X86::VPSHUFDZ128mik,        0 },
3128    { X86::VPSHUFHWZ128rik,       X86::VPSHUFHWZ128mik,       0 },
3129    { X86::VPSHUFLWZ128rik,       X86::VPSHUFLWZ128mik,       0 },
3130    { X86::VPSLLDZ128rik,         X86::VPSLLDZ128mik,         0 },
3131    { X86::VPSLLQZ128rik,         X86::VPSLLQZ128mik,         0 },
3132    { X86::VPSLLWZ128rik,         X86::VPSLLWZ128mik,         0 },
3133    { X86::VPSRADZ128rik,         X86::VPSRADZ128mik,         0 },
3134    { X86::VPSRAQZ128rik,         X86::VPSRAQZ128mik,         0 },
3135    { X86::VPSRAWZ128rik,         X86::VPSRAWZ128mik,         0 },
3136    { X86::VPSRLDZ128rik,         X86::VPSRLDZ128mik,         0 },
3137    { X86::VPSRLQZ128rik,         X86::VPSRLQZ128mik,         0 },
3138    { X86::VPSRLWZ128rik,         X86::VPSRLWZ128mik,         0 },
3139
3140    // AVX-512 masked compare instructions
3141    { X86::VCMPPDZ128rrik,        X86::VCMPPDZ128rmik,        0 },
3142    { X86::VCMPPSZ128rrik,        X86::VCMPPSZ128rmik,        0 },
3143    { X86::VCMPPDZ256rrik,        X86::VCMPPDZ256rmik,        0 },
3144    { X86::VCMPPSZ256rrik,        X86::VCMPPSZ256rmik,        0 },
3145    { X86::VCMPPDZrrik,           X86::VCMPPDZrmik,           0 },
3146    { X86::VCMPPSZrrik,           X86::VCMPPSZrmik,           0 },
3147    { X86::VCMPSDZrr_Intk,        X86::VCMPSDZrm_Intk,        TB_NO_REVERSE },
3148    { X86::VCMPSSZrr_Intk,        X86::VCMPSSZrm_Intk,        TB_NO_REVERSE },
3149    { X86::VPCMPBZ128rrik,        X86::VPCMPBZ128rmik,        0 },
3150    { X86::VPCMPBZ256rrik,        X86::VPCMPBZ256rmik,        0 },
3151    { X86::VPCMPBZrrik,           X86::VPCMPBZrmik,           0 },
3152    { X86::VPCMPDZ128rrik,        X86::VPCMPDZ128rmik,        0 },
3153    { X86::VPCMPDZ256rrik,        X86::VPCMPDZ256rmik,        0 },
3154    { X86::VPCMPDZrrik,           X86::VPCMPDZrmik,           0 },
3155    { X86::VPCMPEQBZ128rrk,       X86::VPCMPEQBZ128rmk,       0 },
3156    { X86::VPCMPEQBZ256rrk,       X86::VPCMPEQBZ256rmk,       0 },
3157    { X86::VPCMPEQBZrrk,          X86::VPCMPEQBZrmk,          0 },
3158    { X86::VPCMPEQDZ128rrk,       X86::VPCMPEQDZ128rmk,       0 },
3159    { X86::VPCMPEQDZ256rrk,       X86::VPCMPEQDZ256rmk,       0 },
3160    { X86::VPCMPEQDZrrk,          X86::VPCMPEQDZrmk,          0 },
3161    { X86::VPCMPEQQZ128rrk,       X86::VPCMPEQQZ128rmk,       0 },
3162    { X86::VPCMPEQQZ256rrk,       X86::VPCMPEQQZ256rmk,       0 },
3163    { X86::VPCMPEQQZrrk,          X86::VPCMPEQQZrmk,          0 },
3164    { X86::VPCMPEQWZ128rrk,       X86::VPCMPEQWZ128rmk,       0 },
3165    { X86::VPCMPEQWZ256rrk,       X86::VPCMPEQWZ256rmk,       0 },
3166    { X86::VPCMPEQWZrrk,          X86::VPCMPEQWZrmk,          0 },
3167    { X86::VPCMPGTBZ128rrk,       X86::VPCMPGTBZ128rmk,       0 },
3168    { X86::VPCMPGTBZ256rrk,       X86::VPCMPGTBZ256rmk,       0 },
3169    { X86::VPCMPGTBZrrk,          X86::VPCMPGTBZrmk,          0 },
3170    { X86::VPCMPGTDZ128rrk,       X86::VPCMPGTDZ128rmk,       0 },
3171    { X86::VPCMPGTDZ256rrk,       X86::VPCMPGTDZ256rmk,       0 },
3172    { X86::VPCMPGTDZrrk,          X86::VPCMPGTDZrmk,          0 },
3173    { X86::VPCMPGTQZ128rrk,       X86::VPCMPGTQZ128rmk,       0 },
3174    { X86::VPCMPGTQZ256rrk,       X86::VPCMPGTQZ256rmk,       0 },
3175    { X86::VPCMPGTQZrrk,          X86::VPCMPGTQZrmk,          0 },
3176    { X86::VPCMPGTWZ128rrk,       X86::VPCMPGTWZ128rmk,       0 },
3177    { X86::VPCMPGTWZ256rrk,       X86::VPCMPGTWZ256rmk,       0 },
3178    { X86::VPCMPGTWZrrk,          X86::VPCMPGTWZrmk,          0 },
3179    { X86::VPCMPQZ128rrik,        X86::VPCMPQZ128rmik,        0 },
3180    { X86::VPCMPQZ256rrik,        X86::VPCMPQZ256rmik,        0 },
3181    { X86::VPCMPQZrrik,           X86::VPCMPQZrmik,           0 },
3182    { X86::VPCMPUBZ128rrik,       X86::VPCMPUBZ128rmik,       0 },
3183    { X86::VPCMPUBZ256rrik,       X86::VPCMPUBZ256rmik,       0 },
3184    { X86::VPCMPUBZrrik,          X86::VPCMPUBZrmik,          0 },
3185    { X86::VPCMPUDZ128rrik,       X86::VPCMPUDZ128rmik,       0 },
3186    { X86::VPCMPUDZ256rrik,       X86::VPCMPUDZ256rmik,       0 },
3187    { X86::VPCMPUDZrrik,          X86::VPCMPUDZrmik,          0 },
3188    { X86::VPCMPUQZ128rrik,       X86::VPCMPUQZ128rmik,       0 },
3189    { X86::VPCMPUQZ256rrik,       X86::VPCMPUQZ256rmik,       0 },
3190    { X86::VPCMPUQZrrik,          X86::VPCMPUQZrmik,          0 },
3191    { X86::VPCMPUWZ128rrik,       X86::VPCMPUWZ128rmik,       0 },
3192    { X86::VPCMPUWZ256rrik,       X86::VPCMPUWZ256rmik,       0 },
3193    { X86::VPCMPUWZrrik,          X86::VPCMPUWZrmik,          0 },
3194    { X86::VPCMPWZ128rrik,        X86::VPCMPWZ128rmik,        0 },
3195    { X86::VPCMPWZ256rrik,        X86::VPCMPWZ256rmik,        0 },
3196    { X86::VPCMPWZrrik,           X86::VPCMPWZrmik,           0 },
3197  };
3198
3199  for (X86MemoryFoldTableEntry Entry : MemoryFoldTable3) {
3200    AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
3201                  Entry.RegOp, Entry.MemOp,
3202                  // Index 3, folded load
3203                  Entry.Flags | TB_INDEX_3 | TB_FOLDED_LOAD);
3204  }
3205  auto I = X86InstrFMA3Info::rm_begin();
3206  auto E = X86InstrFMA3Info::rm_end();
3207  for (; I != E; ++I) {
3208    if (!I.getGroup()->isKMasked()) {
3209      // Intrinsic forms need to pass TB_NO_REVERSE.
3210      if (I.getGroup()->isIntrinsic()) {
3211        AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
3212                      I.getRegOpcode(), I.getMemOpcode(),
3213                      TB_ALIGN_NONE | TB_INDEX_3 | TB_FOLDED_LOAD | TB_NO_REVERSE);
3214      } else {
3215        AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
3216                      I.getRegOpcode(), I.getMemOpcode(),
3217                      TB_ALIGN_NONE | TB_INDEX_3 | TB_FOLDED_LOAD);
3218      }
3219    }
3220  }
3221
3222  static const X86MemoryFoldTableEntry MemoryFoldTable4[] = {
3223    // AVX-512 foldable masked instructions
3224    { X86::VADDPDZrrk,         X86::VADDPDZrmk,           0 },
3225    { X86::VADDPSZrrk,         X86::VADDPSZrmk,           0 },
3226    { X86::VADDSDZrr_Intk,     X86::VADDSDZrm_Intk,       TB_NO_REVERSE },
3227    { X86::VADDSSZrr_Intk,     X86::VADDSSZrm_Intk,       TB_NO_REVERSE },
3228    { X86::VALIGNDZrrik,       X86::VALIGNDZrmik,         0 },
3229    { X86::VALIGNQZrrik,       X86::VALIGNQZrmik,         0 },
3230    { X86::VANDNPDZrrk,        X86::VANDNPDZrmk,          0 },
3231    { X86::VANDNPSZrrk,        X86::VANDNPSZrmk,          0 },
3232    { X86::VANDPDZrrk,         X86::VANDPDZrmk,           0 },
3233    { X86::VANDPSZrrk,         X86::VANDPSZrmk,           0 },
3234    { X86::VDIVPDZrrk,         X86::VDIVPDZrmk,           0 },
3235    { X86::VDIVPSZrrk,         X86::VDIVPSZrmk,           0 },
3236    { X86::VDIVSDZrr_Intk,     X86::VDIVSDZrm_Intk,       TB_NO_REVERSE },
3237    { X86::VDIVSSZrr_Intk,     X86::VDIVSSZrm_Intk,       TB_NO_REVERSE },
3238    { X86::VINSERTF32x4Zrrk,   X86::VINSERTF32x4Zrmk,     0 },
3239    { X86::VINSERTF32x8Zrrk,   X86::VINSERTF32x8Zrmk,     0 },
3240    { X86::VINSERTF64x2Zrrk,   X86::VINSERTF64x2Zrmk,     0 },
3241    { X86::VINSERTF64x4Zrrk,   X86::VINSERTF64x4Zrmk,     0 },
3242    { X86::VINSERTI32x4Zrrk,   X86::VINSERTI32x4Zrmk,     0 },
3243    { X86::VINSERTI32x8Zrrk,   X86::VINSERTI32x8Zrmk,     0 },
3244    { X86::VINSERTI64x2Zrrk,   X86::VINSERTI64x2Zrmk,     0 },
3245    { X86::VINSERTI64x4Zrrk,   X86::VINSERTI64x4Zrmk,     0 },
3246    { X86::VMAXCPDZrrk,        X86::VMAXCPDZrmk,          0 },
3247    { X86::VMAXCPSZrrk,        X86::VMAXCPSZrmk,          0 },
3248    { X86::VMAXPDZrrk,         X86::VMAXPDZrmk,           0 },
3249    { X86::VMAXPSZrrk,         X86::VMAXPSZrmk,           0 },
3250    { X86::VMAXSDZrr_Intk,     X86::VMAXSDZrm_Intk,       0 },
3251    { X86::VMAXSSZrr_Intk,     X86::VMAXSSZrm_Intk,       0 },
3252    { X86::VMINCPDZrrk,        X86::VMINCPDZrmk,          0 },
3253    { X86::VMINCPSZrrk,        X86::VMINCPSZrmk,          0 },
3254    { X86::VMINPDZrrk,         X86::VMINPDZrmk,           0 },
3255    { X86::VMINPSZrrk,         X86::VMINPSZrmk,           0 },
3256    { X86::VMINSDZrr_Intk,     X86::VMINSDZrm_Intk,       0 },
3257    { X86::VMINSSZrr_Intk,     X86::VMINSSZrm_Intk,       0 },
3258    { X86::VMULPDZrrk,         X86::VMULPDZrmk,           0 },
3259    { X86::VMULPSZrrk,         X86::VMULPSZrmk,           0 },
3260    { X86::VMULSDZrr_Intk,     X86::VMULSDZrm_Intk,       TB_NO_REVERSE },
3261    { X86::VMULSSZrr_Intk,     X86::VMULSSZrm_Intk,       TB_NO_REVERSE },
3262    { X86::VORPDZrrk,          X86::VORPDZrmk,            0 },
3263    { X86::VORPSZrrk,          X86::VORPSZrmk,            0 },
3264    { X86::VPACKSSDWZrrk,      X86::VPACKSSDWZrmk,        0 },
3265    { X86::VPACKSSWBZrrk,      X86::VPACKSSWBZrmk,        0 },
3266    { X86::VPACKUSDWZrrk,      X86::VPACKUSDWZrmk,        0 },
3267    { X86::VPACKUSWBZrrk,      X86::VPACKUSWBZrmk,        0 },
3268    { X86::VPADDBZrrk,         X86::VPADDBZrmk,           0 },
3269    { X86::VPADDDZrrk,         X86::VPADDDZrmk,           0 },
3270    { X86::VPADDQZrrk,         X86::VPADDQZrmk,           0 },
3271    { X86::VPADDSBZrrk,        X86::VPADDSBZrmk,          0 },
3272    { X86::VPADDSWZrrk,        X86::VPADDSWZrmk,          0 },
3273    { X86::VPADDUSBZrrk,       X86::VPADDUSBZrmk,         0 },
3274    { X86::VPADDUSWZrrk,       X86::VPADDUSWZrmk,         0 },
3275    { X86::VPADDWZrrk,         X86::VPADDWZrmk,           0 },
3276    { X86::VPALIGNRZrrik,      X86::VPALIGNRZrmik,        0 },
3277    { X86::VPANDDZrrk,         X86::VPANDDZrmk,           0 },
3278    { X86::VPANDNDZrrk,        X86::VPANDNDZrmk,          0 },
3279    { X86::VPANDNQZrrk,        X86::VPANDNQZrmk,          0 },
3280    { X86::VPANDQZrrk,         X86::VPANDQZrmk,           0 },
3281    { X86::VPAVGBZrrk,         X86::VPAVGBZrmk,           0 },
3282    { X86::VPAVGWZrrk,         X86::VPAVGWZrmk,           0 },
3283    { X86::VPERMBZrrk,         X86::VPERMBZrmk,           0 },
3284    { X86::VPERMDZrrk,         X86::VPERMDZrmk,           0 },
3285    { X86::VPERMI2Brrk,        X86::VPERMI2Brmk,          0 },
3286    { X86::VPERMI2Drrk,        X86::VPERMI2Drmk,          0 },
3287    { X86::VPERMI2PSrrk,       X86::VPERMI2PSrmk,         0 },
3288    { X86::VPERMI2PDrrk,       X86::VPERMI2PDrmk,         0 },
3289    { X86::VPERMI2Qrrk,        X86::VPERMI2Qrmk,          0 },
3290    { X86::VPERMI2Wrrk,        X86::VPERMI2Wrmk,          0 },
3291    { X86::VPERMILPDZrrk,      X86::VPERMILPDZrmk,        0 },
3292    { X86::VPERMILPSZrrk,      X86::VPERMILPSZrmk,        0 },
3293    { X86::VPERMPDZrrk,        X86::VPERMPDZrmk,          0 },
3294    { X86::VPERMPSZrrk,        X86::VPERMPSZrmk,          0 },
3295    { X86::VPERMQZrrk,         X86::VPERMQZrmk,           0 },
3296    { X86::VPERMT2Brrk,        X86::VPERMT2Brmk,          0 },
3297    { X86::VPERMT2Drrk,        X86::VPERMT2Drmk,          0 },
3298    { X86::VPERMT2PSrrk,       X86::VPERMT2PSrmk,         0 },
3299    { X86::VPERMT2PDrrk,       X86::VPERMT2PDrmk,         0 },
3300    { X86::VPERMT2Qrrk,        X86::VPERMT2Qrmk,          0 },
3301    { X86::VPERMT2Wrrk,        X86::VPERMT2Wrmk,          0 },
3302    { X86::VPERMWZrrk,         X86::VPERMWZrmk,           0 },
3303    { X86::VPMADD52HUQZrk,     X86::VPMADD52HUQZmk,       0 },
3304    { X86::VPMADD52LUQZrk,     X86::VPMADD52LUQZmk,       0 },
3305    { X86::VPMADDUBSWZrrk,     X86::VPMADDUBSWZrmk,       0 },
3306    { X86::VPMADDWDZrrk,       X86::VPMADDWDZrmk,         0 },
3307    { X86::VPMAXSBZrrk,        X86::VPMAXSBZrmk,          0 },
3308    { X86::VPMAXSDZrrk,        X86::VPMAXSDZrmk,          0 },
3309    { X86::VPMAXSQZrrk,        X86::VPMAXSQZrmk,          0 },
3310    { X86::VPMAXSWZrrk,        X86::VPMAXSWZrmk,          0 },
3311    { X86::VPMAXUBZrrk,        X86::VPMAXUBZrmk,          0 },
3312    { X86::VPMAXUDZrrk,        X86::VPMAXUDZrmk,          0 },
3313    { X86::VPMAXUQZrrk,        X86::VPMAXUQZrmk,          0 },
3314    { X86::VPMAXUWZrrk,        X86::VPMAXUWZrmk,          0 },
3315    { X86::VPMINSBZrrk,        X86::VPMINSBZrmk,          0 },
3316    { X86::VPMINSDZrrk,        X86::VPMINSDZrmk,          0 },
3317    { X86::VPMINSQZrrk,        X86::VPMINSQZrmk,          0 },
3318    { X86::VPMINSWZrrk,        X86::VPMINSWZrmk,          0 },
3319    { X86::VPMINUBZrrk,        X86::VPMINUBZrmk,          0 },
3320    { X86::VPMINUDZrrk,        X86::VPMINUDZrmk,          0 },
3321    { X86::VPMINUQZrrk,        X86::VPMINUQZrmk,          0 },
3322    { X86::VPMINUWZrrk,        X86::VPMINUWZrmk,          0 },
3323    { X86::VPMULDQZrrk,        X86::VPMULDQZrmk,          0 },
3324    { X86::VPMULLDZrrk,        X86::VPMULLDZrmk,          0 },
3325    { X86::VPMULLQZrrk,        X86::VPMULLQZrmk,          0 },
3326    { X86::VPMULLWZrrk,        X86::VPMULLWZrmk,          0 },
3327    { X86::VPMULUDQZrrk,       X86::VPMULUDQZrmk,         0 },
3328    { X86::VPORDZrrk,          X86::VPORDZrmk,            0 },
3329    { X86::VPORQZrrk,          X86::VPORQZrmk,            0 },
3330    { X86::VPSHUFBZrrk,        X86::VPSHUFBZrmk,          0 },
3331    { X86::VPSLLDZrrk,         X86::VPSLLDZrmk,           0 },
3332    { X86::VPSLLQZrrk,         X86::VPSLLQZrmk,           0 },
3333    { X86::VPSLLVDZrrk,        X86::VPSLLVDZrmk,          0 },
3334    { X86::VPSLLVQZrrk,        X86::VPSLLVQZrmk,          0 },
3335    { X86::VPSLLVWZrrk,        X86::VPSLLVWZrmk,          0 },
3336    { X86::VPSLLWZrrk,         X86::VPSLLWZrmk,           0 },
3337    { X86::VPSRADZrrk,         X86::VPSRADZrmk,           0 },
3338    { X86::VPSRAQZrrk,         X86::VPSRAQZrmk,           0 },
3339    { X86::VPSRAVDZrrk,        X86::VPSRAVDZrmk,          0 },
3340    { X86::VPSRAVQZrrk,        X86::VPSRAVQZrmk,          0 },
3341    { X86::VPSRAVWZrrk,        X86::VPSRAVWZrmk,          0 },
3342    { X86::VPSRAWZrrk,         X86::VPSRAWZrmk,           0 },
3343    { X86::VPSRLDZrrk,         X86::VPSRLDZrmk,           0 },
3344    { X86::VPSRLQZrrk,         X86::VPSRLQZrmk,           0 },
3345    { X86::VPSRLVDZrrk,        X86::VPSRLVDZrmk,          0 },
3346    { X86::VPSRLVQZrrk,        X86::VPSRLVQZrmk,          0 },
3347    { X86::VPSRLVWZrrk,        X86::VPSRLVWZrmk,          0 },
3348    { X86::VPSRLWZrrk,         X86::VPSRLWZrmk,           0 },
3349    { X86::VPSUBBZrrk,         X86::VPSUBBZrmk,           0 },
3350    { X86::VPSUBDZrrk,         X86::VPSUBDZrmk,           0 },
3351    { X86::VPSUBQZrrk,         X86::VPSUBQZrmk,           0 },
3352    { X86::VPSUBSBZrrk,        X86::VPSUBSBZrmk,          0 },
3353    { X86::VPSUBSWZrrk,        X86::VPSUBSWZrmk,          0 },
3354    { X86::VPSUBUSBZrrk,       X86::VPSUBUSBZrmk,         0 },
3355    { X86::VPSUBUSWZrrk,       X86::VPSUBUSWZrmk,         0 },
3356    { X86::VPTERNLOGDZrrik,    X86::VPTERNLOGDZrmik,      0 },
3357    { X86::VPTERNLOGQZrrik,    X86::VPTERNLOGQZrmik,      0 },
3358    { X86::VPUNPCKHBWZrrk,     X86::VPUNPCKHBWZrmk,       0 },
3359    { X86::VPUNPCKHDQZrrk,     X86::VPUNPCKHDQZrmk,       0 },
3360    { X86::VPUNPCKHQDQZrrk,    X86::VPUNPCKHQDQZrmk,      0 },
3361    { X86::VPUNPCKHWDZrrk,     X86::VPUNPCKHWDZrmk,       0 },
3362    { X86::VPUNPCKLBWZrrk,     X86::VPUNPCKLBWZrmk,       0 },
3363    { X86::VPUNPCKLDQZrrk,     X86::VPUNPCKLDQZrmk,       0 },
3364    { X86::VPUNPCKLQDQZrrk,    X86::VPUNPCKLQDQZrmk,      0 },
3365    { X86::VPUNPCKLWDZrrk,     X86::VPUNPCKLWDZrmk,       0 },
3366    { X86::VPXORDZrrk,         X86::VPXORDZrmk,           0 },
3367    { X86::VPXORQZrrk,         X86::VPXORQZrmk,           0 },
3368    { X86::VSHUFPDZrrik,       X86::VSHUFPDZrmik,         0 },
3369    { X86::VSHUFPSZrrik,       X86::VSHUFPSZrmik,         0 },
3370    { X86::VSUBPDZrrk,         X86::VSUBPDZrmk,           0 },
3371    { X86::VSUBPSZrrk,         X86::VSUBPSZrmk,           0 },
3372    { X86::VSUBSDZrr_Intk,     X86::VSUBSDZrm_Intk,       TB_NO_REVERSE },
3373    { X86::VSUBSSZrr_Intk,     X86::VSUBSSZrm_Intk,       TB_NO_REVERSE },
3374    { X86::VUNPCKHPDZrrk,      X86::VUNPCKHPDZrmk,        0 },
3375    { X86::VUNPCKHPSZrrk,      X86::VUNPCKHPSZrmk,        0 },
3376    { X86::VUNPCKLPDZrrk,      X86::VUNPCKLPDZrmk,        0 },
3377    { X86::VUNPCKLPSZrrk,      X86::VUNPCKLPSZrmk,        0 },
3378    { X86::VXORPDZrrk,         X86::VXORPDZrmk,           0 },
3379    { X86::VXORPSZrrk,         X86::VXORPSZrmk,           0 },
3380
3381    // AVX-512{F,VL} foldable masked instructions 256-bit
3382    { X86::VADDPDZ256rrk,      X86::VADDPDZ256rmk,        0 },
3383    { X86::VADDPSZ256rrk,      X86::VADDPSZ256rmk,        0 },
3384    { X86::VALIGNDZ256rrik,    X86::VALIGNDZ256rmik,      0 },
3385    { X86::VALIGNQZ256rrik,    X86::VALIGNQZ256rmik,      0 },
3386    { X86::VANDNPDZ256rrk,     X86::VANDNPDZ256rmk,       0 },
3387    { X86::VANDNPSZ256rrk,     X86::VANDNPSZ256rmk,       0 },
3388    { X86::VANDPDZ256rrk,      X86::VANDPDZ256rmk,        0 },
3389    { X86::VANDPSZ256rrk,      X86::VANDPSZ256rmk,        0 },
3390    { X86::VDIVPDZ256rrk,      X86::VDIVPDZ256rmk,        0 },
3391    { X86::VDIVPSZ256rrk,      X86::VDIVPSZ256rmk,        0 },
3392    { X86::VINSERTF32x4Z256rrk,X86::VINSERTF32x4Z256rmk,  0 },
3393    { X86::VINSERTF64x2Z256rrk,X86::VINSERTF64x2Z256rmk,  0 },
3394    { X86::VINSERTI32x4Z256rrk,X86::VINSERTI32x4Z256rmk,  0 },
3395    { X86::VINSERTI64x2Z256rrk,X86::VINSERTI64x2Z256rmk,  0 },
3396    { X86::VMAXCPDZ256rrk,     X86::VMAXCPDZ256rmk,       0 },
3397    { X86::VMAXCPSZ256rrk,     X86::VMAXCPSZ256rmk,       0 },
3398    { X86::VMAXPDZ256rrk,      X86::VMAXPDZ256rmk,        0 },
3399    { X86::VMAXPSZ256rrk,      X86::VMAXPSZ256rmk,        0 },
3400    { X86::VMINCPDZ256rrk,     X86::VMINCPDZ256rmk,       0 },
3401    { X86::VMINCPSZ256rrk,     X86::VMINCPSZ256rmk,       0 },
3402    { X86::VMINPDZ256rrk,      X86::VMINPDZ256rmk,        0 },
3403    { X86::VMINPSZ256rrk,      X86::VMINPSZ256rmk,        0 },
3404    { X86::VMULPDZ256rrk,      X86::VMULPDZ256rmk,        0 },
3405    { X86::VMULPSZ256rrk,      X86::VMULPSZ256rmk,        0 },
3406    { X86::VORPDZ256rrk,       X86::VORPDZ256rmk,         0 },
3407    { X86::VORPSZ256rrk,       X86::VORPSZ256rmk,         0 },
3408    { X86::VPACKSSDWZ256rrk,   X86::VPACKSSDWZ256rmk,     0 },
3409    { X86::VPACKSSWBZ256rrk,   X86::VPACKSSWBZ256rmk,     0 },
3410    { X86::VPACKUSDWZ256rrk,   X86::VPACKUSDWZ256rmk,     0 },
3411    { X86::VPACKUSWBZ256rrk,   X86::VPACKUSWBZ256rmk,     0 },
3412    { X86::VPADDBZ256rrk,      X86::VPADDBZ256rmk,        0 },
3413    { X86::VPADDDZ256rrk,      X86::VPADDDZ256rmk,        0 },
3414    { X86::VPADDQZ256rrk,      X86::VPADDQZ256rmk,        0 },
3415    { X86::VPADDSBZ256rrk,     X86::VPADDSBZ256rmk,       0 },
3416    { X86::VPADDSWZ256rrk,     X86::VPADDSWZ256rmk,       0 },
3417    { X86::VPADDUSBZ256rrk,    X86::VPADDUSBZ256rmk,      0 },
3418    { X86::VPADDUSWZ256rrk,    X86::VPADDUSWZ256rmk,      0 },
3419    { X86::VPADDWZ256rrk,      X86::VPADDWZ256rmk,        0 },
3420    { X86::VPALIGNRZ256rrik,   X86::VPALIGNRZ256rmik,     0 },
3421    { X86::VPANDDZ256rrk,      X86::VPANDDZ256rmk,        0 },
3422    { X86::VPANDNDZ256rrk,     X86::VPANDNDZ256rmk,       0 },
3423    { X86::VPANDNQZ256rrk,     X86::VPANDNQZ256rmk,       0 },
3424    { X86::VPANDQZ256rrk,      X86::VPANDQZ256rmk,        0 },
3425    { X86::VPAVGBZ256rrk,      X86::VPAVGBZ256rmk,        0 },
3426    { X86::VPAVGWZ256rrk,      X86::VPAVGWZ256rmk,        0 },
3427    { X86::VPERMBZ256rrk,      X86::VPERMBZ256rmk,        0 },
3428    { X86::VPERMDZ256rrk,      X86::VPERMDZ256rmk,        0 },
3429    { X86::VPERMI2B256rrk,     X86::VPERMI2B256rmk,       0 },
3430    { X86::VPERMI2D256rrk,     X86::VPERMI2D256rmk,       0 },
3431    { X86::VPERMI2PD256rrk,    X86::VPERMI2PD256rmk,      0 },
3432    { X86::VPERMI2PS256rrk,    X86::VPERMI2PS256rmk,      0 },
3433    { X86::VPERMI2Q256rrk,     X86::VPERMI2Q256rmk,       0 },
3434    { X86::VPERMI2W256rrk,     X86::VPERMI2W256rmk,       0 },
3435    { X86::VPERMILPDZ256rrk,   X86::VPERMILPDZ256rmk,     0 },
3436    { X86::VPERMILPSZ256rrk,   X86::VPERMILPSZ256rmk,     0 },
3437    { X86::VPERMPDZ256rrk,     X86::VPERMPDZ256rmk,       0 },
3438    { X86::VPERMPSZ256rrk,     X86::VPERMPSZ256rmk,       0 },
3439    { X86::VPERMQZ256rrk,      X86::VPERMQZ256rmk,        0 },
3440    { X86::VPERMT2B256rrk,     X86::VPERMT2B256rmk,       0 },
3441    { X86::VPERMT2D256rrk,     X86::VPERMT2D256rmk,       0 },
3442    { X86::VPERMT2PD256rrk,    X86::VPERMT2PD256rmk,      0 },
3443    { X86::VPERMT2PS256rrk,    X86::VPERMT2PS256rmk,      0 },
3444    { X86::VPERMT2Q256rrk,     X86::VPERMT2Q256rmk,       0 },
3445    { X86::VPERMT2W256rrk,     X86::VPERMT2W256rmk,       0 },
3446    { X86::VPERMWZ256rrk,      X86::VPERMWZ256rmk,        0 },
3447    { X86::VPMADD52HUQZ256rk,  X86::VPMADD52HUQZ256mk,    0 },
3448    { X86::VPMADD52LUQZ256rk,  X86::VPMADD52LUQZ256mk,    0 },
3449    { X86::VPMADDUBSWZ256rrk,  X86::VPMADDUBSWZ256rmk,    0 },
3450    { X86::VPMADDWDZ256rrk,    X86::VPMADDWDZ256rmk,      0 },
3451    { X86::VPMAXSBZ256rrk,     X86::VPMAXSBZ256rmk,       0 },
3452    { X86::VPMAXSDZ256rrk,     X86::VPMAXSDZ256rmk,       0 },
3453    { X86::VPMAXSQZ256rrk,     X86::VPMAXSQZ256rmk,       0 },
3454    { X86::VPMAXSWZ256rrk,     X86::VPMAXSWZ256rmk,       0 },
3455    { X86::VPMAXUBZ256rrk,     X86::VPMAXUBZ256rmk,       0 },
3456    { X86::VPMAXUDZ256rrk,     X86::VPMAXUDZ256rmk,       0 },
3457    { X86::VPMAXUQZ256rrk,     X86::VPMAXUQZ256rmk,       0 },
3458    { X86::VPMAXUWZ256rrk,     X86::VPMAXUWZ256rmk,       0 },
3459    { X86::VPMINSBZ256rrk,     X86::VPMINSBZ256rmk,       0 },
3460    { X86::VPMINSDZ256rrk,     X86::VPMINSDZ256rmk,       0 },
3461    { X86::VPMINSQZ256rrk,     X86::VPMINSQZ256rmk,       0 },
3462    { X86::VPMINSWZ256rrk,     X86::VPMINSWZ256rmk,       0 },
3463    { X86::VPMINUBZ256rrk,     X86::VPMINUBZ256rmk,       0 },
3464    { X86::VPMINUDZ256rrk,     X86::VPMINUDZ256rmk,       0 },
3465    { X86::VPMINUQZ256rrk,     X86::VPMINUQZ256rmk,       0 },
3466    { X86::VPMINUWZ256rrk,     X86::VPMINUWZ256rmk,       0 },
3467    { X86::VPMULDQZ256rrk,     X86::VPMULDQZ256rmk,       0 },
3468    { X86::VPMULLDZ256rrk,     X86::VPMULLDZ256rmk,       0 },
3469    { X86::VPMULLQZ256rrk,     X86::VPMULLQZ256rmk,       0 },
3470    { X86::VPMULLWZ256rrk,     X86::VPMULLWZ256rmk,       0 },
3471    { X86::VPMULUDQZ256rrk,    X86::VPMULUDQZ256rmk,      0 },
3472    { X86::VPORDZ256rrk,       X86::VPORDZ256rmk,         0 },
3473    { X86::VPORQZ256rrk,       X86::VPORQZ256rmk,         0 },
3474    { X86::VPSHUFBZ256rrk,     X86::VPSHUFBZ256rmk,       0 },
3475    { X86::VPSLLDZ256rrk,      X86::VPSLLDZ256rmk,        0 },
3476    { X86::VPSLLQZ256rrk,      X86::VPSLLQZ256rmk,        0 },
3477    { X86::VPSLLVDZ256rrk,     X86::VPSLLVDZ256rmk,       0 },
3478    { X86::VPSLLVQZ256rrk,     X86::VPSLLVQZ256rmk,       0 },
3479    { X86::VPSLLVWZ256rrk,     X86::VPSLLVWZ256rmk,       0 },
3480    { X86::VPSLLWZ256rrk,      X86::VPSLLWZ256rmk,        0 },
3481    { X86::VPSRADZ256rrk,      X86::VPSRADZ256rmk,        0 },
3482    { X86::VPSRAQZ256rrk,      X86::VPSRAQZ256rmk,        0 },
3483    { X86::VPSRAVDZ256rrk,     X86::VPSRAVDZ256rmk,       0 },
3484    { X86::VPSRAVQZ256rrk,     X86::VPSRAVQZ256rmk,       0 },
3485    { X86::VPSRAVWZ256rrk,     X86::VPSRAVWZ256rmk,       0 },
3486    { X86::VPSRAWZ256rrk,      X86::VPSRAWZ256rmk,        0 },
3487    { X86::VPSRLDZ256rrk,      X86::VPSRLDZ256rmk,        0 },
3488    { X86::VPSRLQZ256rrk,      X86::VPSRLQZ256rmk,        0 },
3489    { X86::VPSRLVDZ256rrk,     X86::VPSRLVDZ256rmk,       0 },
3490    { X86::VPSRLVQZ256rrk,     X86::VPSRLVQZ256rmk,       0 },
3491    { X86::VPSRLVWZ256rrk,     X86::VPSRLVWZ256rmk,       0 },
3492    { X86::VPSRLWZ256rrk,      X86::VPSRLWZ256rmk,        0 },
3493    { X86::VPSUBBZ256rrk,      X86::VPSUBBZ256rmk,        0 },
3494    { X86::VPSUBDZ256rrk,      X86::VPSUBDZ256rmk,        0 },
3495    { X86::VPSUBQZ256rrk,      X86::VPSUBQZ256rmk,        0 },
3496    { X86::VPSUBSBZ256rrk,     X86::VPSUBSBZ256rmk,       0 },
3497    { X86::VPSUBSWZ256rrk,     X86::VPSUBSWZ256rmk,       0 },
3498    { X86::VPSUBUSBZ256rrk,    X86::VPSUBUSBZ256rmk,      0 },
3499    { X86::VPSUBUSWZ256rrk,    X86::VPSUBUSWZ256rmk,      0 },
3500    { X86::VPSUBWZ256rrk,      X86::VPSUBWZ256rmk,        0 },
3501    { X86::VPTERNLOGDZ256rrik, X86::VPTERNLOGDZ256rmik,   0 },
3502    { X86::VPTERNLOGQZ256rrik, X86::VPTERNLOGQZ256rmik,   0 },
3503    { X86::VPUNPCKHBWZ256rrk,  X86::VPUNPCKHBWZ256rmk,    0 },
3504    { X86::VPUNPCKHDQZ256rrk,  X86::VPUNPCKHDQZ256rmk,    0 },
3505    { X86::VPUNPCKHQDQZ256rrk, X86::VPUNPCKHQDQZ256rmk,   0 },
3506    { X86::VPUNPCKHWDZ256rrk,  X86::VPUNPCKHWDZ256rmk,    0 },
3507    { X86::VPUNPCKLBWZ256rrk,  X86::VPUNPCKLBWZ256rmk,    0 },
3508    { X86::VPUNPCKLDQZ256rrk,  X86::VPUNPCKLDQZ256rmk,    0 },
3509    { X86::VPUNPCKLQDQZ256rrk, X86::VPUNPCKLQDQZ256rmk,   0 },
3510    { X86::VPUNPCKLWDZ256rrk,  X86::VPUNPCKLWDZ256rmk,    0 },
3511    { X86::VPXORDZ256rrk,      X86::VPXORDZ256rmk,        0 },
3512    { X86::VPXORQZ256rrk,      X86::VPXORQZ256rmk,        0 },
3513    { X86::VSHUFPDZ256rrik,    X86::VSHUFPDZ256rmik,      0 },
3514    { X86::VSHUFPSZ256rrik,    X86::VSHUFPSZ256rmik,      0 },
3515    { X86::VSUBPDZ256rrk,      X86::VSUBPDZ256rmk,        0 },
3516    { X86::VSUBPSZ256rrk,      X86::VSUBPSZ256rmk,        0 },
3517    { X86::VUNPCKHPDZ256rrk,   X86::VUNPCKHPDZ256rmk,     0 },
3518    { X86::VUNPCKHPSZ256rrk,   X86::VUNPCKHPSZ256rmk,     0 },
3519    { X86::VUNPCKLPDZ256rrk,   X86::VUNPCKLPDZ256rmk,     0 },
3520    { X86::VUNPCKLPSZ256rrk,   X86::VUNPCKLPSZ256rmk,     0 },
3521    { X86::VXORPDZ256rrk,      X86::VXORPDZ256rmk,        0 },
3522    { X86::VXORPSZ256rrk,      X86::VXORPSZ256rmk,        0 },
3523
3524    // AVX-512{F,VL} foldable instructions 128-bit
3525    { X86::VADDPDZ128rrk,      X86::VADDPDZ128rmk,        0 },
3526    { X86::VADDPSZ128rrk,      X86::VADDPSZ128rmk,        0 },
3527    { X86::VALIGNDZ128rrik,    X86::VALIGNDZ128rmik,      0 },
3528    { X86::VALIGNQZ128rrik,    X86::VALIGNQZ128rmik,      0 },
3529    { X86::VANDNPDZ128rrk,     X86::VANDNPDZ128rmk,       0 },
3530    { X86::VANDNPSZ128rrk,     X86::VANDNPSZ128rmk,       0 },
3531    { X86::VANDPDZ128rrk,      X86::VANDPDZ128rmk,        0 },
3532    { X86::VANDPSZ128rrk,      X86::VANDPSZ128rmk,        0 },
3533    { X86::VDIVPDZ128rrk,      X86::VDIVPDZ128rmk,        0 },
3534    { X86::VDIVPSZ128rrk,      X86::VDIVPSZ128rmk,        0 },
3535    { X86::VMAXCPDZ128rrk,     X86::VMAXCPDZ128rmk,       0 },
3536    { X86::VMAXCPSZ128rrk,     X86::VMAXCPSZ128rmk,       0 },
3537    { X86::VMAXPDZ128rrk,      X86::VMAXPDZ128rmk,        0 },
3538    { X86::VMAXPSZ128rrk,      X86::VMAXPSZ128rmk,        0 },
3539    { X86::VMINCPDZ128rrk,     X86::VMINCPDZ128rmk,       0 },
3540    { X86::VMINCPSZ128rrk,     X86::VMINCPSZ128rmk,       0 },
3541    { X86::VMINPDZ128rrk,      X86::VMINPDZ128rmk,        0 },
3542    { X86::VMINPSZ128rrk,      X86::VMINPSZ128rmk,        0 },
3543    { X86::VMULPDZ128rrk,      X86::VMULPDZ128rmk,        0 },
3544    { X86::VMULPSZ128rrk,      X86::VMULPSZ128rmk,        0 },
3545    { X86::VORPDZ128rrk,       X86::VORPDZ128rmk,         0 },
3546    { X86::VORPSZ128rrk,       X86::VORPSZ128rmk,         0 },
3547    { X86::VPACKSSDWZ128rrk,   X86::VPACKSSDWZ128rmk,     0 },
3548    { X86::VPACKSSWBZ128rrk,   X86::VPACKSSWBZ128rmk,     0 },
3549    { X86::VPACKUSDWZ128rrk,   X86::VPACKUSDWZ128rmk,     0 },
3550    { X86::VPACKUSWBZ128rrk,   X86::VPACKUSWBZ128rmk,     0 },
3551    { X86::VPADDBZ128rrk,      X86::VPADDBZ128rmk,        0 },
3552    { X86::VPADDDZ128rrk,      X86::VPADDDZ128rmk,        0 },
3553    { X86::VPADDQZ128rrk,      X86::VPADDQZ128rmk,        0 },
3554    { X86::VPADDSBZ128rrk,     X86::VPADDSBZ128rmk,       0 },
3555    { X86::VPADDSWZ128rrk,     X86::VPADDSWZ128rmk,       0 },
3556    { X86::VPADDUSBZ128rrk,    X86::VPADDUSBZ128rmk,      0 },
3557    { X86::VPADDUSWZ128rrk,    X86::VPADDUSWZ128rmk,      0 },
3558    { X86::VPADDWZ128rrk,      X86::VPADDWZ128rmk,        0 },
3559    { X86::VPALIGNRZ128rrik,   X86::VPALIGNRZ128rmik,     0 },
3560    { X86::VPANDDZ128rrk,      X86::VPANDDZ128rmk,        0 },
3561    { X86::VPANDNDZ128rrk,     X86::VPANDNDZ128rmk,       0 },
3562    { X86::VPANDNQZ128rrk,     X86::VPANDNQZ128rmk,       0 },
3563    { X86::VPANDQZ128rrk,      X86::VPANDQZ128rmk,        0 },
3564    { X86::VPAVGBZ128rrk,      X86::VPAVGBZ128rmk,        0 },
3565    { X86::VPAVGWZ128rrk,      X86::VPAVGWZ128rmk,        0 },
3566    { X86::VPERMBZ128rrk,      X86::VPERMBZ128rmk,        0 },
3567    { X86::VPERMI2B128rrk,     X86::VPERMI2B128rmk,       0 },
3568    { X86::VPERMI2D128rrk,     X86::VPERMI2D128rmk,       0 },
3569    { X86::VPERMI2PD128rrk,    X86::VPERMI2PD128rmk,      0 },
3570    { X86::VPERMI2PS128rrk,    X86::VPERMI2PS128rmk,      0 },
3571    { X86::VPERMI2Q128rrk,     X86::VPERMI2Q128rmk,       0 },
3572    { X86::VPERMI2W128rrk,     X86::VPERMI2W128rmk,       0 },
3573    { X86::VPERMILPDZ128rrk,   X86::VPERMILPDZ128rmk,     0 },
3574    { X86::VPERMILPSZ128rrk,   X86::VPERMILPSZ128rmk,     0 },
3575    { X86::VPERMT2B128rrk,     X86::VPERMT2B128rmk,       0 },
3576    { X86::VPERMT2D128rrk,     X86::VPERMT2D128rmk,       0 },
3577    { X86::VPERMT2PD128rrk,    X86::VPERMT2PD128rmk,      0 },
3578    { X86::VPERMT2PS128rrk,    X86::VPERMT2PS128rmk,      0 },
3579    { X86::VPERMT2Q128rrk,     X86::VPERMT2Q128rmk,       0 },
3580    { X86::VPERMT2W128rrk,     X86::VPERMT2W128rmk,       0 },
3581    { X86::VPERMWZ128rrk,      X86::VPERMWZ128rmk,        0 },
3582    { X86::VPMADD52HUQZ128rk,  X86::VPMADD52HUQZ128mk,    0 },
3583    { X86::VPMADD52LUQZ128rk,  X86::VPMADD52LUQZ128mk,    0 },
3584    { X86::VPMADDUBSWZ128rrk,  X86::VPMADDUBSWZ128rmk,    0 },
3585    { X86::VPMADDWDZ128rrk,    X86::VPMADDWDZ128rmk,      0 },
3586    { X86::VPMAXSBZ128rrk,     X86::VPMAXSBZ128rmk,       0 },
3587    { X86::VPMAXSDZ128rrk,     X86::VPMAXSDZ128rmk,       0 },
3588    { X86::VPMAXSQZ128rrk,     X86::VPMAXSQZ128rmk,       0 },
3589    { X86::VPMAXSWZ128rrk,     X86::VPMAXSWZ128rmk,       0 },
3590    { X86::VPMAXUBZ128rrk,     X86::VPMAXUBZ128rmk,       0 },
3591    { X86::VPMAXUDZ128rrk,     X86::VPMAXUDZ128rmk,       0 },
3592    { X86::VPMAXUQZ128rrk,     X86::VPMAXUQZ128rmk,       0 },
3593    { X86::VPMAXUWZ128rrk,     X86::VPMAXUWZ128rmk,       0 },
3594    { X86::VPMINSBZ128rrk,     X86::VPMINSBZ128rmk,       0 },
3595    { X86::VPMINSDZ128rrk,     X86::VPMINSDZ128rmk,       0 },
3596    { X86::VPMINSQZ128rrk,     X86::VPMINSQZ128rmk,       0 },
3597    { X86::VPMINSWZ128rrk,     X86::VPMINSWZ128rmk,       0 },
3598    { X86::VPMINUBZ128rrk,     X86::VPMINUBZ128rmk,       0 },
3599    { X86::VPMINUDZ128rrk,     X86::VPMINUDZ128rmk,       0 },
3600    { X86::VPMINUQZ128rrk,     X86::VPMINUQZ128rmk,       0 },
3601    { X86::VPMINUWZ128rrk,     X86::VPMINUWZ128rmk,       0 },
3602    { X86::VPMULDQZ128rrk,     X86::VPMULDQZ128rmk,       0 },
3603    { X86::VPMULLDZ128rrk,     X86::VPMULLDZ128rmk,       0 },
3604    { X86::VPMULLQZ128rrk,     X86::VPMULLQZ128rmk,       0 },
3605    { X86::VPMULLWZ128rrk,     X86::VPMULLWZ128rmk,       0 },
3606    { X86::VPMULUDQZ128rrk,    X86::VPMULUDQZ128rmk,      0 },
3607    { X86::VPORDZ128rrk,       X86::VPORDZ128rmk,         0 },
3608    { X86::VPORQZ128rrk,       X86::VPORQZ128rmk,         0 },
3609    { X86::VPSHUFBZ128rrk,     X86::VPSHUFBZ128rmk,       0 },
3610    { X86::VPSLLDZ128rrk,      X86::VPSLLDZ128rmk,        0 },
3611    { X86::VPSLLQZ128rrk,      X86::VPSLLQZ128rmk,        0 },
3612    { X86::VPSLLVDZ128rrk,     X86::VPSLLVDZ128rmk,       0 },
3613    { X86::VPSLLVQZ128rrk,     X86::VPSLLVQZ128rmk,       0 },
3614    { X86::VPSLLVWZ128rrk,     X86::VPSLLVWZ128rmk,       0 },
3615    { X86::VPSLLWZ128rrk,      X86::VPSLLWZ128rmk,        0 },
3616    { X86::VPSRADZ128rrk,      X86::VPSRADZ128rmk,        0 },
3617    { X86::VPSRAQZ128rrk,      X86::VPSRAQZ128rmk,        0 },
3618    { X86::VPSRAVDZ128rrk,     X86::VPSRAVDZ128rmk,       0 },
3619    { X86::VPSRAVQZ128rrk,     X86::VPSRAVQZ128rmk,       0 },
3620    { X86::VPSRAVWZ128rrk,     X86::VPSRAVWZ128rmk,       0 },
3621    { X86::VPSRAWZ128rrk,      X86::VPSRAWZ128rmk,        0 },
3622    { X86::VPSRLDZ128rrk,      X86::VPSRLDZ128rmk,        0 },
3623    { X86::VPSRLQZ128rrk,      X86::VPSRLQZ128rmk,        0 },
3624    { X86::VPSRLVDZ128rrk,     X86::VPSRLVDZ128rmk,       0 },
3625    { X86::VPSRLVQZ128rrk,     X86::VPSRLVQZ128rmk,       0 },
3626    { X86::VPSRLVWZ128rrk,     X86::VPSRLVWZ128rmk,       0 },
3627    { X86::VPSRLWZ128rrk,      X86::VPSRLWZ128rmk,        0 },
3628    { X86::VPSUBBZ128rrk,      X86::VPSUBBZ128rmk,        0 },
3629    { X86::VPSUBDZ128rrk,      X86::VPSUBDZ128rmk,        0 },
3630    { X86::VPSUBQZ128rrk,      X86::VPSUBQZ128rmk,        0 },
3631    { X86::VPSUBSBZ128rrk,     X86::VPSUBSBZ128rmk,       0 },
3632    { X86::VPSUBSWZ128rrk,     X86::VPSUBSWZ128rmk,       0 },
3633    { X86::VPSUBUSBZ128rrk,    X86::VPSUBUSBZ128rmk,      0 },
3634    { X86::VPSUBUSWZ128rrk,    X86::VPSUBUSWZ128rmk,      0 },
3635    { X86::VPSUBWZ128rrk,      X86::VPSUBWZ128rmk,        0 },
3636    { X86::VPTERNLOGDZ128rrik, X86::VPTERNLOGDZ128rmik,   0 },
3637    { X86::VPTERNLOGQZ128rrik, X86::VPTERNLOGQZ128rmik,   0 },
3638    { X86::VPUNPCKHBWZ128rrk,  X86::VPUNPCKHBWZ128rmk,    0 },
3639    { X86::VPUNPCKHDQZ128rrk,  X86::VPUNPCKHDQZ128rmk,    0 },
3640    { X86::VPUNPCKHQDQZ128rrk, X86::VPUNPCKHQDQZ128rmk,   0 },
3641    { X86::VPUNPCKHWDZ128rrk,  X86::VPUNPCKHWDZ128rmk,    0 },
3642    { X86::VPUNPCKLBWZ128rrk,  X86::VPUNPCKLBWZ128rmk,    0 },
3643    { X86::VPUNPCKLDQZ128rrk,  X86::VPUNPCKLDQZ128rmk,    0 },
3644    { X86::VPUNPCKLQDQZ128rrk, X86::VPUNPCKLQDQZ128rmk,   0 },
3645    { X86::VPUNPCKLWDZ128rrk,  X86::VPUNPCKLWDZ128rmk,    0 },
3646    { X86::VPXORDZ128rrk,      X86::VPXORDZ128rmk,        0 },
3647    { X86::VPXORQZ128rrk,      X86::VPXORQZ128rmk,        0 },
3648    { X86::VSHUFPDZ128rrik,    X86::VSHUFPDZ128rmik,      0 },
3649    { X86::VSHUFPSZ128rrik,    X86::VSHUFPSZ128rmik,      0 },
3650    { X86::VSUBPDZ128rrk,      X86::VSUBPDZ128rmk,        0 },
3651    { X86::VSUBPSZ128rrk,      X86::VSUBPSZ128rmk,        0 },
3652    { X86::VUNPCKHPDZ128rrk,   X86::VUNPCKHPDZ128rmk,     0 },
3653    { X86::VUNPCKHPSZ128rrk,   X86::VUNPCKHPSZ128rmk,     0 },
3654    { X86::VUNPCKLPDZ128rrk,   X86::VUNPCKLPDZ128rmk,     0 },
3655    { X86::VUNPCKLPSZ128rrk,   X86::VUNPCKLPSZ128rmk,     0 },
3656    { X86::VXORPDZ128rrk,      X86::VXORPDZ128rmk,        0 },
3657    { X86::VXORPSZ128rrk,      X86::VXORPSZ128rmk,        0 },
3658
3659    // 512-bit three source instructions with zero masking.
3660    { X86::VPERMI2Brrkz,       X86::VPERMI2Brmkz,         0 },
3661    { X86::VPERMI2Drrkz,       X86::VPERMI2Drmkz,         0 },
3662    { X86::VPERMI2PSrrkz,      X86::VPERMI2PSrmkz,        0 },
3663    { X86::VPERMI2PDrrkz,      X86::VPERMI2PDrmkz,        0 },
3664    { X86::VPERMI2Qrrkz,       X86::VPERMI2Qrmkz,         0 },
3665    { X86::VPERMI2Wrrkz,       X86::VPERMI2Wrmkz,         0 },
3666    { X86::VPERMT2Brrkz,       X86::VPERMT2Brmkz,         0 },
3667    { X86::VPERMT2Drrkz,       X86::VPERMT2Drmkz,         0 },
3668    { X86::VPERMT2PSrrkz,      X86::VPERMT2PSrmkz,        0 },
3669    { X86::VPERMT2PDrrkz,      X86::VPERMT2PDrmkz,        0 },
3670    { X86::VPERMT2Qrrkz,       X86::VPERMT2Qrmkz,         0 },
3671    { X86::VPERMT2Wrrkz,       X86::VPERMT2Wrmkz,         0 },
3672    { X86::VPMADD52HUQZrkz,    X86::VPMADD52HUQZmkz,      0 },
3673    { X86::VPMADD52LUQZrkz,    X86::VPMADD52LUQZmkz,      0 },
3674    { X86::VPTERNLOGDZrrikz,   X86::VPTERNLOGDZrmikz,     0 },
3675    { X86::VPTERNLOGQZrrikz,   X86::VPTERNLOGQZrmikz,     0 },
3676
3677    // 256-bit three source instructions with zero masking.
3678    { X86::VPERMI2B256rrkz,    X86::VPERMI2B256rmkz,      0 },
3679    { X86::VPERMI2D256rrkz,    X86::VPERMI2D256rmkz,      0 },
3680    { X86::VPERMI2PD256rrkz,   X86::VPERMI2PD256rmkz,     0 },
3681    { X86::VPERMI2PS256rrkz,   X86::VPERMI2PS256rmkz,     0 },
3682    { X86::VPERMI2Q256rrkz,    X86::VPERMI2Q256rmkz,      0 },
3683    { X86::VPERMI2W256rrkz,    X86::VPERMI2W256rmkz,      0 },
3684    { X86::VPERMT2B256rrkz,    X86::VPERMT2B256rmkz,      0 },
3685    { X86::VPERMT2D256rrkz,    X86::VPERMT2D256rmkz,      0 },
3686    { X86::VPERMT2PD256rrkz,   X86::VPERMT2PD256rmkz,     0 },
3687    { X86::VPERMT2PS256rrkz,   X86::VPERMT2PS256rmkz,     0 },
3688    { X86::VPERMT2Q256rrkz,    X86::VPERMT2Q256rmkz,      0 },
3689    { X86::VPERMT2W256rrkz,    X86::VPERMT2W256rmkz,      0 },
3690    { X86::VPMADD52HUQZ256rkz, X86::VPMADD52HUQZ256mkz,   0 },
3691    { X86::VPMADD52LUQZ256rkz, X86::VPMADD52LUQZ256mkz,   0 },
3692    { X86::VPTERNLOGDZ256rrikz,X86::VPTERNLOGDZ256rmikz,  0 },
3693    { X86::VPTERNLOGQZ256rrikz,X86::VPTERNLOGQZ256rmikz,  0 },
3694
3695    // 128-bit three source instructions with zero masking.
3696    { X86::VPERMI2B128rrkz,    X86::VPERMI2B128rmkz,      0 },
3697    { X86::VPERMI2D128rrkz,    X86::VPERMI2D128rmkz,      0 },
3698    { X86::VPERMI2PD128rrkz,   X86::VPERMI2PD128rmkz,     0 },
3699    { X86::VPERMI2PS128rrkz,   X86::VPERMI2PS128rmkz,     0 },
3700    { X86::VPERMI2Q128rrkz,    X86::VPERMI2Q128rmkz,      0 },
3701    { X86::VPERMI2W128rrkz,    X86::VPERMI2W128rmkz,      0 },
3702    { X86::VPERMT2B128rrkz,    X86::VPERMT2B128rmkz,      0 },
3703    { X86::VPERMT2D128rrkz,    X86::VPERMT2D128rmkz,      0 },
3704    { X86::VPERMT2PD128rrkz,   X86::VPERMT2PD128rmkz,     0 },
3705    { X86::VPERMT2PS128rrkz,   X86::VPERMT2PS128rmkz,     0 },
3706    { X86::VPERMT2Q128rrkz,    X86::VPERMT2Q128rmkz,      0 },
3707    { X86::VPERMT2W128rrkz,    X86::VPERMT2W128rmkz,      0 },
3708    { X86::VPMADD52HUQZ128rkz, X86::VPMADD52HUQZ128mkz,   0 },
3709    { X86::VPMADD52LUQZ128rkz, X86::VPMADD52LUQZ128mkz,   0 },
3710    { X86::VPTERNLOGDZ128rrikz,X86::VPTERNLOGDZ128rmikz,  0 },
3711    { X86::VPTERNLOGQZ128rrikz,X86::VPTERNLOGQZ128rmikz,  0 },
3712  };
3713
3714  for (X86MemoryFoldTableEntry Entry : MemoryFoldTable4) {
3715    AddTableEntry(RegOp2MemOpTable4, MemOp2RegOpTable,
3716                  Entry.RegOp, Entry.MemOp,
3717                  // Index 4, folded load
3718                  Entry.Flags | TB_INDEX_4 | TB_FOLDED_LOAD);
3719  }
3720  for (I = X86InstrFMA3Info::rm_begin(); I != E; ++I) {
3721    if (I.getGroup()->isKMasked()) {
3722      // Intrinsics need to pass TB_NO_REVERSE.
3723      if (I.getGroup()->isIntrinsic()) {
3724        AddTableEntry(RegOp2MemOpTable4, MemOp2RegOpTable,
3725                      I.getRegOpcode(), I.getMemOpcode(),
3726                      TB_ALIGN_NONE | TB_INDEX_4 | TB_FOLDED_LOAD | TB_NO_REVERSE);
3727      } else {
3728        AddTableEntry(RegOp2MemOpTable4, MemOp2RegOpTable,
3729                      I.getRegOpcode(), I.getMemOpcode(),
3730                      TB_ALIGN_NONE | TB_INDEX_4 | TB_FOLDED_LOAD);
3731      }
3732    }
3733  }
3734}
3735
3736void
3737X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
3738                            MemOp2RegOpTableType &M2RTable,
3739                            uint16_t RegOp, uint16_t MemOp, uint16_t Flags) {
3740  if ((Flags & TB_NO_FORWARD) == 0) {
3741    assert(!R2MTable.count(RegOp) && "Duplicate entry!");
3742    R2MTable[RegOp] = std::make_pair(MemOp, Flags);
3743  }
3744  if ((Flags & TB_NO_REVERSE) == 0) {
3745    assert(!M2RTable.count(MemOp) &&
3746         "Duplicated entries in unfolding maps?");
3747    M2RTable[MemOp] = std::make_pair(RegOp, Flags);
3748  }
3749}
3750
3751bool
3752X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
3753                                    unsigned &SrcReg, unsigned &DstReg,
3754                                    unsigned &SubIdx) const {
3755  switch (MI.getOpcode()) {
3756  default: break;
3757  case X86::MOVSX16rr8:
3758  case X86::MOVZX16rr8:
3759  case X86::MOVSX32rr8:
3760  case X86::MOVZX32rr8:
3761  case X86::MOVSX64rr8:
3762    if (!Subtarget.is64Bit())
3763      // It's not always legal to reference the low 8-bit of the larger
3764      // register in 32-bit mode.
3765      return false;
3766    LLVM_FALLTHROUGH;
3767  case X86::MOVSX32rr16:
3768  case X86::MOVZX32rr16:
3769  case X86::MOVSX64rr16:
3770  case X86::MOVSX64rr32: {
3771    if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
3772      // Be conservative.
3773      return false;
3774    SrcReg = MI.getOperand(1).getReg();
3775    DstReg = MI.getOperand(0).getReg();
3776    switch (MI.getOpcode()) {
3777    default: llvm_unreachable("Unreachable!");
3778    case X86::MOVSX16rr8:
3779    case X86::MOVZX16rr8:
3780    case X86::MOVSX32rr8:
3781    case X86::MOVZX32rr8:
3782    case X86::MOVSX64rr8:
3783      SubIdx = X86::sub_8bit;
3784      break;
3785    case X86::MOVSX32rr16:
3786    case X86::MOVZX32rr16:
3787    case X86::MOVSX64rr16:
3788      SubIdx = X86::sub_16bit;
3789      break;
3790    case X86::MOVSX64rr32:
3791      SubIdx = X86::sub_32bit;
3792      break;
3793    }
3794    return true;
3795  }
3796  }
3797  return false;
3798}
3799
3800int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
3801  const MachineFunction *MF = MI.getParent()->getParent();
3802  const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
3803
3804  if (isFrameInstr(MI)) {
3805    unsigned StackAlign = TFI->getStackAlignment();
3806    int SPAdj = alignTo(getFrameSize(MI), StackAlign);
3807    SPAdj -= getFrameAdjustment(MI);
3808    if (!isFrameSetup(MI))
3809      SPAdj = -SPAdj;
3810    return SPAdj;
3811  }
3812
3813  // To know whether a call adjusts the stack, we need information
3814  // that is bound to the following ADJCALLSTACKUP pseudo.
3815  // Look for the next ADJCALLSTACKUP that follows the call.
3816  if (MI.isCall()) {
3817    const MachineBasicBlock *MBB = MI.getParent();
3818    auto I = ++MachineBasicBlock::const_iterator(MI);
3819    for (auto E = MBB->end(); I != E; ++I) {
3820      if (I->getOpcode() == getCallFrameDestroyOpcode() ||
3821          I->isCall())
3822        break;
3823    }
3824
3825    // If we could not find a frame destroy opcode, then it has already
3826    // been simplified, so we don't care.
3827    if (I->getOpcode() != getCallFrameDestroyOpcode())
3828      return 0;
3829
3830    return -(I->getOperand(1).getImm());
3831  }
3832
3833  // Currently handle only PUSHes we can reasonably expect to see
3834  // in call sequences
3835  switch (MI.getOpcode()) {
3836  default:
3837    return 0;
3838  case X86::PUSH32i8:
3839  case X86::PUSH32r:
3840  case X86::PUSH32rmm:
3841  case X86::PUSH32rmr:
3842  case X86::PUSHi32:
3843    return 4;
3844  case X86::PUSH64i8:
3845  case X86::PUSH64r:
3846  case X86::PUSH64rmm:
3847  case X86::PUSH64rmr:
3848  case X86::PUSH64i32:
3849    return 8;
3850  }
3851}
3852
3853/// Return true and the FrameIndex if the specified
3854/// operand and follow operands form a reference to the stack frame.
3855bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
3856                                  int &FrameIndex) const {
3857  if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
3858      MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
3859      MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
3860      MI.getOperand(Op + X86::AddrDisp).isImm() &&
3861      MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
3862      MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
3863      MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
3864    FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
3865    return true;
3866  }
3867  return false;
3868}
3869
3870static bool isFrameLoadOpcode(int Opcode) {
3871  switch (Opcode) {
3872  default:
3873    return false;
3874  case X86::MOV8rm:
3875  case X86::MOV16rm:
3876  case X86::MOV32rm:
3877  case X86::MOV64rm:
3878  case X86::LD_Fp64m:
3879  case X86::MOVSSrm:
3880  case X86::MOVSDrm:
3881  case X86::MOVAPSrm:
3882  case X86::MOVUPSrm:
3883  case X86::MOVAPDrm:
3884  case X86::MOVUPDrm:
3885  case X86::MOVDQArm:
3886  case X86::MOVDQUrm:
3887  case X86::VMOVSSrm:
3888  case X86::VMOVSDrm:
3889  case X86::VMOVAPSrm:
3890  case X86::VMOVUPSrm:
3891  case X86::VMOVAPDrm:
3892  case X86::VMOVUPDrm:
3893  case X86::VMOVDQArm:
3894  case X86::VMOVDQUrm:
3895  case X86::VMOVUPSYrm:
3896  case X86::VMOVAPSYrm:
3897  case X86::VMOVUPDYrm:
3898  case X86::VMOVAPDYrm:
3899  case X86::VMOVDQUYrm:
3900  case X86::VMOVDQAYrm:
3901  case X86::MMX_MOVD64rm:
3902  case X86::MMX_MOVQ64rm:
3903  case X86::VMOVSSZrm:
3904  case X86::VMOVSDZrm:
3905  case X86::VMOVAPSZrm:
3906  case X86::VMOVAPSZ128rm:
3907  case X86::VMOVAPSZ256rm:
3908  case X86::VMOVAPSZ128rm_NOVLX:
3909  case X86::VMOVAPSZ256rm_NOVLX:
3910  case X86::VMOVUPSZrm:
3911  case X86::VMOVUPSZ128rm:
3912  case X86::VMOVUPSZ256rm:
3913  case X86::VMOVUPSZ128rm_NOVLX:
3914  case X86::VMOVUPSZ256rm_NOVLX:
3915  case X86::VMOVAPDZrm:
3916  case X86::VMOVAPDZ128rm:
3917  case X86::VMOVAPDZ256rm:
3918  case X86::VMOVUPDZrm:
3919  case X86::VMOVUPDZ128rm:
3920  case X86::VMOVUPDZ256rm:
3921  case X86::VMOVDQA32Zrm:
3922  case X86::VMOVDQA32Z128rm:
3923  case X86::VMOVDQA32Z256rm:
3924  case X86::VMOVDQU32Zrm:
3925  case X86::VMOVDQU32Z128rm:
3926  case X86::VMOVDQU32Z256rm:
3927  case X86::VMOVDQA64Zrm:
3928  case X86::VMOVDQA64Z128rm:
3929  case X86::VMOVDQA64Z256rm:
3930  case X86::VMOVDQU64Zrm:
3931  case X86::VMOVDQU64Z128rm:
3932  case X86::VMOVDQU64Z256rm:
3933  case X86::VMOVDQU8Zrm:
3934  case X86::VMOVDQU8Z128rm:
3935  case X86::VMOVDQU8Z256rm:
3936  case X86::VMOVDQU16Zrm:
3937  case X86::VMOVDQU16Z128rm:
3938  case X86::VMOVDQU16Z256rm:
3939  case X86::KMOVBkm:
3940  case X86::KMOVWkm:
3941  case X86::KMOVDkm:
3942  case X86::KMOVQkm:
3943    return true;
3944  }
3945}
3946
3947static bool isFrameStoreOpcode(int Opcode) {
3948  switch (Opcode) {
3949  default: break;
3950  case X86::MOV8mr:
3951  case X86::MOV16mr:
3952  case X86::MOV32mr:
3953  case X86::MOV64mr:
3954  case X86::ST_FpP64m:
3955  case X86::MOVSSmr:
3956  case X86::MOVSDmr:
3957  case X86::MOVAPSmr:
3958  case X86::MOVUPSmr:
3959  case X86::MOVAPDmr:
3960  case X86::MOVUPDmr:
3961  case X86::MOVDQAmr:
3962  case X86::MOVDQUmr:
3963  case X86::VMOVSSmr:
3964  case X86::VMOVSDmr:
3965  case X86::VMOVAPSmr:
3966  case X86::VMOVUPSmr:
3967  case X86::VMOVAPDmr:
3968  case X86::VMOVUPDmr:
3969  case X86::VMOVDQAmr:
3970  case X86::VMOVDQUmr:
3971  case X86::VMOVUPSYmr:
3972  case X86::VMOVAPSYmr:
3973  case X86::VMOVUPDYmr:
3974  case X86::VMOVAPDYmr:
3975  case X86::VMOVDQUYmr:
3976  case X86::VMOVDQAYmr:
3977  case X86::VMOVSSZmr:
3978  case X86::VMOVSDZmr:
3979  case X86::VMOVUPSZmr:
3980  case X86::VMOVUPSZ128mr:
3981  case X86::VMOVUPSZ256mr:
3982  case X86::VMOVUPSZ128mr_NOVLX:
3983  case X86::VMOVUPSZ256mr_NOVLX:
3984  case X86::VMOVAPSZmr:
3985  case X86::VMOVAPSZ128mr:
3986  case X86::VMOVAPSZ256mr:
3987  case X86::VMOVAPSZ128mr_NOVLX:
3988  case X86::VMOVAPSZ256mr_NOVLX:
3989  case X86::VMOVUPDZmr:
3990  case X86::VMOVUPDZ128mr:
3991  case X86::VMOVUPDZ256mr:
3992  case X86::VMOVAPDZmr:
3993  case X86::VMOVAPDZ128mr:
3994  case X86::VMOVAPDZ256mr:
3995  case X86::VMOVDQA32Zmr:
3996  case X86::VMOVDQA32Z128mr:
3997  case X86::VMOVDQA32Z256mr:
3998  case X86::VMOVDQU32Zmr:
3999  case X86::VMOVDQU32Z128mr:
4000  case X86::VMOVDQU32Z256mr:
4001  case X86::VMOVDQA64Zmr:
4002  case X86::VMOVDQA64Z128mr:
4003  case X86::VMOVDQA64Z256mr:
4004  case X86::VMOVDQU64Zmr:
4005  case X86::VMOVDQU64Z128mr:
4006  case X86::VMOVDQU64Z256mr:
4007  case X86::VMOVDQU8Zmr:
4008  case X86::VMOVDQU8Z128mr:
4009  case X86::VMOVDQU8Z256mr:
4010  case X86::VMOVDQU16Zmr:
4011  case X86::VMOVDQU16Z128mr:
4012  case X86::VMOVDQU16Z256mr:
4013  case X86::MMX_MOVD64mr:
4014  case X86::MMX_MOVQ64mr:
4015  case X86::MMX_MOVNTQmr:
4016  case X86::KMOVBmk:
4017  case X86::KMOVWmk:
4018  case X86::KMOVDmk:
4019  case X86::KMOVQmk:
4020    return true;
4021  }
4022  return false;
4023}
4024
4025unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
4026                                           int &FrameIndex) const {
4027  if (isFrameLoadOpcode(MI.getOpcode()))
4028    if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
4029      return MI.getOperand(0).getReg();
4030  return 0;
4031}
4032
4033unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
4034                                                 int &FrameIndex) const {
4035  if (isFrameLoadOpcode(MI.getOpcode())) {
4036    unsigned Reg;
4037    if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
4038      return Reg;
4039    // Check for post-frame index elimination operations
4040    const MachineMemOperand *Dummy;
4041    return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
4042  }
4043  return 0;
4044}
4045
4046unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
4047                                          int &FrameIndex) const {
4048  if (isFrameStoreOpcode(MI.getOpcode()))
4049    if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
4050        isFrameOperand(MI, 0, FrameIndex))
4051      return MI.getOperand(X86::AddrNumOperands).getReg();
4052  return 0;
4053}
4054
4055unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
4056                                                int &FrameIndex) const {
4057  if (isFrameStoreOpcode(MI.getOpcode())) {
4058    unsigned Reg;
4059    if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
4060      return Reg;
4061    // Check for post-frame index elimination operations
4062    const MachineMemOperand *Dummy;
4063    return hasStoreToStackSlot(MI, Dummy, FrameIndex);
4064  }
4065  return 0;
4066}
4067
4068/// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
4069static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
4070  // Don't waste compile time scanning use-def chains of physregs.
4071  if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
4072    return false;
4073  bool isPICBase = false;
4074  for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
4075         E = MRI.def_instr_end(); I != E; ++I) {
4076    MachineInstr *DefMI = &*I;
4077    if (DefMI->getOpcode() != X86::MOVPC32r)
4078      return false;
4079    assert(!isPICBase && "More than one PIC base?");
4080    isPICBase = true;
4081  }
4082  return isPICBase;
4083}
4084
4085bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
4086                                                     AliasAnalysis *AA) const {
4087  switch (MI.getOpcode()) {
4088  default: break;
4089  case X86::MOV8rm:
4090  case X86::MOV8rm_NOREX:
4091  case X86::MOV16rm:
4092  case X86::MOV32rm:
4093  case X86::MOV64rm:
4094  case X86::LD_Fp64m:
4095  case X86::MOVSSrm:
4096  case X86::MOVSDrm:
4097  case X86::MOVAPSrm:
4098  case X86::MOVUPSrm:
4099  case X86::MOVAPDrm:
4100  case X86::MOVUPDrm:
4101  case X86::MOVDQArm:
4102  case X86::MOVDQUrm:
4103  case X86::VMOVSSrm:
4104  case X86::VMOVSDrm:
4105  case X86::VMOVAPSrm:
4106  case X86::VMOVUPSrm:
4107  case X86::VMOVAPDrm:
4108  case X86::VMOVUPDrm:
4109  case X86::VMOVDQArm:
4110  case X86::VMOVDQUrm:
4111  case X86::VMOVAPSYrm:
4112  case X86::VMOVUPSYrm:
4113  case X86::VMOVAPDYrm:
4114  case X86::VMOVUPDYrm:
4115  case X86::VMOVDQAYrm:
4116  case X86::VMOVDQUYrm:
4117  case X86::MMX_MOVD64rm:
4118  case X86::MMX_MOVQ64rm:
4119  // AVX-512
4120  case X86::VMOVSSZrm:
4121  case X86::VMOVSDZrm:
4122  case X86::VMOVAPDZ128rm:
4123  case X86::VMOVAPDZ256rm:
4124  case X86::VMOVAPDZrm:
4125  case X86::VMOVAPSZ128rm:
4126  case X86::VMOVAPSZ256rm:
4127  case X86::VMOVAPSZ128rm_NOVLX:
4128  case X86::VMOVAPSZ256rm_NOVLX:
4129  case X86::VMOVAPSZrm:
4130  case X86::VMOVDQA32Z128rm:
4131  case X86::VMOVDQA32Z256rm:
4132  case X86::VMOVDQA32Zrm:
4133  case X86::VMOVDQA64Z128rm:
4134  case X86::VMOVDQA64Z256rm:
4135  case X86::VMOVDQA64Zrm:
4136  case X86::VMOVDQU16Z128rm:
4137  case X86::VMOVDQU16Z256rm:
4138  case X86::VMOVDQU16Zrm:
4139  case X86::VMOVDQU32Z128rm:
4140  case X86::VMOVDQU32Z256rm:
4141  case X86::VMOVDQU32Zrm:
4142  case X86::VMOVDQU64Z128rm:
4143  case X86::VMOVDQU64Z256rm:
4144  case X86::VMOVDQU64Zrm:
4145  case X86::VMOVDQU8Z128rm:
4146  case X86::VMOVDQU8Z256rm:
4147  case X86::VMOVDQU8Zrm:
4148  case X86::VMOVUPDZ128rm:
4149  case X86::VMOVUPDZ256rm:
4150  case X86::VMOVUPDZrm:
4151  case X86::VMOVUPSZ128rm:
4152  case X86::VMOVUPSZ256rm:
4153  case X86::VMOVUPSZ128rm_NOVLX:
4154  case X86::VMOVUPSZ256rm_NOVLX:
4155  case X86::VMOVUPSZrm: {
4156    // Loads from constant pools are trivially rematerializable.
4157    if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
4158        MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
4159        MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
4160        MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
4161        MI.isDereferenceableInvariantLoad(AA)) {
4162      unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
4163      if (BaseReg == 0 || BaseReg == X86::RIP)
4164        return true;
4165      // Allow re-materialization of PIC load.
4166      if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
4167        return false;
4168      const MachineFunction &MF = *MI.getParent()->getParent();
4169      const MachineRegisterInfo &MRI = MF.getRegInfo();
4170      return regIsPICBase(BaseReg, MRI);
4171    }
4172    return false;
4173  }
4174
4175  case X86::LEA32r:
4176  case X86::LEA64r: {
4177    if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
4178        MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
4179        MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
4180        !MI.getOperand(1 + X86::AddrDisp).isReg()) {
4181      // lea fi#, lea GV, etc. are all rematerializable.
4182      if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
4183        return true;
4184      unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
4185      if (BaseReg == 0)
4186        return true;
4187      // Allow re-materialization of lea PICBase + x.
4188      const MachineFunction &MF = *MI.getParent()->getParent();
4189      const MachineRegisterInfo &MRI = MF.getRegInfo();
4190      return regIsPICBase(BaseReg, MRI);
4191    }
4192    return false;
4193  }
4194  }
4195
4196  // All other instructions marked M_REMATERIALIZABLE are always trivially
4197  // rematerializable.
4198  return true;
4199}
4200
4201bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
4202                                         MachineBasicBlock::iterator I) const {
4203  MachineBasicBlock::iterator E = MBB.end();
4204
4205  // For compile time consideration, if we are not able to determine the
4206  // safety after visiting 4 instructions in each direction, we will assume
4207  // it's not safe.
4208  MachineBasicBlock::iterator Iter = I;
4209  for (unsigned i = 0; Iter != E && i < 4; ++i) {
4210    bool SeenDef = false;
4211    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
4212      MachineOperand &MO = Iter->getOperand(j);
4213      if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
4214        SeenDef = true;
4215      if (!MO.isReg())
4216        continue;
4217      if (MO.getReg() == X86::EFLAGS) {
4218        if (MO.isUse())
4219          return false;
4220        SeenDef = true;
4221      }
4222    }
4223
4224    if (SeenDef)
4225      // This instruction defines EFLAGS, no need to look any further.
4226      return true;
4227    ++Iter;
4228    // Skip over DBG_VALUE.
4229    while (Iter != E && Iter->isDebugValue())
4230      ++Iter;
4231  }
4232
4233  // It is safe to clobber EFLAGS at the end of a block of no successor has it
4234  // live in.
4235  if (Iter == E) {
4236    for (MachineBasicBlock *S : MBB.successors())
4237      if (S->isLiveIn(X86::EFLAGS))
4238        return false;
4239    return true;
4240  }
4241
4242  MachineBasicBlock::iterator B = MBB.begin();
4243  Iter = I;
4244  for (unsigned i = 0; i < 4; ++i) {
4245    // If we make it to the beginning of the block, it's safe to clobber
4246    // EFLAGS iff EFLAGS is not live-in.
4247    if (Iter == B)
4248      return !MBB.isLiveIn(X86::EFLAGS);
4249
4250    --Iter;
4251    // Skip over DBG_VALUE.
4252    while (Iter != B && Iter->isDebugValue())
4253      --Iter;
4254
4255    bool SawKill = false;
4256    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
4257      MachineOperand &MO = Iter->getOperand(j);
4258      // A register mask may clobber EFLAGS, but we should still look for a
4259      // live EFLAGS def.
4260      if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
4261        SawKill = true;
4262      if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
4263        if (MO.isDef()) return MO.isDead();
4264        if (MO.isKill()) SawKill = true;
4265      }
4266    }
4267
4268    if (SawKill)
4269      // This instruction kills EFLAGS and doesn't redefine it, so
4270      // there's no need to look further.
4271      return true;
4272  }
4273
4274  // Conservative answer.
4275  return false;
4276}
4277
4278void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
4279                                 MachineBasicBlock::iterator I,
4280                                 unsigned DestReg, unsigned SubIdx,
4281                                 const MachineInstr &Orig,
4282                                 const TargetRegisterInfo &TRI) const {
4283  bool ClobbersEFLAGS = false;
4284  for (const MachineOperand &MO : Orig.operands()) {
4285    if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
4286      ClobbersEFLAGS = true;
4287      break;
4288    }
4289  }
4290
4291  if (ClobbersEFLAGS && !isSafeToClobberEFLAGS(MBB, I)) {
4292    // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
4293    // effects.
4294    int Value;
4295    switch (Orig.getOpcode()) {
4296    case X86::MOV32r0:  Value = 0; break;
4297    case X86::MOV32r1:  Value = 1; break;
4298    case X86::MOV32r_1: Value = -1; break;
4299    default:
4300      llvm_unreachable("Unexpected instruction!");
4301    }
4302
4303    const DebugLoc &DL = Orig.getDebugLoc();
4304    BuildMI(MBB, I, DL, get(X86::MOV32ri))
4305        .add(Orig.getOperand(0))
4306        .addImm(Value);
4307  } else {
4308    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
4309    MBB.insert(I, MI);
4310  }
4311
4312  MachineInstr &NewMI = *std::prev(I);
4313  NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
4314}
4315
4316/// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
4317bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
4318  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
4319    MachineOperand &MO = MI.getOperand(i);
4320    if (MO.isReg() && MO.isDef() &&
4321        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
4322      return true;
4323    }
4324  }
4325  return false;
4326}
4327
4328/// Check whether the shift count for a machine operand is non-zero.
4329inline static unsigned getTruncatedShiftCount(MachineInstr &MI,
4330                                              unsigned ShiftAmtOperandIdx) {
4331  // The shift count is six bits with the REX.W prefix and five bits without.
4332  unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
4333  unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
4334  return Imm & ShiftCountMask;
4335}
4336
4337/// Check whether the given shift count is appropriate
4338/// can be represented by a LEA instruction.
4339inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
4340  // Left shift instructions can be transformed into load-effective-address
4341  // instructions if we can encode them appropriately.
4342  // A LEA instruction utilizes a SIB byte to encode its scale factor.
4343  // The SIB.scale field is two bits wide which means that we can encode any
4344  // shift amount less than 4.
4345  return ShAmt < 4 && ShAmt > 0;
4346}
4347
4348bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
4349                                  unsigned Opc, bool AllowSP, unsigned &NewSrc,
4350                                  bool &isKill, bool &isUndef,
4351                                  MachineOperand &ImplicitOp,
4352                                  LiveVariables *LV) const {
4353  MachineFunction &MF = *MI.getParent()->getParent();
4354  const TargetRegisterClass *RC;
4355  if (AllowSP) {
4356    RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
4357  } else {
4358    RC = Opc != X86::LEA32r ?
4359      &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
4360  }
4361  unsigned SrcReg = Src.getReg();
4362
4363  // For both LEA64 and LEA32 the register already has essentially the right
4364  // type (32-bit or 64-bit) we may just need to forbid SP.
4365  if (Opc != X86::LEA64_32r) {
4366    NewSrc = SrcReg;
4367    isKill = Src.isKill();
4368    isUndef = Src.isUndef();
4369
4370    if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
4371        !MF.getRegInfo().constrainRegClass(NewSrc, RC))
4372      return false;
4373
4374    return true;
4375  }
4376
4377  // This is for an LEA64_32r and incoming registers are 32-bit. One way or
4378  // another we need to add 64-bit registers to the final MI.
4379  if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
4380    ImplicitOp = Src;
4381    ImplicitOp.setImplicit();
4382
4383    NewSrc = getX86SubSuperRegister(Src.getReg(), 64);
4384    isKill = Src.isKill();
4385    isUndef = Src.isUndef();
4386  } else {
4387    // Virtual register of the wrong class, we have to create a temporary 64-bit
4388    // vreg to feed into the LEA.
4389    NewSrc = MF.getRegInfo().createVirtualRegister(RC);
4390    MachineInstr *Copy =
4391        BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
4392            .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
4393            .add(Src);
4394
4395    // Which is obviously going to be dead after we're done with it.
4396    isKill = true;
4397    isUndef = false;
4398
4399    if (LV)
4400      LV->replaceKillInstruction(SrcReg, MI, *Copy);
4401  }
4402
4403  // We've set all the parameters without issue.
4404  return true;
4405}
4406
4407/// Helper for convertToThreeAddress when 16-bit LEA is disabled, use 32-bit
4408/// LEA to form 3-address code by promoting to a 32-bit superregister and then
4409/// truncating back down to a 16-bit subregister.
4410MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(
4411    unsigned MIOpc, MachineFunction::iterator &MFI, MachineInstr &MI,
4412    LiveVariables *LV) const {
4413  MachineBasicBlock::iterator MBBI = MI.getIterator();
4414  unsigned Dest = MI.getOperand(0).getReg();
4415  unsigned Src = MI.getOperand(1).getReg();
4416  bool isDead = MI.getOperand(0).isDead();
4417  bool isKill = MI.getOperand(1).isKill();
4418
4419  MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
4420  unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
4421  unsigned Opc, leaInReg;
4422  if (Subtarget.is64Bit()) {
4423    Opc = X86::LEA64_32r;
4424    leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
4425  } else {
4426    Opc = X86::LEA32r;
4427    leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
4428  }
4429
4430  // Build and insert into an implicit UNDEF value. This is OK because
4431  // well be shifting and then extracting the lower 16-bits.
4432  // This has the potential to cause partial register stall. e.g.
4433  //   movw    (%rbp,%rcx,2), %dx
4434  //   leal    -65(%rdx), %esi
4435  // But testing has shown this *does* help performance in 64-bit mode (at
4436  // least on modern x86 machines).
4437  BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
4438  MachineInstr *InsMI =
4439      BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
4440          .addReg(leaInReg, RegState::Define, X86::sub_16bit)
4441          .addReg(Src, getKillRegState(isKill));
4442
4443  MachineInstrBuilder MIB =
4444      BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(Opc), leaOutReg);
4445  switch (MIOpc) {
4446  default: llvm_unreachable("Unreachable!");
4447  case X86::SHL16ri: {
4448    unsigned ShAmt = MI.getOperand(2).getImm();
4449    MIB.addReg(0).addImm(1ULL << ShAmt)
4450       .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
4451    break;
4452  }
4453  case X86::INC16r:
4454    addRegOffset(MIB, leaInReg, true, 1);
4455    break;
4456  case X86::DEC16r:
4457    addRegOffset(MIB, leaInReg, true, -1);
4458    break;
4459  case X86::ADD16ri:
4460  case X86::ADD16ri8:
4461  case X86::ADD16ri_DB:
4462  case X86::ADD16ri8_DB:
4463    addRegOffset(MIB, leaInReg, true, MI.getOperand(2).getImm());
4464    break;
4465  case X86::ADD16rr:
4466  case X86::ADD16rr_DB: {
4467    unsigned Src2 = MI.getOperand(2).getReg();
4468    bool isKill2 = MI.getOperand(2).isKill();
4469    unsigned leaInReg2 = 0;
4470    MachineInstr *InsMI2 = nullptr;
4471    if (Src == Src2) {
4472      // ADD16rr killed %reg1028, %reg1028
4473      // just a single insert_subreg.
4474      addRegReg(MIB, leaInReg, true, leaInReg, false);
4475    } else {
4476      if (Subtarget.is64Bit())
4477        leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
4478      else
4479        leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
4480      // Build and insert into an implicit UNDEF value. This is OK because
4481      // well be shifting and then extracting the lower 16-bits.
4482      BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2);
4483      InsMI2 = BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
4484                   .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
4485                   .addReg(Src2, getKillRegState(isKill2));
4486      addRegReg(MIB, leaInReg, true, leaInReg2, true);
4487    }
4488    if (LV && isKill2 && InsMI2)
4489      LV->replaceKillInstruction(Src2, MI, *InsMI2);
4490    break;
4491  }
4492  }
4493
4494  MachineInstr *NewMI = MIB;
4495  MachineInstr *ExtMI =
4496      BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
4497          .addReg(Dest, RegState::Define | getDeadRegState(isDead))
4498          .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
4499
4500  if (LV) {
4501    // Update live variables
4502    LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
4503    LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
4504    if (isKill)
4505      LV->replaceKillInstruction(Src, MI, *InsMI);
4506    if (isDead)
4507      LV->replaceKillInstruction(Dest, MI, *ExtMI);
4508  }
4509
4510  return ExtMI;
4511}
4512
4513/// This method must be implemented by targets that
4514/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
4515/// may be able to convert a two-address instruction into a true
4516/// three-address instruction on demand.  This allows the X86 target (for
4517/// example) to convert ADD and SHL instructions into LEA instructions if they
4518/// would require register copies due to two-addressness.
4519///
4520/// This method returns a null pointer if the transformation cannot be
4521/// performed, otherwise it returns the new instruction.
4522///
4523MachineInstr *
4524X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
4525                                    MachineInstr &MI, LiveVariables *LV) const {
4526  // The following opcodes also sets the condition code register(s). Only
4527  // convert them to equivalent lea if the condition code register def's
4528  // are dead!
4529  if (hasLiveCondCodeDef(MI))
4530    return nullptr;
4531
4532  MachineFunction &MF = *MI.getParent()->getParent();
4533  // All instructions input are two-addr instructions.  Get the known operands.
4534  const MachineOperand &Dest = MI.getOperand(0);
4535  const MachineOperand &Src = MI.getOperand(1);
4536
4537  MachineInstr *NewMI = nullptr;
4538  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
4539  // we have better subtarget support, enable the 16-bit LEA generation here.
4540  // 16-bit LEA is also slow on Core2.
4541  bool DisableLEA16 = true;
4542  bool is64Bit = Subtarget.is64Bit();
4543
4544  unsigned MIOpc = MI.getOpcode();
4545  switch (MIOpc) {
4546  default: return nullptr;
4547  case X86::SHL64ri: {
4548    assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
4549    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
4550    if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
4551
4552    // LEA can't handle RSP.
4553    if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
4554        !MF.getRegInfo().constrainRegClass(Src.getReg(),
4555                                           &X86::GR64_NOSPRegClass))
4556      return nullptr;
4557
4558    NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
4559                .add(Dest)
4560                .addReg(0)
4561                .addImm(1ULL << ShAmt)
4562                .add(Src)
4563                .addImm(0)
4564                .addReg(0);
4565    break;
4566  }
4567  case X86::SHL32ri: {
4568    assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
4569    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
4570    if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
4571
4572    unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
4573
4574    // LEA can't handle ESP.
4575    bool isKill, isUndef;
4576    unsigned SrcReg;
4577    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
4578    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
4579                        SrcReg, isKill, isUndef, ImplicitOp, LV))
4580      return nullptr;
4581
4582    MachineInstrBuilder MIB =
4583        BuildMI(MF, MI.getDebugLoc(), get(Opc))
4584            .add(Dest)
4585            .addReg(0)
4586            .addImm(1ULL << ShAmt)
4587            .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
4588            .addImm(0)
4589            .addReg(0);
4590    if (ImplicitOp.getReg() != 0)
4591      MIB.add(ImplicitOp);
4592    NewMI = MIB;
4593
4594    break;
4595  }
4596  case X86::SHL16ri: {
4597    assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
4598    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
4599    if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
4600
4601    if (DisableLEA16)
4602      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV)
4603                     : nullptr;
4604    NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r))
4605                .add(Dest)
4606                .addReg(0)
4607                .addImm(1ULL << ShAmt)
4608                .add(Src)
4609                .addImm(0)
4610                .addReg(0);
4611    break;
4612  }
4613  case X86::INC64r:
4614  case X86::INC32r: {
4615    assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
4616    unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
4617      : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
4618    bool isKill, isUndef;
4619    unsigned SrcReg;
4620    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
4621    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
4622                        SrcReg, isKill, isUndef, ImplicitOp, LV))
4623      return nullptr;
4624
4625    MachineInstrBuilder MIB =
4626        BuildMI(MF, MI.getDebugLoc(), get(Opc))
4627            .add(Dest)
4628            .addReg(SrcReg,
4629                    getKillRegState(isKill) | getUndefRegState(isUndef));
4630    if (ImplicitOp.getReg() != 0)
4631      MIB.add(ImplicitOp);
4632
4633    NewMI = addOffset(MIB, 1);
4634    break;
4635  }
4636  case X86::INC16r:
4637    if (DisableLEA16)
4638      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV)
4639                     : nullptr;
4640    assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
4641    NewMI = addOffset(
4642        BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest).add(Src), 1);
4643    break;
4644  case X86::DEC64r:
4645  case X86::DEC32r: {
4646    assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
4647    unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
4648      : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
4649
4650    bool isKill, isUndef;
4651    unsigned SrcReg;
4652    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
4653    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
4654                        SrcReg, isKill, isUndef, ImplicitOp, LV))
4655      return nullptr;
4656
4657    MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
4658                                  .add(Dest)
4659                                  .addReg(SrcReg, getUndefRegState(isUndef) |
4660                                                      getKillRegState(isKill));
4661    if (ImplicitOp.getReg() != 0)
4662      MIB.add(ImplicitOp);
4663
4664    NewMI = addOffset(MIB, -1);
4665
4666    break;
4667  }
4668  case X86::DEC16r:
4669    if (DisableLEA16)
4670      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV)
4671                     : nullptr;
4672    assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
4673    NewMI = addOffset(
4674        BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest).add(Src), -1);
4675    break;
4676  case X86::ADD64rr:
4677  case X86::ADD64rr_DB:
4678  case X86::ADD32rr:
4679  case X86::ADD32rr_DB: {
4680    assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
4681    unsigned Opc;
4682    if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
4683      Opc = X86::LEA64r;
4684    else
4685      Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
4686
4687    bool isKill, isUndef;
4688    unsigned SrcReg;
4689    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
4690    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
4691                        SrcReg, isKill, isUndef, ImplicitOp, LV))
4692      return nullptr;
4693
4694    const MachineOperand &Src2 = MI.getOperand(2);
4695    bool isKill2, isUndef2;
4696    unsigned SrcReg2;
4697    MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
4698    if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
4699                        SrcReg2, isKill2, isUndef2, ImplicitOp2, LV))
4700      return nullptr;
4701
4702    MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
4703    if (ImplicitOp.getReg() != 0)
4704      MIB.add(ImplicitOp);
4705    if (ImplicitOp2.getReg() != 0)
4706      MIB.add(ImplicitOp2);
4707
4708    NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
4709
4710    // Preserve undefness of the operands.
4711    NewMI->getOperand(1).setIsUndef(isUndef);
4712    NewMI->getOperand(3).setIsUndef(isUndef2);
4713
4714    if (LV && Src2.isKill())
4715      LV->replaceKillInstruction(SrcReg2, MI, *NewMI);
4716    break;
4717  }
4718  case X86::ADD16rr:
4719  case X86::ADD16rr_DB: {
4720    if (DisableLEA16)
4721      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV)
4722                     : nullptr;
4723    assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
4724    unsigned Src2 = MI.getOperand(2).getReg();
4725    bool isKill2 = MI.getOperand(2).isKill();
4726    NewMI = addRegReg(BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest),
4727                      Src.getReg(), Src.isKill(), Src2, isKill2);
4728
4729    // Preserve undefness of the operands.
4730    bool isUndef = MI.getOperand(1).isUndef();
4731    bool isUndef2 = MI.getOperand(2).isUndef();
4732    NewMI->getOperand(1).setIsUndef(isUndef);
4733    NewMI->getOperand(3).setIsUndef(isUndef2);
4734
4735    if (LV && isKill2)
4736      LV->replaceKillInstruction(Src2, MI, *NewMI);
4737    break;
4738  }
4739  case X86::ADD64ri32:
4740  case X86::ADD64ri8:
4741  case X86::ADD64ri32_DB:
4742  case X86::ADD64ri8_DB:
4743    assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
4744    NewMI = addOffset(
4745        BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
4746        MI.getOperand(2));
4747    break;
4748  case X86::ADD32ri:
4749  case X86::ADD32ri8:
4750  case X86::ADD32ri_DB:
4751  case X86::ADD32ri8_DB: {
4752    assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
4753    unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
4754
4755    bool isKill, isUndef;
4756    unsigned SrcReg;
4757    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
4758    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
4759                        SrcReg, isKill, isUndef, ImplicitOp, LV))
4760      return nullptr;
4761
4762    MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
4763                                  .add(Dest)
4764                                  .addReg(SrcReg, getUndefRegState(isUndef) |
4765                                                      getKillRegState(isKill));
4766    if (ImplicitOp.getReg() != 0)
4767      MIB.add(ImplicitOp);
4768
4769    NewMI = addOffset(MIB, MI.getOperand(2));
4770    break;
4771  }
4772  case X86::ADD16ri:
4773  case X86::ADD16ri8:
4774  case X86::ADD16ri_DB:
4775  case X86::ADD16ri8_DB:
4776    if (DisableLEA16)
4777      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV)
4778                     : nullptr;
4779    assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
4780    NewMI = addOffset(
4781        BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest).add(Src),
4782        MI.getOperand(2));
4783    break;
4784
4785  case X86::VMOVDQU8Z128rmk:
4786  case X86::VMOVDQU8Z256rmk:
4787  case X86::VMOVDQU8Zrmk:
4788  case X86::VMOVDQU16Z128rmk:
4789  case X86::VMOVDQU16Z256rmk:
4790  case X86::VMOVDQU16Zrmk:
4791  case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
4792  case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
4793  case X86::VMOVDQU32Zrmk:    case X86::VMOVDQA32Zrmk:
4794  case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
4795  case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
4796  case X86::VMOVDQU64Zrmk:    case X86::VMOVDQA64Zrmk:
4797  case X86::VMOVUPDZ128rmk:   case X86::VMOVAPDZ128rmk:
4798  case X86::VMOVUPDZ256rmk:   case X86::VMOVAPDZ256rmk:
4799  case X86::VMOVUPDZrmk:      case X86::VMOVAPDZrmk:
4800  case X86::VMOVUPSZ128rmk:   case X86::VMOVAPSZ128rmk:
4801  case X86::VMOVUPSZ256rmk:   case X86::VMOVAPSZ256rmk:
4802  case X86::VMOVUPSZrmk:      case X86::VMOVAPSZrmk: {
4803    unsigned Opc;
4804    switch (MIOpc) {
4805    default: llvm_unreachable("Unreachable!");
4806    case X86::VMOVDQU8Z128rmk:  Opc = X86::VPBLENDMBZ128rmk; break;
4807    case X86::VMOVDQU8Z256rmk:  Opc = X86::VPBLENDMBZ256rmk; break;
4808    case X86::VMOVDQU8Zrmk:     Opc = X86::VPBLENDMBZrmk;    break;
4809    case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break;
4810    case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break;
4811    case X86::VMOVDQU16Zrmk:    Opc = X86::VPBLENDMWZrmk;    break;
4812    case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
4813    case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
4814    case X86::VMOVDQU32Zrmk:    Opc = X86::VPBLENDMDZrmk;    break;
4815    case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
4816    case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
4817    case X86::VMOVDQU64Zrmk:    Opc = X86::VPBLENDMQZrmk;    break;
4818    case X86::VMOVUPDZ128rmk:   Opc = X86::VBLENDMPDZ128rmk; break;
4819    case X86::VMOVUPDZ256rmk:   Opc = X86::VBLENDMPDZ256rmk; break;
4820    case X86::VMOVUPDZrmk:      Opc = X86::VBLENDMPDZrmk;    break;
4821    case X86::VMOVUPSZ128rmk:   Opc = X86::VBLENDMPSZ128rmk; break;
4822    case X86::VMOVUPSZ256rmk:   Opc = X86::VBLENDMPSZ256rmk; break;
4823    case X86::VMOVUPSZrmk:      Opc = X86::VBLENDMPSZrmk;    break;
4824    case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
4825    case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
4826    case X86::VMOVDQA32Zrmk:    Opc = X86::VPBLENDMDZrmk;    break;
4827    case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
4828    case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
4829    case X86::VMOVDQA64Zrmk:    Opc = X86::VPBLENDMQZrmk;    break;
4830    case X86::VMOVAPDZ128rmk:   Opc = X86::VBLENDMPDZ128rmk; break;
4831    case X86::VMOVAPDZ256rmk:   Opc = X86::VBLENDMPDZ256rmk; break;
4832    case X86::VMOVAPDZrmk:      Opc = X86::VBLENDMPDZrmk;    break;
4833    case X86::VMOVAPSZ128rmk:   Opc = X86::VBLENDMPSZ128rmk; break;
4834    case X86::VMOVAPSZ256rmk:   Opc = X86::VBLENDMPSZ256rmk; break;
4835    case X86::VMOVAPSZrmk:      Opc = X86::VBLENDMPSZrmk;    break;
4836    }
4837
4838    NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
4839              .add(Dest)
4840              .add(MI.getOperand(2))
4841              .add(Src)
4842              .add(MI.getOperand(3))
4843              .add(MI.getOperand(4))
4844              .add(MI.getOperand(5))
4845              .add(MI.getOperand(6))
4846              .add(MI.getOperand(7));
4847    break;
4848  }
4849  case X86::VMOVDQU8Z128rrk:
4850  case X86::VMOVDQU8Z256rrk:
4851  case X86::VMOVDQU8Zrrk:
4852  case X86::VMOVDQU16Z128rrk:
4853  case X86::VMOVDQU16Z256rrk:
4854  case X86::VMOVDQU16Zrrk:
4855  case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
4856  case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
4857  case X86::VMOVDQU32Zrrk:    case X86::VMOVDQA32Zrrk:
4858  case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
4859  case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
4860  case X86::VMOVDQU64Zrrk:    case X86::VMOVDQA64Zrrk:
4861  case X86::VMOVUPDZ128rrk:   case X86::VMOVAPDZ128rrk:
4862  case X86::VMOVUPDZ256rrk:   case X86::VMOVAPDZ256rrk:
4863  case X86::VMOVUPDZrrk:      case X86::VMOVAPDZrrk:
4864  case X86::VMOVUPSZ128rrk:   case X86::VMOVAPSZ128rrk:
4865  case X86::VMOVUPSZ256rrk:   case X86::VMOVAPSZ256rrk:
4866  case X86::VMOVUPSZrrk:      case X86::VMOVAPSZrrk: {
4867    unsigned Opc;
4868    switch (MIOpc) {
4869    default: llvm_unreachable("Unreachable!");
4870    case X86::VMOVDQU8Z128rrk:  Opc = X86::VPBLENDMBZ128rrk; break;
4871    case X86::VMOVDQU8Z256rrk:  Opc = X86::VPBLENDMBZ256rrk; break;
4872    case X86::VMOVDQU8Zrrk:     Opc = X86::VPBLENDMBZrrk;    break;
4873    case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
4874    case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
4875    case X86::VMOVDQU16Zrrk:    Opc = X86::VPBLENDMWZrrk;    break;
4876    case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
4877    case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
4878    case X86::VMOVDQU32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break;
4879    case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
4880    case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
4881    case X86::VMOVDQU64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break;
4882    case X86::VMOVUPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break;
4883    case X86::VMOVUPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break;
4884    case X86::VMOVUPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break;
4885    case X86::VMOVUPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break;
4886    case X86::VMOVUPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break;
4887    case X86::VMOVUPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break;
4888    case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
4889    case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
4890    case X86::VMOVDQA32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break;
4891    case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
4892    case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
4893    case X86::VMOVDQA64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break;
4894    case X86::VMOVAPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break;
4895    case X86::VMOVAPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break;
4896    case X86::VMOVAPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break;
4897    case X86::VMOVAPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break;
4898    case X86::VMOVAPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break;
4899    case X86::VMOVAPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break;
4900    }
4901
4902    NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
4903              .add(Dest)
4904              .add(MI.getOperand(2))
4905              .add(Src)
4906              .add(MI.getOperand(3));
4907    break;
4908  }
4909  }
4910
4911  if (!NewMI) return nullptr;
4912
4913  if (LV) {  // Update live variables
4914    if (Src.isKill())
4915      LV->replaceKillInstruction(Src.getReg(), MI, *NewMI);
4916    if (Dest.isDead())
4917      LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI);
4918  }
4919
4920  MFI->insert(MI.getIterator(), NewMI); // Insert the new inst
4921  return NewMI;
4922}
4923
4924/// This determines which of three possible cases of a three source commute
4925/// the source indexes correspond to taking into account any mask operands.
4926/// All prevents commuting a passthru operand. Returns -1 if the commute isn't
4927/// possible.
4928/// Case 0 - Possible to commute the first and second operands.
4929/// Case 1 - Possible to commute the first and third operands.
4930/// Case 2 - Possible to commute the second and third operands.
4931static int getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
4932                                  unsigned SrcOpIdx2) {
4933  // Put the lowest index to SrcOpIdx1 to simplify the checks below.
4934  if (SrcOpIdx1 > SrcOpIdx2)
4935    std::swap(SrcOpIdx1, SrcOpIdx2);
4936
4937  unsigned Op1 = 1, Op2 = 2, Op3 = 3;
4938  if (X86II::isKMasked(TSFlags)) {
4939    // The k-mask operand cannot be commuted.
4940    if (SrcOpIdx1 == 2)
4941      return -1;
4942
4943    // For k-zero-masked operations it is Ok to commute the first vector
4944    // operand.
4945    // For regular k-masked operations a conservative choice is done as the
4946    // elements of the first vector operand, for which the corresponding bit
4947    // in the k-mask operand is set to 0, are copied to the result of the
4948    // instruction.
4949    // TODO/FIXME: The commute still may be legal if it is known that the
4950    // k-mask operand is set to either all ones or all zeroes.
4951    // It is also Ok to commute the 1st operand if all users of MI use only
4952    // the elements enabled by the k-mask operand. For example,
4953    //   v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
4954    //                                                     : v1[i];
4955    //   VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
4956    //                                  // Ok, to commute v1 in FMADD213PSZrk.
4957    if (X86II::isKMergeMasked(TSFlags) && SrcOpIdx1 == Op1)
4958      return -1;
4959    Op2++;
4960    Op3++;
4961  }
4962
4963  if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
4964    return 0;
4965  if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
4966    return 1;
4967  if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
4968    return 2;
4969  return -1;
4970}
4971
4972unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
4973    const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
4974    const X86InstrFMA3Group &FMA3Group) const {
4975
4976  unsigned Opc = MI.getOpcode();
4977
4978  // Put the lowest index to SrcOpIdx1 to simplify the checks below.
4979  if (SrcOpIdx1 > SrcOpIdx2)
4980    std::swap(SrcOpIdx1, SrcOpIdx2);
4981
4982  // TODO: Commuting the 1st operand of FMA*_Int requires some additional
4983  // analysis. The commute optimization is legal only if all users of FMA*_Int
4984  // use only the lowest element of the FMA*_Int instruction. Such analysis are
4985  // not implemented yet. So, just return 0 in that case.
4986  // When such analysis are available this place will be the right place for
4987  // calling it.
4988  if (FMA3Group.isIntrinsic() && SrcOpIdx1 == 1)
4989    return 0;
4990
4991  // Determine which case this commute is or if it can't be done.
4992  int Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, SrcOpIdx2);
4993  if (Case < 0)
4994    return 0;
4995
4996  // Define the FMA forms mapping array that helps to map input FMA form
4997  // to output FMA form to preserve the operation semantics after
4998  // commuting the operands.
4999  const unsigned Form132Index = 0;
5000  const unsigned Form213Index = 1;
5001  const unsigned Form231Index = 2;
5002  static const unsigned FormMapping[][3] = {
5003    // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
5004    // FMA132 A, C, b; ==> FMA231 C, A, b;
5005    // FMA213 B, A, c; ==> FMA213 A, B, c;
5006    // FMA231 C, A, b; ==> FMA132 A, C, b;
5007    { Form231Index, Form213Index, Form132Index },
5008    // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
5009    // FMA132 A, c, B; ==> FMA132 B, c, A;
5010    // FMA213 B, a, C; ==> FMA231 C, a, B;
5011    // FMA231 C, a, B; ==> FMA213 B, a, C;
5012    { Form132Index, Form231Index, Form213Index },
5013    // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
5014    // FMA132 a, C, B; ==> FMA213 a, B, C;
5015    // FMA213 b, A, C; ==> FMA132 b, C, A;
5016    // FMA231 c, A, B; ==> FMA231 c, B, A;
5017    { Form213Index, Form132Index, Form231Index }
5018  };
5019
5020  unsigned FMAForms[3];
5021  if (FMA3Group.isRegOpcodeFromGroup(Opc)) {
5022    FMAForms[0] = FMA3Group.getReg132Opcode();
5023    FMAForms[1] = FMA3Group.getReg213Opcode();
5024    FMAForms[2] = FMA3Group.getReg231Opcode();
5025  } else {
5026    FMAForms[0] = FMA3Group.getMem132Opcode();
5027    FMAForms[1] = FMA3Group.getMem213Opcode();
5028    FMAForms[2] = FMA3Group.getMem231Opcode();
5029  }
5030  unsigned FormIndex;
5031  for (FormIndex = 0; FormIndex < 3; FormIndex++)
5032    if (Opc == FMAForms[FormIndex])
5033      break;
5034
5035  // Everything is ready, just adjust the FMA opcode and return it.
5036  FormIndex = FormMapping[Case][FormIndex];
5037  return FMAForms[FormIndex];
5038}
5039
5040static bool commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
5041                             unsigned SrcOpIdx2) {
5042  uint64_t TSFlags = MI.getDesc().TSFlags;
5043
5044  // Determine which case this commute is or if it can't be done.
5045  int Case = getThreeSrcCommuteCase(TSFlags, SrcOpIdx1, SrcOpIdx2);
5046  if (Case < 0)
5047    return false;
5048
5049  // For each case we need to swap two pairs of bits in the final immediate.
5050  static const uint8_t SwapMasks[3][4] = {
5051    { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
5052    { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
5053    { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
5054  };
5055
5056  uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
5057  // Clear out the bits we are swapping.
5058  uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
5059                           SwapMasks[Case][2] | SwapMasks[Case][3]);
5060  // If the immediate had a bit of the pair set, then set the opposite bit.
5061  if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
5062  if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
5063  if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
5064  if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
5065  MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
5066
5067  return true;
5068}
5069
5070// Returns true if this is a VPERMI2 or VPERMT2 instrution that can be
5071// commuted.
5072static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
5073#define VPERM_CASES(Suffix) \
5074  case X86::VPERMI2##Suffix##128rr:    case X86::VPERMT2##Suffix##128rr:    \
5075  case X86::VPERMI2##Suffix##256rr:    case X86::VPERMT2##Suffix##256rr:    \
5076  case X86::VPERMI2##Suffix##rr:       case X86::VPERMT2##Suffix##rr:       \
5077  case X86::VPERMI2##Suffix##128rm:    case X86::VPERMT2##Suffix##128rm:    \
5078  case X86::VPERMI2##Suffix##256rm:    case X86::VPERMT2##Suffix##256rm:    \
5079  case X86::VPERMI2##Suffix##rm:       case X86::VPERMT2##Suffix##rm:       \
5080  case X86::VPERMI2##Suffix##128rrkz:  case X86::VPERMT2##Suffix##128rrkz:  \
5081  case X86::VPERMI2##Suffix##256rrkz:  case X86::VPERMT2##Suffix##256rrkz:  \
5082  case X86::VPERMI2##Suffix##rrkz:     case X86::VPERMT2##Suffix##rrkz:     \
5083  case X86::VPERMI2##Suffix##128rmkz:  case X86::VPERMT2##Suffix##128rmkz:  \
5084  case X86::VPERMI2##Suffix##256rmkz:  case X86::VPERMT2##Suffix##256rmkz:  \
5085  case X86::VPERMI2##Suffix##rmkz:     case X86::VPERMT2##Suffix##rmkz:
5086
5087#define VPERM_CASES_BROADCAST(Suffix) \
5088  VPERM_CASES(Suffix) \
5089  case X86::VPERMI2##Suffix##128rmb:   case X86::VPERMT2##Suffix##128rmb:   \
5090  case X86::VPERMI2##Suffix##256rmb:   case X86::VPERMT2##Suffix##256rmb:   \
5091  case X86::VPERMI2##Suffix##rmb:      case X86::VPERMT2##Suffix##rmb:      \
5092  case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
5093  case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
5094  case X86::VPERMI2##Suffix##rmbkz:    case X86::VPERMT2##Suffix##rmbkz:
5095
5096  switch (Opcode) {
5097  default: return false;
5098  VPERM_CASES(B)
5099  VPERM_CASES_BROADCAST(D)
5100  VPERM_CASES_BROADCAST(PD)
5101  VPERM_CASES_BROADCAST(PS)
5102  VPERM_CASES_BROADCAST(Q)
5103  VPERM_CASES(W)
5104    return true;
5105  }
5106#undef VPERM_CASES_BROADCAST
5107#undef VPERM_CASES
5108}
5109
5110// Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
5111// from the I opcod to the T opcode and vice versa.
5112static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
5113#define VPERM_CASES(Orig, New) \
5114  case X86::Orig##128rr:    return X86::New##128rr;   \
5115  case X86::Orig##128rrkz:  return X86::New##128rrkz; \
5116  case X86::Orig##128rm:    return X86::New##128rm;   \
5117  case X86::Orig##128rmkz:  return X86::New##128rmkz; \
5118  case X86::Orig##256rr:    return X86::New##256rr;   \
5119  case X86::Orig##256rrkz:  return X86::New##256rrkz; \
5120  case X86::Orig##256rm:    return X86::New##256rm;   \
5121  case X86::Orig##256rmkz:  return X86::New##256rmkz; \
5122  case X86::Orig##rr:       return X86::New##rr;      \
5123  case X86::Orig##rrkz:     return X86::New##rrkz;    \
5124  case X86::Orig##rm:       return X86::New##rm;      \
5125  case X86::Orig##rmkz:     return X86::New##rmkz;
5126
5127#define VPERM_CASES_BROADCAST(Orig, New) \
5128  VPERM_CASES(Orig, New) \
5129  case X86::Orig##128rmb:   return X86::New##128rmb;   \
5130  case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
5131  case X86::Orig##256rmb:   return X86::New##256rmb;   \
5132  case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
5133  case X86::Orig##rmb:      return X86::New##rmb;      \
5134  case X86::Orig##rmbkz:    return X86::New##rmbkz;
5135
5136  switch (Opcode) {
5137  VPERM_CASES(VPERMI2B, VPERMT2B)
5138  VPERM_CASES_BROADCAST(VPERMI2D,  VPERMT2D)
5139  VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
5140  VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
5141  VPERM_CASES_BROADCAST(VPERMI2Q,  VPERMT2Q)
5142  VPERM_CASES(VPERMI2W, VPERMT2W)
5143  VPERM_CASES(VPERMT2B, VPERMI2B)
5144  VPERM_CASES_BROADCAST(VPERMT2D,  VPERMI2D)
5145  VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
5146  VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
5147  VPERM_CASES_BROADCAST(VPERMT2Q,  VPERMI2Q)
5148  VPERM_CASES(VPERMT2W, VPERMI2W)
5149  }
5150
5151  llvm_unreachable("Unreachable!");
5152#undef VPERM_CASES_BROADCAST
5153#undef VPERM_CASES
5154}
5155
5156MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
5157                                                   unsigned OpIdx1,
5158                                                   unsigned OpIdx2) const {
5159  auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
5160    if (NewMI)
5161      return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
5162    return MI;
5163  };
5164
5165  switch (MI.getOpcode()) {
5166  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
5167  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
5168  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
5169  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
5170  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
5171  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
5172    unsigned Opc;
5173    unsigned Size;
5174    switch (MI.getOpcode()) {
5175    default: llvm_unreachable("Unreachable!");
5176    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
5177    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
5178    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
5179    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
5180    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
5181    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
5182    }
5183    unsigned Amt = MI.getOperand(3).getImm();
5184    auto &WorkingMI = cloneIfNew(MI);
5185    WorkingMI.setDesc(get(Opc));
5186    WorkingMI.getOperand(3).setImm(Size - Amt);
5187    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
5188                                                   OpIdx1, OpIdx2);
5189  }
5190  case X86::PFSUBrr:
5191  case X86::PFSUBRrr: {
5192    // PFSUB  x, y: x = x - y
5193    // PFSUBR x, y: x = y - x
5194    unsigned Opc =
5195        (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr);
5196    auto &WorkingMI = cloneIfNew(MI);
5197    WorkingMI.setDesc(get(Opc));
5198    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
5199                                                   OpIdx1, OpIdx2);
5200  }
5201  case X86::BLENDPDrri:
5202  case X86::BLENDPSrri:
5203  case X86::PBLENDWrri:
5204  case X86::VBLENDPDrri:
5205  case X86::VBLENDPSrri:
5206  case X86::VBLENDPDYrri:
5207  case X86::VBLENDPSYrri:
5208  case X86::VPBLENDDrri:
5209  case X86::VPBLENDWrri:
5210  case X86::VPBLENDDYrri:
5211  case X86::VPBLENDWYrri:{
5212    unsigned Mask;
5213    switch (MI.getOpcode()) {
5214    default: llvm_unreachable("Unreachable!");
5215    case X86::BLENDPDrri:    Mask = 0x03; break;
5216    case X86::BLENDPSrri:    Mask = 0x0F; break;
5217    case X86::PBLENDWrri:    Mask = 0xFF; break;
5218    case X86::VBLENDPDrri:   Mask = 0x03; break;
5219    case X86::VBLENDPSrri:   Mask = 0x0F; break;
5220    case X86::VBLENDPDYrri:  Mask = 0x0F; break;
5221    case X86::VBLENDPSYrri:  Mask = 0xFF; break;
5222    case X86::VPBLENDDrri:   Mask = 0x0F; break;
5223    case X86::VPBLENDWrri:   Mask = 0xFF; break;
5224    case X86::VPBLENDDYrri:  Mask = 0xFF; break;
5225    case X86::VPBLENDWYrri:  Mask = 0xFF; break;
5226    }
5227    // Only the least significant bits of Imm are used.
5228    unsigned Imm = MI.getOperand(3).getImm() & Mask;
5229    auto &WorkingMI = cloneIfNew(MI);
5230    WorkingMI.getOperand(3).setImm(Mask ^ Imm);
5231    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
5232                                                   OpIdx1, OpIdx2);
5233  }
5234  case X86::MOVSDrr:
5235  case X86::MOVSSrr:
5236  case X86::VMOVSDrr:
5237  case X86::VMOVSSrr:{
5238    // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
5239    if (!Subtarget.hasSSE41())
5240      return nullptr;
5241
5242    unsigned Mask, Opc;
5243    switch (MI.getOpcode()) {
5244    default: llvm_unreachable("Unreachable!");
5245    case X86::MOVSDrr:  Opc = X86::BLENDPDrri;  Mask = 0x02; break;
5246    case X86::MOVSSrr:  Opc = X86::BLENDPSrri;  Mask = 0x0E; break;
5247    case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
5248    case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
5249    }
5250
5251    auto &WorkingMI = cloneIfNew(MI);
5252    WorkingMI.setDesc(get(Opc));
5253    WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
5254    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
5255                                                   OpIdx1, OpIdx2);
5256  }
5257  case X86::PCLMULQDQrr:
5258  case X86::VPCLMULQDQrr:
5259  case X86::VPCLMULQDQYrr:
5260  case X86::VPCLMULQDQZrr:
5261  case X86::VPCLMULQDQZ128rr:
5262  case X86::VPCLMULQDQZ256rr: {
5263    // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
5264    // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
5265    unsigned Imm = MI.getOperand(3).getImm();
5266    unsigned Src1Hi = Imm & 0x01;
5267    unsigned Src2Hi = Imm & 0x10;
5268    auto &WorkingMI = cloneIfNew(MI);
5269    WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
5270    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
5271                                                   OpIdx1, OpIdx2);
5272  }
5273  case X86::CMPSDrr:
5274  case X86::CMPSSrr:
5275  case X86::CMPPDrri:
5276  case X86::CMPPSrri:
5277  case X86::VCMPSDrr:
5278  case X86::VCMPSSrr:
5279  case X86::VCMPPDrri:
5280  case X86::VCMPPSrri:
5281  case X86::VCMPPDYrri:
5282  case X86::VCMPPSYrri:
5283  case X86::VCMPSDZrr:
5284  case X86::VCMPSSZrr:
5285  case X86::VCMPPDZrri:
5286  case X86::VCMPPSZrri:
5287  case X86::VCMPPDZ128rri:
5288  case X86::VCMPPSZ128rri:
5289  case X86::VCMPPDZ256rri:
5290  case X86::VCMPPSZ256rri: {
5291    // Float comparison can be safely commuted for
5292    // Ordered/Unordered/Equal/NotEqual tests
5293    unsigned Imm = MI.getOperand(3).getImm() & 0x7;
5294    switch (Imm) {
5295    case 0x00: // EQUAL
5296    case 0x03: // UNORDERED
5297    case 0x04: // NOT EQUAL
5298    case 0x07: // ORDERED
5299      return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
5300    default:
5301      return nullptr;
5302    }
5303  }
5304  case X86::VPCMPBZ128rri:  case X86::VPCMPUBZ128rri:
5305  case X86::VPCMPBZ256rri:  case X86::VPCMPUBZ256rri:
5306  case X86::VPCMPBZrri:     case X86::VPCMPUBZrri:
5307  case X86::VPCMPDZ128rri:  case X86::VPCMPUDZ128rri:
5308  case X86::VPCMPDZ256rri:  case X86::VPCMPUDZ256rri:
5309  case X86::VPCMPDZrri:     case X86::VPCMPUDZrri:
5310  case X86::VPCMPQZ128rri:  case X86::VPCMPUQZ128rri:
5311  case X86::VPCMPQZ256rri:  case X86::VPCMPUQZ256rri:
5312  case X86::VPCMPQZrri:     case X86::VPCMPUQZrri:
5313  case X86::VPCMPWZ128rri:  case X86::VPCMPUWZ128rri:
5314  case X86::VPCMPWZ256rri:  case X86::VPCMPUWZ256rri:
5315  case X86::VPCMPWZrri:     case X86::VPCMPUWZrri:
5316  case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik:
5317  case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik:
5318  case X86::VPCMPBZrrik:    case X86::VPCMPUBZrrik:
5319  case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik:
5320  case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik:
5321  case X86::VPCMPDZrrik:    case X86::VPCMPUDZrrik:
5322  case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik:
5323  case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik:
5324  case X86::VPCMPQZrrik:    case X86::VPCMPUQZrrik:
5325  case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik:
5326  case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik:
5327  case X86::VPCMPWZrrik:    case X86::VPCMPUWZrrik: {
5328    // Flip comparison mode immediate (if necessary).
5329    unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7;
5330    switch (Imm) {
5331    default: llvm_unreachable("Unreachable!");
5332    case 0x01: Imm = 0x06; break; // LT  -> NLE
5333    case 0x02: Imm = 0x05; break; // LE  -> NLT
5334    case 0x05: Imm = 0x02; break; // NLT -> LE
5335    case 0x06: Imm = 0x01; break; // NLE -> LT
5336    case 0x00: // EQ
5337    case 0x03: // FALSE
5338    case 0x04: // NE
5339    case 0x07: // TRUE
5340      break;
5341    }
5342    auto &WorkingMI = cloneIfNew(MI);
5343    WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm);
5344    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
5345                                                   OpIdx1, OpIdx2);
5346  }
5347  case X86::VPCOMBri: case X86::VPCOMUBri:
5348  case X86::VPCOMDri: case X86::VPCOMUDri:
5349  case X86::VPCOMQri: case X86::VPCOMUQri:
5350  case X86::VPCOMWri: case X86::VPCOMUWri: {
5351    // Flip comparison mode immediate (if necessary).
5352    unsigned Imm = MI.getOperand(3).getImm() & 0x7;
5353    switch (Imm) {
5354    default: llvm_unreachable("Unreachable!");
5355    case 0x00: Imm = 0x02; break; // LT -> GT
5356    case 0x01: Imm = 0x03; break; // LE -> GE
5357    case 0x02: Imm = 0x00; break; // GT -> LT
5358    case 0x03: Imm = 0x01; break; // GE -> LE
5359    case 0x04: // EQ
5360    case 0x05: // NE
5361    case 0x06: // FALSE
5362    case 0x07: // TRUE
5363      break;
5364    }
5365    auto &WorkingMI = cloneIfNew(MI);
5366    WorkingMI.getOperand(3).setImm(Imm);
5367    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
5368                                                   OpIdx1, OpIdx2);
5369  }
5370  case X86::VPERM2F128rr:
5371  case X86::VPERM2I128rr: {
5372    // Flip permute source immediate.
5373    // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
5374    // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
5375    unsigned Imm = MI.getOperand(3).getImm() & 0xFF;
5376    auto &WorkingMI = cloneIfNew(MI);
5377    WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
5378    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
5379                                                   OpIdx1, OpIdx2);
5380  }
5381  case X86::MOVHLPSrr:
5382  case X86::UNPCKHPDrr: {
5383    if (!Subtarget.hasSSE2())
5384      return nullptr;
5385
5386    unsigned Opc = MI.getOpcode();
5387    switch (Opc) {
5388      default: llvm_unreachable("Unreachable!");
5389      case X86::MOVHLPSrr: Opc = X86::UNPCKHPDrr; break;
5390      case X86::UNPCKHPDrr: Opc = X86::MOVHLPSrr; break;
5391    }
5392    auto &WorkingMI = cloneIfNew(MI);
5393    WorkingMI.setDesc(get(Opc));
5394    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
5395                                                   OpIdx1, OpIdx2);
5396  }
5397  case X86::CMOVB16rr:  case X86::CMOVB32rr:  case X86::CMOVB64rr:
5398  case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr:
5399  case X86::CMOVE16rr:  case X86::CMOVE32rr:  case X86::CMOVE64rr:
5400  case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr:
5401  case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr:
5402  case X86::CMOVA16rr:  case X86::CMOVA32rr:  case X86::CMOVA64rr:
5403  case X86::CMOVL16rr:  case X86::CMOVL32rr:  case X86::CMOVL64rr:
5404  case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr:
5405  case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr:
5406  case X86::CMOVG16rr:  case X86::CMOVG32rr:  case X86::CMOVG64rr:
5407  case X86::CMOVS16rr:  case X86::CMOVS32rr:  case X86::CMOVS64rr:
5408  case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr:
5409  case X86::CMOVP16rr:  case X86::CMOVP32rr:  case X86::CMOVP64rr:
5410  case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr:
5411  case X86::CMOVO16rr:  case X86::CMOVO32rr:  case X86::CMOVO64rr:
5412  case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: {
5413    unsigned Opc;
5414    switch (MI.getOpcode()) {
5415    default: llvm_unreachable("Unreachable!");
5416    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
5417    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
5418    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
5419    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
5420    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
5421    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
5422    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
5423    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
5424    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
5425    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
5426    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
5427    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
5428    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
5429    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
5430    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
5431    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
5432    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
5433    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
5434    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
5435    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
5436    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
5437    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
5438    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
5439    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
5440    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
5441    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
5442    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
5443    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
5444    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
5445    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
5446    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
5447    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
5448    case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
5449    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
5450    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
5451    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
5452    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
5453    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
5454    case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
5455    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
5456    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
5457    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
5458    case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
5459    case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
5460    case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
5461    case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
5462    case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
5463    case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
5464    }
5465    auto &WorkingMI = cloneIfNew(MI);
5466    WorkingMI.setDesc(get(Opc));
5467    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
5468                                                   OpIdx1, OpIdx2);
5469  }
5470  case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi:
5471  case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi:
5472  case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi:
5473  case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi:
5474  case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi:
5475  case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi:
5476  case X86::VPTERNLOGDZrrik:
5477  case X86::VPTERNLOGDZ128rrik:
5478  case X86::VPTERNLOGDZ256rrik:
5479  case X86::VPTERNLOGQZrrik:
5480  case X86::VPTERNLOGQZ128rrik:
5481  case X86::VPTERNLOGQZ256rrik:
5482  case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz:
5483  case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
5484  case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
5485  case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz:
5486  case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
5487  case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
5488  case X86::VPTERNLOGDZ128rmbi:
5489  case X86::VPTERNLOGDZ256rmbi:
5490  case X86::VPTERNLOGDZrmbi:
5491  case X86::VPTERNLOGQZ128rmbi:
5492  case X86::VPTERNLOGQZ256rmbi:
5493  case X86::VPTERNLOGQZrmbi:
5494  case X86::VPTERNLOGDZ128rmbikz:
5495  case X86::VPTERNLOGDZ256rmbikz:
5496  case X86::VPTERNLOGDZrmbikz:
5497  case X86::VPTERNLOGQZ128rmbikz:
5498  case X86::VPTERNLOGQZ256rmbikz:
5499  case X86::VPTERNLOGQZrmbikz: {
5500    auto &WorkingMI = cloneIfNew(MI);
5501    if (!commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2))
5502      return nullptr;
5503    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
5504                                                   OpIdx1, OpIdx2);
5505  }
5506  default: {
5507    if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
5508      unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
5509      auto &WorkingMI = cloneIfNew(MI);
5510      WorkingMI.setDesc(get(Opc));
5511      return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
5512                                                     OpIdx1, OpIdx2);
5513    }
5514
5515    const X86InstrFMA3Group *FMA3Group =
5516        X86InstrFMA3Info::getFMA3Group(MI.getOpcode());
5517    if (FMA3Group) {
5518      unsigned Opc =
5519        getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
5520      if (Opc == 0)
5521        return nullptr;
5522      auto &WorkingMI = cloneIfNew(MI);
5523      WorkingMI.setDesc(get(Opc));
5524      return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
5525                                                     OpIdx1, OpIdx2);
5526    }
5527
5528    return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
5529  }
5530  }
5531}
5532
5533bool X86InstrInfo::findFMA3CommutedOpIndices(
5534    const MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2,
5535    const X86InstrFMA3Group &FMA3Group) const {
5536
5537  if (!findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2))
5538    return false;
5539
5540  // Check if we can adjust the opcode to preserve the semantics when
5541  // commute the register operands.
5542  return getFMA3OpcodeToCommuteOperands(MI, SrcOpIdx1, SrcOpIdx2, FMA3Group) != 0;
5543}
5544
5545bool X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
5546                                                 unsigned &SrcOpIdx1,
5547                                                 unsigned &SrcOpIdx2) const {
5548  uint64_t TSFlags = MI.getDesc().TSFlags;
5549
5550  unsigned FirstCommutableVecOp = 1;
5551  unsigned LastCommutableVecOp = 3;
5552  unsigned KMaskOp = 0;
5553  if (X86II::isKMasked(TSFlags)) {
5554    // The k-mask operand has index = 2 for masked and zero-masked operations.
5555    KMaskOp = 2;
5556
5557    // The operand with index = 1 is used as a source for those elements for
5558    // which the corresponding bit in the k-mask is set to 0.
5559    if (X86II::isKMergeMasked(TSFlags))
5560      FirstCommutableVecOp = 3;
5561
5562    LastCommutableVecOp++;
5563  }
5564
5565  if (isMem(MI, LastCommutableVecOp))
5566    LastCommutableVecOp--;
5567
5568  // Only the first RegOpsNum operands are commutable.
5569  // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
5570  // that the operand is not specified/fixed.
5571  if (SrcOpIdx1 != CommuteAnyOperandIndex &&
5572      (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
5573       SrcOpIdx1 == KMaskOp))
5574    return false;
5575  if (SrcOpIdx2 != CommuteAnyOperandIndex &&
5576      (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
5577       SrcOpIdx2 == KMaskOp))
5578    return false;
5579
5580  // Look for two different register operands assumed to be commutable
5581  // regardless of the FMA opcode. The FMA opcode is adjusted later.
5582  if (SrcOpIdx1 == CommuteAnyOperandIndex ||
5583      SrcOpIdx2 == CommuteAnyOperandIndex) {
5584    unsigned CommutableOpIdx1 = SrcOpIdx1;
5585    unsigned CommutableOpIdx2 = SrcOpIdx2;
5586
5587    // At least one of operands to be commuted is not specified and
5588    // this method is free to choose appropriate commutable operands.
5589    if (SrcOpIdx1 == SrcOpIdx2)
5590      // Both of operands are not fixed. By default set one of commutable
5591      // operands to the last register operand of the instruction.
5592      CommutableOpIdx2 = LastCommutableVecOp;
5593    else if (SrcOpIdx2 == CommuteAnyOperandIndex)
5594      // Only one of operands is not fixed.
5595      CommutableOpIdx2 = SrcOpIdx1;
5596
5597    // CommutableOpIdx2 is well defined now. Let's choose another commutable
5598    // operand and assign its index to CommutableOpIdx1.
5599    unsigned Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
5600    for (CommutableOpIdx1 = LastCommutableVecOp;
5601         CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
5602      // Just ignore and skip the k-mask operand.
5603      if (CommutableOpIdx1 == KMaskOp)
5604        continue;
5605
5606      // The commuted operands must have different registers.
5607      // Otherwise, the commute transformation does not change anything and
5608      // is useless then.
5609      if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
5610        break;
5611    }
5612
5613    // No appropriate commutable operands were found.
5614    if (CommutableOpIdx1 < FirstCommutableVecOp)
5615      return false;
5616
5617    // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
5618    // to return those values.
5619    if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
5620                              CommutableOpIdx1, CommutableOpIdx2))
5621      return false;
5622  }
5623
5624  return true;
5625}
5626
5627bool X86InstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
5628                                         unsigned &SrcOpIdx2) const {
5629  const MCInstrDesc &Desc = MI.getDesc();
5630  if (!Desc.isCommutable())
5631    return false;
5632
5633  switch (MI.getOpcode()) {
5634  case X86::CMPSDrr:
5635  case X86::CMPSSrr:
5636  case X86::CMPPDrri:
5637  case X86::CMPPSrri:
5638  case X86::VCMPSDrr:
5639  case X86::VCMPSSrr:
5640  case X86::VCMPPDrri:
5641  case X86::VCMPPSrri:
5642  case X86::VCMPPDYrri:
5643  case X86::VCMPPSYrri:
5644  case X86::VCMPSDZrr:
5645  case X86::VCMPSSZrr:
5646  case X86::VCMPPDZrri:
5647  case X86::VCMPPSZrri:
5648  case X86::VCMPPDZ128rri:
5649  case X86::VCMPPSZ128rri:
5650  case X86::VCMPPDZ256rri:
5651  case X86::VCMPPSZ256rri: {
5652    // Float comparison can be safely commuted for
5653    // Ordered/Unordered/Equal/NotEqual tests
5654    unsigned Imm = MI.getOperand(3).getImm() & 0x7;
5655    switch (Imm) {
5656    case 0x00: // EQUAL
5657    case 0x03: // UNORDERED
5658    case 0x04: // NOT EQUAL
5659    case 0x07: // ORDERED
5660      // The indices of the commutable operands are 1 and 2.
5661      // Assign them to the returned operand indices here.
5662      return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1, 2);
5663    }
5664    return false;
5665  }
5666  case X86::MOVSDrr:
5667  case X86::MOVSSrr:
5668  case X86::VMOVSDrr:
5669  case X86::VMOVSSrr: {
5670    if (Subtarget.hasSSE41())
5671      return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
5672    return false;
5673  }
5674  case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi:
5675  case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi:
5676  case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi:
5677  case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi:
5678  case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi:
5679  case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi:
5680  case X86::VPTERNLOGDZrrik:
5681  case X86::VPTERNLOGDZ128rrik:
5682  case X86::VPTERNLOGDZ256rrik:
5683  case X86::VPTERNLOGQZrrik:
5684  case X86::VPTERNLOGQZ128rrik:
5685  case X86::VPTERNLOGQZ256rrik:
5686  case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz:
5687  case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
5688  case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
5689  case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz:
5690  case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
5691  case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
5692  case X86::VPTERNLOGDZ128rmbi:
5693  case X86::VPTERNLOGDZ256rmbi:
5694  case X86::VPTERNLOGDZrmbi:
5695  case X86::VPTERNLOGQZ128rmbi:
5696  case X86::VPTERNLOGQZ256rmbi:
5697  case X86::VPTERNLOGQZrmbi:
5698  case X86::VPTERNLOGDZ128rmbikz:
5699  case X86::VPTERNLOGDZ256rmbikz:
5700  case X86::VPTERNLOGDZrmbikz:
5701  case X86::VPTERNLOGQZ128rmbikz:
5702  case X86::VPTERNLOGQZ256rmbikz:
5703  case X86::VPTERNLOGQZrmbikz:
5704    return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
5705  case X86::VPMADD52HUQZ128r:
5706  case X86::VPMADD52HUQZ128rk:
5707  case X86::VPMADD52HUQZ128rkz:
5708  case X86::VPMADD52HUQZ256r:
5709  case X86::VPMADD52HUQZ256rk:
5710  case X86::VPMADD52HUQZ256rkz:
5711  case X86::VPMADD52HUQZr:
5712  case X86::VPMADD52HUQZrk:
5713  case X86::VPMADD52HUQZrkz:
5714  case X86::VPMADD52LUQZ128r:
5715  case X86::VPMADD52LUQZ128rk:
5716  case X86::VPMADD52LUQZ128rkz:
5717  case X86::VPMADD52LUQZ256r:
5718  case X86::VPMADD52LUQZ256rk:
5719  case X86::VPMADD52LUQZ256rkz:
5720  case X86::VPMADD52LUQZr:
5721  case X86::VPMADD52LUQZrk:
5722  case X86::VPMADD52LUQZrkz: {
5723    unsigned CommutableOpIdx1 = 2;
5724    unsigned CommutableOpIdx2 = 3;
5725    if (Desc.TSFlags & X86II::EVEX_K) {
5726      // Skip the mask register.
5727      ++CommutableOpIdx1;
5728      ++CommutableOpIdx2;
5729    }
5730    if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
5731                              CommutableOpIdx1, CommutableOpIdx2))
5732      return false;
5733    if (!MI.getOperand(SrcOpIdx1).isReg() ||
5734        !MI.getOperand(SrcOpIdx2).isReg())
5735      // No idea.
5736      return false;
5737    return true;
5738  }
5739
5740  default:
5741    const X86InstrFMA3Group *FMA3Group =
5742        X86InstrFMA3Info::getFMA3Group(MI.getOpcode());
5743    if (FMA3Group)
5744      return findFMA3CommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2, *FMA3Group);
5745
5746    // Handled masked instructions since we need to skip over the mask input
5747    // and the preserved input.
5748    if (Desc.TSFlags & X86II::EVEX_K) {
5749      // First assume that the first input is the mask operand and skip past it.
5750      unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
5751      unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
5752      // Check if the first input is tied. If there isn't one then we only
5753      // need to skip the mask operand which we did above.
5754      if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
5755                                             MCOI::TIED_TO) != -1)) {
5756        // If this is zero masking instruction with a tied operand, we need to
5757        // move the first index back to the first input since this must
5758        // be a 3 input instruction and we want the first two non-mask inputs.
5759        // Otherwise this is a 2 input instruction with a preserved input and
5760        // mask, so we need to move the indices to skip one more input.
5761        if (Desc.TSFlags & X86II::EVEX_Z)
5762          --CommutableOpIdx1;
5763        else {
5764          ++CommutableOpIdx1;
5765          ++CommutableOpIdx2;
5766        }
5767      }
5768
5769      if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
5770                                CommutableOpIdx1, CommutableOpIdx2))
5771        return false;
5772
5773      if (!MI.getOperand(SrcOpIdx1).isReg() ||
5774          !MI.getOperand(SrcOpIdx2).isReg())
5775        // No idea.
5776        return false;
5777      return true;
5778    }
5779
5780    return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
5781  }
5782  return false;
5783}
5784
5785X86::CondCode X86::getCondFromBranchOpc(unsigned BrOpc) {
5786  switch (BrOpc) {
5787  default: return X86::COND_INVALID;
5788  case X86::JE_1:  return X86::COND_E;
5789  case X86::JNE_1: return X86::COND_NE;
5790  case X86::JL_1:  return X86::COND_L;
5791  case X86::JLE_1: return X86::COND_LE;
5792  case X86::JG_1:  return X86::COND_G;
5793  case X86::JGE_1: return X86::COND_GE;
5794  case X86::JB_1:  return X86::COND_B;
5795  case X86::JBE_1: return X86::COND_BE;
5796  case X86::JA_1:  return X86::COND_A;
5797  case X86::JAE_1: return X86::COND_AE;
5798  case X86::JS_1:  return X86::COND_S;
5799  case X86::JNS_1: return X86::COND_NS;
5800  case X86::JP_1:  return X86::COND_P;
5801  case X86::JNP_1: return X86::COND_NP;
5802  case X86::JO_1:  return X86::COND_O;
5803  case X86::JNO_1: return X86::COND_NO;
5804  }
5805}
5806
5807/// Return condition code of a SET opcode.
5808X86::CondCode X86::getCondFromSETOpc(unsigned Opc) {
5809  switch (Opc) {
5810  default: return X86::COND_INVALID;
5811  case X86::SETAr:  case X86::SETAm:  return X86::COND_A;
5812  case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
5813  case X86::SETBr:  case X86::SETBm:  return X86::COND_B;
5814  case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
5815  case X86::SETEr:  case X86::SETEm:  return X86::COND_E;
5816  case X86::SETGr:  case X86::SETGm:  return X86::COND_G;
5817  case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
5818  case X86::SETLr:  case X86::SETLm:  return X86::COND_L;
5819  case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
5820  case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
5821  case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
5822  case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
5823  case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
5824  case X86::SETOr:  case X86::SETOm:  return X86::COND_O;
5825  case X86::SETPr:  case X86::SETPm:  return X86::COND_P;
5826  case X86::SETSr:  case X86::SETSm:  return X86::COND_S;
5827  }
5828}
5829
5830/// Return condition code of a CMov opcode.
5831X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) {
5832  switch (Opc) {
5833  default: return X86::COND_INVALID;
5834  case X86::CMOVA16rm:  case X86::CMOVA16rr:  case X86::CMOVA32rm:
5835  case X86::CMOVA32rr:  case X86::CMOVA64rm:  case X86::CMOVA64rr:
5836    return X86::COND_A;
5837  case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
5838  case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
5839    return X86::COND_AE;
5840  case X86::CMOVB16rm:  case X86::CMOVB16rr:  case X86::CMOVB32rm:
5841  case X86::CMOVB32rr:  case X86::CMOVB64rm:  case X86::CMOVB64rr:
5842    return X86::COND_B;
5843  case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
5844  case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
5845    return X86::COND_BE;
5846  case X86::CMOVE16rm:  case X86::CMOVE16rr:  case X86::CMOVE32rm:
5847  case X86::CMOVE32rr:  case X86::CMOVE64rm:  case X86::CMOVE64rr:
5848    return X86::COND_E;
5849  case X86::CMOVG16rm:  case X86::CMOVG16rr:  case X86::CMOVG32rm:
5850  case X86::CMOVG32rr:  case X86::CMOVG64rm:  case X86::CMOVG64rr:
5851    return X86::COND_G;
5852  case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
5853  case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
5854    return X86::COND_GE;
5855  case X86::CMOVL16rm:  case X86::CMOVL16rr:  case X86::CMOVL32rm:
5856  case X86::CMOVL32rr:  case X86::CMOVL64rm:  case X86::CMOVL64rr:
5857    return X86::COND_L;
5858  case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
5859  case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
5860    return X86::COND_LE;
5861  case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
5862  case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
5863    return X86::COND_NE;
5864  case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
5865  case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
5866    return X86::COND_NO;
5867  case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
5868  case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
5869    return X86::COND_NP;
5870  case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
5871  case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
5872    return X86::COND_NS;
5873  case X86::CMOVO16rm:  case X86::CMOVO16rr:  case X86::CMOVO32rm:
5874  case X86::CMOVO32rr:  case X86::CMOVO64rm:  case X86::CMOVO64rr:
5875    return X86::COND_O;
5876  case X86::CMOVP16rm:  case X86::CMOVP16rr:  case X86::CMOVP32rm:
5877  case X86::CMOVP32rr:  case X86::CMOVP64rm:  case X86::CMOVP64rr:
5878    return X86::COND_P;
5879  case X86::CMOVS16rm:  case X86::CMOVS16rr:  case X86::CMOVS32rm:
5880  case X86::CMOVS32rr:  case X86::CMOVS64rm:  case X86::CMOVS64rr:
5881    return X86::COND_S;
5882  }
5883}
5884
5885unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
5886  switch (CC) {
5887  default: llvm_unreachable("Illegal condition code!");
5888  case X86::COND_E:  return X86::JE_1;
5889  case X86::COND_NE: return X86::JNE_1;
5890  case X86::COND_L:  return X86::JL_1;
5891  case X86::COND_LE: return X86::JLE_1;
5892  case X86::COND_G:  return X86::JG_1;
5893  case X86::COND_GE: return X86::JGE_1;
5894  case X86::COND_B:  return X86::JB_1;
5895  case X86::COND_BE: return X86::JBE_1;
5896  case X86::COND_A:  return X86::JA_1;
5897  case X86::COND_AE: return X86::JAE_1;
5898  case X86::COND_S:  return X86::JS_1;
5899  case X86::COND_NS: return X86::JNS_1;
5900  case X86::COND_P:  return X86::JP_1;
5901  case X86::COND_NP: return X86::JNP_1;
5902  case X86::COND_O:  return X86::JO_1;
5903  case X86::COND_NO: return X86::JNO_1;
5904  }
5905}
5906
5907/// Return the inverse of the specified condition,
5908/// e.g. turning COND_E to COND_NE.
5909X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
5910  switch (CC) {
5911  default: llvm_unreachable("Illegal condition code!");
5912  case X86::COND_E:  return X86::COND_NE;
5913  case X86::COND_NE: return X86::COND_E;
5914  case X86::COND_L:  return X86::COND_GE;
5915  case X86::COND_LE: return X86::COND_G;
5916  case X86::COND_G:  return X86::COND_LE;
5917  case X86::COND_GE: return X86::COND_L;
5918  case X86::COND_B:  return X86::COND_AE;
5919  case X86::COND_BE: return X86::COND_A;
5920  case X86::COND_A:  return X86::COND_BE;
5921  case X86::COND_AE: return X86::COND_B;
5922  case X86::COND_S:  return X86::COND_NS;
5923  case X86::COND_NS: return X86::COND_S;
5924  case X86::COND_P:  return X86::COND_NP;
5925  case X86::COND_NP: return X86::COND_P;
5926  case X86::COND_O:  return X86::COND_NO;
5927  case X86::COND_NO: return X86::COND_O;
5928  case X86::COND_NE_OR_P:  return X86::COND_E_AND_NP;
5929  case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
5930  }
5931}
5932
5933/// Assuming the flags are set by MI(a,b), return the condition code if we
5934/// modify the instructions such that flags are set by MI(b,a).
5935static X86::CondCode getSwappedCondition(X86::CondCode CC) {
5936  switch (CC) {
5937  default: return X86::COND_INVALID;
5938  case X86::COND_E:  return X86::COND_E;
5939  case X86::COND_NE: return X86::COND_NE;
5940  case X86::COND_L:  return X86::COND_G;
5941  case X86::COND_LE: return X86::COND_GE;
5942  case X86::COND_G:  return X86::COND_L;
5943  case X86::COND_GE: return X86::COND_LE;
5944  case X86::COND_B:  return X86::COND_A;
5945  case X86::COND_BE: return X86::COND_AE;
5946  case X86::COND_A:  return X86::COND_B;
5947  case X86::COND_AE: return X86::COND_BE;
5948  }
5949}
5950
5951std::pair<X86::CondCode, bool>
5952X86::getX86ConditionCode(CmpInst::Predicate Predicate) {
5953  X86::CondCode CC = X86::COND_INVALID;
5954  bool NeedSwap = false;
5955  switch (Predicate) {
5956  default: break;
5957  // Floating-point Predicates
5958  case CmpInst::FCMP_UEQ: CC = X86::COND_E;       break;
5959  case CmpInst::FCMP_OLT: NeedSwap = true;        LLVM_FALLTHROUGH;
5960  case CmpInst::FCMP_OGT: CC = X86::COND_A;       break;
5961  case CmpInst::FCMP_OLE: NeedSwap = true;        LLVM_FALLTHROUGH;
5962  case CmpInst::FCMP_OGE: CC = X86::COND_AE;      break;
5963  case CmpInst::FCMP_UGT: NeedSwap = true;        LLVM_FALLTHROUGH;
5964  case CmpInst::FCMP_ULT: CC = X86::COND_B;       break;
5965  case CmpInst::FCMP_UGE: NeedSwap = true;        LLVM_FALLTHROUGH;
5966  case CmpInst::FCMP_ULE: CC = X86::COND_BE;      break;
5967  case CmpInst::FCMP_ONE: CC = X86::COND_NE;      break;
5968  case CmpInst::FCMP_UNO: CC = X86::COND_P;       break;
5969  case CmpInst::FCMP_ORD: CC = X86::COND_NP;      break;
5970  case CmpInst::FCMP_OEQ:                         LLVM_FALLTHROUGH;
5971  case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
5972
5973  // Integer Predicates
5974  case CmpInst::ICMP_EQ:  CC = X86::COND_E;       break;
5975  case CmpInst::ICMP_NE:  CC = X86::COND_NE;      break;
5976  case CmpInst::ICMP_UGT: CC = X86::COND_A;       break;
5977  case CmpInst::ICMP_UGE: CC = X86::COND_AE;      break;
5978  case CmpInst::ICMP_ULT: CC = X86::COND_B;       break;
5979  case CmpInst::ICMP_ULE: CC = X86::COND_BE;      break;
5980  case CmpInst::ICMP_SGT: CC = X86::COND_G;       break;
5981  case CmpInst::ICMP_SGE: CC = X86::COND_GE;      break;
5982  case CmpInst::ICMP_SLT: CC = X86::COND_L;       break;
5983  case CmpInst::ICMP_SLE: CC = X86::COND_LE;      break;
5984  }
5985
5986  return std::make_pair(CC, NeedSwap);
5987}
5988
5989/// Return a set opcode for the given condition and
5990/// whether it has memory operand.
5991unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) {
5992  static const uint16_t Opc[16][2] = {
5993    { X86::SETAr,  X86::SETAm  },
5994    { X86::SETAEr, X86::SETAEm },
5995    { X86::SETBr,  X86::SETBm  },
5996    { X86::SETBEr, X86::SETBEm },
5997    { X86::SETEr,  X86::SETEm  },
5998    { X86::SETGr,  X86::SETGm  },
5999    { X86::SETGEr, X86::SETGEm },
6000    { X86::SETLr,  X86::SETLm  },
6001    { X86::SETLEr, X86::SETLEm },
6002    { X86::SETNEr, X86::SETNEm },
6003    { X86::SETNOr, X86::SETNOm },
6004    { X86::SETNPr, X86::SETNPm },
6005    { X86::SETNSr, X86::SETNSm },
6006    { X86::SETOr,  X86::SETOm  },
6007    { X86::SETPr,  X86::SETPm  },
6008    { X86::SETSr,  X86::SETSm  }
6009  };
6010
6011  assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes");
6012  return Opc[CC][HasMemoryOperand ? 1 : 0];
6013}
6014
6015/// Return a cmov opcode for the given condition,
6016/// register size in bytes, and operand type.
6017unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes,
6018                              bool HasMemoryOperand) {
6019  static const uint16_t Opc[32][3] = {
6020    { X86::CMOVA16rr,  X86::CMOVA32rr,  X86::CMOVA64rr  },
6021    { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
6022    { X86::CMOVB16rr,  X86::CMOVB32rr,  X86::CMOVB64rr  },
6023    { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
6024    { X86::CMOVE16rr,  X86::CMOVE32rr,  X86::CMOVE64rr  },
6025    { X86::CMOVG16rr,  X86::CMOVG32rr,  X86::CMOVG64rr  },
6026    { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
6027    { X86::CMOVL16rr,  X86::CMOVL32rr,  X86::CMOVL64rr  },
6028    { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
6029    { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
6030    { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
6031    { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
6032    { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
6033    { X86::CMOVO16rr,  X86::CMOVO32rr,  X86::CMOVO64rr  },
6034    { X86::CMOVP16rr,  X86::CMOVP32rr,  X86::CMOVP64rr  },
6035    { X86::CMOVS16rr,  X86::CMOVS32rr,  X86::CMOVS64rr  },
6036    { X86::CMOVA16rm,  X86::CMOVA32rm,  X86::CMOVA64rm  },
6037    { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
6038    { X86::CMOVB16rm,  X86::CMOVB32rm,  X86::CMOVB64rm  },
6039    { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
6040    { X86::CMOVE16rm,  X86::CMOVE32rm,  X86::CMOVE64rm  },
6041    { X86::CMOVG16rm,  X86::CMOVG32rm,  X86::CMOVG64rm  },
6042    { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
6043    { X86::CMOVL16rm,  X86::CMOVL32rm,  X86::CMOVL64rm  },
6044    { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
6045    { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
6046    { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
6047    { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
6048    { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
6049    { X86::CMOVO16rm,  X86::CMOVO32rm,  X86::CMOVO64rm  },
6050    { X86::CMOVP16rm,  X86::CMOVP32rm,  X86::CMOVP64rm  },
6051    { X86::CMOVS16rm,  X86::CMOVS32rm,  X86::CMOVS64rm  }
6052  };
6053
6054  assert(CC < 16 && "Can only handle standard cond codes");
6055  unsigned Idx = HasMemoryOperand ? 16+CC : CC;
6056  switch(RegBytes) {
6057  default: llvm_unreachable("Illegal register size!");
6058  case 2: return Opc[Idx][0];
6059  case 4: return Opc[Idx][1];
6060  case 8: return Opc[Idx][2];
6061  }
6062}
6063
6064bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
6065  if (!MI.isTerminator()) return false;
6066
6067  // Conditional branch is a special case.
6068  if (MI.isBranch() && !MI.isBarrier())
6069    return true;
6070  if (!MI.isPredicable())
6071    return true;
6072  return !isPredicated(MI);
6073}
6074
6075bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
6076  switch (MI.getOpcode()) {
6077  case X86::TCRETURNdi:
6078  case X86::TCRETURNri:
6079  case X86::TCRETURNmi:
6080  case X86::TCRETURNdi64:
6081  case X86::TCRETURNri64:
6082  case X86::TCRETURNmi64:
6083    return true;
6084  default:
6085    return false;
6086  }
6087}
6088
6089bool X86InstrInfo::canMakeTailCallConditional(
6090    SmallVectorImpl<MachineOperand> &BranchCond,
6091    const MachineInstr &TailCall) const {
6092  if (TailCall.getOpcode() != X86::TCRETURNdi &&
6093      TailCall.getOpcode() != X86::TCRETURNdi64) {
6094    // Only direct calls can be done with a conditional branch.
6095    return false;
6096  }
6097
6098  const MachineFunction *MF = TailCall.getParent()->getParent();
6099  if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
6100    // Conditional tail calls confuse the Win64 unwinder.
6101    return false;
6102  }
6103
6104  assert(BranchCond.size() == 1);
6105  if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
6106    // Can't make a conditional tail call with this condition.
6107    return false;
6108  }
6109
6110  const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
6111  if (X86FI->getTCReturnAddrDelta() != 0 ||
6112      TailCall.getOperand(1).getImm() != 0) {
6113    // A conditional tail call cannot do any stack adjustment.
6114    return false;
6115  }
6116
6117  return true;
6118}
6119
6120void X86InstrInfo::replaceBranchWithTailCall(
6121    MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
6122    const MachineInstr &TailCall) const {
6123  assert(canMakeTailCallConditional(BranchCond, TailCall));
6124
6125  MachineBasicBlock::iterator I = MBB.end();
6126  while (I != MBB.begin()) {
6127    --I;
6128    if (I->isDebugValue())
6129      continue;
6130    if (!I->isBranch())
6131      assert(0 && "Can't find the branch to replace!");
6132
6133    X86::CondCode CC = X86::getCondFromBranchOpc(I->getOpcode());
6134    assert(BranchCond.size() == 1);
6135    if (CC != BranchCond[0].getImm())
6136      continue;
6137
6138    break;
6139  }
6140
6141  unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
6142                                                         : X86::TCRETURNdi64cc;
6143
6144  auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
6145  MIB->addOperand(TailCall.getOperand(0)); // Destination.
6146  MIB.addImm(0); // Stack offset (not used).
6147  MIB->addOperand(BranchCond[0]); // Condition.
6148  MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
6149
6150  // Add implicit uses and defs of all live regs potentially clobbered by the
6151  // call. This way they still appear live across the call.
6152  LivePhysRegs LiveRegs(getRegisterInfo());
6153  LiveRegs.addLiveOuts(MBB);
6154  SmallVector<std::pair<unsigned, const MachineOperand *>, 8> Clobbers;
6155  LiveRegs.stepForward(*MIB, Clobbers);
6156  for (const auto &C : Clobbers) {
6157    MIB.addReg(C.first, RegState::Implicit);
6158    MIB.addReg(C.first, RegState::Implicit | RegState::Define);
6159  }
6160
6161  I->eraseFromParent();
6162}
6163
6164// Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
6165// not be a fallthrough MBB now due to layout changes). Return nullptr if the
6166// fallthrough MBB cannot be identified.
6167static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
6168                                            MachineBasicBlock *TBB) {
6169  // Look for non-EHPad successors other than TBB. If we find exactly one, it
6170  // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
6171  // and fallthrough MBB. If we find more than one, we cannot identify the
6172  // fallthrough MBB and should return nullptr.
6173  MachineBasicBlock *FallthroughBB = nullptr;
6174  for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) {
6175    if ((*SI)->isEHPad() || (*SI == TBB && FallthroughBB))
6176      continue;
6177    // Return a nullptr if we found more than one fallthrough successor.
6178    if (FallthroughBB && FallthroughBB != TBB)
6179      return nullptr;
6180    FallthroughBB = *SI;
6181  }
6182  return FallthroughBB;
6183}
6184
6185bool X86InstrInfo::AnalyzeBranchImpl(
6186    MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
6187    SmallVectorImpl<MachineOperand> &Cond,
6188    SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
6189
6190  // Start from the bottom of the block and work up, examining the
6191  // terminator instructions.
6192  MachineBasicBlock::iterator I = MBB.end();
6193  MachineBasicBlock::iterator UnCondBrIter = MBB.end();
6194  while (I != MBB.begin()) {
6195    --I;
6196    if (I->isDebugValue())
6197      continue;
6198
6199    // Working from the bottom, when we see a non-terminator instruction, we're
6200    // done.
6201    if (!isUnpredicatedTerminator(*I))
6202      break;
6203
6204    // A terminator that isn't a branch can't easily be handled by this
6205    // analysis.
6206    if (!I->isBranch())
6207      return true;
6208
6209    // Handle unconditional branches.
6210    if (I->getOpcode() == X86::JMP_1) {
6211      UnCondBrIter = I;
6212
6213      if (!AllowModify) {
6214        TBB = I->getOperand(0).getMBB();
6215        continue;
6216      }
6217
6218      // If the block has any instructions after a JMP, delete them.
6219      while (std::next(I) != MBB.end())
6220        std::next(I)->eraseFromParent();
6221
6222      Cond.clear();
6223      FBB = nullptr;
6224
6225      // Delete the JMP if it's equivalent to a fall-through.
6226      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
6227        TBB = nullptr;
6228        I->eraseFromParent();
6229        I = MBB.end();
6230        UnCondBrIter = MBB.end();
6231        continue;
6232      }
6233
6234      // TBB is used to indicate the unconditional destination.
6235      TBB = I->getOperand(0).getMBB();
6236      continue;
6237    }
6238
6239    // Handle conditional branches.
6240    X86::CondCode BranchCode = X86::getCondFromBranchOpc(I->getOpcode());
6241    if (BranchCode == X86::COND_INVALID)
6242      return true;  // Can't handle indirect branch.
6243
6244    // Working from the bottom, handle the first conditional branch.
6245    if (Cond.empty()) {
6246      MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
6247      if (AllowModify && UnCondBrIter != MBB.end() &&
6248          MBB.isLayoutSuccessor(TargetBB)) {
6249        // If we can modify the code and it ends in something like:
6250        //
6251        //     jCC L1
6252        //     jmp L2
6253        //   L1:
6254        //     ...
6255        //   L2:
6256        //
6257        // Then we can change this to:
6258        //
6259        //     jnCC L2
6260        //   L1:
6261        //     ...
6262        //   L2:
6263        //
6264        // Which is a bit more efficient.
6265        // We conditionally jump to the fall-through block.
6266        BranchCode = GetOppositeBranchCondition(BranchCode);
6267        unsigned JNCC = GetCondBranchFromCond(BranchCode);
6268        MachineBasicBlock::iterator OldInst = I;
6269
6270        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
6271          .addMBB(UnCondBrIter->getOperand(0).getMBB());
6272        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
6273          .addMBB(TargetBB);
6274
6275        OldInst->eraseFromParent();
6276        UnCondBrIter->eraseFromParent();
6277
6278        // Restart the analysis.
6279        UnCondBrIter = MBB.end();
6280        I = MBB.end();
6281        continue;
6282      }
6283
6284      FBB = TBB;
6285      TBB = I->getOperand(0).getMBB();
6286      Cond.push_back(MachineOperand::CreateImm(BranchCode));
6287      CondBranches.push_back(&*I);
6288      continue;
6289    }
6290
6291    // Handle subsequent conditional branches. Only handle the case where all
6292    // conditional branches branch to the same destination and their condition
6293    // opcodes fit one of the special multi-branch idioms.
6294    assert(Cond.size() == 1);
6295    assert(TBB);
6296
6297    // If the conditions are the same, we can leave them alone.
6298    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
6299    auto NewTBB = I->getOperand(0).getMBB();
6300    if (OldBranchCode == BranchCode && TBB == NewTBB)
6301      continue;
6302
6303    // If they differ, see if they fit one of the known patterns. Theoretically,
6304    // we could handle more patterns here, but we shouldn't expect to see them
6305    // if instruction selection has done a reasonable job.
6306    if (TBB == NewTBB &&
6307               ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
6308                (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
6309      BranchCode = X86::COND_NE_OR_P;
6310    } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
6311               (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
6312      if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
6313        return true;
6314
6315      // X86::COND_E_AND_NP usually has two different branch destinations.
6316      //
6317      // JP B1
6318      // JE B2
6319      // JMP B1
6320      // B1:
6321      // B2:
6322      //
6323      // Here this condition branches to B2 only if NP && E. It has another
6324      // equivalent form:
6325      //
6326      // JNE B1
6327      // JNP B2
6328      // JMP B1
6329      // B1:
6330      // B2:
6331      //
6332      // Similarly it branches to B2 only if E && NP. That is why this condition
6333      // is named with COND_E_AND_NP.
6334      BranchCode = X86::COND_E_AND_NP;
6335    } else
6336      return true;
6337
6338    // Update the MachineOperand.
6339    Cond[0].setImm(BranchCode);
6340    CondBranches.push_back(&*I);
6341  }
6342
6343  return false;
6344}
6345
6346bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
6347                                 MachineBasicBlock *&TBB,
6348                                 MachineBasicBlock *&FBB,
6349                                 SmallVectorImpl<MachineOperand> &Cond,
6350                                 bool AllowModify) const {
6351  SmallVector<MachineInstr *, 4> CondBranches;
6352  return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
6353}
6354
6355bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
6356                                          MachineBranchPredicate &MBP,
6357                                          bool AllowModify) const {
6358  using namespace std::placeholders;
6359
6360  SmallVector<MachineOperand, 4> Cond;
6361  SmallVector<MachineInstr *, 4> CondBranches;
6362  if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
6363                        AllowModify))
6364    return true;
6365
6366  if (Cond.size() != 1)
6367    return true;
6368
6369  assert(MBP.TrueDest && "expected!");
6370
6371  if (!MBP.FalseDest)
6372    MBP.FalseDest = MBB.getNextNode();
6373
6374  const TargetRegisterInfo *TRI = &getRegisterInfo();
6375
6376  MachineInstr *ConditionDef = nullptr;
6377  bool SingleUseCondition = true;
6378
6379  for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) {
6380    if (I->modifiesRegister(X86::EFLAGS, TRI)) {
6381      ConditionDef = &*I;
6382      break;
6383    }
6384
6385    if (I->readsRegister(X86::EFLAGS, TRI))
6386      SingleUseCondition = false;
6387  }
6388
6389  if (!ConditionDef)
6390    return true;
6391
6392  if (SingleUseCondition) {
6393    for (auto *Succ : MBB.successors())
6394      if (Succ->isLiveIn(X86::EFLAGS))
6395        SingleUseCondition = false;
6396  }
6397
6398  MBP.ConditionDef = ConditionDef;
6399  MBP.SingleUseCondition = SingleUseCondition;
6400
6401  // Currently we only recognize the simple pattern:
6402  //
6403  //   test %reg, %reg
6404  //   je %label
6405  //
6406  const unsigned TestOpcode =
6407      Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
6408
6409  if (ConditionDef->getOpcode() == TestOpcode &&
6410      ConditionDef->getNumOperands() == 3 &&
6411      ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
6412      (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
6413    MBP.LHS = ConditionDef->getOperand(0);
6414    MBP.RHS = MachineOperand::CreateImm(0);
6415    MBP.Predicate = Cond[0].getImm() == X86::COND_NE
6416                        ? MachineBranchPredicate::PRED_NE
6417                        : MachineBranchPredicate::PRED_EQ;
6418    return false;
6419  }
6420
6421  return true;
6422}
6423
6424unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
6425                                    int *BytesRemoved) const {
6426  assert(!BytesRemoved && "code size not handled");
6427
6428  MachineBasicBlock::iterator I = MBB.end();
6429  unsigned Count = 0;
6430
6431  while (I != MBB.begin()) {
6432    --I;
6433    if (I->isDebugValue())
6434      continue;
6435    if (I->getOpcode() != X86::JMP_1 &&
6436        X86::getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
6437      break;
6438    // Remove the branch.
6439    I->eraseFromParent();
6440    I = MBB.end();
6441    ++Count;
6442  }
6443
6444  return Count;
6445}
6446
6447unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
6448                                    MachineBasicBlock *TBB,
6449                                    MachineBasicBlock *FBB,
6450                                    ArrayRef<MachineOperand> Cond,
6451                                    const DebugLoc &DL,
6452                                    int *BytesAdded) const {
6453  // Shouldn't be a fall through.
6454  assert(TBB && "insertBranch must not be told to insert a fallthrough");
6455  assert((Cond.size() == 1 || Cond.size() == 0) &&
6456         "X86 branch conditions have one component!");
6457  assert(!BytesAdded && "code size not handled");
6458
6459  if (Cond.empty()) {
6460    // Unconditional branch?
6461    assert(!FBB && "Unconditional branch with multiple successors!");
6462    BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
6463    return 1;
6464  }
6465
6466  // If FBB is null, it is implied to be a fall-through block.
6467  bool FallThru = FBB == nullptr;
6468
6469  // Conditional branch.
6470  unsigned Count = 0;
6471  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
6472  switch (CC) {
6473  case X86::COND_NE_OR_P:
6474    // Synthesize NE_OR_P with two branches.
6475    BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(TBB);
6476    ++Count;
6477    BuildMI(&MBB, DL, get(X86::JP_1)).addMBB(TBB);
6478    ++Count;
6479    break;
6480  case X86::COND_E_AND_NP:
6481    // Use the next block of MBB as FBB if it is null.
6482    if (FBB == nullptr) {
6483      FBB = getFallThroughMBB(&MBB, TBB);
6484      assert(FBB && "MBB cannot be the last block in function when the false "
6485                    "body is a fall-through.");
6486    }
6487    // Synthesize COND_E_AND_NP with two branches.
6488    BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(FBB);
6489    ++Count;
6490    BuildMI(&MBB, DL, get(X86::JNP_1)).addMBB(TBB);
6491    ++Count;
6492    break;
6493  default: {
6494    unsigned Opc = GetCondBranchFromCond(CC);
6495    BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
6496    ++Count;
6497  }
6498  }
6499  if (!FallThru) {
6500    // Two-way Conditional branch. Insert the second branch.
6501    BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
6502    ++Count;
6503  }
6504  return Count;
6505}
6506
6507bool X86InstrInfo::
6508canInsertSelect(const MachineBasicBlock &MBB,
6509                ArrayRef<MachineOperand> Cond,
6510                unsigned TrueReg, unsigned FalseReg,
6511                int &CondCycles, int &TrueCycles, int &FalseCycles) const {
6512  // Not all subtargets have cmov instructions.
6513  if (!Subtarget.hasCMov())
6514    return false;
6515  if (Cond.size() != 1)
6516    return false;
6517  // We cannot do the composite conditions, at least not in SSA form.
6518  if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
6519    return false;
6520
6521  // Check register classes.
6522  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
6523  const TargetRegisterClass *RC =
6524    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
6525  if (!RC)
6526    return false;
6527
6528  // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
6529  if (X86::GR16RegClass.hasSubClassEq(RC) ||
6530      X86::GR32RegClass.hasSubClassEq(RC) ||
6531      X86::GR64RegClass.hasSubClassEq(RC)) {
6532    // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
6533    // Bridge. Probably Ivy Bridge as well.
6534    CondCycles = 2;
6535    TrueCycles = 2;
6536    FalseCycles = 2;
6537    return true;
6538  }
6539
6540  // Can't do vectors.
6541  return false;
6542}
6543
6544void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
6545                                MachineBasicBlock::iterator I,
6546                                const DebugLoc &DL, unsigned DstReg,
6547                                ArrayRef<MachineOperand> Cond, unsigned TrueReg,
6548                                unsigned FalseReg) const {
6549  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
6550  const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
6551  const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
6552  assert(Cond.size() == 1 && "Invalid Cond array");
6553  unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
6554                                 TRI.getRegSizeInBits(RC) / 8,
6555                                 false /*HasMemoryOperand*/);
6556  BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
6557}
6558
6559/// Test if the given register is a physical h register.
6560static bool isHReg(unsigned Reg) {
6561  return X86::GR8_ABCD_HRegClass.contains(Reg);
6562}
6563
6564// Try and copy between VR128/VR64 and GR64 registers.
6565static unsigned CopyToFromAsymmetricReg(unsigned &DestReg, unsigned &SrcReg,
6566                                        const X86Subtarget &Subtarget) {
6567  bool HasAVX = Subtarget.hasAVX();
6568  bool HasAVX512 = Subtarget.hasAVX512();
6569
6570  // SrcReg(MaskReg) -> DestReg(GR64)
6571  // SrcReg(MaskReg) -> DestReg(GR32)
6572
6573  // All KMASK RegClasses hold the same k registers, can be tested against anyone.
6574  if (X86::VK16RegClass.contains(SrcReg)) {
6575    if (X86::GR64RegClass.contains(DestReg)) {
6576      assert(Subtarget.hasBWI());
6577      return X86::KMOVQrk;
6578    }
6579    if (X86::GR32RegClass.contains(DestReg))
6580      return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
6581  }
6582
6583  // SrcReg(GR64) -> DestReg(MaskReg)
6584  // SrcReg(GR32) -> DestReg(MaskReg)
6585
6586  // All KMASK RegClasses hold the same k registers, can be tested against anyone.
6587  if (X86::VK16RegClass.contains(DestReg)) {
6588    if (X86::GR64RegClass.contains(SrcReg)) {
6589      assert(Subtarget.hasBWI());
6590      return X86::KMOVQkr;
6591    }
6592    if (X86::GR32RegClass.contains(SrcReg))
6593      return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
6594  }
6595
6596
6597  // SrcReg(VR128) -> DestReg(GR64)
6598  // SrcReg(VR64)  -> DestReg(GR64)
6599  // SrcReg(GR64)  -> DestReg(VR128)
6600  // SrcReg(GR64)  -> DestReg(VR64)
6601
6602  if (X86::GR64RegClass.contains(DestReg)) {
6603    if (X86::VR128XRegClass.contains(SrcReg))
6604      // Copy from a VR128 register to a GR64 register.
6605      return HasAVX512 ? X86::VMOVPQIto64Zrr :
6606             HasAVX    ? X86::VMOVPQIto64rr  :
6607                         X86::MOVPQIto64rr;
6608    if (X86::VR64RegClass.contains(SrcReg))
6609      // Copy from a VR64 register to a GR64 register.
6610      return X86::MMX_MOVD64from64rr;
6611  } else if (X86::GR64RegClass.contains(SrcReg)) {
6612    // Copy from a GR64 register to a VR128 register.
6613    if (X86::VR128XRegClass.contains(DestReg))
6614      return HasAVX512 ? X86::VMOV64toPQIZrr :
6615             HasAVX    ? X86::VMOV64toPQIrr  :
6616                         X86::MOV64toPQIrr;
6617    // Copy from a GR64 register to a VR64 register.
6618    if (X86::VR64RegClass.contains(DestReg))
6619      return X86::MMX_MOVD64to64rr;
6620  }
6621
6622  // SrcReg(FR32) -> DestReg(GR32)
6623  // SrcReg(GR32) -> DestReg(FR32)
6624
6625  if (X86::GR32RegClass.contains(DestReg) &&
6626      X86::FR32XRegClass.contains(SrcReg))
6627    // Copy from a FR32 register to a GR32 register.
6628    return HasAVX512 ? X86::VMOVSS2DIZrr :
6629           HasAVX    ? X86::VMOVSS2DIrr  :
6630                       X86::MOVSS2DIrr;
6631
6632  if (X86::FR32XRegClass.contains(DestReg) &&
6633      X86::GR32RegClass.contains(SrcReg))
6634    // Copy from a GR32 register to a FR32 register.
6635    return HasAVX512 ? X86::VMOVDI2SSZrr :
6636           HasAVX    ? X86::VMOVDI2SSrr  :
6637                       X86::MOVDI2SSrr;
6638  return 0;
6639}
6640
6641void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
6642                               MachineBasicBlock::iterator MI,
6643                               const DebugLoc &DL, unsigned DestReg,
6644                               unsigned SrcReg, bool KillSrc) const {
6645  // First deal with the normal symmetric copies.
6646  bool HasAVX = Subtarget.hasAVX();
6647  bool HasVLX = Subtarget.hasVLX();
6648  unsigned Opc = 0;
6649  if (X86::GR64RegClass.contains(DestReg, SrcReg))
6650    Opc = X86::MOV64rr;
6651  else if (X86::GR32RegClass.contains(DestReg, SrcReg))
6652    Opc = X86::MOV32rr;
6653  else if (X86::GR16RegClass.contains(DestReg, SrcReg))
6654    Opc = X86::MOV16rr;
6655  else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
6656    // Copying to or from a physical H register on x86-64 requires a NOREX
6657    // move.  Otherwise use a normal move.
6658    if ((isHReg(DestReg) || isHReg(SrcReg)) &&
6659        Subtarget.is64Bit()) {
6660      Opc = X86::MOV8rr_NOREX;
6661      // Both operands must be encodable without an REX prefix.
6662      assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
6663             "8-bit H register can not be copied outside GR8_NOREX");
6664    } else
6665      Opc = X86::MOV8rr;
6666  }
6667  else if (X86::VR64RegClass.contains(DestReg, SrcReg))
6668    Opc = X86::MMX_MOVQ64rr;
6669  else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
6670    if (HasVLX)
6671      Opc = X86::VMOVAPSZ128rr;
6672    else if (X86::VR128RegClass.contains(DestReg, SrcReg))
6673      Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
6674    else {
6675      // If this an extended register and we don't have VLX we need to use a
6676      // 512-bit move.
6677      Opc = X86::VMOVAPSZrr;
6678      const TargetRegisterInfo *TRI = &getRegisterInfo();
6679      DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
6680                                         &X86::VR512RegClass);
6681      SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
6682                                        &X86::VR512RegClass);
6683    }
6684  } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
6685    if (HasVLX)
6686      Opc = X86::VMOVAPSZ256rr;
6687    else if (X86::VR256RegClass.contains(DestReg, SrcReg))
6688      Opc = X86::VMOVAPSYrr;
6689    else {
6690      // If this an extended register and we don't have VLX we need to use a
6691      // 512-bit move.
6692      Opc = X86::VMOVAPSZrr;
6693      const TargetRegisterInfo *TRI = &getRegisterInfo();
6694      DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
6695                                         &X86::VR512RegClass);
6696      SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
6697                                        &X86::VR512RegClass);
6698    }
6699  } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
6700    Opc = X86::VMOVAPSZrr;
6701  // All KMASK RegClasses hold the same k registers, can be tested against anyone.
6702  else if (X86::VK16RegClass.contains(DestReg, SrcReg))
6703    Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
6704  if (!Opc)
6705    Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
6706
6707  if (Opc) {
6708    BuildMI(MBB, MI, DL, get(Opc), DestReg)
6709      .addReg(SrcReg, getKillRegState(KillSrc));
6710    return;
6711  }
6712
6713  if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
6714    // FIXME: We use a fatal error here because historically LLVM has tried
6715    // lower some of these physreg copies and we want to ensure we get
6716    // reasonable bug reports if someone encounters a case no other testing
6717    // found. This path should be removed after the LLVM 7 release.
6718    report_fatal_error("Unable to copy EFLAGS physical register!");
6719  }
6720
6721  DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
6722               << " to " << RI.getName(DestReg) << '\n');
6723  llvm_unreachable("Cannot emit physreg copy instruction");
6724}
6725
6726static unsigned getLoadStoreRegOpcode(unsigned Reg,
6727                                      const TargetRegisterClass *RC,
6728                                      bool isStackAligned,
6729                                      const X86Subtarget &STI,
6730                                      bool load) {
6731  bool HasAVX = STI.hasAVX();
6732  bool HasAVX512 = STI.hasAVX512();
6733  bool HasVLX = STI.hasVLX();
6734
6735  switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
6736  default:
6737    llvm_unreachable("Unknown spill size");
6738  case 1:
6739    assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
6740    if (STI.is64Bit())
6741      // Copying to or from a physical H register on x86-64 requires a NOREX
6742      // move.  Otherwise use a normal move.
6743      if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
6744        return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
6745    return load ? X86::MOV8rm : X86::MOV8mr;
6746  case 2:
6747    if (X86::VK16RegClass.hasSubClassEq(RC))
6748      return load ? X86::KMOVWkm : X86::KMOVWmk;
6749    assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
6750    return load ? X86::MOV16rm : X86::MOV16mr;
6751  case 4:
6752    if (X86::GR32RegClass.hasSubClassEq(RC))
6753      return load ? X86::MOV32rm : X86::MOV32mr;
6754    if (X86::FR32XRegClass.hasSubClassEq(RC))
6755      return load ?
6756        (HasAVX512 ? X86::VMOVSSZrm : HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
6757        (HasAVX512 ? X86::VMOVSSZmr : HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
6758    if (X86::RFP32RegClass.hasSubClassEq(RC))
6759      return load ? X86::LD_Fp32m : X86::ST_Fp32m;
6760    if (X86::VK32RegClass.hasSubClassEq(RC))
6761      return load ? X86::KMOVDkm : X86::KMOVDmk;
6762    llvm_unreachable("Unknown 4-byte regclass");
6763  case 8:
6764    if (X86::GR64RegClass.hasSubClassEq(RC))
6765      return load ? X86::MOV64rm : X86::MOV64mr;
6766    if (X86::FR64XRegClass.hasSubClassEq(RC))
6767      return load ?
6768        (HasAVX512 ? X86::VMOVSDZrm : HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
6769        (HasAVX512 ? X86::VMOVSDZmr : HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
6770    if (X86::VR64RegClass.hasSubClassEq(RC))
6771      return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
6772    if (X86::RFP64RegClass.hasSubClassEq(RC))
6773      return load ? X86::LD_Fp64m : X86::ST_Fp64m;
6774    if (X86::VK64RegClass.hasSubClassEq(RC))
6775      return load ? X86::KMOVQkm : X86::KMOVQmk;
6776    llvm_unreachable("Unknown 8-byte regclass");
6777  case 10:
6778    assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
6779    return load ? X86::LD_Fp80m : X86::ST_FpP80m;
6780  case 16: {
6781    if (X86::VR128XRegClass.hasSubClassEq(RC)) {
6782      // If stack is realigned we can use aligned stores.
6783      if (isStackAligned)
6784        return load ?
6785          (HasVLX    ? X86::VMOVAPSZ128rm :
6786           HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
6787           HasAVX    ? X86::VMOVAPSrm :
6788                       X86::MOVAPSrm):
6789          (HasVLX    ? X86::VMOVAPSZ128mr :
6790           HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
6791           HasAVX    ? X86::VMOVAPSmr :
6792                       X86::MOVAPSmr);
6793      else
6794        return load ?
6795          (HasVLX    ? X86::VMOVUPSZ128rm :
6796           HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
6797           HasAVX    ? X86::VMOVUPSrm :
6798                       X86::MOVUPSrm):
6799          (HasVLX    ? X86::VMOVUPSZ128mr :
6800           HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
6801           HasAVX    ? X86::VMOVUPSmr :
6802                       X86::MOVUPSmr);
6803    }
6804    if (X86::BNDRRegClass.hasSubClassEq(RC)) {
6805      if (STI.is64Bit())
6806        return load ? X86::BNDMOVRM64rm : X86::BNDMOVMR64mr;
6807      else
6808        return load ? X86::BNDMOVRM32rm : X86::BNDMOVMR32mr;
6809    }
6810    llvm_unreachable("Unknown 16-byte regclass");
6811  }
6812  case 32:
6813    assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
6814    // If stack is realigned we can use aligned stores.
6815    if (isStackAligned)
6816      return load ?
6817        (HasVLX    ? X86::VMOVAPSZ256rm :
6818         HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
6819                     X86::VMOVAPSYrm) :
6820        (HasVLX    ? X86::VMOVAPSZ256mr :
6821         HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
6822                     X86::VMOVAPSYmr);
6823    else
6824      return load ?
6825        (HasVLX    ? X86::VMOVUPSZ256rm :
6826         HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
6827                     X86::VMOVUPSYrm) :
6828        (HasVLX    ? X86::VMOVUPSZ256mr :
6829         HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
6830                     X86::VMOVUPSYmr);
6831  case 64:
6832    assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
6833    assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
6834    if (isStackAligned)
6835      return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
6836    else
6837      return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
6838  }
6839}
6840
6841bool X86InstrInfo::getMemOpBaseRegImmOfs(MachineInstr &MemOp, unsigned &BaseReg,
6842                                         int64_t &Offset,
6843                                         const TargetRegisterInfo *TRI) const {
6844  const MCInstrDesc &Desc = MemOp.getDesc();
6845  int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
6846  if (MemRefBegin < 0)
6847    return false;
6848
6849  MemRefBegin += X86II::getOperandBias(Desc);
6850
6851  MachineOperand &BaseMO = MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
6852  if (!BaseMO.isReg()) // Can be an MO_FrameIndex
6853    return false;
6854
6855  BaseReg = BaseMO.getReg();
6856  if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
6857    return false;
6858
6859  if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
6860      X86::NoRegister)
6861    return false;
6862
6863  const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
6864
6865  // Displacement can be symbolic
6866  if (!DispMO.isImm())
6867    return false;
6868
6869  Offset = DispMO.getImm();
6870
6871  return true;
6872}
6873
6874static unsigned getStoreRegOpcode(unsigned SrcReg,
6875                                  const TargetRegisterClass *RC,
6876                                  bool isStackAligned,
6877                                  const X86Subtarget &STI) {
6878  return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false);
6879}
6880
6881
6882static unsigned getLoadRegOpcode(unsigned DestReg,
6883                                 const TargetRegisterClass *RC,
6884                                 bool isStackAligned,
6885                                 const X86Subtarget &STI) {
6886  return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true);
6887}
6888
6889void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
6890                                       MachineBasicBlock::iterator MI,
6891                                       unsigned SrcReg, bool isKill, int FrameIdx,
6892                                       const TargetRegisterClass *RC,
6893                                       const TargetRegisterInfo *TRI) const {
6894  const MachineFunction &MF = *MBB.getParent();
6895  assert(MF.getFrameInfo().getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
6896         "Stack slot too small for store");
6897  unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
6898  bool isAligned =
6899      (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
6900      RI.canRealignStack(MF);
6901  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
6902  DebugLoc DL = MBB.findDebugLoc(MI);
6903  addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
6904    .addReg(SrcReg, getKillRegState(isKill));
6905}
6906
6907void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
6908                                  bool isKill,
6909                                  SmallVectorImpl<MachineOperand> &Addr,
6910                                  const TargetRegisterClass *RC,
6911                                  MachineInstr::mmo_iterator MMOBegin,
6912                                  MachineInstr::mmo_iterator MMOEnd,
6913                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
6914  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6915  unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
6916  bool isAligned = MMOBegin != MMOEnd &&
6917                   (*MMOBegin)->getAlignment() >= Alignment;
6918  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
6919  DebugLoc DL;
6920  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
6921  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
6922    MIB.add(Addr[i]);
6923  MIB.addReg(SrcReg, getKillRegState(isKill));
6924  (*MIB).setMemRefs(MMOBegin, MMOEnd);
6925  NewMIs.push_back(MIB);
6926}
6927
6928
6929void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
6930                                        MachineBasicBlock::iterator MI,
6931                                        unsigned DestReg, int FrameIdx,
6932                                        const TargetRegisterClass *RC,
6933                                        const TargetRegisterInfo *TRI) const {
6934  const MachineFunction &MF = *MBB.getParent();
6935  unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
6936  bool isAligned =
6937      (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
6938      RI.canRealignStack(MF);
6939  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
6940  DebugLoc DL = MBB.findDebugLoc(MI);
6941  addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
6942}
6943
6944void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
6945                                 SmallVectorImpl<MachineOperand> &Addr,
6946                                 const TargetRegisterClass *RC,
6947                                 MachineInstr::mmo_iterator MMOBegin,
6948                                 MachineInstr::mmo_iterator MMOEnd,
6949                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
6950  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6951  unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
6952  bool isAligned = MMOBegin != MMOEnd &&
6953                   (*MMOBegin)->getAlignment() >= Alignment;
6954  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
6955  DebugLoc DL;
6956  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
6957  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
6958    MIB.add(Addr[i]);
6959  (*MIB).setMemRefs(MMOBegin, MMOEnd);
6960  NewMIs.push_back(MIB);
6961}
6962
6963bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
6964                                  unsigned &SrcReg2, int &CmpMask,
6965                                  int &CmpValue) const {
6966  switch (MI.getOpcode()) {
6967  default: break;
6968  case X86::CMP64ri32:
6969  case X86::CMP64ri8:
6970  case X86::CMP32ri:
6971  case X86::CMP32ri8:
6972  case X86::CMP16ri:
6973  case X86::CMP16ri8:
6974  case X86::CMP8ri:
6975    SrcReg = MI.getOperand(0).getReg();
6976    SrcReg2 = 0;
6977    if (MI.getOperand(1).isImm()) {
6978      CmpMask = ~0;
6979      CmpValue = MI.getOperand(1).getImm();
6980    } else {
6981      CmpMask = CmpValue = 0;
6982    }
6983    return true;
6984  // A SUB can be used to perform comparison.
6985  case X86::SUB64rm:
6986  case X86::SUB32rm:
6987  case X86::SUB16rm:
6988  case X86::SUB8rm:
6989    SrcReg = MI.getOperand(1).getReg();
6990    SrcReg2 = 0;
6991    CmpMask = 0;
6992    CmpValue = 0;
6993    return true;
6994  case X86::SUB64rr:
6995  case X86::SUB32rr:
6996  case X86::SUB16rr:
6997  case X86::SUB8rr:
6998    SrcReg = MI.getOperand(1).getReg();
6999    SrcReg2 = MI.getOperand(2).getReg();
7000    CmpMask = 0;
7001    CmpValue = 0;
7002    return true;
7003  case X86::SUB64ri32:
7004  case X86::SUB64ri8:
7005  case X86::SUB32ri:
7006  case X86::SUB32ri8:
7007  case X86::SUB16ri:
7008  case X86::SUB16ri8:
7009  case X86::SUB8ri:
7010    SrcReg = MI.getOperand(1).getReg();
7011    SrcReg2 = 0;
7012    if (MI.getOperand(2).isImm()) {
7013      CmpMask = ~0;
7014      CmpValue = MI.getOperand(2).getImm();
7015    } else {
7016      CmpMask = CmpValue = 0;
7017    }
7018    return true;
7019  case X86::CMP64rr:
7020  case X86::CMP32rr:
7021  case X86::CMP16rr:
7022  case X86::CMP8rr:
7023    SrcReg = MI.getOperand(0).getReg();
7024    SrcReg2 = MI.getOperand(1).getReg();
7025    CmpMask = 0;
7026    CmpValue = 0;
7027    return true;
7028  case X86::TEST8rr:
7029  case X86::TEST16rr:
7030  case X86::TEST32rr:
7031  case X86::TEST64rr:
7032    SrcReg = MI.getOperand(0).getReg();
7033    if (MI.getOperand(1).getReg() != SrcReg)
7034      return false;
7035    // Compare against zero.
7036    SrcReg2 = 0;
7037    CmpMask = ~0;
7038    CmpValue = 0;
7039    return true;
7040  }
7041  return false;
7042}
7043
7044/// Check whether the first instruction, whose only
7045/// purpose is to update flags, can be made redundant.
7046/// CMPrr can be made redundant by SUBrr if the operands are the same.
7047/// This function can be extended later on.
7048/// SrcReg, SrcRegs: register operands for FlagI.
7049/// ImmValue: immediate for FlagI if it takes an immediate.
7050inline static bool isRedundantFlagInstr(MachineInstr &FlagI, unsigned SrcReg,
7051                                        unsigned SrcReg2, int ImmMask,
7052                                        int ImmValue, MachineInstr &OI) {
7053  if (((FlagI.getOpcode() == X86::CMP64rr && OI.getOpcode() == X86::SUB64rr) ||
7054       (FlagI.getOpcode() == X86::CMP32rr && OI.getOpcode() == X86::SUB32rr) ||
7055       (FlagI.getOpcode() == X86::CMP16rr && OI.getOpcode() == X86::SUB16rr) ||
7056       (FlagI.getOpcode() == X86::CMP8rr && OI.getOpcode() == X86::SUB8rr)) &&
7057      ((OI.getOperand(1).getReg() == SrcReg &&
7058        OI.getOperand(2).getReg() == SrcReg2) ||
7059       (OI.getOperand(1).getReg() == SrcReg2 &&
7060        OI.getOperand(2).getReg() == SrcReg)))
7061    return true;
7062
7063  if (ImmMask != 0 &&
7064      ((FlagI.getOpcode() == X86::CMP64ri32 &&
7065        OI.getOpcode() == X86::SUB64ri32) ||
7066       (FlagI.getOpcode() == X86::CMP64ri8 &&
7067        OI.getOpcode() == X86::SUB64ri8) ||
7068       (FlagI.getOpcode() == X86::CMP32ri && OI.getOpcode() == X86::SUB32ri) ||
7069       (FlagI.getOpcode() == X86::CMP32ri8 &&
7070        OI.getOpcode() == X86::SUB32ri8) ||
7071       (FlagI.getOpcode() == X86::CMP16ri && OI.getOpcode() == X86::SUB16ri) ||
7072       (FlagI.getOpcode() == X86::CMP16ri8 &&
7073        OI.getOpcode() == X86::SUB16ri8) ||
7074       (FlagI.getOpcode() == X86::CMP8ri && OI.getOpcode() == X86::SUB8ri)) &&
7075      OI.getOperand(1).getReg() == SrcReg &&
7076      OI.getOperand(2).getImm() == ImmValue)
7077    return true;
7078  return false;
7079}
7080
7081/// Check whether the definition can be converted
7082/// to remove a comparison against zero.
7083inline static bool isDefConvertible(MachineInstr &MI) {
7084  switch (MI.getOpcode()) {
7085  default: return false;
7086
7087  // The shift instructions only modify ZF if their shift count is non-zero.
7088  // N.B.: The processor truncates the shift count depending on the encoding.
7089  case X86::SAR8ri:    case X86::SAR16ri:  case X86::SAR32ri:case X86::SAR64ri:
7090  case X86::SHR8ri:    case X86::SHR16ri:  case X86::SHR32ri:case X86::SHR64ri:
7091     return getTruncatedShiftCount(MI, 2) != 0;
7092
7093  // Some left shift instructions can be turned into LEA instructions but only
7094  // if their flags aren't used. Avoid transforming such instructions.
7095  case X86::SHL8ri:    case X86::SHL16ri:  case X86::SHL32ri:case X86::SHL64ri:{
7096    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
7097    if (isTruncatedShiftCountForLEA(ShAmt)) return false;
7098    return ShAmt != 0;
7099  }
7100
7101  case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
7102  case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
7103     return getTruncatedShiftCount(MI, 3) != 0;
7104
7105  case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
7106  case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
7107  case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
7108  case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm:
7109  case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm:
7110  case X86::DEC64r:    case X86::DEC32r:   case X86::DEC16r: case X86::DEC8r:
7111  case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
7112  case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8:
7113  case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr:
7114  case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm:
7115  case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm:
7116  case X86::INC64r:    case X86::INC32r:   case X86::INC16r: case X86::INC8r:
7117  case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
7118  case X86::AND32ri8:  case X86::AND16ri:  case X86::AND16ri8:
7119  case X86::AND8ri:    case X86::AND64rr:  case X86::AND32rr:
7120  case X86::AND16rr:   case X86::AND8rr:   case X86::AND64rm:
7121  case X86::AND32rm:   case X86::AND16rm:  case X86::AND8rm:
7122  case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
7123  case X86::XOR32ri8:  case X86::XOR16ri:  case X86::XOR16ri8:
7124  case X86::XOR8ri:    case X86::XOR64rr:  case X86::XOR32rr:
7125  case X86::XOR16rr:   case X86::XOR8rr:   case X86::XOR64rm:
7126  case X86::XOR32rm:   case X86::XOR16rm:  case X86::XOR8rm:
7127  case X86::OR64ri32:  case X86::OR64ri8:  case X86::OR32ri:
7128  case X86::OR32ri8:   case X86::OR16ri:   case X86::OR16ri8:
7129  case X86::OR8ri:     case X86::OR64rr:   case X86::OR32rr:
7130  case X86::OR16rr:    case X86::OR8rr:    case X86::OR64rm:
7131  case X86::OR32rm:    case X86::OR16rm:   case X86::OR8rm:
7132  case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri:
7133  case X86::ADC32ri8:  case X86::ADC16ri:  case X86::ADC16ri8:
7134  case X86::ADC8ri:    case X86::ADC64rr:  case X86::ADC32rr:
7135  case X86::ADC16rr:   case X86::ADC8rr:   case X86::ADC64rm:
7136  case X86::ADC32rm:   case X86::ADC16rm:  case X86::ADC8rm:
7137  case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri:
7138  case X86::SBB32ri8:  case X86::SBB16ri:  case X86::SBB16ri8:
7139  case X86::SBB8ri:    case X86::SBB64rr:  case X86::SBB32rr:
7140  case X86::SBB16rr:   case X86::SBB8rr:   case X86::SBB64rm:
7141  case X86::SBB32rm:   case X86::SBB16rm:  case X86::SBB8rm:
7142  case X86::NEG8r:     case X86::NEG16r:   case X86::NEG32r: case X86::NEG64r:
7143  case X86::SAR8r1:    case X86::SAR16r1:  case X86::SAR32r1:case X86::SAR64r1:
7144  case X86::SHR8r1:    case X86::SHR16r1:  case X86::SHR32r1:case X86::SHR64r1:
7145  case X86::SHL8r1:    case X86::SHL16r1:  case X86::SHL32r1:case X86::SHL64r1:
7146  case X86::ANDN32rr:  case X86::ANDN32rm:
7147  case X86::ANDN64rr:  case X86::ANDN64rm:
7148  case X86::BEXTR32rr: case X86::BEXTR64rr:
7149  case X86::BEXTR32rm: case X86::BEXTR64rm:
7150  case X86::BLSI32rr:  case X86::BLSI32rm:
7151  case X86::BLSI64rr:  case X86::BLSI64rm:
7152  case X86::BLSMSK32rr:case X86::BLSMSK32rm:
7153  case X86::BLSMSK64rr:case X86::BLSMSK64rm:
7154  case X86::BLSR32rr:  case X86::BLSR32rm:
7155  case X86::BLSR64rr:  case X86::BLSR64rm:
7156  case X86::BZHI32rr:  case X86::BZHI32rm:
7157  case X86::BZHI64rr:  case X86::BZHI64rm:
7158  case X86::LZCNT16rr: case X86::LZCNT16rm:
7159  case X86::LZCNT32rr: case X86::LZCNT32rm:
7160  case X86::LZCNT64rr: case X86::LZCNT64rm:
7161  case X86::POPCNT16rr:case X86::POPCNT16rm:
7162  case X86::POPCNT32rr:case X86::POPCNT32rm:
7163  case X86::POPCNT64rr:case X86::POPCNT64rm:
7164  case X86::TZCNT16rr: case X86::TZCNT16rm:
7165  case X86::TZCNT32rr: case X86::TZCNT32rm:
7166  case X86::TZCNT64rr: case X86::TZCNT64rm:
7167  case X86::BEXTRI32ri:  case X86::BEXTRI32mi:
7168  case X86::BEXTRI64ri:  case X86::BEXTRI64mi:
7169  case X86::BLCFILL32rr: case X86::BLCFILL32rm:
7170  case X86::BLCFILL64rr: case X86::BLCFILL64rm:
7171  case X86::BLCI32rr:    case X86::BLCI32rm:
7172  case X86::BLCI64rr:    case X86::BLCI64rm:
7173  case X86::BLCIC32rr:   case X86::BLCIC32rm:
7174  case X86::BLCIC64rr:   case X86::BLCIC64rm:
7175  case X86::BLCMSK32rr:  case X86::BLCMSK32rm:
7176  case X86::BLCMSK64rr:  case X86::BLCMSK64rm:
7177  case X86::BLCS32rr:    case X86::BLCS32rm:
7178  case X86::BLCS64rr:    case X86::BLCS64rm:
7179  case X86::BLSFILL32rr: case X86::BLSFILL32rm:
7180  case X86::BLSFILL64rr: case X86::BLSFILL64rm:
7181  case X86::BLSIC32rr:   case X86::BLSIC32rm:
7182  case X86::BLSIC64rr:   case X86::BLSIC64rm:
7183    return true;
7184  }
7185}
7186
7187/// Check whether the use can be converted to remove a comparison against zero.
7188static X86::CondCode isUseDefConvertible(MachineInstr &MI) {
7189  switch (MI.getOpcode()) {
7190  default: return X86::COND_INVALID;
7191  case X86::LZCNT16rr: case X86::LZCNT16rm:
7192  case X86::LZCNT32rr: case X86::LZCNT32rm:
7193  case X86::LZCNT64rr: case X86::LZCNT64rm:
7194    return X86::COND_B;
7195  case X86::POPCNT16rr:case X86::POPCNT16rm:
7196  case X86::POPCNT32rr:case X86::POPCNT32rm:
7197  case X86::POPCNT64rr:case X86::POPCNT64rm:
7198    return X86::COND_E;
7199  case X86::TZCNT16rr: case X86::TZCNT16rm:
7200  case X86::TZCNT32rr: case X86::TZCNT32rm:
7201  case X86::TZCNT64rr: case X86::TZCNT64rm:
7202    return X86::COND_B;
7203  }
7204}
7205
7206/// Check if there exists an earlier instruction that
7207/// operates on the same source operands and sets flags in the same way as
7208/// Compare; remove Compare if possible.
7209bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
7210                                        unsigned SrcReg2, int CmpMask,
7211                                        int CmpValue,
7212                                        const MachineRegisterInfo *MRI) const {
7213  // Check whether we can replace SUB with CMP.
7214  unsigned NewOpcode = 0;
7215  switch (CmpInstr.getOpcode()) {
7216  default: break;
7217  case X86::SUB64ri32:
7218  case X86::SUB64ri8:
7219  case X86::SUB32ri:
7220  case X86::SUB32ri8:
7221  case X86::SUB16ri:
7222  case X86::SUB16ri8:
7223  case X86::SUB8ri:
7224  case X86::SUB64rm:
7225  case X86::SUB32rm:
7226  case X86::SUB16rm:
7227  case X86::SUB8rm:
7228  case X86::SUB64rr:
7229  case X86::SUB32rr:
7230  case X86::SUB16rr:
7231  case X86::SUB8rr: {
7232    if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
7233      return false;
7234    // There is no use of the destination register, we can replace SUB with CMP.
7235    switch (CmpInstr.getOpcode()) {
7236    default: llvm_unreachable("Unreachable!");
7237    case X86::SUB64rm:   NewOpcode = X86::CMP64rm;   break;
7238    case X86::SUB32rm:   NewOpcode = X86::CMP32rm;   break;
7239    case X86::SUB16rm:   NewOpcode = X86::CMP16rm;   break;
7240    case X86::SUB8rm:    NewOpcode = X86::CMP8rm;    break;
7241    case X86::SUB64rr:   NewOpcode = X86::CMP64rr;   break;
7242    case X86::SUB32rr:   NewOpcode = X86::CMP32rr;   break;
7243    case X86::SUB16rr:   NewOpcode = X86::CMP16rr;   break;
7244    case X86::SUB8rr:    NewOpcode = X86::CMP8rr;    break;
7245    case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
7246    case X86::SUB64ri8:  NewOpcode = X86::CMP64ri8;  break;
7247    case X86::SUB32ri:   NewOpcode = X86::CMP32ri;   break;
7248    case X86::SUB32ri8:  NewOpcode = X86::CMP32ri8;  break;
7249    case X86::SUB16ri:   NewOpcode = X86::CMP16ri;   break;
7250    case X86::SUB16ri8:  NewOpcode = X86::CMP16ri8;  break;
7251    case X86::SUB8ri:    NewOpcode = X86::CMP8ri;    break;
7252    }
7253    CmpInstr.setDesc(get(NewOpcode));
7254    CmpInstr.RemoveOperand(0);
7255    // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
7256    if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
7257        NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
7258      return false;
7259  }
7260  }
7261
7262  // Get the unique definition of SrcReg.
7263  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
7264  if (!MI) return false;
7265
7266  // CmpInstr is the first instruction of the BB.
7267  MachineBasicBlock::iterator I = CmpInstr, Def = MI;
7268
7269  // If we are comparing against zero, check whether we can use MI to update
7270  // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
7271  bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
7272  if (IsCmpZero && MI->getParent() != CmpInstr.getParent())
7273    return false;
7274
7275  // If we have a use of the source register between the def and our compare
7276  // instruction we can eliminate the compare iff the use sets EFLAGS in the
7277  // right way.
7278  bool ShouldUpdateCC = false;
7279  X86::CondCode NewCC = X86::COND_INVALID;
7280  if (IsCmpZero && !isDefConvertible(*MI)) {
7281    // Scan forward from the use until we hit the use we're looking for or the
7282    // compare instruction.
7283    for (MachineBasicBlock::iterator J = MI;; ++J) {
7284      // Do we have a convertible instruction?
7285      NewCC = isUseDefConvertible(*J);
7286      if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
7287          J->getOperand(1).getReg() == SrcReg) {
7288        assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
7289        ShouldUpdateCC = true; // Update CC later on.
7290        // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
7291        // with the new def.
7292        Def = J;
7293        MI = &*Def;
7294        break;
7295      }
7296
7297      if (J == I)
7298        return false;
7299    }
7300  }
7301
7302  // We are searching for an earlier instruction that can make CmpInstr
7303  // redundant and that instruction will be saved in Sub.
7304  MachineInstr *Sub = nullptr;
7305  const TargetRegisterInfo *TRI = &getRegisterInfo();
7306
7307  // We iterate backward, starting from the instruction before CmpInstr and
7308  // stop when reaching the definition of a source register or done with the BB.
7309  // RI points to the instruction before CmpInstr.
7310  // If the definition is in this basic block, RE points to the definition;
7311  // otherwise, RE is the rend of the basic block.
7312  MachineBasicBlock::reverse_iterator
7313      RI = ++I.getReverse(),
7314      RE = CmpInstr.getParent() == MI->getParent()
7315               ? Def.getReverse() /* points to MI */
7316               : CmpInstr.getParent()->rend();
7317  MachineInstr *Movr0Inst = nullptr;
7318  for (; RI != RE; ++RI) {
7319    MachineInstr &Instr = *RI;
7320    // Check whether CmpInstr can be made redundant by the current instruction.
7321    if (!IsCmpZero && isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask,
7322                                           CmpValue, Instr)) {
7323      Sub = &Instr;
7324      break;
7325    }
7326
7327    if (Instr.modifiesRegister(X86::EFLAGS, TRI) ||
7328        Instr.readsRegister(X86::EFLAGS, TRI)) {
7329      // This instruction modifies or uses EFLAGS.
7330
7331      // MOV32r0 etc. are implemented with xor which clobbers condition code.
7332      // They are safe to move up, if the definition to EFLAGS is dead and
7333      // earlier instructions do not read or write EFLAGS.
7334      if (!Movr0Inst && Instr.getOpcode() == X86::MOV32r0 &&
7335          Instr.registerDefIsDead(X86::EFLAGS, TRI)) {
7336        Movr0Inst = &Instr;
7337        continue;
7338      }
7339
7340      // We can't remove CmpInstr.
7341      return false;
7342    }
7343  }
7344
7345  // Return false if no candidates exist.
7346  if (!IsCmpZero && !Sub)
7347    return false;
7348
7349  bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
7350                    Sub->getOperand(2).getReg() == SrcReg);
7351
7352  // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
7353  // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
7354  // If we are done with the basic block, we need to check whether EFLAGS is
7355  // live-out.
7356  bool IsSafe = false;
7357  SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate;
7358  MachineBasicBlock::iterator E = CmpInstr.getParent()->end();
7359  for (++I; I != E; ++I) {
7360    const MachineInstr &Instr = *I;
7361    bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
7362    bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
7363    // We should check the usage if this instruction uses and updates EFLAGS.
7364    if (!UseEFLAGS && ModifyEFLAGS) {
7365      // It is safe to remove CmpInstr if EFLAGS is updated again.
7366      IsSafe = true;
7367      break;
7368    }
7369    if (!UseEFLAGS && !ModifyEFLAGS)
7370      continue;
7371
7372    // EFLAGS is used by this instruction.
7373    X86::CondCode OldCC = X86::COND_INVALID;
7374    bool OpcIsSET = false;
7375    if (IsCmpZero || IsSwapped) {
7376      // We decode the condition code from opcode.
7377      if (Instr.isBranch())
7378        OldCC = X86::getCondFromBranchOpc(Instr.getOpcode());
7379      else {
7380        OldCC = X86::getCondFromSETOpc(Instr.getOpcode());
7381        if (OldCC != X86::COND_INVALID)
7382          OpcIsSET = true;
7383        else
7384          OldCC = X86::getCondFromCMovOpc(Instr.getOpcode());
7385      }
7386      if (OldCC == X86::COND_INVALID) return false;
7387    }
7388    X86::CondCode ReplacementCC = X86::COND_INVALID;
7389    if (IsCmpZero) {
7390      switch (OldCC) {
7391      default: break;
7392      case X86::COND_A: case X86::COND_AE:
7393      case X86::COND_B: case X86::COND_BE:
7394      case X86::COND_G: case X86::COND_GE:
7395      case X86::COND_L: case X86::COND_LE:
7396      case X86::COND_O: case X86::COND_NO:
7397        // CF and OF are used, we can't perform this optimization.
7398        return false;
7399      }
7400
7401      // If we're updating the condition code check if we have to reverse the
7402      // condition.
7403      if (ShouldUpdateCC)
7404        switch (OldCC) {
7405        default:
7406          return false;
7407        case X86::COND_E:
7408          ReplacementCC = NewCC;
7409          break;
7410        case X86::COND_NE:
7411          ReplacementCC = GetOppositeBranchCondition(NewCC);
7412          break;
7413        }
7414    } else if (IsSwapped) {
7415      // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
7416      // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
7417      // We swap the condition code and synthesize the new opcode.
7418      ReplacementCC = getSwappedCondition(OldCC);
7419      if (ReplacementCC == X86::COND_INVALID) return false;
7420    }
7421
7422    if ((ShouldUpdateCC || IsSwapped) && ReplacementCC != OldCC) {
7423      // Synthesize the new opcode.
7424      bool HasMemoryOperand = Instr.hasOneMemOperand();
7425      unsigned NewOpc;
7426      if (Instr.isBranch())
7427        NewOpc = GetCondBranchFromCond(ReplacementCC);
7428      else if(OpcIsSET)
7429        NewOpc = getSETFromCond(ReplacementCC, HasMemoryOperand);
7430      else {
7431        unsigned DstReg = Instr.getOperand(0).getReg();
7432        const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
7433        NewOpc = getCMovFromCond(ReplacementCC, TRI->getRegSizeInBits(*DstRC)/8,
7434                                 HasMemoryOperand);
7435      }
7436
7437      // Push the MachineInstr to OpsToUpdate.
7438      // If it is safe to remove CmpInstr, the condition code of these
7439      // instructions will be modified.
7440      OpsToUpdate.push_back(std::make_pair(&*I, NewOpc));
7441    }
7442    if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
7443      // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
7444      IsSafe = true;
7445      break;
7446    }
7447  }
7448
7449  // If EFLAGS is not killed nor re-defined, we should check whether it is
7450  // live-out. If it is live-out, do not optimize.
7451  if ((IsCmpZero || IsSwapped) && !IsSafe) {
7452    MachineBasicBlock *MBB = CmpInstr.getParent();
7453    for (MachineBasicBlock *Successor : MBB->successors())
7454      if (Successor->isLiveIn(X86::EFLAGS))
7455        return false;
7456  }
7457
7458  // The instruction to be updated is either Sub or MI.
7459  Sub = IsCmpZero ? MI : Sub;
7460  // Move Movr0Inst to the appropriate place before Sub.
7461  if (Movr0Inst) {
7462    // Look backwards until we find a def that doesn't use the current EFLAGS.
7463    Def = Sub;
7464    MachineBasicBlock::reverse_iterator InsertI = Def.getReverse(),
7465                                        InsertE = Sub->getParent()->rend();
7466    for (; InsertI != InsertE; ++InsertI) {
7467      MachineInstr *Instr = &*InsertI;
7468      if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
7469          Instr->modifiesRegister(X86::EFLAGS, TRI)) {
7470        Sub->getParent()->remove(Movr0Inst);
7471        Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
7472                                   Movr0Inst);
7473        break;
7474      }
7475    }
7476    if (InsertI == InsertE)
7477      return false;
7478  }
7479
7480  // Make sure Sub instruction defines EFLAGS and mark the def live.
7481  unsigned i = 0, e = Sub->getNumOperands();
7482  for (; i != e; ++i) {
7483    MachineOperand &MO = Sub->getOperand(i);
7484    if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
7485      MO.setIsDead(false);
7486      break;
7487    }
7488  }
7489  assert(i != e && "Unable to locate a def EFLAGS operand");
7490
7491  CmpInstr.eraseFromParent();
7492
7493  // Modify the condition code of instructions in OpsToUpdate.
7494  for (auto &Op : OpsToUpdate)
7495    Op.first->setDesc(get(Op.second));
7496  return true;
7497}
7498
7499/// Try to remove the load by folding it to a register
7500/// operand at the use. We fold the load instructions if load defines a virtual
7501/// register, the virtual register is used once in the same BB, and the
7502/// instructions in-between do not load or store, and have no side effects.
7503MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
7504                                              const MachineRegisterInfo *MRI,
7505                                              unsigned &FoldAsLoadDefReg,
7506                                              MachineInstr *&DefMI) const {
7507  // Check whether we can move DefMI here.
7508  DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
7509  assert(DefMI);
7510  bool SawStore = false;
7511  if (!DefMI->isSafeToMove(nullptr, SawStore))
7512    return nullptr;
7513
7514  // Collect information about virtual register operands of MI.
7515  SmallVector<unsigned, 1> SrcOperandIds;
7516  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
7517    MachineOperand &MO = MI.getOperand(i);
7518    if (!MO.isReg())
7519      continue;
7520    unsigned Reg = MO.getReg();
7521    if (Reg != FoldAsLoadDefReg)
7522      continue;
7523    // Do not fold if we have a subreg use or a def.
7524    if (MO.getSubReg() || MO.isDef())
7525      return nullptr;
7526    SrcOperandIds.push_back(i);
7527  }
7528  if (SrcOperandIds.empty())
7529    return nullptr;
7530
7531  // Check whether we can fold the def into SrcOperandId.
7532  if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
7533    FoldAsLoadDefReg = 0;
7534    return FoldMI;
7535  }
7536
7537  return nullptr;
7538}
7539
7540/// Expand a single-def pseudo instruction to a two-addr
7541/// instruction with two undef reads of the register being defined.
7542/// This is used for mapping:
7543///   %xmm4 = V_SET0
7544/// to:
7545///   %xmm4 = PXORrr undef %xmm4, undef %xmm4
7546///
7547static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
7548                             const MCInstrDesc &Desc) {
7549  assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
7550  unsigned Reg = MIB->getOperand(0).getReg();
7551  MIB->setDesc(Desc);
7552
7553  // MachineInstr::addOperand() will insert explicit operands before any
7554  // implicit operands.
7555  MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
7556  // But we don't trust that.
7557  assert(MIB->getOperand(1).getReg() == Reg &&
7558         MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
7559  return true;
7560}
7561
7562/// Expand a single-def pseudo instruction to a two-addr
7563/// instruction with two %k0 reads.
7564/// This is used for mapping:
7565///   %k4 = K_SET1
7566/// to:
7567///   %k4 = KXNORrr %k0, %k0
7568static bool Expand2AddrKreg(MachineInstrBuilder &MIB,
7569                            const MCInstrDesc &Desc, unsigned Reg) {
7570  assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
7571  MIB->setDesc(Desc);
7572  MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
7573  return true;
7574}
7575
7576static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
7577                          bool MinusOne) {
7578  MachineBasicBlock &MBB = *MIB->getParent();
7579  DebugLoc DL = MIB->getDebugLoc();
7580  unsigned Reg = MIB->getOperand(0).getReg();
7581
7582  // Insert the XOR.
7583  BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
7584      .addReg(Reg, RegState::Undef)
7585      .addReg(Reg, RegState::Undef);
7586
7587  // Turn the pseudo into an INC or DEC.
7588  MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
7589  MIB.addReg(Reg);
7590
7591  return true;
7592}
7593
7594static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
7595                               const TargetInstrInfo &TII,
7596                               const X86Subtarget &Subtarget) {
7597  MachineBasicBlock &MBB = *MIB->getParent();
7598  DebugLoc DL = MIB->getDebugLoc();
7599  int64_t Imm = MIB->getOperand(1).getImm();
7600  assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
7601  MachineBasicBlock::iterator I = MIB.getInstr();
7602
7603  int StackAdjustment;
7604
7605  if (Subtarget.is64Bit()) {
7606    assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
7607           MIB->getOpcode() == X86::MOV32ImmSExti8);
7608
7609    // Can't use push/pop lowering if the function might write to the red zone.
7610    X86MachineFunctionInfo *X86FI =
7611        MBB.getParent()->getInfo<X86MachineFunctionInfo>();
7612    if (X86FI->getUsesRedZone()) {
7613      MIB->setDesc(TII.get(MIB->getOpcode() ==
7614                           X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
7615      return true;
7616    }
7617
7618    // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
7619    // widen the register if necessary.
7620    StackAdjustment = 8;
7621    BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm);
7622    MIB->setDesc(TII.get(X86::POP64r));
7623    MIB->getOperand(0)
7624        .setReg(getX86SubSuperRegister(MIB->getOperand(0).getReg(), 64));
7625  } else {
7626    assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
7627    StackAdjustment = 4;
7628    BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm);
7629    MIB->setDesc(TII.get(X86::POP32r));
7630  }
7631
7632  // Build CFI if necessary.
7633  MachineFunction &MF = *MBB.getParent();
7634  const X86FrameLowering *TFL = Subtarget.getFrameLowering();
7635  bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
7636  bool NeedsDwarfCFI =
7637      !IsWin64Prologue &&
7638      (MF.getMMI().hasDebugInfo() || MF.getFunction().needsUnwindTableEntry());
7639  bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
7640  if (EmitCFI) {
7641    TFL->BuildCFI(MBB, I, DL,
7642        MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
7643    TFL->BuildCFI(MBB, std::next(I), DL,
7644        MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
7645  }
7646
7647  return true;
7648}
7649
7650// LoadStackGuard has so far only been implemented for 64-bit MachO. Different
7651// code sequence is needed for other targets.
7652static void expandLoadStackGuard(MachineInstrBuilder &MIB,
7653                                 const TargetInstrInfo &TII) {
7654  MachineBasicBlock &MBB = *MIB->getParent();
7655  DebugLoc DL = MIB->getDebugLoc();
7656  unsigned Reg = MIB->getOperand(0).getReg();
7657  const GlobalValue *GV =
7658      cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
7659  auto Flags = MachineMemOperand::MOLoad |
7660               MachineMemOperand::MODereferenceable |
7661               MachineMemOperand::MOInvariant;
7662  MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
7663      MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, 8);
7664  MachineBasicBlock::iterator I = MIB.getInstr();
7665
7666  BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
7667      .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
7668      .addMemOperand(MMO);
7669  MIB->setDebugLoc(DL);
7670  MIB->setDesc(TII.get(X86::MOV64rm));
7671  MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
7672}
7673
7674static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
7675  MachineBasicBlock &MBB = *MIB->getParent();
7676  MachineFunction &MF = *MBB.getParent();
7677  const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
7678  const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
7679  unsigned XorOp =
7680      MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
7681  MIB->setDesc(TII.get(XorOp));
7682  MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
7683  return true;
7684}
7685
7686// This is used to handle spills for 128/256-bit registers when we have AVX512,
7687// but not VLX. If it uses an extended register we need to use an instruction
7688// that loads the lower 128/256-bit, but is available with only AVX512F.
7689static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
7690                            const TargetRegisterInfo *TRI,
7691                            const MCInstrDesc &LoadDesc,
7692                            const MCInstrDesc &BroadcastDesc,
7693                            unsigned SubIdx) {
7694  unsigned DestReg = MIB->getOperand(0).getReg();
7695  // Check if DestReg is XMM16-31 or YMM16-31.
7696  if (TRI->getEncodingValue(DestReg) < 16) {
7697    // We can use a normal VEX encoded load.
7698    MIB->setDesc(LoadDesc);
7699  } else {
7700    // Use a 128/256-bit VBROADCAST instruction.
7701    MIB->setDesc(BroadcastDesc);
7702    // Change the destination to a 512-bit register.
7703    DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
7704    MIB->getOperand(0).setReg(DestReg);
7705  }
7706  return true;
7707}
7708
7709// This is used to handle spills for 128/256-bit registers when we have AVX512,
7710// but not VLX. If it uses an extended register we need to use an instruction
7711// that stores the lower 128/256-bit, but is available with only AVX512F.
7712static bool expandNOVLXStore(MachineInstrBuilder &MIB,
7713                             const TargetRegisterInfo *TRI,
7714                             const MCInstrDesc &StoreDesc,
7715                             const MCInstrDesc &ExtractDesc,
7716                             unsigned SubIdx) {
7717  unsigned SrcReg = MIB->getOperand(X86::AddrNumOperands).getReg();
7718  // Check if DestReg is XMM16-31 or YMM16-31.
7719  if (TRI->getEncodingValue(SrcReg) < 16) {
7720    // We can use a normal VEX encoded store.
7721    MIB->setDesc(StoreDesc);
7722  } else {
7723    // Use a VEXTRACTF instruction.
7724    MIB->setDesc(ExtractDesc);
7725    // Change the destination to a 512-bit register.
7726    SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
7727    MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
7728    MIB.addImm(0x0); // Append immediate to extract from the lower bits.
7729  }
7730
7731  return true;
7732}
7733bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
7734  bool HasAVX = Subtarget.hasAVX();
7735  MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
7736  switch (MI.getOpcode()) {
7737  case X86::MOV32r0:
7738    return Expand2AddrUndef(MIB, get(X86::XOR32rr));
7739  case X86::MOV32r1:
7740    return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
7741  case X86::MOV32r_1:
7742    return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
7743  case X86::MOV32ImmSExti8:
7744  case X86::MOV64ImmSExti8:
7745    return ExpandMOVImmSExti8(MIB, *this, Subtarget);
7746  case X86::SETB_C8r:
7747    return Expand2AddrUndef(MIB, get(X86::SBB8rr));
7748  case X86::SETB_C16r:
7749    return Expand2AddrUndef(MIB, get(X86::SBB16rr));
7750  case X86::SETB_C32r:
7751    return Expand2AddrUndef(MIB, get(X86::SBB32rr));
7752  case X86::SETB_C64r:
7753    return Expand2AddrUndef(MIB, get(X86::SBB64rr));
7754  case X86::V_SET0:
7755  case X86::FsFLD0SS:
7756  case X86::FsFLD0SD:
7757    return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
7758  case X86::AVX_SET0: {
7759    assert(HasAVX && "AVX not supported");
7760    const TargetRegisterInfo *TRI = &getRegisterInfo();
7761    unsigned SrcReg = MIB->getOperand(0).getReg();
7762    unsigned XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
7763    MIB->getOperand(0).setReg(XReg);
7764    Expand2AddrUndef(MIB, get(X86::VXORPSrr));
7765    MIB.addReg(SrcReg, RegState::ImplicitDefine);
7766    return true;
7767  }
7768  case X86::AVX512_128_SET0:
7769  case X86::AVX512_FsFLD0SS:
7770  case X86::AVX512_FsFLD0SD: {
7771    bool HasVLX = Subtarget.hasVLX();
7772    unsigned SrcReg = MIB->getOperand(0).getReg();
7773    const TargetRegisterInfo *TRI = &getRegisterInfo();
7774    if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
7775      return Expand2AddrUndef(MIB,
7776                              get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
7777    // Extended register without VLX. Use a larger XOR.
7778    SrcReg =
7779        TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
7780    MIB->getOperand(0).setReg(SrcReg);
7781    return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
7782  }
7783  case X86::AVX512_256_SET0:
7784  case X86::AVX512_512_SET0: {
7785    bool HasVLX = Subtarget.hasVLX();
7786    unsigned SrcReg = MIB->getOperand(0).getReg();
7787    const TargetRegisterInfo *TRI = &getRegisterInfo();
7788    if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
7789      unsigned XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
7790      MIB->getOperand(0).setReg(XReg);
7791      Expand2AddrUndef(MIB,
7792                       get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
7793      MIB.addReg(SrcReg, RegState::ImplicitDefine);
7794      return true;
7795    }
7796    return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
7797  }
7798  case X86::V_SETALLONES:
7799    return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
7800  case X86::AVX2_SETALLONES:
7801    return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
7802  case X86::AVX1_SETALLONES: {
7803    unsigned Reg = MIB->getOperand(0).getReg();
7804    // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
7805    MIB->setDesc(get(X86::VCMPPSYrri));
7806    MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
7807    return true;
7808  }
7809  case X86::AVX512_512_SETALLONES: {
7810    unsigned Reg = MIB->getOperand(0).getReg();
7811    MIB->setDesc(get(X86::VPTERNLOGDZrri));
7812    // VPTERNLOGD needs 3 register inputs and an immediate.
7813    // 0xff will return 1s for any input.
7814    MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
7815       .addReg(Reg, RegState::Undef).addImm(0xff);
7816    return true;
7817  }
7818  case X86::AVX512_512_SEXT_MASK_32:
7819  case X86::AVX512_512_SEXT_MASK_64: {
7820    unsigned Reg = MIB->getOperand(0).getReg();
7821    unsigned MaskReg = MIB->getOperand(1).getReg();
7822    unsigned MaskState = getRegState(MIB->getOperand(1));
7823    unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ?
7824                   X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz;
7825    MI.RemoveOperand(1);
7826    MIB->setDesc(get(Opc));
7827    // VPTERNLOG needs 3 register inputs and an immediate.
7828    // 0xff will return 1s for any input.
7829    MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState)
7830       .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff);
7831    return true;
7832  }
7833  case X86::VMOVAPSZ128rm_NOVLX:
7834    return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
7835                           get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
7836  case X86::VMOVUPSZ128rm_NOVLX:
7837    return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
7838                           get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
7839  case X86::VMOVAPSZ256rm_NOVLX:
7840    return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
7841                           get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
7842  case X86::VMOVUPSZ256rm_NOVLX:
7843    return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
7844                           get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
7845  case X86::VMOVAPSZ128mr_NOVLX:
7846    return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
7847                            get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
7848  case X86::VMOVUPSZ128mr_NOVLX:
7849    return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
7850                            get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
7851  case X86::VMOVAPSZ256mr_NOVLX:
7852    return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
7853                            get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
7854  case X86::VMOVUPSZ256mr_NOVLX:
7855    return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
7856                            get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
7857  case X86::TEST8ri_NOREX:
7858    MI.setDesc(get(X86::TEST8ri));
7859    return true;
7860  case X86::MOV32ri64:
7861    MI.setDesc(get(X86::MOV32ri));
7862    return true;
7863
7864  // KNL does not recognize dependency-breaking idioms for mask registers,
7865  // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
7866  // Using %k0 as the undef input register is a performance heuristic based
7867  // on the assumption that %k0 is used less frequently than the other mask
7868  // registers, since it is not usable as a write mask.
7869  // FIXME: A more advanced approach would be to choose the best input mask
7870  // register based on context.
7871  case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
7872  case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
7873  case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
7874  case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
7875  case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
7876  case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
7877  case TargetOpcode::LOAD_STACK_GUARD:
7878    expandLoadStackGuard(MIB, *this);
7879    return true;
7880  case X86::XOR64_FP:
7881  case X86::XOR32_FP:
7882    return expandXorFP(MIB, *this);
7883  }
7884  return false;
7885}
7886
7887/// Return true for all instructions that only update
7888/// the first 32 or 64-bits of the destination register and leave the rest
7889/// unmodified. This can be used to avoid folding loads if the instructions
7890/// only update part of the destination register, and the non-updated part is
7891/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
7892/// instructions breaks the partial register dependency and it can improve
7893/// performance. e.g.:
7894///
7895///   movss (%rdi), %xmm0
7896///   cvtss2sd %xmm0, %xmm0
7897///
7898/// Instead of
7899///   cvtss2sd (%rdi), %xmm0
7900///
7901/// FIXME: This should be turned into a TSFlags.
7902///
7903static bool hasPartialRegUpdate(unsigned Opcode) {
7904  switch (Opcode) {
7905  case X86::CVTSI2SSrr:
7906  case X86::CVTSI2SSrm:
7907  case X86::CVTSI642SSrr:
7908  case X86::CVTSI642SSrm:
7909  case X86::CVTSI2SDrr:
7910  case X86::CVTSI2SDrm:
7911  case X86::CVTSI642SDrr:
7912  case X86::CVTSI642SDrm:
7913  case X86::CVTSD2SSrr:
7914  case X86::CVTSD2SSrm:
7915  case X86::CVTSS2SDrr:
7916  case X86::CVTSS2SDrm:
7917  case X86::MOVHPDrm:
7918  case X86::MOVHPSrm:
7919  case X86::MOVLPDrm:
7920  case X86::MOVLPSrm:
7921  case X86::RCPSSr:
7922  case X86::RCPSSm:
7923  case X86::RCPSSr_Int:
7924  case X86::RCPSSm_Int:
7925  case X86::ROUNDSDr:
7926  case X86::ROUNDSDm:
7927  case X86::ROUNDSSr:
7928  case X86::ROUNDSSm:
7929  case X86::RSQRTSSr:
7930  case X86::RSQRTSSm:
7931  case X86::RSQRTSSr_Int:
7932  case X86::RSQRTSSm_Int:
7933  case X86::SQRTSSr:
7934  case X86::SQRTSSm:
7935  case X86::SQRTSSr_Int:
7936  case X86::SQRTSSm_Int:
7937  case X86::SQRTSDr:
7938  case X86::SQRTSDm:
7939  case X86::SQRTSDr_Int:
7940  case X86::SQRTSDm_Int:
7941    return true;
7942  }
7943
7944  return false;
7945}
7946
7947/// Inform the ExecutionDepsFix pass how many idle
7948/// instructions we would like before a partial register update.
7949unsigned X86InstrInfo::getPartialRegUpdateClearance(
7950    const MachineInstr &MI, unsigned OpNum,
7951    const TargetRegisterInfo *TRI) const {
7952  if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode()))
7953    return 0;
7954
7955  // If MI is marked as reading Reg, the partial register update is wanted.
7956  const MachineOperand &MO = MI.getOperand(0);
7957  unsigned Reg = MO.getReg();
7958  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7959    if (MO.readsReg() || MI.readsVirtualRegister(Reg))
7960      return 0;
7961  } else {
7962    if (MI.readsRegister(Reg, TRI))
7963      return 0;
7964  }
7965
7966  // If any instructions in the clearance range are reading Reg, insert a
7967  // dependency breaking instruction, which is inexpensive and is likely to
7968  // be hidden in other instruction's cycles.
7969  return PartialRegUpdateClearance;
7970}
7971
7972// Return true for any instruction the copies the high bits of the first source
7973// operand into the unused high bits of the destination operand.
7974static bool hasUndefRegUpdate(unsigned Opcode) {
7975  switch (Opcode) {
7976  case X86::VCVTSI2SSrr:
7977  case X86::VCVTSI2SSrm:
7978  case X86::VCVTSI2SSrr_Int:
7979  case X86::VCVTSI2SSrm_Int:
7980  case X86::VCVTSI642SSrr:
7981  case X86::VCVTSI642SSrm:
7982  case X86::VCVTSI642SSrr_Int:
7983  case X86::VCVTSI642SSrm_Int:
7984  case X86::VCVTSI2SDrr:
7985  case X86::VCVTSI2SDrm:
7986  case X86::VCVTSI2SDrr_Int:
7987  case X86::VCVTSI2SDrm_Int:
7988  case X86::VCVTSI642SDrr:
7989  case X86::VCVTSI642SDrm:
7990  case X86::VCVTSI642SDrr_Int:
7991  case X86::VCVTSI642SDrm_Int:
7992  case X86::VCVTSD2SSrr:
7993  case X86::VCVTSD2SSrm:
7994  case X86::VCVTSD2SSrr_Int:
7995  case X86::VCVTSD2SSrm_Int:
7996  case X86::VCVTSS2SDrr:
7997  case X86::VCVTSS2SDrm:
7998  case X86::VCVTSS2SDrr_Int:
7999  case X86::VCVTSS2SDrm_Int:
8000  case X86::VRCPSSr:
8001  case X86::VRCPSSr_Int:
8002  case X86::VRCPSSm:
8003  case X86::VRCPSSm_Int:
8004  case X86::VROUNDSDr:
8005  case X86::VROUNDSDm:
8006  case X86::VROUNDSDr_Int:
8007  case X86::VROUNDSDm_Int:
8008  case X86::VROUNDSSr:
8009  case X86::VROUNDSSm:
8010  case X86::VROUNDSSr_Int:
8011  case X86::VROUNDSSm_Int:
8012  case X86::VRSQRTSSr:
8013  case X86::VRSQRTSSr_Int:
8014  case X86::VRSQRTSSm:
8015  case X86::VRSQRTSSm_Int:
8016  case X86::VSQRTSSr:
8017  case X86::VSQRTSSr_Int:
8018  case X86::VSQRTSSm:
8019  case X86::VSQRTSSm_Int:
8020  case X86::VSQRTSDr:
8021  case X86::VSQRTSDr_Int:
8022  case X86::VSQRTSDm:
8023  case X86::VSQRTSDm_Int:
8024  // AVX-512
8025  case X86::VCVTSI2SSZrr:
8026  case X86::VCVTSI2SSZrm:
8027  case X86::VCVTSI2SSZrr_Int:
8028  case X86::VCVTSI2SSZrrb_Int:
8029  case X86::VCVTSI2SSZrm_Int:
8030  case X86::VCVTSI642SSZrr:
8031  case X86::VCVTSI642SSZrm:
8032  case X86::VCVTSI642SSZrr_Int:
8033  case X86::VCVTSI642SSZrrb_Int:
8034  case X86::VCVTSI642SSZrm_Int:
8035  case X86::VCVTSI2SDZrr:
8036  case X86::VCVTSI2SDZrm:
8037  case X86::VCVTSI2SDZrr_Int:
8038  case X86::VCVTSI2SDZrrb_Int:
8039  case X86::VCVTSI2SDZrm_Int:
8040  case X86::VCVTSI642SDZrr:
8041  case X86::VCVTSI642SDZrm:
8042  case X86::VCVTSI642SDZrr_Int:
8043  case X86::VCVTSI642SDZrrb_Int:
8044  case X86::VCVTSI642SDZrm_Int:
8045  case X86::VCVTUSI2SSZrr:
8046  case X86::VCVTUSI2SSZrm:
8047  case X86::VCVTUSI2SSZrr_Int:
8048  case X86::VCVTUSI2SSZrrb_Int:
8049  case X86::VCVTUSI2SSZrm_Int:
8050  case X86::VCVTUSI642SSZrr:
8051  case X86::VCVTUSI642SSZrm:
8052  case X86::VCVTUSI642SSZrr_Int:
8053  case X86::VCVTUSI642SSZrrb_Int:
8054  case X86::VCVTUSI642SSZrm_Int:
8055  case X86::VCVTUSI2SDZrr:
8056  case X86::VCVTUSI2SDZrm:
8057  case X86::VCVTUSI2SDZrr_Int:
8058  case X86::VCVTUSI2SDZrm_Int:
8059  case X86::VCVTUSI642SDZrr:
8060  case X86::VCVTUSI642SDZrm:
8061  case X86::VCVTUSI642SDZrr_Int:
8062  case X86::VCVTUSI642SDZrrb_Int:
8063  case X86::VCVTUSI642SDZrm_Int:
8064  case X86::VCVTSD2SSZrr:
8065  case X86::VCVTSD2SSZrr_Int:
8066  case X86::VCVTSD2SSZrrb_Int:
8067  case X86::VCVTSD2SSZrm:
8068  case X86::VCVTSD2SSZrm_Int:
8069  case X86::VCVTSS2SDZrr:
8070  case X86::VCVTSS2SDZrr_Int:
8071  case X86::VCVTSS2SDZrrb_Int:
8072  case X86::VCVTSS2SDZrm:
8073  case X86::VCVTSS2SDZrm_Int:
8074  case X86::VRNDSCALESDr:
8075  case X86::VRNDSCALESDr_Int:
8076  case X86::VRNDSCALESDrb_Int:
8077  case X86::VRNDSCALESDm:
8078  case X86::VRNDSCALESDm_Int:
8079  case X86::VRNDSCALESSr:
8080  case X86::VRNDSCALESSr_Int:
8081  case X86::VRNDSCALESSrb_Int:
8082  case X86::VRNDSCALESSm:
8083  case X86::VRNDSCALESSm_Int:
8084  case X86::VRCP14SSrr:
8085  case X86::VRCP14SSrm:
8086  case X86::VRSQRT14SSrr:
8087  case X86::VRSQRT14SSrm:
8088  case X86::VSQRTSSZr:
8089  case X86::VSQRTSSZr_Int:
8090  case X86::VSQRTSSZrb_Int:
8091  case X86::VSQRTSSZm:
8092  case X86::VSQRTSSZm_Int:
8093  case X86::VSQRTSDZr:
8094  case X86::VSQRTSDZr_Int:
8095  case X86::VSQRTSDZrb_Int:
8096  case X86::VSQRTSDZm:
8097  case X86::VSQRTSDZm_Int:
8098    return true;
8099  }
8100
8101  return false;
8102}
8103
8104/// Inform the ExecutionDepsFix pass how many idle instructions we would like
8105/// before certain undef register reads.
8106///
8107/// This catches the VCVTSI2SD family of instructions:
8108///
8109/// vcvtsi2sdq %rax, undef %xmm0, %xmm14
8110///
8111/// We should to be careful *not* to catch VXOR idioms which are presumably
8112/// handled specially in the pipeline:
8113///
8114/// vxorps undef %xmm1, undef %xmm1, %xmm1
8115///
8116/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
8117/// high bits that are passed-through are not live.
8118unsigned
8119X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
8120                                   const TargetRegisterInfo *TRI) const {
8121  if (!hasUndefRegUpdate(MI.getOpcode()))
8122    return 0;
8123
8124  // Set the OpNum parameter to the first source operand.
8125  OpNum = 1;
8126
8127  const MachineOperand &MO = MI.getOperand(OpNum);
8128  if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
8129    return UndefRegClearance;
8130  }
8131  return 0;
8132}
8133
8134void X86InstrInfo::breakPartialRegDependency(
8135    MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
8136  unsigned Reg = MI.getOperand(OpNum).getReg();
8137  // If MI kills this register, the false dependence is already broken.
8138  if (MI.killsRegister(Reg, TRI))
8139    return;
8140
8141  if (X86::VR128RegClass.contains(Reg)) {
8142    // These instructions are all floating point domain, so xorps is the best
8143    // choice.
8144    unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
8145    BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
8146        .addReg(Reg, RegState::Undef)
8147        .addReg(Reg, RegState::Undef);
8148    MI.addRegisterKilled(Reg, TRI, true);
8149  } else if (X86::VR256RegClass.contains(Reg)) {
8150    // Use vxorps to clear the full ymm register.
8151    // It wants to read and write the xmm sub-register.
8152    unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
8153    BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
8154        .addReg(XReg, RegState::Undef)
8155        .addReg(XReg, RegState::Undef)
8156        .addReg(Reg, RegState::ImplicitDefine);
8157    MI.addRegisterKilled(Reg, TRI, true);
8158  }
8159}
8160
8161static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
8162                        int PtrOffset = 0) {
8163  unsigned NumAddrOps = MOs.size();
8164
8165  if (NumAddrOps < 4) {
8166    // FrameIndex only - add an immediate offset (whether its zero or not).
8167    for (unsigned i = 0; i != NumAddrOps; ++i)
8168      MIB.add(MOs[i]);
8169    addOffset(MIB, PtrOffset);
8170  } else {
8171    // General Memory Addressing - we need to add any offset to an existing
8172    // offset.
8173    assert(MOs.size() == 5 && "Unexpected memory operand list length");
8174    for (unsigned i = 0; i != NumAddrOps; ++i) {
8175      const MachineOperand &MO = MOs[i];
8176      if (i == 3 && PtrOffset != 0) {
8177        MIB.addDisp(MO, PtrOffset);
8178      } else {
8179        MIB.add(MO);
8180      }
8181    }
8182  }
8183}
8184
8185static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
8186                                     ArrayRef<MachineOperand> MOs,
8187                                     MachineBasicBlock::iterator InsertPt,
8188                                     MachineInstr &MI,
8189                                     const TargetInstrInfo &TII) {
8190  // Create the base instruction with the memory operand as the first part.
8191  // Omit the implicit operands, something BuildMI can't do.
8192  MachineInstr *NewMI =
8193      MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
8194  MachineInstrBuilder MIB(MF, NewMI);
8195  addOperands(MIB, MOs);
8196
8197  // Loop over the rest of the ri operands, converting them over.
8198  unsigned NumOps = MI.getDesc().getNumOperands() - 2;
8199  for (unsigned i = 0; i != NumOps; ++i) {
8200    MachineOperand &MO = MI.getOperand(i + 2);
8201    MIB.add(MO);
8202  }
8203  for (unsigned i = NumOps + 2, e = MI.getNumOperands(); i != e; ++i) {
8204    MachineOperand &MO = MI.getOperand(i);
8205    MIB.add(MO);
8206  }
8207
8208  MachineBasicBlock *MBB = InsertPt->getParent();
8209  MBB->insert(InsertPt, NewMI);
8210
8211  return MIB;
8212}
8213
8214static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
8215                              unsigned OpNo, ArrayRef<MachineOperand> MOs,
8216                              MachineBasicBlock::iterator InsertPt,
8217                              MachineInstr &MI, const TargetInstrInfo &TII,
8218                              int PtrOffset = 0) {
8219  // Omit the implicit operands, something BuildMI can't do.
8220  MachineInstr *NewMI =
8221      MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
8222  MachineInstrBuilder MIB(MF, NewMI);
8223
8224  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
8225    MachineOperand &MO = MI.getOperand(i);
8226    if (i == OpNo) {
8227      assert(MO.isReg() && "Expected to fold into reg operand!");
8228      addOperands(MIB, MOs, PtrOffset);
8229    } else {
8230      MIB.add(MO);
8231    }
8232  }
8233
8234  MachineBasicBlock *MBB = InsertPt->getParent();
8235  MBB->insert(InsertPt, NewMI);
8236
8237  return MIB;
8238}
8239
8240static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
8241                                ArrayRef<MachineOperand> MOs,
8242                                MachineBasicBlock::iterator InsertPt,
8243                                MachineInstr &MI) {
8244  MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
8245                                    MI.getDebugLoc(), TII.get(Opcode));
8246  addOperands(MIB, MOs);
8247  return MIB.addImm(0);
8248}
8249
8250MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
8251    MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
8252    ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
8253    unsigned Size, unsigned Align) const {
8254  switch (MI.getOpcode()) {
8255  case X86::INSERTPSrr:
8256  case X86::VINSERTPSrr:
8257  case X86::VINSERTPSZrr:
8258    // Attempt to convert the load of inserted vector into a fold load
8259    // of a single float.
8260    if (OpNum == 2) {
8261      unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
8262      unsigned ZMask = Imm & 15;
8263      unsigned DstIdx = (Imm >> 4) & 3;
8264      unsigned SrcIdx = (Imm >> 6) & 3;
8265
8266      const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8267      const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
8268      unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
8269      if (Size <= RCSize && 4 <= Align) {
8270        int PtrOffset = SrcIdx * 4;
8271        unsigned NewImm = (DstIdx << 4) | ZMask;
8272        unsigned NewOpCode =
8273            (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm :
8274            (MI.getOpcode() == X86::VINSERTPSrr)  ? X86::VINSERTPSrm  :
8275                                                    X86::INSERTPSrm;
8276        MachineInstr *NewMI =
8277            FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
8278        NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
8279        return NewMI;
8280      }
8281    }
8282    break;
8283  case X86::MOVHLPSrr:
8284  case X86::VMOVHLPSrr:
8285  case X86::VMOVHLPSZrr:
8286    // Move the upper 64-bits of the second operand to the lower 64-bits.
8287    // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
8288    // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
8289    if (OpNum == 2) {
8290      const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8291      const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
8292      unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
8293      if (Size <= RCSize && 8 <= Align) {
8294        unsigned NewOpCode =
8295            (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm :
8296            (MI.getOpcode() == X86::VMOVHLPSrr)  ? X86::VMOVLPSrm     :
8297                                                   X86::MOVLPSrm;
8298        MachineInstr *NewMI =
8299            FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
8300        return NewMI;
8301      }
8302    }
8303    break;
8304  };
8305
8306  return nullptr;
8307}
8308
8309MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
8310    MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
8311    ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
8312    unsigned Size, unsigned Align, bool AllowCommute) const {
8313  const DenseMap<unsigned,
8314                 std::pair<uint16_t, uint16_t> > *OpcodeTablePtr = nullptr;
8315  bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
8316  bool isTwoAddrFold = false;
8317
8318  // For CPUs that favor the register form of a call or push,
8319  // do not fold loads into calls or pushes, unless optimizing for size
8320  // aggressively.
8321  if (isSlowTwoMemOps && !MF.getFunction().optForMinSize() &&
8322      (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
8323       MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
8324       MI.getOpcode() == X86::PUSH64r))
8325    return nullptr;
8326
8327  // Avoid partial register update stalls unless optimizing for size.
8328  // TODO: we should block undef reg update as well.
8329  if (!MF.getFunction().optForSize() && hasPartialRegUpdate(MI.getOpcode()))
8330    return nullptr;
8331
8332  unsigned NumOps = MI.getDesc().getNumOperands();
8333  bool isTwoAddr =
8334      NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
8335
8336  // FIXME: AsmPrinter doesn't know how to handle
8337  // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
8338  if (MI.getOpcode() == X86::ADD32ri &&
8339      MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
8340    return nullptr;
8341
8342  MachineInstr *NewMI = nullptr;
8343
8344  // Attempt to fold any custom cases we have.
8345  if (MachineInstr *CustomMI =
8346          foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt, Size, Align))
8347    return CustomMI;
8348
8349  // Folding a memory location into the two-address part of a two-address
8350  // instruction is different than folding it other places.  It requires
8351  // replacing the *two* registers with the memory location.
8352  if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
8353      MI.getOperand(1).isReg() &&
8354      MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
8355    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
8356    isTwoAddrFold = true;
8357  } else if (OpNum == 0) {
8358    if (MI.getOpcode() == X86::MOV32r0) {
8359      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
8360      if (NewMI)
8361        return NewMI;
8362    }
8363
8364    OpcodeTablePtr = &RegOp2MemOpTable0;
8365  } else if (OpNum == 1) {
8366    OpcodeTablePtr = &RegOp2MemOpTable1;
8367  } else if (OpNum == 2) {
8368    OpcodeTablePtr = &RegOp2MemOpTable2;
8369  } else if (OpNum == 3) {
8370    OpcodeTablePtr = &RegOp2MemOpTable3;
8371  } else if (OpNum == 4) {
8372    OpcodeTablePtr = &RegOp2MemOpTable4;
8373  }
8374
8375  // If table selected...
8376  if (OpcodeTablePtr) {
8377    // Find the Opcode to fuse
8378    auto I = OpcodeTablePtr->find(MI.getOpcode());
8379    if (I != OpcodeTablePtr->end()) {
8380      unsigned Opcode = I->second.first;
8381      unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
8382      if (Align < MinAlign)
8383        return nullptr;
8384      bool NarrowToMOV32rm = false;
8385      if (Size) {
8386        const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8387        const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum,
8388                                                    &RI, MF);
8389        unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
8390        if (Size < RCSize) {
8391          // Check if it's safe to fold the load. If the size of the object is
8392          // narrower than the load width, then it's not.
8393          if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
8394            return nullptr;
8395          // If this is a 64-bit load, but the spill slot is 32, then we can do
8396          // a 32-bit load which is implicitly zero-extended. This likely is
8397          // due to live interval analysis remat'ing a load from stack slot.
8398          if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
8399            return nullptr;
8400          Opcode = X86::MOV32rm;
8401          NarrowToMOV32rm = true;
8402        }
8403      }
8404
8405      if (isTwoAddrFold)
8406        NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
8407      else
8408        NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
8409
8410      if (NarrowToMOV32rm) {
8411        // If this is the special case where we use a MOV32rm to load a 32-bit
8412        // value and zero-extend the top bits. Change the destination register
8413        // to a 32-bit one.
8414        unsigned DstReg = NewMI->getOperand(0).getReg();
8415        if (TargetRegisterInfo::isPhysicalRegister(DstReg))
8416          NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
8417        else
8418          NewMI->getOperand(0).setSubReg(X86::sub_32bit);
8419      }
8420      return NewMI;
8421    }
8422  }
8423
8424  // If the instruction and target operand are commutable, commute the
8425  // instruction and try again.
8426  if (AllowCommute) {
8427    unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
8428    if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
8429      bool HasDef = MI.getDesc().getNumDefs();
8430      unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0;
8431      unsigned Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
8432      unsigned Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
8433      bool Tied1 =
8434          0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
8435      bool Tied2 =
8436          0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
8437
8438      // If either of the commutable operands are tied to the destination
8439      // then we can not commute + fold.
8440      if ((HasDef && Reg0 == Reg1 && Tied1) ||
8441          (HasDef && Reg0 == Reg2 && Tied2))
8442        return nullptr;
8443
8444      MachineInstr *CommutedMI =
8445          commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
8446      if (!CommutedMI) {
8447        // Unable to commute.
8448        return nullptr;
8449      }
8450      if (CommutedMI != &MI) {
8451        // New instruction. We can't fold from this.
8452        CommutedMI->eraseFromParent();
8453        return nullptr;
8454      }
8455
8456      // Attempt to fold with the commuted version of the instruction.
8457      NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt,
8458                                    Size, Align, /*AllowCommute=*/false);
8459      if (NewMI)
8460        return NewMI;
8461
8462      // Folding failed again - undo the commute before returning.
8463      MachineInstr *UncommutedMI =
8464          commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
8465      if (!UncommutedMI) {
8466        // Unable to commute.
8467        return nullptr;
8468      }
8469      if (UncommutedMI != &MI) {
8470        // New instruction. It doesn't need to be kept.
8471        UncommutedMI->eraseFromParent();
8472        return nullptr;
8473      }
8474
8475      // Return here to prevent duplicate fuse failure report.
8476      return nullptr;
8477    }
8478  }
8479
8480  // No fusion
8481  if (PrintFailedFusing && !MI.isCopy())
8482    dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
8483  return nullptr;
8484}
8485
8486MachineInstr *
8487X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
8488                                    ArrayRef<unsigned> Ops,
8489                                    MachineBasicBlock::iterator InsertPt,
8490                                    int FrameIndex, LiveIntervals *LIS) const {
8491  // Check switch flag
8492  if (NoFusing)
8493    return nullptr;
8494
8495  // Unless optimizing for size, don't fold to avoid partial
8496  // register update stalls
8497  // TODO: we should block undef reg update as well.
8498  if (!MF.getFunction().optForSize() && hasPartialRegUpdate(MI.getOpcode()))
8499    return nullptr;
8500
8501  // Don't fold subreg spills, or reloads that use a high subreg.
8502  for (auto Op : Ops) {
8503    MachineOperand &MO = MI.getOperand(Op);
8504    auto SubReg = MO.getSubReg();
8505    if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
8506      return nullptr;
8507  }
8508
8509  const MachineFrameInfo &MFI = MF.getFrameInfo();
8510  unsigned Size = MFI.getObjectSize(FrameIndex);
8511  unsigned Alignment = MFI.getObjectAlignment(FrameIndex);
8512  // If the function stack isn't realigned we don't want to fold instructions
8513  // that need increased alignment.
8514  if (!RI.needsStackRealignment(MF))
8515    Alignment =
8516        std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment());
8517  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
8518    unsigned NewOpc = 0;
8519    unsigned RCSize = 0;
8520    switch (MI.getOpcode()) {
8521    default: return nullptr;
8522    case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
8523    case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
8524    case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
8525    case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
8526    }
8527    // Check if it's safe to fold the load. If the size of the object is
8528    // narrower than the load width, then it's not.
8529    if (Size < RCSize)
8530      return nullptr;
8531    // Change to CMPXXri r, 0 first.
8532    MI.setDesc(get(NewOpc));
8533    MI.getOperand(1).ChangeToImmediate(0);
8534  } else if (Ops.size() != 1)
8535    return nullptr;
8536
8537  return foldMemoryOperandImpl(MF, MI, Ops[0],
8538                               MachineOperand::CreateFI(FrameIndex), InsertPt,
8539                               Size, Alignment, /*AllowCommute=*/true);
8540}
8541
8542/// Check if \p LoadMI is a partial register load that we can't fold into \p MI
8543/// because the latter uses contents that wouldn't be defined in the folded
8544/// version.  For instance, this transformation isn't legal:
8545///   movss (%rdi), %xmm0
8546///   addps %xmm0, %xmm0
8547/// ->
8548///   addps (%rdi), %xmm0
8549///
8550/// But this one is:
8551///   movss (%rdi), %xmm0
8552///   addss %xmm0, %xmm0
8553/// ->
8554///   addss (%rdi), %xmm0
8555///
8556static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
8557                                             const MachineInstr &UserMI,
8558                                             const MachineFunction &MF) {
8559  unsigned Opc = LoadMI.getOpcode();
8560  unsigned UserOpc = UserMI.getOpcode();
8561  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8562  const TargetRegisterClass *RC =
8563      MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
8564  unsigned RegSize = TRI.getRegSizeInBits(*RC);
8565
8566  if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm) &&
8567      RegSize > 32) {
8568    // These instructions only load 32 bits, we can't fold them if the
8569    // destination register is wider than 32 bits (4 bytes), and its user
8570    // instruction isn't scalar (SS).
8571    switch (UserOpc) {
8572    case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int:
8573    case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int:
8574    case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int:
8575    case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int:
8576    case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int:
8577    case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int:
8578    case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int:
8579    case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz:
8580    case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz:
8581    case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz:
8582    case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz:
8583    case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz:
8584    case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz:
8585    case X86::VFMADDSS4rr_Int:   case X86::VFNMADDSS4rr_Int:
8586    case X86::VFMSUBSS4rr_Int:   case X86::VFNMSUBSS4rr_Int:
8587    case X86::VFMADD132SSr_Int:  case X86::VFNMADD132SSr_Int:
8588    case X86::VFMADD213SSr_Int:  case X86::VFNMADD213SSr_Int:
8589    case X86::VFMADD231SSr_Int:  case X86::VFNMADD231SSr_Int:
8590    case X86::VFMSUB132SSr_Int:  case X86::VFNMSUB132SSr_Int:
8591    case X86::VFMSUB213SSr_Int:  case X86::VFNMSUB213SSr_Int:
8592    case X86::VFMSUB231SSr_Int:  case X86::VFNMSUB231SSr_Int:
8593    case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int:
8594    case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int:
8595    case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int:
8596    case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int:
8597    case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int:
8598    case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int:
8599    case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk:
8600    case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk:
8601    case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk:
8602    case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk:
8603    case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk:
8604    case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk:
8605    case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz:
8606    case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz:
8607    case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz:
8608    case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz:
8609    case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz:
8610    case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz:
8611      return false;
8612    default:
8613      return true;
8614    }
8615  }
8616
8617  if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm) &&
8618      RegSize > 64) {
8619    // These instructions only load 64 bits, we can't fold them if the
8620    // destination register is wider than 64 bits (8 bytes), and its user
8621    // instruction isn't scalar (SD).
8622    switch (UserOpc) {
8623    case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int:
8624    case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int:
8625    case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int:
8626    case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int:
8627    case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int:
8628    case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int:
8629    case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int:
8630    case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz:
8631    case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz:
8632    case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz:
8633    case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz:
8634    case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz:
8635    case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz:
8636    case X86::VFMADDSD4rr_Int:   case X86::VFNMADDSD4rr_Int:
8637    case X86::VFMSUBSD4rr_Int:   case X86::VFNMSUBSD4rr_Int:
8638    case X86::VFMADD132SDr_Int:  case X86::VFNMADD132SDr_Int:
8639    case X86::VFMADD213SDr_Int:  case X86::VFNMADD213SDr_Int:
8640    case X86::VFMADD231SDr_Int:  case X86::VFNMADD231SDr_Int:
8641    case X86::VFMSUB132SDr_Int:  case X86::VFNMSUB132SDr_Int:
8642    case X86::VFMSUB213SDr_Int:  case X86::VFNMSUB213SDr_Int:
8643    case X86::VFMSUB231SDr_Int:  case X86::VFNMSUB231SDr_Int:
8644    case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int:
8645    case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int:
8646    case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int:
8647    case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int:
8648    case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int:
8649    case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int:
8650    case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk:
8651    case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk:
8652    case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk:
8653    case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk:
8654    case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk:
8655    case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk:
8656    case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz:
8657    case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz:
8658    case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz:
8659    case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz:
8660    case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz:
8661    case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz:
8662      return false;
8663    default:
8664      return true;
8665    }
8666  }
8667
8668  return false;
8669}
8670
8671MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
8672    MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
8673    MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
8674    LiveIntervals *LIS) const {
8675
8676  // TODO: Support the case where LoadMI loads a wide register, but MI
8677  // only uses a subreg.
8678  for (auto Op : Ops) {
8679    if (MI.getOperand(Op).getSubReg())
8680      return nullptr;
8681  }
8682
8683  // If loading from a FrameIndex, fold directly from the FrameIndex.
8684  unsigned NumOps = LoadMI.getDesc().getNumOperands();
8685  int FrameIndex;
8686  if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
8687    if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
8688      return nullptr;
8689    return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
8690  }
8691
8692  // Check switch flag
8693  if (NoFusing) return nullptr;
8694
8695  // Avoid partial register update stalls unless optimizing for size.
8696  // TODO: we should block undef reg update as well.
8697  if (!MF.getFunction().optForSize() && hasPartialRegUpdate(MI.getOpcode()))
8698    return nullptr;
8699
8700  // Determine the alignment of the load.
8701  unsigned Alignment = 0;
8702  if (LoadMI.hasOneMemOperand())
8703    Alignment = (*LoadMI.memoperands_begin())->getAlignment();
8704  else
8705    switch (LoadMI.getOpcode()) {
8706    case X86::AVX512_512_SET0:
8707    case X86::AVX512_512_SETALLONES:
8708      Alignment = 64;
8709      break;
8710    case X86::AVX2_SETALLONES:
8711    case X86::AVX1_SETALLONES:
8712    case X86::AVX_SET0:
8713    case X86::AVX512_256_SET0:
8714      Alignment = 32;
8715      break;
8716    case X86::V_SET0:
8717    case X86::V_SETALLONES:
8718    case X86::AVX512_128_SET0:
8719      Alignment = 16;
8720      break;
8721    case X86::FsFLD0SD:
8722    case X86::AVX512_FsFLD0SD:
8723      Alignment = 8;
8724      break;
8725    case X86::FsFLD0SS:
8726    case X86::AVX512_FsFLD0SS:
8727      Alignment = 4;
8728      break;
8729    default:
8730      return nullptr;
8731    }
8732  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
8733    unsigned NewOpc = 0;
8734    switch (MI.getOpcode()) {
8735    default: return nullptr;
8736    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
8737    case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
8738    case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
8739    case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
8740    }
8741    // Change to CMPXXri r, 0 first.
8742    MI.setDesc(get(NewOpc));
8743    MI.getOperand(1).ChangeToImmediate(0);
8744  } else if (Ops.size() != 1)
8745    return nullptr;
8746
8747  // Make sure the subregisters match.
8748  // Otherwise we risk changing the size of the load.
8749  if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
8750    return nullptr;
8751
8752  SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
8753  switch (LoadMI.getOpcode()) {
8754  case X86::V_SET0:
8755  case X86::V_SETALLONES:
8756  case X86::AVX2_SETALLONES:
8757  case X86::AVX1_SETALLONES:
8758  case X86::AVX_SET0:
8759  case X86::AVX512_128_SET0:
8760  case X86::AVX512_256_SET0:
8761  case X86::AVX512_512_SET0:
8762  case X86::AVX512_512_SETALLONES:
8763  case X86::FsFLD0SD:
8764  case X86::AVX512_FsFLD0SD:
8765  case X86::FsFLD0SS:
8766  case X86::AVX512_FsFLD0SS: {
8767    // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
8768    // Create a constant-pool entry and operands to load from it.
8769
8770    // Medium and large mode can't fold loads this way.
8771    if (MF.getTarget().getCodeModel() != CodeModel::Small &&
8772        MF.getTarget().getCodeModel() != CodeModel::Kernel)
8773      return nullptr;
8774
8775    // x86-32 PIC requires a PIC base register for constant pools.
8776    unsigned PICBase = 0;
8777    if (MF.getTarget().isPositionIndependent()) {
8778      if (Subtarget.is64Bit())
8779        PICBase = X86::RIP;
8780      else
8781        // FIXME: PICBase = getGlobalBaseReg(&MF);
8782        // This doesn't work for several reasons.
8783        // 1. GlobalBaseReg may have been spilled.
8784        // 2. It may not be live at MI.
8785        return nullptr;
8786    }
8787
8788    // Create a constant-pool entry.
8789    MachineConstantPool &MCP = *MF.getConstantPool();
8790    Type *Ty;
8791    unsigned Opc = LoadMI.getOpcode();
8792    if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
8793      Ty = Type::getFloatTy(MF.getFunction().getContext());
8794    else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
8795      Ty = Type::getDoubleTy(MF.getFunction().getContext());
8796    else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
8797      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),16);
8798    else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
8799             Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES)
8800      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 8);
8801    else
8802      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 4);
8803
8804    bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
8805                      Opc == X86::AVX512_512_SETALLONES ||
8806                      Opc == X86::AVX1_SETALLONES);
8807    const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
8808                                    Constant::getNullValue(Ty);
8809    unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
8810
8811    // Create operands to load from the constant pool entry.
8812    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
8813    MOs.push_back(MachineOperand::CreateImm(1));
8814    MOs.push_back(MachineOperand::CreateReg(0, false));
8815    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
8816    MOs.push_back(MachineOperand::CreateReg(0, false));
8817    break;
8818  }
8819  default: {
8820    if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
8821      return nullptr;
8822
8823    // Folding a normal load. Just copy the load's address operands.
8824    MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
8825               LoadMI.operands_begin() + NumOps);
8826    break;
8827  }
8828  }
8829  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
8830                               /*Size=*/0, Alignment, /*AllowCommute=*/true);
8831}
8832
8833bool X86InstrInfo::unfoldMemoryOperand(
8834    MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
8835    bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
8836  auto I = MemOp2RegOpTable.find(MI.getOpcode());
8837  if (I == MemOp2RegOpTable.end())
8838    return false;
8839  unsigned Opc = I->second.first;
8840  unsigned Index = I->second.second & TB_INDEX_MASK;
8841  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
8842  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
8843  if (UnfoldLoad && !FoldedLoad)
8844    return false;
8845  UnfoldLoad &= FoldedLoad;
8846  if (UnfoldStore && !FoldedStore)
8847    return false;
8848  UnfoldStore &= FoldedStore;
8849
8850  const MCInstrDesc &MCID = get(Opc);
8851  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
8852  // TODO: Check if 32-byte or greater accesses are slow too?
8853  if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
8854      Subtarget.isUnalignedMem16Slow())
8855    // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
8856    // conservatively assume the address is unaligned. That's bad for
8857    // performance.
8858    return false;
8859  SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
8860  SmallVector<MachineOperand,2> BeforeOps;
8861  SmallVector<MachineOperand,2> AfterOps;
8862  SmallVector<MachineOperand,4> ImpOps;
8863  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
8864    MachineOperand &Op = MI.getOperand(i);
8865    if (i >= Index && i < Index + X86::AddrNumOperands)
8866      AddrOps.push_back(Op);
8867    else if (Op.isReg() && Op.isImplicit())
8868      ImpOps.push_back(Op);
8869    else if (i < Index)
8870      BeforeOps.push_back(Op);
8871    else if (i > Index)
8872      AfterOps.push_back(Op);
8873  }
8874
8875  // Emit the load instruction.
8876  if (UnfoldLoad) {
8877    std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> MMOs =
8878        MF.extractLoadMemRefs(MI.memoperands_begin(), MI.memoperands_end());
8879    loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
8880    if (UnfoldStore) {
8881      // Address operands cannot be marked isKill.
8882      for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
8883        MachineOperand &MO = NewMIs[0]->getOperand(i);
8884        if (MO.isReg())
8885          MO.setIsKill(false);
8886      }
8887    }
8888  }
8889
8890  // Emit the data processing instruction.
8891  MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
8892  MachineInstrBuilder MIB(MF, DataMI);
8893
8894  if (FoldedStore)
8895    MIB.addReg(Reg, RegState::Define);
8896  for (MachineOperand &BeforeOp : BeforeOps)
8897    MIB.add(BeforeOp);
8898  if (FoldedLoad)
8899    MIB.addReg(Reg);
8900  for (MachineOperand &AfterOp : AfterOps)
8901    MIB.add(AfterOp);
8902  for (MachineOperand &ImpOp : ImpOps) {
8903    MIB.addReg(ImpOp.getReg(),
8904               getDefRegState(ImpOp.isDef()) |
8905               RegState::Implicit |
8906               getKillRegState(ImpOp.isKill()) |
8907               getDeadRegState(ImpOp.isDead()) |
8908               getUndefRegState(ImpOp.isUndef()));
8909  }
8910  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
8911  switch (DataMI->getOpcode()) {
8912  default: break;
8913  case X86::CMP64ri32:
8914  case X86::CMP64ri8:
8915  case X86::CMP32ri:
8916  case X86::CMP32ri8:
8917  case X86::CMP16ri:
8918  case X86::CMP16ri8:
8919  case X86::CMP8ri: {
8920    MachineOperand &MO0 = DataMI->getOperand(0);
8921    MachineOperand &MO1 = DataMI->getOperand(1);
8922    if (MO1.getImm() == 0) {
8923      unsigned NewOpc;
8924      switch (DataMI->getOpcode()) {
8925      default: llvm_unreachable("Unreachable!");
8926      case X86::CMP64ri8:
8927      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
8928      case X86::CMP32ri8:
8929      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
8930      case X86::CMP16ri8:
8931      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
8932      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
8933      }
8934      DataMI->setDesc(get(NewOpc));
8935      MO1.ChangeToRegister(MO0.getReg(), false);
8936    }
8937  }
8938  }
8939  NewMIs.push_back(DataMI);
8940
8941  // Emit the store instruction.
8942  if (UnfoldStore) {
8943    const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
8944    std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> MMOs =
8945        MF.extractStoreMemRefs(MI.memoperands_begin(), MI.memoperands_end());
8946    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
8947  }
8948
8949  return true;
8950}
8951
8952bool
8953X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
8954                                  SmallVectorImpl<SDNode*> &NewNodes) const {
8955  if (!N->isMachineOpcode())
8956    return false;
8957
8958  auto I = MemOp2RegOpTable.find(N->getMachineOpcode());
8959  if (I == MemOp2RegOpTable.end())
8960    return false;
8961  unsigned Opc = I->second.first;
8962  unsigned Index = I->second.second & TB_INDEX_MASK;
8963  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
8964  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
8965  const MCInstrDesc &MCID = get(Opc);
8966  MachineFunction &MF = DAG.getMachineFunction();
8967  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8968  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
8969  unsigned NumDefs = MCID.NumDefs;
8970  std::vector<SDValue> AddrOps;
8971  std::vector<SDValue> BeforeOps;
8972  std::vector<SDValue> AfterOps;
8973  SDLoc dl(N);
8974  unsigned NumOps = N->getNumOperands();
8975  for (unsigned i = 0; i != NumOps-1; ++i) {
8976    SDValue Op = N->getOperand(i);
8977    if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
8978      AddrOps.push_back(Op);
8979    else if (i < Index-NumDefs)
8980      BeforeOps.push_back(Op);
8981    else if (i > Index-NumDefs)
8982      AfterOps.push_back(Op);
8983  }
8984  SDValue Chain = N->getOperand(NumOps-1);
8985  AddrOps.push_back(Chain);
8986
8987  // Emit the load instruction.
8988  SDNode *Load = nullptr;
8989  if (FoldedLoad) {
8990    EVT VT = *TRI.legalclasstypes_begin(*RC);
8991    std::pair<MachineInstr::mmo_iterator,
8992              MachineInstr::mmo_iterator> MMOs =
8993      MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
8994                            cast<MachineSDNode>(N)->memoperands_end());
8995    if (!(*MMOs.first) &&
8996        RC == &X86::VR128RegClass &&
8997        Subtarget.isUnalignedMem16Slow())
8998      // Do not introduce a slow unaligned load.
8999      return false;
9000    // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
9001    // memory access is slow above.
9002    unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
9003    bool isAligned = (*MMOs.first) &&
9004                     (*MMOs.first)->getAlignment() >= Alignment;
9005    Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl,
9006                              VT, MVT::Other, AddrOps);
9007    NewNodes.push_back(Load);
9008
9009    // Preserve memory reference information.
9010    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
9011  }
9012
9013  // Emit the data processing instruction.
9014  std::vector<EVT> VTs;
9015  const TargetRegisterClass *DstRC = nullptr;
9016  if (MCID.getNumDefs() > 0) {
9017    DstRC = getRegClass(MCID, 0, &RI, MF);
9018    VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
9019  }
9020  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
9021    EVT VT = N->getValueType(i);
9022    if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
9023      VTs.push_back(VT);
9024  }
9025  if (Load)
9026    BeforeOps.push_back(SDValue(Load, 0));
9027  BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end());
9028  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
9029  NewNodes.push_back(NewNode);
9030
9031  // Emit the store instruction.
9032  if (FoldedStore) {
9033    AddrOps.pop_back();
9034    AddrOps.push_back(SDValue(NewNode, 0));
9035    AddrOps.push_back(Chain);
9036    std::pair<MachineInstr::mmo_iterator,
9037              MachineInstr::mmo_iterator> MMOs =
9038      MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
9039                             cast<MachineSDNode>(N)->memoperands_end());
9040    if (!(*MMOs.first) &&
9041        RC == &X86::VR128RegClass &&
9042        Subtarget.isUnalignedMem16Slow())
9043      // Do not introduce a slow unaligned store.
9044      return false;
9045    // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
9046    // memory access is slow above.
9047    unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
9048    bool isAligned = (*MMOs.first) &&
9049                     (*MMOs.first)->getAlignment() >= Alignment;
9050    SDNode *Store =
9051        DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
9052                           dl, MVT::Other, AddrOps);
9053    NewNodes.push_back(Store);
9054
9055    // Preserve memory reference information.
9056    cast<MachineSDNode>(Store)->setMemRefs(MMOs.first, MMOs.second);
9057  }
9058
9059  return true;
9060}
9061
9062unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
9063                                      bool UnfoldLoad, bool UnfoldStore,
9064                                      unsigned *LoadRegIndex) const {
9065  auto I = MemOp2RegOpTable.find(Opc);
9066  if (I == MemOp2RegOpTable.end())
9067    return 0;
9068  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
9069  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
9070  if (UnfoldLoad && !FoldedLoad)
9071    return 0;
9072  if (UnfoldStore && !FoldedStore)
9073    return 0;
9074  if (LoadRegIndex)
9075    *LoadRegIndex = I->second.second & TB_INDEX_MASK;
9076  return I->second.first;
9077}
9078
9079bool
9080X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
9081                                     int64_t &Offset1, int64_t &Offset2) const {
9082  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
9083    return false;
9084  unsigned Opc1 = Load1->getMachineOpcode();
9085  unsigned Opc2 = Load2->getMachineOpcode();
9086  switch (Opc1) {
9087  default: return false;
9088  case X86::MOV8rm:
9089  case X86::MOV16rm:
9090  case X86::MOV32rm:
9091  case X86::MOV64rm:
9092  case X86::LD_Fp32m:
9093  case X86::LD_Fp64m:
9094  case X86::LD_Fp80m:
9095  case X86::MOVSSrm:
9096  case X86::MOVSDrm:
9097  case X86::MMX_MOVD64rm:
9098  case X86::MMX_MOVQ64rm:
9099  case X86::MOVAPSrm:
9100  case X86::MOVUPSrm:
9101  case X86::MOVAPDrm:
9102  case X86::MOVUPDrm:
9103  case X86::MOVDQArm:
9104  case X86::MOVDQUrm:
9105  // AVX load instructions
9106  case X86::VMOVSSrm:
9107  case X86::VMOVSDrm:
9108  case X86::VMOVAPSrm:
9109  case X86::VMOVUPSrm:
9110  case X86::VMOVAPDrm:
9111  case X86::VMOVUPDrm:
9112  case X86::VMOVDQArm:
9113  case X86::VMOVDQUrm:
9114  case X86::VMOVAPSYrm:
9115  case X86::VMOVUPSYrm:
9116  case X86::VMOVAPDYrm:
9117  case X86::VMOVUPDYrm:
9118  case X86::VMOVDQAYrm:
9119  case X86::VMOVDQUYrm:
9120  // AVX512 load instructions
9121  case X86::VMOVSSZrm:
9122  case X86::VMOVSDZrm:
9123  case X86::VMOVAPSZ128rm:
9124  case X86::VMOVUPSZ128rm:
9125  case X86::VMOVAPSZ128rm_NOVLX:
9126  case X86::VMOVUPSZ128rm_NOVLX:
9127  case X86::VMOVAPDZ128rm:
9128  case X86::VMOVUPDZ128rm:
9129  case X86::VMOVDQU8Z128rm:
9130  case X86::VMOVDQU16Z128rm:
9131  case X86::VMOVDQA32Z128rm:
9132  case X86::VMOVDQU32Z128rm:
9133  case X86::VMOVDQA64Z128rm:
9134  case X86::VMOVDQU64Z128rm:
9135  case X86::VMOVAPSZ256rm:
9136  case X86::VMOVUPSZ256rm:
9137  case X86::VMOVAPSZ256rm_NOVLX:
9138  case X86::VMOVUPSZ256rm_NOVLX:
9139  case X86::VMOVAPDZ256rm:
9140  case X86::VMOVUPDZ256rm:
9141  case X86::VMOVDQU8Z256rm:
9142  case X86::VMOVDQU16Z256rm:
9143  case X86::VMOVDQA32Z256rm:
9144  case X86::VMOVDQU32Z256rm:
9145  case X86::VMOVDQA64Z256rm:
9146  case X86::VMOVDQU64Z256rm:
9147  case X86::VMOVAPSZrm:
9148  case X86::VMOVUPSZrm:
9149  case X86::VMOVAPDZrm:
9150  case X86::VMOVUPDZrm:
9151  case X86::VMOVDQU8Zrm:
9152  case X86::VMOVDQU16Zrm:
9153  case X86::VMOVDQA32Zrm:
9154  case X86::VMOVDQU32Zrm:
9155  case X86::VMOVDQA64Zrm:
9156  case X86::VMOVDQU64Zrm:
9157  case X86::KMOVBkm:
9158  case X86::KMOVWkm:
9159  case X86::KMOVDkm:
9160  case X86::KMOVQkm:
9161    break;
9162  }
9163  switch (Opc2) {
9164  default: return false;
9165  case X86::MOV8rm:
9166  case X86::MOV16rm:
9167  case X86::MOV32rm:
9168  case X86::MOV64rm:
9169  case X86::LD_Fp32m:
9170  case X86::LD_Fp64m:
9171  case X86::LD_Fp80m:
9172  case X86::MOVSSrm:
9173  case X86::MOVSDrm:
9174  case X86::MMX_MOVD64rm:
9175  case X86::MMX_MOVQ64rm:
9176  case X86::MOVAPSrm:
9177  case X86::MOVUPSrm:
9178  case X86::MOVAPDrm:
9179  case X86::MOVUPDrm:
9180  case X86::MOVDQArm:
9181  case X86::MOVDQUrm:
9182  // AVX load instructions
9183  case X86::VMOVSSrm:
9184  case X86::VMOVSDrm:
9185  case X86::VMOVAPSrm:
9186  case X86::VMOVUPSrm:
9187  case X86::VMOVAPDrm:
9188  case X86::VMOVUPDrm:
9189  case X86::VMOVDQArm:
9190  case X86::VMOVDQUrm:
9191  case X86::VMOVAPSYrm:
9192  case X86::VMOVUPSYrm:
9193  case X86::VMOVAPDYrm:
9194  case X86::VMOVUPDYrm:
9195  case X86::VMOVDQAYrm:
9196  case X86::VMOVDQUYrm:
9197  // AVX512 load instructions
9198  case X86::VMOVSSZrm:
9199  case X86::VMOVSDZrm:
9200  case X86::VMOVAPSZ128rm:
9201  case X86::VMOVUPSZ128rm:
9202  case X86::VMOVAPSZ128rm_NOVLX:
9203  case X86::VMOVUPSZ128rm_NOVLX:
9204  case X86::VMOVAPDZ128rm:
9205  case X86::VMOVUPDZ128rm:
9206  case X86::VMOVDQU8Z128rm:
9207  case X86::VMOVDQU16Z128rm:
9208  case X86::VMOVDQA32Z128rm:
9209  case X86::VMOVDQU32Z128rm:
9210  case X86::VMOVDQA64Z128rm:
9211  case X86::VMOVDQU64Z128rm:
9212  case X86::VMOVAPSZ256rm:
9213  case X86::VMOVUPSZ256rm:
9214  case X86::VMOVAPSZ256rm_NOVLX:
9215  case X86::VMOVUPSZ256rm_NOVLX:
9216  case X86::VMOVAPDZ256rm:
9217  case X86::VMOVUPDZ256rm:
9218  case X86::VMOVDQU8Z256rm:
9219  case X86::VMOVDQU16Z256rm:
9220  case X86::VMOVDQA32Z256rm:
9221  case X86::VMOVDQU32Z256rm:
9222  case X86::VMOVDQA64Z256rm:
9223  case X86::VMOVDQU64Z256rm:
9224  case X86::VMOVAPSZrm:
9225  case X86::VMOVUPSZrm:
9226  case X86::VMOVAPDZrm:
9227  case X86::VMOVUPDZrm:
9228  case X86::VMOVDQU8Zrm:
9229  case X86::VMOVDQU16Zrm:
9230  case X86::VMOVDQA32Zrm:
9231  case X86::VMOVDQU32Zrm:
9232  case X86::VMOVDQA64Zrm:
9233  case X86::VMOVDQU64Zrm:
9234  case X86::KMOVBkm:
9235  case X86::KMOVWkm:
9236  case X86::KMOVDkm:
9237  case X86::KMOVQkm:
9238    break;
9239  }
9240
9241  // Lambda to check if both the loads have the same value for an operand index.
9242  auto HasSameOp = [&](int I) {
9243    return Load1->getOperand(I) == Load2->getOperand(I);
9244  };
9245
9246  // All operands except the displacement should match.
9247  if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
9248      !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
9249    return false;
9250
9251  // Chain Operand must be the same.
9252  if (!HasSameOp(5))
9253    return false;
9254
9255  // Now let's examine if the displacements are constants.
9256  auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
9257  auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
9258  if (!Disp1 || !Disp2)
9259    return false;
9260
9261  Offset1 = Disp1->getSExtValue();
9262  Offset2 = Disp2->getSExtValue();
9263  return true;
9264}
9265
9266bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
9267                                           int64_t Offset1, int64_t Offset2,
9268                                           unsigned NumLoads) const {
9269  assert(Offset2 > Offset1);
9270  if ((Offset2 - Offset1) / 8 > 64)
9271    return false;
9272
9273  unsigned Opc1 = Load1->getMachineOpcode();
9274  unsigned Opc2 = Load2->getMachineOpcode();
9275  if (Opc1 != Opc2)
9276    return false;  // FIXME: overly conservative?
9277
9278  switch (Opc1) {
9279  default: break;
9280  case X86::LD_Fp32m:
9281  case X86::LD_Fp64m:
9282  case X86::LD_Fp80m:
9283  case X86::MMX_MOVD64rm:
9284  case X86::MMX_MOVQ64rm:
9285    return false;
9286  }
9287
9288  EVT VT = Load1->getValueType(0);
9289  switch (VT.getSimpleVT().SimpleTy) {
9290  default:
9291    // XMM registers. In 64-bit mode we can be a bit more aggressive since we
9292    // have 16 of them to play with.
9293    if (Subtarget.is64Bit()) {
9294      if (NumLoads >= 3)
9295        return false;
9296    } else if (NumLoads) {
9297      return false;
9298    }
9299    break;
9300  case MVT::i8:
9301  case MVT::i16:
9302  case MVT::i32:
9303  case MVT::i64:
9304  case MVT::f32:
9305  case MVT::f64:
9306    if (NumLoads)
9307      return false;
9308    break;
9309  }
9310
9311  return true;
9312}
9313
9314bool X86InstrInfo::
9315reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
9316  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
9317  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
9318  Cond[0].setImm(GetOppositeBranchCondition(CC));
9319  return false;
9320}
9321
9322bool X86InstrInfo::
9323isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
9324  // FIXME: Return false for x87 stack register classes for now. We can't
9325  // allow any loads of these registers before FpGet_ST0_80.
9326  return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
9327           RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
9328           RC == &X86::RFP80RegClass);
9329}
9330
9331/// Return a virtual register initialized with the
9332/// the global base register value. Output instructions required to
9333/// initialize the register in the function entry block, if necessary.
9334///
9335/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
9336///
9337unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
9338  assert(!Subtarget.is64Bit() &&
9339         "X86-64 PIC uses RIP relative addressing");
9340
9341  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
9342  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
9343  if (GlobalBaseReg != 0)
9344    return GlobalBaseReg;
9345
9346  // Create the register. The code to initialize it is inserted
9347  // later, by the CGBR pass (below).
9348  MachineRegisterInfo &RegInfo = MF->getRegInfo();
9349  GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
9350  X86FI->setGlobalBaseReg(GlobalBaseReg);
9351  return GlobalBaseReg;
9352}
9353
9354// These are the replaceable SSE instructions. Some of these have Int variants
9355// that we don't include here. We don't want to replace instructions selected
9356// by intrinsics.
9357static const uint16_t ReplaceableInstrs[][3] = {
9358  //PackedSingle     PackedDouble    PackedInt
9359  { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
9360  { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
9361  { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
9362  { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
9363  { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
9364  { X86::MOVLPSmr,   X86::MOVLPDmr,  X86::MOVPQI2QImr },
9365  { X86::MOVSDmr,    X86::MOVSDmr,   X86::MOVPQI2QImr },
9366  { X86::MOVSSmr,    X86::MOVSSmr,   X86::MOVPDI2DImr },
9367  { X86::MOVSDrm,    X86::MOVSDrm,   X86::MOVQI2PQIrm },
9368  { X86::MOVSSrm,    X86::MOVSSrm,   X86::MOVDI2PDIrm },
9369  { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
9370  { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
9371  { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
9372  { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
9373  { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
9374  { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
9375  { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
9376  { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
9377  { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
9378  { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm },
9379  { X86::MOVLHPSrr,  X86::UNPCKLPDrr, X86::PUNPCKLQDQrr },
9380  { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm },
9381  { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr },
9382  { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm },
9383  { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr },
9384  { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm },
9385  { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr },
9386  { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr },
9387  { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr },
9388  // AVX 128-bit support
9389  { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
9390  { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
9391  { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
9392  { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
9393  { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
9394  { X86::VMOVLPSmr,  X86::VMOVLPDmr,  X86::VMOVPQI2QImr },
9395  { X86::VMOVSDmr,   X86::VMOVSDmr,   X86::VMOVPQI2QImr },
9396  { X86::VMOVSSmr,   X86::VMOVSSmr,   X86::VMOVPDI2DImr },
9397  { X86::VMOVSDrm,   X86::VMOVSDrm,   X86::VMOVQI2PQIrm },
9398  { X86::VMOVSSrm,   X86::VMOVSSrm,   X86::VMOVDI2PDIrm },
9399  { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
9400  { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
9401  { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
9402  { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
9403  { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
9404  { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
9405  { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
9406  { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
9407  { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
9408  { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm },
9409  { X86::VMOVLHPSrr,  X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr },
9410  { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm },
9411  { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr },
9412  { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm },
9413  { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr },
9414  { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm },
9415  { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr },
9416  { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr },
9417  { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr },
9418  // AVX 256-bit support
9419  { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
9420  { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
9421  { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
9422  { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
9423  { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
9424  { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr },
9425  { X86::VPERMPSYrm,   X86::VPERMPSYrm,   X86::VPERMDYrm },
9426  { X86::VPERMPSYrr,   X86::VPERMPSYrr,   X86::VPERMDYrr },
9427  { X86::VPERMPDYmi,   X86::VPERMPDYmi,   X86::VPERMQYmi },
9428  { X86::VPERMPDYri,   X86::VPERMPDYri,   X86::VPERMQYri },
9429  // AVX512 support
9430  { X86::VMOVLPSZ128mr,  X86::VMOVLPDZ128mr,  X86::VMOVPQI2QIZmr  },
9431  { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
9432  { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr },
9433  { X86::VMOVNTPSZmr,    X86::VMOVNTPDZmr,    X86::VMOVNTDQZmr    },
9434  { X86::VMOVSDZmr,      X86::VMOVSDZmr,      X86::VMOVPQI2QIZmr  },
9435  { X86::VMOVSSZmr,      X86::VMOVSSZmr,      X86::VMOVPDI2DIZmr  },
9436  { X86::VMOVSDZrm,      X86::VMOVSDZrm,      X86::VMOVQI2PQIZrm  },
9437  { X86::VMOVSSZrm,      X86::VMOVSSZrm,      X86::VMOVDI2PDIZrm  },
9438  { X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128r, X86::VPBROADCASTDZ128r },
9439  { X86::VBROADCASTSSZ128m, X86::VBROADCASTSSZ128m, X86::VPBROADCASTDZ128m },
9440  { X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256r, X86::VPBROADCASTDZ256r },
9441  { X86::VBROADCASTSSZ256m, X86::VBROADCASTSSZ256m, X86::VPBROADCASTDZ256m },
9442  { X86::VBROADCASTSSZr,    X86::VBROADCASTSSZr,    X86::VPBROADCASTDZr },
9443  { X86::VBROADCASTSSZm,    X86::VBROADCASTSSZm,    X86::VPBROADCASTDZm },
9444  { X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256r, X86::VPBROADCASTQZ256r },
9445  { X86::VBROADCASTSDZ256m, X86::VBROADCASTSDZ256m, X86::VPBROADCASTQZ256m },
9446  { X86::VBROADCASTSDZr,    X86::VBROADCASTSDZr,    X86::VPBROADCASTQZr },
9447  { X86::VBROADCASTSDZm,    X86::VBROADCASTSDZm,    X86::VPBROADCASTQZm },
9448  { X86::VINSERTF32x4Zrr,   X86::VINSERTF32x4Zrr,   X86::VINSERTI32x4Zrr },
9449  { X86::VINSERTF32x4Zrm,   X86::VINSERTF32x4Zrm,   X86::VINSERTI32x4Zrm },
9450  { X86::VINSERTF32x8Zrr,   X86::VINSERTF32x8Zrr,   X86::VINSERTI32x8Zrr },
9451  { X86::VINSERTF32x8Zrm,   X86::VINSERTF32x8Zrm,   X86::VINSERTI32x8Zrm },
9452  { X86::VINSERTF64x2Zrr,   X86::VINSERTF64x2Zrr,   X86::VINSERTI64x2Zrr },
9453  { X86::VINSERTF64x2Zrm,   X86::VINSERTF64x2Zrm,   X86::VINSERTI64x2Zrm },
9454  { X86::VINSERTF64x4Zrr,   X86::VINSERTF64x4Zrr,   X86::VINSERTI64x4Zrr },
9455  { X86::VINSERTF64x4Zrm,   X86::VINSERTF64x4Zrm,   X86::VINSERTI64x4Zrm },
9456  { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr },
9457  { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm },
9458  { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr },
9459  { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm },
9460  { X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTI32x4Zrr },
9461  { X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTI32x4Zmr },
9462  { X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTI32x8Zrr },
9463  { X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTI32x8Zmr },
9464  { X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTI64x2Zrr },
9465  { X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTI64x2Zmr },
9466  { X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTI64x4Zrr },
9467  { X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTI64x4Zmr },
9468  { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr },
9469  { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr },
9470  { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr },
9471  { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr },
9472  { X86::VPERMILPSmi,        X86::VPERMILPSmi,        X86::VPSHUFDmi },
9473  { X86::VPERMILPSri,        X86::VPERMILPSri,        X86::VPSHUFDri },
9474  { X86::VPERMILPSZ128mi,    X86::VPERMILPSZ128mi,    X86::VPSHUFDZ128mi },
9475  { X86::VPERMILPSZ128ri,    X86::VPERMILPSZ128ri,    X86::VPSHUFDZ128ri },
9476  { X86::VPERMILPSZ256mi,    X86::VPERMILPSZ256mi,    X86::VPSHUFDZ256mi },
9477  { X86::VPERMILPSZ256ri,    X86::VPERMILPSZ256ri,    X86::VPSHUFDZ256ri },
9478  { X86::VPERMILPSZmi,       X86::VPERMILPSZmi,       X86::VPSHUFDZmi },
9479  { X86::VPERMILPSZri,       X86::VPERMILPSZri,       X86::VPSHUFDZri },
9480  { X86::VPERMPSZ256rm,      X86::VPERMPSZ256rm,      X86::VPERMDZ256rm },
9481  { X86::VPERMPSZ256rr,      X86::VPERMPSZ256rr,      X86::VPERMDZ256rr },
9482  { X86::VPERMPDZ256mi,      X86::VPERMPDZ256mi,      X86::VPERMQZ256mi },
9483  { X86::VPERMPDZ256ri,      X86::VPERMPDZ256ri,      X86::VPERMQZ256ri },
9484  { X86::VPERMPDZ256rm,      X86::VPERMPDZ256rm,      X86::VPERMQZ256rm },
9485  { X86::VPERMPDZ256rr,      X86::VPERMPDZ256rr,      X86::VPERMQZ256rr },
9486  { X86::VPERMPSZrm,         X86::VPERMPSZrm,         X86::VPERMDZrm },
9487  { X86::VPERMPSZrr,         X86::VPERMPSZrr,         X86::VPERMDZrr },
9488  { X86::VPERMPDZmi,         X86::VPERMPDZmi,         X86::VPERMQZmi },
9489  { X86::VPERMPDZri,         X86::VPERMPDZri,         X86::VPERMQZri },
9490  { X86::VPERMPDZrm,         X86::VPERMPDZrm,         X86::VPERMQZrm },
9491  { X86::VPERMPDZrr,         X86::VPERMPDZrr,         X86::VPERMQZrr },
9492  { X86::VUNPCKLPDZ256rm,    X86::VUNPCKLPDZ256rm,    X86::VPUNPCKLQDQZ256rm },
9493  { X86::VUNPCKLPDZ256rr,    X86::VUNPCKLPDZ256rr,    X86::VPUNPCKLQDQZ256rr },
9494  { X86::VUNPCKHPDZ256rm,    X86::VUNPCKHPDZ256rm,    X86::VPUNPCKHQDQZ256rm },
9495  { X86::VUNPCKHPDZ256rr,    X86::VUNPCKHPDZ256rr,    X86::VPUNPCKHQDQZ256rr },
9496  { X86::VUNPCKLPSZ256rm,    X86::VUNPCKLPSZ256rm,    X86::VPUNPCKLDQZ256rm },
9497  { X86::VUNPCKLPSZ256rr,    X86::VUNPCKLPSZ256rr,    X86::VPUNPCKLDQZ256rr },
9498  { X86::VUNPCKHPSZ256rm,    X86::VUNPCKHPSZ256rm,    X86::VPUNPCKHDQZ256rm },
9499  { X86::VUNPCKHPSZ256rr,    X86::VUNPCKHPSZ256rr,    X86::VPUNPCKHDQZ256rr },
9500  { X86::VUNPCKLPDZ128rm,    X86::VUNPCKLPDZ128rm,    X86::VPUNPCKLQDQZ128rm },
9501  { X86::VMOVLHPSZrr,        X86::VUNPCKLPDZ128rr,    X86::VPUNPCKLQDQZ128rr },
9502  { X86::VUNPCKHPDZ128rm,    X86::VUNPCKHPDZ128rm,    X86::VPUNPCKHQDQZ128rm },
9503  { X86::VUNPCKHPDZ128rr,    X86::VUNPCKHPDZ128rr,    X86::VPUNPCKHQDQZ128rr },
9504  { X86::VUNPCKLPSZ128rm,    X86::VUNPCKLPSZ128rm,    X86::VPUNPCKLDQZ128rm },
9505  { X86::VUNPCKLPSZ128rr,    X86::VUNPCKLPSZ128rr,    X86::VPUNPCKLDQZ128rr },
9506  { X86::VUNPCKHPSZ128rm,    X86::VUNPCKHPSZ128rm,    X86::VPUNPCKHDQZ128rm },
9507  { X86::VUNPCKHPSZ128rr,    X86::VUNPCKHPSZ128rr,    X86::VPUNPCKHDQZ128rr },
9508  { X86::VUNPCKLPDZrm,       X86::VUNPCKLPDZrm,       X86::VPUNPCKLQDQZrm },
9509  { X86::VUNPCKLPDZrr,       X86::VUNPCKLPDZrr,       X86::VPUNPCKLQDQZrr },
9510  { X86::VUNPCKHPDZrm,       X86::VUNPCKHPDZrm,       X86::VPUNPCKHQDQZrm },
9511  { X86::VUNPCKHPDZrr,       X86::VUNPCKHPDZrr,       X86::VPUNPCKHQDQZrr },
9512  { X86::VUNPCKLPSZrm,       X86::VUNPCKLPSZrm,       X86::VPUNPCKLDQZrm },
9513  { X86::VUNPCKLPSZrr,       X86::VUNPCKLPSZrr,       X86::VPUNPCKLDQZrr },
9514  { X86::VUNPCKHPSZrm,       X86::VUNPCKHPSZrm,       X86::VPUNPCKHDQZrm },
9515  { X86::VUNPCKHPSZrr,       X86::VUNPCKHPSZrr,       X86::VPUNPCKHDQZrr },
9516  { X86::VEXTRACTPSZmr,      X86::VEXTRACTPSZmr,      X86::VPEXTRDZmr },
9517  { X86::VEXTRACTPSZrr,      X86::VEXTRACTPSZrr,      X86::VPEXTRDZrr },
9518};
9519
9520static const uint16_t ReplaceableInstrsAVX2[][3] = {
9521  //PackedSingle       PackedDouble       PackedInt
9522  { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
9523  { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
9524  { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
9525  { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
9526  { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
9527  { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
9528  { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
9529  { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
9530  { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
9531  { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr },
9532  { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
9533  { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
9534  { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
9535  { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
9536  { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
9537  { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm},
9538  { X86::VBROADCASTF128,  X86::VBROADCASTF128,  X86::VBROADCASTI128 },
9539  { X86::VBLENDPSrri,     X86::VBLENDPSrri,     X86::VPBLENDDrri },
9540  { X86::VBLENDPSrmi,     X86::VBLENDPSrmi,     X86::VPBLENDDrmi },
9541  { X86::VBLENDPSYrri,    X86::VBLENDPSYrri,    X86::VPBLENDDYrri },
9542  { X86::VBLENDPSYrmi,    X86::VBLENDPSYrmi,    X86::VPBLENDDYrmi },
9543  { X86::VPERMILPSYmi,    X86::VPERMILPSYmi,    X86::VPSHUFDYmi },
9544  { X86::VPERMILPSYri,    X86::VPERMILPSYri,    X86::VPSHUFDYri },
9545  { X86::VUNPCKLPDYrm,    X86::VUNPCKLPDYrm,    X86::VPUNPCKLQDQYrm },
9546  { X86::VUNPCKLPDYrr,    X86::VUNPCKLPDYrr,    X86::VPUNPCKLQDQYrr },
9547  { X86::VUNPCKHPDYrm,    X86::VUNPCKHPDYrm,    X86::VPUNPCKHQDQYrm },
9548  { X86::VUNPCKHPDYrr,    X86::VUNPCKHPDYrr,    X86::VPUNPCKHQDQYrr },
9549  { X86::VUNPCKLPSYrm,    X86::VUNPCKLPSYrm,    X86::VPUNPCKLDQYrm },
9550  { X86::VUNPCKLPSYrr,    X86::VUNPCKLPSYrr,    X86::VPUNPCKLDQYrr },
9551  { X86::VUNPCKHPSYrm,    X86::VUNPCKHPSYrm,    X86::VPUNPCKHDQYrm },
9552  { X86::VUNPCKHPSYrr,    X86::VUNPCKHPSYrr,    X86::VPUNPCKHDQYrr },
9553};
9554
9555static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = {
9556  //PackedSingle       PackedDouble       PackedInt
9557  { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
9558  { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
9559  { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
9560  { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
9561};
9562
9563static const uint16_t ReplaceableInstrsAVX512[][4] = {
9564  // Two integer columns for 64-bit and 32-bit elements.
9565  //PackedSingle        PackedDouble        PackedInt             PackedInt
9566  { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr  },
9567  { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm  },
9568  { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr  },
9569  { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr  },
9570  { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm  },
9571  { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr  },
9572  { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm  },
9573  { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr  },
9574  { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr  },
9575  { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm  },
9576  { X86::VMOVAPSZmr,    X86::VMOVAPDZmr,    X86::VMOVDQA64Zmr,    X86::VMOVDQA32Zmr     },
9577  { X86::VMOVAPSZrm,    X86::VMOVAPDZrm,    X86::VMOVDQA64Zrm,    X86::VMOVDQA32Zrm     },
9578  { X86::VMOVAPSZrr,    X86::VMOVAPDZrr,    X86::VMOVDQA64Zrr,    X86::VMOVDQA32Zrr     },
9579  { X86::VMOVUPSZmr,    X86::VMOVUPDZmr,    X86::VMOVDQU64Zmr,    X86::VMOVDQU32Zmr     },
9580  { X86::VMOVUPSZrm,    X86::VMOVUPDZrm,    X86::VMOVDQU64Zrm,    X86::VMOVDQU32Zrm     },
9581};
9582
9583static const uint16_t ReplaceableInstrsAVX512DQ[][4] = {
9584  // Two integer columns for 64-bit and 32-bit elements.
9585  //PackedSingle        PackedDouble        PackedInt           PackedInt
9586  { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
9587  { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
9588  { X86::VANDPSZ128rm,  X86::VANDPDZ128rm,  X86::VPANDQZ128rm,  X86::VPANDDZ128rm  },
9589  { X86::VANDPSZ128rr,  X86::VANDPDZ128rr,  X86::VPANDQZ128rr,  X86::VPANDDZ128rr  },
9590  { X86::VORPSZ128rm,   X86::VORPDZ128rm,   X86::VPORQZ128rm,   X86::VPORDZ128rm   },
9591  { X86::VORPSZ128rr,   X86::VORPDZ128rr,   X86::VPORQZ128rr,   X86::VPORDZ128rr   },
9592  { X86::VXORPSZ128rm,  X86::VXORPDZ128rm,  X86::VPXORQZ128rm,  X86::VPXORDZ128rm  },
9593  { X86::VXORPSZ128rr,  X86::VXORPDZ128rr,  X86::VPXORQZ128rr,  X86::VPXORDZ128rr  },
9594  { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
9595  { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
9596  { X86::VANDPSZ256rm,  X86::VANDPDZ256rm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  },
9597  { X86::VANDPSZ256rr,  X86::VANDPDZ256rr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  },
9598  { X86::VORPSZ256rm,   X86::VORPDZ256rm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   },
9599  { X86::VORPSZ256rr,   X86::VORPDZ256rr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   },
9600  { X86::VXORPSZ256rm,  X86::VXORPDZ256rm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  },
9601  { X86::VXORPSZ256rr,  X86::VXORPDZ256rr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  },
9602  { X86::VANDNPSZrm,    X86::VANDNPDZrm,    X86::VPANDNQZrm,    X86::VPANDNDZrm    },
9603  { X86::VANDNPSZrr,    X86::VANDNPDZrr,    X86::VPANDNQZrr,    X86::VPANDNDZrr    },
9604  { X86::VANDPSZrm,     X86::VANDPDZrm,     X86::VPANDQZrm,     X86::VPANDDZrm     },
9605  { X86::VANDPSZrr,     X86::VANDPDZrr,     X86::VPANDQZrr,     X86::VPANDDZrr     },
9606  { X86::VORPSZrm,      X86::VORPDZrm,      X86::VPORQZrm,      X86::VPORDZrm      },
9607  { X86::VORPSZrr,      X86::VORPDZrr,      X86::VPORQZrr,      X86::VPORDZrr      },
9608  { X86::VXORPSZrm,     X86::VXORPDZrm,     X86::VPXORQZrm,     X86::VPXORDZrm     },
9609  { X86::VXORPSZrr,     X86::VXORPDZrr,     X86::VPXORQZrr,     X86::VPXORDZrr     },
9610};
9611
9612static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = {
9613  // Two integer columns for 64-bit and 32-bit elements.
9614  //PackedSingle          PackedDouble
9615  //PackedInt             PackedInt
9616  { X86::VANDNPSZ128rmk,  X86::VANDNPDZ128rmk,
9617    X86::VPANDNQZ128rmk,  X86::VPANDNDZ128rmk  },
9618  { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz,
9619    X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz },
9620  { X86::VANDNPSZ128rrk,  X86::VANDNPDZ128rrk,
9621    X86::VPANDNQZ128rrk,  X86::VPANDNDZ128rrk  },
9622  { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz,
9623    X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz },
9624  { X86::VANDPSZ128rmk,   X86::VANDPDZ128rmk,
9625    X86::VPANDQZ128rmk,   X86::VPANDDZ128rmk   },
9626  { X86::VANDPSZ128rmkz,  X86::VANDPDZ128rmkz,
9627    X86::VPANDQZ128rmkz,  X86::VPANDDZ128rmkz  },
9628  { X86::VANDPSZ128rrk,   X86::VANDPDZ128rrk,
9629    X86::VPANDQZ128rrk,   X86::VPANDDZ128rrk   },
9630  { X86::VANDPSZ128rrkz,  X86::VANDPDZ128rrkz,
9631    X86::VPANDQZ128rrkz,  X86::VPANDDZ128rrkz  },
9632  { X86::VORPSZ128rmk,    X86::VORPDZ128rmk,
9633    X86::VPORQZ128rmk,    X86::VPORDZ128rmk    },
9634  { X86::VORPSZ128rmkz,   X86::VORPDZ128rmkz,
9635    X86::VPORQZ128rmkz,   X86::VPORDZ128rmkz   },
9636  { X86::VORPSZ128rrk,    X86::VORPDZ128rrk,
9637    X86::VPORQZ128rrk,    X86::VPORDZ128rrk    },
9638  { X86::VORPSZ128rrkz,   X86::VORPDZ128rrkz,
9639    X86::VPORQZ128rrkz,   X86::VPORDZ128rrkz   },
9640  { X86::VXORPSZ128rmk,   X86::VXORPDZ128rmk,
9641    X86::VPXORQZ128rmk,   X86::VPXORDZ128rmk   },
9642  { X86::VXORPSZ128rmkz,  X86::VXORPDZ128rmkz,
9643    X86::VPXORQZ128rmkz,  X86::VPXORDZ128rmkz  },
9644  { X86::VXORPSZ128rrk,   X86::VXORPDZ128rrk,
9645    X86::VPXORQZ128rrk,   X86::VPXORDZ128rrk   },
9646  { X86::VXORPSZ128rrkz,  X86::VXORPDZ128rrkz,
9647    X86::VPXORQZ128rrkz,  X86::VPXORDZ128rrkz  },
9648  { X86::VANDNPSZ256rmk,  X86::VANDNPDZ256rmk,
9649    X86::VPANDNQZ256rmk,  X86::VPANDNDZ256rmk  },
9650  { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz,
9651    X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz },
9652  { X86::VANDNPSZ256rrk,  X86::VANDNPDZ256rrk,
9653    X86::VPANDNQZ256rrk,  X86::VPANDNDZ256rrk  },
9654  { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz,
9655    X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz },
9656  { X86::VANDPSZ256rmk,   X86::VANDPDZ256rmk,
9657    X86::VPANDQZ256rmk,   X86::VPANDDZ256rmk   },
9658  { X86::VANDPSZ256rmkz,  X86::VANDPDZ256rmkz,
9659    X86::VPANDQZ256rmkz,  X86::VPANDDZ256rmkz  },
9660  { X86::VANDPSZ256rrk,   X86::VANDPDZ256rrk,
9661    X86::VPANDQZ256rrk,   X86::VPANDDZ256rrk   },
9662  { X86::VANDPSZ256rrkz,  X86::VANDPDZ256rrkz,
9663    X86::VPANDQZ256rrkz,  X86::VPANDDZ256rrkz  },
9664  { X86::VORPSZ256rmk,    X86::VORPDZ256rmk,
9665    X86::VPORQZ256rmk,    X86::VPORDZ256rmk    },
9666  { X86::VORPSZ256rmkz,   X86::VORPDZ256rmkz,
9667    X86::VPORQZ256rmkz,   X86::VPORDZ256rmkz   },
9668  { X86::VORPSZ256rrk,    X86::VORPDZ256rrk,
9669    X86::VPORQZ256rrk,    X86::VPORDZ256rrk    },
9670  { X86::VORPSZ256rrkz,   X86::VORPDZ256rrkz,
9671    X86::VPORQZ256rrkz,   X86::VPORDZ256rrkz   },
9672  { X86::VXORPSZ256rmk,   X86::VXORPDZ256rmk,
9673    X86::VPXORQZ256rmk,   X86::VPXORDZ256rmk   },
9674  { X86::VXORPSZ256rmkz,  X86::VXORPDZ256rmkz,
9675    X86::VPXORQZ256rmkz,  X86::VPXORDZ256rmkz  },
9676  { X86::VXORPSZ256rrk,   X86::VXORPDZ256rrk,
9677    X86::VPXORQZ256rrk,   X86::VPXORDZ256rrk   },
9678  { X86::VXORPSZ256rrkz,  X86::VXORPDZ256rrkz,
9679    X86::VPXORQZ256rrkz,  X86::VPXORDZ256rrkz  },
9680  { X86::VANDNPSZrmk,     X86::VANDNPDZrmk,
9681    X86::VPANDNQZrmk,     X86::VPANDNDZrmk     },
9682  { X86::VANDNPSZrmkz,    X86::VANDNPDZrmkz,
9683    X86::VPANDNQZrmkz,    X86::VPANDNDZrmkz    },
9684  { X86::VANDNPSZrrk,     X86::VANDNPDZrrk,
9685    X86::VPANDNQZrrk,     X86::VPANDNDZrrk     },
9686  { X86::VANDNPSZrrkz,    X86::VANDNPDZrrkz,
9687    X86::VPANDNQZrrkz,    X86::VPANDNDZrrkz    },
9688  { X86::VANDPSZrmk,      X86::VANDPDZrmk,
9689    X86::VPANDQZrmk,      X86::VPANDDZrmk      },
9690  { X86::VANDPSZrmkz,     X86::VANDPDZrmkz,
9691    X86::VPANDQZrmkz,     X86::VPANDDZrmkz     },
9692  { X86::VANDPSZrrk,      X86::VANDPDZrrk,
9693    X86::VPANDQZrrk,      X86::VPANDDZrrk      },
9694  { X86::VANDPSZrrkz,     X86::VANDPDZrrkz,
9695    X86::VPANDQZrrkz,     X86::VPANDDZrrkz     },
9696  { X86::VORPSZrmk,       X86::VORPDZrmk,
9697    X86::VPORQZrmk,       X86::VPORDZrmk       },
9698  { X86::VORPSZrmkz,      X86::VORPDZrmkz,
9699    X86::VPORQZrmkz,      X86::VPORDZrmkz      },
9700  { X86::VORPSZrrk,       X86::VORPDZrrk,
9701    X86::VPORQZrrk,       X86::VPORDZrrk       },
9702  { X86::VORPSZrrkz,      X86::VORPDZrrkz,
9703    X86::VPORQZrrkz,      X86::VPORDZrrkz      },
9704  { X86::VXORPSZrmk,      X86::VXORPDZrmk,
9705    X86::VPXORQZrmk,      X86::VPXORDZrmk      },
9706  { X86::VXORPSZrmkz,     X86::VXORPDZrmkz,
9707    X86::VPXORQZrmkz,     X86::VPXORDZrmkz     },
9708  { X86::VXORPSZrrk,      X86::VXORPDZrrk,
9709    X86::VPXORQZrrk,      X86::VPXORDZrrk      },
9710  { X86::VXORPSZrrkz,     X86::VXORPDZrrkz,
9711    X86::VPXORQZrrkz,     X86::VPXORDZrrkz     },
9712  // Broadcast loads can be handled the same as masked operations to avoid
9713  // changing element size.
9714  { X86::VANDNPSZ128rmb,  X86::VANDNPDZ128rmb,
9715    X86::VPANDNQZ128rmb,  X86::VPANDNDZ128rmb  },
9716  { X86::VANDPSZ128rmb,   X86::VANDPDZ128rmb,
9717    X86::VPANDQZ128rmb,   X86::VPANDDZ128rmb   },
9718  { X86::VORPSZ128rmb,    X86::VORPDZ128rmb,
9719    X86::VPORQZ128rmb,    X86::VPORDZ128rmb    },
9720  { X86::VXORPSZ128rmb,   X86::VXORPDZ128rmb,
9721    X86::VPXORQZ128rmb,   X86::VPXORDZ128rmb   },
9722  { X86::VANDNPSZ256rmb,  X86::VANDNPDZ256rmb,
9723    X86::VPANDNQZ256rmb,  X86::VPANDNDZ256rmb  },
9724  { X86::VANDPSZ256rmb,   X86::VANDPDZ256rmb,
9725    X86::VPANDQZ256rmb,   X86::VPANDDZ256rmb   },
9726  { X86::VORPSZ256rmb,    X86::VORPDZ256rmb,
9727    X86::VPORQZ256rmb,    X86::VPORDZ256rmb    },
9728  { X86::VXORPSZ256rmb,   X86::VXORPDZ256rmb,
9729    X86::VPXORQZ256rmb,   X86::VPXORDZ256rmb   },
9730  { X86::VANDNPSZrmb,     X86::VANDNPDZrmb,
9731    X86::VPANDNQZrmb,     X86::VPANDNDZrmb     },
9732  { X86::VANDPSZrmb,      X86::VANDPDZrmb,
9733    X86::VPANDQZrmb,      X86::VPANDDZrmb      },
9734  { X86::VANDPSZrmb,      X86::VANDPDZrmb,
9735    X86::VPANDQZrmb,      X86::VPANDDZrmb      },
9736  { X86::VORPSZrmb,       X86::VORPDZrmb,
9737    X86::VPORQZrmb,       X86::VPORDZrmb       },
9738  { X86::VXORPSZrmb,      X86::VXORPDZrmb,
9739    X86::VPXORQZrmb,      X86::VPXORDZrmb      },
9740  { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk,
9741    X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk },
9742  { X86::VANDPSZ128rmbk,  X86::VANDPDZ128rmbk,
9743    X86::VPANDQZ128rmbk,  X86::VPANDDZ128rmbk  },
9744  { X86::VORPSZ128rmbk,   X86::VORPDZ128rmbk,
9745    X86::VPORQZ128rmbk,   X86::VPORDZ128rmbk   },
9746  { X86::VXORPSZ128rmbk,  X86::VXORPDZ128rmbk,
9747    X86::VPXORQZ128rmbk,  X86::VPXORDZ128rmbk  },
9748  { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk,
9749    X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk },
9750  { X86::VANDPSZ256rmbk,  X86::VANDPDZ256rmbk,
9751    X86::VPANDQZ256rmbk,  X86::VPANDDZ256rmbk  },
9752  { X86::VORPSZ256rmbk,   X86::VORPDZ256rmbk,
9753    X86::VPORQZ256rmbk,   X86::VPORDZ256rmbk   },
9754  { X86::VXORPSZ256rmbk,  X86::VXORPDZ256rmbk,
9755    X86::VPXORQZ256rmbk,  X86::VPXORDZ256rmbk  },
9756  { X86::VANDNPSZrmbk,    X86::VANDNPDZrmbk,
9757    X86::VPANDNQZrmbk,    X86::VPANDNDZrmbk    },
9758  { X86::VANDPSZrmbk,     X86::VANDPDZrmbk,
9759    X86::VPANDQZrmbk,     X86::VPANDDZrmbk     },
9760  { X86::VANDPSZrmbk,     X86::VANDPDZrmbk,
9761    X86::VPANDQZrmbk,     X86::VPANDDZrmbk     },
9762  { X86::VORPSZrmbk,      X86::VORPDZrmbk,
9763    X86::VPORQZrmbk,      X86::VPORDZrmbk      },
9764  { X86::VXORPSZrmbk,     X86::VXORPDZrmbk,
9765    X86::VPXORQZrmbk,     X86::VPXORDZrmbk     },
9766  { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz,
9767    X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz},
9768  { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz,
9769    X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz },
9770  { X86::VORPSZ128rmbkz,  X86::VORPDZ128rmbkz,
9771    X86::VPORQZ128rmbkz,  X86::VPORDZ128rmbkz  },
9772  { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz,
9773    X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz },
9774  { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz,
9775    X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz},
9776  { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz,
9777    X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz },
9778  { X86::VORPSZ256rmbkz,  X86::VORPDZ256rmbkz,
9779    X86::VPORQZ256rmbkz,  X86::VPORDZ256rmbkz  },
9780  { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz,
9781    X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz },
9782  { X86::VANDNPSZrmbkz,   X86::VANDNPDZrmbkz,
9783    X86::VPANDNQZrmbkz,   X86::VPANDNDZrmbkz   },
9784  { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz,
9785    X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    },
9786  { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz,
9787    X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    },
9788  { X86::VORPSZrmbkz,     X86::VORPDZrmbkz,
9789    X86::VPORQZrmbkz,     X86::VPORDZrmbkz     },
9790  { X86::VXORPSZrmbkz,    X86::VXORPDZrmbkz,
9791    X86::VPXORQZrmbkz,    X86::VPXORDZrmbkz    },
9792};
9793
9794// FIXME: Some shuffle and unpack instructions have equivalents in different
9795// domains, but they require a bit more work than just switching opcodes.
9796
9797static const uint16_t *lookup(unsigned opcode, unsigned domain,
9798                              ArrayRef<uint16_t[3]> Table) {
9799  for (const uint16_t (&Row)[3] : Table)
9800    if (Row[domain-1] == opcode)
9801      return Row;
9802  return nullptr;
9803}
9804
9805static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
9806                                    ArrayRef<uint16_t[4]> Table) {
9807  // If this is the integer domain make sure to check both integer columns.
9808  for (const uint16_t (&Row)[4] : Table)
9809    if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode))
9810      return Row;
9811  return nullptr;
9812}
9813
9814std::pair<uint16_t, uint16_t>
9815X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
9816  uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
9817  unsigned opcode = MI.getOpcode();
9818  uint16_t validDomains = 0;
9819  if (domain) {
9820    if (lookup(MI.getOpcode(), domain, ReplaceableInstrs)) {
9821      validDomains = 0xe;
9822    } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
9823      validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
9824    } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
9825      // Insert/extract instructions should only effect domain if AVX2
9826      // is enabled.
9827      if (!Subtarget.hasAVX2())
9828        return std::make_pair(0, 0);
9829      validDomains = 0xe;
9830    } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
9831      validDomains = 0xe;
9832    } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain,
9833                                                  ReplaceableInstrsAVX512DQ)) {
9834      validDomains = 0xe;
9835    } else if (Subtarget.hasDQI()) {
9836      if (const uint16_t *table = lookupAVX512(opcode, domain,
9837                                             ReplaceableInstrsAVX512DQMasked)) {
9838        if (domain == 1 || (domain == 3 && table[3] == opcode))
9839          validDomains = 0xa;
9840        else
9841          validDomains = 0xc;
9842      }
9843    }
9844  }
9845  return std::make_pair(domain, validDomains);
9846}
9847
9848void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
9849  assert(Domain>0 && Domain<4 && "Invalid execution domain");
9850  uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
9851  assert(dom && "Not an SSE instruction");
9852  const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
9853  if (!table) { // try the other table
9854    assert((Subtarget.hasAVX2() || Domain < 3) &&
9855           "256-bit vector operations only available in AVX2");
9856    table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
9857  }
9858  if (!table) { // try the other table
9859    assert(Subtarget.hasAVX2() &&
9860           "256-bit insert/extract only available in AVX2");
9861    table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
9862  }
9863  if (!table) { // try the AVX512 table
9864    assert(Subtarget.hasAVX512() && "Requires AVX-512");
9865    table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
9866    // Don't change integer Q instructions to D instructions.
9867    if (table && Domain == 3 && table[3] == MI.getOpcode())
9868      Domain = 4;
9869  }
9870  if (!table) { // try the AVX512DQ table
9871    assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
9872    table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
9873    // Don't change integer Q instructions to D instructions and
9874    // use D intructions if we started with a PS instruction.
9875    if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
9876      Domain = 4;
9877  }
9878  if (!table) { // try the AVX512DQMasked table
9879    assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
9880    table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
9881    if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
9882      Domain = 4;
9883  }
9884  assert(table && "Cannot change domain");
9885  MI.setDesc(get(table[Domain - 1]));
9886}
9887
9888/// Return the noop instruction to use for a noop.
9889void X86InstrInfo::getNoop(MCInst &NopInst) const {
9890  NopInst.setOpcode(X86::NOOP);
9891}
9892
9893bool X86InstrInfo::isHighLatencyDef(int opc) const {
9894  switch (opc) {
9895  default: return false;
9896  case X86::DIVPDrm:
9897  case X86::DIVPDrr:
9898  case X86::DIVPSrm:
9899  case X86::DIVPSrr:
9900  case X86::DIVSDrm:
9901  case X86::DIVSDrm_Int:
9902  case X86::DIVSDrr:
9903  case X86::DIVSDrr_Int:
9904  case X86::DIVSSrm:
9905  case X86::DIVSSrm_Int:
9906  case X86::DIVSSrr:
9907  case X86::DIVSSrr_Int:
9908  case X86::SQRTPDm:
9909  case X86::SQRTPDr:
9910  case X86::SQRTPSm:
9911  case X86::SQRTPSr:
9912  case X86::SQRTSDm:
9913  case X86::SQRTSDm_Int:
9914  case X86::SQRTSDr:
9915  case X86::SQRTSDr_Int:
9916  case X86::SQRTSSm:
9917  case X86::SQRTSSm_Int:
9918  case X86::SQRTSSr:
9919  case X86::SQRTSSr_Int:
9920  // AVX instructions with high latency
9921  case X86::VDIVPDrm:
9922  case X86::VDIVPDrr:
9923  case X86::VDIVPDYrm:
9924  case X86::VDIVPDYrr:
9925  case X86::VDIVPSrm:
9926  case X86::VDIVPSrr:
9927  case X86::VDIVPSYrm:
9928  case X86::VDIVPSYrr:
9929  case X86::VDIVSDrm:
9930  case X86::VDIVSDrm_Int:
9931  case X86::VDIVSDrr:
9932  case X86::VDIVSDrr_Int:
9933  case X86::VDIVSSrm:
9934  case X86::VDIVSSrm_Int:
9935  case X86::VDIVSSrr:
9936  case X86::VDIVSSrr_Int:
9937  case X86::VSQRTPDm:
9938  case X86::VSQRTPDr:
9939  case X86::VSQRTPDYm:
9940  case X86::VSQRTPDYr:
9941  case X86::VSQRTPSm:
9942  case X86::VSQRTPSr:
9943  case X86::VSQRTPSYm:
9944  case X86::VSQRTPSYr:
9945  case X86::VSQRTSDm:
9946  case X86::VSQRTSDm_Int:
9947  case X86::VSQRTSDr:
9948  case X86::VSQRTSDr_Int:
9949  case X86::VSQRTSSm:
9950  case X86::VSQRTSSm_Int:
9951  case X86::VSQRTSSr:
9952  case X86::VSQRTSSr_Int:
9953  // AVX512 instructions with high latency
9954  case X86::VDIVPDZ128rm:
9955  case X86::VDIVPDZ128rmb:
9956  case X86::VDIVPDZ128rmbk:
9957  case X86::VDIVPDZ128rmbkz:
9958  case X86::VDIVPDZ128rmk:
9959  case X86::VDIVPDZ128rmkz:
9960  case X86::VDIVPDZ128rr:
9961  case X86::VDIVPDZ128rrk:
9962  case X86::VDIVPDZ128rrkz:
9963  case X86::VDIVPDZ256rm:
9964  case X86::VDIVPDZ256rmb:
9965  case X86::VDIVPDZ256rmbk:
9966  case X86::VDIVPDZ256rmbkz:
9967  case X86::VDIVPDZ256rmk:
9968  case X86::VDIVPDZ256rmkz:
9969  case X86::VDIVPDZ256rr:
9970  case X86::VDIVPDZ256rrk:
9971  case X86::VDIVPDZ256rrkz:
9972  case X86::VDIVPDZrrb:
9973  case X86::VDIVPDZrrbk:
9974  case X86::VDIVPDZrrbkz:
9975  case X86::VDIVPDZrm:
9976  case X86::VDIVPDZrmb:
9977  case X86::VDIVPDZrmbk:
9978  case X86::VDIVPDZrmbkz:
9979  case X86::VDIVPDZrmk:
9980  case X86::VDIVPDZrmkz:
9981  case X86::VDIVPDZrr:
9982  case X86::VDIVPDZrrk:
9983  case X86::VDIVPDZrrkz:
9984  case X86::VDIVPSZ128rm:
9985  case X86::VDIVPSZ128rmb:
9986  case X86::VDIVPSZ128rmbk:
9987  case X86::VDIVPSZ128rmbkz:
9988  case X86::VDIVPSZ128rmk:
9989  case X86::VDIVPSZ128rmkz:
9990  case X86::VDIVPSZ128rr:
9991  case X86::VDIVPSZ128rrk:
9992  case X86::VDIVPSZ128rrkz:
9993  case X86::VDIVPSZ256rm:
9994  case X86::VDIVPSZ256rmb:
9995  case X86::VDIVPSZ256rmbk:
9996  case X86::VDIVPSZ256rmbkz:
9997  case X86::VDIVPSZ256rmk:
9998  case X86::VDIVPSZ256rmkz:
9999  case X86::VDIVPSZ256rr:
10000  case X86::VDIVPSZ256rrk:
10001  case X86::VDIVPSZ256rrkz:
10002  case X86::VDIVPSZrrb:
10003  case X86::VDIVPSZrrbk:
10004  case X86::VDIVPSZrrbkz:
10005  case X86::VDIVPSZrm:
10006  case X86::VDIVPSZrmb:
10007  case X86::VDIVPSZrmbk:
10008  case X86::VDIVPSZrmbkz:
10009  case X86::VDIVPSZrmk:
10010  case X86::VDIVPSZrmkz:
10011  case X86::VDIVPSZrr:
10012  case X86::VDIVPSZrrk:
10013  case X86::VDIVPSZrrkz:
10014  case X86::VDIVSDZrm:
10015  case X86::VDIVSDZrr:
10016  case X86::VDIVSDZrm_Int:
10017  case X86::VDIVSDZrm_Intk:
10018  case X86::VDIVSDZrm_Intkz:
10019  case X86::VDIVSDZrr_Int:
10020  case X86::VDIVSDZrr_Intk:
10021  case X86::VDIVSDZrr_Intkz:
10022  case X86::VDIVSDZrrb_Int:
10023  case X86::VDIVSDZrrb_Intk:
10024  case X86::VDIVSDZrrb_Intkz:
10025  case X86::VDIVSSZrm:
10026  case X86::VDIVSSZrr:
10027  case X86::VDIVSSZrm_Int:
10028  case X86::VDIVSSZrm_Intk:
10029  case X86::VDIVSSZrm_Intkz:
10030  case X86::VDIVSSZrr_Int:
10031  case X86::VDIVSSZrr_Intk:
10032  case X86::VDIVSSZrr_Intkz:
10033  case X86::VDIVSSZrrb_Int:
10034  case X86::VDIVSSZrrb_Intk:
10035  case X86::VDIVSSZrrb_Intkz:
10036  case X86::VSQRTPDZ128m:
10037  case X86::VSQRTPDZ128mb:
10038  case X86::VSQRTPDZ128mbk:
10039  case X86::VSQRTPDZ128mbkz:
10040  case X86::VSQRTPDZ128mk:
10041  case X86::VSQRTPDZ128mkz:
10042  case X86::VSQRTPDZ128r:
10043  case X86::VSQRTPDZ128rk:
10044  case X86::VSQRTPDZ128rkz:
10045  case X86::VSQRTPDZ256m:
10046  case X86::VSQRTPDZ256mb:
10047  case X86::VSQRTPDZ256mbk:
10048  case X86::VSQRTPDZ256mbkz:
10049  case X86::VSQRTPDZ256mk:
10050  case X86::VSQRTPDZ256mkz:
10051  case X86::VSQRTPDZ256r:
10052  case X86::VSQRTPDZ256rk:
10053  case X86::VSQRTPDZ256rkz:
10054  case X86::VSQRTPDZm:
10055  case X86::VSQRTPDZmb:
10056  case X86::VSQRTPDZmbk:
10057  case X86::VSQRTPDZmbkz:
10058  case X86::VSQRTPDZmk:
10059  case X86::VSQRTPDZmkz:
10060  case X86::VSQRTPDZr:
10061  case X86::VSQRTPDZrb:
10062  case X86::VSQRTPDZrbk:
10063  case X86::VSQRTPDZrbkz:
10064  case X86::VSQRTPDZrk:
10065  case X86::VSQRTPDZrkz:
10066  case X86::VSQRTPSZ128m:
10067  case X86::VSQRTPSZ128mb:
10068  case X86::VSQRTPSZ128mbk:
10069  case X86::VSQRTPSZ128mbkz:
10070  case X86::VSQRTPSZ128mk:
10071  case X86::VSQRTPSZ128mkz:
10072  case X86::VSQRTPSZ128r:
10073  case X86::VSQRTPSZ128rk:
10074  case X86::VSQRTPSZ128rkz:
10075  case X86::VSQRTPSZ256m:
10076  case X86::VSQRTPSZ256mb:
10077  case X86::VSQRTPSZ256mbk:
10078  case X86::VSQRTPSZ256mbkz:
10079  case X86::VSQRTPSZ256mk:
10080  case X86::VSQRTPSZ256mkz:
10081  case X86::VSQRTPSZ256r:
10082  case X86::VSQRTPSZ256rk:
10083  case X86::VSQRTPSZ256rkz:
10084  case X86::VSQRTPSZm:
10085  case X86::VSQRTPSZmb:
10086  case X86::VSQRTPSZmbk:
10087  case X86::VSQRTPSZmbkz:
10088  case X86::VSQRTPSZmk:
10089  case X86::VSQRTPSZmkz:
10090  case X86::VSQRTPSZr:
10091  case X86::VSQRTPSZrb:
10092  case X86::VSQRTPSZrbk:
10093  case X86::VSQRTPSZrbkz:
10094  case X86::VSQRTPSZrk:
10095  case X86::VSQRTPSZrkz:
10096  case X86::VSQRTSDZm:
10097  case X86::VSQRTSDZm_Int:
10098  case X86::VSQRTSDZm_Intk:
10099  case X86::VSQRTSDZm_Intkz:
10100  case X86::VSQRTSDZr:
10101  case X86::VSQRTSDZr_Int:
10102  case X86::VSQRTSDZr_Intk:
10103  case X86::VSQRTSDZr_Intkz:
10104  case X86::VSQRTSDZrb_Int:
10105  case X86::VSQRTSDZrb_Intk:
10106  case X86::VSQRTSDZrb_Intkz:
10107  case X86::VSQRTSSZm:
10108  case X86::VSQRTSSZm_Int:
10109  case X86::VSQRTSSZm_Intk:
10110  case X86::VSQRTSSZm_Intkz:
10111  case X86::VSQRTSSZr:
10112  case X86::VSQRTSSZr_Int:
10113  case X86::VSQRTSSZr_Intk:
10114  case X86::VSQRTSSZr_Intkz:
10115  case X86::VSQRTSSZrb_Int:
10116  case X86::VSQRTSSZrb_Intk:
10117  case X86::VSQRTSSZrb_Intkz:
10118
10119  case X86::VGATHERDPDYrm:
10120  case X86::VGATHERDPDZ128rm:
10121  case X86::VGATHERDPDZ256rm:
10122  case X86::VGATHERDPDZrm:
10123  case X86::VGATHERDPDrm:
10124  case X86::VGATHERDPSYrm:
10125  case X86::VGATHERDPSZ128rm:
10126  case X86::VGATHERDPSZ256rm:
10127  case X86::VGATHERDPSZrm:
10128  case X86::VGATHERDPSrm:
10129  case X86::VGATHERPF0DPDm:
10130  case X86::VGATHERPF0DPSm:
10131  case X86::VGATHERPF0QPDm:
10132  case X86::VGATHERPF0QPSm:
10133  case X86::VGATHERPF1DPDm:
10134  case X86::VGATHERPF1DPSm:
10135  case X86::VGATHERPF1QPDm:
10136  case X86::VGATHERPF1QPSm:
10137  case X86::VGATHERQPDYrm:
10138  case X86::VGATHERQPDZ128rm:
10139  case X86::VGATHERQPDZ256rm:
10140  case X86::VGATHERQPDZrm:
10141  case X86::VGATHERQPDrm:
10142  case X86::VGATHERQPSYrm:
10143  case X86::VGATHERQPSZ128rm:
10144  case X86::VGATHERQPSZ256rm:
10145  case X86::VGATHERQPSZrm:
10146  case X86::VGATHERQPSrm:
10147  case X86::VPGATHERDDYrm:
10148  case X86::VPGATHERDDZ128rm:
10149  case X86::VPGATHERDDZ256rm:
10150  case X86::VPGATHERDDZrm:
10151  case X86::VPGATHERDDrm:
10152  case X86::VPGATHERDQYrm:
10153  case X86::VPGATHERDQZ128rm:
10154  case X86::VPGATHERDQZ256rm:
10155  case X86::VPGATHERDQZrm:
10156  case X86::VPGATHERDQrm:
10157  case X86::VPGATHERQDYrm:
10158  case X86::VPGATHERQDZ128rm:
10159  case X86::VPGATHERQDZ256rm:
10160  case X86::VPGATHERQDZrm:
10161  case X86::VPGATHERQDrm:
10162  case X86::VPGATHERQQYrm:
10163  case X86::VPGATHERQQZ128rm:
10164  case X86::VPGATHERQQZ256rm:
10165  case X86::VPGATHERQQZrm:
10166  case X86::VPGATHERQQrm:
10167  case X86::VSCATTERDPDZ128mr:
10168  case X86::VSCATTERDPDZ256mr:
10169  case X86::VSCATTERDPDZmr:
10170  case X86::VSCATTERDPSZ128mr:
10171  case X86::VSCATTERDPSZ256mr:
10172  case X86::VSCATTERDPSZmr:
10173  case X86::VSCATTERPF0DPDm:
10174  case X86::VSCATTERPF0DPSm:
10175  case X86::VSCATTERPF0QPDm:
10176  case X86::VSCATTERPF0QPSm:
10177  case X86::VSCATTERPF1DPDm:
10178  case X86::VSCATTERPF1DPSm:
10179  case X86::VSCATTERPF1QPDm:
10180  case X86::VSCATTERPF1QPSm:
10181  case X86::VSCATTERQPDZ128mr:
10182  case X86::VSCATTERQPDZ256mr:
10183  case X86::VSCATTERQPDZmr:
10184  case X86::VSCATTERQPSZ128mr:
10185  case X86::VSCATTERQPSZ256mr:
10186  case X86::VSCATTERQPSZmr:
10187  case X86::VPSCATTERDDZ128mr:
10188  case X86::VPSCATTERDDZ256mr:
10189  case X86::VPSCATTERDDZmr:
10190  case X86::VPSCATTERDQZ128mr:
10191  case X86::VPSCATTERDQZ256mr:
10192  case X86::VPSCATTERDQZmr:
10193  case X86::VPSCATTERQDZ128mr:
10194  case X86::VPSCATTERQDZ256mr:
10195  case X86::VPSCATTERQDZmr:
10196  case X86::VPSCATTERQQZ128mr:
10197  case X86::VPSCATTERQQZ256mr:
10198  case X86::VPSCATTERQQZmr:
10199    return true;
10200  }
10201}
10202
10203bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
10204                                         const MachineRegisterInfo *MRI,
10205                                         const MachineInstr &DefMI,
10206                                         unsigned DefIdx,
10207                                         const MachineInstr &UseMI,
10208                                         unsigned UseIdx) const {
10209  return isHighLatencyDef(DefMI.getOpcode());
10210}
10211
10212bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
10213                                           const MachineBasicBlock *MBB) const {
10214  assert((Inst.getNumOperands() == 3 || Inst.getNumOperands() == 4) &&
10215         "Reassociation needs binary operators");
10216
10217  // Integer binary math/logic instructions have a third source operand:
10218  // the EFLAGS register. That operand must be both defined here and never
10219  // used; ie, it must be dead. If the EFLAGS operand is live, then we can
10220  // not change anything because rearranging the operands could affect other
10221  // instructions that depend on the exact status flags (zero, sign, etc.)
10222  // that are set by using these particular operands with this operation.
10223  if (Inst.getNumOperands() == 4) {
10224    assert(Inst.getOperand(3).isReg() &&
10225           Inst.getOperand(3).getReg() == X86::EFLAGS &&
10226           "Unexpected operand in reassociable instruction");
10227    if (!Inst.getOperand(3).isDead())
10228      return false;
10229  }
10230
10231  return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
10232}
10233
10234// TODO: There are many more machine instruction opcodes to match:
10235//       1. Other data types (integer, vectors)
10236//       2. Other math / logic operations (xor, or)
10237//       3. Other forms of the same operation (intrinsics and other variants)
10238bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
10239  switch (Inst.getOpcode()) {
10240  case X86::AND8rr:
10241  case X86::AND16rr:
10242  case X86::AND32rr:
10243  case X86::AND64rr:
10244  case X86::OR8rr:
10245  case X86::OR16rr:
10246  case X86::OR32rr:
10247  case X86::OR64rr:
10248  case X86::XOR8rr:
10249  case X86::XOR16rr:
10250  case X86::XOR32rr:
10251  case X86::XOR64rr:
10252  case X86::IMUL16rr:
10253  case X86::IMUL32rr:
10254  case X86::IMUL64rr:
10255  case X86::PANDrr:
10256  case X86::PORrr:
10257  case X86::PXORrr:
10258  case X86::ANDPDrr:
10259  case X86::ANDPSrr:
10260  case X86::ORPDrr:
10261  case X86::ORPSrr:
10262  case X86::XORPDrr:
10263  case X86::XORPSrr:
10264  case X86::PADDBrr:
10265  case X86::PADDWrr:
10266  case X86::PADDDrr:
10267  case X86::PADDQrr:
10268  case X86::VPANDrr:
10269  case X86::VPANDYrr:
10270  case X86::VPANDDZ128rr:
10271  case X86::VPANDDZ256rr:
10272  case X86::VPANDDZrr:
10273  case X86::VPANDQZ128rr:
10274  case X86::VPANDQZ256rr:
10275  case X86::VPANDQZrr:
10276  case X86::VPORrr:
10277  case X86::VPORYrr:
10278  case X86::VPORDZ128rr:
10279  case X86::VPORDZ256rr:
10280  case X86::VPORDZrr:
10281  case X86::VPORQZ128rr:
10282  case X86::VPORQZ256rr:
10283  case X86::VPORQZrr:
10284  case X86::VPXORrr:
10285  case X86::VPXORYrr:
10286  case X86::VPXORDZ128rr:
10287  case X86::VPXORDZ256rr:
10288  case X86::VPXORDZrr:
10289  case X86::VPXORQZ128rr:
10290  case X86::VPXORQZ256rr:
10291  case X86::VPXORQZrr:
10292  case X86::VANDPDrr:
10293  case X86::VANDPSrr:
10294  case X86::VANDPDYrr:
10295  case X86::VANDPSYrr:
10296  case X86::VANDPDZ128rr:
10297  case X86::VANDPSZ128rr:
10298  case X86::VANDPDZ256rr:
10299  case X86::VANDPSZ256rr:
10300  case X86::VANDPDZrr:
10301  case X86::VANDPSZrr:
10302  case X86::VORPDrr:
10303  case X86::VORPSrr:
10304  case X86::VORPDYrr:
10305  case X86::VORPSYrr:
10306  case X86::VORPDZ128rr:
10307  case X86::VORPSZ128rr:
10308  case X86::VORPDZ256rr:
10309  case X86::VORPSZ256rr:
10310  case X86::VORPDZrr:
10311  case X86::VORPSZrr:
10312  case X86::VXORPDrr:
10313  case X86::VXORPSrr:
10314  case X86::VXORPDYrr:
10315  case X86::VXORPSYrr:
10316  case X86::VXORPDZ128rr:
10317  case X86::VXORPSZ128rr:
10318  case X86::VXORPDZ256rr:
10319  case X86::VXORPSZ256rr:
10320  case X86::VXORPDZrr:
10321  case X86::VXORPSZrr:
10322  case X86::KADDBrr:
10323  case X86::KADDWrr:
10324  case X86::KADDDrr:
10325  case X86::KADDQrr:
10326  case X86::KANDBrr:
10327  case X86::KANDWrr:
10328  case X86::KANDDrr:
10329  case X86::KANDQrr:
10330  case X86::KORBrr:
10331  case X86::KORWrr:
10332  case X86::KORDrr:
10333  case X86::KORQrr:
10334  case X86::KXORBrr:
10335  case X86::KXORWrr:
10336  case X86::KXORDrr:
10337  case X86::KXORQrr:
10338  case X86::VPADDBrr:
10339  case X86::VPADDWrr:
10340  case X86::VPADDDrr:
10341  case X86::VPADDQrr:
10342  case X86::VPADDBYrr:
10343  case X86::VPADDWYrr:
10344  case X86::VPADDDYrr:
10345  case X86::VPADDQYrr:
10346  case X86::VPADDBZ128rr:
10347  case X86::VPADDWZ128rr:
10348  case X86::VPADDDZ128rr:
10349  case X86::VPADDQZ128rr:
10350  case X86::VPADDBZ256rr:
10351  case X86::VPADDWZ256rr:
10352  case X86::VPADDDZ256rr:
10353  case X86::VPADDQZ256rr:
10354  case X86::VPADDBZrr:
10355  case X86::VPADDWZrr:
10356  case X86::VPADDDZrr:
10357  case X86::VPADDQZrr:
10358  case X86::VPMULLWrr:
10359  case X86::VPMULLWYrr:
10360  case X86::VPMULLWZ128rr:
10361  case X86::VPMULLWZ256rr:
10362  case X86::VPMULLWZrr:
10363  case X86::VPMULLDrr:
10364  case X86::VPMULLDYrr:
10365  case X86::VPMULLDZ128rr:
10366  case X86::VPMULLDZ256rr:
10367  case X86::VPMULLDZrr:
10368  case X86::VPMULLQZ128rr:
10369  case X86::VPMULLQZ256rr:
10370  case X86::VPMULLQZrr:
10371  // Normal min/max instructions are not commutative because of NaN and signed
10372  // zero semantics, but these are. Thus, there's no need to check for global
10373  // relaxed math; the instructions themselves have the properties we need.
10374  case X86::MAXCPDrr:
10375  case X86::MAXCPSrr:
10376  case X86::MAXCSDrr:
10377  case X86::MAXCSSrr:
10378  case X86::MINCPDrr:
10379  case X86::MINCPSrr:
10380  case X86::MINCSDrr:
10381  case X86::MINCSSrr:
10382  case X86::VMAXCPDrr:
10383  case X86::VMAXCPSrr:
10384  case X86::VMAXCPDYrr:
10385  case X86::VMAXCPSYrr:
10386  case X86::VMAXCPDZ128rr:
10387  case X86::VMAXCPSZ128rr:
10388  case X86::VMAXCPDZ256rr:
10389  case X86::VMAXCPSZ256rr:
10390  case X86::VMAXCPDZrr:
10391  case X86::VMAXCPSZrr:
10392  case X86::VMAXCSDrr:
10393  case X86::VMAXCSSrr:
10394  case X86::VMAXCSDZrr:
10395  case X86::VMAXCSSZrr:
10396  case X86::VMINCPDrr:
10397  case X86::VMINCPSrr:
10398  case X86::VMINCPDYrr:
10399  case X86::VMINCPSYrr:
10400  case X86::VMINCPDZ128rr:
10401  case X86::VMINCPSZ128rr:
10402  case X86::VMINCPDZ256rr:
10403  case X86::VMINCPSZ256rr:
10404  case X86::VMINCPDZrr:
10405  case X86::VMINCPSZrr:
10406  case X86::VMINCSDrr:
10407  case X86::VMINCSSrr:
10408  case X86::VMINCSDZrr:
10409  case X86::VMINCSSZrr:
10410    return true;
10411  case X86::ADDPDrr:
10412  case X86::ADDPSrr:
10413  case X86::ADDSDrr:
10414  case X86::ADDSSrr:
10415  case X86::MULPDrr:
10416  case X86::MULPSrr:
10417  case X86::MULSDrr:
10418  case X86::MULSSrr:
10419  case X86::VADDPDrr:
10420  case X86::VADDPSrr:
10421  case X86::VADDPDYrr:
10422  case X86::VADDPSYrr:
10423  case X86::VADDPDZ128rr:
10424  case X86::VADDPSZ128rr:
10425  case X86::VADDPDZ256rr:
10426  case X86::VADDPSZ256rr:
10427  case X86::VADDPDZrr:
10428  case X86::VADDPSZrr:
10429  case X86::VADDSDrr:
10430  case X86::VADDSSrr:
10431  case X86::VADDSDZrr:
10432  case X86::VADDSSZrr:
10433  case X86::VMULPDrr:
10434  case X86::VMULPSrr:
10435  case X86::VMULPDYrr:
10436  case X86::VMULPSYrr:
10437  case X86::VMULPDZ128rr:
10438  case X86::VMULPSZ128rr:
10439  case X86::VMULPDZ256rr:
10440  case X86::VMULPSZ256rr:
10441  case X86::VMULPDZrr:
10442  case X86::VMULPSZrr:
10443  case X86::VMULSDrr:
10444  case X86::VMULSSrr:
10445  case X86::VMULSDZrr:
10446  case X86::VMULSSZrr:
10447    return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath;
10448  default:
10449    return false;
10450  }
10451}
10452
10453/// This is an architecture-specific helper function of reassociateOps.
10454/// Set special operand attributes for new instructions after reassociation.
10455void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
10456                                         MachineInstr &OldMI2,
10457                                         MachineInstr &NewMI1,
10458                                         MachineInstr &NewMI2) const {
10459  // Integer instructions define an implicit EFLAGS source register operand as
10460  // the third source (fourth total) operand.
10461  if (OldMI1.getNumOperands() != 4 || OldMI2.getNumOperands() != 4)
10462    return;
10463
10464  assert(NewMI1.getNumOperands() == 4 && NewMI2.getNumOperands() == 4 &&
10465         "Unexpected instruction type for reassociation");
10466
10467  MachineOperand &OldOp1 = OldMI1.getOperand(3);
10468  MachineOperand &OldOp2 = OldMI2.getOperand(3);
10469  MachineOperand &NewOp1 = NewMI1.getOperand(3);
10470  MachineOperand &NewOp2 = NewMI2.getOperand(3);
10471
10472  assert(OldOp1.isReg() && OldOp1.getReg() == X86::EFLAGS && OldOp1.isDead() &&
10473         "Must have dead EFLAGS operand in reassociable instruction");
10474  assert(OldOp2.isReg() && OldOp2.getReg() == X86::EFLAGS && OldOp2.isDead() &&
10475         "Must have dead EFLAGS operand in reassociable instruction");
10476
10477  (void)OldOp1;
10478  (void)OldOp2;
10479
10480  assert(NewOp1.isReg() && NewOp1.getReg() == X86::EFLAGS &&
10481         "Unexpected operand in reassociable instruction");
10482  assert(NewOp2.isReg() && NewOp2.getReg() == X86::EFLAGS &&
10483         "Unexpected operand in reassociable instruction");
10484
10485  // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
10486  // of this pass or other passes. The EFLAGS operands must be dead in these new
10487  // instructions because the EFLAGS operands in the original instructions must
10488  // be dead in order for reassociation to occur.
10489  NewOp1.setIsDead();
10490  NewOp2.setIsDead();
10491}
10492
10493std::pair<unsigned, unsigned>
10494X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
10495  return std::make_pair(TF, 0u);
10496}
10497
10498ArrayRef<std::pair<unsigned, const char *>>
10499X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
10500  using namespace X86II;
10501  static const std::pair<unsigned, const char *> TargetFlags[] = {
10502      {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
10503      {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
10504      {MO_GOT, "x86-got"},
10505      {MO_GOTOFF, "x86-gotoff"},
10506      {MO_GOTPCREL, "x86-gotpcrel"},
10507      {MO_PLT, "x86-plt"},
10508      {MO_TLSGD, "x86-tlsgd"},
10509      {MO_TLSLD, "x86-tlsld"},
10510      {MO_TLSLDM, "x86-tlsldm"},
10511      {MO_GOTTPOFF, "x86-gottpoff"},
10512      {MO_INDNTPOFF, "x86-indntpoff"},
10513      {MO_TPOFF, "x86-tpoff"},
10514      {MO_DTPOFF, "x86-dtpoff"},
10515      {MO_NTPOFF, "x86-ntpoff"},
10516      {MO_GOTNTPOFF, "x86-gotntpoff"},
10517      {MO_DLLIMPORT, "x86-dllimport"},
10518      {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
10519      {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
10520      {MO_TLVP, "x86-tlvp"},
10521      {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
10522      {MO_SECREL, "x86-secrel"}};
10523  return makeArrayRef(TargetFlags);
10524}
10525
10526namespace {
10527  /// Create Global Base Reg pass. This initializes the PIC
10528  /// global base register for x86-32.
10529  struct CGBR : public MachineFunctionPass {
10530    static char ID;
10531    CGBR() : MachineFunctionPass(ID) {}
10532
10533    bool runOnMachineFunction(MachineFunction &MF) override {
10534      const X86TargetMachine *TM =
10535        static_cast<const X86TargetMachine *>(&MF.getTarget());
10536      const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
10537
10538      // Don't do anything if this is 64-bit as 64-bit PIC
10539      // uses RIP relative addressing.
10540      if (STI.is64Bit())
10541        return false;
10542
10543      // Only emit a global base reg in PIC mode.
10544      if (!TM->isPositionIndependent())
10545        return false;
10546
10547      X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
10548      unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
10549
10550      // If we didn't need a GlobalBaseReg, don't insert code.
10551      if (GlobalBaseReg == 0)
10552        return false;
10553
10554      // Insert the set of GlobalBaseReg into the first MBB of the function
10555      MachineBasicBlock &FirstMBB = MF.front();
10556      MachineBasicBlock::iterator MBBI = FirstMBB.begin();
10557      DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
10558      MachineRegisterInfo &RegInfo = MF.getRegInfo();
10559      const X86InstrInfo *TII = STI.getInstrInfo();
10560
10561      unsigned PC;
10562      if (STI.isPICStyleGOT())
10563        PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
10564      else
10565        PC = GlobalBaseReg;
10566
10567      // Operand of MovePCtoStack is completely ignored by asm printer. It's
10568      // only used in JIT code emission as displacement to pc.
10569      BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
10570
10571      // If we're using vanilla 'GOT' PIC style, we should use relative addressing
10572      // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
10573      if (STI.isPICStyleGOT()) {
10574        // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
10575        BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
10576          .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
10577                                        X86II::MO_GOT_ABSOLUTE_ADDRESS);
10578      }
10579
10580      return true;
10581    }
10582
10583    StringRef getPassName() const override {
10584      return "X86 PIC Global Base Reg Initialization";
10585    }
10586
10587    void getAnalysisUsage(AnalysisUsage &AU) const override {
10588      AU.setPreservesCFG();
10589      MachineFunctionPass::getAnalysisUsage(AU);
10590    }
10591  };
10592}
10593
10594char CGBR::ID = 0;
10595FunctionPass*
10596llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
10597
10598namespace {
10599  struct LDTLSCleanup : public MachineFunctionPass {
10600    static char ID;
10601    LDTLSCleanup() : MachineFunctionPass(ID) {}
10602
10603    bool runOnMachineFunction(MachineFunction &MF) override {
10604      if (skipFunction(MF.getFunction()))
10605        return false;
10606
10607      X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
10608      if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
10609        // No point folding accesses if there isn't at least two.
10610        return false;
10611      }
10612
10613      MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
10614      return VisitNode(DT->getRootNode(), 0);
10615    }
10616
10617    // Visit the dominator subtree rooted at Node in pre-order.
10618    // If TLSBaseAddrReg is non-null, then use that to replace any
10619    // TLS_base_addr instructions. Otherwise, create the register
10620    // when the first such instruction is seen, and then use it
10621    // as we encounter more instructions.
10622    bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
10623      MachineBasicBlock *BB = Node->getBlock();
10624      bool Changed = false;
10625
10626      // Traverse the current block.
10627      for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
10628           ++I) {
10629        switch (I->getOpcode()) {
10630          case X86::TLS_base_addr32:
10631          case X86::TLS_base_addr64:
10632            if (TLSBaseAddrReg)
10633              I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
10634            else
10635              I = SetRegister(*I, &TLSBaseAddrReg);
10636            Changed = true;
10637            break;
10638          default:
10639            break;
10640        }
10641      }
10642
10643      // Visit the children of this block in the dominator tree.
10644      for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
10645           I != E; ++I) {
10646        Changed |= VisitNode(*I, TLSBaseAddrReg);
10647      }
10648
10649      return Changed;
10650    }
10651
10652    // Replace the TLS_base_addr instruction I with a copy from
10653    // TLSBaseAddrReg, returning the new instruction.
10654    MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
10655                                         unsigned TLSBaseAddrReg) {
10656      MachineFunction *MF = I.getParent()->getParent();
10657      const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
10658      const bool is64Bit = STI.is64Bit();
10659      const X86InstrInfo *TII = STI.getInstrInfo();
10660
10661      // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
10662      MachineInstr *Copy =
10663          BuildMI(*I.getParent(), I, I.getDebugLoc(),
10664                  TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
10665              .addReg(TLSBaseAddrReg);
10666
10667      // Erase the TLS_base_addr instruction.
10668      I.eraseFromParent();
10669
10670      return Copy;
10671    }
10672
10673    // Create a virtual register in *TLSBaseAddrReg, and populate it by
10674    // inserting a copy instruction after I. Returns the new instruction.
10675    MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
10676      MachineFunction *MF = I.getParent()->getParent();
10677      const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
10678      const bool is64Bit = STI.is64Bit();
10679      const X86InstrInfo *TII = STI.getInstrInfo();
10680
10681      // Create a virtual register for the TLS base address.
10682      MachineRegisterInfo &RegInfo = MF->getRegInfo();
10683      *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
10684                                                      ? &X86::GR64RegClass
10685                                                      : &X86::GR32RegClass);
10686
10687      // Insert a copy from RAX/EAX to TLSBaseAddrReg.
10688      MachineInstr *Next = I.getNextNode();
10689      MachineInstr *Copy =
10690          BuildMI(*I.getParent(), Next, I.getDebugLoc(),
10691                  TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
10692              .addReg(is64Bit ? X86::RAX : X86::EAX);
10693
10694      return Copy;
10695    }
10696
10697    StringRef getPassName() const override {
10698      return "Local Dynamic TLS Access Clean-up";
10699    }
10700
10701    void getAnalysisUsage(AnalysisUsage &AU) const override {
10702      AU.setPreservesCFG();
10703      AU.addRequired<MachineDominatorTree>();
10704      MachineFunctionPass::getAnalysisUsage(AU);
10705    }
10706  };
10707}
10708
10709char LDTLSCleanup::ID = 0;
10710FunctionPass*
10711llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
10712
10713/// Constants defining how certain sequences should be outlined.
10714///
10715/// \p MachineOutlinerDefault implies that the function is called with a call
10716/// instruction, and a return must be emitted for the outlined function frame.
10717///
10718/// That is,
10719///
10720/// I1                                 OUTLINED_FUNCTION:
10721/// I2 --> call OUTLINED_FUNCTION       I1
10722/// I3                                  I2
10723///                                     I3
10724///                                     ret
10725///
10726/// * Call construction overhead: 1 (call instruction)
10727/// * Frame construction overhead: 1 (return instruction)
10728///
10729/// \p MachineOutlinerTailCall implies that the function is being tail called.
10730/// A jump is emitted instead of a call, and the return is already present in
10731/// the outlined sequence. That is,
10732///
10733/// I1                                 OUTLINED_FUNCTION:
10734/// I2 --> jmp OUTLINED_FUNCTION       I1
10735/// ret                                I2
10736///                                    ret
10737///
10738/// * Call construction overhead: 1 (jump instruction)
10739/// * Frame construction overhead: 0 (don't need to return)
10740///
10741enum MachineOutlinerClass {
10742  MachineOutlinerDefault,
10743  MachineOutlinerTailCall
10744};
10745
10746X86GenInstrInfo::MachineOutlinerInfo
10747X86InstrInfo::getOutlininingCandidateInfo(
10748  std::vector<
10749      std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>>
10750      &RepeatedSequenceLocs) const {
10751
10752  if (RepeatedSequenceLocs[0].second->isTerminator())
10753    return MachineOutlinerInfo(1, // Number of instructions to emit call.
10754                               0, // Number of instructions to emit frame.
10755                               MachineOutlinerTailCall, // Type of call.
10756                               MachineOutlinerTailCall // Type of frame.
10757                              );
10758
10759  return MachineOutlinerInfo(1, 1, MachineOutlinerDefault,
10760                             MachineOutlinerDefault);
10761}
10762
10763bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF,
10764                                           bool OutlineFromLinkOnceODRs) const {
10765  const Function &F = MF.getFunction();
10766
10767  // Does the function use a red zone? If it does, then we can't risk messing
10768  // with the stack.
10769  if (!F.hasFnAttribute(Attribute::NoRedZone))
10770      return false;
10771
10772  // If we *don't* want to outline from things that could potentially be deduped
10773  // then return false.
10774  if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
10775      return false;
10776
10777  // This function is viable for outlining, so return true.
10778  return true;
10779}
10780
10781X86GenInstrInfo::MachineOutlinerInstrType
10782X86InstrInfo::getOutliningType(MachineInstr &MI) const {
10783
10784  // Don't allow debug values to impact outlining type.
10785  if (MI.isDebugValue() || MI.isIndirectDebugValue())
10786    return MachineOutlinerInstrType::Invisible;
10787
10788  // Is this a tail call? If yes, we can outline as a tail call.
10789  if (isTailCall(MI))
10790    return MachineOutlinerInstrType::Legal;
10791
10792  // Is this the terminator of a basic block?
10793  if (MI.isTerminator() || MI.isReturn()) {
10794
10795    // Does its parent have any successors in its MachineFunction?
10796    if (MI.getParent()->succ_empty())
10797        return MachineOutlinerInstrType::Legal;
10798
10799    // It does, so we can't tail call it.
10800    return MachineOutlinerInstrType::Illegal;
10801  }
10802
10803  // Don't outline anything that modifies or reads from the stack pointer.
10804  //
10805  // FIXME: There are instructions which are being manually built without
10806  // explicit uses/defs so we also have to check the MCInstrDesc. We should be
10807  // able to remove the extra checks once those are fixed up. For example,
10808  // sometimes we might get something like %rax = POP64r 1. This won't be
10809  // caught by modifiesRegister or readsRegister even though the instruction
10810  // really ought to be formed so that modifiesRegister/readsRegister would
10811  // catch it.
10812  if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
10813      MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
10814      MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
10815    return MachineOutlinerInstrType::Illegal;
10816
10817  // Outlined calls change the instruction pointer, so don't read from it.
10818  if (MI.readsRegister(X86::RIP, &RI) ||
10819      MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
10820      MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
10821    return MachineOutlinerInstrType::Illegal;
10822
10823  // Positions can't safely be outlined.
10824  if (MI.isPosition())
10825    return MachineOutlinerInstrType::Illegal;
10826
10827  // Make sure none of the operands of this instruction do anything tricky.
10828  for (const MachineOperand &MOP : MI.operands())
10829    if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
10830        MOP.isTargetIndex())
10831      return MachineOutlinerInstrType::Illegal;
10832
10833  return MachineOutlinerInstrType::Legal;
10834}
10835
10836void X86InstrInfo::insertOutlinerEpilogue(MachineBasicBlock &MBB,
10837                                          MachineFunction &MF,
10838                                          const MachineOutlinerInfo &MInfo)
10839                                          const {
10840  // If we're a tail call, we already have a return, so don't do anything.
10841  if (MInfo.FrameConstructionID == MachineOutlinerTailCall)
10842    return;
10843
10844  // We're a normal call, so our sequence doesn't have a return instruction.
10845  // Add it in.
10846  MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RETQ));
10847  MBB.insert(MBB.end(), retq);
10848}
10849
10850void X86InstrInfo::insertOutlinerPrologue(MachineBasicBlock &MBB,
10851                                          MachineFunction &MF,
10852                                          const MachineOutlinerInfo &MInfo)
10853                                          const {}
10854
10855MachineBasicBlock::iterator
10856X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
10857                                 MachineBasicBlock::iterator &It,
10858                                 MachineFunction &MF,
10859                                 const MachineOutlinerInfo &MInfo) const {
10860  // Is it a tail call?
10861  if (MInfo.CallConstructionID == MachineOutlinerTailCall) {
10862    // Yes, just insert a JMP.
10863    It = MBB.insert(It,
10864                  BuildMI(MF, DebugLoc(), get(X86::JMP_1))
10865                      .addGlobalAddress(M.getNamedValue(MF.getName())));
10866  } else {
10867    // No, insert a call.
10868    It = MBB.insert(It,
10869                  BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
10870                      .addGlobalAddress(M.getNamedValue(MF.getName())));
10871  }
10872
10873  return It;
10874}
10875