X86InstrInfo.cpp revision 296417
1//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86MachineFunctionInfo.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/CodeGen/LiveVariables.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineDominators.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/StackMaps.h"
28#include "llvm/IR/DerivedTypes.h"
29#include "llvm/IR/Function.h"
30#include "llvm/IR/LLVMContext.h"
31#include "llvm/MC/MCAsmInfo.h"
32#include "llvm/MC/MCExpr.h"
33#include "llvm/MC/MCInst.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/Target/TargetOptions.h"
39#include <limits>
40
41using namespace llvm;
42
43#define DEBUG_TYPE "x86-instr-info"
44
45#define GET_INSTRINFO_CTOR_DTOR
46#include "X86GenInstrInfo.inc"
47
48static cl::opt<bool>
49NoFusing("disable-spill-fusing",
50         cl::desc("Disable fusing of spill code into instructions"));
51static cl::opt<bool>
52PrintFailedFusing("print-failed-fuse-candidates",
53                  cl::desc("Print instructions that the allocator wants to"
54                           " fuse, but the X86 backend currently can't"),
55                  cl::Hidden);
56static cl::opt<bool>
57ReMatPICStubLoad("remat-pic-stub-load",
58                 cl::desc("Re-materialize load from stub in PIC mode"),
59                 cl::init(false), cl::Hidden);
60
61enum {
62  // Select which memory operand is being unfolded.
63  // (stored in bits 0 - 3)
64  TB_INDEX_0    = 0,
65  TB_INDEX_1    = 1,
66  TB_INDEX_2    = 2,
67  TB_INDEX_3    = 3,
68  TB_INDEX_4    = 4,
69  TB_INDEX_MASK = 0xf,
70
71  // Do not insert the reverse map (MemOp -> RegOp) into the table.
72  // This may be needed because there is a many -> one mapping.
73  TB_NO_REVERSE   = 1 << 4,
74
75  // Do not insert the forward map (RegOp -> MemOp) into the table.
76  // This is needed for Native Client, which prohibits branch
77  // instructions from using a memory operand.
78  TB_NO_FORWARD   = 1 << 5,
79
80  TB_FOLDED_LOAD  = 1 << 6,
81  TB_FOLDED_STORE = 1 << 7,
82
83  // Minimum alignment required for load/store.
84  // Used for RegOp->MemOp conversion.
85  // (stored in bits 8 - 15)
86  TB_ALIGN_SHIFT = 8,
87  TB_ALIGN_NONE  =    0 << TB_ALIGN_SHIFT,
88  TB_ALIGN_16    =   16 << TB_ALIGN_SHIFT,
89  TB_ALIGN_32    =   32 << TB_ALIGN_SHIFT,
90  TB_ALIGN_64    =   64 << TB_ALIGN_SHIFT,
91  TB_ALIGN_MASK  = 0xff << TB_ALIGN_SHIFT
92};
93
94struct X86MemoryFoldTableEntry {
95  uint16_t RegOp;
96  uint16_t MemOp;
97  uint16_t Flags;
98};
99
100// Pin the vtable to this file.
101void X86InstrInfo::anchor() {}
102
103X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
104    : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
105                                               : X86::ADJCALLSTACKDOWN32),
106                      (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
107                                               : X86::ADJCALLSTACKUP32),
108                      X86::CATCHRET),
109      Subtarget(STI), RI(STI.getTargetTriple()) {
110
111  static const X86MemoryFoldTableEntry MemoryFoldTable2Addr[] = {
112    { X86::ADC32ri,     X86::ADC32mi,    0 },
113    { X86::ADC32ri8,    X86::ADC32mi8,   0 },
114    { X86::ADC32rr,     X86::ADC32mr,    0 },
115    { X86::ADC64ri32,   X86::ADC64mi32,  0 },
116    { X86::ADC64ri8,    X86::ADC64mi8,   0 },
117    { X86::ADC64rr,     X86::ADC64mr,    0 },
118    { X86::ADD16ri,     X86::ADD16mi,    0 },
119    { X86::ADD16ri8,    X86::ADD16mi8,   0 },
120    { X86::ADD16ri_DB,  X86::ADD16mi,    TB_NO_REVERSE },
121    { X86::ADD16ri8_DB, X86::ADD16mi8,   TB_NO_REVERSE },
122    { X86::ADD16rr,     X86::ADD16mr,    0 },
123    { X86::ADD16rr_DB,  X86::ADD16mr,    TB_NO_REVERSE },
124    { X86::ADD32ri,     X86::ADD32mi,    0 },
125    { X86::ADD32ri8,    X86::ADD32mi8,   0 },
126    { X86::ADD32ri_DB,  X86::ADD32mi,    TB_NO_REVERSE },
127    { X86::ADD32ri8_DB, X86::ADD32mi8,   TB_NO_REVERSE },
128    { X86::ADD32rr,     X86::ADD32mr,    0 },
129    { X86::ADD32rr_DB,  X86::ADD32mr,    TB_NO_REVERSE },
130    { X86::ADD64ri32,   X86::ADD64mi32,  0 },
131    { X86::ADD64ri8,    X86::ADD64mi8,   0 },
132    { X86::ADD64ri32_DB,X86::ADD64mi32,  TB_NO_REVERSE },
133    { X86::ADD64ri8_DB, X86::ADD64mi8,   TB_NO_REVERSE },
134    { X86::ADD64rr,     X86::ADD64mr,    0 },
135    { X86::ADD64rr_DB,  X86::ADD64mr,    TB_NO_REVERSE },
136    { X86::ADD8ri,      X86::ADD8mi,     0 },
137    { X86::ADD8rr,      X86::ADD8mr,     0 },
138    { X86::AND16ri,     X86::AND16mi,    0 },
139    { X86::AND16ri8,    X86::AND16mi8,   0 },
140    { X86::AND16rr,     X86::AND16mr,    0 },
141    { X86::AND32ri,     X86::AND32mi,    0 },
142    { X86::AND32ri8,    X86::AND32mi8,   0 },
143    { X86::AND32rr,     X86::AND32mr,    0 },
144    { X86::AND64ri32,   X86::AND64mi32,  0 },
145    { X86::AND64ri8,    X86::AND64mi8,   0 },
146    { X86::AND64rr,     X86::AND64mr,    0 },
147    { X86::AND8ri,      X86::AND8mi,     0 },
148    { X86::AND8rr,      X86::AND8mr,     0 },
149    { X86::DEC16r,      X86::DEC16m,     0 },
150    { X86::DEC32r,      X86::DEC32m,     0 },
151    { X86::DEC64r,      X86::DEC64m,     0 },
152    { X86::DEC8r,       X86::DEC8m,      0 },
153    { X86::INC16r,      X86::INC16m,     0 },
154    { X86::INC32r,      X86::INC32m,     0 },
155    { X86::INC64r,      X86::INC64m,     0 },
156    { X86::INC8r,       X86::INC8m,      0 },
157    { X86::NEG16r,      X86::NEG16m,     0 },
158    { X86::NEG32r,      X86::NEG32m,     0 },
159    { X86::NEG64r,      X86::NEG64m,     0 },
160    { X86::NEG8r,       X86::NEG8m,      0 },
161    { X86::NOT16r,      X86::NOT16m,     0 },
162    { X86::NOT32r,      X86::NOT32m,     0 },
163    { X86::NOT64r,      X86::NOT64m,     0 },
164    { X86::NOT8r,       X86::NOT8m,      0 },
165    { X86::OR16ri,      X86::OR16mi,     0 },
166    { X86::OR16ri8,     X86::OR16mi8,    0 },
167    { X86::OR16rr,      X86::OR16mr,     0 },
168    { X86::OR32ri,      X86::OR32mi,     0 },
169    { X86::OR32ri8,     X86::OR32mi8,    0 },
170    { X86::OR32rr,      X86::OR32mr,     0 },
171    { X86::OR64ri32,    X86::OR64mi32,   0 },
172    { X86::OR64ri8,     X86::OR64mi8,    0 },
173    { X86::OR64rr,      X86::OR64mr,     0 },
174    { X86::OR8ri,       X86::OR8mi,      0 },
175    { X86::OR8rr,       X86::OR8mr,      0 },
176    { X86::ROL16r1,     X86::ROL16m1,    0 },
177    { X86::ROL16rCL,    X86::ROL16mCL,   0 },
178    { X86::ROL16ri,     X86::ROL16mi,    0 },
179    { X86::ROL32r1,     X86::ROL32m1,    0 },
180    { X86::ROL32rCL,    X86::ROL32mCL,   0 },
181    { X86::ROL32ri,     X86::ROL32mi,    0 },
182    { X86::ROL64r1,     X86::ROL64m1,    0 },
183    { X86::ROL64rCL,    X86::ROL64mCL,   0 },
184    { X86::ROL64ri,     X86::ROL64mi,    0 },
185    { X86::ROL8r1,      X86::ROL8m1,     0 },
186    { X86::ROL8rCL,     X86::ROL8mCL,    0 },
187    { X86::ROL8ri,      X86::ROL8mi,     0 },
188    { X86::ROR16r1,     X86::ROR16m1,    0 },
189    { X86::ROR16rCL,    X86::ROR16mCL,   0 },
190    { X86::ROR16ri,     X86::ROR16mi,    0 },
191    { X86::ROR32r1,     X86::ROR32m1,    0 },
192    { X86::ROR32rCL,    X86::ROR32mCL,   0 },
193    { X86::ROR32ri,     X86::ROR32mi,    0 },
194    { X86::ROR64r1,     X86::ROR64m1,    0 },
195    { X86::ROR64rCL,    X86::ROR64mCL,   0 },
196    { X86::ROR64ri,     X86::ROR64mi,    0 },
197    { X86::ROR8r1,      X86::ROR8m1,     0 },
198    { X86::ROR8rCL,     X86::ROR8mCL,    0 },
199    { X86::ROR8ri,      X86::ROR8mi,     0 },
200    { X86::SAR16r1,     X86::SAR16m1,    0 },
201    { X86::SAR16rCL,    X86::SAR16mCL,   0 },
202    { X86::SAR16ri,     X86::SAR16mi,    0 },
203    { X86::SAR32r1,     X86::SAR32m1,    0 },
204    { X86::SAR32rCL,    X86::SAR32mCL,   0 },
205    { X86::SAR32ri,     X86::SAR32mi,    0 },
206    { X86::SAR64r1,     X86::SAR64m1,    0 },
207    { X86::SAR64rCL,    X86::SAR64mCL,   0 },
208    { X86::SAR64ri,     X86::SAR64mi,    0 },
209    { X86::SAR8r1,      X86::SAR8m1,     0 },
210    { X86::SAR8rCL,     X86::SAR8mCL,    0 },
211    { X86::SAR8ri,      X86::SAR8mi,     0 },
212    { X86::SBB32ri,     X86::SBB32mi,    0 },
213    { X86::SBB32ri8,    X86::SBB32mi8,   0 },
214    { X86::SBB32rr,     X86::SBB32mr,    0 },
215    { X86::SBB64ri32,   X86::SBB64mi32,  0 },
216    { X86::SBB64ri8,    X86::SBB64mi8,   0 },
217    { X86::SBB64rr,     X86::SBB64mr,    0 },
218    { X86::SHL16rCL,    X86::SHL16mCL,   0 },
219    { X86::SHL16ri,     X86::SHL16mi,    0 },
220    { X86::SHL32rCL,    X86::SHL32mCL,   0 },
221    { X86::SHL32ri,     X86::SHL32mi,    0 },
222    { X86::SHL64rCL,    X86::SHL64mCL,   0 },
223    { X86::SHL64ri,     X86::SHL64mi,    0 },
224    { X86::SHL8rCL,     X86::SHL8mCL,    0 },
225    { X86::SHL8ri,      X86::SHL8mi,     0 },
226    { X86::SHLD16rrCL,  X86::SHLD16mrCL, 0 },
227    { X86::SHLD16rri8,  X86::SHLD16mri8, 0 },
228    { X86::SHLD32rrCL,  X86::SHLD32mrCL, 0 },
229    { X86::SHLD32rri8,  X86::SHLD32mri8, 0 },
230    { X86::SHLD64rrCL,  X86::SHLD64mrCL, 0 },
231    { X86::SHLD64rri8,  X86::SHLD64mri8, 0 },
232    { X86::SHR16r1,     X86::SHR16m1,    0 },
233    { X86::SHR16rCL,    X86::SHR16mCL,   0 },
234    { X86::SHR16ri,     X86::SHR16mi,    0 },
235    { X86::SHR32r1,     X86::SHR32m1,    0 },
236    { X86::SHR32rCL,    X86::SHR32mCL,   0 },
237    { X86::SHR32ri,     X86::SHR32mi,    0 },
238    { X86::SHR64r1,     X86::SHR64m1,    0 },
239    { X86::SHR64rCL,    X86::SHR64mCL,   0 },
240    { X86::SHR64ri,     X86::SHR64mi,    0 },
241    { X86::SHR8r1,      X86::SHR8m1,     0 },
242    { X86::SHR8rCL,     X86::SHR8mCL,    0 },
243    { X86::SHR8ri,      X86::SHR8mi,     0 },
244    { X86::SHRD16rrCL,  X86::SHRD16mrCL, 0 },
245    { X86::SHRD16rri8,  X86::SHRD16mri8, 0 },
246    { X86::SHRD32rrCL,  X86::SHRD32mrCL, 0 },
247    { X86::SHRD32rri8,  X86::SHRD32mri8, 0 },
248    { X86::SHRD64rrCL,  X86::SHRD64mrCL, 0 },
249    { X86::SHRD64rri8,  X86::SHRD64mri8, 0 },
250    { X86::SUB16ri,     X86::SUB16mi,    0 },
251    { X86::SUB16ri8,    X86::SUB16mi8,   0 },
252    { X86::SUB16rr,     X86::SUB16mr,    0 },
253    { X86::SUB32ri,     X86::SUB32mi,    0 },
254    { X86::SUB32ri8,    X86::SUB32mi8,   0 },
255    { X86::SUB32rr,     X86::SUB32mr,    0 },
256    { X86::SUB64ri32,   X86::SUB64mi32,  0 },
257    { X86::SUB64ri8,    X86::SUB64mi8,   0 },
258    { X86::SUB64rr,     X86::SUB64mr,    0 },
259    { X86::SUB8ri,      X86::SUB8mi,     0 },
260    { X86::SUB8rr,      X86::SUB8mr,     0 },
261    { X86::XOR16ri,     X86::XOR16mi,    0 },
262    { X86::XOR16ri8,    X86::XOR16mi8,   0 },
263    { X86::XOR16rr,     X86::XOR16mr,    0 },
264    { X86::XOR32ri,     X86::XOR32mi,    0 },
265    { X86::XOR32ri8,    X86::XOR32mi8,   0 },
266    { X86::XOR32rr,     X86::XOR32mr,    0 },
267    { X86::XOR64ri32,   X86::XOR64mi32,  0 },
268    { X86::XOR64ri8,    X86::XOR64mi8,   0 },
269    { X86::XOR64rr,     X86::XOR64mr,    0 },
270    { X86::XOR8ri,      X86::XOR8mi,     0 },
271    { X86::XOR8rr,      X86::XOR8mr,     0 }
272  };
273
274  for (X86MemoryFoldTableEntry Entry : MemoryFoldTable2Addr) {
275    AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
276                  Entry.RegOp, Entry.MemOp,
277                  // Index 0, folded load and store, no alignment requirement.
278                  Entry.Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
279  }
280
281  static const X86MemoryFoldTableEntry MemoryFoldTable0[] = {
282    { X86::BT16ri8,     X86::BT16mi8,       TB_FOLDED_LOAD },
283    { X86::BT32ri8,     X86::BT32mi8,       TB_FOLDED_LOAD },
284    { X86::BT64ri8,     X86::BT64mi8,       TB_FOLDED_LOAD },
285    { X86::CALL32r,     X86::CALL32m,       TB_FOLDED_LOAD },
286    { X86::CALL64r,     X86::CALL64m,       TB_FOLDED_LOAD },
287    { X86::CMP16ri,     X86::CMP16mi,       TB_FOLDED_LOAD },
288    { X86::CMP16ri8,    X86::CMP16mi8,      TB_FOLDED_LOAD },
289    { X86::CMP16rr,     X86::CMP16mr,       TB_FOLDED_LOAD },
290    { X86::CMP32ri,     X86::CMP32mi,       TB_FOLDED_LOAD },
291    { X86::CMP32ri8,    X86::CMP32mi8,      TB_FOLDED_LOAD },
292    { X86::CMP32rr,     X86::CMP32mr,       TB_FOLDED_LOAD },
293    { X86::CMP64ri32,   X86::CMP64mi32,     TB_FOLDED_LOAD },
294    { X86::CMP64ri8,    X86::CMP64mi8,      TB_FOLDED_LOAD },
295    { X86::CMP64rr,     X86::CMP64mr,       TB_FOLDED_LOAD },
296    { X86::CMP8ri,      X86::CMP8mi,        TB_FOLDED_LOAD },
297    { X86::CMP8rr,      X86::CMP8mr,        TB_FOLDED_LOAD },
298    { X86::DIV16r,      X86::DIV16m,        TB_FOLDED_LOAD },
299    { X86::DIV32r,      X86::DIV32m,        TB_FOLDED_LOAD },
300    { X86::DIV64r,      X86::DIV64m,        TB_FOLDED_LOAD },
301    { X86::DIV8r,       X86::DIV8m,         TB_FOLDED_LOAD },
302    { X86::EXTRACTPSrr, X86::EXTRACTPSmr,   TB_FOLDED_STORE },
303    { X86::IDIV16r,     X86::IDIV16m,       TB_FOLDED_LOAD },
304    { X86::IDIV32r,     X86::IDIV32m,       TB_FOLDED_LOAD },
305    { X86::IDIV64r,     X86::IDIV64m,       TB_FOLDED_LOAD },
306    { X86::IDIV8r,      X86::IDIV8m,        TB_FOLDED_LOAD },
307    { X86::IMUL16r,     X86::IMUL16m,       TB_FOLDED_LOAD },
308    { X86::IMUL32r,     X86::IMUL32m,       TB_FOLDED_LOAD },
309    { X86::IMUL64r,     X86::IMUL64m,       TB_FOLDED_LOAD },
310    { X86::IMUL8r,      X86::IMUL8m,        TB_FOLDED_LOAD },
311    { X86::JMP32r,      X86::JMP32m,        TB_FOLDED_LOAD },
312    { X86::JMP64r,      X86::JMP64m,        TB_FOLDED_LOAD },
313    { X86::MOV16ri,     X86::MOV16mi,       TB_FOLDED_STORE },
314    { X86::MOV16rr,     X86::MOV16mr,       TB_FOLDED_STORE },
315    { X86::MOV32ri,     X86::MOV32mi,       TB_FOLDED_STORE },
316    { X86::MOV32rr,     X86::MOV32mr,       TB_FOLDED_STORE },
317    { X86::MOV64ri32,   X86::MOV64mi32,     TB_FOLDED_STORE },
318    { X86::MOV64rr,     X86::MOV64mr,       TB_FOLDED_STORE },
319    { X86::MOV8ri,      X86::MOV8mi,        TB_FOLDED_STORE },
320    { X86::MOV8rr,      X86::MOV8mr,        TB_FOLDED_STORE },
321    { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
322    { X86::MOVAPDrr,    X86::MOVAPDmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
323    { X86::MOVAPSrr,    X86::MOVAPSmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
324    { X86::MOVDQArr,    X86::MOVDQAmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
325    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr,   TB_FOLDED_STORE },
326    { X86::MOVPQIto64rr,X86::MOVPQI2QImr,   TB_FOLDED_STORE },
327    { X86::MOVSDto64rr, X86::MOVSDto64mr,   TB_FOLDED_STORE },
328    { X86::MOVSS2DIrr,  X86::MOVSS2DImr,    TB_FOLDED_STORE },
329    { X86::MOVUPDrr,    X86::MOVUPDmr,      TB_FOLDED_STORE },
330    { X86::MOVUPSrr,    X86::MOVUPSmr,      TB_FOLDED_STORE },
331    { X86::MUL16r,      X86::MUL16m,        TB_FOLDED_LOAD },
332    { X86::MUL32r,      X86::MUL32m,        TB_FOLDED_LOAD },
333    { X86::MUL64r,      X86::MUL64m,        TB_FOLDED_LOAD },
334    { X86::MUL8r,       X86::MUL8m,         TB_FOLDED_LOAD },
335    { X86::PEXTRDrr,    X86::PEXTRDmr,      TB_FOLDED_STORE },
336    { X86::PEXTRQrr,    X86::PEXTRQmr,      TB_FOLDED_STORE },
337    { X86::PUSH16r,     X86::PUSH16rmm,     TB_FOLDED_LOAD },
338    { X86::PUSH32r,     X86::PUSH32rmm,     TB_FOLDED_LOAD },
339    { X86::PUSH64r,     X86::PUSH64rmm,     TB_FOLDED_LOAD },
340    { X86::SETAEr,      X86::SETAEm,        TB_FOLDED_STORE },
341    { X86::SETAr,       X86::SETAm,         TB_FOLDED_STORE },
342    { X86::SETBEr,      X86::SETBEm,        TB_FOLDED_STORE },
343    { X86::SETBr,       X86::SETBm,         TB_FOLDED_STORE },
344    { X86::SETEr,       X86::SETEm,         TB_FOLDED_STORE },
345    { X86::SETGEr,      X86::SETGEm,        TB_FOLDED_STORE },
346    { X86::SETGr,       X86::SETGm,         TB_FOLDED_STORE },
347    { X86::SETLEr,      X86::SETLEm,        TB_FOLDED_STORE },
348    { X86::SETLr,       X86::SETLm,         TB_FOLDED_STORE },
349    { X86::SETNEr,      X86::SETNEm,        TB_FOLDED_STORE },
350    { X86::SETNOr,      X86::SETNOm,        TB_FOLDED_STORE },
351    { X86::SETNPr,      X86::SETNPm,        TB_FOLDED_STORE },
352    { X86::SETNSr,      X86::SETNSm,        TB_FOLDED_STORE },
353    { X86::SETOr,       X86::SETOm,         TB_FOLDED_STORE },
354    { X86::SETPr,       X86::SETPm,         TB_FOLDED_STORE },
355    { X86::SETSr,       X86::SETSm,         TB_FOLDED_STORE },
356    { X86::TAILJMPr,    X86::TAILJMPm,      TB_FOLDED_LOAD },
357    { X86::TAILJMPr64,  X86::TAILJMPm64,    TB_FOLDED_LOAD },
358    { X86::TAILJMPr64_REX, X86::TAILJMPm64_REX, TB_FOLDED_LOAD },
359    { X86::TEST16ri,    X86::TEST16mi,      TB_FOLDED_LOAD },
360    { X86::TEST32ri,    X86::TEST32mi,      TB_FOLDED_LOAD },
361    { X86::TEST64ri32,  X86::TEST64mi32,    TB_FOLDED_LOAD },
362    { X86::TEST8ri,     X86::TEST8mi,       TB_FOLDED_LOAD },
363
364    // AVX 128-bit versions of foldable instructions
365    { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr,  TB_FOLDED_STORE  },
366    { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
367    { X86::VMOVAPDrr,   X86::VMOVAPDmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
368    { X86::VMOVAPSrr,   X86::VMOVAPSmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
369    { X86::VMOVDQArr,   X86::VMOVDQAmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
370    { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr,  TB_FOLDED_STORE },
371    { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
372    { X86::VMOVSDto64rr,X86::VMOVSDto64mr,  TB_FOLDED_STORE },
373    { X86::VMOVSS2DIrr, X86::VMOVSS2DImr,   TB_FOLDED_STORE },
374    { X86::VMOVUPDrr,   X86::VMOVUPDmr,     TB_FOLDED_STORE },
375    { X86::VMOVUPSrr,   X86::VMOVUPSmr,     TB_FOLDED_STORE },
376    { X86::VPEXTRDrr,   X86::VPEXTRDmr,     TB_FOLDED_STORE },
377    { X86::VPEXTRQrr,   X86::VPEXTRQmr,     TB_FOLDED_STORE },
378
379    // AVX 256-bit foldable instructions
380    { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
381    { X86::VMOVAPDYrr,  X86::VMOVAPDYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
382    { X86::VMOVAPSYrr,  X86::VMOVAPSYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
383    { X86::VMOVDQAYrr,  X86::VMOVDQAYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
384    { X86::VMOVUPDYrr,  X86::VMOVUPDYmr,    TB_FOLDED_STORE },
385    { X86::VMOVUPSYrr,  X86::VMOVUPSYmr,    TB_FOLDED_STORE },
386
387    // AVX-512 foldable instructions
388    { X86::VMOVPDI2DIZrr,   X86::VMOVPDI2DIZmr, TB_FOLDED_STORE },
389    { X86::VMOVAPDZrr,      X86::VMOVAPDZmr,    TB_FOLDED_STORE | TB_ALIGN_64 },
390    { X86::VMOVAPSZrr,      X86::VMOVAPSZmr,    TB_FOLDED_STORE | TB_ALIGN_64 },
391    { X86::VMOVDQA32Zrr,    X86::VMOVDQA32Zmr,  TB_FOLDED_STORE | TB_ALIGN_64 },
392    { X86::VMOVDQA64Zrr,    X86::VMOVDQA64Zmr,  TB_FOLDED_STORE | TB_ALIGN_64 },
393    { X86::VMOVUPDZrr,      X86::VMOVUPDZmr,    TB_FOLDED_STORE },
394    { X86::VMOVUPSZrr,      X86::VMOVUPSZmr,    TB_FOLDED_STORE },
395    { X86::VMOVDQU8Zrr,     X86::VMOVDQU8Zmr,   TB_FOLDED_STORE },
396    { X86::VMOVDQU16Zrr,    X86::VMOVDQU16Zmr,  TB_FOLDED_STORE },
397    { X86::VMOVDQU32Zrr,    X86::VMOVDQU32Zmr,  TB_FOLDED_STORE },
398    { X86::VMOVDQU64Zrr,    X86::VMOVDQU64Zmr,  TB_FOLDED_STORE },
399
400    // AVX-512 foldable instructions (256-bit versions)
401    { X86::VMOVAPDZ256rr,      X86::VMOVAPDZ256mr,    TB_FOLDED_STORE | TB_ALIGN_32 },
402    { X86::VMOVAPSZ256rr,      X86::VMOVAPSZ256mr,    TB_FOLDED_STORE | TB_ALIGN_32 },
403    { X86::VMOVDQA32Z256rr,    X86::VMOVDQA32Z256mr,  TB_FOLDED_STORE | TB_ALIGN_32 },
404    { X86::VMOVDQA64Z256rr,    X86::VMOVDQA64Z256mr,  TB_FOLDED_STORE | TB_ALIGN_32 },
405    { X86::VMOVUPDZ256rr,      X86::VMOVUPDZ256mr,    TB_FOLDED_STORE },
406    { X86::VMOVUPSZ256rr,      X86::VMOVUPSZ256mr,    TB_FOLDED_STORE },
407    { X86::VMOVDQU8Z256rr,     X86::VMOVDQU8Z256mr,   TB_FOLDED_STORE },
408    { X86::VMOVDQU16Z256rr,    X86::VMOVDQU16Z256mr,  TB_FOLDED_STORE },
409    { X86::VMOVDQU32Z256rr,    X86::VMOVDQU32Z256mr,  TB_FOLDED_STORE },
410    { X86::VMOVDQU64Z256rr,    X86::VMOVDQU64Z256mr,  TB_FOLDED_STORE },
411
412    // AVX-512 foldable instructions (128-bit versions)
413    { X86::VMOVAPDZ128rr,      X86::VMOVAPDZ128mr,    TB_FOLDED_STORE | TB_ALIGN_16 },
414    { X86::VMOVAPSZ128rr,      X86::VMOVAPSZ128mr,    TB_FOLDED_STORE | TB_ALIGN_16 },
415    { X86::VMOVDQA32Z128rr,    X86::VMOVDQA32Z128mr,  TB_FOLDED_STORE | TB_ALIGN_16 },
416    { X86::VMOVDQA64Z128rr,    X86::VMOVDQA64Z128mr,  TB_FOLDED_STORE | TB_ALIGN_16 },
417    { X86::VMOVUPDZ128rr,      X86::VMOVUPDZ128mr,    TB_FOLDED_STORE },
418    { X86::VMOVUPSZ128rr,      X86::VMOVUPSZ128mr,    TB_FOLDED_STORE },
419    { X86::VMOVDQU8Z128rr,     X86::VMOVDQU8Z128mr,   TB_FOLDED_STORE },
420    { X86::VMOVDQU16Z128rr,    X86::VMOVDQU16Z128mr,  TB_FOLDED_STORE },
421    { X86::VMOVDQU32Z128rr,    X86::VMOVDQU32Z128mr,  TB_FOLDED_STORE },
422    { X86::VMOVDQU64Z128rr,    X86::VMOVDQU64Z128mr,  TB_FOLDED_STORE },
423
424    // F16C foldable instructions
425    { X86::VCVTPS2PHrr,        X86::VCVTPS2PHmr,      TB_FOLDED_STORE },
426    { X86::VCVTPS2PHYrr,       X86::VCVTPS2PHYmr,     TB_FOLDED_STORE }
427  };
428
429  for (X86MemoryFoldTableEntry Entry : MemoryFoldTable0) {
430    AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
431                  Entry.RegOp, Entry.MemOp, TB_INDEX_0 | Entry.Flags);
432  }
433
434  static const X86MemoryFoldTableEntry MemoryFoldTable1[] = {
435    { X86::BSF16rr,         X86::BSF16rm,             0 },
436    { X86::BSF32rr,         X86::BSF32rm,             0 },
437    { X86::BSF64rr,         X86::BSF64rm,             0 },
438    { X86::BSR16rr,         X86::BSR16rm,             0 },
439    { X86::BSR32rr,         X86::BSR32rm,             0 },
440    { X86::BSR64rr,         X86::BSR64rm,             0 },
441    { X86::CMP16rr,         X86::CMP16rm,             0 },
442    { X86::CMP32rr,         X86::CMP32rm,             0 },
443    { X86::CMP64rr,         X86::CMP64rm,             0 },
444    { X86::CMP8rr,          X86::CMP8rm,              0 },
445    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm,          0 },
446    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm,        0 },
447    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm,          0 },
448    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm,        0 },
449    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm,          0 },
450    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm,          0 },
451    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm,       0 },
452    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm,         0 },
453    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm,       0 },
454    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm,         0 },
455    { X86::IMUL16rri,       X86::IMUL16rmi,           0 },
456    { X86::IMUL16rri8,      X86::IMUL16rmi8,          0 },
457    { X86::IMUL32rri,       X86::IMUL32rmi,           0 },
458    { X86::IMUL32rri8,      X86::IMUL32rmi8,          0 },
459    { X86::IMUL64rri32,     X86::IMUL64rmi32,         0 },
460    { X86::IMUL64rri8,      X86::IMUL64rmi8,          0 },
461    { X86::Int_COMISDrr,    X86::Int_COMISDrm,        0 },
462    { X86::Int_COMISSrr,    X86::Int_COMISSrm,        0 },
463    { X86::CVTSD2SI64rr,    X86::CVTSD2SI64rm,        0 },
464    { X86::CVTSD2SIrr,      X86::CVTSD2SIrm,          0 },
465    { X86::CVTSS2SI64rr,    X86::CVTSS2SI64rm,        0 },
466    { X86::CVTSS2SIrr,      X86::CVTSS2SIrm,          0 },
467    { X86::CVTDQ2PDrr,      X86::CVTDQ2PDrm,          TB_ALIGN_16 },
468    { X86::CVTDQ2PSrr,      X86::CVTDQ2PSrm,          TB_ALIGN_16 },
469    { X86::CVTPD2DQrr,      X86::CVTPD2DQrm,          TB_ALIGN_16 },
470    { X86::CVTPD2PSrr,      X86::CVTPD2PSrm,          TB_ALIGN_16 },
471    { X86::CVTPS2DQrr,      X86::CVTPS2DQrm,          TB_ALIGN_16 },
472    { X86::CVTPS2PDrr,      X86::CVTPS2PDrm,          TB_ALIGN_16 },
473    { X86::CVTTPD2DQrr,     X86::CVTTPD2DQrm,         TB_ALIGN_16 },
474    { X86::CVTTPS2DQrr,     X86::CVTTPS2DQrm,         TB_ALIGN_16 },
475    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm,  0 },
476    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm,     0 },
477    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm,  0 },
478    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm,     0 },
479    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm,       0 },
480    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm,       0 },
481    { X86::MOV16rr,         X86::MOV16rm,             0 },
482    { X86::MOV32rr,         X86::MOV32rm,             0 },
483    { X86::MOV64rr,         X86::MOV64rm,             0 },
484    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm,         0 },
485    { X86::MOV64toSDrr,     X86::MOV64toSDrm,         0 },
486    { X86::MOV8rr,          X86::MOV8rm,              0 },
487    { X86::MOVAPDrr,        X86::MOVAPDrm,            TB_ALIGN_16 },
488    { X86::MOVAPSrr,        X86::MOVAPSrm,            TB_ALIGN_16 },
489    { X86::MOVDDUPrr,       X86::MOVDDUPrm,           0 },
490    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm,         0 },
491    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm,          0 },
492    { X86::MOVDQArr,        X86::MOVDQArm,            TB_ALIGN_16 },
493    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm,          TB_ALIGN_16 },
494    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm,          TB_ALIGN_16 },
495    { X86::MOVSX16rr8,      X86::MOVSX16rm8,          0 },
496    { X86::MOVSX32rr16,     X86::MOVSX32rm16,         0 },
497    { X86::MOVSX32rr8,      X86::MOVSX32rm8,          0 },
498    { X86::MOVSX64rr16,     X86::MOVSX64rm16,         0 },
499    { X86::MOVSX64rr32,     X86::MOVSX64rm32,         0 },
500    { X86::MOVSX64rr8,      X86::MOVSX64rm8,          0 },
501    { X86::MOVUPDrr,        X86::MOVUPDrm,            TB_ALIGN_16 },
502    { X86::MOVUPSrr,        X86::MOVUPSrm,            0 },
503    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm,     TB_ALIGN_16 },
504    { X86::MOVZX16rr8,      X86::MOVZX16rm8,          0 },
505    { X86::MOVZX32rr16,     X86::MOVZX32rm16,         0 },
506    { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8,   0 },
507    { X86::MOVZX32rr8,      X86::MOVZX32rm8,          0 },
508    { X86::PABSBrr128,      X86::PABSBrm128,          TB_ALIGN_16 },
509    { X86::PABSDrr128,      X86::PABSDrm128,          TB_ALIGN_16 },
510    { X86::PABSWrr128,      X86::PABSWrm128,          TB_ALIGN_16 },
511    { X86::PCMPESTRIrr,     X86::PCMPESTRIrm,         TB_ALIGN_16 },
512    { X86::PCMPESTRM128rr,  X86::PCMPESTRM128rm,      TB_ALIGN_16 },
513    { X86::PCMPISTRIrr,     X86::PCMPISTRIrm,         TB_ALIGN_16 },
514    { X86::PCMPISTRM128rr,  X86::PCMPISTRM128rm,      TB_ALIGN_16 },
515    { X86::PHMINPOSUWrr128, X86::PHMINPOSUWrm128,     TB_ALIGN_16 },
516    { X86::PMOVSXBDrr,      X86::PMOVSXBDrm,          TB_ALIGN_16 },
517    { X86::PMOVSXBQrr,      X86::PMOVSXBQrm,          TB_ALIGN_16 },
518    { X86::PMOVSXBWrr,      X86::PMOVSXBWrm,          TB_ALIGN_16 },
519    { X86::PMOVSXDQrr,      X86::PMOVSXDQrm,          TB_ALIGN_16 },
520    { X86::PMOVSXWDrr,      X86::PMOVSXWDrm,          TB_ALIGN_16 },
521    { X86::PMOVSXWQrr,      X86::PMOVSXWQrm,          TB_ALIGN_16 },
522    { X86::PMOVZXBDrr,      X86::PMOVZXBDrm,          TB_ALIGN_16 },
523    { X86::PMOVZXBQrr,      X86::PMOVZXBQrm,          TB_ALIGN_16 },
524    { X86::PMOVZXBWrr,      X86::PMOVZXBWrm,          TB_ALIGN_16 },
525    { X86::PMOVZXDQrr,      X86::PMOVZXDQrm,          TB_ALIGN_16 },
526    { X86::PMOVZXWDrr,      X86::PMOVZXWDrm,          TB_ALIGN_16 },
527    { X86::PMOVZXWQrr,      X86::PMOVZXWQrm,          TB_ALIGN_16 },
528    { X86::PSHUFDri,        X86::PSHUFDmi,            TB_ALIGN_16 },
529    { X86::PSHUFHWri,       X86::PSHUFHWmi,           TB_ALIGN_16 },
530    { X86::PSHUFLWri,       X86::PSHUFLWmi,           TB_ALIGN_16 },
531    { X86::PTESTrr,         X86::PTESTrm,             TB_ALIGN_16 },
532    { X86::RCPPSr,          X86::RCPPSm,              TB_ALIGN_16 },
533    { X86::RCPSSr,          X86::RCPSSm,              0 },
534    { X86::RCPSSr_Int,      X86::RCPSSm_Int,          0 },
535    { X86::ROUNDPDr,        X86::ROUNDPDm,            TB_ALIGN_16 },
536    { X86::ROUNDPSr,        X86::ROUNDPSm,            TB_ALIGN_16 },
537    { X86::RSQRTPSr,        X86::RSQRTPSm,            TB_ALIGN_16 },
538    { X86::RSQRTSSr,        X86::RSQRTSSm,            0 },
539    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int,        0 },
540    { X86::SQRTPDr,         X86::SQRTPDm,             TB_ALIGN_16 },
541    { X86::SQRTPSr,         X86::SQRTPSm,             TB_ALIGN_16 },
542    { X86::SQRTSDr,         X86::SQRTSDm,             0 },
543    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int,         0 },
544    { X86::SQRTSSr,         X86::SQRTSSm,             0 },
545    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int,         0 },
546    { X86::TEST16rr,        X86::TEST16rm,            0 },
547    { X86::TEST32rr,        X86::TEST32rm,            0 },
548    { X86::TEST64rr,        X86::TEST64rm,            0 },
549    { X86::TEST8rr,         X86::TEST8rm,             0 },
550    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
551    { X86::UCOMISDrr,       X86::UCOMISDrm,           0 },
552    { X86::UCOMISSrr,       X86::UCOMISSrm,           0 },
553
554    // MMX version of foldable instructions
555    { X86::MMX_CVTPD2PIirr,   X86::MMX_CVTPD2PIirm,   0 },
556    { X86::MMX_CVTPI2PDirr,   X86::MMX_CVTPI2PDirm,   0 },
557    { X86::MMX_CVTPS2PIirr,   X86::MMX_CVTPS2PIirm,   0 },
558    { X86::MMX_CVTTPD2PIirr,  X86::MMX_CVTTPD2PIirm,  0 },
559    { X86::MMX_CVTTPS2PIirr,  X86::MMX_CVTTPS2PIirm,  0 },
560    { X86::MMX_MOVD64to64rr,  X86::MMX_MOVQ64rm,      0 },
561    { X86::MMX_PABSBrr64,     X86::MMX_PABSBrm64,     0 },
562    { X86::MMX_PABSDrr64,     X86::MMX_PABSDrm64,     0 },
563    { X86::MMX_PABSWrr64,     X86::MMX_PABSWrm64,     0 },
564    { X86::MMX_PSHUFWri,      X86::MMX_PSHUFWmi,      0 },
565
566    // 3DNow! version of foldable instructions
567    { X86::PF2IDrr,         X86::PF2IDrm,             0 },
568    { X86::PF2IWrr,         X86::PF2IWrm,             0 },
569    { X86::PFRCPrr,         X86::PFRCPrm,             0 },
570    { X86::PFRSQRTrr,       X86::PFRSQRTrm,           0 },
571    { X86::PI2FDrr,         X86::PI2FDrm,             0 },
572    { X86::PI2FWrr,         X86::PI2FWrm,             0 },
573    { X86::PSWAPDrr,        X86::PSWAPDrm,            0 },
574
575    // AVX 128-bit versions of foldable instructions
576    { X86::Int_VCOMISDrr,   X86::Int_VCOMISDrm,       0 },
577    { X86::Int_VCOMISSrr,   X86::Int_VCOMISSrm,       0 },
578    { X86::Int_VUCOMISDrr,  X86::Int_VUCOMISDrm,      0 },
579    { X86::Int_VUCOMISSrr,  X86::Int_VUCOMISSrm,      0 },
580    { X86::VCVTTSD2SI64rr,  X86::VCVTTSD2SI64rm,      0 },
581    { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 },
582    { X86::VCVTTSD2SIrr,    X86::VCVTTSD2SIrm,        0 },
583    { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm,    0 },
584    { X86::VCVTTSS2SI64rr,  X86::VCVTTSS2SI64rm,      0 },
585    { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 },
586    { X86::VCVTTSS2SIrr,    X86::VCVTTSS2SIrm,        0 },
587    { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm,    0 },
588    { X86::VCVTSD2SI64rr,   X86::VCVTSD2SI64rm,       0 },
589    { X86::VCVTSD2SIrr,     X86::VCVTSD2SIrm,         0 },
590    { X86::VCVTSS2SI64rr,   X86::VCVTSS2SI64rm,       0 },
591    { X86::VCVTSS2SIrr,     X86::VCVTSS2SIrm,         0 },
592    { X86::VCVTDQ2PDrr,     X86::VCVTDQ2PDrm,         0 },
593    { X86::VCVTDQ2PSrr,     X86::VCVTDQ2PSrm,         0 },
594    { X86::VCVTPD2DQrr,     X86::VCVTPD2DQXrm,        0 },
595    { X86::VCVTPD2PSrr,     X86::VCVTPD2PSXrm,        0 },
596    { X86::VCVTPS2DQrr,     X86::VCVTPS2DQrm,         0 },
597    { X86::VCVTPS2PDrr,     X86::VCVTPS2PDrm,         0 },
598    { X86::VCVTTPD2DQrr,    X86::VCVTTPD2DQXrm,       0 },
599    { X86::VCVTTPS2DQrr,    X86::VCVTTPS2DQrm,        0 },
600    { X86::VMOV64toPQIrr,   X86::VMOVQI2PQIrm,        0 },
601    { X86::VMOV64toSDrr,    X86::VMOV64toSDrm,        0 },
602    { X86::VMOVAPDrr,       X86::VMOVAPDrm,           TB_ALIGN_16 },
603    { X86::VMOVAPSrr,       X86::VMOVAPSrm,           TB_ALIGN_16 },
604    { X86::VMOVDDUPrr,      X86::VMOVDDUPrm,          0 },
605    { X86::VMOVDI2PDIrr,    X86::VMOVDI2PDIrm,        0 },
606    { X86::VMOVDI2SSrr,     X86::VMOVDI2SSrm,         0 },
607    { X86::VMOVDQArr,       X86::VMOVDQArm,           TB_ALIGN_16 },
608    { X86::VMOVSLDUPrr,     X86::VMOVSLDUPrm,         0 },
609    { X86::VMOVSHDUPrr,     X86::VMOVSHDUPrm,         0 },
610    { X86::VMOVUPDrr,       X86::VMOVUPDrm,           0 },
611    { X86::VMOVUPSrr,       X86::VMOVUPSrm,           0 },
612    { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm,    TB_ALIGN_16 },
613    { X86::VPABSBrr128,     X86::VPABSBrm128,         0 },
614    { X86::VPABSDrr128,     X86::VPABSDrm128,         0 },
615    { X86::VPABSWrr128,     X86::VPABSWrm128,         0 },
616    { X86::VPCMPESTRIrr,    X86::VPCMPESTRIrm,        0 },
617    { X86::VPCMPESTRM128rr, X86::VPCMPESTRM128rm,     0 },
618    { X86::VPCMPISTRIrr,    X86::VPCMPISTRIrm,        0 },
619    { X86::VPCMPISTRM128rr, X86::VPCMPISTRM128rm,     0 },
620    { X86::VPHMINPOSUWrr128, X86::VPHMINPOSUWrm128,   0 },
621    { X86::VPERMILPDri,     X86::VPERMILPDmi,         0 },
622    { X86::VPERMILPSri,     X86::VPERMILPSmi,         0 },
623    { X86::VPMOVSXBDrr,     X86::VPMOVSXBDrm,         0 },
624    { X86::VPMOVSXBQrr,     X86::VPMOVSXBQrm,         0 },
625    { X86::VPMOVSXBWrr,     X86::VPMOVSXBWrm,         0 },
626    { X86::VPMOVSXDQrr,     X86::VPMOVSXDQrm,         0 },
627    { X86::VPMOVSXWDrr,     X86::VPMOVSXWDrm,         0 },
628    { X86::VPMOVSXWQrr,     X86::VPMOVSXWQrm,         0 },
629    { X86::VPMOVZXBDrr,     X86::VPMOVZXBDrm,         0 },
630    { X86::VPMOVZXBQrr,     X86::VPMOVZXBQrm,         0 },
631    { X86::VPMOVZXBWrr,     X86::VPMOVZXBWrm,         0 },
632    { X86::VPMOVZXDQrr,     X86::VPMOVZXDQrm,         0 },
633    { X86::VPMOVZXWDrr,     X86::VPMOVZXWDrm,         0 },
634    { X86::VPMOVZXWQrr,     X86::VPMOVZXWQrm,         0 },
635    { X86::VPSHUFDri,       X86::VPSHUFDmi,           0 },
636    { X86::VPSHUFHWri,      X86::VPSHUFHWmi,          0 },
637    { X86::VPSHUFLWri,      X86::VPSHUFLWmi,          0 },
638    { X86::VPTESTrr,        X86::VPTESTrm,            0 },
639    { X86::VRCPPSr,         X86::VRCPPSm,             0 },
640    { X86::VROUNDPDr,       X86::VROUNDPDm,           0 },
641    { X86::VROUNDPSr,       X86::VROUNDPSm,           0 },
642    { X86::VRSQRTPSr,       X86::VRSQRTPSm,           0 },
643    { X86::VSQRTPDr,        X86::VSQRTPDm,            0 },
644    { X86::VSQRTPSr,        X86::VSQRTPSm,            0 },
645    { X86::VTESTPDrr,       X86::VTESTPDrm,           0 },
646    { X86::VTESTPSrr,       X86::VTESTPSrm,           0 },
647    { X86::VUCOMISDrr,      X86::VUCOMISDrm,          0 },
648    { X86::VUCOMISSrr,      X86::VUCOMISSrm,          0 },
649
650    // AVX 256-bit foldable instructions
651    { X86::VCVTDQ2PDYrr,    X86::VCVTDQ2PDYrm,        0 },
652    { X86::VCVTDQ2PSYrr,    X86::VCVTDQ2PSYrm,        0 },
653    { X86::VCVTPD2DQYrr,    X86::VCVTPD2DQYrm,        0 },
654    { X86::VCVTPD2PSYrr,    X86::VCVTPD2PSYrm,        0 },
655    { X86::VCVTPS2DQYrr,    X86::VCVTPS2DQYrm,        0 },
656    { X86::VCVTPS2PDYrr,    X86::VCVTPS2PDYrm,        0 },
657    { X86::VCVTTPD2DQYrr,   X86::VCVTTPD2DQYrm,       0 },
658    { X86::VCVTTPS2DQYrr,   X86::VCVTTPS2DQYrm,       0 },
659    { X86::VMOVAPDYrr,      X86::VMOVAPDYrm,          TB_ALIGN_32 },
660    { X86::VMOVAPSYrr,      X86::VMOVAPSYrm,          TB_ALIGN_32 },
661    { X86::VMOVDDUPYrr,     X86::VMOVDDUPYrm,         0 },
662    { X86::VMOVDQAYrr,      X86::VMOVDQAYrm,          TB_ALIGN_32 },
663    { X86::VMOVSLDUPYrr,    X86::VMOVSLDUPYrm,        0 },
664    { X86::VMOVSHDUPYrr,    X86::VMOVSHDUPYrm,        0 },
665    { X86::VMOVUPDYrr,      X86::VMOVUPDYrm,          0 },
666    { X86::VMOVUPSYrr,      X86::VMOVUPSYrm,          0 },
667    { X86::VPERMILPDYri,    X86::VPERMILPDYmi,        0 },
668    { X86::VPERMILPSYri,    X86::VPERMILPSYmi,        0 },
669    { X86::VPTESTYrr,       X86::VPTESTYrm,           0 },
670    { X86::VRCPPSYr,        X86::VRCPPSYm,            0 },
671    { X86::VROUNDYPDr,      X86::VROUNDYPDm,          0 },
672    { X86::VROUNDYPSr,      X86::VROUNDYPSm,          0 },
673    { X86::VRSQRTPSYr,      X86::VRSQRTPSYm,          0 },
674    { X86::VSQRTPDYr,       X86::VSQRTPDYm,           0 },
675    { X86::VSQRTPSYr,       X86::VSQRTPSYm,           0 },
676    { X86::VTESTPDYrr,      X86::VTESTPDYrm,          0 },
677    { X86::VTESTPSYrr,      X86::VTESTPSYrm,          0 },
678
679    // AVX2 foldable instructions
680
681    // VBROADCASTS{SD}rr register instructions were an AVX2 addition while the
682    // VBROADCASTS{SD}rm memory instructions were available from AVX1.
683    // TB_NO_REVERSE prevents unfolding from introducing an illegal instruction
684    // on AVX1 targets. The VPBROADCAST instructions are all AVX2 instructions
685    // so they don't need an equivalent limitation.
686    { X86::VBROADCASTSSrr,  X86::VBROADCASTSSrm,      TB_NO_REVERSE },
687    { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm,     TB_NO_REVERSE },
688    { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm,     TB_NO_REVERSE },
689    { X86::VPABSBrr256,     X86::VPABSBrm256,         0 },
690    { X86::VPABSDrr256,     X86::VPABSDrm256,         0 },
691    { X86::VPABSWrr256,     X86::VPABSWrm256,         0 },
692    { X86::VPBROADCASTBrr,  X86::VPBROADCASTBrm,      0 },
693    { X86::VPBROADCASTBYrr, X86::VPBROADCASTBYrm,     0 },
694    { X86::VPBROADCASTDrr,  X86::VPBROADCASTDrm,      0 },
695    { X86::VPBROADCASTDYrr, X86::VPBROADCASTDYrm,     0 },
696    { X86::VPBROADCASTQrr,  X86::VPBROADCASTQrm,      0 },
697    { X86::VPBROADCASTQYrr, X86::VPBROADCASTQYrm,     0 },
698    { X86::VPBROADCASTWrr,  X86::VPBROADCASTWrm,      0 },
699    { X86::VPBROADCASTWYrr, X86::VPBROADCASTWYrm,     0 },
700    { X86::VPERMPDYri,      X86::VPERMPDYmi,          0 },
701    { X86::VPERMQYri,       X86::VPERMQYmi,           0 },
702    { X86::VPMOVSXBDYrr,    X86::VPMOVSXBDYrm,        0 },
703    { X86::VPMOVSXBQYrr,    X86::VPMOVSXBQYrm,        0 },
704    { X86::VPMOVSXBWYrr,    X86::VPMOVSXBWYrm,        0 },
705    { X86::VPMOVSXDQYrr,    X86::VPMOVSXDQYrm,        0 },
706    { X86::VPMOVSXWDYrr,    X86::VPMOVSXWDYrm,        0 },
707    { X86::VPMOVSXWQYrr,    X86::VPMOVSXWQYrm,        0 },
708    { X86::VPMOVZXBDYrr,    X86::VPMOVZXBDYrm,        0 },
709    { X86::VPMOVZXBQYrr,    X86::VPMOVZXBQYrm,        0 },
710    { X86::VPMOVZXBWYrr,    X86::VPMOVZXBWYrm,        0 },
711    { X86::VPMOVZXDQYrr,    X86::VPMOVZXDQYrm,        0 },
712    { X86::VPMOVZXWDYrr,    X86::VPMOVZXWDYrm,        0 },
713    { X86::VPMOVZXWQYrr,    X86::VPMOVZXWQYrm,        0 },
714    { X86::VPSHUFDYri,      X86::VPSHUFDYmi,          0 },
715    { X86::VPSHUFHWYri,     X86::VPSHUFHWYmi,         0 },
716    { X86::VPSHUFLWYri,     X86::VPSHUFLWYmi,         0 },
717
718    // XOP foldable instructions
719    { X86::VFRCZPDrr,          X86::VFRCZPDrm,        0 },
720    { X86::VFRCZPDrrY,         X86::VFRCZPDrmY,       0 },
721    { X86::VFRCZPSrr,          X86::VFRCZPSrm,        0 },
722    { X86::VFRCZPSrrY,         X86::VFRCZPSrmY,       0 },
723    { X86::VFRCZSDrr,          X86::VFRCZSDrm,        0 },
724    { X86::VFRCZSSrr,          X86::VFRCZSSrm,        0 },
725    { X86::VPHADDBDrr,         X86::VPHADDBDrm,       0 },
726    { X86::VPHADDBQrr,         X86::VPHADDBQrm,       0 },
727    { X86::VPHADDBWrr,         X86::VPHADDBWrm,       0 },
728    { X86::VPHADDDQrr,         X86::VPHADDDQrm,       0 },
729    { X86::VPHADDWDrr,         X86::VPHADDWDrm,       0 },
730    { X86::VPHADDWQrr,         X86::VPHADDWQrm,       0 },
731    { X86::VPHADDUBDrr,        X86::VPHADDUBDrm,      0 },
732    { X86::VPHADDUBQrr,        X86::VPHADDUBQrm,      0 },
733    { X86::VPHADDUBWrr,        X86::VPHADDUBWrm,      0 },
734    { X86::VPHADDUDQrr,        X86::VPHADDUDQrm,      0 },
735    { X86::VPHADDUWDrr,        X86::VPHADDUWDrm,      0 },
736    { X86::VPHADDUWQrr,        X86::VPHADDUWQrm,      0 },
737    { X86::VPHSUBBWrr,         X86::VPHSUBBWrm,       0 },
738    { X86::VPHSUBDQrr,         X86::VPHSUBDQrm,       0 },
739    { X86::VPHSUBWDrr,         X86::VPHSUBWDrm,       0 },
740    { X86::VPROTBri,           X86::VPROTBmi,         0 },
741    { X86::VPROTBrr,           X86::VPROTBmr,         0 },
742    { X86::VPROTDri,           X86::VPROTDmi,         0 },
743    { X86::VPROTDrr,           X86::VPROTDmr,         0 },
744    { X86::VPROTQri,           X86::VPROTQmi,         0 },
745    { X86::VPROTQrr,           X86::VPROTQmr,         0 },
746    { X86::VPROTWri,           X86::VPROTWmi,         0 },
747    { X86::VPROTWrr,           X86::VPROTWmr,         0 },
748    { X86::VPSHABrr,           X86::VPSHABmr,         0 },
749    { X86::VPSHADrr,           X86::VPSHADmr,         0 },
750    { X86::VPSHAQrr,           X86::VPSHAQmr,         0 },
751    { X86::VPSHAWrr,           X86::VPSHAWmr,         0 },
752    { X86::VPSHLBrr,           X86::VPSHLBmr,         0 },
753    { X86::VPSHLDrr,           X86::VPSHLDmr,         0 },
754    { X86::VPSHLQrr,           X86::VPSHLQmr,         0 },
755    { X86::VPSHLWrr,           X86::VPSHLWmr,         0 },
756
757    // BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions
758    { X86::BEXTR32rr,       X86::BEXTR32rm,           0 },
759    { X86::BEXTR64rr,       X86::BEXTR64rm,           0 },
760    { X86::BEXTRI32ri,      X86::BEXTRI32mi,          0 },
761    { X86::BEXTRI64ri,      X86::BEXTRI64mi,          0 },
762    { X86::BLCFILL32rr,     X86::BLCFILL32rm,         0 },
763    { X86::BLCFILL64rr,     X86::BLCFILL64rm,         0 },
764    { X86::BLCI32rr,        X86::BLCI32rm,            0 },
765    { X86::BLCI64rr,        X86::BLCI64rm,            0 },
766    { X86::BLCIC32rr,       X86::BLCIC32rm,           0 },
767    { X86::BLCIC64rr,       X86::BLCIC64rm,           0 },
768    { X86::BLCMSK32rr,      X86::BLCMSK32rm,          0 },
769    { X86::BLCMSK64rr,      X86::BLCMSK64rm,          0 },
770    { X86::BLCS32rr,        X86::BLCS32rm,            0 },
771    { X86::BLCS64rr,        X86::BLCS64rm,            0 },
772    { X86::BLSFILL32rr,     X86::BLSFILL32rm,         0 },
773    { X86::BLSFILL64rr,     X86::BLSFILL64rm,         0 },
774    { X86::BLSI32rr,        X86::BLSI32rm,            0 },
775    { X86::BLSI64rr,        X86::BLSI64rm,            0 },
776    { X86::BLSIC32rr,       X86::BLSIC32rm,           0 },
777    { X86::BLSIC64rr,       X86::BLSIC64rm,           0 },
778    { X86::BLSMSK32rr,      X86::BLSMSK32rm,          0 },
779    { X86::BLSMSK64rr,      X86::BLSMSK64rm,          0 },
780    { X86::BLSR32rr,        X86::BLSR32rm,            0 },
781    { X86::BLSR64rr,        X86::BLSR64rm,            0 },
782    { X86::BZHI32rr,        X86::BZHI32rm,            0 },
783    { X86::BZHI64rr,        X86::BZHI64rm,            0 },
784    { X86::LZCNT16rr,       X86::LZCNT16rm,           0 },
785    { X86::LZCNT32rr,       X86::LZCNT32rm,           0 },
786    { X86::LZCNT64rr,       X86::LZCNT64rm,           0 },
787    { X86::POPCNT16rr,      X86::POPCNT16rm,          0 },
788    { X86::POPCNT32rr,      X86::POPCNT32rm,          0 },
789    { X86::POPCNT64rr,      X86::POPCNT64rm,          0 },
790    { X86::RORX32ri,        X86::RORX32mi,            0 },
791    { X86::RORX64ri,        X86::RORX64mi,            0 },
792    { X86::SARX32rr,        X86::SARX32rm,            0 },
793    { X86::SARX64rr,        X86::SARX64rm,            0 },
794    { X86::SHRX32rr,        X86::SHRX32rm,            0 },
795    { X86::SHRX64rr,        X86::SHRX64rm,            0 },
796    { X86::SHLX32rr,        X86::SHLX32rm,            0 },
797    { X86::SHLX64rr,        X86::SHLX64rm,            0 },
798    { X86::T1MSKC32rr,      X86::T1MSKC32rm,          0 },
799    { X86::T1MSKC64rr,      X86::T1MSKC64rm,          0 },
800    { X86::TZCNT16rr,       X86::TZCNT16rm,           0 },
801    { X86::TZCNT32rr,       X86::TZCNT32rm,           0 },
802    { X86::TZCNT64rr,       X86::TZCNT64rm,           0 },
803    { X86::TZMSK32rr,       X86::TZMSK32rm,           0 },
804    { X86::TZMSK64rr,       X86::TZMSK64rm,           0 },
805
806    // AVX-512 foldable instructions
807    { X86::VMOV64toPQIZrr,  X86::VMOVQI2PQIZrm,       0 },
808    { X86::VMOVDI2SSZrr,    X86::VMOVDI2SSZrm,        0 },
809    { X86::VMOVAPDZrr,      X86::VMOVAPDZrm,          TB_ALIGN_64 },
810    { X86::VMOVAPSZrr,      X86::VMOVAPSZrm,          TB_ALIGN_64 },
811    { X86::VMOVDQA32Zrr,    X86::VMOVDQA32Zrm,        TB_ALIGN_64 },
812    { X86::VMOVDQA64Zrr,    X86::VMOVDQA64Zrm,        TB_ALIGN_64 },
813    { X86::VMOVDQU8Zrr,     X86::VMOVDQU8Zrm,         0 },
814    { X86::VMOVDQU16Zrr,    X86::VMOVDQU16Zrm,        0 },
815    { X86::VMOVDQU32Zrr,    X86::VMOVDQU32Zrm,        0 },
816    { X86::VMOVDQU64Zrr,    X86::VMOVDQU64Zrm,        0 },
817    { X86::VMOVUPDZrr,      X86::VMOVUPDZrm,          0 },
818    { X86::VMOVUPSZrr,      X86::VMOVUPSZrm,          0 },
819    { X86::VPABSDZrr,       X86::VPABSDZrm,           0 },
820    { X86::VPABSQZrr,       X86::VPABSQZrm,           0 },
821    { X86::VBROADCASTSSZr,  X86::VBROADCASTSSZm,      TB_NO_REVERSE },
822    { X86::VBROADCASTSDZr,  X86::VBROADCASTSDZm,      TB_NO_REVERSE },
823
824    // AVX-512 foldable instructions (256-bit versions)
825    { X86::VMOVAPDZ256rr,      X86::VMOVAPDZ256rm,          TB_ALIGN_32 },
826    { X86::VMOVAPSZ256rr,      X86::VMOVAPSZ256rm,          TB_ALIGN_32 },
827    { X86::VMOVDQA32Z256rr,    X86::VMOVDQA32Z256rm,        TB_ALIGN_32 },
828    { X86::VMOVDQA64Z256rr,    X86::VMOVDQA64Z256rm,        TB_ALIGN_32 },
829    { X86::VMOVDQU8Z256rr,     X86::VMOVDQU8Z256rm,         0 },
830    { X86::VMOVDQU16Z256rr,    X86::VMOVDQU16Z256rm,        0 },
831    { X86::VMOVDQU32Z256rr,    X86::VMOVDQU32Z256rm,        0 },
832    { X86::VMOVDQU64Z256rr,    X86::VMOVDQU64Z256rm,        0 },
833    { X86::VMOVUPDZ256rr,      X86::VMOVUPDZ256rm,          0 },
834    { X86::VMOVUPSZ256rr,      X86::VMOVUPSZ256rm,          0 },
835    { X86::VBROADCASTSSZ256r,  X86::VBROADCASTSSZ256m,      TB_NO_REVERSE },
836    { X86::VBROADCASTSDZ256r,  X86::VBROADCASTSDZ256m,      TB_NO_REVERSE },
837
838    // AVX-512 foldable instructions (256-bit versions)
839    { X86::VMOVAPDZ128rr,      X86::VMOVAPDZ128rm,          TB_ALIGN_16 },
840    { X86::VMOVAPSZ128rr,      X86::VMOVAPSZ128rm,          TB_ALIGN_16 },
841    { X86::VMOVDQA32Z128rr,    X86::VMOVDQA32Z128rm,        TB_ALIGN_16 },
842    { X86::VMOVDQA64Z128rr,    X86::VMOVDQA64Z128rm,        TB_ALIGN_16 },
843    { X86::VMOVDQU8Z128rr,     X86::VMOVDQU8Z128rm,         0 },
844    { X86::VMOVDQU16Z128rr,    X86::VMOVDQU16Z128rm,        0 },
845    { X86::VMOVDQU32Z128rr,    X86::VMOVDQU32Z128rm,        0 },
846    { X86::VMOVDQU64Z128rr,    X86::VMOVDQU64Z128rm,        0 },
847    { X86::VMOVUPDZ128rr,      X86::VMOVUPDZ128rm,          0 },
848    { X86::VMOVUPSZ128rr,      X86::VMOVUPSZ128rm,          0 },
849    { X86::VBROADCASTSSZ128r,  X86::VBROADCASTSSZ128m,      TB_NO_REVERSE },
850
851    // F16C foldable instructions
852    { X86::VCVTPH2PSrr,        X86::VCVTPH2PSrm,            0 },
853    { X86::VCVTPH2PSYrr,       X86::VCVTPH2PSYrm,           0 },
854
855    // AES foldable instructions
856    { X86::AESIMCrr,              X86::AESIMCrm,              TB_ALIGN_16 },
857    { X86::AESKEYGENASSIST128rr,  X86::AESKEYGENASSIST128rm,  TB_ALIGN_16 },
858    { X86::VAESIMCrr,             X86::VAESIMCrm,             0 },
859    { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, 0 }
860  };
861
862  for (X86MemoryFoldTableEntry Entry : MemoryFoldTable1) {
863    AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
864                  Entry.RegOp, Entry.MemOp,
865                  // Index 1, folded load
866                  Entry.Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
867  }
868
869  static const X86MemoryFoldTableEntry MemoryFoldTable2[] = {
870    { X86::ADC32rr,         X86::ADC32rm,       0 },
871    { X86::ADC64rr,         X86::ADC64rm,       0 },
872    { X86::ADD16rr,         X86::ADD16rm,       0 },
873    { X86::ADD16rr_DB,      X86::ADD16rm,       TB_NO_REVERSE },
874    { X86::ADD32rr,         X86::ADD32rm,       0 },
875    { X86::ADD32rr_DB,      X86::ADD32rm,       TB_NO_REVERSE },
876    { X86::ADD64rr,         X86::ADD64rm,       0 },
877    { X86::ADD64rr_DB,      X86::ADD64rm,       TB_NO_REVERSE },
878    { X86::ADD8rr,          X86::ADD8rm,        0 },
879    { X86::ADDPDrr,         X86::ADDPDrm,       TB_ALIGN_16 },
880    { X86::ADDPSrr,         X86::ADDPSrm,       TB_ALIGN_16 },
881    { X86::ADDSDrr,         X86::ADDSDrm,       0 },
882    { X86::ADDSDrr_Int,     X86::ADDSDrm_Int,   0 },
883    { X86::ADDSSrr,         X86::ADDSSrm,       0 },
884    { X86::ADDSSrr_Int,     X86::ADDSSrm_Int,   0 },
885    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm,    TB_ALIGN_16 },
886    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm,    TB_ALIGN_16 },
887    { X86::AND16rr,         X86::AND16rm,       0 },
888    { X86::AND32rr,         X86::AND32rm,       0 },
889    { X86::AND64rr,         X86::AND64rm,       0 },
890    { X86::AND8rr,          X86::AND8rm,        0 },
891    { X86::ANDNPDrr,        X86::ANDNPDrm,      TB_ALIGN_16 },
892    { X86::ANDNPSrr,        X86::ANDNPSrm,      TB_ALIGN_16 },
893    { X86::ANDPDrr,         X86::ANDPDrm,       TB_ALIGN_16 },
894    { X86::ANDPSrr,         X86::ANDPSrm,       TB_ALIGN_16 },
895    { X86::BLENDPDrri,      X86::BLENDPDrmi,    TB_ALIGN_16 },
896    { X86::BLENDPSrri,      X86::BLENDPSrmi,    TB_ALIGN_16 },
897    { X86::BLENDVPDrr0,     X86::BLENDVPDrm0,   TB_ALIGN_16 },
898    { X86::BLENDVPSrr0,     X86::BLENDVPSrm0,   TB_ALIGN_16 },
899    { X86::CMOVA16rr,       X86::CMOVA16rm,     0 },
900    { X86::CMOVA32rr,       X86::CMOVA32rm,     0 },
901    { X86::CMOVA64rr,       X86::CMOVA64rm,     0 },
902    { X86::CMOVAE16rr,      X86::CMOVAE16rm,    0 },
903    { X86::CMOVAE32rr,      X86::CMOVAE32rm,    0 },
904    { X86::CMOVAE64rr,      X86::CMOVAE64rm,    0 },
905    { X86::CMOVB16rr,       X86::CMOVB16rm,     0 },
906    { X86::CMOVB32rr,       X86::CMOVB32rm,     0 },
907    { X86::CMOVB64rr,       X86::CMOVB64rm,     0 },
908    { X86::CMOVBE16rr,      X86::CMOVBE16rm,    0 },
909    { X86::CMOVBE32rr,      X86::CMOVBE32rm,    0 },
910    { X86::CMOVBE64rr,      X86::CMOVBE64rm,    0 },
911    { X86::CMOVE16rr,       X86::CMOVE16rm,     0 },
912    { X86::CMOVE32rr,       X86::CMOVE32rm,     0 },
913    { X86::CMOVE64rr,       X86::CMOVE64rm,     0 },
914    { X86::CMOVG16rr,       X86::CMOVG16rm,     0 },
915    { X86::CMOVG32rr,       X86::CMOVG32rm,     0 },
916    { X86::CMOVG64rr,       X86::CMOVG64rm,     0 },
917    { X86::CMOVGE16rr,      X86::CMOVGE16rm,    0 },
918    { X86::CMOVGE32rr,      X86::CMOVGE32rm,    0 },
919    { X86::CMOVGE64rr,      X86::CMOVGE64rm,    0 },
920    { X86::CMOVL16rr,       X86::CMOVL16rm,     0 },
921    { X86::CMOVL32rr,       X86::CMOVL32rm,     0 },
922    { X86::CMOVL64rr,       X86::CMOVL64rm,     0 },
923    { X86::CMOVLE16rr,      X86::CMOVLE16rm,    0 },
924    { X86::CMOVLE32rr,      X86::CMOVLE32rm,    0 },
925    { X86::CMOVLE64rr,      X86::CMOVLE64rm,    0 },
926    { X86::CMOVNE16rr,      X86::CMOVNE16rm,    0 },
927    { X86::CMOVNE32rr,      X86::CMOVNE32rm,    0 },
928    { X86::CMOVNE64rr,      X86::CMOVNE64rm,    0 },
929    { X86::CMOVNO16rr,      X86::CMOVNO16rm,    0 },
930    { X86::CMOVNO32rr,      X86::CMOVNO32rm,    0 },
931    { X86::CMOVNO64rr,      X86::CMOVNO64rm,    0 },
932    { X86::CMOVNP16rr,      X86::CMOVNP16rm,    0 },
933    { X86::CMOVNP32rr,      X86::CMOVNP32rm,    0 },
934    { X86::CMOVNP64rr,      X86::CMOVNP64rm,    0 },
935    { X86::CMOVNS16rr,      X86::CMOVNS16rm,    0 },
936    { X86::CMOVNS32rr,      X86::CMOVNS32rm,    0 },
937    { X86::CMOVNS64rr,      X86::CMOVNS64rm,    0 },
938    { X86::CMOVO16rr,       X86::CMOVO16rm,     0 },
939    { X86::CMOVO32rr,       X86::CMOVO32rm,     0 },
940    { X86::CMOVO64rr,       X86::CMOVO64rm,     0 },
941    { X86::CMOVP16rr,       X86::CMOVP16rm,     0 },
942    { X86::CMOVP32rr,       X86::CMOVP32rm,     0 },
943    { X86::CMOVP64rr,       X86::CMOVP64rm,     0 },
944    { X86::CMOVS16rr,       X86::CMOVS16rm,     0 },
945    { X86::CMOVS32rr,       X86::CMOVS32rm,     0 },
946    { X86::CMOVS64rr,       X86::CMOVS64rm,     0 },
947    { X86::CMPPDrri,        X86::CMPPDrmi,      TB_ALIGN_16 },
948    { X86::CMPPSrri,        X86::CMPPSrmi,      TB_ALIGN_16 },
949    { X86::CMPSDrr,         X86::CMPSDrm,       0 },
950    { X86::CMPSSrr,         X86::CMPSSrm,       0 },
951    { X86::CRC32r32r32,     X86::CRC32r32m32,   0 },
952    { X86::CRC32r64r64,     X86::CRC32r64m64,   0 },
953    { X86::DIVPDrr,         X86::DIVPDrm,       TB_ALIGN_16 },
954    { X86::DIVPSrr,         X86::DIVPSrm,       TB_ALIGN_16 },
955    { X86::DIVSDrr,         X86::DIVSDrm,       0 },
956    { X86::DIVSDrr_Int,     X86::DIVSDrm_Int,   0 },
957    { X86::DIVSSrr,         X86::DIVSSrm,       0 },
958    { X86::DIVSSrr_Int,     X86::DIVSSrm_Int,   0 },
959    { X86::DPPDrri,         X86::DPPDrmi,       TB_ALIGN_16 },
960    { X86::DPPSrri,         X86::DPPSrmi,       TB_ALIGN_16 },
961
962    // Do not fold Fs* scalar logical op loads because there are no scalar
963    // load variants for these instructions. When folded, the load is required
964    // to be 128-bits, so the load size would not match.
965
966    { X86::FvANDNPDrr,      X86::FvANDNPDrm,    TB_ALIGN_16 },
967    { X86::FvANDNPSrr,      X86::FvANDNPSrm,    TB_ALIGN_16 },
968    { X86::FvANDPDrr,       X86::FvANDPDrm,     TB_ALIGN_16 },
969    { X86::FvANDPSrr,       X86::FvANDPSrm,     TB_ALIGN_16 },
970    { X86::FvORPDrr,        X86::FvORPDrm,      TB_ALIGN_16 },
971    { X86::FvORPSrr,        X86::FvORPSrm,      TB_ALIGN_16 },
972    { X86::FvXORPDrr,       X86::FvXORPDrm,     TB_ALIGN_16 },
973    { X86::FvXORPSrr,       X86::FvXORPSrm,     TB_ALIGN_16 },
974    { X86::HADDPDrr,        X86::HADDPDrm,      TB_ALIGN_16 },
975    { X86::HADDPSrr,        X86::HADDPSrm,      TB_ALIGN_16 },
976    { X86::HSUBPDrr,        X86::HSUBPDrm,      TB_ALIGN_16 },
977    { X86::HSUBPSrr,        X86::HSUBPSrm,      TB_ALIGN_16 },
978    { X86::IMUL16rr,        X86::IMUL16rm,      0 },
979    { X86::IMUL32rr,        X86::IMUL32rm,      0 },
980    { X86::IMUL64rr,        X86::IMUL64rm,      0 },
981    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm,   0 },
982    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm,   0 },
983    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm,      0 },
984    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm,    0 },
985    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm,      0 },
986    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm,    0 },
987    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm,      0 },
988    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm,      0 },
989    { X86::MAXPDrr,         X86::MAXPDrm,       TB_ALIGN_16 },
990    { X86::MAXPSrr,         X86::MAXPSrm,       TB_ALIGN_16 },
991    { X86::MAXSDrr,         X86::MAXSDrm,       0 },
992    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int,   0 },
993    { X86::MAXSSrr,         X86::MAXSSrm,       0 },
994    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int,   0 },
995    { X86::MINPDrr,         X86::MINPDrm,       TB_ALIGN_16 },
996    { X86::MINPSrr,         X86::MINPSrm,       TB_ALIGN_16 },
997    { X86::MINSDrr,         X86::MINSDrm,       0 },
998    { X86::MINSDrr_Int,     X86::MINSDrm_Int,   0 },
999    { X86::MINSSrr,         X86::MINSSrm,       0 },
1000    { X86::MINSSrr_Int,     X86::MINSSrm_Int,   0 },
1001    { X86::MPSADBWrri,      X86::MPSADBWrmi,    TB_ALIGN_16 },
1002    { X86::MULPDrr,         X86::MULPDrm,       TB_ALIGN_16 },
1003    { X86::MULPSrr,         X86::MULPSrm,       TB_ALIGN_16 },
1004    { X86::MULSDrr,         X86::MULSDrm,       0 },
1005    { X86::MULSDrr_Int,     X86::MULSDrm_Int,   0 },
1006    { X86::MULSSrr,         X86::MULSSrm,       0 },
1007    { X86::MULSSrr_Int,     X86::MULSSrm_Int,   0 },
1008    { X86::OR16rr,          X86::OR16rm,        0 },
1009    { X86::OR32rr,          X86::OR32rm,        0 },
1010    { X86::OR64rr,          X86::OR64rm,        0 },
1011    { X86::OR8rr,           X86::OR8rm,         0 },
1012    { X86::ORPDrr,          X86::ORPDrm,        TB_ALIGN_16 },
1013    { X86::ORPSrr,          X86::ORPSrm,        TB_ALIGN_16 },
1014    { X86::PACKSSDWrr,      X86::PACKSSDWrm,    TB_ALIGN_16 },
1015    { X86::PACKSSWBrr,      X86::PACKSSWBrm,    TB_ALIGN_16 },
1016    { X86::PACKUSDWrr,      X86::PACKUSDWrm,    TB_ALIGN_16 },
1017    { X86::PACKUSWBrr,      X86::PACKUSWBrm,    TB_ALIGN_16 },
1018    { X86::PADDBrr,         X86::PADDBrm,       TB_ALIGN_16 },
1019    { X86::PADDDrr,         X86::PADDDrm,       TB_ALIGN_16 },
1020    { X86::PADDQrr,         X86::PADDQrm,       TB_ALIGN_16 },
1021    { X86::PADDSBrr,        X86::PADDSBrm,      TB_ALIGN_16 },
1022    { X86::PADDSWrr,        X86::PADDSWrm,      TB_ALIGN_16 },
1023    { X86::PADDUSBrr,       X86::PADDUSBrm,     TB_ALIGN_16 },
1024    { X86::PADDUSWrr,       X86::PADDUSWrm,     TB_ALIGN_16 },
1025    { X86::PADDWrr,         X86::PADDWrm,       TB_ALIGN_16 },
1026    { X86::PALIGNR128rr,    X86::PALIGNR128rm,  TB_ALIGN_16 },
1027    { X86::PANDNrr,         X86::PANDNrm,       TB_ALIGN_16 },
1028    { X86::PANDrr,          X86::PANDrm,        TB_ALIGN_16 },
1029    { X86::PAVGBrr,         X86::PAVGBrm,       TB_ALIGN_16 },
1030    { X86::PAVGWrr,         X86::PAVGWrm,       TB_ALIGN_16 },
1031    { X86::PBLENDVBrr0,     X86::PBLENDVBrm0,   TB_ALIGN_16 },
1032    { X86::PBLENDWrri,      X86::PBLENDWrmi,    TB_ALIGN_16 },
1033    { X86::PCLMULQDQrr,     X86::PCLMULQDQrm,   TB_ALIGN_16 },
1034    { X86::PCMPEQBrr,       X86::PCMPEQBrm,     TB_ALIGN_16 },
1035    { X86::PCMPEQDrr,       X86::PCMPEQDrm,     TB_ALIGN_16 },
1036    { X86::PCMPEQQrr,       X86::PCMPEQQrm,     TB_ALIGN_16 },
1037    { X86::PCMPEQWrr,       X86::PCMPEQWrm,     TB_ALIGN_16 },
1038    { X86::PCMPGTBrr,       X86::PCMPGTBrm,     TB_ALIGN_16 },
1039    { X86::PCMPGTDrr,       X86::PCMPGTDrm,     TB_ALIGN_16 },
1040    { X86::PCMPGTQrr,       X86::PCMPGTQrm,     TB_ALIGN_16 },
1041    { X86::PCMPGTWrr,       X86::PCMPGTWrm,     TB_ALIGN_16 },
1042    { X86::PHADDDrr,        X86::PHADDDrm,      TB_ALIGN_16 },
1043    { X86::PHADDWrr,        X86::PHADDWrm,      TB_ALIGN_16 },
1044    { X86::PHADDSWrr128,    X86::PHADDSWrm128,  TB_ALIGN_16 },
1045    { X86::PHSUBDrr,        X86::PHSUBDrm,      TB_ALIGN_16 },
1046    { X86::PHSUBSWrr128,    X86::PHSUBSWrm128,  TB_ALIGN_16 },
1047    { X86::PHSUBWrr,        X86::PHSUBWrm,      TB_ALIGN_16 },
1048    { X86::PINSRBrr,        X86::PINSRBrm,      0 },
1049    { X86::PINSRDrr,        X86::PINSRDrm,      0 },
1050    { X86::PINSRQrr,        X86::PINSRQrm,      0 },
1051    { X86::PINSRWrri,       X86::PINSRWrmi,     0 },
1052    { X86::PMADDUBSWrr128,  X86::PMADDUBSWrm128, TB_ALIGN_16 },
1053    { X86::PMADDWDrr,       X86::PMADDWDrm,     TB_ALIGN_16 },
1054    { X86::PMAXSWrr,        X86::PMAXSWrm,      TB_ALIGN_16 },
1055    { X86::PMAXUBrr,        X86::PMAXUBrm,      TB_ALIGN_16 },
1056    { X86::PMINSWrr,        X86::PMINSWrm,      TB_ALIGN_16 },
1057    { X86::PMINUBrr,        X86::PMINUBrm,      TB_ALIGN_16 },
1058    { X86::PMINSBrr,        X86::PMINSBrm,      TB_ALIGN_16 },
1059    { X86::PMINSDrr,        X86::PMINSDrm,      TB_ALIGN_16 },
1060    { X86::PMINUDrr,        X86::PMINUDrm,      TB_ALIGN_16 },
1061    { X86::PMINUWrr,        X86::PMINUWrm,      TB_ALIGN_16 },
1062    { X86::PMAXSBrr,        X86::PMAXSBrm,      TB_ALIGN_16 },
1063    { X86::PMAXSDrr,        X86::PMAXSDrm,      TB_ALIGN_16 },
1064    { X86::PMAXUDrr,        X86::PMAXUDrm,      TB_ALIGN_16 },
1065    { X86::PMAXUWrr,        X86::PMAXUWrm,      TB_ALIGN_16 },
1066    { X86::PMULDQrr,        X86::PMULDQrm,      TB_ALIGN_16 },
1067    { X86::PMULHRSWrr128,   X86::PMULHRSWrm128, TB_ALIGN_16 },
1068    { X86::PMULHUWrr,       X86::PMULHUWrm,     TB_ALIGN_16 },
1069    { X86::PMULHWrr,        X86::PMULHWrm,      TB_ALIGN_16 },
1070    { X86::PMULLDrr,        X86::PMULLDrm,      TB_ALIGN_16 },
1071    { X86::PMULLWrr,        X86::PMULLWrm,      TB_ALIGN_16 },
1072    { X86::PMULUDQrr,       X86::PMULUDQrm,     TB_ALIGN_16 },
1073    { X86::PORrr,           X86::PORrm,         TB_ALIGN_16 },
1074    { X86::PSADBWrr,        X86::PSADBWrm,      TB_ALIGN_16 },
1075    { X86::PSHUFBrr,        X86::PSHUFBrm,      TB_ALIGN_16 },
1076    { X86::PSIGNBrr,        X86::PSIGNBrm,      TB_ALIGN_16 },
1077    { X86::PSIGNWrr,        X86::PSIGNWrm,      TB_ALIGN_16 },
1078    { X86::PSIGNDrr,        X86::PSIGNDrm,      TB_ALIGN_16 },
1079    { X86::PSLLDrr,         X86::PSLLDrm,       TB_ALIGN_16 },
1080    { X86::PSLLQrr,         X86::PSLLQrm,       TB_ALIGN_16 },
1081    { X86::PSLLWrr,         X86::PSLLWrm,       TB_ALIGN_16 },
1082    { X86::PSRADrr,         X86::PSRADrm,       TB_ALIGN_16 },
1083    { X86::PSRAWrr,         X86::PSRAWrm,       TB_ALIGN_16 },
1084    { X86::PSRLDrr,         X86::PSRLDrm,       TB_ALIGN_16 },
1085    { X86::PSRLQrr,         X86::PSRLQrm,       TB_ALIGN_16 },
1086    { X86::PSRLWrr,         X86::PSRLWrm,       TB_ALIGN_16 },
1087    { X86::PSUBBrr,         X86::PSUBBrm,       TB_ALIGN_16 },
1088    { X86::PSUBDrr,         X86::PSUBDrm,       TB_ALIGN_16 },
1089    { X86::PSUBQrr,         X86::PSUBQrm,       TB_ALIGN_16 },
1090    { X86::PSUBSBrr,        X86::PSUBSBrm,      TB_ALIGN_16 },
1091    { X86::PSUBSWrr,        X86::PSUBSWrm,      TB_ALIGN_16 },
1092    { X86::PSUBUSBrr,       X86::PSUBUSBrm,     TB_ALIGN_16 },
1093    { X86::PSUBUSWrr,       X86::PSUBUSWrm,     TB_ALIGN_16 },
1094    { X86::PSUBWrr,         X86::PSUBWrm,       TB_ALIGN_16 },
1095    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm,   TB_ALIGN_16 },
1096    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm,   TB_ALIGN_16 },
1097    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm,  TB_ALIGN_16 },
1098    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm,   TB_ALIGN_16 },
1099    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm,   TB_ALIGN_16 },
1100    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm,   TB_ALIGN_16 },
1101    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm,  TB_ALIGN_16 },
1102    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm,   TB_ALIGN_16 },
1103    { X86::PXORrr,          X86::PXORrm,        TB_ALIGN_16 },
1104    { X86::ROUNDSDr,        X86::ROUNDSDm,      0 },
1105    { X86::ROUNDSSr,        X86::ROUNDSSm,      0 },
1106    { X86::SBB32rr,         X86::SBB32rm,       0 },
1107    { X86::SBB64rr,         X86::SBB64rm,       0 },
1108    { X86::SHUFPDrri,       X86::SHUFPDrmi,     TB_ALIGN_16 },
1109    { X86::SHUFPSrri,       X86::SHUFPSrmi,     TB_ALIGN_16 },
1110    { X86::SUB16rr,         X86::SUB16rm,       0 },
1111    { X86::SUB32rr,         X86::SUB32rm,       0 },
1112    { X86::SUB64rr,         X86::SUB64rm,       0 },
1113    { X86::SUB8rr,          X86::SUB8rm,        0 },
1114    { X86::SUBPDrr,         X86::SUBPDrm,       TB_ALIGN_16 },
1115    { X86::SUBPSrr,         X86::SUBPSrm,       TB_ALIGN_16 },
1116    { X86::SUBSDrr,         X86::SUBSDrm,       0 },
1117    { X86::SUBSDrr_Int,     X86::SUBSDrm_Int,   0 },
1118    { X86::SUBSSrr,         X86::SUBSSrm,       0 },
1119    { X86::SUBSSrr_Int,     X86::SUBSSrm_Int,   0 },
1120    // FIXME: TEST*rr -> swapped operand of TEST*mr.
1121    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm,    TB_ALIGN_16 },
1122    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm,    TB_ALIGN_16 },
1123    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm,    TB_ALIGN_16 },
1124    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm,    TB_ALIGN_16 },
1125    { X86::XOR16rr,         X86::XOR16rm,       0 },
1126    { X86::XOR32rr,         X86::XOR32rm,       0 },
1127    { X86::XOR64rr,         X86::XOR64rm,       0 },
1128    { X86::XOR8rr,          X86::XOR8rm,        0 },
1129    { X86::XORPDrr,         X86::XORPDrm,       TB_ALIGN_16 },
1130    { X86::XORPSrr,         X86::XORPSrm,       TB_ALIGN_16 },
1131
1132    // MMX version of foldable instructions
1133    { X86::MMX_CVTPI2PSirr,   X86::MMX_CVTPI2PSirm,   0 },
1134    { X86::MMX_PACKSSDWirr,   X86::MMX_PACKSSDWirm,   0 },
1135    { X86::MMX_PACKSSWBirr,   X86::MMX_PACKSSWBirm,   0 },
1136    { X86::MMX_PACKUSWBirr,   X86::MMX_PACKUSWBirm,   0 },
1137    { X86::MMX_PADDBirr,      X86::MMX_PADDBirm,      0 },
1138    { X86::MMX_PADDDirr,      X86::MMX_PADDDirm,      0 },
1139    { X86::MMX_PADDQirr,      X86::MMX_PADDQirm,      0 },
1140    { X86::MMX_PADDSBirr,     X86::MMX_PADDSBirm,     0 },
1141    { X86::MMX_PADDSWirr,     X86::MMX_PADDSWirm,     0 },
1142    { X86::MMX_PADDUSBirr,    X86::MMX_PADDUSBirm,    0 },
1143    { X86::MMX_PADDUSWirr,    X86::MMX_PADDUSWirm,    0 },
1144    { X86::MMX_PADDWirr,      X86::MMX_PADDWirm,      0 },
1145    { X86::MMX_PALIGNR64irr,  X86::MMX_PALIGNR64irm,  0 },
1146    { X86::MMX_PANDNirr,      X86::MMX_PANDNirm,      0 },
1147    { X86::MMX_PANDirr,       X86::MMX_PANDirm,       0 },
1148    { X86::MMX_PAVGBirr,      X86::MMX_PAVGBirm,      0 },
1149    { X86::MMX_PAVGWirr,      X86::MMX_PAVGWirm,      0 },
1150    { X86::MMX_PCMPEQBirr,    X86::MMX_PCMPEQBirm,    0 },
1151    { X86::MMX_PCMPEQDirr,    X86::MMX_PCMPEQDirm,    0 },
1152    { X86::MMX_PCMPEQWirr,    X86::MMX_PCMPEQWirm,    0 },
1153    { X86::MMX_PCMPGTBirr,    X86::MMX_PCMPGTBirm,    0 },
1154    { X86::MMX_PCMPGTDirr,    X86::MMX_PCMPGTDirm,    0 },
1155    { X86::MMX_PCMPGTWirr,    X86::MMX_PCMPGTWirm,    0 },
1156    { X86::MMX_PHADDSWrr64,   X86::MMX_PHADDSWrm64,   0 },
1157    { X86::MMX_PHADDWrr64,    X86::MMX_PHADDWrm64,    0 },
1158    { X86::MMX_PHADDrr64,     X86::MMX_PHADDrm64,     0 },
1159    { X86::MMX_PHSUBDrr64,    X86::MMX_PHSUBDrm64,    0 },
1160    { X86::MMX_PHSUBSWrr64,   X86::MMX_PHSUBSWrm64,   0 },
1161    { X86::MMX_PHSUBWrr64,    X86::MMX_PHSUBWrm64,    0 },
1162    { X86::MMX_PINSRWirri,    X86::MMX_PINSRWirmi,    0 },
1163    { X86::MMX_PMADDUBSWrr64, X86::MMX_PMADDUBSWrm64, 0 },
1164    { X86::MMX_PMADDWDirr,    X86::MMX_PMADDWDirm,    0 },
1165    { X86::MMX_PMAXSWirr,     X86::MMX_PMAXSWirm,     0 },
1166    { X86::MMX_PMAXUBirr,     X86::MMX_PMAXUBirm,     0 },
1167    { X86::MMX_PMINSWirr,     X86::MMX_PMINSWirm,     0 },
1168    { X86::MMX_PMINUBirr,     X86::MMX_PMINUBirm,     0 },
1169    { X86::MMX_PMULHRSWrr64,  X86::MMX_PMULHRSWrm64,  0 },
1170    { X86::MMX_PMULHUWirr,    X86::MMX_PMULHUWirm,    0 },
1171    { X86::MMX_PMULHWirr,     X86::MMX_PMULHWirm,     0 },
1172    { X86::MMX_PMULLWirr,     X86::MMX_PMULLWirm,     0 },
1173    { X86::MMX_PMULUDQirr,    X86::MMX_PMULUDQirm,    0 },
1174    { X86::MMX_PORirr,        X86::MMX_PORirm,        0 },
1175    { X86::MMX_PSADBWirr,     X86::MMX_PSADBWirm,     0 },
1176    { X86::MMX_PSHUFBrr64,    X86::MMX_PSHUFBrm64,    0 },
1177    { X86::MMX_PSIGNBrr64,    X86::MMX_PSIGNBrm64,    0 },
1178    { X86::MMX_PSIGNDrr64,    X86::MMX_PSIGNDrm64,    0 },
1179    { X86::MMX_PSIGNWrr64,    X86::MMX_PSIGNWrm64,    0 },
1180    { X86::MMX_PSLLDrr,       X86::MMX_PSLLDrm,       0 },
1181    { X86::MMX_PSLLQrr,       X86::MMX_PSLLQrm,       0 },
1182    { X86::MMX_PSLLWrr,       X86::MMX_PSLLWrm,       0 },
1183    { X86::MMX_PSRADrr,       X86::MMX_PSRADrm,       0 },
1184    { X86::MMX_PSRAWrr,       X86::MMX_PSRAWrm,       0 },
1185    { X86::MMX_PSRLDrr,       X86::MMX_PSRLDrm,       0 },
1186    { X86::MMX_PSRLQrr,       X86::MMX_PSRLQrm,       0 },
1187    { X86::MMX_PSRLWrr,       X86::MMX_PSRLWrm,       0 },
1188    { X86::MMX_PSUBBirr,      X86::MMX_PSUBBirm,      0 },
1189    { X86::MMX_PSUBDirr,      X86::MMX_PSUBDirm,      0 },
1190    { X86::MMX_PSUBQirr,      X86::MMX_PSUBQirm,      0 },
1191    { X86::MMX_PSUBSBirr,     X86::MMX_PSUBSBirm,     0 },
1192    { X86::MMX_PSUBSWirr,     X86::MMX_PSUBSWirm,     0 },
1193    { X86::MMX_PSUBUSBirr,    X86::MMX_PSUBUSBirm,    0 },
1194    { X86::MMX_PSUBUSWirr,    X86::MMX_PSUBUSWirm,    0 },
1195    { X86::MMX_PSUBWirr,      X86::MMX_PSUBWirm,      0 },
1196    { X86::MMX_PUNPCKHBWirr,  X86::MMX_PUNPCKHBWirm,  0 },
1197    { X86::MMX_PUNPCKHDQirr,  X86::MMX_PUNPCKHDQirm,  0 },
1198    { X86::MMX_PUNPCKHWDirr,  X86::MMX_PUNPCKHWDirm,  0 },
1199    { X86::MMX_PUNPCKLBWirr,  X86::MMX_PUNPCKLBWirm,  0 },
1200    { X86::MMX_PUNPCKLDQirr,  X86::MMX_PUNPCKLDQirm,  0 },
1201    { X86::MMX_PUNPCKLWDirr,  X86::MMX_PUNPCKLWDirm,  0 },
1202    { X86::MMX_PXORirr,       X86::MMX_PXORirm,       0 },
1203
1204    // 3DNow! version of foldable instructions
1205    { X86::PAVGUSBrr,         X86::PAVGUSBrm,         0 },
1206    { X86::PFACCrr,           X86::PFACCrm,           0 },
1207    { X86::PFADDrr,           X86::PFADDrm,           0 },
1208    { X86::PFCMPEQrr,         X86::PFCMPEQrm,         0 },
1209    { X86::PFCMPGErr,         X86::PFCMPGErm,         0 },
1210    { X86::PFCMPGTrr,         X86::PFCMPGTrm,         0 },
1211    { X86::PFMAXrr,           X86::PFMAXrm,           0 },
1212    { X86::PFMINrr,           X86::PFMINrm,           0 },
1213    { X86::PFMULrr,           X86::PFMULrm,           0 },
1214    { X86::PFNACCrr,          X86::PFNACCrm,          0 },
1215    { X86::PFPNACCrr,         X86::PFPNACCrm,         0 },
1216    { X86::PFRCPIT1rr,        X86::PFRCPIT1rm,        0 },
1217    { X86::PFRCPIT2rr,        X86::PFRCPIT2rm,        0 },
1218    { X86::PFRSQIT1rr,        X86::PFRSQIT1rm,        0 },
1219    { X86::PFSUBrr,           X86::PFSUBrm,           0 },
1220    { X86::PFSUBRrr,          X86::PFSUBRrm,          0 },
1221    { X86::PMULHRWrr,         X86::PMULHRWrm,         0 },
1222
1223    // AVX 128-bit versions of foldable instructions
1224    { X86::VCVTSD2SSrr,       X86::VCVTSD2SSrm,        0 },
1225    { X86::Int_VCVTSD2SSrr,   X86::Int_VCVTSD2SSrm,    0 },
1226    { X86::VCVTSI2SD64rr,     X86::VCVTSI2SD64rm,      0 },
1227    { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm,  0 },
1228    { X86::VCVTSI2SDrr,       X86::VCVTSI2SDrm,        0 },
1229    { X86::Int_VCVTSI2SDrr,   X86::Int_VCVTSI2SDrm,    0 },
1230    { X86::VCVTSI2SS64rr,     X86::VCVTSI2SS64rm,      0 },
1231    { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm,  0 },
1232    { X86::VCVTSI2SSrr,       X86::VCVTSI2SSrm,        0 },
1233    { X86::Int_VCVTSI2SSrr,   X86::Int_VCVTSI2SSrm,    0 },
1234    { X86::VCVTSS2SDrr,       X86::VCVTSS2SDrm,        0 },
1235    { X86::Int_VCVTSS2SDrr,   X86::Int_VCVTSS2SDrm,    0 },
1236    { X86::VRCPSSr,           X86::VRCPSSm,            0 },
1237    { X86::VRCPSSr_Int,       X86::VRCPSSm_Int,        0 },
1238    { X86::VRSQRTSSr,         X86::VRSQRTSSm,          0 },
1239    { X86::VRSQRTSSr_Int,     X86::VRSQRTSSm_Int,      0 },
1240    { X86::VSQRTSDr,          X86::VSQRTSDm,           0 },
1241    { X86::VSQRTSDr_Int,      X86::VSQRTSDm_Int,       0 },
1242    { X86::VSQRTSSr,          X86::VSQRTSSm,           0 },
1243    { X86::VSQRTSSr_Int,      X86::VSQRTSSm_Int,       0 },
1244    { X86::VADDPDrr,          X86::VADDPDrm,           0 },
1245    { X86::VADDPSrr,          X86::VADDPSrm,           0 },
1246    { X86::VADDSDrr,          X86::VADDSDrm,           0 },
1247    { X86::VADDSDrr_Int,      X86::VADDSDrm_Int,       0 },
1248    { X86::VADDSSrr,          X86::VADDSSrm,           0 },
1249    { X86::VADDSSrr_Int,      X86::VADDSSrm_Int,       0 },
1250    { X86::VADDSUBPDrr,       X86::VADDSUBPDrm,        0 },
1251    { X86::VADDSUBPSrr,       X86::VADDSUBPSrm,        0 },
1252    { X86::VANDNPDrr,         X86::VANDNPDrm,          0 },
1253    { X86::VANDNPSrr,         X86::VANDNPSrm,          0 },
1254    { X86::VANDPDrr,          X86::VANDPDrm,           0 },
1255    { X86::VANDPSrr,          X86::VANDPSrm,           0 },
1256    { X86::VBLENDPDrri,       X86::VBLENDPDrmi,        0 },
1257    { X86::VBLENDPSrri,       X86::VBLENDPSrmi,        0 },
1258    { X86::VBLENDVPDrr,       X86::VBLENDVPDrm,        0 },
1259    { X86::VBLENDVPSrr,       X86::VBLENDVPSrm,        0 },
1260    { X86::VCMPPDrri,         X86::VCMPPDrmi,          0 },
1261    { X86::VCMPPSrri,         X86::VCMPPSrmi,          0 },
1262    { X86::VCMPSDrr,          X86::VCMPSDrm,           0 },
1263    { X86::VCMPSSrr,          X86::VCMPSSrm,           0 },
1264    { X86::VDIVPDrr,          X86::VDIVPDrm,           0 },
1265    { X86::VDIVPSrr,          X86::VDIVPSrm,           0 },
1266    { X86::VDIVSDrr,          X86::VDIVSDrm,           0 },
1267    { X86::VDIVSDrr_Int,      X86::VDIVSDrm_Int,       0 },
1268    { X86::VDIVSSrr,          X86::VDIVSSrm,           0 },
1269    { X86::VDIVSSrr_Int,      X86::VDIVSSrm_Int,       0 },
1270    { X86::VDPPDrri,          X86::VDPPDrmi,           0 },
1271    { X86::VDPPSrri,          X86::VDPPSrmi,           0 },
1272    // Do not fold VFs* loads because there are no scalar load variants for
1273    // these instructions. When folded, the load is required to be 128-bits, so
1274    // the load size would not match.
1275    { X86::VFvANDNPDrr,       X86::VFvANDNPDrm,        0 },
1276    { X86::VFvANDNPSrr,       X86::VFvANDNPSrm,        0 },
1277    { X86::VFvANDPDrr,        X86::VFvANDPDrm,         0 },
1278    { X86::VFvANDPSrr,        X86::VFvANDPSrm,         0 },
1279    { X86::VFvORPDrr,         X86::VFvORPDrm,          0 },
1280    { X86::VFvORPSrr,         X86::VFvORPSrm,          0 },
1281    { X86::VFvXORPDrr,        X86::VFvXORPDrm,         0 },
1282    { X86::VFvXORPSrr,        X86::VFvXORPSrm,         0 },
1283    { X86::VHADDPDrr,         X86::VHADDPDrm,          0 },
1284    { X86::VHADDPSrr,         X86::VHADDPSrm,          0 },
1285    { X86::VHSUBPDrr,         X86::VHSUBPDrm,          0 },
1286    { X86::VHSUBPSrr,         X86::VHSUBPSrm,          0 },
1287    { X86::Int_VCMPSDrr,      X86::Int_VCMPSDrm,       0 },
1288    { X86::Int_VCMPSSrr,      X86::Int_VCMPSSrm,       0 },
1289    { X86::VMAXPDrr,          X86::VMAXPDrm,           0 },
1290    { X86::VMAXPSrr,          X86::VMAXPSrm,           0 },
1291    { X86::VMAXSDrr,          X86::VMAXSDrm,           0 },
1292    { X86::VMAXSDrr_Int,      X86::VMAXSDrm_Int,       0 },
1293    { X86::VMAXSSrr,          X86::VMAXSSrm,           0 },
1294    { X86::VMAXSSrr_Int,      X86::VMAXSSrm_Int,       0 },
1295    { X86::VMINPDrr,          X86::VMINPDrm,           0 },
1296    { X86::VMINPSrr,          X86::VMINPSrm,           0 },
1297    { X86::VMINSDrr,          X86::VMINSDrm,           0 },
1298    { X86::VMINSDrr_Int,      X86::VMINSDrm_Int,       0 },
1299    { X86::VMINSSrr,          X86::VMINSSrm,           0 },
1300    { X86::VMINSSrr_Int,      X86::VMINSSrm_Int,       0 },
1301    { X86::VMPSADBWrri,       X86::VMPSADBWrmi,        0 },
1302    { X86::VMULPDrr,          X86::VMULPDrm,           0 },
1303    { X86::VMULPSrr,          X86::VMULPSrm,           0 },
1304    { X86::VMULSDrr,          X86::VMULSDrm,           0 },
1305    { X86::VMULSDrr_Int,      X86::VMULSDrm_Int,       0 },
1306    { X86::VMULSSrr,          X86::VMULSSrm,           0 },
1307    { X86::VMULSSrr_Int,      X86::VMULSSrm_Int,       0 },
1308    { X86::VORPDrr,           X86::VORPDrm,            0 },
1309    { X86::VORPSrr,           X86::VORPSrm,            0 },
1310    { X86::VPACKSSDWrr,       X86::VPACKSSDWrm,        0 },
1311    { X86::VPACKSSWBrr,       X86::VPACKSSWBrm,        0 },
1312    { X86::VPACKUSDWrr,       X86::VPACKUSDWrm,        0 },
1313    { X86::VPACKUSWBrr,       X86::VPACKUSWBrm,        0 },
1314    { X86::VPADDBrr,          X86::VPADDBrm,           0 },
1315    { X86::VPADDDrr,          X86::VPADDDrm,           0 },
1316    { X86::VPADDQrr,          X86::VPADDQrm,           0 },
1317    { X86::VPADDSBrr,         X86::VPADDSBrm,          0 },
1318    { X86::VPADDSWrr,         X86::VPADDSWrm,          0 },
1319    { X86::VPADDUSBrr,        X86::VPADDUSBrm,         0 },
1320    { X86::VPADDUSWrr,        X86::VPADDUSWrm,         0 },
1321    { X86::VPADDWrr,          X86::VPADDWrm,           0 },
1322    { X86::VPALIGNR128rr,     X86::VPALIGNR128rm,      0 },
1323    { X86::VPANDNrr,          X86::VPANDNrm,           0 },
1324    { X86::VPANDrr,           X86::VPANDrm,            0 },
1325    { X86::VPAVGBrr,          X86::VPAVGBrm,           0 },
1326    { X86::VPAVGWrr,          X86::VPAVGWrm,           0 },
1327    { X86::VPBLENDVBrr,       X86::VPBLENDVBrm,        0 },
1328    { X86::VPBLENDWrri,       X86::VPBLENDWrmi,        0 },
1329    { X86::VPCLMULQDQrr,      X86::VPCLMULQDQrm,       0 },
1330    { X86::VPCMPEQBrr,        X86::VPCMPEQBrm,         0 },
1331    { X86::VPCMPEQDrr,        X86::VPCMPEQDrm,         0 },
1332    { X86::VPCMPEQQrr,        X86::VPCMPEQQrm,         0 },
1333    { X86::VPCMPEQWrr,        X86::VPCMPEQWrm,         0 },
1334    { X86::VPCMPGTBrr,        X86::VPCMPGTBrm,         0 },
1335    { X86::VPCMPGTDrr,        X86::VPCMPGTDrm,         0 },
1336    { X86::VPCMPGTQrr,        X86::VPCMPGTQrm,         0 },
1337    { X86::VPCMPGTWrr,        X86::VPCMPGTWrm,         0 },
1338    { X86::VPHADDDrr,         X86::VPHADDDrm,          0 },
1339    { X86::VPHADDSWrr128,     X86::VPHADDSWrm128,      0 },
1340    { X86::VPHADDWrr,         X86::VPHADDWrm,          0 },
1341    { X86::VPHSUBDrr,         X86::VPHSUBDrm,          0 },
1342    { X86::VPHSUBSWrr128,     X86::VPHSUBSWrm128,      0 },
1343    { X86::VPHSUBWrr,         X86::VPHSUBWrm,          0 },
1344    { X86::VPERMILPDrr,       X86::VPERMILPDrm,        0 },
1345    { X86::VPERMILPSrr,       X86::VPERMILPSrm,        0 },
1346    { X86::VPINSRBrr,         X86::VPINSRBrm,          0 },
1347    { X86::VPINSRDrr,         X86::VPINSRDrm,          0 },
1348    { X86::VPINSRQrr,         X86::VPINSRQrm,          0 },
1349    { X86::VPINSRWrri,        X86::VPINSRWrmi,         0 },
1350    { X86::VPMADDUBSWrr128,   X86::VPMADDUBSWrm128,    0 },
1351    { X86::VPMADDWDrr,        X86::VPMADDWDrm,         0 },
1352    { X86::VPMAXSWrr,         X86::VPMAXSWrm,          0 },
1353    { X86::VPMAXUBrr,         X86::VPMAXUBrm,          0 },
1354    { X86::VPMINSWrr,         X86::VPMINSWrm,          0 },
1355    { X86::VPMINUBrr,         X86::VPMINUBrm,          0 },
1356    { X86::VPMINSBrr,         X86::VPMINSBrm,          0 },
1357    { X86::VPMINSDrr,         X86::VPMINSDrm,          0 },
1358    { X86::VPMINUDrr,         X86::VPMINUDrm,          0 },
1359    { X86::VPMINUWrr,         X86::VPMINUWrm,          0 },
1360    { X86::VPMAXSBrr,         X86::VPMAXSBrm,          0 },
1361    { X86::VPMAXSDrr,         X86::VPMAXSDrm,          0 },
1362    { X86::VPMAXUDrr,         X86::VPMAXUDrm,          0 },
1363    { X86::VPMAXUWrr,         X86::VPMAXUWrm,          0 },
1364    { X86::VPMULDQrr,         X86::VPMULDQrm,          0 },
1365    { X86::VPMULHRSWrr128,    X86::VPMULHRSWrm128,     0 },
1366    { X86::VPMULHUWrr,        X86::VPMULHUWrm,         0 },
1367    { X86::VPMULHWrr,         X86::VPMULHWrm,          0 },
1368    { X86::VPMULLDrr,         X86::VPMULLDrm,          0 },
1369    { X86::VPMULLWrr,         X86::VPMULLWrm,          0 },
1370    { X86::VPMULUDQrr,        X86::VPMULUDQrm,         0 },
1371    { X86::VPORrr,            X86::VPORrm,             0 },
1372    { X86::VPSADBWrr,         X86::VPSADBWrm,          0 },
1373    { X86::VPSHUFBrr,         X86::VPSHUFBrm,          0 },
1374    { X86::VPSIGNBrr,         X86::VPSIGNBrm,          0 },
1375    { X86::VPSIGNWrr,         X86::VPSIGNWrm,          0 },
1376    { X86::VPSIGNDrr,         X86::VPSIGNDrm,          0 },
1377    { X86::VPSLLDrr,          X86::VPSLLDrm,           0 },
1378    { X86::VPSLLQrr,          X86::VPSLLQrm,           0 },
1379    { X86::VPSLLWrr,          X86::VPSLLWrm,           0 },
1380    { X86::VPSRADrr,          X86::VPSRADrm,           0 },
1381    { X86::VPSRAWrr,          X86::VPSRAWrm,           0 },
1382    { X86::VPSRLDrr,          X86::VPSRLDrm,           0 },
1383    { X86::VPSRLQrr,          X86::VPSRLQrm,           0 },
1384    { X86::VPSRLWrr,          X86::VPSRLWrm,           0 },
1385    { X86::VPSUBBrr,          X86::VPSUBBrm,           0 },
1386    { X86::VPSUBDrr,          X86::VPSUBDrm,           0 },
1387    { X86::VPSUBQrr,          X86::VPSUBQrm,           0 },
1388    { X86::VPSUBSBrr,         X86::VPSUBSBrm,          0 },
1389    { X86::VPSUBSWrr,         X86::VPSUBSWrm,          0 },
1390    { X86::VPSUBUSBrr,        X86::VPSUBUSBrm,         0 },
1391    { X86::VPSUBUSWrr,        X86::VPSUBUSWrm,         0 },
1392    { X86::VPSUBWrr,          X86::VPSUBWrm,           0 },
1393    { X86::VPUNPCKHBWrr,      X86::VPUNPCKHBWrm,       0 },
1394    { X86::VPUNPCKHDQrr,      X86::VPUNPCKHDQrm,       0 },
1395    { X86::VPUNPCKHQDQrr,     X86::VPUNPCKHQDQrm,      0 },
1396    { X86::VPUNPCKHWDrr,      X86::VPUNPCKHWDrm,       0 },
1397    { X86::VPUNPCKLBWrr,      X86::VPUNPCKLBWrm,       0 },
1398    { X86::VPUNPCKLDQrr,      X86::VPUNPCKLDQrm,       0 },
1399    { X86::VPUNPCKLQDQrr,     X86::VPUNPCKLQDQrm,      0 },
1400    { X86::VPUNPCKLWDrr,      X86::VPUNPCKLWDrm,       0 },
1401    { X86::VPXORrr,           X86::VPXORrm,            0 },
1402    { X86::VROUNDSDr,         X86::VROUNDSDm,          0 },
1403    { X86::VROUNDSSr,         X86::VROUNDSSm,          0 },
1404    { X86::VSHUFPDrri,        X86::VSHUFPDrmi,         0 },
1405    { X86::VSHUFPSrri,        X86::VSHUFPSrmi,         0 },
1406    { X86::VSUBPDrr,          X86::VSUBPDrm,           0 },
1407    { X86::VSUBPSrr,          X86::VSUBPSrm,           0 },
1408    { X86::VSUBSDrr,          X86::VSUBSDrm,           0 },
1409    { X86::VSUBSDrr_Int,      X86::VSUBSDrm_Int,       0 },
1410    { X86::VSUBSSrr,          X86::VSUBSSrm,           0 },
1411    { X86::VSUBSSrr_Int,      X86::VSUBSSrm_Int,       0 },
1412    { X86::VUNPCKHPDrr,       X86::VUNPCKHPDrm,        0 },
1413    { X86::VUNPCKHPSrr,       X86::VUNPCKHPSrm,        0 },
1414    { X86::VUNPCKLPDrr,       X86::VUNPCKLPDrm,        0 },
1415    { X86::VUNPCKLPSrr,       X86::VUNPCKLPSrm,        0 },
1416    { X86::VXORPDrr,          X86::VXORPDrm,           0 },
1417    { X86::VXORPSrr,          X86::VXORPSrm,           0 },
1418
1419    // AVX 256-bit foldable instructions
1420    { X86::VADDPDYrr,         X86::VADDPDYrm,          0 },
1421    { X86::VADDPSYrr,         X86::VADDPSYrm,          0 },
1422    { X86::VADDSUBPDYrr,      X86::VADDSUBPDYrm,       0 },
1423    { X86::VADDSUBPSYrr,      X86::VADDSUBPSYrm,       0 },
1424    { X86::VANDNPDYrr,        X86::VANDNPDYrm,         0 },
1425    { X86::VANDNPSYrr,        X86::VANDNPSYrm,         0 },
1426    { X86::VANDPDYrr,         X86::VANDPDYrm,          0 },
1427    { X86::VANDPSYrr,         X86::VANDPSYrm,          0 },
1428    { X86::VBLENDPDYrri,      X86::VBLENDPDYrmi,       0 },
1429    { X86::VBLENDPSYrri,      X86::VBLENDPSYrmi,       0 },
1430    { X86::VBLENDVPDYrr,      X86::VBLENDVPDYrm,       0 },
1431    { X86::VBLENDVPSYrr,      X86::VBLENDVPSYrm,       0 },
1432    { X86::VCMPPDYrri,        X86::VCMPPDYrmi,         0 },
1433    { X86::VCMPPSYrri,        X86::VCMPPSYrmi,         0 },
1434    { X86::VDIVPDYrr,         X86::VDIVPDYrm,          0 },
1435    { X86::VDIVPSYrr,         X86::VDIVPSYrm,          0 },
1436    { X86::VDPPSYrri,         X86::VDPPSYrmi,          0 },
1437    { X86::VHADDPDYrr,        X86::VHADDPDYrm,         0 },
1438    { X86::VHADDPSYrr,        X86::VHADDPSYrm,         0 },
1439    { X86::VHSUBPDYrr,        X86::VHSUBPDYrm,         0 },
1440    { X86::VHSUBPSYrr,        X86::VHSUBPSYrm,         0 },
1441    { X86::VINSERTF128rr,     X86::VINSERTF128rm,      0 },
1442    { X86::VMAXPDYrr,         X86::VMAXPDYrm,          0 },
1443    { X86::VMAXPSYrr,         X86::VMAXPSYrm,          0 },
1444    { X86::VMINPDYrr,         X86::VMINPDYrm,          0 },
1445    { X86::VMINPSYrr,         X86::VMINPSYrm,          0 },
1446    { X86::VMULPDYrr,         X86::VMULPDYrm,          0 },
1447    { X86::VMULPSYrr,         X86::VMULPSYrm,          0 },
1448    { X86::VORPDYrr,          X86::VORPDYrm,           0 },
1449    { X86::VORPSYrr,          X86::VORPSYrm,           0 },
1450    { X86::VPERM2F128rr,      X86::VPERM2F128rm,       0 },
1451    { X86::VPERMILPDYrr,      X86::VPERMILPDYrm,       0 },
1452    { X86::VPERMILPSYrr,      X86::VPERMILPSYrm,       0 },
1453    { X86::VSHUFPDYrri,       X86::VSHUFPDYrmi,        0 },
1454    { X86::VSHUFPSYrri,       X86::VSHUFPSYrmi,        0 },
1455    { X86::VSUBPDYrr,         X86::VSUBPDYrm,          0 },
1456    { X86::VSUBPSYrr,         X86::VSUBPSYrm,          0 },
1457    { X86::VUNPCKHPDYrr,      X86::VUNPCKHPDYrm,       0 },
1458    { X86::VUNPCKHPSYrr,      X86::VUNPCKHPSYrm,       0 },
1459    { X86::VUNPCKLPDYrr,      X86::VUNPCKLPDYrm,       0 },
1460    { X86::VUNPCKLPSYrr,      X86::VUNPCKLPSYrm,       0 },
1461    { X86::VXORPDYrr,         X86::VXORPDYrm,          0 },
1462    { X86::VXORPSYrr,         X86::VXORPSYrm,          0 },
1463
1464    // AVX2 foldable instructions
1465    { X86::VINSERTI128rr,     X86::VINSERTI128rm,      0 },
1466    { X86::VPACKSSDWYrr,      X86::VPACKSSDWYrm,       0 },
1467    { X86::VPACKSSWBYrr,      X86::VPACKSSWBYrm,       0 },
1468    { X86::VPACKUSDWYrr,      X86::VPACKUSDWYrm,       0 },
1469    { X86::VPACKUSWBYrr,      X86::VPACKUSWBYrm,       0 },
1470    { X86::VPADDBYrr,         X86::VPADDBYrm,          0 },
1471    { X86::VPADDDYrr,         X86::VPADDDYrm,          0 },
1472    { X86::VPADDQYrr,         X86::VPADDQYrm,          0 },
1473    { X86::VPADDSBYrr,        X86::VPADDSBYrm,         0 },
1474    { X86::VPADDSWYrr,        X86::VPADDSWYrm,         0 },
1475    { X86::VPADDUSBYrr,       X86::VPADDUSBYrm,        0 },
1476    { X86::VPADDUSWYrr,       X86::VPADDUSWYrm,        0 },
1477    { X86::VPADDWYrr,         X86::VPADDWYrm,          0 },
1478    { X86::VPALIGNR256rr,     X86::VPALIGNR256rm,      0 },
1479    { X86::VPANDNYrr,         X86::VPANDNYrm,          0 },
1480    { X86::VPANDYrr,          X86::VPANDYrm,           0 },
1481    { X86::VPAVGBYrr,         X86::VPAVGBYrm,          0 },
1482    { X86::VPAVGWYrr,         X86::VPAVGWYrm,          0 },
1483    { X86::VPBLENDDrri,       X86::VPBLENDDrmi,        0 },
1484    { X86::VPBLENDDYrri,      X86::VPBLENDDYrmi,       0 },
1485    { X86::VPBLENDVBYrr,      X86::VPBLENDVBYrm,       0 },
1486    { X86::VPBLENDWYrri,      X86::VPBLENDWYrmi,       0 },
1487    { X86::VPCMPEQBYrr,       X86::VPCMPEQBYrm,        0 },
1488    { X86::VPCMPEQDYrr,       X86::VPCMPEQDYrm,        0 },
1489    { X86::VPCMPEQQYrr,       X86::VPCMPEQQYrm,        0 },
1490    { X86::VPCMPEQWYrr,       X86::VPCMPEQWYrm,        0 },
1491    { X86::VPCMPGTBYrr,       X86::VPCMPGTBYrm,        0 },
1492    { X86::VPCMPGTDYrr,       X86::VPCMPGTDYrm,        0 },
1493    { X86::VPCMPGTQYrr,       X86::VPCMPGTQYrm,        0 },
1494    { X86::VPCMPGTWYrr,       X86::VPCMPGTWYrm,        0 },
1495    { X86::VPERM2I128rr,      X86::VPERM2I128rm,       0 },
1496    { X86::VPERMDYrr,         X86::VPERMDYrm,          0 },
1497    { X86::VPERMPSYrr,        X86::VPERMPSYrm,         0 },
1498    { X86::VPHADDDYrr,        X86::VPHADDDYrm,         0 },
1499    { X86::VPHADDSWrr256,     X86::VPHADDSWrm256,      0 },
1500    { X86::VPHADDWYrr,        X86::VPHADDWYrm,         0 },
1501    { X86::VPHSUBDYrr,        X86::VPHSUBDYrm,         0 },
1502    { X86::VPHSUBSWrr256,     X86::VPHSUBSWrm256,      0 },
1503    { X86::VPHSUBWYrr,        X86::VPHSUBWYrm,         0 },
1504    { X86::VPMADDUBSWrr256,   X86::VPMADDUBSWrm256,    0 },
1505    { X86::VPMADDWDYrr,       X86::VPMADDWDYrm,        0 },
1506    { X86::VPMAXSWYrr,        X86::VPMAXSWYrm,         0 },
1507    { X86::VPMAXUBYrr,        X86::VPMAXUBYrm,         0 },
1508    { X86::VPMINSWYrr,        X86::VPMINSWYrm,         0 },
1509    { X86::VPMINUBYrr,        X86::VPMINUBYrm,         0 },
1510    { X86::VPMINSBYrr,        X86::VPMINSBYrm,         0 },
1511    { X86::VPMINSDYrr,        X86::VPMINSDYrm,         0 },
1512    { X86::VPMINUDYrr,        X86::VPMINUDYrm,         0 },
1513    { X86::VPMINUWYrr,        X86::VPMINUWYrm,         0 },
1514    { X86::VPMAXSBYrr,        X86::VPMAXSBYrm,         0 },
1515    { X86::VPMAXSDYrr,        X86::VPMAXSDYrm,         0 },
1516    { X86::VPMAXUDYrr,        X86::VPMAXUDYrm,         0 },
1517    { X86::VPMAXUWYrr,        X86::VPMAXUWYrm,         0 },
1518    { X86::VMPSADBWYrri,      X86::VMPSADBWYrmi,       0 },
1519    { X86::VPMULDQYrr,        X86::VPMULDQYrm,         0 },
1520    { X86::VPMULHRSWrr256,    X86::VPMULHRSWrm256,     0 },
1521    { X86::VPMULHUWYrr,       X86::VPMULHUWYrm,        0 },
1522    { X86::VPMULHWYrr,        X86::VPMULHWYrm,         0 },
1523    { X86::VPMULLDYrr,        X86::VPMULLDYrm,         0 },
1524    { X86::VPMULLWYrr,        X86::VPMULLWYrm,         0 },
1525    { X86::VPMULUDQYrr,       X86::VPMULUDQYrm,        0 },
1526    { X86::VPORYrr,           X86::VPORYrm,            0 },
1527    { X86::VPSADBWYrr,        X86::VPSADBWYrm,         0 },
1528    { X86::VPSHUFBYrr,        X86::VPSHUFBYrm,         0 },
1529    { X86::VPSIGNBYrr,        X86::VPSIGNBYrm,         0 },
1530    { X86::VPSIGNWYrr,        X86::VPSIGNWYrm,         0 },
1531    { X86::VPSIGNDYrr,        X86::VPSIGNDYrm,         0 },
1532    { X86::VPSLLDYrr,         X86::VPSLLDYrm,          0 },
1533    { X86::VPSLLQYrr,         X86::VPSLLQYrm,          0 },
1534    { X86::VPSLLWYrr,         X86::VPSLLWYrm,          0 },
1535    { X86::VPSLLVDrr,         X86::VPSLLVDrm,          0 },
1536    { X86::VPSLLVDYrr,        X86::VPSLLVDYrm,         0 },
1537    { X86::VPSLLVQrr,         X86::VPSLLVQrm,          0 },
1538    { X86::VPSLLVQYrr,        X86::VPSLLVQYrm,         0 },
1539    { X86::VPSRADYrr,         X86::VPSRADYrm,          0 },
1540    { X86::VPSRAWYrr,         X86::VPSRAWYrm,          0 },
1541    { X86::VPSRAVDrr,         X86::VPSRAVDrm,          0 },
1542    { X86::VPSRAVDYrr,        X86::VPSRAVDYrm,         0 },
1543    { X86::VPSRLDYrr,         X86::VPSRLDYrm,          0 },
1544    { X86::VPSRLQYrr,         X86::VPSRLQYrm,          0 },
1545    { X86::VPSRLWYrr,         X86::VPSRLWYrm,          0 },
1546    { X86::VPSRLVDrr,         X86::VPSRLVDrm,          0 },
1547    { X86::VPSRLVDYrr,        X86::VPSRLVDYrm,         0 },
1548    { X86::VPSRLVQrr,         X86::VPSRLVQrm,          0 },
1549    { X86::VPSRLVQYrr,        X86::VPSRLVQYrm,         0 },
1550    { X86::VPSUBBYrr,         X86::VPSUBBYrm,          0 },
1551    { X86::VPSUBDYrr,         X86::VPSUBDYrm,          0 },
1552    { X86::VPSUBQYrr,         X86::VPSUBQYrm,          0 },
1553    { X86::VPSUBSBYrr,        X86::VPSUBSBYrm,         0 },
1554    { X86::VPSUBSWYrr,        X86::VPSUBSWYrm,         0 },
1555    { X86::VPSUBUSBYrr,       X86::VPSUBUSBYrm,        0 },
1556    { X86::VPSUBUSWYrr,       X86::VPSUBUSWYrm,        0 },
1557    { X86::VPSUBWYrr,         X86::VPSUBWYrm,          0 },
1558    { X86::VPUNPCKHBWYrr,     X86::VPUNPCKHBWYrm,      0 },
1559    { X86::VPUNPCKHDQYrr,     X86::VPUNPCKHDQYrm,      0 },
1560    { X86::VPUNPCKHQDQYrr,    X86::VPUNPCKHQDQYrm,     0 },
1561    { X86::VPUNPCKHWDYrr,     X86::VPUNPCKHWDYrm,      0 },
1562    { X86::VPUNPCKLBWYrr,     X86::VPUNPCKLBWYrm,      0 },
1563    { X86::VPUNPCKLDQYrr,     X86::VPUNPCKLDQYrm,      0 },
1564    { X86::VPUNPCKLQDQYrr,    X86::VPUNPCKLQDQYrm,     0 },
1565    { X86::VPUNPCKLWDYrr,     X86::VPUNPCKLWDYrm,      0 },
1566    { X86::VPXORYrr,          X86::VPXORYrm,           0 },
1567
1568    // FMA4 foldable patterns
1569    { X86::VFMADDSS4rr,       X86::VFMADDSS4mr,        TB_ALIGN_NONE },
1570    { X86::VFMADDSD4rr,       X86::VFMADDSD4mr,        TB_ALIGN_NONE },
1571    { X86::VFMADDPS4rr,       X86::VFMADDPS4mr,        TB_ALIGN_NONE },
1572    { X86::VFMADDPD4rr,       X86::VFMADDPD4mr,        TB_ALIGN_NONE },
1573    { X86::VFMADDPS4rrY,      X86::VFMADDPS4mrY,       TB_ALIGN_NONE },
1574    { X86::VFMADDPD4rrY,      X86::VFMADDPD4mrY,       TB_ALIGN_NONE },
1575    { X86::VFNMADDSS4rr,      X86::VFNMADDSS4mr,       TB_ALIGN_NONE },
1576    { X86::VFNMADDSD4rr,      X86::VFNMADDSD4mr,       TB_ALIGN_NONE },
1577    { X86::VFNMADDPS4rr,      X86::VFNMADDPS4mr,       TB_ALIGN_NONE },
1578    { X86::VFNMADDPD4rr,      X86::VFNMADDPD4mr,       TB_ALIGN_NONE },
1579    { X86::VFNMADDPS4rrY,     X86::VFNMADDPS4mrY,      TB_ALIGN_NONE },
1580    { X86::VFNMADDPD4rrY,     X86::VFNMADDPD4mrY,      TB_ALIGN_NONE },
1581    { X86::VFMSUBSS4rr,       X86::VFMSUBSS4mr,        TB_ALIGN_NONE },
1582    { X86::VFMSUBSD4rr,       X86::VFMSUBSD4mr,        TB_ALIGN_NONE },
1583    { X86::VFMSUBPS4rr,       X86::VFMSUBPS4mr,        TB_ALIGN_NONE },
1584    { X86::VFMSUBPD4rr,       X86::VFMSUBPD4mr,        TB_ALIGN_NONE },
1585    { X86::VFMSUBPS4rrY,      X86::VFMSUBPS4mrY,       TB_ALIGN_NONE },
1586    { X86::VFMSUBPD4rrY,      X86::VFMSUBPD4mrY,       TB_ALIGN_NONE },
1587    { X86::VFNMSUBSS4rr,      X86::VFNMSUBSS4mr,       TB_ALIGN_NONE },
1588    { X86::VFNMSUBSD4rr,      X86::VFNMSUBSD4mr,       TB_ALIGN_NONE },
1589    { X86::VFNMSUBPS4rr,      X86::VFNMSUBPS4mr,       TB_ALIGN_NONE },
1590    { X86::VFNMSUBPD4rr,      X86::VFNMSUBPD4mr,       TB_ALIGN_NONE },
1591    { X86::VFNMSUBPS4rrY,     X86::VFNMSUBPS4mrY,      TB_ALIGN_NONE },
1592    { X86::VFNMSUBPD4rrY,     X86::VFNMSUBPD4mrY,      TB_ALIGN_NONE },
1593    { X86::VFMADDSUBPS4rr,    X86::VFMADDSUBPS4mr,     TB_ALIGN_NONE },
1594    { X86::VFMADDSUBPD4rr,    X86::VFMADDSUBPD4mr,     TB_ALIGN_NONE },
1595    { X86::VFMADDSUBPS4rrY,   X86::VFMADDSUBPS4mrY,    TB_ALIGN_NONE },
1596    { X86::VFMADDSUBPD4rrY,   X86::VFMADDSUBPD4mrY,    TB_ALIGN_NONE },
1597    { X86::VFMSUBADDPS4rr,    X86::VFMSUBADDPS4mr,     TB_ALIGN_NONE },
1598    { X86::VFMSUBADDPD4rr,    X86::VFMSUBADDPD4mr,     TB_ALIGN_NONE },
1599    { X86::VFMSUBADDPS4rrY,   X86::VFMSUBADDPS4mrY,    TB_ALIGN_NONE },
1600    { X86::VFMSUBADDPD4rrY,   X86::VFMSUBADDPD4mrY,    TB_ALIGN_NONE },
1601
1602    // XOP foldable instructions
1603    { X86::VPCMOVrr,          X86::VPCMOVmr,            0 },
1604    { X86::VPCMOVrrY,         X86::VPCMOVmrY,           0 },
1605    { X86::VPCOMBri,          X86::VPCOMBmi,            0 },
1606    { X86::VPCOMDri,          X86::VPCOMDmi,            0 },
1607    { X86::VPCOMQri,          X86::VPCOMQmi,            0 },
1608    { X86::VPCOMWri,          X86::VPCOMWmi,            0 },
1609    { X86::VPCOMUBri,         X86::VPCOMUBmi,           0 },
1610    { X86::VPCOMUDri,         X86::VPCOMUDmi,           0 },
1611    { X86::VPCOMUQri,         X86::VPCOMUQmi,           0 },
1612    { X86::VPCOMUWri,         X86::VPCOMUWmi,           0 },
1613    { X86::VPERMIL2PDrr,      X86::VPERMIL2PDmr,        0 },
1614    { X86::VPERMIL2PDrrY,     X86::VPERMIL2PDmrY,       0 },
1615    { X86::VPERMIL2PSrr,      X86::VPERMIL2PSmr,        0 },
1616    { X86::VPERMIL2PSrrY,     X86::VPERMIL2PSmrY,       0 },
1617    { X86::VPMACSDDrr,        X86::VPMACSDDrm,          0 },
1618    { X86::VPMACSDQHrr,       X86::VPMACSDQHrm,         0 },
1619    { X86::VPMACSDQLrr,       X86::VPMACSDQLrm,         0 },
1620    { X86::VPMACSSDDrr,       X86::VPMACSSDDrm,         0 },
1621    { X86::VPMACSSDQHrr,      X86::VPMACSSDQHrm,        0 },
1622    { X86::VPMACSSDQLrr,      X86::VPMACSSDQLrm,        0 },
1623    { X86::VPMACSSWDrr,       X86::VPMACSSWDrm,         0 },
1624    { X86::VPMACSSWWrr,       X86::VPMACSSWWrm,         0 },
1625    { X86::VPMACSWDrr,        X86::VPMACSWDrm,          0 },
1626    { X86::VPMACSWWrr,        X86::VPMACSWWrm,          0 },
1627    { X86::VPMADCSSWDrr,      X86::VPMADCSSWDrm,        0 },
1628    { X86::VPMADCSWDrr,       X86::VPMADCSWDrm,         0 },
1629    { X86::VPPERMrr,          X86::VPPERMmr,            0 },
1630    { X86::VPROTBrr,          X86::VPROTBrm,            0 },
1631    { X86::VPROTDrr,          X86::VPROTDrm,            0 },
1632    { X86::VPROTQrr,          X86::VPROTQrm,            0 },
1633    { X86::VPROTWrr,          X86::VPROTWrm,            0 },
1634    { X86::VPSHABrr,          X86::VPSHABrm,            0 },
1635    { X86::VPSHADrr,          X86::VPSHADrm,            0 },
1636    { X86::VPSHAQrr,          X86::VPSHAQrm,            0 },
1637    { X86::VPSHAWrr,          X86::VPSHAWrm,            0 },
1638    { X86::VPSHLBrr,          X86::VPSHLBrm,            0 },
1639    { X86::VPSHLDrr,          X86::VPSHLDrm,            0 },
1640    { X86::VPSHLQrr,          X86::VPSHLQrm,            0 },
1641    { X86::VPSHLWrr,          X86::VPSHLWrm,            0 },
1642
1643    // BMI/BMI2 foldable instructions
1644    { X86::ANDN32rr,          X86::ANDN32rm,            0 },
1645    { X86::ANDN64rr,          X86::ANDN64rm,            0 },
1646    { X86::MULX32rr,          X86::MULX32rm,            0 },
1647    { X86::MULX64rr,          X86::MULX64rm,            0 },
1648    { X86::PDEP32rr,          X86::PDEP32rm,            0 },
1649    { X86::PDEP64rr,          X86::PDEP64rm,            0 },
1650    { X86::PEXT32rr,          X86::PEXT32rm,            0 },
1651    { X86::PEXT64rr,          X86::PEXT64rm,            0 },
1652
1653    // ADX foldable instructions
1654    { X86::ADCX32rr,          X86::ADCX32rm,            0 },
1655    { X86::ADCX64rr,          X86::ADCX64rm,            0 },
1656    { X86::ADOX32rr,          X86::ADOX32rm,            0 },
1657    { X86::ADOX64rr,          X86::ADOX64rm,            0 },
1658
1659    // AVX-512 foldable instructions
1660    { X86::VADDPSZrr,         X86::VADDPSZrm,           0 },
1661    { X86::VADDPDZrr,         X86::VADDPDZrm,           0 },
1662    { X86::VSUBPSZrr,         X86::VSUBPSZrm,           0 },
1663    { X86::VSUBPDZrr,         X86::VSUBPDZrm,           0 },
1664    { X86::VMULPSZrr,         X86::VMULPSZrm,           0 },
1665    { X86::VMULPDZrr,         X86::VMULPDZrm,           0 },
1666    { X86::VDIVPSZrr,         X86::VDIVPSZrm,           0 },
1667    { X86::VDIVPDZrr,         X86::VDIVPDZrm,           0 },
1668    { X86::VMINPSZrr,         X86::VMINPSZrm,           0 },
1669    { X86::VMINPDZrr,         X86::VMINPDZrm,           0 },
1670    { X86::VMAXPSZrr,         X86::VMAXPSZrm,           0 },
1671    { X86::VMAXPDZrr,         X86::VMAXPDZrm,           0 },
1672    { X86::VPADDDZrr,         X86::VPADDDZrm,           0 },
1673    { X86::VPADDQZrr,         X86::VPADDQZrm,           0 },
1674    { X86::VPERMPDZri,        X86::VPERMPDZmi,          0 },
1675    { X86::VPERMPSZrr,        X86::VPERMPSZrm,          0 },
1676    { X86::VPMAXSDZrr,        X86::VPMAXSDZrm,          0 },
1677    { X86::VPMAXSQZrr,        X86::VPMAXSQZrm,          0 },
1678    { X86::VPMAXUDZrr,        X86::VPMAXUDZrm,          0 },
1679    { X86::VPMAXUQZrr,        X86::VPMAXUQZrm,          0 },
1680    { X86::VPMINSDZrr,        X86::VPMINSDZrm,          0 },
1681    { X86::VPMINSQZrr,        X86::VPMINSQZrm,          0 },
1682    { X86::VPMINUDZrr,        X86::VPMINUDZrm,          0 },
1683    { X86::VPMINUQZrr,        X86::VPMINUQZrm,          0 },
1684    { X86::VPMULDQZrr,        X86::VPMULDQZrm,          0 },
1685    { X86::VPSLLVDZrr,        X86::VPSLLVDZrm,          0 },
1686    { X86::VPSLLVQZrr,        X86::VPSLLVQZrm,          0 },
1687    { X86::VPSRAVDZrr,        X86::VPSRAVDZrm,          0 },
1688    { X86::VPSRLVDZrr,        X86::VPSRLVDZrm,          0 },
1689    { X86::VPSRLVQZrr,        X86::VPSRLVQZrm,          0 },
1690    { X86::VPSUBDZrr,         X86::VPSUBDZrm,           0 },
1691    { X86::VPSUBQZrr,         X86::VPSUBQZrm,           0 },
1692    { X86::VSHUFPDZrri,       X86::VSHUFPDZrmi,         0 },
1693    { X86::VSHUFPSZrri,       X86::VSHUFPSZrmi,         0 },
1694    { X86::VALIGNQZrri,       X86::VALIGNQZrmi,         0 },
1695    { X86::VALIGNDZrri,       X86::VALIGNDZrmi,         0 },
1696    { X86::VPMULUDQZrr,       X86::VPMULUDQZrm,         0 },
1697    { X86::VBROADCASTSSZrkz,  X86::VBROADCASTSSZmkz,    TB_NO_REVERSE },
1698    { X86::VBROADCASTSDZrkz,  X86::VBROADCASTSDZmkz,    TB_NO_REVERSE },
1699
1700    // AVX-512{F,VL} foldable instructions
1701    { X86::VBROADCASTSSZ256rkz,  X86::VBROADCASTSSZ256mkz,      TB_NO_REVERSE },
1702    { X86::VBROADCASTSDZ256rkz,  X86::VBROADCASTSDZ256mkz,      TB_NO_REVERSE },
1703    { X86::VBROADCASTSSZ128rkz,  X86::VBROADCASTSSZ128mkz,      TB_NO_REVERSE },
1704
1705    // AVX-512{F,VL} foldable instructions
1706    { X86::VADDPDZ128rr,      X86::VADDPDZ128rm,        0 },
1707    { X86::VADDPDZ256rr,      X86::VADDPDZ256rm,        0 },
1708    { X86::VADDPSZ128rr,      X86::VADDPSZ128rm,        0 },
1709    { X86::VADDPSZ256rr,      X86::VADDPSZ256rm,        0 },
1710
1711    // AES foldable instructions
1712    { X86::AESDECLASTrr,      X86::AESDECLASTrm,        TB_ALIGN_16 },
1713    { X86::AESDECrr,          X86::AESDECrm,            TB_ALIGN_16 },
1714    { X86::AESENCLASTrr,      X86::AESENCLASTrm,        TB_ALIGN_16 },
1715    { X86::AESENCrr,          X86::AESENCrm,            TB_ALIGN_16 },
1716    { X86::VAESDECLASTrr,     X86::VAESDECLASTrm,       0 },
1717    { X86::VAESDECrr,         X86::VAESDECrm,           0 },
1718    { X86::VAESENCLASTrr,     X86::VAESENCLASTrm,       0 },
1719    { X86::VAESENCrr,         X86::VAESENCrm,           0 },
1720
1721    // SHA foldable instructions
1722    { X86::SHA1MSG1rr,        X86::SHA1MSG1rm,          TB_ALIGN_16 },
1723    { X86::SHA1MSG2rr,        X86::SHA1MSG2rm,          TB_ALIGN_16 },
1724    { X86::SHA1NEXTErr,       X86::SHA1NEXTErm,         TB_ALIGN_16 },
1725    { X86::SHA1RNDS4rri,      X86::SHA1RNDS4rmi,        TB_ALIGN_16 },
1726    { X86::SHA256MSG1rr,      X86::SHA256MSG1rm,        TB_ALIGN_16 },
1727    { X86::SHA256MSG2rr,      X86::SHA256MSG2rm,        TB_ALIGN_16 },
1728    { X86::SHA256RNDS2rr,     X86::SHA256RNDS2rm,       TB_ALIGN_16 }
1729  };
1730
1731  for (X86MemoryFoldTableEntry Entry : MemoryFoldTable2) {
1732    AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
1733                  Entry.RegOp, Entry.MemOp,
1734                  // Index 2, folded load
1735                  Entry.Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
1736  }
1737
1738  static const X86MemoryFoldTableEntry MemoryFoldTable3[] = {
1739    // FMA foldable instructions
1740    { X86::VFMADDSSr231r,         X86::VFMADDSSr231m,         TB_ALIGN_NONE },
1741    { X86::VFMADDSSr231r_Int,     X86::VFMADDSSr231m_Int,     TB_ALIGN_NONE },
1742    { X86::VFMADDSDr231r,         X86::VFMADDSDr231m,         TB_ALIGN_NONE },
1743    { X86::VFMADDSDr231r_Int,     X86::VFMADDSDr231m_Int,     TB_ALIGN_NONE },
1744    { X86::VFMADDSSr132r,         X86::VFMADDSSr132m,         TB_ALIGN_NONE },
1745    { X86::VFMADDSSr132r_Int,     X86::VFMADDSSr132m_Int,     TB_ALIGN_NONE },
1746    { X86::VFMADDSDr132r,         X86::VFMADDSDr132m,         TB_ALIGN_NONE },
1747    { X86::VFMADDSDr132r_Int,     X86::VFMADDSDr132m_Int,     TB_ALIGN_NONE },
1748    { X86::VFMADDSSr213r,         X86::VFMADDSSr213m,         TB_ALIGN_NONE },
1749    { X86::VFMADDSSr213r_Int,     X86::VFMADDSSr213m_Int,     TB_ALIGN_NONE },
1750    { X86::VFMADDSDr213r,         X86::VFMADDSDr213m,         TB_ALIGN_NONE },
1751    { X86::VFMADDSDr213r_Int,     X86::VFMADDSDr213m_Int,     TB_ALIGN_NONE },
1752
1753    { X86::VFMADDPSr231r,         X86::VFMADDPSr231m,         TB_ALIGN_NONE },
1754    { X86::VFMADDPDr231r,         X86::VFMADDPDr231m,         TB_ALIGN_NONE },
1755    { X86::VFMADDPSr132r,         X86::VFMADDPSr132m,         TB_ALIGN_NONE },
1756    { X86::VFMADDPDr132r,         X86::VFMADDPDr132m,         TB_ALIGN_NONE },
1757    { X86::VFMADDPSr213r,         X86::VFMADDPSr213m,         TB_ALIGN_NONE },
1758    { X86::VFMADDPDr213r,         X86::VFMADDPDr213m,         TB_ALIGN_NONE },
1759    { X86::VFMADDPSr231rY,        X86::VFMADDPSr231mY,        TB_ALIGN_NONE },
1760    { X86::VFMADDPDr231rY,        X86::VFMADDPDr231mY,        TB_ALIGN_NONE },
1761    { X86::VFMADDPSr132rY,        X86::VFMADDPSr132mY,        TB_ALIGN_NONE },
1762    { X86::VFMADDPDr132rY,        X86::VFMADDPDr132mY,        TB_ALIGN_NONE },
1763    { X86::VFMADDPSr213rY,        X86::VFMADDPSr213mY,        TB_ALIGN_NONE },
1764    { X86::VFMADDPDr213rY,        X86::VFMADDPDr213mY,        TB_ALIGN_NONE },
1765
1766    { X86::VFNMADDSSr231r,        X86::VFNMADDSSr231m,        TB_ALIGN_NONE },
1767    { X86::VFNMADDSSr231r_Int,    X86::VFNMADDSSr231m_Int,    TB_ALIGN_NONE },
1768    { X86::VFNMADDSDr231r,        X86::VFNMADDSDr231m,        TB_ALIGN_NONE },
1769    { X86::VFNMADDSDr231r_Int,    X86::VFNMADDSDr231m_Int,    TB_ALIGN_NONE },
1770    { X86::VFNMADDSSr132r,        X86::VFNMADDSSr132m,        TB_ALIGN_NONE },
1771    { X86::VFNMADDSSr132r_Int,    X86::VFNMADDSSr132m_Int,    TB_ALIGN_NONE },
1772    { X86::VFNMADDSDr132r,        X86::VFNMADDSDr132m,        TB_ALIGN_NONE },
1773    { X86::VFNMADDSDr132r_Int,    X86::VFNMADDSDr132m_Int,    TB_ALIGN_NONE },
1774    { X86::VFNMADDSSr213r,        X86::VFNMADDSSr213m,        TB_ALIGN_NONE },
1775    { X86::VFNMADDSSr213r_Int,    X86::VFNMADDSSr213m_Int,    TB_ALIGN_NONE },
1776    { X86::VFNMADDSDr213r,        X86::VFNMADDSDr213m,        TB_ALIGN_NONE },
1777    { X86::VFNMADDSDr213r_Int,    X86::VFNMADDSDr213m_Int,    TB_ALIGN_NONE },
1778
1779    { X86::VFNMADDPSr231r,        X86::VFNMADDPSr231m,        TB_ALIGN_NONE },
1780    { X86::VFNMADDPDr231r,        X86::VFNMADDPDr231m,        TB_ALIGN_NONE },
1781    { X86::VFNMADDPSr132r,        X86::VFNMADDPSr132m,        TB_ALIGN_NONE },
1782    { X86::VFNMADDPDr132r,        X86::VFNMADDPDr132m,        TB_ALIGN_NONE },
1783    { X86::VFNMADDPSr213r,        X86::VFNMADDPSr213m,        TB_ALIGN_NONE },
1784    { X86::VFNMADDPDr213r,        X86::VFNMADDPDr213m,        TB_ALIGN_NONE },
1785    { X86::VFNMADDPSr231rY,       X86::VFNMADDPSr231mY,       TB_ALIGN_NONE },
1786    { X86::VFNMADDPDr231rY,       X86::VFNMADDPDr231mY,       TB_ALIGN_NONE },
1787    { X86::VFNMADDPSr132rY,       X86::VFNMADDPSr132mY,       TB_ALIGN_NONE },
1788    { X86::VFNMADDPDr132rY,       X86::VFNMADDPDr132mY,       TB_ALIGN_NONE },
1789    { X86::VFNMADDPSr213rY,       X86::VFNMADDPSr213mY,       TB_ALIGN_NONE },
1790    { X86::VFNMADDPDr213rY,       X86::VFNMADDPDr213mY,       TB_ALIGN_NONE },
1791
1792    { X86::VFMSUBSSr231r,         X86::VFMSUBSSr231m,         TB_ALIGN_NONE },
1793    { X86::VFMSUBSSr231r_Int,     X86::VFMSUBSSr231m_Int,     TB_ALIGN_NONE },
1794    { X86::VFMSUBSDr231r,         X86::VFMSUBSDr231m,         TB_ALIGN_NONE },
1795    { X86::VFMSUBSDr231r_Int,     X86::VFMSUBSDr231m_Int,     TB_ALIGN_NONE },
1796    { X86::VFMSUBSSr132r,         X86::VFMSUBSSr132m,         TB_ALIGN_NONE },
1797    { X86::VFMSUBSSr132r_Int,     X86::VFMSUBSSr132m_Int,     TB_ALIGN_NONE },
1798    { X86::VFMSUBSDr132r,         X86::VFMSUBSDr132m,         TB_ALIGN_NONE },
1799    { X86::VFMSUBSDr132r_Int,     X86::VFMSUBSDr132m_Int,     TB_ALIGN_NONE },
1800    { X86::VFMSUBSSr213r,         X86::VFMSUBSSr213m,         TB_ALIGN_NONE },
1801    { X86::VFMSUBSSr213r_Int,     X86::VFMSUBSSr213m_Int,     TB_ALIGN_NONE },
1802    { X86::VFMSUBSDr213r,         X86::VFMSUBSDr213m,         TB_ALIGN_NONE },
1803    { X86::VFMSUBSDr213r_Int,     X86::VFMSUBSDr213m_Int,     TB_ALIGN_NONE },
1804
1805    { X86::VFMSUBPSr231r,         X86::VFMSUBPSr231m,         TB_ALIGN_NONE },
1806    { X86::VFMSUBPDr231r,         X86::VFMSUBPDr231m,         TB_ALIGN_NONE },
1807    { X86::VFMSUBPSr132r,         X86::VFMSUBPSr132m,         TB_ALIGN_NONE },
1808    { X86::VFMSUBPDr132r,         X86::VFMSUBPDr132m,         TB_ALIGN_NONE },
1809    { X86::VFMSUBPSr213r,         X86::VFMSUBPSr213m,         TB_ALIGN_NONE },
1810    { X86::VFMSUBPDr213r,         X86::VFMSUBPDr213m,         TB_ALIGN_NONE },
1811    { X86::VFMSUBPSr231rY,        X86::VFMSUBPSr231mY,        TB_ALIGN_NONE },
1812    { X86::VFMSUBPDr231rY,        X86::VFMSUBPDr231mY,        TB_ALIGN_NONE },
1813    { X86::VFMSUBPSr132rY,        X86::VFMSUBPSr132mY,        TB_ALIGN_NONE },
1814    { X86::VFMSUBPDr132rY,        X86::VFMSUBPDr132mY,        TB_ALIGN_NONE },
1815    { X86::VFMSUBPSr213rY,        X86::VFMSUBPSr213mY,        TB_ALIGN_NONE },
1816    { X86::VFMSUBPDr213rY,        X86::VFMSUBPDr213mY,        TB_ALIGN_NONE },
1817
1818    { X86::VFNMSUBSSr231r,        X86::VFNMSUBSSr231m,        TB_ALIGN_NONE },
1819    { X86::VFNMSUBSSr231r_Int,    X86::VFNMSUBSSr231m_Int,    TB_ALIGN_NONE },
1820    { X86::VFNMSUBSDr231r,        X86::VFNMSUBSDr231m,        TB_ALIGN_NONE },
1821    { X86::VFNMSUBSDr231r_Int,    X86::VFNMSUBSDr231m_Int,    TB_ALIGN_NONE },
1822    { X86::VFNMSUBSSr132r,        X86::VFNMSUBSSr132m,        TB_ALIGN_NONE },
1823    { X86::VFNMSUBSSr132r_Int,    X86::VFNMSUBSSr132m_Int,    TB_ALIGN_NONE },
1824    { X86::VFNMSUBSDr132r,        X86::VFNMSUBSDr132m,        TB_ALIGN_NONE },
1825    { X86::VFNMSUBSDr132r_Int,    X86::VFNMSUBSDr132m_Int,    TB_ALIGN_NONE },
1826    { X86::VFNMSUBSSr213r,        X86::VFNMSUBSSr213m,        TB_ALIGN_NONE },
1827    { X86::VFNMSUBSSr213r_Int,    X86::VFNMSUBSSr213m_Int,    TB_ALIGN_NONE },
1828    { X86::VFNMSUBSDr213r,        X86::VFNMSUBSDr213m,        TB_ALIGN_NONE },
1829    { X86::VFNMSUBSDr213r_Int,    X86::VFNMSUBSDr213m_Int,    TB_ALIGN_NONE },
1830
1831    { X86::VFNMSUBPSr231r,        X86::VFNMSUBPSr231m,        TB_ALIGN_NONE },
1832    { X86::VFNMSUBPDr231r,        X86::VFNMSUBPDr231m,        TB_ALIGN_NONE },
1833    { X86::VFNMSUBPSr132r,        X86::VFNMSUBPSr132m,        TB_ALIGN_NONE },
1834    { X86::VFNMSUBPDr132r,        X86::VFNMSUBPDr132m,        TB_ALIGN_NONE },
1835    { X86::VFNMSUBPSr213r,        X86::VFNMSUBPSr213m,        TB_ALIGN_NONE },
1836    { X86::VFNMSUBPDr213r,        X86::VFNMSUBPDr213m,        TB_ALIGN_NONE },
1837    { X86::VFNMSUBPSr231rY,       X86::VFNMSUBPSr231mY,       TB_ALIGN_NONE },
1838    { X86::VFNMSUBPDr231rY,       X86::VFNMSUBPDr231mY,       TB_ALIGN_NONE },
1839    { X86::VFNMSUBPSr132rY,       X86::VFNMSUBPSr132mY,       TB_ALIGN_NONE },
1840    { X86::VFNMSUBPDr132rY,       X86::VFNMSUBPDr132mY,       TB_ALIGN_NONE },
1841    { X86::VFNMSUBPSr213rY,       X86::VFNMSUBPSr213mY,       TB_ALIGN_NONE },
1842    { X86::VFNMSUBPDr213rY,       X86::VFNMSUBPDr213mY,       TB_ALIGN_NONE },
1843
1844    { X86::VFMADDSUBPSr231r,      X86::VFMADDSUBPSr231m,      TB_ALIGN_NONE },
1845    { X86::VFMADDSUBPDr231r,      X86::VFMADDSUBPDr231m,      TB_ALIGN_NONE },
1846    { X86::VFMADDSUBPSr132r,      X86::VFMADDSUBPSr132m,      TB_ALIGN_NONE },
1847    { X86::VFMADDSUBPDr132r,      X86::VFMADDSUBPDr132m,      TB_ALIGN_NONE },
1848    { X86::VFMADDSUBPSr213r,      X86::VFMADDSUBPSr213m,      TB_ALIGN_NONE },
1849    { X86::VFMADDSUBPDr213r,      X86::VFMADDSUBPDr213m,      TB_ALIGN_NONE },
1850    { X86::VFMADDSUBPSr231rY,     X86::VFMADDSUBPSr231mY,     TB_ALIGN_NONE },
1851    { X86::VFMADDSUBPDr231rY,     X86::VFMADDSUBPDr231mY,     TB_ALIGN_NONE },
1852    { X86::VFMADDSUBPSr132rY,     X86::VFMADDSUBPSr132mY,     TB_ALIGN_NONE },
1853    { X86::VFMADDSUBPDr132rY,     X86::VFMADDSUBPDr132mY,     TB_ALIGN_NONE },
1854    { X86::VFMADDSUBPSr213rY,     X86::VFMADDSUBPSr213mY,     TB_ALIGN_NONE },
1855    { X86::VFMADDSUBPDr213rY,     X86::VFMADDSUBPDr213mY,     TB_ALIGN_NONE },
1856
1857    { X86::VFMSUBADDPSr231r,      X86::VFMSUBADDPSr231m,      TB_ALIGN_NONE },
1858    { X86::VFMSUBADDPDr231r,      X86::VFMSUBADDPDr231m,      TB_ALIGN_NONE },
1859    { X86::VFMSUBADDPSr132r,      X86::VFMSUBADDPSr132m,      TB_ALIGN_NONE },
1860    { X86::VFMSUBADDPDr132r,      X86::VFMSUBADDPDr132m,      TB_ALIGN_NONE },
1861    { X86::VFMSUBADDPSr213r,      X86::VFMSUBADDPSr213m,      TB_ALIGN_NONE },
1862    { X86::VFMSUBADDPDr213r,      X86::VFMSUBADDPDr213m,      TB_ALIGN_NONE },
1863    { X86::VFMSUBADDPSr231rY,     X86::VFMSUBADDPSr231mY,     TB_ALIGN_NONE },
1864    { X86::VFMSUBADDPDr231rY,     X86::VFMSUBADDPDr231mY,     TB_ALIGN_NONE },
1865    { X86::VFMSUBADDPSr132rY,     X86::VFMSUBADDPSr132mY,     TB_ALIGN_NONE },
1866    { X86::VFMSUBADDPDr132rY,     X86::VFMSUBADDPDr132mY,     TB_ALIGN_NONE },
1867    { X86::VFMSUBADDPSr213rY,     X86::VFMSUBADDPSr213mY,     TB_ALIGN_NONE },
1868    { X86::VFMSUBADDPDr213rY,     X86::VFMSUBADDPDr213mY,     TB_ALIGN_NONE },
1869
1870    // FMA4 foldable patterns
1871    { X86::VFMADDSS4rr,           X86::VFMADDSS4rm,           TB_ALIGN_NONE },
1872    { X86::VFMADDSD4rr,           X86::VFMADDSD4rm,           TB_ALIGN_NONE },
1873    { X86::VFMADDPS4rr,           X86::VFMADDPS4rm,           TB_ALIGN_NONE },
1874    { X86::VFMADDPD4rr,           X86::VFMADDPD4rm,           TB_ALIGN_NONE },
1875    { X86::VFMADDPS4rrY,          X86::VFMADDPS4rmY,          TB_ALIGN_NONE },
1876    { X86::VFMADDPD4rrY,          X86::VFMADDPD4rmY,          TB_ALIGN_NONE },
1877    { X86::VFNMADDSS4rr,          X86::VFNMADDSS4rm,          TB_ALIGN_NONE },
1878    { X86::VFNMADDSD4rr,          X86::VFNMADDSD4rm,          TB_ALIGN_NONE },
1879    { X86::VFNMADDPS4rr,          X86::VFNMADDPS4rm,          TB_ALIGN_NONE },
1880    { X86::VFNMADDPD4rr,          X86::VFNMADDPD4rm,          TB_ALIGN_NONE },
1881    { X86::VFNMADDPS4rrY,         X86::VFNMADDPS4rmY,         TB_ALIGN_NONE },
1882    { X86::VFNMADDPD4rrY,         X86::VFNMADDPD4rmY,         TB_ALIGN_NONE },
1883    { X86::VFMSUBSS4rr,           X86::VFMSUBSS4rm,           TB_ALIGN_NONE },
1884    { X86::VFMSUBSD4rr,           X86::VFMSUBSD4rm,           TB_ALIGN_NONE },
1885    { X86::VFMSUBPS4rr,           X86::VFMSUBPS4rm,           TB_ALIGN_NONE },
1886    { X86::VFMSUBPD4rr,           X86::VFMSUBPD4rm,           TB_ALIGN_NONE },
1887    { X86::VFMSUBPS4rrY,          X86::VFMSUBPS4rmY,          TB_ALIGN_NONE },
1888    { X86::VFMSUBPD4rrY,          X86::VFMSUBPD4rmY,          TB_ALIGN_NONE },
1889    { X86::VFNMSUBSS4rr,          X86::VFNMSUBSS4rm,          TB_ALIGN_NONE },
1890    { X86::VFNMSUBSD4rr,          X86::VFNMSUBSD4rm,          TB_ALIGN_NONE },
1891    { X86::VFNMSUBPS4rr,          X86::VFNMSUBPS4rm,          TB_ALIGN_NONE },
1892    { X86::VFNMSUBPD4rr,          X86::VFNMSUBPD4rm,          TB_ALIGN_NONE },
1893    { X86::VFNMSUBPS4rrY,         X86::VFNMSUBPS4rmY,         TB_ALIGN_NONE },
1894    { X86::VFNMSUBPD4rrY,         X86::VFNMSUBPD4rmY,         TB_ALIGN_NONE },
1895    { X86::VFMADDSUBPS4rr,        X86::VFMADDSUBPS4rm,        TB_ALIGN_NONE },
1896    { X86::VFMADDSUBPD4rr,        X86::VFMADDSUBPD4rm,        TB_ALIGN_NONE },
1897    { X86::VFMADDSUBPS4rrY,       X86::VFMADDSUBPS4rmY,       TB_ALIGN_NONE },
1898    { X86::VFMADDSUBPD4rrY,       X86::VFMADDSUBPD4rmY,       TB_ALIGN_NONE },
1899    { X86::VFMSUBADDPS4rr,        X86::VFMSUBADDPS4rm,        TB_ALIGN_NONE },
1900    { X86::VFMSUBADDPD4rr,        X86::VFMSUBADDPD4rm,        TB_ALIGN_NONE },
1901    { X86::VFMSUBADDPS4rrY,       X86::VFMSUBADDPS4rmY,       TB_ALIGN_NONE },
1902    { X86::VFMSUBADDPD4rrY,       X86::VFMSUBADDPD4rmY,       TB_ALIGN_NONE },
1903
1904    // XOP foldable instructions
1905    { X86::VPCMOVrr,              X86::VPCMOVrm,              0 },
1906    { X86::VPCMOVrrY,             X86::VPCMOVrmY,             0 },
1907    { X86::VPERMIL2PDrr,          X86::VPERMIL2PDrm,          0 },
1908    { X86::VPERMIL2PDrrY,         X86::VPERMIL2PDrmY,         0 },
1909    { X86::VPERMIL2PSrr,          X86::VPERMIL2PSrm,          0 },
1910    { X86::VPERMIL2PSrrY,         X86::VPERMIL2PSrmY,         0 },
1911    { X86::VPPERMrr,              X86::VPPERMrm,              0 },
1912
1913    // AVX-512 VPERMI instructions with 3 source operands.
1914    { X86::VPERMI2Drr,            X86::VPERMI2Drm,            0 },
1915    { X86::VPERMI2Qrr,            X86::VPERMI2Qrm,            0 },
1916    { X86::VPERMI2PSrr,           X86::VPERMI2PSrm,           0 },
1917    { X86::VPERMI2PDrr,           X86::VPERMI2PDrm,           0 },
1918    { X86::VBLENDMPDZrr,          X86::VBLENDMPDZrm,          0 },
1919    { X86::VBLENDMPSZrr,          X86::VBLENDMPSZrm,          0 },
1920    { X86::VPBLENDMDZrr,          X86::VPBLENDMDZrm,          0 },
1921    { X86::VPBLENDMQZrr,          X86::VPBLENDMQZrm,          0 },
1922    { X86::VBROADCASTSSZrk,       X86::VBROADCASTSSZmk,       TB_NO_REVERSE },
1923    { X86::VBROADCASTSDZrk,       X86::VBROADCASTSDZmk,       TB_NO_REVERSE },
1924    { X86::VBROADCASTSSZ256rk,    X86::VBROADCASTSSZ256mk,    TB_NO_REVERSE },
1925    { X86::VBROADCASTSDZ256rk,    X86::VBROADCASTSDZ256mk,    TB_NO_REVERSE },
1926    { X86::VBROADCASTSSZ128rk,    X86::VBROADCASTSSZ128mk,    TB_NO_REVERSE },
1927     // AVX-512 arithmetic instructions
1928    { X86::VADDPSZrrkz,           X86::VADDPSZrmkz,           0 },
1929    { X86::VADDPDZrrkz,           X86::VADDPDZrmkz,           0 },
1930    { X86::VSUBPSZrrkz,           X86::VSUBPSZrmkz,           0 },
1931    { X86::VSUBPDZrrkz,           X86::VSUBPDZrmkz,           0 },
1932    { X86::VMULPSZrrkz,           X86::VMULPSZrmkz,           0 },
1933    { X86::VMULPDZrrkz,           X86::VMULPDZrmkz,           0 },
1934    { X86::VDIVPSZrrkz,           X86::VDIVPSZrmkz,           0 },
1935    { X86::VDIVPDZrrkz,           X86::VDIVPDZrmkz,           0 },
1936    { X86::VMINPSZrrkz,           X86::VMINPSZrmkz,           0 },
1937    { X86::VMINPDZrrkz,           X86::VMINPDZrmkz,           0 },
1938    { X86::VMAXPSZrrkz,           X86::VMAXPSZrmkz,           0 },
1939    { X86::VMAXPDZrrkz,           X86::VMAXPDZrmkz,           0 },
1940    // AVX-512{F,VL} arithmetic instructions 256-bit
1941    { X86::VADDPSZ256rrkz,        X86::VADDPSZ256rmkz,        0 },
1942    { X86::VADDPDZ256rrkz,        X86::VADDPDZ256rmkz,        0 },
1943    { X86::VSUBPSZ256rrkz,        X86::VSUBPSZ256rmkz,        0 },
1944    { X86::VSUBPDZ256rrkz,        X86::VSUBPDZ256rmkz,        0 },
1945    { X86::VMULPSZ256rrkz,        X86::VMULPSZ256rmkz,        0 },
1946    { X86::VMULPDZ256rrkz,        X86::VMULPDZ256rmkz,        0 },
1947    { X86::VDIVPSZ256rrkz,        X86::VDIVPSZ256rmkz,        0 },
1948    { X86::VDIVPDZ256rrkz,        X86::VDIVPDZ256rmkz,        0 },
1949    { X86::VMINPSZ256rrkz,        X86::VMINPSZ256rmkz,        0 },
1950    { X86::VMINPDZ256rrkz,        X86::VMINPDZ256rmkz,        0 },
1951    { X86::VMAXPSZ256rrkz,        X86::VMAXPSZ256rmkz,        0 },
1952    { X86::VMAXPDZ256rrkz,        X86::VMAXPDZ256rmkz,        0 },
1953    // AVX-512{F,VL} arithmetic instructions 128-bit
1954    { X86::VADDPSZ128rrkz,        X86::VADDPSZ128rmkz,        0 },
1955    { X86::VADDPDZ128rrkz,        X86::VADDPDZ128rmkz,        0 },
1956    { X86::VSUBPSZ128rrkz,        X86::VSUBPSZ128rmkz,        0 },
1957    { X86::VSUBPDZ128rrkz,        X86::VSUBPDZ128rmkz,        0 },
1958    { X86::VMULPSZ128rrkz,        X86::VMULPSZ128rmkz,        0 },
1959    { X86::VMULPDZ128rrkz,        X86::VMULPDZ128rmkz,        0 },
1960    { X86::VDIVPSZ128rrkz,        X86::VDIVPSZ128rmkz,        0 },
1961    { X86::VDIVPDZ128rrkz,        X86::VDIVPDZ128rmkz,        0 },
1962    { X86::VMINPSZ128rrkz,        X86::VMINPSZ128rmkz,        0 },
1963    { X86::VMINPDZ128rrkz,        X86::VMINPDZ128rmkz,        0 },
1964    { X86::VMAXPSZ128rrkz,        X86::VMAXPSZ128rmkz,        0 },
1965    { X86::VMAXPDZ128rrkz,        X86::VMAXPDZ128rmkz,        0 }
1966  };
1967
1968  for (X86MemoryFoldTableEntry Entry : MemoryFoldTable3) {
1969    AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
1970                  Entry.RegOp, Entry.MemOp,
1971                  // Index 3, folded load
1972                  Entry.Flags | TB_INDEX_3 | TB_FOLDED_LOAD);
1973  }
1974
1975  static const X86MemoryFoldTableEntry MemoryFoldTable4[] = {
1976     // AVX-512 foldable instructions
1977    { X86::VADDPSZrrk,         X86::VADDPSZrmk,           0 },
1978    { X86::VADDPDZrrk,         X86::VADDPDZrmk,           0 },
1979    { X86::VSUBPSZrrk,         X86::VSUBPSZrmk,           0 },
1980    { X86::VSUBPDZrrk,         X86::VSUBPDZrmk,           0 },
1981    { X86::VMULPSZrrk,         X86::VMULPSZrmk,           0 },
1982    { X86::VMULPDZrrk,         X86::VMULPDZrmk,           0 },
1983    { X86::VDIVPSZrrk,         X86::VDIVPSZrmk,           0 },
1984    { X86::VDIVPDZrrk,         X86::VDIVPDZrmk,           0 },
1985    { X86::VMINPSZrrk,         X86::VMINPSZrmk,           0 },
1986    { X86::VMINPDZrrk,         X86::VMINPDZrmk,           0 },
1987    { X86::VMAXPSZrrk,         X86::VMAXPSZrmk,           0 },
1988    { X86::VMAXPDZrrk,         X86::VMAXPDZrmk,           0 },
1989    // AVX-512{F,VL} foldable instructions 256-bit
1990    { X86::VADDPSZ256rrk,      X86::VADDPSZ256rmk,        0 },
1991    { X86::VADDPDZ256rrk,      X86::VADDPDZ256rmk,        0 },
1992    { X86::VSUBPSZ256rrk,      X86::VSUBPSZ256rmk,        0 },
1993    { X86::VSUBPDZ256rrk,      X86::VSUBPDZ256rmk,        0 },
1994    { X86::VMULPSZ256rrk,      X86::VMULPSZ256rmk,        0 },
1995    { X86::VMULPDZ256rrk,      X86::VMULPDZ256rmk,        0 },
1996    { X86::VDIVPSZ256rrk,      X86::VDIVPSZ256rmk,        0 },
1997    { X86::VDIVPDZ256rrk,      X86::VDIVPDZ256rmk,        0 },
1998    { X86::VMINPSZ256rrk,      X86::VMINPSZ256rmk,        0 },
1999    { X86::VMINPDZ256rrk,      X86::VMINPDZ256rmk,        0 },
2000    { X86::VMAXPSZ256rrk,      X86::VMAXPSZ256rmk,        0 },
2001    { X86::VMAXPDZ256rrk,      X86::VMAXPDZ256rmk,        0 },
2002    // AVX-512{F,VL} foldable instructions 128-bit
2003    { X86::VADDPSZ128rrk,      X86::VADDPSZ128rmk,        0 },
2004    { X86::VADDPDZ128rrk,      X86::VADDPDZ128rmk,        0 },
2005    { X86::VSUBPSZ128rrk,      X86::VSUBPSZ128rmk,        0 },
2006    { X86::VSUBPDZ128rrk,      X86::VSUBPDZ128rmk,        0 },
2007    { X86::VMULPSZ128rrk,      X86::VMULPSZ128rmk,        0 },
2008    { X86::VMULPDZ128rrk,      X86::VMULPDZ128rmk,        0 },
2009    { X86::VDIVPSZ128rrk,      X86::VDIVPSZ128rmk,        0 },
2010    { X86::VDIVPDZ128rrk,      X86::VDIVPDZ128rmk,        0 },
2011    { X86::VMINPSZ128rrk,      X86::VMINPSZ128rmk,        0 },
2012    { X86::VMINPDZ128rrk,      X86::VMINPDZ128rmk,        0 },
2013    { X86::VMAXPSZ128rrk,      X86::VMAXPSZ128rmk,        0 },
2014    { X86::VMAXPDZ128rrk,      X86::VMAXPDZ128rmk,        0 }
2015  };
2016
2017  for (X86MemoryFoldTableEntry Entry : MemoryFoldTable4) {
2018    AddTableEntry(RegOp2MemOpTable4, MemOp2RegOpTable,
2019                  Entry.RegOp, Entry.MemOp,
2020                  // Index 4, folded load
2021                  Entry.Flags | TB_INDEX_4 | TB_FOLDED_LOAD);
2022  }
2023}
2024
2025void
2026X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
2027                            MemOp2RegOpTableType &M2RTable,
2028                            unsigned RegOp, unsigned MemOp, unsigned Flags) {
2029    if ((Flags & TB_NO_FORWARD) == 0) {
2030      assert(!R2MTable.count(RegOp) && "Duplicate entry!");
2031      R2MTable[RegOp] = std::make_pair(MemOp, Flags);
2032    }
2033    if ((Flags & TB_NO_REVERSE) == 0) {
2034      assert(!M2RTable.count(MemOp) &&
2035           "Duplicated entries in unfolding maps?");
2036      M2RTable[MemOp] = std::make_pair(RegOp, Flags);
2037    }
2038}
2039
2040bool
2041X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
2042                                    unsigned &SrcReg, unsigned &DstReg,
2043                                    unsigned &SubIdx) const {
2044  switch (MI.getOpcode()) {
2045  default: break;
2046  case X86::MOVSX16rr8:
2047  case X86::MOVZX16rr8:
2048  case X86::MOVSX32rr8:
2049  case X86::MOVZX32rr8:
2050  case X86::MOVSX64rr8:
2051    if (!Subtarget.is64Bit())
2052      // It's not always legal to reference the low 8-bit of the larger
2053      // register in 32-bit mode.
2054      return false;
2055  case X86::MOVSX32rr16:
2056  case X86::MOVZX32rr16:
2057  case X86::MOVSX64rr16:
2058  case X86::MOVSX64rr32: {
2059    if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
2060      // Be conservative.
2061      return false;
2062    SrcReg = MI.getOperand(1).getReg();
2063    DstReg = MI.getOperand(0).getReg();
2064    switch (MI.getOpcode()) {
2065    default: llvm_unreachable("Unreachable!");
2066    case X86::MOVSX16rr8:
2067    case X86::MOVZX16rr8:
2068    case X86::MOVSX32rr8:
2069    case X86::MOVZX32rr8:
2070    case X86::MOVSX64rr8:
2071      SubIdx = X86::sub_8bit;
2072      break;
2073    case X86::MOVSX32rr16:
2074    case X86::MOVZX32rr16:
2075    case X86::MOVSX64rr16:
2076      SubIdx = X86::sub_16bit;
2077      break;
2078    case X86::MOVSX64rr32:
2079      SubIdx = X86::sub_32bit;
2080      break;
2081    }
2082    return true;
2083  }
2084  }
2085  return false;
2086}
2087
2088int X86InstrInfo::getSPAdjust(const MachineInstr *MI) const {
2089  const MachineFunction *MF = MI->getParent()->getParent();
2090  const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2091
2092  if (MI->getOpcode() == getCallFrameSetupOpcode() ||
2093      MI->getOpcode() == getCallFrameDestroyOpcode()) {
2094    unsigned StackAlign = TFI->getStackAlignment();
2095    int SPAdj = (MI->getOperand(0).getImm() + StackAlign - 1) / StackAlign *
2096                 StackAlign;
2097
2098    SPAdj -= MI->getOperand(1).getImm();
2099
2100    if (MI->getOpcode() == getCallFrameSetupOpcode())
2101      return SPAdj;
2102    else
2103      return -SPAdj;
2104  }
2105
2106  // To know whether a call adjusts the stack, we need information
2107  // that is bound to the following ADJCALLSTACKUP pseudo.
2108  // Look for the next ADJCALLSTACKUP that follows the call.
2109  if (MI->isCall()) {
2110    const MachineBasicBlock* MBB = MI->getParent();
2111    auto I = ++MachineBasicBlock::const_iterator(MI);
2112    for (auto E = MBB->end(); I != E; ++I) {
2113      if (I->getOpcode() == getCallFrameDestroyOpcode() ||
2114          I->isCall())
2115        break;
2116    }
2117
2118    // If we could not find a frame destroy opcode, then it has already
2119    // been simplified, so we don't care.
2120    if (I->getOpcode() != getCallFrameDestroyOpcode())
2121      return 0;
2122
2123    return -(I->getOperand(1).getImm());
2124  }
2125
2126  // Currently handle only PUSHes we can reasonably expect to see
2127  // in call sequences
2128  switch (MI->getOpcode()) {
2129  default:
2130    return 0;
2131  case X86::PUSH32i8:
2132  case X86::PUSH32r:
2133  case X86::PUSH32rmm:
2134  case X86::PUSH32rmr:
2135  case X86::PUSHi32:
2136    return 4;
2137  }
2138}
2139
2140/// Return true and the FrameIndex if the specified
2141/// operand and follow operands form a reference to the stack frame.
2142bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
2143                                  int &FrameIndex) const {
2144  if (MI->getOperand(Op+X86::AddrBaseReg).isFI() &&
2145      MI->getOperand(Op+X86::AddrScaleAmt).isImm() &&
2146      MI->getOperand(Op+X86::AddrIndexReg).isReg() &&
2147      MI->getOperand(Op+X86::AddrDisp).isImm() &&
2148      MI->getOperand(Op+X86::AddrScaleAmt).getImm() == 1 &&
2149      MI->getOperand(Op+X86::AddrIndexReg).getReg() == 0 &&
2150      MI->getOperand(Op+X86::AddrDisp).getImm() == 0) {
2151    FrameIndex = MI->getOperand(Op+X86::AddrBaseReg).getIndex();
2152    return true;
2153  }
2154  return false;
2155}
2156
2157static bool isFrameLoadOpcode(int Opcode) {
2158  switch (Opcode) {
2159  default:
2160    return false;
2161  case X86::MOV8rm:
2162  case X86::MOV16rm:
2163  case X86::MOV32rm:
2164  case X86::MOV64rm:
2165  case X86::LD_Fp64m:
2166  case X86::MOVSSrm:
2167  case X86::MOVSDrm:
2168  case X86::MOVAPSrm:
2169  case X86::MOVAPDrm:
2170  case X86::MOVDQArm:
2171  case X86::VMOVSSrm:
2172  case X86::VMOVSDrm:
2173  case X86::VMOVAPSrm:
2174  case X86::VMOVAPDrm:
2175  case X86::VMOVDQArm:
2176  case X86::VMOVUPSYrm:
2177  case X86::VMOVAPSYrm:
2178  case X86::VMOVUPDYrm:
2179  case X86::VMOVAPDYrm:
2180  case X86::VMOVDQUYrm:
2181  case X86::VMOVDQAYrm:
2182  case X86::MMX_MOVD64rm:
2183  case X86::MMX_MOVQ64rm:
2184  case X86::VMOVAPSZrm:
2185  case X86::VMOVUPSZrm:
2186    return true;
2187  }
2188}
2189
2190static bool isFrameStoreOpcode(int Opcode) {
2191  switch (Opcode) {
2192  default: break;
2193  case X86::MOV8mr:
2194  case X86::MOV16mr:
2195  case X86::MOV32mr:
2196  case X86::MOV64mr:
2197  case X86::ST_FpP64m:
2198  case X86::MOVSSmr:
2199  case X86::MOVSDmr:
2200  case X86::MOVAPSmr:
2201  case X86::MOVAPDmr:
2202  case X86::MOVDQAmr:
2203  case X86::VMOVSSmr:
2204  case X86::VMOVSDmr:
2205  case X86::VMOVAPSmr:
2206  case X86::VMOVAPDmr:
2207  case X86::VMOVDQAmr:
2208  case X86::VMOVUPSYmr:
2209  case X86::VMOVAPSYmr:
2210  case X86::VMOVUPDYmr:
2211  case X86::VMOVAPDYmr:
2212  case X86::VMOVDQUYmr:
2213  case X86::VMOVDQAYmr:
2214  case X86::VMOVUPSZmr:
2215  case X86::VMOVAPSZmr:
2216  case X86::MMX_MOVD64mr:
2217  case X86::MMX_MOVQ64mr:
2218  case X86::MMX_MOVNTQmr:
2219    return true;
2220  }
2221  return false;
2222}
2223
2224unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
2225                                           int &FrameIndex) const {
2226  if (isFrameLoadOpcode(MI->getOpcode()))
2227    if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
2228      return MI->getOperand(0).getReg();
2229  return 0;
2230}
2231
2232unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
2233                                                 int &FrameIndex) const {
2234  if (isFrameLoadOpcode(MI->getOpcode())) {
2235    unsigned Reg;
2236    if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
2237      return Reg;
2238    // Check for post-frame index elimination operations
2239    const MachineMemOperand *Dummy;
2240    return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
2241  }
2242  return 0;
2243}
2244
2245unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
2246                                          int &FrameIndex) const {
2247  if (isFrameStoreOpcode(MI->getOpcode()))
2248    if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
2249        isFrameOperand(MI, 0, FrameIndex))
2250      return MI->getOperand(X86::AddrNumOperands).getReg();
2251  return 0;
2252}
2253
2254unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
2255                                                int &FrameIndex) const {
2256  if (isFrameStoreOpcode(MI->getOpcode())) {
2257    unsigned Reg;
2258    if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
2259      return Reg;
2260    // Check for post-frame index elimination operations
2261    const MachineMemOperand *Dummy;
2262    return hasStoreToStackSlot(MI, Dummy, FrameIndex);
2263  }
2264  return 0;
2265}
2266
2267/// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
2268static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
2269  // Don't waste compile time scanning use-def chains of physregs.
2270  if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
2271    return false;
2272  bool isPICBase = false;
2273  for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
2274         E = MRI.def_instr_end(); I != E; ++I) {
2275    MachineInstr *DefMI = &*I;
2276    if (DefMI->getOpcode() != X86::MOVPC32r)
2277      return false;
2278    assert(!isPICBase && "More than one PIC base?");
2279    isPICBase = true;
2280  }
2281  return isPICBase;
2282}
2283
2284bool
2285X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
2286                                                AliasAnalysis *AA) const {
2287  switch (MI->getOpcode()) {
2288  default: break;
2289  case X86::MOV8rm:
2290  case X86::MOV16rm:
2291  case X86::MOV32rm:
2292  case X86::MOV64rm:
2293  case X86::LD_Fp64m:
2294  case X86::MOVSSrm:
2295  case X86::MOVSDrm:
2296  case X86::MOVAPSrm:
2297  case X86::MOVUPSrm:
2298  case X86::MOVAPDrm:
2299  case X86::MOVDQArm:
2300  case X86::MOVDQUrm:
2301  case X86::VMOVSSrm:
2302  case X86::VMOVSDrm:
2303  case X86::VMOVAPSrm:
2304  case X86::VMOVUPSrm:
2305  case X86::VMOVAPDrm:
2306  case X86::VMOVDQArm:
2307  case X86::VMOVDQUrm:
2308  case X86::VMOVAPSYrm:
2309  case X86::VMOVUPSYrm:
2310  case X86::VMOVAPDYrm:
2311  case X86::VMOVDQAYrm:
2312  case X86::VMOVDQUYrm:
2313  case X86::MMX_MOVD64rm:
2314  case X86::MMX_MOVQ64rm:
2315  case X86::FsVMOVAPSrm:
2316  case X86::FsVMOVAPDrm:
2317  case X86::FsMOVAPSrm:
2318  case X86::FsMOVAPDrm:
2319  // AVX-512
2320  case X86::VMOVAPDZ128rm:
2321  case X86::VMOVAPDZ256rm:
2322  case X86::VMOVAPDZrm:
2323  case X86::VMOVAPSZ128rm:
2324  case X86::VMOVAPSZ256rm:
2325  case X86::VMOVAPSZrm:
2326  case X86::VMOVDQA32Z128rm:
2327  case X86::VMOVDQA32Z256rm:
2328  case X86::VMOVDQA32Zrm:
2329  case X86::VMOVDQA64Z128rm:
2330  case X86::VMOVDQA64Z256rm:
2331  case X86::VMOVDQA64Zrm:
2332  case X86::VMOVDQU16Z128rm:
2333  case X86::VMOVDQU16Z256rm:
2334  case X86::VMOVDQU16Zrm:
2335  case X86::VMOVDQU32Z128rm:
2336  case X86::VMOVDQU32Z256rm:
2337  case X86::VMOVDQU32Zrm:
2338  case X86::VMOVDQU64Z128rm:
2339  case X86::VMOVDQU64Z256rm:
2340  case X86::VMOVDQU64Zrm:
2341  case X86::VMOVDQU8Z128rm:
2342  case X86::VMOVDQU8Z256rm:
2343  case X86::VMOVDQU8Zrm:
2344  case X86::VMOVUPSZ128rm:
2345  case X86::VMOVUPSZ256rm:
2346  case X86::VMOVUPSZrm: {
2347    // Loads from constant pools are trivially rematerializable.
2348    if (MI->getOperand(1+X86::AddrBaseReg).isReg() &&
2349        MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
2350        MI->getOperand(1+X86::AddrIndexReg).isReg() &&
2351        MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
2352        MI->isInvariantLoad(AA)) {
2353      unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
2354      if (BaseReg == 0 || BaseReg == X86::RIP)
2355        return true;
2356      // Allow re-materialization of PIC load.
2357      if (!ReMatPICStubLoad && MI->getOperand(1+X86::AddrDisp).isGlobal())
2358        return false;
2359      const MachineFunction &MF = *MI->getParent()->getParent();
2360      const MachineRegisterInfo &MRI = MF.getRegInfo();
2361      return regIsPICBase(BaseReg, MRI);
2362    }
2363    return false;
2364  }
2365
2366  case X86::LEA32r:
2367  case X86::LEA64r: {
2368    if (MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
2369        MI->getOperand(1+X86::AddrIndexReg).isReg() &&
2370        MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
2371        !MI->getOperand(1+X86::AddrDisp).isReg()) {
2372      // lea fi#, lea GV, etc. are all rematerializable.
2373      if (!MI->getOperand(1+X86::AddrBaseReg).isReg())
2374        return true;
2375      unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
2376      if (BaseReg == 0)
2377        return true;
2378      // Allow re-materialization of lea PICBase + x.
2379      const MachineFunction &MF = *MI->getParent()->getParent();
2380      const MachineRegisterInfo &MRI = MF.getRegInfo();
2381      return regIsPICBase(BaseReg, MRI);
2382    }
2383    return false;
2384  }
2385  }
2386
2387  // All other instructions marked M_REMATERIALIZABLE are always trivially
2388  // rematerializable.
2389  return true;
2390}
2391
2392bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
2393                                         MachineBasicBlock::iterator I) const {
2394  MachineBasicBlock::iterator E = MBB.end();
2395
2396  // For compile time consideration, if we are not able to determine the
2397  // safety after visiting 4 instructions in each direction, we will assume
2398  // it's not safe.
2399  MachineBasicBlock::iterator Iter = I;
2400  for (unsigned i = 0; Iter != E && i < 4; ++i) {
2401    bool SeenDef = false;
2402    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
2403      MachineOperand &MO = Iter->getOperand(j);
2404      if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
2405        SeenDef = true;
2406      if (!MO.isReg())
2407        continue;
2408      if (MO.getReg() == X86::EFLAGS) {
2409        if (MO.isUse())
2410          return false;
2411        SeenDef = true;
2412      }
2413    }
2414
2415    if (SeenDef)
2416      // This instruction defines EFLAGS, no need to look any further.
2417      return true;
2418    ++Iter;
2419    // Skip over DBG_VALUE.
2420    while (Iter != E && Iter->isDebugValue())
2421      ++Iter;
2422  }
2423
2424  // It is safe to clobber EFLAGS at the end of a block of no successor has it
2425  // live in.
2426  if (Iter == E) {
2427    for (MachineBasicBlock *S : MBB.successors())
2428      if (S->isLiveIn(X86::EFLAGS))
2429        return false;
2430    return true;
2431  }
2432
2433  MachineBasicBlock::iterator B = MBB.begin();
2434  Iter = I;
2435  for (unsigned i = 0; i < 4; ++i) {
2436    // If we make it to the beginning of the block, it's safe to clobber
2437    // EFLAGS iff EFLAGS is not live-in.
2438    if (Iter == B)
2439      return !MBB.isLiveIn(X86::EFLAGS);
2440
2441    --Iter;
2442    // Skip over DBG_VALUE.
2443    while (Iter != B && Iter->isDebugValue())
2444      --Iter;
2445
2446    bool SawKill = false;
2447    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
2448      MachineOperand &MO = Iter->getOperand(j);
2449      // A register mask may clobber EFLAGS, but we should still look for a
2450      // live EFLAGS def.
2451      if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
2452        SawKill = true;
2453      if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
2454        if (MO.isDef()) return MO.isDead();
2455        if (MO.isKill()) SawKill = true;
2456      }
2457    }
2458
2459    if (SawKill)
2460      // This instruction kills EFLAGS and doesn't redefine it, so
2461      // there's no need to look further.
2462      return true;
2463  }
2464
2465  // Conservative answer.
2466  return false;
2467}
2468
2469void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
2470                                 MachineBasicBlock::iterator I,
2471                                 unsigned DestReg, unsigned SubIdx,
2472                                 const MachineInstr *Orig,
2473                                 const TargetRegisterInfo &TRI) const {
2474  bool ClobbersEFLAGS = false;
2475  for (const MachineOperand &MO : Orig->operands()) {
2476    if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
2477      ClobbersEFLAGS = true;
2478      break;
2479    }
2480  }
2481
2482  if (ClobbersEFLAGS && !isSafeToClobberEFLAGS(MBB, I)) {
2483    // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
2484    // effects.
2485    int Value;
2486    switch (Orig->getOpcode()) {
2487    case X86::MOV32r0:  Value = 0; break;
2488    case X86::MOV32r1:  Value = 1; break;
2489    case X86::MOV32r_1: Value = -1; break;
2490    default:
2491      llvm_unreachable("Unexpected instruction!");
2492    }
2493
2494    DebugLoc DL = Orig->getDebugLoc();
2495    BuildMI(MBB, I, DL, get(X86::MOV32ri)).addOperand(Orig->getOperand(0))
2496      .addImm(Value);
2497  } else {
2498    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
2499    MBB.insert(I, MI);
2500  }
2501
2502  MachineInstr *NewMI = std::prev(I);
2503  NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
2504}
2505
2506/// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
2507bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr *MI) const {
2508  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2509    MachineOperand &MO = MI->getOperand(i);
2510    if (MO.isReg() && MO.isDef() &&
2511        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
2512      return true;
2513    }
2514  }
2515  return false;
2516}
2517
2518/// Check whether the shift count for a machine operand is non-zero.
2519inline static unsigned getTruncatedShiftCount(MachineInstr *MI,
2520                                              unsigned ShiftAmtOperandIdx) {
2521  // The shift count is six bits with the REX.W prefix and five bits without.
2522  unsigned ShiftCountMask = (MI->getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
2523  unsigned Imm = MI->getOperand(ShiftAmtOperandIdx).getImm();
2524  return Imm & ShiftCountMask;
2525}
2526
2527/// Check whether the given shift count is appropriate
2528/// can be represented by a LEA instruction.
2529inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
2530  // Left shift instructions can be transformed into load-effective-address
2531  // instructions if we can encode them appropriately.
2532  // A LEA instruction utilizes a SIB byte to encode its scale factor.
2533  // The SIB.scale field is two bits wide which means that we can encode any
2534  // shift amount less than 4.
2535  return ShAmt < 4 && ShAmt > 0;
2536}
2537
2538bool X86InstrInfo::classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
2539                                  unsigned Opc, bool AllowSP,
2540                                  unsigned &NewSrc, bool &isKill, bool &isUndef,
2541                                  MachineOperand &ImplicitOp) const {
2542  MachineFunction &MF = *MI->getParent()->getParent();
2543  const TargetRegisterClass *RC;
2544  if (AllowSP) {
2545    RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
2546  } else {
2547    RC = Opc != X86::LEA32r ?
2548      &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
2549  }
2550  unsigned SrcReg = Src.getReg();
2551
2552  // For both LEA64 and LEA32 the register already has essentially the right
2553  // type (32-bit or 64-bit) we may just need to forbid SP.
2554  if (Opc != X86::LEA64_32r) {
2555    NewSrc = SrcReg;
2556    isKill = Src.isKill();
2557    isUndef = Src.isUndef();
2558
2559    if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
2560        !MF.getRegInfo().constrainRegClass(NewSrc, RC))
2561      return false;
2562
2563    return true;
2564  }
2565
2566  // This is for an LEA64_32r and incoming registers are 32-bit. One way or
2567  // another we need to add 64-bit registers to the final MI.
2568  if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
2569    ImplicitOp = Src;
2570    ImplicitOp.setImplicit();
2571
2572    NewSrc = getX86SubSuperRegister(Src.getReg(), 64);
2573    MachineBasicBlock::LivenessQueryResult LQR =
2574      MI->getParent()->computeRegisterLiveness(&getRegisterInfo(), NewSrc, MI);
2575
2576    switch (LQR) {
2577    case MachineBasicBlock::LQR_Unknown:
2578      // We can't give sane liveness flags to the instruction, abandon LEA
2579      // formation.
2580      return false;
2581    case MachineBasicBlock::LQR_Live:
2582      isKill = MI->killsRegister(SrcReg);
2583      isUndef = false;
2584      break;
2585    default:
2586      // The physreg itself is dead, so we have to use it as an <undef>.
2587      isKill = false;
2588      isUndef = true;
2589      break;
2590    }
2591  } else {
2592    // Virtual register of the wrong class, we have to create a temporary 64-bit
2593    // vreg to feed into the LEA.
2594    NewSrc = MF.getRegInfo().createVirtualRegister(RC);
2595    BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
2596            get(TargetOpcode::COPY))
2597      .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
2598        .addOperand(Src);
2599
2600    // Which is obviously going to be dead after we're done with it.
2601    isKill = true;
2602    isUndef = false;
2603  }
2604
2605  // We've set all the parameters without issue.
2606  return true;
2607}
2608
2609/// Helper for convertToThreeAddress when 16-bit LEA is disabled, use 32-bit
2610/// LEA to form 3-address code by promoting to a 32-bit superregister and then
2611/// truncating back down to a 16-bit subregister.
2612MachineInstr *
2613X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
2614                                           MachineFunction::iterator &MFI,
2615                                           MachineBasicBlock::iterator &MBBI,
2616                                           LiveVariables *LV) const {
2617  MachineInstr *MI = MBBI;
2618  unsigned Dest = MI->getOperand(0).getReg();
2619  unsigned Src = MI->getOperand(1).getReg();
2620  bool isDead = MI->getOperand(0).isDead();
2621  bool isKill = MI->getOperand(1).isKill();
2622
2623  MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
2624  unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
2625  unsigned Opc, leaInReg;
2626  if (Subtarget.is64Bit()) {
2627    Opc = X86::LEA64_32r;
2628    leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
2629  } else {
2630    Opc = X86::LEA32r;
2631    leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
2632  }
2633
2634  // Build and insert into an implicit UNDEF value. This is OK because
2635  // well be shifting and then extracting the lower 16-bits.
2636  // This has the potential to cause partial register stall. e.g.
2637  //   movw    (%rbp,%rcx,2), %dx
2638  //   leal    -65(%rdx), %esi
2639  // But testing has shown this *does* help performance in 64-bit mode (at
2640  // least on modern x86 machines).
2641  BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
2642  MachineInstr *InsMI =
2643    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
2644    .addReg(leaInReg, RegState::Define, X86::sub_16bit)
2645    .addReg(Src, getKillRegState(isKill));
2646
2647  MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
2648                                    get(Opc), leaOutReg);
2649  switch (MIOpc) {
2650  default: llvm_unreachable("Unreachable!");
2651  case X86::SHL16ri: {
2652    unsigned ShAmt = MI->getOperand(2).getImm();
2653    MIB.addReg(0).addImm(1 << ShAmt)
2654       .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
2655    break;
2656  }
2657  case X86::INC16r:
2658    addRegOffset(MIB, leaInReg, true, 1);
2659    break;
2660  case X86::DEC16r:
2661    addRegOffset(MIB, leaInReg, true, -1);
2662    break;
2663  case X86::ADD16ri:
2664  case X86::ADD16ri8:
2665  case X86::ADD16ri_DB:
2666  case X86::ADD16ri8_DB:
2667    addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
2668    break;
2669  case X86::ADD16rr:
2670  case X86::ADD16rr_DB: {
2671    unsigned Src2 = MI->getOperand(2).getReg();
2672    bool isKill2 = MI->getOperand(2).isKill();
2673    unsigned leaInReg2 = 0;
2674    MachineInstr *InsMI2 = nullptr;
2675    if (Src == Src2) {
2676      // ADD16rr %reg1028<kill>, %reg1028
2677      // just a single insert_subreg.
2678      addRegReg(MIB, leaInReg, true, leaInReg, false);
2679    } else {
2680      if (Subtarget.is64Bit())
2681        leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
2682      else
2683        leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
2684      // Build and insert into an implicit UNDEF value. This is OK because
2685      // well be shifting and then extracting the lower 16-bits.
2686      BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
2687      InsMI2 =
2688        BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
2689        .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
2690        .addReg(Src2, getKillRegState(isKill2));
2691      addRegReg(MIB, leaInReg, true, leaInReg2, true);
2692    }
2693    if (LV && isKill2 && InsMI2)
2694      LV->replaceKillInstruction(Src2, MI, InsMI2);
2695    break;
2696  }
2697  }
2698
2699  MachineInstr *NewMI = MIB;
2700  MachineInstr *ExtMI =
2701    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
2702    .addReg(Dest, RegState::Define | getDeadRegState(isDead))
2703    .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
2704
2705  if (LV) {
2706    // Update live variables
2707    LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
2708    LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
2709    if (isKill)
2710      LV->replaceKillInstruction(Src, MI, InsMI);
2711    if (isDead)
2712      LV->replaceKillInstruction(Dest, MI, ExtMI);
2713  }
2714
2715  return ExtMI;
2716}
2717
2718/// This method must be implemented by targets that
2719/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
2720/// may be able to convert a two-address instruction into a true
2721/// three-address instruction on demand.  This allows the X86 target (for
2722/// example) to convert ADD and SHL instructions into LEA instructions if they
2723/// would require register copies due to two-addressness.
2724///
2725/// This method returns a null pointer if the transformation cannot be
2726/// performed, otherwise it returns the new instruction.
2727///
2728MachineInstr *
2729X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
2730                                    MachineBasicBlock::iterator &MBBI,
2731                                    LiveVariables *LV) const {
2732  MachineInstr *MI = MBBI;
2733
2734  // The following opcodes also sets the condition code register(s). Only
2735  // convert them to equivalent lea if the condition code register def's
2736  // are dead!
2737  if (hasLiveCondCodeDef(MI))
2738    return nullptr;
2739
2740  MachineFunction &MF = *MI->getParent()->getParent();
2741  // All instructions input are two-addr instructions.  Get the known operands.
2742  const MachineOperand &Dest = MI->getOperand(0);
2743  const MachineOperand &Src = MI->getOperand(1);
2744
2745  MachineInstr *NewMI = nullptr;
2746  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
2747  // we have better subtarget support, enable the 16-bit LEA generation here.
2748  // 16-bit LEA is also slow on Core2.
2749  bool DisableLEA16 = true;
2750  bool is64Bit = Subtarget.is64Bit();
2751
2752  unsigned MIOpc = MI->getOpcode();
2753  switch (MIOpc) {
2754  default: return nullptr;
2755  case X86::SHL64ri: {
2756    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
2757    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2758    if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
2759
2760    // LEA can't handle RSP.
2761    if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
2762        !MF.getRegInfo().constrainRegClass(Src.getReg(),
2763                                           &X86::GR64_NOSPRegClass))
2764      return nullptr;
2765
2766    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
2767      .addOperand(Dest)
2768      .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
2769    break;
2770  }
2771  case X86::SHL32ri: {
2772    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
2773    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2774    if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
2775
2776    unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2777
2778    // LEA can't handle ESP.
2779    bool isKill, isUndef;
2780    unsigned SrcReg;
2781    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2782    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2783                        SrcReg, isKill, isUndef, ImplicitOp))
2784      return nullptr;
2785
2786    MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2787      .addOperand(Dest)
2788      .addReg(0).addImm(1 << ShAmt)
2789      .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
2790      .addImm(0).addReg(0);
2791    if (ImplicitOp.getReg() != 0)
2792      MIB.addOperand(ImplicitOp);
2793    NewMI = MIB;
2794
2795    break;
2796  }
2797  case X86::SHL16ri: {
2798    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
2799    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
2800    if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
2801
2802    if (DisableLEA16)
2803      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : nullptr;
2804    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2805      .addOperand(Dest)
2806      .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
2807    break;
2808  }
2809  case X86::INC64r:
2810  case X86::INC32r: {
2811    assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
2812    unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
2813      : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
2814    bool isKill, isUndef;
2815    unsigned SrcReg;
2816    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2817    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2818                        SrcReg, isKill, isUndef, ImplicitOp))
2819      return nullptr;
2820
2821    MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2822        .addOperand(Dest)
2823        .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef));
2824    if (ImplicitOp.getReg() != 0)
2825      MIB.addOperand(ImplicitOp);
2826
2827    NewMI = addOffset(MIB, 1);
2828    break;
2829  }
2830  case X86::INC16r:
2831    if (DisableLEA16)
2832      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2833                     : nullptr;
2834    assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
2835    NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2836                      .addOperand(Dest).addOperand(Src), 1);
2837    break;
2838  case X86::DEC64r:
2839  case X86::DEC32r: {
2840    assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
2841    unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
2842      : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
2843
2844    bool isKill, isUndef;
2845    unsigned SrcReg;
2846    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2847    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
2848                        SrcReg, isKill, isUndef, ImplicitOp))
2849      return nullptr;
2850
2851    MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2852        .addOperand(Dest)
2853        .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
2854    if (ImplicitOp.getReg() != 0)
2855      MIB.addOperand(ImplicitOp);
2856
2857    NewMI = addOffset(MIB, -1);
2858
2859    break;
2860  }
2861  case X86::DEC16r:
2862    if (DisableLEA16)
2863      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2864                     : nullptr;
2865    assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
2866    NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2867                      .addOperand(Dest).addOperand(Src), -1);
2868    break;
2869  case X86::ADD64rr:
2870  case X86::ADD64rr_DB:
2871  case X86::ADD32rr:
2872  case X86::ADD32rr_DB: {
2873    assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2874    unsigned Opc;
2875    if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
2876      Opc = X86::LEA64r;
2877    else
2878      Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2879
2880    bool isKill, isUndef;
2881    unsigned SrcReg;
2882    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2883    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
2884                        SrcReg, isKill, isUndef, ImplicitOp))
2885      return nullptr;
2886
2887    const MachineOperand &Src2 = MI->getOperand(2);
2888    bool isKill2, isUndef2;
2889    unsigned SrcReg2;
2890    MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
2891    if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
2892                        SrcReg2, isKill2, isUndef2, ImplicitOp2))
2893      return nullptr;
2894
2895    MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2896      .addOperand(Dest);
2897    if (ImplicitOp.getReg() != 0)
2898      MIB.addOperand(ImplicitOp);
2899    if (ImplicitOp2.getReg() != 0)
2900      MIB.addOperand(ImplicitOp2);
2901
2902    NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
2903
2904    // Preserve undefness of the operands.
2905    NewMI->getOperand(1).setIsUndef(isUndef);
2906    NewMI->getOperand(3).setIsUndef(isUndef2);
2907
2908    if (LV && Src2.isKill())
2909      LV->replaceKillInstruction(SrcReg2, MI, NewMI);
2910    break;
2911  }
2912  case X86::ADD16rr:
2913  case X86::ADD16rr_DB: {
2914    if (DisableLEA16)
2915      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2916                     : nullptr;
2917    assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2918    unsigned Src2 = MI->getOperand(2).getReg();
2919    bool isKill2 = MI->getOperand(2).isKill();
2920    NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2921                      .addOperand(Dest),
2922                      Src.getReg(), Src.isKill(), Src2, isKill2);
2923
2924    // Preserve undefness of the operands.
2925    bool isUndef = MI->getOperand(1).isUndef();
2926    bool isUndef2 = MI->getOperand(2).isUndef();
2927    NewMI->getOperand(1).setIsUndef(isUndef);
2928    NewMI->getOperand(3).setIsUndef(isUndef2);
2929
2930    if (LV && isKill2)
2931      LV->replaceKillInstruction(Src2, MI, NewMI);
2932    break;
2933  }
2934  case X86::ADD64ri32:
2935  case X86::ADD64ri8:
2936  case X86::ADD64ri32_DB:
2937  case X86::ADD64ri8_DB:
2938    assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2939    NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
2940                      .addOperand(Dest).addOperand(Src),
2941                      MI->getOperand(2).getImm());
2942    break;
2943  case X86::ADD32ri:
2944  case X86::ADD32ri8:
2945  case X86::ADD32ri_DB:
2946  case X86::ADD32ri8_DB: {
2947    assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2948    unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2949
2950    bool isKill, isUndef;
2951    unsigned SrcReg;
2952    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
2953    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
2954                        SrcReg, isKill, isUndef, ImplicitOp))
2955      return nullptr;
2956
2957    MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
2958        .addOperand(Dest)
2959        .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
2960    if (ImplicitOp.getReg() != 0)
2961      MIB.addOperand(ImplicitOp);
2962
2963    NewMI = addOffset(MIB, MI->getOperand(2).getImm());
2964    break;
2965  }
2966  case X86::ADD16ri:
2967  case X86::ADD16ri8:
2968  case X86::ADD16ri_DB:
2969  case X86::ADD16ri8_DB:
2970    if (DisableLEA16)
2971      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
2972                     : nullptr;
2973    assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2974    NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2975                      .addOperand(Dest).addOperand(Src),
2976                      MI->getOperand(2).getImm());
2977    break;
2978  }
2979
2980  if (!NewMI) return nullptr;
2981
2982  if (LV) {  // Update live variables
2983    if (Src.isKill())
2984      LV->replaceKillInstruction(Src.getReg(), MI, NewMI);
2985    if (Dest.isDead())
2986      LV->replaceKillInstruction(Dest.getReg(), MI, NewMI);
2987  }
2988
2989  MFI->insert(MBBI, NewMI);          // Insert the new inst
2990  return NewMI;
2991}
2992
2993/// Returns true if the given instruction opcode is FMA3.
2994/// Otherwise, returns false.
2995/// The second parameter is optional and is used as the second return from
2996/// the function. It is set to true if the given instruction has FMA3 opcode
2997/// that is used for lowering of scalar FMA intrinsics, and it is set to false
2998/// otherwise.
2999static bool isFMA3(unsigned Opcode, bool *IsIntrinsic = nullptr) {
3000  if (IsIntrinsic)
3001    *IsIntrinsic = false;
3002
3003  switch (Opcode) {
3004    case X86::VFMADDSDr132r:      case X86::VFMADDSDr132m:
3005    case X86::VFMADDSSr132r:      case X86::VFMADDSSr132m:
3006    case X86::VFMSUBSDr132r:      case X86::VFMSUBSDr132m:
3007    case X86::VFMSUBSSr132r:      case X86::VFMSUBSSr132m:
3008    case X86::VFNMADDSDr132r:     case X86::VFNMADDSDr132m:
3009    case X86::VFNMADDSSr132r:     case X86::VFNMADDSSr132m:
3010    case X86::VFNMSUBSDr132r:     case X86::VFNMSUBSDr132m:
3011    case X86::VFNMSUBSSr132r:     case X86::VFNMSUBSSr132m:
3012
3013    case X86::VFMADDSDr213r:      case X86::VFMADDSDr213m:
3014    case X86::VFMADDSSr213r:      case X86::VFMADDSSr213m:
3015    case X86::VFMSUBSDr213r:      case X86::VFMSUBSDr213m:
3016    case X86::VFMSUBSSr213r:      case X86::VFMSUBSSr213m:
3017    case X86::VFNMADDSDr213r:     case X86::VFNMADDSDr213m:
3018    case X86::VFNMADDSSr213r:     case X86::VFNMADDSSr213m:
3019    case X86::VFNMSUBSDr213r:     case X86::VFNMSUBSDr213m:
3020    case X86::VFNMSUBSSr213r:     case X86::VFNMSUBSSr213m:
3021
3022    case X86::VFMADDSDr231r:      case X86::VFMADDSDr231m:
3023    case X86::VFMADDSSr231r:      case X86::VFMADDSSr231m:
3024    case X86::VFMSUBSDr231r:      case X86::VFMSUBSDr231m:
3025    case X86::VFMSUBSSr231r:      case X86::VFMSUBSSr231m:
3026    case X86::VFNMADDSDr231r:     case X86::VFNMADDSDr231m:
3027    case X86::VFNMADDSSr231r:     case X86::VFNMADDSSr231m:
3028    case X86::VFNMSUBSDr231r:     case X86::VFNMSUBSDr231m:
3029    case X86::VFNMSUBSSr231r:     case X86::VFNMSUBSSr231m:
3030
3031    case X86::VFMADDSUBPDr132r:   case X86::VFMADDSUBPDr132m:
3032    case X86::VFMADDSUBPSr132r:   case X86::VFMADDSUBPSr132m:
3033    case X86::VFMSUBADDPDr132r:   case X86::VFMSUBADDPDr132m:
3034    case X86::VFMSUBADDPSr132r:   case X86::VFMSUBADDPSr132m:
3035    case X86::VFMADDSUBPDr132rY:  case X86::VFMADDSUBPDr132mY:
3036    case X86::VFMADDSUBPSr132rY:  case X86::VFMADDSUBPSr132mY:
3037    case X86::VFMSUBADDPDr132rY:  case X86::VFMSUBADDPDr132mY:
3038    case X86::VFMSUBADDPSr132rY:  case X86::VFMSUBADDPSr132mY:
3039
3040    case X86::VFMADDPDr132r:      case X86::VFMADDPDr132m:
3041    case X86::VFMADDPSr132r:      case X86::VFMADDPSr132m:
3042    case X86::VFMSUBPDr132r:      case X86::VFMSUBPDr132m:
3043    case X86::VFMSUBPSr132r:      case X86::VFMSUBPSr132m:
3044    case X86::VFNMADDPDr132r:     case X86::VFNMADDPDr132m:
3045    case X86::VFNMADDPSr132r:     case X86::VFNMADDPSr132m:
3046    case X86::VFNMSUBPDr132r:     case X86::VFNMSUBPDr132m:
3047    case X86::VFNMSUBPSr132r:     case X86::VFNMSUBPSr132m:
3048    case X86::VFMADDPDr132rY:     case X86::VFMADDPDr132mY:
3049    case X86::VFMADDPSr132rY:     case X86::VFMADDPSr132mY:
3050    case X86::VFMSUBPDr132rY:     case X86::VFMSUBPDr132mY:
3051    case X86::VFMSUBPSr132rY:     case X86::VFMSUBPSr132mY:
3052    case X86::VFNMADDPDr132rY:    case X86::VFNMADDPDr132mY:
3053    case X86::VFNMADDPSr132rY:    case X86::VFNMADDPSr132mY:
3054    case X86::VFNMSUBPDr132rY:    case X86::VFNMSUBPDr132mY:
3055    case X86::VFNMSUBPSr132rY:    case X86::VFNMSUBPSr132mY:
3056
3057    case X86::VFMADDSUBPDr213r:   case X86::VFMADDSUBPDr213m:
3058    case X86::VFMADDSUBPSr213r:   case X86::VFMADDSUBPSr213m:
3059    case X86::VFMSUBADDPDr213r:   case X86::VFMSUBADDPDr213m:
3060    case X86::VFMSUBADDPSr213r:   case X86::VFMSUBADDPSr213m:
3061    case X86::VFMADDSUBPDr213rY:  case X86::VFMADDSUBPDr213mY:
3062    case X86::VFMADDSUBPSr213rY:  case X86::VFMADDSUBPSr213mY:
3063    case X86::VFMSUBADDPDr213rY:  case X86::VFMSUBADDPDr213mY:
3064    case X86::VFMSUBADDPSr213rY:  case X86::VFMSUBADDPSr213mY:
3065
3066    case X86::VFMADDPDr213r:      case X86::VFMADDPDr213m:
3067    case X86::VFMADDPSr213r:      case X86::VFMADDPSr213m:
3068    case X86::VFMSUBPDr213r:      case X86::VFMSUBPDr213m:
3069    case X86::VFMSUBPSr213r:      case X86::VFMSUBPSr213m:
3070    case X86::VFNMADDPDr213r:     case X86::VFNMADDPDr213m:
3071    case X86::VFNMADDPSr213r:     case X86::VFNMADDPSr213m:
3072    case X86::VFNMSUBPDr213r:     case X86::VFNMSUBPDr213m:
3073    case X86::VFNMSUBPSr213r:     case X86::VFNMSUBPSr213m:
3074    case X86::VFMADDPDr213rY:     case X86::VFMADDPDr213mY:
3075    case X86::VFMADDPSr213rY:     case X86::VFMADDPSr213mY:
3076    case X86::VFMSUBPDr213rY:     case X86::VFMSUBPDr213mY:
3077    case X86::VFMSUBPSr213rY:     case X86::VFMSUBPSr213mY:
3078    case X86::VFNMADDPDr213rY:    case X86::VFNMADDPDr213mY:
3079    case X86::VFNMADDPSr213rY:    case X86::VFNMADDPSr213mY:
3080    case X86::VFNMSUBPDr213rY:    case X86::VFNMSUBPDr213mY:
3081    case X86::VFNMSUBPSr213rY:    case X86::VFNMSUBPSr213mY:
3082
3083    case X86::VFMADDSUBPDr231r:   case X86::VFMADDSUBPDr231m:
3084    case X86::VFMADDSUBPSr231r:   case X86::VFMADDSUBPSr231m:
3085    case X86::VFMSUBADDPDr231r:   case X86::VFMSUBADDPDr231m:
3086    case X86::VFMSUBADDPSr231r:   case X86::VFMSUBADDPSr231m:
3087    case X86::VFMADDSUBPDr231rY:  case X86::VFMADDSUBPDr231mY:
3088    case X86::VFMADDSUBPSr231rY:  case X86::VFMADDSUBPSr231mY:
3089    case X86::VFMSUBADDPDr231rY:  case X86::VFMSUBADDPDr231mY:
3090    case X86::VFMSUBADDPSr231rY:  case X86::VFMSUBADDPSr231mY:
3091
3092    case X86::VFMADDPDr231r:      case X86::VFMADDPDr231m:
3093    case X86::VFMADDPSr231r:      case X86::VFMADDPSr231m:
3094    case X86::VFMSUBPDr231r:      case X86::VFMSUBPDr231m:
3095    case X86::VFMSUBPSr231r:      case X86::VFMSUBPSr231m:
3096    case X86::VFNMADDPDr231r:     case X86::VFNMADDPDr231m:
3097    case X86::VFNMADDPSr231r:     case X86::VFNMADDPSr231m:
3098    case X86::VFNMSUBPDr231r:     case X86::VFNMSUBPDr231m:
3099    case X86::VFNMSUBPSr231r:     case X86::VFNMSUBPSr231m:
3100    case X86::VFMADDPDr231rY:     case X86::VFMADDPDr231mY:
3101    case X86::VFMADDPSr231rY:     case X86::VFMADDPSr231mY:
3102    case X86::VFMSUBPDr231rY:     case X86::VFMSUBPDr231mY:
3103    case X86::VFMSUBPSr231rY:     case X86::VFMSUBPSr231mY:
3104    case X86::VFNMADDPDr231rY:    case X86::VFNMADDPDr231mY:
3105    case X86::VFNMADDPSr231rY:    case X86::VFNMADDPSr231mY:
3106    case X86::VFNMSUBPDr231rY:    case X86::VFNMSUBPDr231mY:
3107    case X86::VFNMSUBPSr231rY:    case X86::VFNMSUBPSr231mY:
3108      return true;
3109
3110    case X86::VFMADDSDr132r_Int:  case X86::VFMADDSDr132m_Int:
3111    case X86::VFMADDSSr132r_Int:  case X86::VFMADDSSr132m_Int:
3112    case X86::VFMSUBSDr132r_Int:  case X86::VFMSUBSDr132m_Int:
3113    case X86::VFMSUBSSr132r_Int:  case X86::VFMSUBSSr132m_Int:
3114    case X86::VFNMADDSDr132r_Int: case X86::VFNMADDSDr132m_Int:
3115    case X86::VFNMADDSSr132r_Int: case X86::VFNMADDSSr132m_Int:
3116    case X86::VFNMSUBSDr132r_Int: case X86::VFNMSUBSDr132m_Int:
3117    case X86::VFNMSUBSSr132r_Int: case X86::VFNMSUBSSr132m_Int:
3118
3119    case X86::VFMADDSDr213r_Int:  case X86::VFMADDSDr213m_Int:
3120    case X86::VFMADDSSr213r_Int:  case X86::VFMADDSSr213m_Int:
3121    case X86::VFMSUBSDr213r_Int:  case X86::VFMSUBSDr213m_Int:
3122    case X86::VFMSUBSSr213r_Int:  case X86::VFMSUBSSr213m_Int:
3123    case X86::VFNMADDSDr213r_Int: case X86::VFNMADDSDr213m_Int:
3124    case X86::VFNMADDSSr213r_Int: case X86::VFNMADDSSr213m_Int:
3125    case X86::VFNMSUBSDr213r_Int: case X86::VFNMSUBSDr213m_Int:
3126    case X86::VFNMSUBSSr213r_Int: case X86::VFNMSUBSSr213m_Int:
3127
3128    case X86::VFMADDSDr231r_Int:  case X86::VFMADDSDr231m_Int:
3129    case X86::VFMADDSSr231r_Int:  case X86::VFMADDSSr231m_Int:
3130    case X86::VFMSUBSDr231r_Int:  case X86::VFMSUBSDr231m_Int:
3131    case X86::VFMSUBSSr231r_Int:  case X86::VFMSUBSSr231m_Int:
3132    case X86::VFNMADDSDr231r_Int: case X86::VFNMADDSDr231m_Int:
3133    case X86::VFNMADDSSr231r_Int: case X86::VFNMADDSSr231m_Int:
3134    case X86::VFNMSUBSDr231r_Int: case X86::VFNMSUBSDr231m_Int:
3135    case X86::VFNMSUBSSr231r_Int: case X86::VFNMSUBSSr231m_Int:
3136      if (IsIntrinsic)
3137        *IsIntrinsic = true;
3138      return true;
3139    default:
3140      return false;
3141  }
3142  llvm_unreachable("Opcode not handled by the switch");
3143}
3144
3145MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr *MI,
3146                                                   bool NewMI,
3147                                                   unsigned OpIdx1,
3148                                                   unsigned OpIdx2) const {
3149  switch (MI->getOpcode()) {
3150  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
3151  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
3152  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
3153  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
3154  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
3155  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
3156    unsigned Opc;
3157    unsigned Size;
3158    switch (MI->getOpcode()) {
3159    default: llvm_unreachable("Unreachable!");
3160    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
3161    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
3162    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
3163    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
3164    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
3165    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
3166    }
3167    unsigned Amt = MI->getOperand(3).getImm();
3168    if (NewMI) {
3169      MachineFunction &MF = *MI->getParent()->getParent();
3170      MI = MF.CloneMachineInstr(MI);
3171      NewMI = false;
3172    }
3173    MI->setDesc(get(Opc));
3174    MI->getOperand(3).setImm(Size-Amt);
3175    return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
3176  }
3177  case X86::BLENDPDrri:
3178  case X86::BLENDPSrri:
3179  case X86::PBLENDWrri:
3180  case X86::VBLENDPDrri:
3181  case X86::VBLENDPSrri:
3182  case X86::VBLENDPDYrri:
3183  case X86::VBLENDPSYrri:
3184  case X86::VPBLENDDrri:
3185  case X86::VPBLENDWrri:
3186  case X86::VPBLENDDYrri:
3187  case X86::VPBLENDWYrri:{
3188    unsigned Mask;
3189    switch (MI->getOpcode()) {
3190    default: llvm_unreachable("Unreachable!");
3191    case X86::BLENDPDrri:    Mask = 0x03; break;
3192    case X86::BLENDPSrri:    Mask = 0x0F; break;
3193    case X86::PBLENDWrri:    Mask = 0xFF; break;
3194    case X86::VBLENDPDrri:   Mask = 0x03; break;
3195    case X86::VBLENDPSrri:   Mask = 0x0F; break;
3196    case X86::VBLENDPDYrri:  Mask = 0x0F; break;
3197    case X86::VBLENDPSYrri:  Mask = 0xFF; break;
3198    case X86::VPBLENDDrri:   Mask = 0x0F; break;
3199    case X86::VPBLENDWrri:   Mask = 0xFF; break;
3200    case X86::VPBLENDDYrri:  Mask = 0xFF; break;
3201    case X86::VPBLENDWYrri:  Mask = 0xFF; break;
3202    }
3203    // Only the least significant bits of Imm are used.
3204    unsigned Imm = MI->getOperand(3).getImm() & Mask;
3205    if (NewMI) {
3206      MachineFunction &MF = *MI->getParent()->getParent();
3207      MI = MF.CloneMachineInstr(MI);
3208      NewMI = false;
3209    }
3210    MI->getOperand(3).setImm(Mask ^ Imm);
3211    return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
3212  }
3213  case X86::PCLMULQDQrr:
3214  case X86::VPCLMULQDQrr:{
3215    // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
3216    // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
3217    unsigned Imm = MI->getOperand(3).getImm();
3218    unsigned Src1Hi = Imm & 0x01;
3219    unsigned Src2Hi = Imm & 0x10;
3220    if (NewMI) {
3221      MachineFunction &MF = *MI->getParent()->getParent();
3222      MI = MF.CloneMachineInstr(MI);
3223      NewMI = false;
3224    }
3225    MI->getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
3226    return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
3227  }
3228  case X86::CMPPDrri:
3229  case X86::CMPPSrri:
3230  case X86::VCMPPDrri:
3231  case X86::VCMPPSrri:
3232  case X86::VCMPPDYrri:
3233  case X86::VCMPPSYrri: {
3234    // Float comparison can be safely commuted for
3235    // Ordered/Unordered/Equal/NotEqual tests
3236    unsigned Imm = MI->getOperand(3).getImm() & 0x7;
3237    switch (Imm) {
3238    case 0x00: // EQUAL
3239    case 0x03: // UNORDERED
3240    case 0x04: // NOT EQUAL
3241    case 0x07: // ORDERED
3242      if (NewMI) {
3243        MachineFunction &MF = *MI->getParent()->getParent();
3244        MI = MF.CloneMachineInstr(MI);
3245        NewMI = false;
3246      }
3247      return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
3248    default:
3249      return nullptr;
3250    }
3251  }
3252  case X86::VPCOMBri: case X86::VPCOMUBri:
3253  case X86::VPCOMDri: case X86::VPCOMUDri:
3254  case X86::VPCOMQri: case X86::VPCOMUQri:
3255  case X86::VPCOMWri: case X86::VPCOMUWri: {
3256    // Flip comparison mode immediate (if necessary).
3257    unsigned Imm = MI->getOperand(3).getImm() & 0x7;
3258    switch (Imm) {
3259    case 0x00: Imm = 0x02; break; // LT -> GT
3260    case 0x01: Imm = 0x03; break; // LE -> GE
3261    case 0x02: Imm = 0x00; break; // GT -> LT
3262    case 0x03: Imm = 0x01; break; // GE -> LE
3263    case 0x04: // EQ
3264    case 0x05: // NE
3265    case 0x06: // FALSE
3266    case 0x07: // TRUE
3267    default:
3268      break;
3269    }
3270    if (NewMI) {
3271      MachineFunction &MF = *MI->getParent()->getParent();
3272      MI = MF.CloneMachineInstr(MI);
3273      NewMI = false;
3274    }
3275    MI->getOperand(3).setImm(Imm);
3276    return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
3277  }
3278  case X86::CMOVB16rr:  case X86::CMOVB32rr:  case X86::CMOVB64rr:
3279  case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr:
3280  case X86::CMOVE16rr:  case X86::CMOVE32rr:  case X86::CMOVE64rr:
3281  case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr:
3282  case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr:
3283  case X86::CMOVA16rr:  case X86::CMOVA32rr:  case X86::CMOVA64rr:
3284  case X86::CMOVL16rr:  case X86::CMOVL32rr:  case X86::CMOVL64rr:
3285  case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr:
3286  case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr:
3287  case X86::CMOVG16rr:  case X86::CMOVG32rr:  case X86::CMOVG64rr:
3288  case X86::CMOVS16rr:  case X86::CMOVS32rr:  case X86::CMOVS64rr:
3289  case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr:
3290  case X86::CMOVP16rr:  case X86::CMOVP32rr:  case X86::CMOVP64rr:
3291  case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr:
3292  case X86::CMOVO16rr:  case X86::CMOVO32rr:  case X86::CMOVO64rr:
3293  case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: {
3294    unsigned Opc;
3295    switch (MI->getOpcode()) {
3296    default: llvm_unreachable("Unreachable!");
3297    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
3298    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
3299    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
3300    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
3301    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
3302    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
3303    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
3304    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
3305    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
3306    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
3307    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
3308    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
3309    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
3310    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
3311    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
3312    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
3313    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
3314    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
3315    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
3316    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
3317    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
3318    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
3319    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
3320    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
3321    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
3322    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
3323    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
3324    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
3325    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
3326    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
3327    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
3328    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
3329    case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
3330    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
3331    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
3332    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
3333    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
3334    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
3335    case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
3336    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
3337    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
3338    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
3339    case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
3340    case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
3341    case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
3342    case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
3343    case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
3344    case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
3345    }
3346    if (NewMI) {
3347      MachineFunction &MF = *MI->getParent()->getParent();
3348      MI = MF.CloneMachineInstr(MI);
3349      NewMI = false;
3350    }
3351    MI->setDesc(get(Opc));
3352    // Fallthrough intended.
3353  }
3354  default:
3355    if (isFMA3(MI->getOpcode())) {
3356      unsigned Opc = getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2);
3357      if (Opc == 0)
3358        return nullptr;
3359      if (NewMI) {
3360        MachineFunction &MF = *MI->getParent()->getParent();
3361        MI = MF.CloneMachineInstr(MI);
3362        NewMI = false;
3363      }
3364      MI->setDesc(get(Opc));
3365    }
3366    return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
3367  }
3368}
3369
3370bool X86InstrInfo::findFMA3CommutedOpIndices(MachineInstr *MI,
3371                                             unsigned &SrcOpIdx1,
3372                                             unsigned &SrcOpIdx2) const {
3373
3374  unsigned RegOpsNum = isMem(MI, 3) ? 2 : 3;
3375
3376  // Only the first RegOpsNum operands are commutable.
3377  // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
3378  // that the operand is not specified/fixed.
3379  if (SrcOpIdx1 != CommuteAnyOperandIndex &&
3380      (SrcOpIdx1 < 1 || SrcOpIdx1 > RegOpsNum))
3381    return false;
3382  if (SrcOpIdx2 != CommuteAnyOperandIndex &&
3383      (SrcOpIdx2 < 1 || SrcOpIdx2 > RegOpsNum))
3384    return false;
3385
3386  // Look for two different register operands assumed to be commutable
3387  // regardless of the FMA opcode. The FMA opcode is adjusted later.
3388  if (SrcOpIdx1 == CommuteAnyOperandIndex ||
3389      SrcOpIdx2 == CommuteAnyOperandIndex) {
3390    unsigned CommutableOpIdx1 = SrcOpIdx1;
3391    unsigned CommutableOpIdx2 = SrcOpIdx2;
3392
3393    // At least one of operands to be commuted is not specified and
3394    // this method is free to choose appropriate commutable operands.
3395    if (SrcOpIdx1 == SrcOpIdx2)
3396      // Both of operands are not fixed. By default set one of commutable
3397      // operands to the last register operand of the instruction.
3398      CommutableOpIdx2 = RegOpsNum;
3399    else if (SrcOpIdx2 == CommuteAnyOperandIndex)
3400      // Only one of operands is not fixed.
3401      CommutableOpIdx2 = SrcOpIdx1;
3402
3403    // CommutableOpIdx2 is well defined now. Let's choose another commutable
3404    // operand and assign its index to CommutableOpIdx1.
3405    unsigned Op2Reg = MI->getOperand(CommutableOpIdx2).getReg();
3406    for (CommutableOpIdx1 = RegOpsNum; CommutableOpIdx1 > 0; CommutableOpIdx1--) {
3407      // The commuted operands must have different registers.
3408      // Otherwise, the commute transformation does not change anything and
3409      // is useless then.
3410      if (Op2Reg != MI->getOperand(CommutableOpIdx1).getReg())
3411        break;
3412    }
3413
3414    // No appropriate commutable operands were found.
3415    if (CommutableOpIdx1 == 0)
3416      return false;
3417
3418    // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
3419    // to return those values.
3420    if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
3421                              CommutableOpIdx1, CommutableOpIdx2))
3422      return false;
3423  }
3424
3425  // Check if we can adjust the opcode to preserve the semantics when
3426  // commute the register operands.
3427  return getFMA3OpcodeToCommuteOperands(MI, SrcOpIdx1, SrcOpIdx2) != 0;
3428}
3429
3430unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(MachineInstr *MI,
3431                                                      unsigned SrcOpIdx1,
3432                                                      unsigned SrcOpIdx2) const {
3433  unsigned Opc = MI->getOpcode();
3434
3435  // Define the array that holds FMA opcodes in groups
3436  // of 3 opcodes(132, 213, 231) in each group.
3437  static const unsigned RegularOpcodeGroups[][3] = {
3438    { X86::VFMADDSSr132r,   X86::VFMADDSSr213r,   X86::VFMADDSSr231r  },
3439    { X86::VFMADDSDr132r,   X86::VFMADDSDr213r,   X86::VFMADDSDr231r  },
3440    { X86::VFMADDPSr132r,   X86::VFMADDPSr213r,   X86::VFMADDPSr231r  },
3441    { X86::VFMADDPDr132r,   X86::VFMADDPDr213r,   X86::VFMADDPDr231r  },
3442    { X86::VFMADDPSr132rY,  X86::VFMADDPSr213rY,  X86::VFMADDPSr231rY },
3443    { X86::VFMADDPDr132rY,  X86::VFMADDPDr213rY,  X86::VFMADDPDr231rY },
3444    { X86::VFMADDSSr132m,   X86::VFMADDSSr213m,   X86::VFMADDSSr231m  },
3445    { X86::VFMADDSDr132m,   X86::VFMADDSDr213m,   X86::VFMADDSDr231m  },
3446    { X86::VFMADDPSr132m,   X86::VFMADDPSr213m,   X86::VFMADDPSr231m  },
3447    { X86::VFMADDPDr132m,   X86::VFMADDPDr213m,   X86::VFMADDPDr231m  },
3448    { X86::VFMADDPSr132mY,  X86::VFMADDPSr213mY,  X86::VFMADDPSr231mY },
3449    { X86::VFMADDPDr132mY,  X86::VFMADDPDr213mY,  X86::VFMADDPDr231mY },
3450
3451    { X86::VFMSUBSSr132r,   X86::VFMSUBSSr213r,   X86::VFMSUBSSr231r  },
3452    { X86::VFMSUBSDr132r,   X86::VFMSUBSDr213r,   X86::VFMSUBSDr231r  },
3453    { X86::VFMSUBPSr132r,   X86::VFMSUBPSr213r,   X86::VFMSUBPSr231r  },
3454    { X86::VFMSUBPDr132r,   X86::VFMSUBPDr213r,   X86::VFMSUBPDr231r  },
3455    { X86::VFMSUBPSr132rY,  X86::VFMSUBPSr213rY,  X86::VFMSUBPSr231rY },
3456    { X86::VFMSUBPDr132rY,  X86::VFMSUBPDr213rY,  X86::VFMSUBPDr231rY },
3457    { X86::VFMSUBSSr132m,   X86::VFMSUBSSr213m,   X86::VFMSUBSSr231m  },
3458    { X86::VFMSUBSDr132m,   X86::VFMSUBSDr213m,   X86::VFMSUBSDr231m  },
3459    { X86::VFMSUBPSr132m,   X86::VFMSUBPSr213m,   X86::VFMSUBPSr231m  },
3460    { X86::VFMSUBPDr132m,   X86::VFMSUBPDr213m,   X86::VFMSUBPDr231m  },
3461    { X86::VFMSUBPSr132mY,  X86::VFMSUBPSr213mY,  X86::VFMSUBPSr231mY },
3462    { X86::VFMSUBPDr132mY,  X86::VFMSUBPDr213mY,  X86::VFMSUBPDr231mY },
3463
3464    { X86::VFNMADDSSr132r,  X86::VFNMADDSSr213r,  X86::VFNMADDSSr231r  },
3465    { X86::VFNMADDSDr132r,  X86::VFNMADDSDr213r,  X86::VFNMADDSDr231r  },
3466    { X86::VFNMADDPSr132r,  X86::VFNMADDPSr213r,  X86::VFNMADDPSr231r  },
3467    { X86::VFNMADDPDr132r,  X86::VFNMADDPDr213r,  X86::VFNMADDPDr231r  },
3468    { X86::VFNMADDPSr132rY, X86::VFNMADDPSr213rY, X86::VFNMADDPSr231rY },
3469    { X86::VFNMADDPDr132rY, X86::VFNMADDPDr213rY, X86::VFNMADDPDr231rY },
3470    { X86::VFNMADDSSr132m,  X86::VFNMADDSSr213m,  X86::VFNMADDSSr231m  },
3471    { X86::VFNMADDSDr132m,  X86::VFNMADDSDr213m,  X86::VFNMADDSDr231m  },
3472    { X86::VFNMADDPSr132m,  X86::VFNMADDPSr213m,  X86::VFNMADDPSr231m  },
3473    { X86::VFNMADDPDr132m,  X86::VFNMADDPDr213m,  X86::VFNMADDPDr231m  },
3474    { X86::VFNMADDPSr132mY, X86::VFNMADDPSr213mY, X86::VFNMADDPSr231mY },
3475    { X86::VFNMADDPDr132mY, X86::VFNMADDPDr213mY, X86::VFNMADDPDr231mY },
3476
3477    { X86::VFNMSUBSSr132r,  X86::VFNMSUBSSr213r,  X86::VFNMSUBSSr231r  },
3478    { X86::VFNMSUBSDr132r,  X86::VFNMSUBSDr213r,  X86::VFNMSUBSDr231r  },
3479    { X86::VFNMSUBPSr132r,  X86::VFNMSUBPSr213r,  X86::VFNMSUBPSr231r  },
3480    { X86::VFNMSUBPDr132r,  X86::VFNMSUBPDr213r,  X86::VFNMSUBPDr231r  },
3481    { X86::VFNMSUBPSr132rY, X86::VFNMSUBPSr213rY, X86::VFNMSUBPSr231rY },
3482    { X86::VFNMSUBPDr132rY, X86::VFNMSUBPDr213rY, X86::VFNMSUBPDr231rY },
3483    { X86::VFNMSUBSSr132m,  X86::VFNMSUBSSr213m,  X86::VFNMSUBSSr231m  },
3484    { X86::VFNMSUBSDr132m,  X86::VFNMSUBSDr213m,  X86::VFNMSUBSDr231m  },
3485    { X86::VFNMSUBPSr132m,  X86::VFNMSUBPSr213m,  X86::VFNMSUBPSr231m  },
3486    { X86::VFNMSUBPDr132m,  X86::VFNMSUBPDr213m,  X86::VFNMSUBPDr231m  },
3487    { X86::VFNMSUBPSr132mY, X86::VFNMSUBPSr213mY, X86::VFNMSUBPSr231mY },
3488    { X86::VFNMSUBPDr132mY, X86::VFNMSUBPDr213mY, X86::VFNMSUBPDr231mY },
3489
3490    { X86::VFMADDSUBPSr132r,  X86::VFMADDSUBPSr213r,  X86::VFMADDSUBPSr231r  },
3491    { X86::VFMADDSUBPDr132r,  X86::VFMADDSUBPDr213r,  X86::VFMADDSUBPDr231r  },
3492    { X86::VFMADDSUBPSr132rY, X86::VFMADDSUBPSr213rY, X86::VFMADDSUBPSr231rY },
3493    { X86::VFMADDSUBPDr132rY, X86::VFMADDSUBPDr213rY, X86::VFMADDSUBPDr231rY },
3494    { X86::VFMADDSUBPSr132m,  X86::VFMADDSUBPSr213m,  X86::VFMADDSUBPSr231m  },
3495    { X86::VFMADDSUBPDr132m,  X86::VFMADDSUBPDr213m,  X86::VFMADDSUBPDr231m  },
3496    { X86::VFMADDSUBPSr132mY, X86::VFMADDSUBPSr213mY, X86::VFMADDSUBPSr231mY },
3497    { X86::VFMADDSUBPDr132mY, X86::VFMADDSUBPDr213mY, X86::VFMADDSUBPDr231mY },
3498
3499    { X86::VFMSUBADDPSr132r,  X86::VFMSUBADDPSr213r,  X86::VFMSUBADDPSr231r  },
3500    { X86::VFMSUBADDPDr132r,  X86::VFMSUBADDPDr213r,  X86::VFMSUBADDPDr231r  },
3501    { X86::VFMSUBADDPSr132rY, X86::VFMSUBADDPSr213rY, X86::VFMSUBADDPSr231rY },
3502    { X86::VFMSUBADDPDr132rY, X86::VFMSUBADDPDr213rY, X86::VFMSUBADDPDr231rY },
3503    { X86::VFMSUBADDPSr132m,  X86::VFMSUBADDPSr213m,  X86::VFMSUBADDPSr231m  },
3504    { X86::VFMSUBADDPDr132m,  X86::VFMSUBADDPDr213m,  X86::VFMSUBADDPDr231m  },
3505    { X86::VFMSUBADDPSr132mY, X86::VFMSUBADDPSr213mY, X86::VFMSUBADDPSr231mY },
3506    { X86::VFMSUBADDPDr132mY, X86::VFMSUBADDPDr213mY, X86::VFMSUBADDPDr231mY }
3507  };
3508
3509  // Define the array that holds FMA*_Int opcodes in groups
3510  // of 3 opcodes(132, 213, 231) in each group.
3511  static const unsigned IntrinOpcodeGroups[][3] = {
3512    { X86::VFMADDSSr132r_Int,  X86::VFMADDSSr213r_Int,  X86::VFMADDSSr231r_Int },
3513    { X86::VFMADDSDr132r_Int,  X86::VFMADDSDr213r_Int,  X86::VFMADDSDr231r_Int },
3514    { X86::VFMADDSSr132m_Int,  X86::VFMADDSSr213m_Int,  X86::VFMADDSSr231m_Int },
3515    { X86::VFMADDSDr132m_Int,  X86::VFMADDSDr213m_Int,  X86::VFMADDSDr231m_Int },
3516
3517    { X86::VFMSUBSSr132r_Int,  X86::VFMSUBSSr213r_Int,  X86::VFMSUBSSr231r_Int },
3518    { X86::VFMSUBSDr132r_Int,  X86::VFMSUBSDr213r_Int,  X86::VFMSUBSDr231r_Int },
3519    { X86::VFMSUBSSr132m_Int,  X86::VFMSUBSSr213m_Int,  X86::VFMSUBSSr231m_Int },
3520    { X86::VFMSUBSDr132m_Int,  X86::VFMSUBSDr213m_Int,  X86::VFMSUBSDr231m_Int },
3521
3522    { X86::VFNMADDSSr132r_Int, X86::VFNMADDSSr213r_Int, X86::VFNMADDSSr231r_Int },
3523    { X86::VFNMADDSDr132r_Int, X86::VFNMADDSDr213r_Int, X86::VFNMADDSDr231r_Int },
3524    { X86::VFNMADDSSr132m_Int, X86::VFNMADDSSr213m_Int, X86::VFNMADDSSr231m_Int },
3525    { X86::VFNMADDSDr132m_Int, X86::VFNMADDSDr213m_Int, X86::VFNMADDSDr231m_Int },
3526
3527    { X86::VFNMSUBSSr132r_Int, X86::VFNMSUBSSr213r_Int, X86::VFNMSUBSSr231r_Int },
3528    { X86::VFNMSUBSDr132r_Int, X86::VFNMSUBSDr213r_Int, X86::VFNMSUBSDr231r_Int },
3529    { X86::VFNMSUBSSr132m_Int, X86::VFNMSUBSSr213m_Int, X86::VFNMSUBSSr231m_Int },
3530    { X86::VFNMSUBSDr132m_Int, X86::VFNMSUBSDr213m_Int, X86::VFNMSUBSDr231m_Int },
3531  };
3532
3533  const unsigned Form132Index = 0;
3534  const unsigned Form213Index = 1;
3535  const unsigned Form231Index = 2;
3536  const unsigned FormsNum = 3;
3537
3538  bool IsIntrinOpcode;
3539  isFMA3(Opc, &IsIntrinOpcode);
3540
3541  size_t GroupsNum;
3542  const unsigned (*OpcodeGroups)[3];
3543  if (IsIntrinOpcode) {
3544    GroupsNum = array_lengthof(IntrinOpcodeGroups);
3545    OpcodeGroups = IntrinOpcodeGroups;
3546  } else {
3547    GroupsNum = array_lengthof(RegularOpcodeGroups);
3548    OpcodeGroups = RegularOpcodeGroups;
3549  }
3550
3551  const unsigned *FoundOpcodesGroup = nullptr;
3552  size_t FormIndex;
3553
3554  // Look for the input opcode in the corresponding opcodes table.
3555  for (size_t GroupIndex = 0; GroupIndex < GroupsNum && !FoundOpcodesGroup;
3556         ++GroupIndex) {
3557    for (FormIndex = 0; FormIndex < FormsNum; ++FormIndex) {
3558      if (OpcodeGroups[GroupIndex][FormIndex] == Opc) {
3559        FoundOpcodesGroup = OpcodeGroups[GroupIndex];
3560        break;
3561      }
3562    }
3563  }
3564
3565  // The input opcode does not match with any of the opcodes from the tables.
3566  // The unsupported FMA opcode must be added to one of the two opcode groups
3567  // defined above.
3568  assert(FoundOpcodesGroup != nullptr && "Unexpected FMA3 opcode");
3569
3570  // Put the lowest index to SrcOpIdx1 to simplify the checks below.
3571  if (SrcOpIdx1 > SrcOpIdx2)
3572    std::swap(SrcOpIdx1, SrcOpIdx2);
3573
3574  // TODO: Commuting the 1st operand of FMA*_Int requires some additional
3575  // analysis. The commute optimization is legal only if all users of FMA*_Int
3576  // use only the lowest element of the FMA*_Int instruction. Such analysis are
3577  // not implemented yet. So, just return 0 in that case.
3578  // When such analysis are available this place will be the right place for
3579  // calling it.
3580  if (IsIntrinOpcode && SrcOpIdx1 == 1)
3581    return 0;
3582
3583  unsigned Case;
3584  if (SrcOpIdx1 == 1 && SrcOpIdx2 == 2)
3585    Case = 0;
3586  else if (SrcOpIdx1 == 1 && SrcOpIdx2 == 3)
3587    Case = 1;
3588  else if (SrcOpIdx1 == 2 && SrcOpIdx2 == 3)
3589    Case = 2;
3590  else
3591    return 0;
3592
3593  // Define the FMA forms mapping array that helps to map input FMA form
3594  // to output FMA form to preserve the operation semantics after
3595  // commuting the operands.
3596  static const unsigned FormMapping[][3] = {
3597    // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
3598    // FMA132 A, C, b; ==> FMA231 C, A, b;
3599    // FMA213 B, A, c; ==> FMA213 A, B, c;
3600    // FMA231 C, A, b; ==> FMA132 A, C, b;
3601    { Form231Index, Form213Index, Form132Index },
3602    // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
3603    // FMA132 A, c, B; ==> FMA132 B, c, A;
3604    // FMA213 B, a, C; ==> FMA231 C, a, B;
3605    // FMA231 C, a, B; ==> FMA213 B, a, C;
3606    { Form132Index, Form231Index, Form213Index },
3607    // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
3608    // FMA132 a, C, B; ==> FMA213 a, B, C;
3609    // FMA213 b, A, C; ==> FMA132 b, C, A;
3610    // FMA231 c, A, B; ==> FMA231 c, B, A;
3611    { Form213Index, Form132Index, Form231Index }
3612  };
3613
3614  // Everything is ready, just adjust the FMA opcode and return it.
3615  FormIndex = FormMapping[Case][FormIndex];
3616  return FoundOpcodesGroup[FormIndex];
3617}
3618
3619bool X86InstrInfo::findCommutedOpIndices(MachineInstr *MI,
3620                                         unsigned &SrcOpIdx1,
3621                                         unsigned &SrcOpIdx2) const {
3622  switch (MI->getOpcode()) {
3623    case X86::CMPPDrri:
3624    case X86::CMPPSrri:
3625    case X86::VCMPPDrri:
3626    case X86::VCMPPSrri:
3627    case X86::VCMPPDYrri:
3628    case X86::VCMPPSYrri: {
3629      // Float comparison can be safely commuted for
3630      // Ordered/Unordered/Equal/NotEqual tests
3631      unsigned Imm = MI->getOperand(3).getImm() & 0x7;
3632      switch (Imm) {
3633        case 0x00: // EQUAL
3634        case 0x03: // UNORDERED
3635        case 0x04: // NOT EQUAL
3636        case 0x07: // ORDERED
3637          // The indices of the commutable operands are 1 and 2.
3638          // Assign them to the returned operand indices here.
3639          return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1, 2);
3640      }
3641      return false;
3642    }
3643    default:
3644      if (isFMA3(MI->getOpcode()))
3645        return findFMA3CommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
3646      return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
3647  }
3648  return false;
3649}
3650
3651static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
3652  switch (BrOpc) {
3653  default: return X86::COND_INVALID;
3654  case X86::JE_1:  return X86::COND_E;
3655  case X86::JNE_1: return X86::COND_NE;
3656  case X86::JL_1:  return X86::COND_L;
3657  case X86::JLE_1: return X86::COND_LE;
3658  case X86::JG_1:  return X86::COND_G;
3659  case X86::JGE_1: return X86::COND_GE;
3660  case X86::JB_1:  return X86::COND_B;
3661  case X86::JBE_1: return X86::COND_BE;
3662  case X86::JA_1:  return X86::COND_A;
3663  case X86::JAE_1: return X86::COND_AE;
3664  case X86::JS_1:  return X86::COND_S;
3665  case X86::JNS_1: return X86::COND_NS;
3666  case X86::JP_1:  return X86::COND_P;
3667  case X86::JNP_1: return X86::COND_NP;
3668  case X86::JO_1:  return X86::COND_O;
3669  case X86::JNO_1: return X86::COND_NO;
3670  }
3671}
3672
3673/// Return condition code of a SET opcode.
3674static X86::CondCode getCondFromSETOpc(unsigned Opc) {
3675  switch (Opc) {
3676  default: return X86::COND_INVALID;
3677  case X86::SETAr:  case X86::SETAm:  return X86::COND_A;
3678  case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
3679  case X86::SETBr:  case X86::SETBm:  return X86::COND_B;
3680  case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
3681  case X86::SETEr:  case X86::SETEm:  return X86::COND_E;
3682  case X86::SETGr:  case X86::SETGm:  return X86::COND_G;
3683  case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
3684  case X86::SETLr:  case X86::SETLm:  return X86::COND_L;
3685  case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
3686  case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
3687  case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
3688  case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
3689  case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
3690  case X86::SETOr:  case X86::SETOm:  return X86::COND_O;
3691  case X86::SETPr:  case X86::SETPm:  return X86::COND_P;
3692  case X86::SETSr:  case X86::SETSm:  return X86::COND_S;
3693  }
3694}
3695
3696/// Return condition code of a CMov opcode.
3697X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) {
3698  switch (Opc) {
3699  default: return X86::COND_INVALID;
3700  case X86::CMOVA16rm:  case X86::CMOVA16rr:  case X86::CMOVA32rm:
3701  case X86::CMOVA32rr:  case X86::CMOVA64rm:  case X86::CMOVA64rr:
3702    return X86::COND_A;
3703  case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
3704  case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
3705    return X86::COND_AE;
3706  case X86::CMOVB16rm:  case X86::CMOVB16rr:  case X86::CMOVB32rm:
3707  case X86::CMOVB32rr:  case X86::CMOVB64rm:  case X86::CMOVB64rr:
3708    return X86::COND_B;
3709  case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
3710  case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
3711    return X86::COND_BE;
3712  case X86::CMOVE16rm:  case X86::CMOVE16rr:  case X86::CMOVE32rm:
3713  case X86::CMOVE32rr:  case X86::CMOVE64rm:  case X86::CMOVE64rr:
3714    return X86::COND_E;
3715  case X86::CMOVG16rm:  case X86::CMOVG16rr:  case X86::CMOVG32rm:
3716  case X86::CMOVG32rr:  case X86::CMOVG64rm:  case X86::CMOVG64rr:
3717    return X86::COND_G;
3718  case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
3719  case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
3720    return X86::COND_GE;
3721  case X86::CMOVL16rm:  case X86::CMOVL16rr:  case X86::CMOVL32rm:
3722  case X86::CMOVL32rr:  case X86::CMOVL64rm:  case X86::CMOVL64rr:
3723    return X86::COND_L;
3724  case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
3725  case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
3726    return X86::COND_LE;
3727  case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
3728  case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
3729    return X86::COND_NE;
3730  case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
3731  case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
3732    return X86::COND_NO;
3733  case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
3734  case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
3735    return X86::COND_NP;
3736  case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
3737  case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
3738    return X86::COND_NS;
3739  case X86::CMOVO16rm:  case X86::CMOVO16rr:  case X86::CMOVO32rm:
3740  case X86::CMOVO32rr:  case X86::CMOVO64rm:  case X86::CMOVO64rr:
3741    return X86::COND_O;
3742  case X86::CMOVP16rm:  case X86::CMOVP16rr:  case X86::CMOVP32rm:
3743  case X86::CMOVP32rr:  case X86::CMOVP64rm:  case X86::CMOVP64rr:
3744    return X86::COND_P;
3745  case X86::CMOVS16rm:  case X86::CMOVS16rr:  case X86::CMOVS32rm:
3746  case X86::CMOVS32rr:  case X86::CMOVS64rm:  case X86::CMOVS64rr:
3747    return X86::COND_S;
3748  }
3749}
3750
3751unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
3752  switch (CC) {
3753  default: llvm_unreachable("Illegal condition code!");
3754  case X86::COND_E:  return X86::JE_1;
3755  case X86::COND_NE: return X86::JNE_1;
3756  case X86::COND_L:  return X86::JL_1;
3757  case X86::COND_LE: return X86::JLE_1;
3758  case X86::COND_G:  return X86::JG_1;
3759  case X86::COND_GE: return X86::JGE_1;
3760  case X86::COND_B:  return X86::JB_1;
3761  case X86::COND_BE: return X86::JBE_1;
3762  case X86::COND_A:  return X86::JA_1;
3763  case X86::COND_AE: return X86::JAE_1;
3764  case X86::COND_S:  return X86::JS_1;
3765  case X86::COND_NS: return X86::JNS_1;
3766  case X86::COND_P:  return X86::JP_1;
3767  case X86::COND_NP: return X86::JNP_1;
3768  case X86::COND_O:  return X86::JO_1;
3769  case X86::COND_NO: return X86::JNO_1;
3770  }
3771}
3772
3773/// Return the inverse of the specified condition,
3774/// e.g. turning COND_E to COND_NE.
3775X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
3776  switch (CC) {
3777  default: llvm_unreachable("Illegal condition code!");
3778  case X86::COND_E:  return X86::COND_NE;
3779  case X86::COND_NE: return X86::COND_E;
3780  case X86::COND_L:  return X86::COND_GE;
3781  case X86::COND_LE: return X86::COND_G;
3782  case X86::COND_G:  return X86::COND_LE;
3783  case X86::COND_GE: return X86::COND_L;
3784  case X86::COND_B:  return X86::COND_AE;
3785  case X86::COND_BE: return X86::COND_A;
3786  case X86::COND_A:  return X86::COND_BE;
3787  case X86::COND_AE: return X86::COND_B;
3788  case X86::COND_S:  return X86::COND_NS;
3789  case X86::COND_NS: return X86::COND_S;
3790  case X86::COND_P:  return X86::COND_NP;
3791  case X86::COND_NP: return X86::COND_P;
3792  case X86::COND_O:  return X86::COND_NO;
3793  case X86::COND_NO: return X86::COND_O;
3794  }
3795}
3796
3797/// Assuming the flags are set by MI(a,b), return the condition code if we
3798/// modify the instructions such that flags are set by MI(b,a).
3799static X86::CondCode getSwappedCondition(X86::CondCode CC) {
3800  switch (CC) {
3801  default: return X86::COND_INVALID;
3802  case X86::COND_E:  return X86::COND_E;
3803  case X86::COND_NE: return X86::COND_NE;
3804  case X86::COND_L:  return X86::COND_G;
3805  case X86::COND_LE: return X86::COND_GE;
3806  case X86::COND_G:  return X86::COND_L;
3807  case X86::COND_GE: return X86::COND_LE;
3808  case X86::COND_B:  return X86::COND_A;
3809  case X86::COND_BE: return X86::COND_AE;
3810  case X86::COND_A:  return X86::COND_B;
3811  case X86::COND_AE: return X86::COND_BE;
3812  }
3813}
3814
3815/// Return a set opcode for the given condition and
3816/// whether it has memory operand.
3817unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) {
3818  static const uint16_t Opc[16][2] = {
3819    { X86::SETAr,  X86::SETAm  },
3820    { X86::SETAEr, X86::SETAEm },
3821    { X86::SETBr,  X86::SETBm  },
3822    { X86::SETBEr, X86::SETBEm },
3823    { X86::SETEr,  X86::SETEm  },
3824    { X86::SETGr,  X86::SETGm  },
3825    { X86::SETGEr, X86::SETGEm },
3826    { X86::SETLr,  X86::SETLm  },
3827    { X86::SETLEr, X86::SETLEm },
3828    { X86::SETNEr, X86::SETNEm },
3829    { X86::SETNOr, X86::SETNOm },
3830    { X86::SETNPr, X86::SETNPm },
3831    { X86::SETNSr, X86::SETNSm },
3832    { X86::SETOr,  X86::SETOm  },
3833    { X86::SETPr,  X86::SETPm  },
3834    { X86::SETSr,  X86::SETSm  }
3835  };
3836
3837  assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes");
3838  return Opc[CC][HasMemoryOperand ? 1 : 0];
3839}
3840
3841/// Return a cmov opcode for the given condition,
3842/// register size in bytes, and operand type.
3843unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes,
3844                              bool HasMemoryOperand) {
3845  static const uint16_t Opc[32][3] = {
3846    { X86::CMOVA16rr,  X86::CMOVA32rr,  X86::CMOVA64rr  },
3847    { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
3848    { X86::CMOVB16rr,  X86::CMOVB32rr,  X86::CMOVB64rr  },
3849    { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
3850    { X86::CMOVE16rr,  X86::CMOVE32rr,  X86::CMOVE64rr  },
3851    { X86::CMOVG16rr,  X86::CMOVG32rr,  X86::CMOVG64rr  },
3852    { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
3853    { X86::CMOVL16rr,  X86::CMOVL32rr,  X86::CMOVL64rr  },
3854    { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
3855    { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
3856    { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
3857    { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
3858    { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
3859    { X86::CMOVO16rr,  X86::CMOVO32rr,  X86::CMOVO64rr  },
3860    { X86::CMOVP16rr,  X86::CMOVP32rr,  X86::CMOVP64rr  },
3861    { X86::CMOVS16rr,  X86::CMOVS32rr,  X86::CMOVS64rr  },
3862    { X86::CMOVA16rm,  X86::CMOVA32rm,  X86::CMOVA64rm  },
3863    { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
3864    { X86::CMOVB16rm,  X86::CMOVB32rm,  X86::CMOVB64rm  },
3865    { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
3866    { X86::CMOVE16rm,  X86::CMOVE32rm,  X86::CMOVE64rm  },
3867    { X86::CMOVG16rm,  X86::CMOVG32rm,  X86::CMOVG64rm  },
3868    { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
3869    { X86::CMOVL16rm,  X86::CMOVL32rm,  X86::CMOVL64rm  },
3870    { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
3871    { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
3872    { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
3873    { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
3874    { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
3875    { X86::CMOVO16rm,  X86::CMOVO32rm,  X86::CMOVO64rm  },
3876    { X86::CMOVP16rm,  X86::CMOVP32rm,  X86::CMOVP64rm  },
3877    { X86::CMOVS16rm,  X86::CMOVS32rm,  X86::CMOVS64rm  }
3878  };
3879
3880  assert(CC < 16 && "Can only handle standard cond codes");
3881  unsigned Idx = HasMemoryOperand ? 16+CC : CC;
3882  switch(RegBytes) {
3883  default: llvm_unreachable("Illegal register size!");
3884  case 2: return Opc[Idx][0];
3885  case 4: return Opc[Idx][1];
3886  case 8: return Opc[Idx][2];
3887  }
3888}
3889
3890bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
3891  if (!MI->isTerminator()) return false;
3892
3893  // Conditional branch is a special case.
3894  if (MI->isBranch() && !MI->isBarrier())
3895    return true;
3896  if (!MI->isPredicable())
3897    return true;
3898  return !isPredicated(MI);
3899}
3900
3901bool X86InstrInfo::AnalyzeBranchImpl(
3902    MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
3903    SmallVectorImpl<MachineOperand> &Cond,
3904    SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
3905
3906  // Start from the bottom of the block and work up, examining the
3907  // terminator instructions.
3908  MachineBasicBlock::iterator I = MBB.end();
3909  MachineBasicBlock::iterator UnCondBrIter = MBB.end();
3910  while (I != MBB.begin()) {
3911    --I;
3912    if (I->isDebugValue())
3913      continue;
3914
3915    // Working from the bottom, when we see a non-terminator instruction, we're
3916    // done.
3917    if (!isUnpredicatedTerminator(I))
3918      break;
3919
3920    // A terminator that isn't a branch can't easily be handled by this
3921    // analysis.
3922    if (!I->isBranch())
3923      return true;
3924
3925    // Handle unconditional branches.
3926    if (I->getOpcode() == X86::JMP_1) {
3927      UnCondBrIter = I;
3928
3929      if (!AllowModify) {
3930        TBB = I->getOperand(0).getMBB();
3931        continue;
3932      }
3933
3934      // If the block has any instructions after a JMP, delete them.
3935      while (std::next(I) != MBB.end())
3936        std::next(I)->eraseFromParent();
3937
3938      Cond.clear();
3939      FBB = nullptr;
3940
3941      // Delete the JMP if it's equivalent to a fall-through.
3942      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
3943        TBB = nullptr;
3944        I->eraseFromParent();
3945        I = MBB.end();
3946        UnCondBrIter = MBB.end();
3947        continue;
3948      }
3949
3950      // TBB is used to indicate the unconditional destination.
3951      TBB = I->getOperand(0).getMBB();
3952      continue;
3953    }
3954
3955    // Handle conditional branches.
3956    X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode());
3957    if (BranchCode == X86::COND_INVALID)
3958      return true;  // Can't handle indirect branch.
3959
3960    // Working from the bottom, handle the first conditional branch.
3961    if (Cond.empty()) {
3962      MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
3963      if (AllowModify && UnCondBrIter != MBB.end() &&
3964          MBB.isLayoutSuccessor(TargetBB)) {
3965        // If we can modify the code and it ends in something like:
3966        //
3967        //     jCC L1
3968        //     jmp L2
3969        //   L1:
3970        //     ...
3971        //   L2:
3972        //
3973        // Then we can change this to:
3974        //
3975        //     jnCC L2
3976        //   L1:
3977        //     ...
3978        //   L2:
3979        //
3980        // Which is a bit more efficient.
3981        // We conditionally jump to the fall-through block.
3982        BranchCode = GetOppositeBranchCondition(BranchCode);
3983        unsigned JNCC = GetCondBranchFromCond(BranchCode);
3984        MachineBasicBlock::iterator OldInst = I;
3985
3986        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
3987          .addMBB(UnCondBrIter->getOperand(0).getMBB());
3988        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
3989          .addMBB(TargetBB);
3990
3991        OldInst->eraseFromParent();
3992        UnCondBrIter->eraseFromParent();
3993
3994        // Restart the analysis.
3995        UnCondBrIter = MBB.end();
3996        I = MBB.end();
3997        continue;
3998      }
3999
4000      FBB = TBB;
4001      TBB = I->getOperand(0).getMBB();
4002      Cond.push_back(MachineOperand::CreateImm(BranchCode));
4003      CondBranches.push_back(I);
4004      continue;
4005    }
4006
4007    // Handle subsequent conditional branches. Only handle the case where all
4008    // conditional branches branch to the same destination and their condition
4009    // opcodes fit one of the special multi-branch idioms.
4010    assert(Cond.size() == 1);
4011    assert(TBB);
4012
4013    // Only handle the case where all conditional branches branch to the same
4014    // destination.
4015    if (TBB != I->getOperand(0).getMBB())
4016      return true;
4017
4018    // If the conditions are the same, we can leave them alone.
4019    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
4020    if (OldBranchCode == BranchCode)
4021      continue;
4022
4023    // If they differ, see if they fit one of the known patterns. Theoretically,
4024    // we could handle more patterns here, but we shouldn't expect to see them
4025    // if instruction selection has done a reasonable job.
4026    if ((OldBranchCode == X86::COND_NP &&
4027         BranchCode == X86::COND_E) ||
4028        (OldBranchCode == X86::COND_E &&
4029         BranchCode == X86::COND_NP))
4030      BranchCode = X86::COND_NP_OR_E;
4031    else if ((OldBranchCode == X86::COND_P &&
4032              BranchCode == X86::COND_NE) ||
4033             (OldBranchCode == X86::COND_NE &&
4034              BranchCode == X86::COND_P))
4035      BranchCode = X86::COND_NE_OR_P;
4036    else
4037      return true;
4038
4039    // Update the MachineOperand.
4040    Cond[0].setImm(BranchCode);
4041    CondBranches.push_back(I);
4042  }
4043
4044  return false;
4045}
4046
4047bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
4048                                 MachineBasicBlock *&TBB,
4049                                 MachineBasicBlock *&FBB,
4050                                 SmallVectorImpl<MachineOperand> &Cond,
4051                                 bool AllowModify) const {
4052  SmallVector<MachineInstr *, 4> CondBranches;
4053  return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
4054}
4055
4056bool X86InstrInfo::AnalyzeBranchPredicate(MachineBasicBlock &MBB,
4057                                          MachineBranchPredicate &MBP,
4058                                          bool AllowModify) const {
4059  using namespace std::placeholders;
4060
4061  SmallVector<MachineOperand, 4> Cond;
4062  SmallVector<MachineInstr *, 4> CondBranches;
4063  if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
4064                        AllowModify))
4065    return true;
4066
4067  if (Cond.size() != 1)
4068    return true;
4069
4070  assert(MBP.TrueDest && "expected!");
4071
4072  if (!MBP.FalseDest)
4073    MBP.FalseDest = MBB.getNextNode();
4074
4075  const TargetRegisterInfo *TRI = &getRegisterInfo();
4076
4077  MachineInstr *ConditionDef = nullptr;
4078  bool SingleUseCondition = true;
4079
4080  for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) {
4081    if (I->modifiesRegister(X86::EFLAGS, TRI)) {
4082      ConditionDef = &*I;
4083      break;
4084    }
4085
4086    if (I->readsRegister(X86::EFLAGS, TRI))
4087      SingleUseCondition = false;
4088  }
4089
4090  if (!ConditionDef)
4091    return true;
4092
4093  if (SingleUseCondition) {
4094    for (auto *Succ : MBB.successors())
4095      if (Succ->isLiveIn(X86::EFLAGS))
4096        SingleUseCondition = false;
4097  }
4098
4099  MBP.ConditionDef = ConditionDef;
4100  MBP.SingleUseCondition = SingleUseCondition;
4101
4102  // Currently we only recognize the simple pattern:
4103  //
4104  //   test %reg, %reg
4105  //   je %label
4106  //
4107  const unsigned TestOpcode =
4108      Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
4109
4110  if (ConditionDef->getOpcode() == TestOpcode &&
4111      ConditionDef->getNumOperands() == 3 &&
4112      ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
4113      (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
4114    MBP.LHS = ConditionDef->getOperand(0);
4115    MBP.RHS = MachineOperand::CreateImm(0);
4116    MBP.Predicate = Cond[0].getImm() == X86::COND_NE
4117                        ? MachineBranchPredicate::PRED_NE
4118                        : MachineBranchPredicate::PRED_EQ;
4119    return false;
4120  }
4121
4122  return true;
4123}
4124
4125unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
4126  MachineBasicBlock::iterator I = MBB.end();
4127  unsigned Count = 0;
4128
4129  while (I != MBB.begin()) {
4130    --I;
4131    if (I->isDebugValue())
4132      continue;
4133    if (I->getOpcode() != X86::JMP_1 &&
4134        getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
4135      break;
4136    // Remove the branch.
4137    I->eraseFromParent();
4138    I = MBB.end();
4139    ++Count;
4140  }
4141
4142  return Count;
4143}
4144
4145unsigned
4146X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
4147                           MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
4148                           DebugLoc DL) const {
4149  // Shouldn't be a fall through.
4150  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
4151  assert((Cond.size() == 1 || Cond.size() == 0) &&
4152         "X86 branch conditions have one component!");
4153
4154  if (Cond.empty()) {
4155    // Unconditional branch?
4156    assert(!FBB && "Unconditional branch with multiple successors!");
4157    BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
4158    return 1;
4159  }
4160
4161  // Conditional branch.
4162  unsigned Count = 0;
4163  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
4164  switch (CC) {
4165  case X86::COND_NP_OR_E:
4166    // Synthesize NP_OR_E with two branches.
4167    BuildMI(&MBB, DL, get(X86::JNP_1)).addMBB(TBB);
4168    ++Count;
4169    BuildMI(&MBB, DL, get(X86::JE_1)).addMBB(TBB);
4170    ++Count;
4171    break;
4172  case X86::COND_NE_OR_P:
4173    // Synthesize NE_OR_P with two branches.
4174    BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(TBB);
4175    ++Count;
4176    BuildMI(&MBB, DL, get(X86::JP_1)).addMBB(TBB);
4177    ++Count;
4178    break;
4179  default: {
4180    unsigned Opc = GetCondBranchFromCond(CC);
4181    BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
4182    ++Count;
4183  }
4184  }
4185  if (FBB) {
4186    // Two-way Conditional branch. Insert the second branch.
4187    BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
4188    ++Count;
4189  }
4190  return Count;
4191}
4192
4193bool X86InstrInfo::
4194canInsertSelect(const MachineBasicBlock &MBB,
4195                ArrayRef<MachineOperand> Cond,
4196                unsigned TrueReg, unsigned FalseReg,
4197                int &CondCycles, int &TrueCycles, int &FalseCycles) const {
4198  // Not all subtargets have cmov instructions.
4199  if (!Subtarget.hasCMov())
4200    return false;
4201  if (Cond.size() != 1)
4202    return false;
4203  // We cannot do the composite conditions, at least not in SSA form.
4204  if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
4205    return false;
4206
4207  // Check register classes.
4208  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
4209  const TargetRegisterClass *RC =
4210    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
4211  if (!RC)
4212    return false;
4213
4214  // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
4215  if (X86::GR16RegClass.hasSubClassEq(RC) ||
4216      X86::GR32RegClass.hasSubClassEq(RC) ||
4217      X86::GR64RegClass.hasSubClassEq(RC)) {
4218    // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
4219    // Bridge. Probably Ivy Bridge as well.
4220    CondCycles = 2;
4221    TrueCycles = 2;
4222    FalseCycles = 2;
4223    return true;
4224  }
4225
4226  // Can't do vectors.
4227  return false;
4228}
4229
4230void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
4231                                MachineBasicBlock::iterator I, DebugLoc DL,
4232                                unsigned DstReg, ArrayRef<MachineOperand> Cond,
4233                                unsigned TrueReg, unsigned FalseReg) const {
4234   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
4235   assert(Cond.size() == 1 && "Invalid Cond array");
4236   unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
4237                                  MRI.getRegClass(DstReg)->getSize(),
4238                                  false/*HasMemoryOperand*/);
4239   BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
4240}
4241
4242/// Test if the given register is a physical h register.
4243static bool isHReg(unsigned Reg) {
4244  return X86::GR8_ABCD_HRegClass.contains(Reg);
4245}
4246
4247// Try and copy between VR128/VR64 and GR64 registers.
4248static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
4249                                        const X86Subtarget &Subtarget) {
4250
4251  // SrcReg(VR128) -> DestReg(GR64)
4252  // SrcReg(VR64)  -> DestReg(GR64)
4253  // SrcReg(GR64)  -> DestReg(VR128)
4254  // SrcReg(GR64)  -> DestReg(VR64)
4255
4256  bool HasAVX = Subtarget.hasAVX();
4257  bool HasAVX512 = Subtarget.hasAVX512();
4258  if (X86::GR64RegClass.contains(DestReg)) {
4259    if (X86::VR128XRegClass.contains(SrcReg))
4260      // Copy from a VR128 register to a GR64 register.
4261      return HasAVX512 ? X86::VMOVPQIto64Zrr: (HasAVX ? X86::VMOVPQIto64rr :
4262                                               X86::MOVPQIto64rr);
4263    if (X86::VR64RegClass.contains(SrcReg))
4264      // Copy from a VR64 register to a GR64 register.
4265      return X86::MMX_MOVD64from64rr;
4266  } else if (X86::GR64RegClass.contains(SrcReg)) {
4267    // Copy from a GR64 register to a VR128 register.
4268    if (X86::VR128XRegClass.contains(DestReg))
4269      return HasAVX512 ? X86::VMOV64toPQIZrr: (HasAVX ? X86::VMOV64toPQIrr :
4270                                               X86::MOV64toPQIrr);
4271    // Copy from a GR64 register to a VR64 register.
4272    if (X86::VR64RegClass.contains(DestReg))
4273      return X86::MMX_MOVD64to64rr;
4274  }
4275
4276  // SrcReg(FR32) -> DestReg(GR32)
4277  // SrcReg(GR32) -> DestReg(FR32)
4278
4279  if (X86::GR32RegClass.contains(DestReg) && X86::FR32XRegClass.contains(SrcReg))
4280    // Copy from a FR32 register to a GR32 register.
4281    return HasAVX512 ? X86::VMOVSS2DIZrr : (HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr);
4282
4283  if (X86::FR32XRegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
4284    // Copy from a GR32 register to a FR32 register.
4285    return HasAVX512 ? X86::VMOVDI2SSZrr : (HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr);
4286  return 0;
4287}
4288
4289static bool MaskRegClassContains(unsigned Reg) {
4290  return X86::VK8RegClass.contains(Reg) ||
4291         X86::VK16RegClass.contains(Reg) ||
4292         X86::VK32RegClass.contains(Reg) ||
4293         X86::VK64RegClass.contains(Reg) ||
4294         X86::VK1RegClass.contains(Reg);
4295}
4296
4297static bool GRRegClassContains(unsigned Reg) {
4298  return X86::GR64RegClass.contains(Reg) ||
4299         X86::GR32RegClass.contains(Reg) ||
4300         X86::GR16RegClass.contains(Reg) ||
4301         X86::GR8RegClass.contains(Reg);
4302}
4303static
4304unsigned copyPhysRegOpcode_AVX512_DQ(unsigned& DestReg, unsigned& SrcReg) {
4305  if (MaskRegClassContains(SrcReg) && X86::GR8RegClass.contains(DestReg)) {
4306    DestReg = getX86SubSuperRegister(DestReg, 32);
4307    return X86::KMOVBrk;
4308  }
4309  if (MaskRegClassContains(DestReg) && X86::GR8RegClass.contains(SrcReg)) {
4310    SrcReg = getX86SubSuperRegister(SrcReg, 32);
4311    return X86::KMOVBkr;
4312  }
4313  return 0;
4314}
4315
4316static
4317unsigned copyPhysRegOpcode_AVX512_BW(unsigned& DestReg, unsigned& SrcReg) {
4318  if (MaskRegClassContains(SrcReg) && MaskRegClassContains(DestReg))
4319    return X86::KMOVQkk;
4320  if (MaskRegClassContains(SrcReg) && X86::GR32RegClass.contains(DestReg))
4321    return X86::KMOVDrk;
4322  if (MaskRegClassContains(SrcReg) && X86::GR64RegClass.contains(DestReg))
4323    return X86::KMOVQrk;
4324  if (MaskRegClassContains(DestReg) && X86::GR32RegClass.contains(SrcReg))
4325    return X86::KMOVDkr;
4326  if (MaskRegClassContains(DestReg) && X86::GR64RegClass.contains(SrcReg))
4327    return X86::KMOVQkr;
4328  return 0;
4329}
4330
4331static
4332unsigned copyPhysRegOpcode_AVX512(unsigned& DestReg, unsigned& SrcReg,
4333                                  const X86Subtarget &Subtarget)
4334{
4335  if (Subtarget.hasDQI())
4336    if (auto Opc = copyPhysRegOpcode_AVX512_DQ(DestReg, SrcReg))
4337      return Opc;
4338  if (Subtarget.hasBWI())
4339    if (auto Opc = copyPhysRegOpcode_AVX512_BW(DestReg, SrcReg))
4340      return Opc;
4341  if (X86::VR128XRegClass.contains(DestReg, SrcReg) ||
4342      X86::VR256XRegClass.contains(DestReg, SrcReg) ||
4343      X86::VR512RegClass.contains(DestReg, SrcReg)) {
4344     DestReg = get512BitSuperRegister(DestReg);
4345     SrcReg = get512BitSuperRegister(SrcReg);
4346     return X86::VMOVAPSZrr;
4347  }
4348  if (MaskRegClassContains(DestReg) && MaskRegClassContains(SrcReg))
4349    return X86::KMOVWkk;
4350  if (MaskRegClassContains(DestReg) && GRRegClassContains(SrcReg)) {
4351    SrcReg = getX86SubSuperRegister(SrcReg, 32);
4352    return X86::KMOVWkr;
4353  }
4354  if (GRRegClassContains(DestReg) && MaskRegClassContains(SrcReg)) {
4355    DestReg = getX86SubSuperRegister(DestReg, 32);
4356    return X86::KMOVWrk;
4357  }
4358  return 0;
4359}
4360
4361void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
4362                               MachineBasicBlock::iterator MI, DebugLoc DL,
4363                               unsigned DestReg, unsigned SrcReg,
4364                               bool KillSrc) const {
4365  // First deal with the normal symmetric copies.
4366  bool HasAVX = Subtarget.hasAVX();
4367  bool HasAVX512 = Subtarget.hasAVX512();
4368  unsigned Opc = 0;
4369  if (X86::GR64RegClass.contains(DestReg, SrcReg))
4370    Opc = X86::MOV64rr;
4371  else if (X86::GR32RegClass.contains(DestReg, SrcReg))
4372    Opc = X86::MOV32rr;
4373  else if (X86::GR16RegClass.contains(DestReg, SrcReg))
4374    Opc = X86::MOV16rr;
4375  else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
4376    // Copying to or from a physical H register on x86-64 requires a NOREX
4377    // move.  Otherwise use a normal move.
4378    if ((isHReg(DestReg) || isHReg(SrcReg)) &&
4379        Subtarget.is64Bit()) {
4380      Opc = X86::MOV8rr_NOREX;
4381      // Both operands must be encodable without an REX prefix.
4382      assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
4383             "8-bit H register can not be copied outside GR8_NOREX");
4384    } else
4385      Opc = X86::MOV8rr;
4386  }
4387  else if (X86::VR64RegClass.contains(DestReg, SrcReg))
4388    Opc = X86::MMX_MOVQ64rr;
4389  else if (HasAVX512)
4390    Opc = copyPhysRegOpcode_AVX512(DestReg, SrcReg, Subtarget);
4391  else if (X86::VR128RegClass.contains(DestReg, SrcReg))
4392    Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
4393  else if (X86::VR256RegClass.contains(DestReg, SrcReg))
4394    Opc = X86::VMOVAPSYrr;
4395  if (!Opc)
4396    Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
4397
4398  if (Opc) {
4399    BuildMI(MBB, MI, DL, get(Opc), DestReg)
4400      .addReg(SrcReg, getKillRegState(KillSrc));
4401    return;
4402  }
4403
4404  bool FromEFLAGS = SrcReg == X86::EFLAGS;
4405  bool ToEFLAGS = DestReg == X86::EFLAGS;
4406  int Reg = FromEFLAGS ? DestReg : SrcReg;
4407  bool is32 = X86::GR32RegClass.contains(Reg);
4408  bool is64 = X86::GR64RegClass.contains(Reg);
4409
4410  if ((FromEFLAGS || ToEFLAGS) && (is32 || is64)) {
4411    int Mov = is64 ? X86::MOV64rr : X86::MOV32rr;
4412    int Push = is64 ? X86::PUSH64r : X86::PUSH32r;
4413    int PushF = is64 ? X86::PUSHF64 : X86::PUSHF32;
4414    int Pop = is64 ? X86::POP64r : X86::POP32r;
4415    int PopF = is64 ? X86::POPF64 : X86::POPF32;
4416    int AX = is64 ? X86::RAX : X86::EAX;
4417
4418    if (!Subtarget.hasLAHFSAHF()) {
4419      assert(Subtarget.is64Bit() &&
4420             "Not having LAHF/SAHF only happens on 64-bit.");
4421      // Moving EFLAGS to / from another register requires a push and a pop.
4422      // Notice that we have to adjust the stack if we don't want to clobber the
4423      // first frame index. See X86FrameLowering.cpp - usesTheStack.
4424      if (FromEFLAGS) {
4425        BuildMI(MBB, MI, DL, get(PushF));
4426        BuildMI(MBB, MI, DL, get(Pop), DestReg);
4427      }
4428      if (ToEFLAGS) {
4429        BuildMI(MBB, MI, DL, get(Push))
4430            .addReg(SrcReg, getKillRegState(KillSrc));
4431        BuildMI(MBB, MI, DL, get(PopF));
4432      }
4433      return;
4434    }
4435
4436    // The flags need to be saved, but saving EFLAGS with PUSHF/POPF is
4437    // inefficient. Instead:
4438    //   - Save the overflow flag OF into AL using SETO, and restore it using a
4439    //     signed 8-bit addition of AL and INT8_MAX.
4440    //   - Save/restore the bottom 8 EFLAGS bits (CF, PF, AF, ZF, SF) to/from AH
4441    //     using LAHF/SAHF.
4442    //   - When RAX/EAX is live and isn't the destination register, make sure it
4443    //     isn't clobbered by PUSH/POP'ing it before and after saving/restoring
4444    //     the flags.
4445    // This approach is ~2.25x faster than using PUSHF/POPF.
4446    //
4447    // This is still somewhat inefficient because we don't know which flags are
4448    // actually live inside EFLAGS. Were we able to do a single SETcc instead of
4449    // SETO+LAHF / ADDB+SAHF the code could be 1.02x faster.
4450    //
4451    // PUSHF/POPF is also potentially incorrect because it affects other flags
4452    // such as TF/IF/DF, which LLVM doesn't model.
4453    //
4454    // Notice that we have to adjust the stack if we don't want to clobber the
4455    // first frame index.
4456    // See X86ISelLowering.cpp - X86::hasCopyImplyingStackAdjustment.
4457
4458
4459    bool AXDead = (Reg == AX) ||
4460                  (MachineBasicBlock::LQR_Dead ==
4461                   MBB.computeRegisterLiveness(&getRegisterInfo(), AX, MI));
4462    if (!AXDead) {
4463      // FIXME: If computeRegisterLiveness() reported LQR_Unknown then AX may
4464      // actually be dead. This is not a problem for correctness as we are just
4465      // (unnecessarily) saving+restoring a dead register. However the
4466      // MachineVerifier expects operands that read from dead registers
4467      // to be marked with the "undef" flag.
4468      // An example of this can be found in
4469      // test/CodeGen/X86/peephole-na-phys-copy-folding.ll and
4470      // test/CodeGen/X86/cmpxchg-clobber-flags.ll when using
4471      // -verify-machineinstrs.
4472      BuildMI(MBB, MI, DL, get(Push)).addReg(AX, getKillRegState(true));
4473    }
4474    if (FromEFLAGS) {
4475      BuildMI(MBB, MI, DL, get(X86::SETOr), X86::AL);
4476      BuildMI(MBB, MI, DL, get(X86::LAHF));
4477      BuildMI(MBB, MI, DL, get(Mov), Reg).addReg(AX);
4478    }
4479    if (ToEFLAGS) {
4480      BuildMI(MBB, MI, DL, get(Mov), AX).addReg(Reg, getKillRegState(KillSrc));
4481      BuildMI(MBB, MI, DL, get(X86::ADD8ri), X86::AL)
4482          .addReg(X86::AL)
4483          .addImm(INT8_MAX);
4484      BuildMI(MBB, MI, DL, get(X86::SAHF));
4485    }
4486    if (!AXDead)
4487      BuildMI(MBB, MI, DL, get(Pop), AX);
4488    return;
4489  }
4490
4491  DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
4492               << " to " << RI.getName(DestReg) << '\n');
4493  llvm_unreachable("Cannot emit physreg copy instruction");
4494}
4495
4496static unsigned getLoadStoreRegOpcode(unsigned Reg,
4497                                      const TargetRegisterClass *RC,
4498                                      bool isStackAligned,
4499                                      const X86Subtarget &STI,
4500                                      bool load) {
4501  if (STI.hasAVX512()) {
4502    if (X86::VK8RegClass.hasSubClassEq(RC)  ||
4503      X86::VK16RegClass.hasSubClassEq(RC))
4504      return load ? X86::KMOVWkm : X86::KMOVWmk;
4505    if (RC->getSize() == 4 && X86::FR32XRegClass.hasSubClassEq(RC))
4506      return load ? X86::VMOVSSZrm : X86::VMOVSSZmr;
4507    if (RC->getSize() == 8 && X86::FR64XRegClass.hasSubClassEq(RC))
4508      return load ? X86::VMOVSDZrm : X86::VMOVSDZmr;
4509    if (X86::VR512RegClass.hasSubClassEq(RC))
4510      return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
4511  }
4512
4513  bool HasAVX = STI.hasAVX();
4514  switch (RC->getSize()) {
4515  default:
4516    llvm_unreachable("Unknown spill size");
4517  case 1:
4518    assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
4519    if (STI.is64Bit())
4520      // Copying to or from a physical H register on x86-64 requires a NOREX
4521      // move.  Otherwise use a normal move.
4522      if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
4523        return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
4524    return load ? X86::MOV8rm : X86::MOV8mr;
4525  case 2:
4526    assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
4527    return load ? X86::MOV16rm : X86::MOV16mr;
4528  case 4:
4529    if (X86::GR32RegClass.hasSubClassEq(RC))
4530      return load ? X86::MOV32rm : X86::MOV32mr;
4531    if (X86::FR32RegClass.hasSubClassEq(RC))
4532      return load ?
4533        (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
4534        (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
4535    if (X86::RFP32RegClass.hasSubClassEq(RC))
4536      return load ? X86::LD_Fp32m : X86::ST_Fp32m;
4537    llvm_unreachable("Unknown 4-byte regclass");
4538  case 8:
4539    if (X86::GR64RegClass.hasSubClassEq(RC))
4540      return load ? X86::MOV64rm : X86::MOV64mr;
4541    if (X86::FR64RegClass.hasSubClassEq(RC))
4542      return load ?
4543        (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
4544        (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
4545    if (X86::VR64RegClass.hasSubClassEq(RC))
4546      return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
4547    if (X86::RFP64RegClass.hasSubClassEq(RC))
4548      return load ? X86::LD_Fp64m : X86::ST_Fp64m;
4549    llvm_unreachable("Unknown 8-byte regclass");
4550  case 10:
4551    assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
4552    return load ? X86::LD_Fp80m : X86::ST_FpP80m;
4553  case 16: {
4554    assert((X86::VR128RegClass.hasSubClassEq(RC) ||
4555            X86::VR128XRegClass.hasSubClassEq(RC))&& "Unknown 16-byte regclass");
4556    // If stack is realigned we can use aligned stores.
4557    if (isStackAligned)
4558      return load ?
4559        (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
4560        (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
4561    else
4562      return load ?
4563        (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
4564        (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
4565  }
4566  case 32:
4567    assert((X86::VR256RegClass.hasSubClassEq(RC) ||
4568            X86::VR256XRegClass.hasSubClassEq(RC)) && "Unknown 32-byte regclass");
4569    // If stack is realigned we can use aligned stores.
4570    if (isStackAligned)
4571      return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
4572    else
4573      return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
4574  case 64:
4575    assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
4576    if (isStackAligned)
4577      return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
4578    else
4579      return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
4580  }
4581}
4582
4583bool X86InstrInfo::getMemOpBaseRegImmOfs(MachineInstr *MemOp, unsigned &BaseReg,
4584                                         unsigned &Offset,
4585                                         const TargetRegisterInfo *TRI) const {
4586  const MCInstrDesc &Desc = MemOp->getDesc();
4587  int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags, MemOp->getOpcode());
4588  if (MemRefBegin < 0)
4589    return false;
4590
4591  MemRefBegin += X86II::getOperandBias(Desc);
4592
4593  BaseReg = MemOp->getOperand(MemRefBegin + X86::AddrBaseReg).getReg();
4594  if (MemOp->getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
4595    return false;
4596
4597  if (MemOp->getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
4598      X86::NoRegister)
4599    return false;
4600
4601  const MachineOperand &DispMO = MemOp->getOperand(MemRefBegin + X86::AddrDisp);
4602
4603  // Displacement can be symbolic
4604  if (!DispMO.isImm())
4605    return false;
4606
4607  Offset = DispMO.getImm();
4608
4609  return (MemOp->getOperand(MemRefBegin + X86::AddrIndexReg).getReg() ==
4610          X86::NoRegister);
4611}
4612
4613static unsigned getStoreRegOpcode(unsigned SrcReg,
4614                                  const TargetRegisterClass *RC,
4615                                  bool isStackAligned,
4616                                  const X86Subtarget &STI) {
4617  return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false);
4618}
4619
4620
4621static unsigned getLoadRegOpcode(unsigned DestReg,
4622                                 const TargetRegisterClass *RC,
4623                                 bool isStackAligned,
4624                                 const X86Subtarget &STI) {
4625  return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true);
4626}
4627
4628void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
4629                                       MachineBasicBlock::iterator MI,
4630                                       unsigned SrcReg, bool isKill, int FrameIdx,
4631                                       const TargetRegisterClass *RC,
4632                                       const TargetRegisterInfo *TRI) const {
4633  const MachineFunction &MF = *MBB.getParent();
4634  assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
4635         "Stack slot too small for store");
4636  unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
4637  bool isAligned =
4638      (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
4639      RI.canRealignStack(MF);
4640  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
4641  DebugLoc DL = MBB.findDebugLoc(MI);
4642  addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
4643    .addReg(SrcReg, getKillRegState(isKill));
4644}
4645
4646void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
4647                                  bool isKill,
4648                                  SmallVectorImpl<MachineOperand> &Addr,
4649                                  const TargetRegisterClass *RC,
4650                                  MachineInstr::mmo_iterator MMOBegin,
4651                                  MachineInstr::mmo_iterator MMOEnd,
4652                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
4653  unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
4654  bool isAligned = MMOBegin != MMOEnd &&
4655                   (*MMOBegin)->getAlignment() >= Alignment;
4656  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
4657  DebugLoc DL;
4658  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
4659  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
4660    MIB.addOperand(Addr[i]);
4661  MIB.addReg(SrcReg, getKillRegState(isKill));
4662  (*MIB).setMemRefs(MMOBegin, MMOEnd);
4663  NewMIs.push_back(MIB);
4664}
4665
4666
4667void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
4668                                        MachineBasicBlock::iterator MI,
4669                                        unsigned DestReg, int FrameIdx,
4670                                        const TargetRegisterClass *RC,
4671                                        const TargetRegisterInfo *TRI) const {
4672  const MachineFunction &MF = *MBB.getParent();
4673  unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
4674  bool isAligned =
4675      (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
4676      RI.canRealignStack(MF);
4677  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
4678  DebugLoc DL = MBB.findDebugLoc(MI);
4679  addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
4680}
4681
4682void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
4683                                 SmallVectorImpl<MachineOperand> &Addr,
4684                                 const TargetRegisterClass *RC,
4685                                 MachineInstr::mmo_iterator MMOBegin,
4686                                 MachineInstr::mmo_iterator MMOEnd,
4687                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
4688  unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
4689  bool isAligned = MMOBegin != MMOEnd &&
4690                   (*MMOBegin)->getAlignment() >= Alignment;
4691  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
4692  DebugLoc DL;
4693  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
4694  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
4695    MIB.addOperand(Addr[i]);
4696  (*MIB).setMemRefs(MMOBegin, MMOEnd);
4697  NewMIs.push_back(MIB);
4698}
4699
4700bool X86InstrInfo::
4701analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
4702               int &CmpMask, int &CmpValue) const {
4703  switch (MI->getOpcode()) {
4704  default: break;
4705  case X86::CMP64ri32:
4706  case X86::CMP64ri8:
4707  case X86::CMP32ri:
4708  case X86::CMP32ri8:
4709  case X86::CMP16ri:
4710  case X86::CMP16ri8:
4711  case X86::CMP8ri:
4712    SrcReg = MI->getOperand(0).getReg();
4713    SrcReg2 = 0;
4714    CmpMask = ~0;
4715    CmpValue = MI->getOperand(1).getImm();
4716    return true;
4717  // A SUB can be used to perform comparison.
4718  case X86::SUB64rm:
4719  case X86::SUB32rm:
4720  case X86::SUB16rm:
4721  case X86::SUB8rm:
4722    SrcReg = MI->getOperand(1).getReg();
4723    SrcReg2 = 0;
4724    CmpMask = ~0;
4725    CmpValue = 0;
4726    return true;
4727  case X86::SUB64rr:
4728  case X86::SUB32rr:
4729  case X86::SUB16rr:
4730  case X86::SUB8rr:
4731    SrcReg = MI->getOperand(1).getReg();
4732    SrcReg2 = MI->getOperand(2).getReg();
4733    CmpMask = ~0;
4734    CmpValue = 0;
4735    return true;
4736  case X86::SUB64ri32:
4737  case X86::SUB64ri8:
4738  case X86::SUB32ri:
4739  case X86::SUB32ri8:
4740  case X86::SUB16ri:
4741  case X86::SUB16ri8:
4742  case X86::SUB8ri:
4743    SrcReg = MI->getOperand(1).getReg();
4744    SrcReg2 = 0;
4745    CmpMask = ~0;
4746    CmpValue = MI->getOperand(2).getImm();
4747    return true;
4748  case X86::CMP64rr:
4749  case X86::CMP32rr:
4750  case X86::CMP16rr:
4751  case X86::CMP8rr:
4752    SrcReg = MI->getOperand(0).getReg();
4753    SrcReg2 = MI->getOperand(1).getReg();
4754    CmpMask = ~0;
4755    CmpValue = 0;
4756    return true;
4757  case X86::TEST8rr:
4758  case X86::TEST16rr:
4759  case X86::TEST32rr:
4760  case X86::TEST64rr:
4761    SrcReg = MI->getOperand(0).getReg();
4762    if (MI->getOperand(1).getReg() != SrcReg) return false;
4763    // Compare against zero.
4764    SrcReg2 = 0;
4765    CmpMask = ~0;
4766    CmpValue = 0;
4767    return true;
4768  }
4769  return false;
4770}
4771
4772/// Check whether the first instruction, whose only
4773/// purpose is to update flags, can be made redundant.
4774/// CMPrr can be made redundant by SUBrr if the operands are the same.
4775/// This function can be extended later on.
4776/// SrcReg, SrcRegs: register operands for FlagI.
4777/// ImmValue: immediate for FlagI if it takes an immediate.
4778inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg,
4779                                        unsigned SrcReg2, int ImmValue,
4780                                        MachineInstr *OI) {
4781  if (((FlagI->getOpcode() == X86::CMP64rr &&
4782        OI->getOpcode() == X86::SUB64rr) ||
4783       (FlagI->getOpcode() == X86::CMP32rr &&
4784        OI->getOpcode() == X86::SUB32rr)||
4785       (FlagI->getOpcode() == X86::CMP16rr &&
4786        OI->getOpcode() == X86::SUB16rr)||
4787       (FlagI->getOpcode() == X86::CMP8rr &&
4788        OI->getOpcode() == X86::SUB8rr)) &&
4789      ((OI->getOperand(1).getReg() == SrcReg &&
4790        OI->getOperand(2).getReg() == SrcReg2) ||
4791       (OI->getOperand(1).getReg() == SrcReg2 &&
4792        OI->getOperand(2).getReg() == SrcReg)))
4793    return true;
4794
4795  if (((FlagI->getOpcode() == X86::CMP64ri32 &&
4796        OI->getOpcode() == X86::SUB64ri32) ||
4797       (FlagI->getOpcode() == X86::CMP64ri8 &&
4798        OI->getOpcode() == X86::SUB64ri8) ||
4799       (FlagI->getOpcode() == X86::CMP32ri &&
4800        OI->getOpcode() == X86::SUB32ri) ||
4801       (FlagI->getOpcode() == X86::CMP32ri8 &&
4802        OI->getOpcode() == X86::SUB32ri8) ||
4803       (FlagI->getOpcode() == X86::CMP16ri &&
4804        OI->getOpcode() == X86::SUB16ri) ||
4805       (FlagI->getOpcode() == X86::CMP16ri8 &&
4806        OI->getOpcode() == X86::SUB16ri8) ||
4807       (FlagI->getOpcode() == X86::CMP8ri &&
4808        OI->getOpcode() == X86::SUB8ri)) &&
4809      OI->getOperand(1).getReg() == SrcReg &&
4810      OI->getOperand(2).getImm() == ImmValue)
4811    return true;
4812  return false;
4813}
4814
4815/// Check whether the definition can be converted
4816/// to remove a comparison against zero.
4817inline static bool isDefConvertible(MachineInstr *MI) {
4818  switch (MI->getOpcode()) {
4819  default: return false;
4820
4821  // The shift instructions only modify ZF if their shift count is non-zero.
4822  // N.B.: The processor truncates the shift count depending on the encoding.
4823  case X86::SAR8ri:    case X86::SAR16ri:  case X86::SAR32ri:case X86::SAR64ri:
4824  case X86::SHR8ri:    case X86::SHR16ri:  case X86::SHR32ri:case X86::SHR64ri:
4825     return getTruncatedShiftCount(MI, 2) != 0;
4826
4827  // Some left shift instructions can be turned into LEA instructions but only
4828  // if their flags aren't used. Avoid transforming such instructions.
4829  case X86::SHL8ri:    case X86::SHL16ri:  case X86::SHL32ri:case X86::SHL64ri:{
4830    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
4831    if (isTruncatedShiftCountForLEA(ShAmt)) return false;
4832    return ShAmt != 0;
4833  }
4834
4835  case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
4836  case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
4837     return getTruncatedShiftCount(MI, 3) != 0;
4838
4839  case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
4840  case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
4841  case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
4842  case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm:
4843  case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm:
4844  case X86::DEC64r:    case X86::DEC32r:   case X86::DEC16r: case X86::DEC8r:
4845  case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
4846  case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8:
4847  case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr:
4848  case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm:
4849  case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm:
4850  case X86::INC64r:    case X86::INC32r:   case X86::INC16r: case X86::INC8r:
4851  case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
4852  case X86::AND32ri8:  case X86::AND16ri:  case X86::AND16ri8:
4853  case X86::AND8ri:    case X86::AND64rr:  case X86::AND32rr:
4854  case X86::AND16rr:   case X86::AND8rr:   case X86::AND64rm:
4855  case X86::AND32rm:   case X86::AND16rm:  case X86::AND8rm:
4856  case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
4857  case X86::XOR32ri8:  case X86::XOR16ri:  case X86::XOR16ri8:
4858  case X86::XOR8ri:    case X86::XOR64rr:  case X86::XOR32rr:
4859  case X86::XOR16rr:   case X86::XOR8rr:   case X86::XOR64rm:
4860  case X86::XOR32rm:   case X86::XOR16rm:  case X86::XOR8rm:
4861  case X86::OR64ri32:  case X86::OR64ri8:  case X86::OR32ri:
4862  case X86::OR32ri8:   case X86::OR16ri:   case X86::OR16ri8:
4863  case X86::OR8ri:     case X86::OR64rr:   case X86::OR32rr:
4864  case X86::OR16rr:    case X86::OR8rr:    case X86::OR64rm:
4865  case X86::OR32rm:    case X86::OR16rm:   case X86::OR8rm:
4866  case X86::NEG8r:     case X86::NEG16r:   case X86::NEG32r: case X86::NEG64r:
4867  case X86::SAR8r1:    case X86::SAR16r1:  case X86::SAR32r1:case X86::SAR64r1:
4868  case X86::SHR8r1:    case X86::SHR16r1:  case X86::SHR32r1:case X86::SHR64r1:
4869  case X86::SHL8r1:    case X86::SHL16r1:  case X86::SHL32r1:case X86::SHL64r1:
4870  case X86::ADC32ri:   case X86::ADC32ri8:
4871  case X86::ADC32rr:   case X86::ADC64ri32:
4872  case X86::ADC64ri8:  case X86::ADC64rr:
4873  case X86::SBB32ri:   case X86::SBB32ri8:
4874  case X86::SBB32rr:   case X86::SBB64ri32:
4875  case X86::SBB64ri8:  case X86::SBB64rr:
4876  case X86::ANDN32rr:  case X86::ANDN32rm:
4877  case X86::ANDN64rr:  case X86::ANDN64rm:
4878  case X86::BEXTR32rr: case X86::BEXTR64rr:
4879  case X86::BEXTR32rm: case X86::BEXTR64rm:
4880  case X86::BLSI32rr:  case X86::BLSI32rm:
4881  case X86::BLSI64rr:  case X86::BLSI64rm:
4882  case X86::BLSMSK32rr:case X86::BLSMSK32rm:
4883  case X86::BLSMSK64rr:case X86::BLSMSK64rm:
4884  case X86::BLSR32rr:  case X86::BLSR32rm:
4885  case X86::BLSR64rr:  case X86::BLSR64rm:
4886  case X86::BZHI32rr:  case X86::BZHI32rm:
4887  case X86::BZHI64rr:  case X86::BZHI64rm:
4888  case X86::LZCNT16rr: case X86::LZCNT16rm:
4889  case X86::LZCNT32rr: case X86::LZCNT32rm:
4890  case X86::LZCNT64rr: case X86::LZCNT64rm:
4891  case X86::POPCNT16rr:case X86::POPCNT16rm:
4892  case X86::POPCNT32rr:case X86::POPCNT32rm:
4893  case X86::POPCNT64rr:case X86::POPCNT64rm:
4894  case X86::TZCNT16rr: case X86::TZCNT16rm:
4895  case X86::TZCNT32rr: case X86::TZCNT32rm:
4896  case X86::TZCNT64rr: case X86::TZCNT64rm:
4897    return true;
4898  }
4899}
4900
4901/// Check whether the use can be converted to remove a comparison against zero.
4902static X86::CondCode isUseDefConvertible(MachineInstr *MI) {
4903  switch (MI->getOpcode()) {
4904  default: return X86::COND_INVALID;
4905  case X86::LZCNT16rr: case X86::LZCNT16rm:
4906  case X86::LZCNT32rr: case X86::LZCNT32rm:
4907  case X86::LZCNT64rr: case X86::LZCNT64rm:
4908    return X86::COND_B;
4909  case X86::POPCNT16rr:case X86::POPCNT16rm:
4910  case X86::POPCNT32rr:case X86::POPCNT32rm:
4911  case X86::POPCNT64rr:case X86::POPCNT64rm:
4912    return X86::COND_E;
4913  case X86::TZCNT16rr: case X86::TZCNT16rm:
4914  case X86::TZCNT32rr: case X86::TZCNT32rm:
4915  case X86::TZCNT64rr: case X86::TZCNT64rm:
4916    return X86::COND_B;
4917  }
4918}
4919
4920/// Check if there exists an earlier instruction that
4921/// operates on the same source operands and sets flags in the same way as
4922/// Compare; remove Compare if possible.
4923bool X86InstrInfo::
4924optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
4925                     int CmpMask, int CmpValue,
4926                     const MachineRegisterInfo *MRI) const {
4927  // Check whether we can replace SUB with CMP.
4928  unsigned NewOpcode = 0;
4929  switch (CmpInstr->getOpcode()) {
4930  default: break;
4931  case X86::SUB64ri32:
4932  case X86::SUB64ri8:
4933  case X86::SUB32ri:
4934  case X86::SUB32ri8:
4935  case X86::SUB16ri:
4936  case X86::SUB16ri8:
4937  case X86::SUB8ri:
4938  case X86::SUB64rm:
4939  case X86::SUB32rm:
4940  case X86::SUB16rm:
4941  case X86::SUB8rm:
4942  case X86::SUB64rr:
4943  case X86::SUB32rr:
4944  case X86::SUB16rr:
4945  case X86::SUB8rr: {
4946    if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
4947      return false;
4948    // There is no use of the destination register, we can replace SUB with CMP.
4949    switch (CmpInstr->getOpcode()) {
4950    default: llvm_unreachable("Unreachable!");
4951    case X86::SUB64rm:   NewOpcode = X86::CMP64rm;   break;
4952    case X86::SUB32rm:   NewOpcode = X86::CMP32rm;   break;
4953    case X86::SUB16rm:   NewOpcode = X86::CMP16rm;   break;
4954    case X86::SUB8rm:    NewOpcode = X86::CMP8rm;    break;
4955    case X86::SUB64rr:   NewOpcode = X86::CMP64rr;   break;
4956    case X86::SUB32rr:   NewOpcode = X86::CMP32rr;   break;
4957    case X86::SUB16rr:   NewOpcode = X86::CMP16rr;   break;
4958    case X86::SUB8rr:    NewOpcode = X86::CMP8rr;    break;
4959    case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
4960    case X86::SUB64ri8:  NewOpcode = X86::CMP64ri8;  break;
4961    case X86::SUB32ri:   NewOpcode = X86::CMP32ri;   break;
4962    case X86::SUB32ri8:  NewOpcode = X86::CMP32ri8;  break;
4963    case X86::SUB16ri:   NewOpcode = X86::CMP16ri;   break;
4964    case X86::SUB16ri8:  NewOpcode = X86::CMP16ri8;  break;
4965    case X86::SUB8ri:    NewOpcode = X86::CMP8ri;    break;
4966    }
4967    CmpInstr->setDesc(get(NewOpcode));
4968    CmpInstr->RemoveOperand(0);
4969    // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
4970    if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
4971        NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
4972      return false;
4973  }
4974  }
4975
4976  // Get the unique definition of SrcReg.
4977  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
4978  if (!MI) return false;
4979
4980  // CmpInstr is the first instruction of the BB.
4981  MachineBasicBlock::iterator I = CmpInstr, Def = MI;
4982
4983  // If we are comparing against zero, check whether we can use MI to update
4984  // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
4985  bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0);
4986  if (IsCmpZero && MI->getParent() != CmpInstr->getParent())
4987    return false;
4988
4989  // If we have a use of the source register between the def and our compare
4990  // instruction we can eliminate the compare iff the use sets EFLAGS in the
4991  // right way.
4992  bool ShouldUpdateCC = false;
4993  X86::CondCode NewCC = X86::COND_INVALID;
4994  if (IsCmpZero && !isDefConvertible(MI)) {
4995    // Scan forward from the use until we hit the use we're looking for or the
4996    // compare instruction.
4997    for (MachineBasicBlock::iterator J = MI;; ++J) {
4998      // Do we have a convertible instruction?
4999      NewCC = isUseDefConvertible(J);
5000      if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
5001          J->getOperand(1).getReg() == SrcReg) {
5002        assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
5003        ShouldUpdateCC = true; // Update CC later on.
5004        // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
5005        // with the new def.
5006        MI = Def = J;
5007        break;
5008      }
5009
5010      if (J == I)
5011        return false;
5012    }
5013  }
5014
5015  // We are searching for an earlier instruction that can make CmpInstr
5016  // redundant and that instruction will be saved in Sub.
5017  MachineInstr *Sub = nullptr;
5018  const TargetRegisterInfo *TRI = &getRegisterInfo();
5019
5020  // We iterate backward, starting from the instruction before CmpInstr and
5021  // stop when reaching the definition of a source register or done with the BB.
5022  // RI points to the instruction before CmpInstr.
5023  // If the definition is in this basic block, RE points to the definition;
5024  // otherwise, RE is the rend of the basic block.
5025  MachineBasicBlock::reverse_iterator
5026      RI = MachineBasicBlock::reverse_iterator(I),
5027      RE = CmpInstr->getParent() == MI->getParent() ?
5028           MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ :
5029           CmpInstr->getParent()->rend();
5030  MachineInstr *Movr0Inst = nullptr;
5031  for (; RI != RE; ++RI) {
5032    MachineInstr *Instr = &*RI;
5033    // Check whether CmpInstr can be made redundant by the current instruction.
5034    if (!IsCmpZero &&
5035        isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) {
5036      Sub = Instr;
5037      break;
5038    }
5039
5040    if (Instr->modifiesRegister(X86::EFLAGS, TRI) ||
5041        Instr->readsRegister(X86::EFLAGS, TRI)) {
5042      // This instruction modifies or uses EFLAGS.
5043
5044      // MOV32r0 etc. are implemented with xor which clobbers condition code.
5045      // They are safe to move up, if the definition to EFLAGS is dead and
5046      // earlier instructions do not read or write EFLAGS.
5047      if (!Movr0Inst && Instr->getOpcode() == X86::MOV32r0 &&
5048          Instr->registerDefIsDead(X86::EFLAGS, TRI)) {
5049        Movr0Inst = Instr;
5050        continue;
5051      }
5052
5053      // We can't remove CmpInstr.
5054      return false;
5055    }
5056  }
5057
5058  // Return false if no candidates exist.
5059  if (!IsCmpZero && !Sub)
5060    return false;
5061
5062  bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
5063                    Sub->getOperand(2).getReg() == SrcReg);
5064
5065  // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
5066  // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
5067  // If we are done with the basic block, we need to check whether EFLAGS is
5068  // live-out.
5069  bool IsSafe = false;
5070  SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate;
5071  MachineBasicBlock::iterator E = CmpInstr->getParent()->end();
5072  for (++I; I != E; ++I) {
5073    const MachineInstr &Instr = *I;
5074    bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
5075    bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
5076    // We should check the usage if this instruction uses and updates EFLAGS.
5077    if (!UseEFLAGS && ModifyEFLAGS) {
5078      // It is safe to remove CmpInstr if EFLAGS is updated again.
5079      IsSafe = true;
5080      break;
5081    }
5082    if (!UseEFLAGS && !ModifyEFLAGS)
5083      continue;
5084
5085    // EFLAGS is used by this instruction.
5086    X86::CondCode OldCC = X86::COND_INVALID;
5087    bool OpcIsSET = false;
5088    if (IsCmpZero || IsSwapped) {
5089      // We decode the condition code from opcode.
5090      if (Instr.isBranch())
5091        OldCC = getCondFromBranchOpc(Instr.getOpcode());
5092      else {
5093        OldCC = getCondFromSETOpc(Instr.getOpcode());
5094        if (OldCC != X86::COND_INVALID)
5095          OpcIsSET = true;
5096        else
5097          OldCC = X86::getCondFromCMovOpc(Instr.getOpcode());
5098      }
5099      if (OldCC == X86::COND_INVALID) return false;
5100    }
5101    if (IsCmpZero) {
5102      switch (OldCC) {
5103      default: break;
5104      case X86::COND_A: case X86::COND_AE:
5105      case X86::COND_B: case X86::COND_BE:
5106      case X86::COND_G: case X86::COND_GE:
5107      case X86::COND_L: case X86::COND_LE:
5108      case X86::COND_O: case X86::COND_NO:
5109        // CF and OF are used, we can't perform this optimization.
5110        return false;
5111      }
5112
5113      // If we're updating the condition code check if we have to reverse the
5114      // condition.
5115      if (ShouldUpdateCC)
5116        switch (OldCC) {
5117        default:
5118          return false;
5119        case X86::COND_E:
5120          break;
5121        case X86::COND_NE:
5122          NewCC = GetOppositeBranchCondition(NewCC);
5123          break;
5124        }
5125    } else if (IsSwapped) {
5126      // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
5127      // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
5128      // We swap the condition code and synthesize the new opcode.
5129      NewCC = getSwappedCondition(OldCC);
5130      if (NewCC == X86::COND_INVALID) return false;
5131    }
5132
5133    if ((ShouldUpdateCC || IsSwapped) && NewCC != OldCC) {
5134      // Synthesize the new opcode.
5135      bool HasMemoryOperand = Instr.hasOneMemOperand();
5136      unsigned NewOpc;
5137      if (Instr.isBranch())
5138        NewOpc = GetCondBranchFromCond(NewCC);
5139      else if(OpcIsSET)
5140        NewOpc = getSETFromCond(NewCC, HasMemoryOperand);
5141      else {
5142        unsigned DstReg = Instr.getOperand(0).getReg();
5143        NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(),
5144                                 HasMemoryOperand);
5145      }
5146
5147      // Push the MachineInstr to OpsToUpdate.
5148      // If it is safe to remove CmpInstr, the condition code of these
5149      // instructions will be modified.
5150      OpsToUpdate.push_back(std::make_pair(&*I, NewOpc));
5151    }
5152    if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
5153      // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
5154      IsSafe = true;
5155      break;
5156    }
5157  }
5158
5159  // If EFLAGS is not killed nor re-defined, we should check whether it is
5160  // live-out. If it is live-out, do not optimize.
5161  if ((IsCmpZero || IsSwapped) && !IsSafe) {
5162    MachineBasicBlock *MBB = CmpInstr->getParent();
5163    for (MachineBasicBlock *Successor : MBB->successors())
5164      if (Successor->isLiveIn(X86::EFLAGS))
5165        return false;
5166  }
5167
5168  // The instruction to be updated is either Sub or MI.
5169  Sub = IsCmpZero ? MI : Sub;
5170  // Move Movr0Inst to the appropriate place before Sub.
5171  if (Movr0Inst) {
5172    // Look backwards until we find a def that doesn't use the current EFLAGS.
5173    Def = Sub;
5174    MachineBasicBlock::reverse_iterator
5175      InsertI = MachineBasicBlock::reverse_iterator(++Def),
5176                InsertE = Sub->getParent()->rend();
5177    for (; InsertI != InsertE; ++InsertI) {
5178      MachineInstr *Instr = &*InsertI;
5179      if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
5180          Instr->modifiesRegister(X86::EFLAGS, TRI)) {
5181        Sub->getParent()->remove(Movr0Inst);
5182        Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
5183                                   Movr0Inst);
5184        break;
5185      }
5186    }
5187    if (InsertI == InsertE)
5188      return false;
5189  }
5190
5191  // Make sure Sub instruction defines EFLAGS and mark the def live.
5192  unsigned i = 0, e = Sub->getNumOperands();
5193  for (; i != e; ++i) {
5194    MachineOperand &MO = Sub->getOperand(i);
5195    if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
5196      MO.setIsDead(false);
5197      break;
5198    }
5199  }
5200  assert(i != e && "Unable to locate a def EFLAGS operand");
5201
5202  CmpInstr->eraseFromParent();
5203
5204  // Modify the condition code of instructions in OpsToUpdate.
5205  for (auto &Op : OpsToUpdate)
5206    Op.first->setDesc(get(Op.second));
5207  return true;
5208}
5209
5210/// Try to remove the load by folding it to a register
5211/// operand at the use. We fold the load instructions if load defines a virtual
5212/// register, the virtual register is used once in the same BB, and the
5213/// instructions in-between do not load or store, and have no side effects.
5214MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr *MI,
5215                                              const MachineRegisterInfo *MRI,
5216                                              unsigned &FoldAsLoadDefReg,
5217                                              MachineInstr *&DefMI) const {
5218  if (FoldAsLoadDefReg == 0)
5219    return nullptr;
5220  // To be conservative, if there exists another load, clear the load candidate.
5221  if (MI->mayLoad()) {
5222    FoldAsLoadDefReg = 0;
5223    return nullptr;
5224  }
5225
5226  // Check whether we can move DefMI here.
5227  DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
5228  assert(DefMI);
5229  bool SawStore = false;
5230  if (!DefMI->isSafeToMove(nullptr, SawStore))
5231    return nullptr;
5232
5233  // Collect information about virtual register operands of MI.
5234  unsigned SrcOperandId = 0;
5235  bool FoundSrcOperand = false;
5236  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
5237    MachineOperand &MO = MI->getOperand(i);
5238    if (!MO.isReg())
5239      continue;
5240    unsigned Reg = MO.getReg();
5241    if (Reg != FoldAsLoadDefReg)
5242      continue;
5243    // Do not fold if we have a subreg use or a def or multiple uses.
5244    if (MO.getSubReg() || MO.isDef() || FoundSrcOperand)
5245      return nullptr;
5246
5247    SrcOperandId = i;
5248    FoundSrcOperand = true;
5249  }
5250  if (!FoundSrcOperand)
5251    return nullptr;
5252
5253  // Check whether we can fold the def into SrcOperandId.
5254  if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandId, DefMI)) {
5255    FoldAsLoadDefReg = 0;
5256    return FoldMI;
5257  }
5258
5259  return nullptr;
5260}
5261
5262/// Expand a single-def pseudo instruction to a two-addr
5263/// instruction with two undef reads of the register being defined.
5264/// This is used for mapping:
5265///   %xmm4 = V_SET0
5266/// to:
5267///   %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
5268///
5269static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
5270                             const MCInstrDesc &Desc) {
5271  assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
5272  unsigned Reg = MIB->getOperand(0).getReg();
5273  MIB->setDesc(Desc);
5274
5275  // MachineInstr::addOperand() will insert explicit operands before any
5276  // implicit operands.
5277  MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
5278  // But we don't trust that.
5279  assert(MIB->getOperand(1).getReg() == Reg &&
5280         MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
5281  return true;
5282}
5283
5284/// Expand a single-def pseudo instruction to a two-addr
5285/// instruction with two %k0 reads.
5286/// This is used for mapping:
5287///   %k4 = K_SET1
5288/// to:
5289///   %k4 = KXNORrr %k0, %k0
5290static bool Expand2AddrKreg(MachineInstrBuilder &MIB,
5291                            const MCInstrDesc &Desc, unsigned Reg) {
5292  assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
5293  MIB->setDesc(Desc);
5294  MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
5295  return true;
5296}
5297
5298static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
5299                          bool MinusOne) {
5300  MachineBasicBlock &MBB = *MIB->getParent();
5301  DebugLoc DL = MIB->getDebugLoc();
5302  unsigned Reg = MIB->getOperand(0).getReg();
5303
5304  // Insert the XOR.
5305  BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
5306      .addReg(Reg, RegState::Undef)
5307      .addReg(Reg, RegState::Undef);
5308
5309  // Turn the pseudo into an INC or DEC.
5310  MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
5311  MIB.addReg(Reg);
5312
5313  return true;
5314}
5315
5316// LoadStackGuard has so far only been implemented for 64-bit MachO. Different
5317// code sequence is needed for other targets.
5318static void expandLoadStackGuard(MachineInstrBuilder &MIB,
5319                                 const TargetInstrInfo &TII) {
5320  MachineBasicBlock &MBB = *MIB->getParent();
5321  DebugLoc DL = MIB->getDebugLoc();
5322  unsigned Reg = MIB->getOperand(0).getReg();
5323  const GlobalValue *GV =
5324      cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
5325  unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
5326  MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
5327      MachinePointerInfo::getGOT(*MBB.getParent()), Flag, 8, 8);
5328  MachineBasicBlock::iterator I = MIB.getInstr();
5329
5330  BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
5331      .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
5332      .addMemOperand(MMO);
5333  MIB->setDebugLoc(DL);
5334  MIB->setDesc(TII.get(X86::MOV64rm));
5335  MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
5336}
5337
5338bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
5339  bool HasAVX = Subtarget.hasAVX();
5340  MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
5341  switch (MI->getOpcode()) {
5342  case X86::MOV32r0:
5343    return Expand2AddrUndef(MIB, get(X86::XOR32rr));
5344  case X86::MOV32r1:
5345    return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
5346  case X86::MOV32r_1:
5347    return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
5348  case X86::SETB_C8r:
5349    return Expand2AddrUndef(MIB, get(X86::SBB8rr));
5350  case X86::SETB_C16r:
5351    return Expand2AddrUndef(MIB, get(X86::SBB16rr));
5352  case X86::SETB_C32r:
5353    return Expand2AddrUndef(MIB, get(X86::SBB32rr));
5354  case X86::SETB_C64r:
5355    return Expand2AddrUndef(MIB, get(X86::SBB64rr));
5356  case X86::V_SET0:
5357  case X86::FsFLD0SS:
5358  case X86::FsFLD0SD:
5359    return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
5360  case X86::AVX_SET0:
5361    assert(HasAVX && "AVX not supported");
5362    return Expand2AddrUndef(MIB, get(X86::VXORPSYrr));
5363  case X86::AVX512_512_SET0:
5364    return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
5365  case X86::V_SETALLONES:
5366    return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
5367  case X86::AVX2_SETALLONES:
5368    return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
5369  case X86::TEST8ri_NOREX:
5370    MI->setDesc(get(X86::TEST8ri));
5371    return true;
5372  case X86::MOV32ri64:
5373    MI->setDesc(get(X86::MOV32ri));
5374    return true;
5375
5376  // KNL does not recognize dependency-breaking idioms for mask registers,
5377  // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
5378  // Using %k0 as the undef input register is a performance heuristic based
5379  // on the assumption that %k0 is used less frequently than the other mask
5380  // registers, since it is not usable as a write mask.
5381  // FIXME: A more advanced approach would be to choose the best input mask
5382  // register based on context.
5383  case X86::KSET0B:
5384  case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
5385  case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
5386  case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
5387  case X86::KSET1B:
5388  case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
5389  case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
5390  case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
5391  case TargetOpcode::LOAD_STACK_GUARD:
5392    expandLoadStackGuard(MIB, *this);
5393    return true;
5394  }
5395  return false;
5396}
5397
5398static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
5399                        int PtrOffset = 0) {
5400  unsigned NumAddrOps = MOs.size();
5401
5402  if (NumAddrOps < 4) {
5403    // FrameIndex only - add an immediate offset (whether its zero or not).
5404    for (unsigned i = 0; i != NumAddrOps; ++i)
5405      MIB.addOperand(MOs[i]);
5406    addOffset(MIB, PtrOffset);
5407  } else {
5408    // General Memory Addressing - we need to add any offset to an existing
5409    // offset.
5410    assert(MOs.size() == 5 && "Unexpected memory operand list length");
5411    for (unsigned i = 0; i != NumAddrOps; ++i) {
5412      const MachineOperand &MO = MOs[i];
5413      if (i == 3 && PtrOffset != 0) {
5414        MIB.addDisp(MO, PtrOffset);
5415      } else {
5416        MIB.addOperand(MO);
5417      }
5418    }
5419  }
5420}
5421
5422static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
5423                                     ArrayRef<MachineOperand> MOs,
5424                                     MachineBasicBlock::iterator InsertPt,
5425                                     MachineInstr *MI,
5426                                     const TargetInstrInfo &TII) {
5427  // Create the base instruction with the memory operand as the first part.
5428  // Omit the implicit operands, something BuildMI can't do.
5429  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
5430                                              MI->getDebugLoc(), true);
5431  MachineInstrBuilder MIB(MF, NewMI);
5432  addOperands(MIB, MOs);
5433
5434  // Loop over the rest of the ri operands, converting them over.
5435  unsigned NumOps = MI->getDesc().getNumOperands()-2;
5436  for (unsigned i = 0; i != NumOps; ++i) {
5437    MachineOperand &MO = MI->getOperand(i+2);
5438    MIB.addOperand(MO);
5439  }
5440  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
5441    MachineOperand &MO = MI->getOperand(i);
5442    MIB.addOperand(MO);
5443  }
5444
5445  MachineBasicBlock *MBB = InsertPt->getParent();
5446  MBB->insert(InsertPt, NewMI);
5447
5448  return MIB;
5449}
5450
5451static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
5452                              unsigned OpNo, ArrayRef<MachineOperand> MOs,
5453                              MachineBasicBlock::iterator InsertPt,
5454                              MachineInstr *MI, const TargetInstrInfo &TII,
5455                              int PtrOffset = 0) {
5456  // Omit the implicit operands, something BuildMI can't do.
5457  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
5458                                              MI->getDebugLoc(), true);
5459  MachineInstrBuilder MIB(MF, NewMI);
5460
5461  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
5462    MachineOperand &MO = MI->getOperand(i);
5463    if (i == OpNo) {
5464      assert(MO.isReg() && "Expected to fold into reg operand!");
5465      addOperands(MIB, MOs, PtrOffset);
5466    } else {
5467      MIB.addOperand(MO);
5468    }
5469  }
5470
5471  MachineBasicBlock *MBB = InsertPt->getParent();
5472  MBB->insert(InsertPt, NewMI);
5473
5474  return MIB;
5475}
5476
5477static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
5478                                ArrayRef<MachineOperand> MOs,
5479                                MachineBasicBlock::iterator InsertPt,
5480                                MachineInstr *MI) {
5481  MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
5482                                    MI->getDebugLoc(), TII.get(Opcode));
5483  addOperands(MIB, MOs);
5484  return MIB.addImm(0);
5485}
5486
5487MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
5488    MachineFunction &MF, MachineInstr *MI, unsigned OpNum,
5489    ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
5490    unsigned Size, unsigned Align) const {
5491  switch (MI->getOpcode()) {
5492  case X86::INSERTPSrr:
5493  case X86::VINSERTPSrr:
5494    // Attempt to convert the load of inserted vector into a fold load
5495    // of a single float.
5496    if (OpNum == 2) {
5497      unsigned Imm = MI->getOperand(MI->getNumOperands() - 1).getImm();
5498      unsigned ZMask = Imm & 15;
5499      unsigned DstIdx = (Imm >> 4) & 3;
5500      unsigned SrcIdx = (Imm >> 6) & 3;
5501
5502      unsigned RCSize = getRegClass(MI->getDesc(), OpNum, &RI, MF)->getSize();
5503      if (Size <= RCSize && 4 <= Align) {
5504        int PtrOffset = SrcIdx * 4;
5505        unsigned NewImm = (DstIdx << 4) | ZMask;
5506        unsigned NewOpCode =
5507            (MI->getOpcode() == X86::VINSERTPSrr ? X86::VINSERTPSrm
5508                                                 : X86::INSERTPSrm);
5509        MachineInstr *NewMI =
5510            FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
5511        NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
5512        return NewMI;
5513      }
5514    }
5515    break;
5516  };
5517
5518  return nullptr;
5519}
5520
5521MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
5522    MachineFunction &MF, MachineInstr *MI, unsigned OpNum,
5523    ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
5524    unsigned Size, unsigned Align, bool AllowCommute) const {
5525  const DenseMap<unsigned,
5526                 std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr;
5527  bool isCallRegIndirect = Subtarget.callRegIndirect();
5528  bool isTwoAddrFold = false;
5529
5530  // For CPUs that favor the register form of a call or push,
5531  // do not fold loads into calls or pushes, unless optimizing for size
5532  // aggressively.
5533  if (isCallRegIndirect && !MF.getFunction()->optForMinSize() &&
5534      (MI->getOpcode() == X86::CALL32r || MI->getOpcode() == X86::CALL64r ||
5535       MI->getOpcode() == X86::PUSH16r || MI->getOpcode() == X86::PUSH32r ||
5536       MI->getOpcode() == X86::PUSH64r))
5537    return nullptr;
5538
5539  unsigned NumOps = MI->getDesc().getNumOperands();
5540  bool isTwoAddr = NumOps > 1 &&
5541    MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
5542
5543  // FIXME: AsmPrinter doesn't know how to handle
5544  // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
5545  if (MI->getOpcode() == X86::ADD32ri &&
5546      MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
5547    return nullptr;
5548
5549  MachineInstr *NewMI = nullptr;
5550
5551  // Attempt to fold any custom cases we have.
5552  if (MachineInstr *CustomMI =
5553          foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt, Size, Align))
5554    return CustomMI;
5555
5556  // Folding a memory location into the two-address part of a two-address
5557  // instruction is different than folding it other places.  It requires
5558  // replacing the *two* registers with the memory location.
5559  if (isTwoAddr && NumOps >= 2 && OpNum < 2 &&
5560      MI->getOperand(0).isReg() &&
5561      MI->getOperand(1).isReg() &&
5562      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
5563    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
5564    isTwoAddrFold = true;
5565  } else if (OpNum == 0) {
5566    if (MI->getOpcode() == X86::MOV32r0) {
5567      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
5568      if (NewMI)
5569        return NewMI;
5570    }
5571
5572    OpcodeTablePtr = &RegOp2MemOpTable0;
5573  } else if (OpNum == 1) {
5574    OpcodeTablePtr = &RegOp2MemOpTable1;
5575  } else if (OpNum == 2) {
5576    OpcodeTablePtr = &RegOp2MemOpTable2;
5577  } else if (OpNum == 3) {
5578    OpcodeTablePtr = &RegOp2MemOpTable3;
5579  } else if (OpNum == 4) {
5580    OpcodeTablePtr = &RegOp2MemOpTable4;
5581  }
5582
5583  // If table selected...
5584  if (OpcodeTablePtr) {
5585    // Find the Opcode to fuse
5586    DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
5587      OpcodeTablePtr->find(MI->getOpcode());
5588    if (I != OpcodeTablePtr->end()) {
5589      unsigned Opcode = I->second.first;
5590      unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
5591      if (Align < MinAlign)
5592        return nullptr;
5593      bool NarrowToMOV32rm = false;
5594      if (Size) {
5595        unsigned RCSize = getRegClass(MI->getDesc(), OpNum, &RI, MF)->getSize();
5596        if (Size < RCSize) {
5597          // Check if it's safe to fold the load. If the size of the object is
5598          // narrower than the load width, then it's not.
5599          if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
5600            return nullptr;
5601          // If this is a 64-bit load, but the spill slot is 32, then we can do
5602          // a 32-bit load which is implicitly zero-extended. This likely is
5603          // due to live interval analysis remat'ing a load from stack slot.
5604          if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
5605            return nullptr;
5606          Opcode = X86::MOV32rm;
5607          NarrowToMOV32rm = true;
5608        }
5609      }
5610
5611      if (isTwoAddrFold)
5612        NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
5613      else
5614        NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
5615
5616      if (NarrowToMOV32rm) {
5617        // If this is the special case where we use a MOV32rm to load a 32-bit
5618        // value and zero-extend the top bits. Change the destination register
5619        // to a 32-bit one.
5620        unsigned DstReg = NewMI->getOperand(0).getReg();
5621        if (TargetRegisterInfo::isPhysicalRegister(DstReg))
5622          NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
5623        else
5624          NewMI->getOperand(0).setSubReg(X86::sub_32bit);
5625      }
5626      return NewMI;
5627    }
5628  }
5629
5630  // If the instruction and target operand are commutable, commute the
5631  // instruction and try again.
5632  if (AllowCommute) {
5633    unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
5634    if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
5635      bool HasDef = MI->getDesc().getNumDefs();
5636      unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
5637      unsigned Reg1 = MI->getOperand(CommuteOpIdx1).getReg();
5638      unsigned Reg2 = MI->getOperand(CommuteOpIdx2).getReg();
5639      bool Tied1 =
5640          0 == MI->getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
5641      bool Tied2 =
5642          0 == MI->getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
5643
5644      // If either of the commutable operands are tied to the destination
5645      // then we can not commute + fold.
5646      if ((HasDef && Reg0 == Reg1 && Tied1) ||
5647          (HasDef && Reg0 == Reg2 && Tied2))
5648        return nullptr;
5649
5650      MachineInstr *CommutedMI =
5651          commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
5652      if (!CommutedMI) {
5653        // Unable to commute.
5654        return nullptr;
5655      }
5656      if (CommutedMI != MI) {
5657        // New instruction. We can't fold from this.
5658        CommutedMI->eraseFromParent();
5659        return nullptr;
5660      }
5661
5662      // Attempt to fold with the commuted version of the instruction.
5663      NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt,
5664                                    Size, Align, /*AllowCommute=*/false);
5665      if (NewMI)
5666        return NewMI;
5667
5668      // Folding failed again - undo the commute before returning.
5669      MachineInstr *UncommutedMI =
5670          commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
5671      if (!UncommutedMI) {
5672        // Unable to commute.
5673        return nullptr;
5674      }
5675      if (UncommutedMI != MI) {
5676        // New instruction. It doesn't need to be kept.
5677        UncommutedMI->eraseFromParent();
5678        return nullptr;
5679      }
5680
5681      // Return here to prevent duplicate fuse failure report.
5682      return nullptr;
5683    }
5684  }
5685
5686  // No fusion
5687  if (PrintFailedFusing && !MI->isCopy())
5688    dbgs() << "We failed to fuse operand " << OpNum << " in " << *MI;
5689  return nullptr;
5690}
5691
5692/// Return true for all instructions that only update
5693/// the first 32 or 64-bits of the destination register and leave the rest
5694/// unmodified. This can be used to avoid folding loads if the instructions
5695/// only update part of the destination register, and the non-updated part is
5696/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
5697/// instructions breaks the partial register dependency and it can improve
5698/// performance. e.g.:
5699///
5700///   movss (%rdi), %xmm0
5701///   cvtss2sd %xmm0, %xmm0
5702///
5703/// Instead of
5704///   cvtss2sd (%rdi), %xmm0
5705///
5706/// FIXME: This should be turned into a TSFlags.
5707///
5708static bool hasPartialRegUpdate(unsigned Opcode) {
5709  switch (Opcode) {
5710  case X86::CVTSI2SSrr:
5711  case X86::CVTSI2SSrm:
5712  case X86::CVTSI2SS64rr:
5713  case X86::CVTSI2SS64rm:
5714  case X86::CVTSI2SDrr:
5715  case X86::CVTSI2SDrm:
5716  case X86::CVTSI2SD64rr:
5717  case X86::CVTSI2SD64rm:
5718  case X86::CVTSD2SSrr:
5719  case X86::CVTSD2SSrm:
5720  case X86::Int_CVTSD2SSrr:
5721  case X86::Int_CVTSD2SSrm:
5722  case X86::CVTSS2SDrr:
5723  case X86::CVTSS2SDrm:
5724  case X86::Int_CVTSS2SDrr:
5725  case X86::Int_CVTSS2SDrm:
5726  case X86::RCPSSr:
5727  case X86::RCPSSm:
5728  case X86::RCPSSr_Int:
5729  case X86::RCPSSm_Int:
5730  case X86::ROUNDSDr:
5731  case X86::ROUNDSDm:
5732  case X86::ROUNDSDr_Int:
5733  case X86::ROUNDSSr:
5734  case X86::ROUNDSSm:
5735  case X86::ROUNDSSr_Int:
5736  case X86::RSQRTSSr:
5737  case X86::RSQRTSSm:
5738  case X86::RSQRTSSr_Int:
5739  case X86::RSQRTSSm_Int:
5740  case X86::SQRTSSr:
5741  case X86::SQRTSSm:
5742  case X86::SQRTSSr_Int:
5743  case X86::SQRTSSm_Int:
5744  case X86::SQRTSDr:
5745  case X86::SQRTSDm:
5746  case X86::SQRTSDr_Int:
5747  case X86::SQRTSDm_Int:
5748    return true;
5749  }
5750
5751  return false;
5752}
5753
5754/// Inform the ExeDepsFix pass how many idle
5755/// instructions we would like before a partial register update.
5756unsigned X86InstrInfo::
5757getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
5758                             const TargetRegisterInfo *TRI) const {
5759  if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
5760    return 0;
5761
5762  // If MI is marked as reading Reg, the partial register update is wanted.
5763  const MachineOperand &MO = MI->getOperand(0);
5764  unsigned Reg = MO.getReg();
5765  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
5766    if (MO.readsReg() || MI->readsVirtualRegister(Reg))
5767      return 0;
5768  } else {
5769    if (MI->readsRegister(Reg, TRI))
5770      return 0;
5771  }
5772
5773  // If any of the preceding 16 instructions are reading Reg, insert a
5774  // dependency breaking instruction.  The magic number is based on a few
5775  // Nehalem experiments.
5776  return 16;
5777}
5778
5779// Return true for any instruction the copies the high bits of the first source
5780// operand into the unused high bits of the destination operand.
5781static bool hasUndefRegUpdate(unsigned Opcode) {
5782  switch (Opcode) {
5783  case X86::VCVTSI2SSrr:
5784  case X86::VCVTSI2SSrm:
5785  case X86::Int_VCVTSI2SSrr:
5786  case X86::Int_VCVTSI2SSrm:
5787  case X86::VCVTSI2SS64rr:
5788  case X86::VCVTSI2SS64rm:
5789  case X86::Int_VCVTSI2SS64rr:
5790  case X86::Int_VCVTSI2SS64rm:
5791  case X86::VCVTSI2SDrr:
5792  case X86::VCVTSI2SDrm:
5793  case X86::Int_VCVTSI2SDrr:
5794  case X86::Int_VCVTSI2SDrm:
5795  case X86::VCVTSI2SD64rr:
5796  case X86::VCVTSI2SD64rm:
5797  case X86::Int_VCVTSI2SD64rr:
5798  case X86::Int_VCVTSI2SD64rm:
5799  case X86::VCVTSD2SSrr:
5800  case X86::VCVTSD2SSrm:
5801  case X86::Int_VCVTSD2SSrr:
5802  case X86::Int_VCVTSD2SSrm:
5803  case X86::VCVTSS2SDrr:
5804  case X86::VCVTSS2SDrm:
5805  case X86::Int_VCVTSS2SDrr:
5806  case X86::Int_VCVTSS2SDrm:
5807  case X86::VRCPSSr:
5808  case X86::VRCPSSm:
5809  case X86::VRCPSSm_Int:
5810  case X86::VROUNDSDr:
5811  case X86::VROUNDSDm:
5812  case X86::VROUNDSDr_Int:
5813  case X86::VROUNDSSr:
5814  case X86::VROUNDSSm:
5815  case X86::VROUNDSSr_Int:
5816  case X86::VRSQRTSSr:
5817  case X86::VRSQRTSSm:
5818  case X86::VRSQRTSSm_Int:
5819  case X86::VSQRTSSr:
5820  case X86::VSQRTSSm:
5821  case X86::VSQRTSSm_Int:
5822  case X86::VSQRTSDr:
5823  case X86::VSQRTSDm:
5824  case X86::VSQRTSDm_Int:
5825    // AVX-512
5826  case X86::VCVTSD2SSZrr:
5827  case X86::VCVTSD2SSZrm:
5828  case X86::VCVTSS2SDZrr:
5829  case X86::VCVTSS2SDZrm:
5830    return true;
5831  }
5832
5833  return false;
5834}
5835
5836/// Inform the ExeDepsFix pass how many idle instructions we would like before
5837/// certain undef register reads.
5838///
5839/// This catches the VCVTSI2SD family of instructions:
5840///
5841/// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
5842///
5843/// We should to be careful *not* to catch VXOR idioms which are presumably
5844/// handled specially in the pipeline:
5845///
5846/// vxorps %xmm1<undef>, %xmm1<undef>, %xmm1
5847///
5848/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
5849/// high bits that are passed-through are not live.
5850unsigned X86InstrInfo::
5851getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
5852                     const TargetRegisterInfo *TRI) const {
5853  if (!hasUndefRegUpdate(MI->getOpcode()))
5854    return 0;
5855
5856  // Set the OpNum parameter to the first source operand.
5857  OpNum = 1;
5858
5859  const MachineOperand &MO = MI->getOperand(OpNum);
5860  if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
5861    // Use the same magic number as getPartialRegUpdateClearance.
5862    return 16;
5863  }
5864  return 0;
5865}
5866
5867void X86InstrInfo::
5868breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
5869                          const TargetRegisterInfo *TRI) const {
5870  unsigned Reg = MI->getOperand(OpNum).getReg();
5871  // If MI kills this register, the false dependence is already broken.
5872  if (MI->killsRegister(Reg, TRI))
5873    return;
5874
5875  if (X86::VR128RegClass.contains(Reg)) {
5876    // These instructions are all floating point domain, so xorps is the best
5877    // choice.
5878    unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
5879    BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
5880      .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
5881    MI->addRegisterKilled(Reg, TRI, true);
5882  } else if (X86::VR256RegClass.contains(Reg)) {
5883    // Use vxorps to clear the full ymm register.
5884    // It wants to read and write the xmm sub-register.
5885    unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
5886    BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
5887      .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
5888      .addReg(Reg, RegState::ImplicitDefine);
5889    MI->addRegisterKilled(Reg, TRI, true);
5890  }
5891}
5892
5893MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
5894    MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
5895    MachineBasicBlock::iterator InsertPt, int FrameIndex) const {
5896  // Check switch flag
5897  if (NoFusing)
5898    return nullptr;
5899
5900  // Unless optimizing for size, don't fold to avoid partial
5901  // register update stalls
5902  if (!MF.getFunction()->optForSize() && hasPartialRegUpdate(MI->getOpcode()))
5903    return nullptr;
5904
5905  const MachineFrameInfo *MFI = MF.getFrameInfo();
5906  unsigned Size = MFI->getObjectSize(FrameIndex);
5907  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
5908  // If the function stack isn't realigned we don't want to fold instructions
5909  // that need increased alignment.
5910  if (!RI.needsStackRealignment(MF))
5911    Alignment =
5912        std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment());
5913  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5914    unsigned NewOpc = 0;
5915    unsigned RCSize = 0;
5916    switch (MI->getOpcode()) {
5917    default: return nullptr;
5918    case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
5919    case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
5920    case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
5921    case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
5922    }
5923    // Check if it's safe to fold the load. If the size of the object is
5924    // narrower than the load width, then it's not.
5925    if (Size < RCSize)
5926      return nullptr;
5927    // Change to CMPXXri r, 0 first.
5928    MI->setDesc(get(NewOpc));
5929    MI->getOperand(1).ChangeToImmediate(0);
5930  } else if (Ops.size() != 1)
5931    return nullptr;
5932
5933  return foldMemoryOperandImpl(MF, MI, Ops[0],
5934                               MachineOperand::CreateFI(FrameIndex), InsertPt,
5935                               Size, Alignment, /*AllowCommute=*/true);
5936}
5937
5938/// Check if \p LoadMI is a partial register load that we can't fold into \p MI
5939/// because the latter uses contents that wouldn't be defined in the folded
5940/// version.  For instance, this transformation isn't legal:
5941///   movss (%rdi), %xmm0
5942///   addps %xmm0, %xmm0
5943/// ->
5944///   addps (%rdi), %xmm0
5945///
5946/// But this one is:
5947///   movss (%rdi), %xmm0
5948///   addss %xmm0, %xmm0
5949/// ->
5950///   addss (%rdi), %xmm0
5951///
5952static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
5953                                             const MachineInstr &UserMI,
5954                                             const MachineFunction &MF) {
5955  unsigned Opc = LoadMI.getOpcode();
5956  unsigned UserOpc = UserMI.getOpcode();
5957  unsigned RegSize =
5958      MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg())->getSize();
5959
5960  if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm) && RegSize > 4) {
5961    // These instructions only load 32 bits, we can't fold them if the
5962    // destination register is wider than 32 bits (4 bytes), and its user
5963    // instruction isn't scalar (SS).
5964    switch (UserOpc) {
5965    case X86::ADDSSrr_Int: case X86::VADDSSrr_Int:
5966    case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int:
5967    case X86::MULSSrr_Int: case X86::VMULSSrr_Int:
5968    case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int:
5969    case X86::VFMADDSSr132r_Int: case X86::VFNMADDSSr132r_Int:
5970    case X86::VFMADDSSr213r_Int: case X86::VFNMADDSSr213r_Int:
5971    case X86::VFMADDSSr231r_Int: case X86::VFNMADDSSr231r_Int:
5972    case X86::VFMSUBSSr132r_Int: case X86::VFNMSUBSSr132r_Int:
5973    case X86::VFMSUBSSr213r_Int: case X86::VFNMSUBSSr213r_Int:
5974    case X86::VFMSUBSSr231r_Int: case X86::VFNMSUBSSr231r_Int:
5975      return false;
5976    default:
5977      return true;
5978    }
5979  }
5980
5981  if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm) && RegSize > 8) {
5982    // These instructions only load 64 bits, we can't fold them if the
5983    // destination register is wider than 64 bits (8 bytes), and its user
5984    // instruction isn't scalar (SD).
5985    switch (UserOpc) {
5986    case X86::ADDSDrr_Int: case X86::VADDSDrr_Int:
5987    case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int:
5988    case X86::MULSDrr_Int: case X86::VMULSDrr_Int:
5989    case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int:
5990    case X86::VFMADDSDr132r_Int: case X86::VFNMADDSDr132r_Int:
5991    case X86::VFMADDSDr213r_Int: case X86::VFNMADDSDr213r_Int:
5992    case X86::VFMADDSDr231r_Int: case X86::VFNMADDSDr231r_Int:
5993    case X86::VFMSUBSDr132r_Int: case X86::VFNMSUBSDr132r_Int:
5994    case X86::VFMSUBSDr213r_Int: case X86::VFNMSUBSDr213r_Int:
5995    case X86::VFMSUBSDr231r_Int: case X86::VFNMSUBSDr231r_Int:
5996      return false;
5997    default:
5998      return true;
5999    }
6000  }
6001
6002  return false;
6003}
6004
6005MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
6006    MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
6007    MachineBasicBlock::iterator InsertPt, MachineInstr *LoadMI) const {
6008  // If loading from a FrameIndex, fold directly from the FrameIndex.
6009  unsigned NumOps = LoadMI->getDesc().getNumOperands();
6010  int FrameIndex;
6011  if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
6012    if (isNonFoldablePartialRegisterLoad(*LoadMI, *MI, MF))
6013      return nullptr;
6014    return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex);
6015  }
6016
6017  // Check switch flag
6018  if (NoFusing) return nullptr;
6019
6020  // Avoid partial register update stalls unless optimizing for size.
6021  if (!MF.getFunction()->optForSize() && hasPartialRegUpdate(MI->getOpcode()))
6022    return nullptr;
6023
6024  // Determine the alignment of the load.
6025  unsigned Alignment = 0;
6026  if (LoadMI->hasOneMemOperand())
6027    Alignment = (*LoadMI->memoperands_begin())->getAlignment();
6028  else
6029    switch (LoadMI->getOpcode()) {
6030    case X86::AVX2_SETALLONES:
6031    case X86::AVX_SET0:
6032      Alignment = 32;
6033      break;
6034    case X86::V_SET0:
6035    case X86::V_SETALLONES:
6036      Alignment = 16;
6037      break;
6038    case X86::FsFLD0SD:
6039      Alignment = 8;
6040      break;
6041    case X86::FsFLD0SS:
6042      Alignment = 4;
6043      break;
6044    default:
6045      return nullptr;
6046    }
6047  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
6048    unsigned NewOpc = 0;
6049    switch (MI->getOpcode()) {
6050    default: return nullptr;
6051    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
6052    case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
6053    case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
6054    case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
6055    }
6056    // Change to CMPXXri r, 0 first.
6057    MI->setDesc(get(NewOpc));
6058    MI->getOperand(1).ChangeToImmediate(0);
6059  } else if (Ops.size() != 1)
6060    return nullptr;
6061
6062  // Make sure the subregisters match.
6063  // Otherwise we risk changing the size of the load.
6064  if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
6065    return nullptr;
6066
6067  SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
6068  switch (LoadMI->getOpcode()) {
6069  case X86::V_SET0:
6070  case X86::V_SETALLONES:
6071  case X86::AVX2_SETALLONES:
6072  case X86::AVX_SET0:
6073  case X86::FsFLD0SD:
6074  case X86::FsFLD0SS: {
6075    // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
6076    // Create a constant-pool entry and operands to load from it.
6077
6078    // Medium and large mode can't fold loads this way.
6079    if (MF.getTarget().getCodeModel() != CodeModel::Small &&
6080        MF.getTarget().getCodeModel() != CodeModel::Kernel)
6081      return nullptr;
6082
6083    // x86-32 PIC requires a PIC base register for constant pools.
6084    unsigned PICBase = 0;
6085    if (MF.getTarget().getRelocationModel() == Reloc::PIC_) {
6086      if (Subtarget.is64Bit())
6087        PICBase = X86::RIP;
6088      else
6089        // FIXME: PICBase = getGlobalBaseReg(&MF);
6090        // This doesn't work for several reasons.
6091        // 1. GlobalBaseReg may have been spilled.
6092        // 2. It may not be live at MI.
6093        return nullptr;
6094    }
6095
6096    // Create a constant-pool entry.
6097    MachineConstantPool &MCP = *MF.getConstantPool();
6098    Type *Ty;
6099    unsigned Opc = LoadMI->getOpcode();
6100    if (Opc == X86::FsFLD0SS)
6101      Ty = Type::getFloatTy(MF.getFunction()->getContext());
6102    else if (Opc == X86::FsFLD0SD)
6103      Ty = Type::getDoubleTy(MF.getFunction()->getContext());
6104    else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0)
6105      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
6106    else
6107      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
6108
6109    bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES);
6110    const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
6111                                    Constant::getNullValue(Ty);
6112    unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
6113
6114    // Create operands to load from the constant pool entry.
6115    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
6116    MOs.push_back(MachineOperand::CreateImm(1));
6117    MOs.push_back(MachineOperand::CreateReg(0, false));
6118    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
6119    MOs.push_back(MachineOperand::CreateReg(0, false));
6120    break;
6121  }
6122  default: {
6123    if (isNonFoldablePartialRegisterLoad(*LoadMI, *MI, MF))
6124      return nullptr;
6125
6126    // Folding a normal load. Just copy the load's address operands.
6127    MOs.append(LoadMI->operands_begin() + NumOps - X86::AddrNumOperands,
6128               LoadMI->operands_begin() + NumOps);
6129    break;
6130  }
6131  }
6132  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
6133                               /*Size=*/0, Alignment, /*AllowCommute=*/true);
6134}
6135
6136bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
6137                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
6138                                SmallVectorImpl<MachineInstr*> &NewMIs) const {
6139  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
6140    MemOp2RegOpTable.find(MI->getOpcode());
6141  if (I == MemOp2RegOpTable.end())
6142    return false;
6143  unsigned Opc = I->second.first;
6144  unsigned Index = I->second.second & TB_INDEX_MASK;
6145  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
6146  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
6147  if (UnfoldLoad && !FoldedLoad)
6148    return false;
6149  UnfoldLoad &= FoldedLoad;
6150  if (UnfoldStore && !FoldedStore)
6151    return false;
6152  UnfoldStore &= FoldedStore;
6153
6154  const MCInstrDesc &MCID = get(Opc);
6155  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
6156  // TODO: Check if 32-byte or greater accesses are slow too?
6157  if (!MI->hasOneMemOperand() &&
6158      RC == &X86::VR128RegClass &&
6159      Subtarget.isUnalignedMem16Slow())
6160    // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
6161    // conservatively assume the address is unaligned. That's bad for
6162    // performance.
6163    return false;
6164  SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
6165  SmallVector<MachineOperand,2> BeforeOps;
6166  SmallVector<MachineOperand,2> AfterOps;
6167  SmallVector<MachineOperand,4> ImpOps;
6168  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
6169    MachineOperand &Op = MI->getOperand(i);
6170    if (i >= Index && i < Index + X86::AddrNumOperands)
6171      AddrOps.push_back(Op);
6172    else if (Op.isReg() && Op.isImplicit())
6173      ImpOps.push_back(Op);
6174    else if (i < Index)
6175      BeforeOps.push_back(Op);
6176    else if (i > Index)
6177      AfterOps.push_back(Op);
6178  }
6179
6180  // Emit the load instruction.
6181  if (UnfoldLoad) {
6182    std::pair<MachineInstr::mmo_iterator,
6183              MachineInstr::mmo_iterator> MMOs =
6184      MF.extractLoadMemRefs(MI->memoperands_begin(),
6185                            MI->memoperands_end());
6186    loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
6187    if (UnfoldStore) {
6188      // Address operands cannot be marked isKill.
6189      for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
6190        MachineOperand &MO = NewMIs[0]->getOperand(i);
6191        if (MO.isReg())
6192          MO.setIsKill(false);
6193      }
6194    }
6195  }
6196
6197  // Emit the data processing instruction.
6198  MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
6199  MachineInstrBuilder MIB(MF, DataMI);
6200
6201  if (FoldedStore)
6202    MIB.addReg(Reg, RegState::Define);
6203  for (MachineOperand &BeforeOp : BeforeOps)
6204    MIB.addOperand(BeforeOp);
6205  if (FoldedLoad)
6206    MIB.addReg(Reg);
6207  for (MachineOperand &AfterOp : AfterOps)
6208    MIB.addOperand(AfterOp);
6209  for (MachineOperand &ImpOp : ImpOps) {
6210    MIB.addReg(ImpOp.getReg(),
6211               getDefRegState(ImpOp.isDef()) |
6212               RegState::Implicit |
6213               getKillRegState(ImpOp.isKill()) |
6214               getDeadRegState(ImpOp.isDead()) |
6215               getUndefRegState(ImpOp.isUndef()));
6216  }
6217  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
6218  switch (DataMI->getOpcode()) {
6219  default: break;
6220  case X86::CMP64ri32:
6221  case X86::CMP64ri8:
6222  case X86::CMP32ri:
6223  case X86::CMP32ri8:
6224  case X86::CMP16ri:
6225  case X86::CMP16ri8:
6226  case X86::CMP8ri: {
6227    MachineOperand &MO0 = DataMI->getOperand(0);
6228    MachineOperand &MO1 = DataMI->getOperand(1);
6229    if (MO1.getImm() == 0) {
6230      unsigned NewOpc;
6231      switch (DataMI->getOpcode()) {
6232      default: llvm_unreachable("Unreachable!");
6233      case X86::CMP64ri8:
6234      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
6235      case X86::CMP32ri8:
6236      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
6237      case X86::CMP16ri8:
6238      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
6239      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
6240      }
6241      DataMI->setDesc(get(NewOpc));
6242      MO1.ChangeToRegister(MO0.getReg(), false);
6243    }
6244  }
6245  }
6246  NewMIs.push_back(DataMI);
6247
6248  // Emit the store instruction.
6249  if (UnfoldStore) {
6250    const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
6251    std::pair<MachineInstr::mmo_iterator,
6252              MachineInstr::mmo_iterator> MMOs =
6253      MF.extractStoreMemRefs(MI->memoperands_begin(),
6254                             MI->memoperands_end());
6255    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
6256  }
6257
6258  return true;
6259}
6260
6261bool
6262X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
6263                                  SmallVectorImpl<SDNode*> &NewNodes) const {
6264  if (!N->isMachineOpcode())
6265    return false;
6266
6267  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
6268    MemOp2RegOpTable.find(N->getMachineOpcode());
6269  if (I == MemOp2RegOpTable.end())
6270    return false;
6271  unsigned Opc = I->second.first;
6272  unsigned Index = I->second.second & TB_INDEX_MASK;
6273  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
6274  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
6275  const MCInstrDesc &MCID = get(Opc);
6276  MachineFunction &MF = DAG.getMachineFunction();
6277  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
6278  unsigned NumDefs = MCID.NumDefs;
6279  std::vector<SDValue> AddrOps;
6280  std::vector<SDValue> BeforeOps;
6281  std::vector<SDValue> AfterOps;
6282  SDLoc dl(N);
6283  unsigned NumOps = N->getNumOperands();
6284  for (unsigned i = 0; i != NumOps-1; ++i) {
6285    SDValue Op = N->getOperand(i);
6286    if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
6287      AddrOps.push_back(Op);
6288    else if (i < Index-NumDefs)
6289      BeforeOps.push_back(Op);
6290    else if (i > Index-NumDefs)
6291      AfterOps.push_back(Op);
6292  }
6293  SDValue Chain = N->getOperand(NumOps-1);
6294  AddrOps.push_back(Chain);
6295
6296  // Emit the load instruction.
6297  SDNode *Load = nullptr;
6298  if (FoldedLoad) {
6299    EVT VT = *RC->vt_begin();
6300    std::pair<MachineInstr::mmo_iterator,
6301              MachineInstr::mmo_iterator> MMOs =
6302      MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
6303                            cast<MachineSDNode>(N)->memoperands_end());
6304    if (!(*MMOs.first) &&
6305        RC == &X86::VR128RegClass &&
6306        Subtarget.isUnalignedMem16Slow())
6307      // Do not introduce a slow unaligned load.
6308      return false;
6309    // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
6310    // memory access is slow above.
6311    unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
6312    bool isAligned = (*MMOs.first) &&
6313                     (*MMOs.first)->getAlignment() >= Alignment;
6314    Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl,
6315                              VT, MVT::Other, AddrOps);
6316    NewNodes.push_back(Load);
6317
6318    // Preserve memory reference information.
6319    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
6320  }
6321
6322  // Emit the data processing instruction.
6323  std::vector<EVT> VTs;
6324  const TargetRegisterClass *DstRC = nullptr;
6325  if (MCID.getNumDefs() > 0) {
6326    DstRC = getRegClass(MCID, 0, &RI, MF);
6327    VTs.push_back(*DstRC->vt_begin());
6328  }
6329  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
6330    EVT VT = N->getValueType(i);
6331    if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
6332      VTs.push_back(VT);
6333  }
6334  if (Load)
6335    BeforeOps.push_back(SDValue(Load, 0));
6336  BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end());
6337  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
6338  NewNodes.push_back(NewNode);
6339
6340  // Emit the store instruction.
6341  if (FoldedStore) {
6342    AddrOps.pop_back();
6343    AddrOps.push_back(SDValue(NewNode, 0));
6344    AddrOps.push_back(Chain);
6345    std::pair<MachineInstr::mmo_iterator,
6346              MachineInstr::mmo_iterator> MMOs =
6347      MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
6348                             cast<MachineSDNode>(N)->memoperands_end());
6349    if (!(*MMOs.first) &&
6350        RC == &X86::VR128RegClass &&
6351        Subtarget.isUnalignedMem16Slow())
6352      // Do not introduce a slow unaligned store.
6353      return false;
6354    // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
6355    // memory access is slow above.
6356    unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
6357    bool isAligned = (*MMOs.first) &&
6358                     (*MMOs.first)->getAlignment() >= Alignment;
6359    SDNode *Store =
6360        DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
6361                           dl, MVT::Other, AddrOps);
6362    NewNodes.push_back(Store);
6363
6364    // Preserve memory reference information.
6365    cast<MachineSDNode>(Store)->setMemRefs(MMOs.first, MMOs.second);
6366  }
6367
6368  return true;
6369}
6370
6371unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
6372                                      bool UnfoldLoad, bool UnfoldStore,
6373                                      unsigned *LoadRegIndex) const {
6374  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
6375    MemOp2RegOpTable.find(Opc);
6376  if (I == MemOp2RegOpTable.end())
6377    return 0;
6378  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
6379  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
6380  if (UnfoldLoad && !FoldedLoad)
6381    return 0;
6382  if (UnfoldStore && !FoldedStore)
6383    return 0;
6384  if (LoadRegIndex)
6385    *LoadRegIndex = I->second.second & TB_INDEX_MASK;
6386  return I->second.first;
6387}
6388
6389bool
6390X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
6391                                     int64_t &Offset1, int64_t &Offset2) const {
6392  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
6393    return false;
6394  unsigned Opc1 = Load1->getMachineOpcode();
6395  unsigned Opc2 = Load2->getMachineOpcode();
6396  switch (Opc1) {
6397  default: return false;
6398  case X86::MOV8rm:
6399  case X86::MOV16rm:
6400  case X86::MOV32rm:
6401  case X86::MOV64rm:
6402  case X86::LD_Fp32m:
6403  case X86::LD_Fp64m:
6404  case X86::LD_Fp80m:
6405  case X86::MOVSSrm:
6406  case X86::MOVSDrm:
6407  case X86::MMX_MOVD64rm:
6408  case X86::MMX_MOVQ64rm:
6409  case X86::FsMOVAPSrm:
6410  case X86::FsMOVAPDrm:
6411  case X86::MOVAPSrm:
6412  case X86::MOVUPSrm:
6413  case X86::MOVAPDrm:
6414  case X86::MOVDQArm:
6415  case X86::MOVDQUrm:
6416  // AVX load instructions
6417  case X86::VMOVSSrm:
6418  case X86::VMOVSDrm:
6419  case X86::FsVMOVAPSrm:
6420  case X86::FsVMOVAPDrm:
6421  case X86::VMOVAPSrm:
6422  case X86::VMOVUPSrm:
6423  case X86::VMOVAPDrm:
6424  case X86::VMOVDQArm:
6425  case X86::VMOVDQUrm:
6426  case X86::VMOVAPSYrm:
6427  case X86::VMOVUPSYrm:
6428  case X86::VMOVAPDYrm:
6429  case X86::VMOVDQAYrm:
6430  case X86::VMOVDQUYrm:
6431    break;
6432  }
6433  switch (Opc2) {
6434  default: return false;
6435  case X86::MOV8rm:
6436  case X86::MOV16rm:
6437  case X86::MOV32rm:
6438  case X86::MOV64rm:
6439  case X86::LD_Fp32m:
6440  case X86::LD_Fp64m:
6441  case X86::LD_Fp80m:
6442  case X86::MOVSSrm:
6443  case X86::MOVSDrm:
6444  case X86::MMX_MOVD64rm:
6445  case X86::MMX_MOVQ64rm:
6446  case X86::FsMOVAPSrm:
6447  case X86::FsMOVAPDrm:
6448  case X86::MOVAPSrm:
6449  case X86::MOVUPSrm:
6450  case X86::MOVAPDrm:
6451  case X86::MOVDQArm:
6452  case X86::MOVDQUrm:
6453  // AVX load instructions
6454  case X86::VMOVSSrm:
6455  case X86::VMOVSDrm:
6456  case X86::FsVMOVAPSrm:
6457  case X86::FsVMOVAPDrm:
6458  case X86::VMOVAPSrm:
6459  case X86::VMOVUPSrm:
6460  case X86::VMOVAPDrm:
6461  case X86::VMOVDQArm:
6462  case X86::VMOVDQUrm:
6463  case X86::VMOVAPSYrm:
6464  case X86::VMOVUPSYrm:
6465  case X86::VMOVAPDYrm:
6466  case X86::VMOVDQAYrm:
6467  case X86::VMOVDQUYrm:
6468    break;
6469  }
6470
6471  // Check if chain operands and base addresses match.
6472  if (Load1->getOperand(0) != Load2->getOperand(0) ||
6473      Load1->getOperand(5) != Load2->getOperand(5))
6474    return false;
6475  // Segment operands should match as well.
6476  if (Load1->getOperand(4) != Load2->getOperand(4))
6477    return false;
6478  // Scale should be 1, Index should be Reg0.
6479  if (Load1->getOperand(1) == Load2->getOperand(1) &&
6480      Load1->getOperand(2) == Load2->getOperand(2)) {
6481    if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
6482      return false;
6483
6484    // Now let's examine the displacements.
6485    if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
6486        isa<ConstantSDNode>(Load2->getOperand(3))) {
6487      Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
6488      Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
6489      return true;
6490    }
6491  }
6492  return false;
6493}
6494
6495bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
6496                                           int64_t Offset1, int64_t Offset2,
6497                                           unsigned NumLoads) const {
6498  assert(Offset2 > Offset1);
6499  if ((Offset2 - Offset1) / 8 > 64)
6500    return false;
6501
6502  unsigned Opc1 = Load1->getMachineOpcode();
6503  unsigned Opc2 = Load2->getMachineOpcode();
6504  if (Opc1 != Opc2)
6505    return false;  // FIXME: overly conservative?
6506
6507  switch (Opc1) {
6508  default: break;
6509  case X86::LD_Fp32m:
6510  case X86::LD_Fp64m:
6511  case X86::LD_Fp80m:
6512  case X86::MMX_MOVD64rm:
6513  case X86::MMX_MOVQ64rm:
6514    return false;
6515  }
6516
6517  EVT VT = Load1->getValueType(0);
6518  switch (VT.getSimpleVT().SimpleTy) {
6519  default:
6520    // XMM registers. In 64-bit mode we can be a bit more aggressive since we
6521    // have 16 of them to play with.
6522    if (Subtarget.is64Bit()) {
6523      if (NumLoads >= 3)
6524        return false;
6525    } else if (NumLoads) {
6526      return false;
6527    }
6528    break;
6529  case MVT::i8:
6530  case MVT::i16:
6531  case MVT::i32:
6532  case MVT::i64:
6533  case MVT::f32:
6534  case MVT::f64:
6535    if (NumLoads)
6536      return false;
6537    break;
6538  }
6539
6540  return true;
6541}
6542
6543bool X86InstrInfo::shouldScheduleAdjacent(MachineInstr* First,
6544                                          MachineInstr *Second) const {
6545  // Check if this processor supports macro-fusion. Since this is a minor
6546  // heuristic, we haven't specifically reserved a feature. hasAVX is a decent
6547  // proxy for SandyBridge+.
6548  if (!Subtarget.hasAVX())
6549    return false;
6550
6551  enum {
6552    FuseTest,
6553    FuseCmp,
6554    FuseInc
6555  } FuseKind;
6556
6557  switch(Second->getOpcode()) {
6558  default:
6559    return false;
6560  case X86::JE_1:
6561  case X86::JNE_1:
6562  case X86::JL_1:
6563  case X86::JLE_1:
6564  case X86::JG_1:
6565  case X86::JGE_1:
6566    FuseKind = FuseInc;
6567    break;
6568  case X86::JB_1:
6569  case X86::JBE_1:
6570  case X86::JA_1:
6571  case X86::JAE_1:
6572    FuseKind = FuseCmp;
6573    break;
6574  case X86::JS_1:
6575  case X86::JNS_1:
6576  case X86::JP_1:
6577  case X86::JNP_1:
6578  case X86::JO_1:
6579  case X86::JNO_1:
6580    FuseKind = FuseTest;
6581    break;
6582  }
6583  switch (First->getOpcode()) {
6584  default:
6585    return false;
6586  case X86::TEST8rr:
6587  case X86::TEST16rr:
6588  case X86::TEST32rr:
6589  case X86::TEST64rr:
6590  case X86::TEST8ri:
6591  case X86::TEST16ri:
6592  case X86::TEST32ri:
6593  case X86::TEST32i32:
6594  case X86::TEST64i32:
6595  case X86::TEST64ri32:
6596  case X86::TEST8rm:
6597  case X86::TEST16rm:
6598  case X86::TEST32rm:
6599  case X86::TEST64rm:
6600  case X86::TEST8ri_NOREX:
6601  case X86::AND16i16:
6602  case X86::AND16ri:
6603  case X86::AND16ri8:
6604  case X86::AND16rm:
6605  case X86::AND16rr:
6606  case X86::AND32i32:
6607  case X86::AND32ri:
6608  case X86::AND32ri8:
6609  case X86::AND32rm:
6610  case X86::AND32rr:
6611  case X86::AND64i32:
6612  case X86::AND64ri32:
6613  case X86::AND64ri8:
6614  case X86::AND64rm:
6615  case X86::AND64rr:
6616  case X86::AND8i8:
6617  case X86::AND8ri:
6618  case X86::AND8rm:
6619  case X86::AND8rr:
6620    return true;
6621  case X86::CMP16i16:
6622  case X86::CMP16ri:
6623  case X86::CMP16ri8:
6624  case X86::CMP16rm:
6625  case X86::CMP16rr:
6626  case X86::CMP32i32:
6627  case X86::CMP32ri:
6628  case X86::CMP32ri8:
6629  case X86::CMP32rm:
6630  case X86::CMP32rr:
6631  case X86::CMP64i32:
6632  case X86::CMP64ri32:
6633  case X86::CMP64ri8:
6634  case X86::CMP64rm:
6635  case X86::CMP64rr:
6636  case X86::CMP8i8:
6637  case X86::CMP8ri:
6638  case X86::CMP8rm:
6639  case X86::CMP8rr:
6640  case X86::ADD16i16:
6641  case X86::ADD16ri:
6642  case X86::ADD16ri8:
6643  case X86::ADD16ri8_DB:
6644  case X86::ADD16ri_DB:
6645  case X86::ADD16rm:
6646  case X86::ADD16rr:
6647  case X86::ADD16rr_DB:
6648  case X86::ADD32i32:
6649  case X86::ADD32ri:
6650  case X86::ADD32ri8:
6651  case X86::ADD32ri8_DB:
6652  case X86::ADD32ri_DB:
6653  case X86::ADD32rm:
6654  case X86::ADD32rr:
6655  case X86::ADD32rr_DB:
6656  case X86::ADD64i32:
6657  case X86::ADD64ri32:
6658  case X86::ADD64ri32_DB:
6659  case X86::ADD64ri8:
6660  case X86::ADD64ri8_DB:
6661  case X86::ADD64rm:
6662  case X86::ADD64rr:
6663  case X86::ADD64rr_DB:
6664  case X86::ADD8i8:
6665  case X86::ADD8mi:
6666  case X86::ADD8mr:
6667  case X86::ADD8ri:
6668  case X86::ADD8rm:
6669  case X86::ADD8rr:
6670  case X86::SUB16i16:
6671  case X86::SUB16ri:
6672  case X86::SUB16ri8:
6673  case X86::SUB16rm:
6674  case X86::SUB16rr:
6675  case X86::SUB32i32:
6676  case X86::SUB32ri:
6677  case X86::SUB32ri8:
6678  case X86::SUB32rm:
6679  case X86::SUB32rr:
6680  case X86::SUB64i32:
6681  case X86::SUB64ri32:
6682  case X86::SUB64ri8:
6683  case X86::SUB64rm:
6684  case X86::SUB64rr:
6685  case X86::SUB8i8:
6686  case X86::SUB8ri:
6687  case X86::SUB8rm:
6688  case X86::SUB8rr:
6689    return FuseKind == FuseCmp || FuseKind == FuseInc;
6690  case X86::INC16r:
6691  case X86::INC32r:
6692  case X86::INC64r:
6693  case X86::INC8r:
6694  case X86::DEC16r:
6695  case X86::DEC32r:
6696  case X86::DEC64r:
6697  case X86::DEC8r:
6698    return FuseKind == FuseInc;
6699  }
6700}
6701
6702bool X86InstrInfo::
6703ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
6704  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
6705  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
6706  if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
6707    return true;
6708  Cond[0].setImm(GetOppositeBranchCondition(CC));
6709  return false;
6710}
6711
6712bool X86InstrInfo::
6713isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
6714  // FIXME: Return false for x87 stack register classes for now. We can't
6715  // allow any loads of these registers before FpGet_ST0_80.
6716  return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
6717           RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
6718}
6719
6720/// Return a virtual register initialized with the
6721/// the global base register value. Output instructions required to
6722/// initialize the register in the function entry block, if necessary.
6723///
6724/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
6725///
6726unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
6727  assert(!Subtarget.is64Bit() &&
6728         "X86-64 PIC uses RIP relative addressing");
6729
6730  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
6731  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
6732  if (GlobalBaseReg != 0)
6733    return GlobalBaseReg;
6734
6735  // Create the register. The code to initialize it is inserted
6736  // later, by the CGBR pass (below).
6737  MachineRegisterInfo &RegInfo = MF->getRegInfo();
6738  GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
6739  X86FI->setGlobalBaseReg(GlobalBaseReg);
6740  return GlobalBaseReg;
6741}
6742
6743// These are the replaceable SSE instructions. Some of these have Int variants
6744// that we don't include here. We don't want to replace instructions selected
6745// by intrinsics.
6746static const uint16_t ReplaceableInstrs[][3] = {
6747  //PackedSingle     PackedDouble    PackedInt
6748  { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
6749  { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
6750  { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
6751  { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
6752  { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
6753  { X86::MOVLPSmr,   X86::MOVLPDmr,  X86::MOVPQI2QImr  },
6754  { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
6755  { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
6756  { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
6757  { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
6758  { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
6759  { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
6760  { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
6761  { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
6762  { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
6763  // AVX 128-bit support
6764  { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
6765  { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
6766  { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
6767  { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
6768  { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
6769  { X86::VMOVLPSmr,  X86::VMOVLPDmr,  X86::VMOVPQI2QImr  },
6770  { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
6771  { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
6772  { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
6773  { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
6774  { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
6775  { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
6776  { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
6777  { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
6778  { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
6779  // AVX 256-bit support
6780  { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
6781  { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
6782  { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
6783  { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
6784  { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
6785  { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr }
6786};
6787
6788static const uint16_t ReplaceableInstrsAVX2[][3] = {
6789  //PackedSingle       PackedDouble       PackedInt
6790  { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
6791  { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
6792  { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
6793  { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
6794  { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
6795  { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
6796  { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
6797  { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
6798  { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
6799  { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
6800  { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
6801  { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
6802  { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
6803  { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr },
6804  { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
6805  { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
6806  { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
6807  { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
6808  { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
6809  { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm}
6810};
6811
6812// FIXME: Some shuffle and unpack instructions have equivalents in different
6813// domains, but they require a bit more work than just switching opcodes.
6814
6815static const uint16_t *lookup(unsigned opcode, unsigned domain) {
6816  for (const uint16_t (&Row)[3] : ReplaceableInstrs)
6817    if (Row[domain-1] == opcode)
6818      return Row;
6819  return nullptr;
6820}
6821
6822static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) {
6823  for (const uint16_t (&Row)[3] : ReplaceableInstrsAVX2)
6824    if (Row[domain-1] == opcode)
6825      return Row;
6826  return nullptr;
6827}
6828
6829std::pair<uint16_t, uint16_t>
6830X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
6831  uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6832  bool hasAVX2 = Subtarget.hasAVX2();
6833  uint16_t validDomains = 0;
6834  if (domain && lookup(MI->getOpcode(), domain))
6835    validDomains = 0xe;
6836  else if (domain && lookupAVX2(MI->getOpcode(), domain))
6837    validDomains = hasAVX2 ? 0xe : 0x6;
6838  return std::make_pair(domain, validDomains);
6839}
6840
6841void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
6842  assert(Domain>0 && Domain<4 && "Invalid execution domain");
6843  uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6844  assert(dom && "Not an SSE instruction");
6845  const uint16_t *table = lookup(MI->getOpcode(), dom);
6846  if (!table) { // try the other table
6847    assert((Subtarget.hasAVX2() || Domain < 3) &&
6848           "256-bit vector operations only available in AVX2");
6849    table = lookupAVX2(MI->getOpcode(), dom);
6850  }
6851  assert(table && "Cannot change domain");
6852  MI->setDesc(get(table[Domain-1]));
6853}
6854
6855/// Return the noop instruction to use for a noop.
6856void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
6857  NopInst.setOpcode(X86::NOOP);
6858}
6859
6860// This code must remain in sync with getJumpInstrTableEntryBound in this class!
6861// In particular, getJumpInstrTableEntryBound must always return an upper bound
6862// on the encoding lengths of the instructions generated by
6863// getUnconditionalBranch and getTrap.
6864void X86InstrInfo::getUnconditionalBranch(
6865    MCInst &Branch, const MCSymbolRefExpr *BranchTarget) const {
6866  Branch.setOpcode(X86::JMP_1);
6867  Branch.addOperand(MCOperand::createExpr(BranchTarget));
6868}
6869
6870// This code must remain in sync with getJumpInstrTableEntryBound in this class!
6871// In particular, getJumpInstrTableEntryBound must always return an upper bound
6872// on the encoding lengths of the instructions generated by
6873// getUnconditionalBranch and getTrap.
6874void X86InstrInfo::getTrap(MCInst &MI) const {
6875  MI.setOpcode(X86::TRAP);
6876}
6877
6878// See getTrap and getUnconditionalBranch for conditions on the value returned
6879// by this function.
6880unsigned X86InstrInfo::getJumpInstrTableEntryBound() const {
6881  // 5 bytes suffice: JMP_4 Symbol@PLT is uses 1 byte (E9) for the JMP_4 and 4
6882  // bytes for the symbol offset. And TRAP is ud2, which is two bytes (0F 0B).
6883  return 5;
6884}
6885
6886bool X86InstrInfo::isHighLatencyDef(int opc) const {
6887  switch (opc) {
6888  default: return false;
6889  case X86::DIVSDrm:
6890  case X86::DIVSDrm_Int:
6891  case X86::DIVSDrr:
6892  case X86::DIVSDrr_Int:
6893  case X86::DIVSSrm:
6894  case X86::DIVSSrm_Int:
6895  case X86::DIVSSrr:
6896  case X86::DIVSSrr_Int:
6897  case X86::SQRTPDm:
6898  case X86::SQRTPDr:
6899  case X86::SQRTPSm:
6900  case X86::SQRTPSr:
6901  case X86::SQRTSDm:
6902  case X86::SQRTSDm_Int:
6903  case X86::SQRTSDr:
6904  case X86::SQRTSDr_Int:
6905  case X86::SQRTSSm:
6906  case X86::SQRTSSm_Int:
6907  case X86::SQRTSSr:
6908  case X86::SQRTSSr_Int:
6909  // AVX instructions with high latency
6910  case X86::VDIVSDrm:
6911  case X86::VDIVSDrm_Int:
6912  case X86::VDIVSDrr:
6913  case X86::VDIVSDrr_Int:
6914  case X86::VDIVSSrm:
6915  case X86::VDIVSSrm_Int:
6916  case X86::VDIVSSrr:
6917  case X86::VDIVSSrr_Int:
6918  case X86::VSQRTPDm:
6919  case X86::VSQRTPDr:
6920  case X86::VSQRTPSm:
6921  case X86::VSQRTPSr:
6922  case X86::VSQRTSDm:
6923  case X86::VSQRTSDm_Int:
6924  case X86::VSQRTSDr:
6925  case X86::VSQRTSSm:
6926  case X86::VSQRTSSm_Int:
6927  case X86::VSQRTSSr:
6928  case X86::VSQRTPDZm:
6929  case X86::VSQRTPDZr:
6930  case X86::VSQRTPSZm:
6931  case X86::VSQRTPSZr:
6932  case X86::VSQRTSDZm:
6933  case X86::VSQRTSDZm_Int:
6934  case X86::VSQRTSDZr:
6935  case X86::VSQRTSSZm_Int:
6936  case X86::VSQRTSSZr:
6937  case X86::VSQRTSSZm:
6938  case X86::VDIVSDZrm:
6939  case X86::VDIVSDZrr:
6940  case X86::VDIVSSZrm:
6941  case X86::VDIVSSZrr:
6942
6943  case X86::VGATHERQPSZrm:
6944  case X86::VGATHERQPDZrm:
6945  case X86::VGATHERDPDZrm:
6946  case X86::VGATHERDPSZrm:
6947  case X86::VPGATHERQDZrm:
6948  case X86::VPGATHERQQZrm:
6949  case X86::VPGATHERDDZrm:
6950  case X86::VPGATHERDQZrm:
6951  case X86::VSCATTERQPDZmr:
6952  case X86::VSCATTERQPSZmr:
6953  case X86::VSCATTERDPDZmr:
6954  case X86::VSCATTERDPSZmr:
6955  case X86::VPSCATTERQDZmr:
6956  case X86::VPSCATTERQQZmr:
6957  case X86::VPSCATTERDDZmr:
6958  case X86::VPSCATTERDQZmr:
6959    return true;
6960  }
6961}
6962
6963bool X86InstrInfo::
6964hasHighOperandLatency(const TargetSchedModel &SchedModel,
6965                      const MachineRegisterInfo *MRI,
6966                      const MachineInstr *DefMI, unsigned DefIdx,
6967                      const MachineInstr *UseMI, unsigned UseIdx) const {
6968  return isHighLatencyDef(DefMI->getOpcode());
6969}
6970
6971bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
6972                                           const MachineBasicBlock *MBB) const {
6973  assert((Inst.getNumOperands() == 3 || Inst.getNumOperands() == 4) &&
6974         "Reassociation needs binary operators");
6975
6976  // Integer binary math/logic instructions have a third source operand:
6977  // the EFLAGS register. That operand must be both defined here and never
6978  // used; ie, it must be dead. If the EFLAGS operand is live, then we can
6979  // not change anything because rearranging the operands could affect other
6980  // instructions that depend on the exact status flags (zero, sign, etc.)
6981  // that are set by using these particular operands with this operation.
6982  if (Inst.getNumOperands() == 4) {
6983    assert(Inst.getOperand(3).isReg() &&
6984           Inst.getOperand(3).getReg() == X86::EFLAGS &&
6985           "Unexpected operand in reassociable instruction");
6986    if (!Inst.getOperand(3).isDead())
6987      return false;
6988  }
6989
6990  return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
6991}
6992
6993// TODO: There are many more machine instruction opcodes to match:
6994//       1. Other data types (integer, vectors)
6995//       2. Other math / logic operations (xor, or)
6996//       3. Other forms of the same operation (intrinsics and other variants)
6997bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
6998  switch (Inst.getOpcode()) {
6999  case X86::AND8rr:
7000  case X86::AND16rr:
7001  case X86::AND32rr:
7002  case X86::AND64rr:
7003  case X86::OR8rr:
7004  case X86::OR16rr:
7005  case X86::OR32rr:
7006  case X86::OR64rr:
7007  case X86::XOR8rr:
7008  case X86::XOR16rr:
7009  case X86::XOR32rr:
7010  case X86::XOR64rr:
7011  case X86::IMUL16rr:
7012  case X86::IMUL32rr:
7013  case X86::IMUL64rr:
7014  case X86::PANDrr:
7015  case X86::PORrr:
7016  case X86::PXORrr:
7017  case X86::VPANDrr:
7018  case X86::VPANDYrr:
7019  case X86::VPORrr:
7020  case X86::VPORYrr:
7021  case X86::VPXORrr:
7022  case X86::VPXORYrr:
7023  // Normal min/max instructions are not commutative because of NaN and signed
7024  // zero semantics, but these are. Thus, there's no need to check for global
7025  // relaxed math; the instructions themselves have the properties we need.
7026  case X86::MAXCPDrr:
7027  case X86::MAXCPSrr:
7028  case X86::MAXCSDrr:
7029  case X86::MAXCSSrr:
7030  case X86::MINCPDrr:
7031  case X86::MINCPSrr:
7032  case X86::MINCSDrr:
7033  case X86::MINCSSrr:
7034  case X86::VMAXCPDrr:
7035  case X86::VMAXCPSrr:
7036  case X86::VMAXCPDYrr:
7037  case X86::VMAXCPSYrr:
7038  case X86::VMAXCSDrr:
7039  case X86::VMAXCSSrr:
7040  case X86::VMINCPDrr:
7041  case X86::VMINCPSrr:
7042  case X86::VMINCPDYrr:
7043  case X86::VMINCPSYrr:
7044  case X86::VMINCSDrr:
7045  case X86::VMINCSSrr:
7046    return true;
7047  case X86::ADDPDrr:
7048  case X86::ADDPSrr:
7049  case X86::ADDSDrr:
7050  case X86::ADDSSrr:
7051  case X86::MULPDrr:
7052  case X86::MULPSrr:
7053  case X86::MULSDrr:
7054  case X86::MULSSrr:
7055  case X86::VADDPDrr:
7056  case X86::VADDPSrr:
7057  case X86::VADDPDYrr:
7058  case X86::VADDPSYrr:
7059  case X86::VADDSDrr:
7060  case X86::VADDSSrr:
7061  case X86::VMULPDrr:
7062  case X86::VMULPSrr:
7063  case X86::VMULPDYrr:
7064  case X86::VMULPSYrr:
7065  case X86::VMULSDrr:
7066  case X86::VMULSSrr:
7067    return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath;
7068  default:
7069    return false;
7070  }
7071}
7072
7073/// This is an architecture-specific helper function of reassociateOps.
7074/// Set special operand attributes for new instructions after reassociation.
7075void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
7076                                         MachineInstr &OldMI2,
7077                                         MachineInstr &NewMI1,
7078                                         MachineInstr &NewMI2) const {
7079  // Integer instructions define an implicit EFLAGS source register operand as
7080  // the third source (fourth total) operand.
7081  if (OldMI1.getNumOperands() != 4 || OldMI2.getNumOperands() != 4)
7082    return;
7083
7084  assert(NewMI1.getNumOperands() == 4 && NewMI2.getNumOperands() == 4 &&
7085         "Unexpected instruction type for reassociation");
7086
7087  MachineOperand &OldOp1 = OldMI1.getOperand(3);
7088  MachineOperand &OldOp2 = OldMI2.getOperand(3);
7089  MachineOperand &NewOp1 = NewMI1.getOperand(3);
7090  MachineOperand &NewOp2 = NewMI2.getOperand(3);
7091
7092  assert(OldOp1.isReg() && OldOp1.getReg() == X86::EFLAGS && OldOp1.isDead() &&
7093         "Must have dead EFLAGS operand in reassociable instruction");
7094  assert(OldOp2.isReg() && OldOp2.getReg() == X86::EFLAGS && OldOp2.isDead() &&
7095         "Must have dead EFLAGS operand in reassociable instruction");
7096
7097  (void)OldOp1;
7098  (void)OldOp2;
7099
7100  assert(NewOp1.isReg() && NewOp1.getReg() == X86::EFLAGS &&
7101         "Unexpected operand in reassociable instruction");
7102  assert(NewOp2.isReg() && NewOp2.getReg() == X86::EFLAGS &&
7103         "Unexpected operand in reassociable instruction");
7104
7105  // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
7106  // of this pass or other passes. The EFLAGS operands must be dead in these new
7107  // instructions because the EFLAGS operands in the original instructions must
7108  // be dead in order for reassociation to occur.
7109  NewOp1.setIsDead();
7110  NewOp2.setIsDead();
7111}
7112
7113std::pair<unsigned, unsigned>
7114X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
7115  return std::make_pair(TF, 0u);
7116}
7117
7118ArrayRef<std::pair<unsigned, const char *>>
7119X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
7120  using namespace X86II;
7121  static const std::pair<unsigned, const char *> TargetFlags[] = {
7122      {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
7123      {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
7124      {MO_GOT, "x86-got"},
7125      {MO_GOTOFF, "x86-gotoff"},
7126      {MO_GOTPCREL, "x86-gotpcrel"},
7127      {MO_PLT, "x86-plt"},
7128      {MO_TLSGD, "x86-tlsgd"},
7129      {MO_TLSLD, "x86-tlsld"},
7130      {MO_TLSLDM, "x86-tlsldm"},
7131      {MO_GOTTPOFF, "x86-gottpoff"},
7132      {MO_INDNTPOFF, "x86-indntpoff"},
7133      {MO_TPOFF, "x86-tpoff"},
7134      {MO_DTPOFF, "x86-dtpoff"},
7135      {MO_NTPOFF, "x86-ntpoff"},
7136      {MO_GOTNTPOFF, "x86-gotntpoff"},
7137      {MO_DLLIMPORT, "x86-dllimport"},
7138      {MO_DARWIN_STUB, "x86-darwin-stub"},
7139      {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
7140      {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
7141      {MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE, "x86-darwin-hidden-nonlazy-pic-base"},
7142      {MO_TLVP, "x86-tlvp"},
7143      {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
7144      {MO_SECREL, "x86-secrel"}};
7145  return makeArrayRef(TargetFlags);
7146}
7147
7148namespace {
7149  /// Create Global Base Reg pass. This initializes the PIC
7150  /// global base register for x86-32.
7151  struct CGBR : public MachineFunctionPass {
7152    static char ID;
7153    CGBR() : MachineFunctionPass(ID) {}
7154
7155    bool runOnMachineFunction(MachineFunction &MF) override {
7156      const X86TargetMachine *TM =
7157        static_cast<const X86TargetMachine *>(&MF.getTarget());
7158      const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
7159
7160      // Don't do anything if this is 64-bit as 64-bit PIC
7161      // uses RIP relative addressing.
7162      if (STI.is64Bit())
7163        return false;
7164
7165      // Only emit a global base reg in PIC mode.
7166      if (TM->getRelocationModel() != Reloc::PIC_)
7167        return false;
7168
7169      X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
7170      unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
7171
7172      // If we didn't need a GlobalBaseReg, don't insert code.
7173      if (GlobalBaseReg == 0)
7174        return false;
7175
7176      // Insert the set of GlobalBaseReg into the first MBB of the function
7177      MachineBasicBlock &FirstMBB = MF.front();
7178      MachineBasicBlock::iterator MBBI = FirstMBB.begin();
7179      DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
7180      MachineRegisterInfo &RegInfo = MF.getRegInfo();
7181      const X86InstrInfo *TII = STI.getInstrInfo();
7182
7183      unsigned PC;
7184      if (STI.isPICStyleGOT())
7185        PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
7186      else
7187        PC = GlobalBaseReg;
7188
7189      // Operand of MovePCtoStack is completely ignored by asm printer. It's
7190      // only used in JIT code emission as displacement to pc.
7191      BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
7192
7193      // If we're using vanilla 'GOT' PIC style, we should use relative addressing
7194      // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
7195      if (STI.isPICStyleGOT()) {
7196        // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
7197        BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
7198          .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
7199                                        X86II::MO_GOT_ABSOLUTE_ADDRESS);
7200      }
7201
7202      return true;
7203    }
7204
7205    const char *getPassName() const override {
7206      return "X86 PIC Global Base Reg Initialization";
7207    }
7208
7209    void getAnalysisUsage(AnalysisUsage &AU) const override {
7210      AU.setPreservesCFG();
7211      MachineFunctionPass::getAnalysisUsage(AU);
7212    }
7213  };
7214}
7215
7216char CGBR::ID = 0;
7217FunctionPass*
7218llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
7219
7220namespace {
7221  struct LDTLSCleanup : public MachineFunctionPass {
7222    static char ID;
7223    LDTLSCleanup() : MachineFunctionPass(ID) {}
7224
7225    bool runOnMachineFunction(MachineFunction &MF) override {
7226      X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>();
7227      if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
7228        // No point folding accesses if there isn't at least two.
7229        return false;
7230      }
7231
7232      MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
7233      return VisitNode(DT->getRootNode(), 0);
7234    }
7235
7236    // Visit the dominator subtree rooted at Node in pre-order.
7237    // If TLSBaseAddrReg is non-null, then use that to replace any
7238    // TLS_base_addr instructions. Otherwise, create the register
7239    // when the first such instruction is seen, and then use it
7240    // as we encounter more instructions.
7241    bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
7242      MachineBasicBlock *BB = Node->getBlock();
7243      bool Changed = false;
7244
7245      // Traverse the current block.
7246      for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
7247           ++I) {
7248        switch (I->getOpcode()) {
7249          case X86::TLS_base_addr32:
7250          case X86::TLS_base_addr64:
7251            if (TLSBaseAddrReg)
7252              I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg);
7253            else
7254              I = SetRegister(I, &TLSBaseAddrReg);
7255            Changed = true;
7256            break;
7257          default:
7258            break;
7259        }
7260      }
7261
7262      // Visit the children of this block in the dominator tree.
7263      for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
7264           I != E; ++I) {
7265        Changed |= VisitNode(*I, TLSBaseAddrReg);
7266      }
7267
7268      return Changed;
7269    }
7270
7271    // Replace the TLS_base_addr instruction I with a copy from
7272    // TLSBaseAddrReg, returning the new instruction.
7273    MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I,
7274                                         unsigned TLSBaseAddrReg) {
7275      MachineFunction *MF = I->getParent()->getParent();
7276      const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
7277      const bool is64Bit = STI.is64Bit();
7278      const X86InstrInfo *TII = STI.getInstrInfo();
7279
7280      // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
7281      MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
7282                                   TII->get(TargetOpcode::COPY),
7283                                   is64Bit ? X86::RAX : X86::EAX)
7284                                   .addReg(TLSBaseAddrReg);
7285
7286      // Erase the TLS_base_addr instruction.
7287      I->eraseFromParent();
7288
7289      return Copy;
7290    }
7291
7292    // Create a virtal register in *TLSBaseAddrReg, and populate it by
7293    // inserting a copy instruction after I. Returns the new instruction.
7294    MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
7295      MachineFunction *MF = I->getParent()->getParent();
7296      const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
7297      const bool is64Bit = STI.is64Bit();
7298      const X86InstrInfo *TII = STI.getInstrInfo();
7299
7300      // Create a virtual register for the TLS base address.
7301      MachineRegisterInfo &RegInfo = MF->getRegInfo();
7302      *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
7303                                                      ? &X86::GR64RegClass
7304                                                      : &X86::GR32RegClass);
7305
7306      // Insert a copy from RAX/EAX to TLSBaseAddrReg.
7307      MachineInstr *Next = I->getNextNode();
7308      MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
7309                                   TII->get(TargetOpcode::COPY),
7310                                   *TLSBaseAddrReg)
7311                                   .addReg(is64Bit ? X86::RAX : X86::EAX);
7312
7313      return Copy;
7314    }
7315
7316    const char *getPassName() const override {
7317      return "Local Dynamic TLS Access Clean-up";
7318    }
7319
7320    void getAnalysisUsage(AnalysisUsage &AU) const override {
7321      AU.setPreservesCFG();
7322      AU.addRequired<MachineDominatorTree>();
7323      MachineFunctionPass::getAnalysisUsage(AU);
7324    }
7325  };
7326}
7327
7328char LDTLSCleanup::ID = 0;
7329FunctionPass*
7330llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
7331