X86InstrInfo.cpp revision 243830
1234353Sdim//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed// This file contains the X86 implementation of the TargetInstrInfo class.
11193323Sed//
12193323Sed//===----------------------------------------------------------------------===//
13193323Sed
14193323Sed#include "X86InstrInfo.h"
15193323Sed#include "X86.h"
16193323Sed#include "X86InstrBuilder.h"
17193323Sed#include "X86MachineFunctionInfo.h"
18193323Sed#include "X86Subtarget.h"
19193323Sed#include "X86TargetMachine.h"
20193323Sed#include "llvm/DerivedTypes.h"
21198090Srdivacky#include "llvm/LLVMContext.h"
22193323Sed#include "llvm/ADT/STLExtras.h"
23193323Sed#include "llvm/CodeGen/MachineConstantPool.h"
24239462Sdim#include "llvm/CodeGen/MachineDominators.h"
25193323Sed#include "llvm/CodeGen/MachineFrameInfo.h"
26193323Sed#include "llvm/CodeGen/MachineInstrBuilder.h"
27193323Sed#include "llvm/CodeGen/MachineRegisterInfo.h"
28193323Sed#include "llvm/CodeGen/LiveVariables.h"
29234353Sdim#include "llvm/MC/MCAsmInfo.h"
30207618Srdivacky#include "llvm/MC/MCInst.h"
31193323Sed#include "llvm/Support/CommandLine.h"
32202375Srdivacky#include "llvm/Support/Debug.h"
33198090Srdivacky#include "llvm/Support/ErrorHandling.h"
34198090Srdivacky#include "llvm/Support/raw_ostream.h"
35193323Sed#include "llvm/Target/TargetOptions.h"
36199481Srdivacky#include <limits>
37199481Srdivacky
38224145Sdim#define GET_INSTRINFO_CTOR
39224145Sdim#include "X86GenInstrInfo.inc"
40224145Sdim
41193323Sedusing namespace llvm;
42193323Sed
43198090Srdivackystatic cl::opt<bool>
44198090SrdivackyNoFusing("disable-spill-fusing",
45198090Srdivacky         cl::desc("Disable fusing of spill code into instructions"));
46198090Srdivackystatic cl::opt<bool>
47198090SrdivackyPrintFailedFusing("print-failed-fuse-candidates",
48198090Srdivacky                  cl::desc("Print instructions that the allocator wants to"
49198090Srdivacky                           " fuse, but the X86 backend currently can't"),
50198090Srdivacky                  cl::Hidden);
51198090Srdivackystatic cl::opt<bool>
52198090SrdivackyReMatPICStubLoad("remat-pic-stub-load",
53198090Srdivacky                 cl::desc("Re-materialize load from stub in PIC mode"),
54198090Srdivacky                 cl::init(false), cl::Hidden);
55193323Sed
56226633Sdimenum {
57226633Sdim  // Select which memory operand is being unfolded.
58239462Sdim  // (stored in bits 0 - 3)
59226633Sdim  TB_INDEX_0    = 0,
60226633Sdim  TB_INDEX_1    = 1,
61226633Sdim  TB_INDEX_2    = 2,
62239462Sdim  TB_INDEX_3    = 3,
63239462Sdim  TB_INDEX_MASK = 0xf,
64226633Sdim
65239462Sdim  // Do not insert the reverse map (MemOp -> RegOp) into the table.
66239462Sdim  // This may be needed because there is a many -> one mapping.
67239462Sdim  TB_NO_REVERSE   = 1 << 4,
68239462Sdim
69239462Sdim  // Do not insert the forward map (RegOp -> MemOp) into the table.
70239462Sdim  // This is needed for Native Client, which prohibits branch
71239462Sdim  // instructions from using a memory operand.
72239462Sdim  TB_NO_FORWARD   = 1 << 5,
73239462Sdim
74239462Sdim  TB_FOLDED_LOAD  = 1 << 6,
75239462Sdim  TB_FOLDED_STORE = 1 << 7,
76239462Sdim
77226633Sdim  // Minimum alignment required for load/store.
78226633Sdim  // Used for RegOp->MemOp conversion.
79226633Sdim  // (stored in bits 8 - 15)
80226633Sdim  TB_ALIGN_SHIFT = 8,
81226633Sdim  TB_ALIGN_NONE  =    0 << TB_ALIGN_SHIFT,
82226633Sdim  TB_ALIGN_16    =   16 << TB_ALIGN_SHIFT,
83226633Sdim  TB_ALIGN_32    =   32 << TB_ALIGN_SHIFT,
84239462Sdim  TB_ALIGN_MASK  = 0xff << TB_ALIGN_SHIFT
85226633Sdim};
86226633Sdim
87234353Sdimstruct X86OpTblEntry {
88234353Sdim  uint16_t RegOp;
89234353Sdim  uint16_t MemOp;
90239462Sdim  uint16_t Flags;
91234353Sdim};
92234353Sdim
93193323SedX86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
94224145Sdim  : X86GenInstrInfo((tm.getSubtarget<X86Subtarget>().is64Bit()
95224145Sdim                     ? X86::ADJCALLSTACKDOWN64
96224145Sdim                     : X86::ADJCALLSTACKDOWN32),
97224145Sdim                    (tm.getSubtarget<X86Subtarget>().is64Bit()
98224145Sdim                     ? X86::ADJCALLSTACKUP64
99224145Sdim                     : X86::ADJCALLSTACKUP32)),
100193323Sed    TM(tm), RI(tm, *this) {
101218893Sdim
102234353Sdim  static const X86OpTblEntry OpTbl2Addr[] = {
103226633Sdim    { X86::ADC32ri,     X86::ADC32mi,    0 },
104226633Sdim    { X86::ADC32ri8,    X86::ADC32mi8,   0 },
105226633Sdim    { X86::ADC32rr,     X86::ADC32mr,    0 },
106226633Sdim    { X86::ADC64ri32,   X86::ADC64mi32,  0 },
107226633Sdim    { X86::ADC64ri8,    X86::ADC64mi8,   0 },
108226633Sdim    { X86::ADC64rr,     X86::ADC64mr,    0 },
109226633Sdim    { X86::ADD16ri,     X86::ADD16mi,    0 },
110226633Sdim    { X86::ADD16ri8,    X86::ADD16mi8,   0 },
111226633Sdim    { X86::ADD16ri_DB,  X86::ADD16mi,    TB_NO_REVERSE },
112226633Sdim    { X86::ADD16ri8_DB, X86::ADD16mi8,   TB_NO_REVERSE },
113226633Sdim    { X86::ADD16rr,     X86::ADD16mr,    0 },
114226633Sdim    { X86::ADD16rr_DB,  X86::ADD16mr,    TB_NO_REVERSE },
115226633Sdim    { X86::ADD32ri,     X86::ADD32mi,    0 },
116226633Sdim    { X86::ADD32ri8,    X86::ADD32mi8,   0 },
117226633Sdim    { X86::ADD32ri_DB,  X86::ADD32mi,    TB_NO_REVERSE },
118226633Sdim    { X86::ADD32ri8_DB, X86::ADD32mi8,   TB_NO_REVERSE },
119226633Sdim    { X86::ADD32rr,     X86::ADD32mr,    0 },
120226633Sdim    { X86::ADD32rr_DB,  X86::ADD32mr,    TB_NO_REVERSE },
121226633Sdim    { X86::ADD64ri32,   X86::ADD64mi32,  0 },
122226633Sdim    { X86::ADD64ri8,    X86::ADD64mi8,   0 },
123226633Sdim    { X86::ADD64ri32_DB,X86::ADD64mi32,  TB_NO_REVERSE },
124226633Sdim    { X86::ADD64ri8_DB, X86::ADD64mi8,   TB_NO_REVERSE },
125226633Sdim    { X86::ADD64rr,     X86::ADD64mr,    0 },
126226633Sdim    { X86::ADD64rr_DB,  X86::ADD64mr,    TB_NO_REVERSE },
127226633Sdim    { X86::ADD8ri,      X86::ADD8mi,     0 },
128226633Sdim    { X86::ADD8rr,      X86::ADD8mr,     0 },
129226633Sdim    { X86::AND16ri,     X86::AND16mi,    0 },
130226633Sdim    { X86::AND16ri8,    X86::AND16mi8,   0 },
131226633Sdim    { X86::AND16rr,     X86::AND16mr,    0 },
132226633Sdim    { X86::AND32ri,     X86::AND32mi,    0 },
133226633Sdim    { X86::AND32ri8,    X86::AND32mi8,   0 },
134226633Sdim    { X86::AND32rr,     X86::AND32mr,    0 },
135226633Sdim    { X86::AND64ri32,   X86::AND64mi32,  0 },
136226633Sdim    { X86::AND64ri8,    X86::AND64mi8,   0 },
137226633Sdim    { X86::AND64rr,     X86::AND64mr,    0 },
138226633Sdim    { X86::AND8ri,      X86::AND8mi,     0 },
139226633Sdim    { X86::AND8rr,      X86::AND8mr,     0 },
140226633Sdim    { X86::DEC16r,      X86::DEC16m,     0 },
141226633Sdim    { X86::DEC32r,      X86::DEC32m,     0 },
142226633Sdim    { X86::DEC64_16r,   X86::DEC64_16m,  0 },
143226633Sdim    { X86::DEC64_32r,   X86::DEC64_32m,  0 },
144226633Sdim    { X86::DEC64r,      X86::DEC64m,     0 },
145226633Sdim    { X86::DEC8r,       X86::DEC8m,      0 },
146226633Sdim    { X86::INC16r,      X86::INC16m,     0 },
147226633Sdim    { X86::INC32r,      X86::INC32m,     0 },
148226633Sdim    { X86::INC64_16r,   X86::INC64_16m,  0 },
149226633Sdim    { X86::INC64_32r,   X86::INC64_32m,  0 },
150226633Sdim    { X86::INC64r,      X86::INC64m,     0 },
151226633Sdim    { X86::INC8r,       X86::INC8m,      0 },
152226633Sdim    { X86::NEG16r,      X86::NEG16m,     0 },
153226633Sdim    { X86::NEG32r,      X86::NEG32m,     0 },
154226633Sdim    { X86::NEG64r,      X86::NEG64m,     0 },
155226633Sdim    { X86::NEG8r,       X86::NEG8m,      0 },
156226633Sdim    { X86::NOT16r,      X86::NOT16m,     0 },
157226633Sdim    { X86::NOT32r,      X86::NOT32m,     0 },
158226633Sdim    { X86::NOT64r,      X86::NOT64m,     0 },
159226633Sdim    { X86::NOT8r,       X86::NOT8m,      0 },
160226633Sdim    { X86::OR16ri,      X86::OR16mi,     0 },
161226633Sdim    { X86::OR16ri8,     X86::OR16mi8,    0 },
162226633Sdim    { X86::OR16rr,      X86::OR16mr,     0 },
163226633Sdim    { X86::OR32ri,      X86::OR32mi,     0 },
164226633Sdim    { X86::OR32ri8,     X86::OR32mi8,    0 },
165226633Sdim    { X86::OR32rr,      X86::OR32mr,     0 },
166226633Sdim    { X86::OR64ri32,    X86::OR64mi32,   0 },
167226633Sdim    { X86::OR64ri8,     X86::OR64mi8,    0 },
168226633Sdim    { X86::OR64rr,      X86::OR64mr,     0 },
169226633Sdim    { X86::OR8ri,       X86::OR8mi,      0 },
170226633Sdim    { X86::OR8rr,       X86::OR8mr,      0 },
171226633Sdim    { X86::ROL16r1,     X86::ROL16m1,    0 },
172226633Sdim    { X86::ROL16rCL,    X86::ROL16mCL,   0 },
173226633Sdim    { X86::ROL16ri,     X86::ROL16mi,    0 },
174226633Sdim    { X86::ROL32r1,     X86::ROL32m1,    0 },
175226633Sdim    { X86::ROL32rCL,    X86::ROL32mCL,   0 },
176226633Sdim    { X86::ROL32ri,     X86::ROL32mi,    0 },
177226633Sdim    { X86::ROL64r1,     X86::ROL64m1,    0 },
178226633Sdim    { X86::ROL64rCL,    X86::ROL64mCL,   0 },
179226633Sdim    { X86::ROL64ri,     X86::ROL64mi,    0 },
180226633Sdim    { X86::ROL8r1,      X86::ROL8m1,     0 },
181226633Sdim    { X86::ROL8rCL,     X86::ROL8mCL,    0 },
182226633Sdim    { X86::ROL8ri,      X86::ROL8mi,     0 },
183226633Sdim    { X86::ROR16r1,     X86::ROR16m1,    0 },
184226633Sdim    { X86::ROR16rCL,    X86::ROR16mCL,   0 },
185226633Sdim    { X86::ROR16ri,     X86::ROR16mi,    0 },
186226633Sdim    { X86::ROR32r1,     X86::ROR32m1,    0 },
187226633Sdim    { X86::ROR32rCL,    X86::ROR32mCL,   0 },
188226633Sdim    { X86::ROR32ri,     X86::ROR32mi,    0 },
189226633Sdim    { X86::ROR64r1,     X86::ROR64m1,    0 },
190226633Sdim    { X86::ROR64rCL,    X86::ROR64mCL,   0 },
191226633Sdim    { X86::ROR64ri,     X86::ROR64mi,    0 },
192226633Sdim    { X86::ROR8r1,      X86::ROR8m1,     0 },
193226633Sdim    { X86::ROR8rCL,     X86::ROR8mCL,    0 },
194226633Sdim    { X86::ROR8ri,      X86::ROR8mi,     0 },
195226633Sdim    { X86::SAR16r1,     X86::SAR16m1,    0 },
196226633Sdim    { X86::SAR16rCL,    X86::SAR16mCL,   0 },
197226633Sdim    { X86::SAR16ri,     X86::SAR16mi,    0 },
198226633Sdim    { X86::SAR32r1,     X86::SAR32m1,    0 },
199226633Sdim    { X86::SAR32rCL,    X86::SAR32mCL,   0 },
200226633Sdim    { X86::SAR32ri,     X86::SAR32mi,    0 },
201226633Sdim    { X86::SAR64r1,     X86::SAR64m1,    0 },
202226633Sdim    { X86::SAR64rCL,    X86::SAR64mCL,   0 },
203226633Sdim    { X86::SAR64ri,     X86::SAR64mi,    0 },
204226633Sdim    { X86::SAR8r1,      X86::SAR8m1,     0 },
205226633Sdim    { X86::SAR8rCL,     X86::SAR8mCL,    0 },
206226633Sdim    { X86::SAR8ri,      X86::SAR8mi,     0 },
207226633Sdim    { X86::SBB32ri,     X86::SBB32mi,    0 },
208226633Sdim    { X86::SBB32ri8,    X86::SBB32mi8,   0 },
209226633Sdim    { X86::SBB32rr,     X86::SBB32mr,    0 },
210226633Sdim    { X86::SBB64ri32,   X86::SBB64mi32,  0 },
211226633Sdim    { X86::SBB64ri8,    X86::SBB64mi8,   0 },
212226633Sdim    { X86::SBB64rr,     X86::SBB64mr,    0 },
213226633Sdim    { X86::SHL16rCL,    X86::SHL16mCL,   0 },
214226633Sdim    { X86::SHL16ri,     X86::SHL16mi,    0 },
215226633Sdim    { X86::SHL32rCL,    X86::SHL32mCL,   0 },
216226633Sdim    { X86::SHL32ri,     X86::SHL32mi,    0 },
217226633Sdim    { X86::SHL64rCL,    X86::SHL64mCL,   0 },
218226633Sdim    { X86::SHL64ri,     X86::SHL64mi,    0 },
219226633Sdim    { X86::SHL8rCL,     X86::SHL8mCL,    0 },
220226633Sdim    { X86::SHL8ri,      X86::SHL8mi,     0 },
221226633Sdim    { X86::SHLD16rrCL,  X86::SHLD16mrCL, 0 },
222226633Sdim    { X86::SHLD16rri8,  X86::SHLD16mri8, 0 },
223226633Sdim    { X86::SHLD32rrCL,  X86::SHLD32mrCL, 0 },
224226633Sdim    { X86::SHLD32rri8,  X86::SHLD32mri8, 0 },
225226633Sdim    { X86::SHLD64rrCL,  X86::SHLD64mrCL, 0 },
226226633Sdim    { X86::SHLD64rri8,  X86::SHLD64mri8, 0 },
227226633Sdim    { X86::SHR16r1,     X86::SHR16m1,    0 },
228226633Sdim    { X86::SHR16rCL,    X86::SHR16mCL,   0 },
229226633Sdim    { X86::SHR16ri,     X86::SHR16mi,    0 },
230226633Sdim    { X86::SHR32r1,     X86::SHR32m1,    0 },
231226633Sdim    { X86::SHR32rCL,    X86::SHR32mCL,   0 },
232226633Sdim    { X86::SHR32ri,     X86::SHR32mi,    0 },
233226633Sdim    { X86::SHR64r1,     X86::SHR64m1,    0 },
234226633Sdim    { X86::SHR64rCL,    X86::SHR64mCL,   0 },
235226633Sdim    { X86::SHR64ri,     X86::SHR64mi,    0 },
236226633Sdim    { X86::SHR8r1,      X86::SHR8m1,     0 },
237226633Sdim    { X86::SHR8rCL,     X86::SHR8mCL,    0 },
238226633Sdim    { X86::SHR8ri,      X86::SHR8mi,     0 },
239226633Sdim    { X86::SHRD16rrCL,  X86::SHRD16mrCL, 0 },
240226633Sdim    { X86::SHRD16rri8,  X86::SHRD16mri8, 0 },
241226633Sdim    { X86::SHRD32rrCL,  X86::SHRD32mrCL, 0 },
242226633Sdim    { X86::SHRD32rri8,  X86::SHRD32mri8, 0 },
243226633Sdim    { X86::SHRD64rrCL,  X86::SHRD64mrCL, 0 },
244226633Sdim    { X86::SHRD64rri8,  X86::SHRD64mri8, 0 },
245226633Sdim    { X86::SUB16ri,     X86::SUB16mi,    0 },
246226633Sdim    { X86::SUB16ri8,    X86::SUB16mi8,   0 },
247226633Sdim    { X86::SUB16rr,     X86::SUB16mr,    0 },
248226633Sdim    { X86::SUB32ri,     X86::SUB32mi,    0 },
249226633Sdim    { X86::SUB32ri8,    X86::SUB32mi8,   0 },
250226633Sdim    { X86::SUB32rr,     X86::SUB32mr,    0 },
251226633Sdim    { X86::SUB64ri32,   X86::SUB64mi32,  0 },
252226633Sdim    { X86::SUB64ri8,    X86::SUB64mi8,   0 },
253226633Sdim    { X86::SUB64rr,     X86::SUB64mr,    0 },
254226633Sdim    { X86::SUB8ri,      X86::SUB8mi,     0 },
255226633Sdim    { X86::SUB8rr,      X86::SUB8mr,     0 },
256226633Sdim    { X86::XOR16ri,     X86::XOR16mi,    0 },
257226633Sdim    { X86::XOR16ri8,    X86::XOR16mi8,   0 },
258226633Sdim    { X86::XOR16rr,     X86::XOR16mr,    0 },
259226633Sdim    { X86::XOR32ri,     X86::XOR32mi,    0 },
260226633Sdim    { X86::XOR32ri8,    X86::XOR32mi8,   0 },
261226633Sdim    { X86::XOR32rr,     X86::XOR32mr,    0 },
262226633Sdim    { X86::XOR64ri32,   X86::XOR64mi32,  0 },
263226633Sdim    { X86::XOR64ri8,    X86::XOR64mi8,   0 },
264226633Sdim    { X86::XOR64rr,     X86::XOR64mr,    0 },
265226633Sdim    { X86::XOR8ri,      X86::XOR8mi,     0 },
266226633Sdim    { X86::XOR8rr,      X86::XOR8mr,     0 }
267193323Sed  };
268193323Sed
269193323Sed  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
270234353Sdim    unsigned RegOp = OpTbl2Addr[i].RegOp;
271234353Sdim    unsigned MemOp = OpTbl2Addr[i].MemOp;
272234353Sdim    unsigned Flags = OpTbl2Addr[i].Flags;
273226633Sdim    AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
274226633Sdim                  RegOp, MemOp,
275226633Sdim                  // Index 0, folded load and store, no alignment requirement.
276226633Sdim                  Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
277193323Sed  }
278193323Sed
279234353Sdim  static const X86OpTblEntry OpTbl0[] = {
280226633Sdim    { X86::BT16ri8,     X86::BT16mi8,       TB_FOLDED_LOAD },
281226633Sdim    { X86::BT32ri8,     X86::BT32mi8,       TB_FOLDED_LOAD },
282226633Sdim    { X86::BT64ri8,     X86::BT64mi8,       TB_FOLDED_LOAD },
283226633Sdim    { X86::CALL32r,     X86::CALL32m,       TB_FOLDED_LOAD },
284226633Sdim    { X86::CALL64r,     X86::CALL64m,       TB_FOLDED_LOAD },
285226633Sdim    { X86::CMP16ri,     X86::CMP16mi,       TB_FOLDED_LOAD },
286226633Sdim    { X86::CMP16ri8,    X86::CMP16mi8,      TB_FOLDED_LOAD },
287226633Sdim    { X86::CMP16rr,     X86::CMP16mr,       TB_FOLDED_LOAD },
288226633Sdim    { X86::CMP32ri,     X86::CMP32mi,       TB_FOLDED_LOAD },
289226633Sdim    { X86::CMP32ri8,    X86::CMP32mi8,      TB_FOLDED_LOAD },
290226633Sdim    { X86::CMP32rr,     X86::CMP32mr,       TB_FOLDED_LOAD },
291226633Sdim    { X86::CMP64ri32,   X86::CMP64mi32,     TB_FOLDED_LOAD },
292226633Sdim    { X86::CMP64ri8,    X86::CMP64mi8,      TB_FOLDED_LOAD },
293226633Sdim    { X86::CMP64rr,     X86::CMP64mr,       TB_FOLDED_LOAD },
294226633Sdim    { X86::CMP8ri,      X86::CMP8mi,        TB_FOLDED_LOAD },
295226633Sdim    { X86::CMP8rr,      X86::CMP8mr,        TB_FOLDED_LOAD },
296226633Sdim    { X86::DIV16r,      X86::DIV16m,        TB_FOLDED_LOAD },
297226633Sdim    { X86::DIV32r,      X86::DIV32m,        TB_FOLDED_LOAD },
298226633Sdim    { X86::DIV64r,      X86::DIV64m,        TB_FOLDED_LOAD },
299226633Sdim    { X86::DIV8r,       X86::DIV8m,         TB_FOLDED_LOAD },
300226633Sdim    { X86::EXTRACTPSrr, X86::EXTRACTPSmr,   TB_FOLDED_STORE | TB_ALIGN_16 },
301226633Sdim    { X86::FsMOVAPDrr,  X86::MOVSDmr,       TB_FOLDED_STORE | TB_NO_REVERSE },
302226633Sdim    { X86::FsMOVAPSrr,  X86::MOVSSmr,       TB_FOLDED_STORE | TB_NO_REVERSE },
303226633Sdim    { X86::IDIV16r,     X86::IDIV16m,       TB_FOLDED_LOAD },
304226633Sdim    { X86::IDIV32r,     X86::IDIV32m,       TB_FOLDED_LOAD },
305226633Sdim    { X86::IDIV64r,     X86::IDIV64m,       TB_FOLDED_LOAD },
306226633Sdim    { X86::IDIV8r,      X86::IDIV8m,        TB_FOLDED_LOAD },
307226633Sdim    { X86::IMUL16r,     X86::IMUL16m,       TB_FOLDED_LOAD },
308226633Sdim    { X86::IMUL32r,     X86::IMUL32m,       TB_FOLDED_LOAD },
309226633Sdim    { X86::IMUL64r,     X86::IMUL64m,       TB_FOLDED_LOAD },
310226633Sdim    { X86::IMUL8r,      X86::IMUL8m,        TB_FOLDED_LOAD },
311226633Sdim    { X86::JMP32r,      X86::JMP32m,        TB_FOLDED_LOAD },
312226633Sdim    { X86::JMP64r,      X86::JMP64m,        TB_FOLDED_LOAD },
313226633Sdim    { X86::MOV16ri,     X86::MOV16mi,       TB_FOLDED_STORE },
314226633Sdim    { X86::MOV16rr,     X86::MOV16mr,       TB_FOLDED_STORE },
315226633Sdim    { X86::MOV32ri,     X86::MOV32mi,       TB_FOLDED_STORE },
316226633Sdim    { X86::MOV32rr,     X86::MOV32mr,       TB_FOLDED_STORE },
317226633Sdim    { X86::MOV64ri32,   X86::MOV64mi32,     TB_FOLDED_STORE },
318226633Sdim    { X86::MOV64rr,     X86::MOV64mr,       TB_FOLDED_STORE },
319226633Sdim    { X86::MOV8ri,      X86::MOV8mi,        TB_FOLDED_STORE },
320226633Sdim    { X86::MOV8rr,      X86::MOV8mr,        TB_FOLDED_STORE },
321226633Sdim    { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
322226633Sdim    { X86::MOVAPDrr,    X86::MOVAPDmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
323226633Sdim    { X86::MOVAPSrr,    X86::MOVAPSmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
324226633Sdim    { X86::MOVDQArr,    X86::MOVDQAmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
325226633Sdim    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr,   TB_FOLDED_STORE },
326226633Sdim    { X86::MOVPQIto64rr,X86::MOVPQI2QImr,   TB_FOLDED_STORE },
327226633Sdim    { X86::MOVSDto64rr, X86::MOVSDto64mr,   TB_FOLDED_STORE },
328226633Sdim    { X86::MOVSS2DIrr,  X86::MOVSS2DImr,    TB_FOLDED_STORE },
329226633Sdim    { X86::MOVUPDrr,    X86::MOVUPDmr,      TB_FOLDED_STORE },
330226633Sdim    { X86::MOVUPSrr,    X86::MOVUPSmr,      TB_FOLDED_STORE },
331226633Sdim    { X86::MUL16r,      X86::MUL16m,        TB_FOLDED_LOAD },
332226633Sdim    { X86::MUL32r,      X86::MUL32m,        TB_FOLDED_LOAD },
333226633Sdim    { X86::MUL64r,      X86::MUL64m,        TB_FOLDED_LOAD },
334226633Sdim    { X86::MUL8r,       X86::MUL8m,         TB_FOLDED_LOAD },
335226633Sdim    { X86::SETAEr,      X86::SETAEm,        TB_FOLDED_STORE },
336226633Sdim    { X86::SETAr,       X86::SETAm,         TB_FOLDED_STORE },
337226633Sdim    { X86::SETBEr,      X86::SETBEm,        TB_FOLDED_STORE },
338226633Sdim    { X86::SETBr,       X86::SETBm,         TB_FOLDED_STORE },
339226633Sdim    { X86::SETEr,       X86::SETEm,         TB_FOLDED_STORE },
340226633Sdim    { X86::SETGEr,      X86::SETGEm,        TB_FOLDED_STORE },
341226633Sdim    { X86::SETGr,       X86::SETGm,         TB_FOLDED_STORE },
342226633Sdim    { X86::SETLEr,      X86::SETLEm,        TB_FOLDED_STORE },
343226633Sdim    { X86::SETLr,       X86::SETLm,         TB_FOLDED_STORE },
344226633Sdim    { X86::SETNEr,      X86::SETNEm,        TB_FOLDED_STORE },
345226633Sdim    { X86::SETNOr,      X86::SETNOm,        TB_FOLDED_STORE },
346226633Sdim    { X86::SETNPr,      X86::SETNPm,        TB_FOLDED_STORE },
347226633Sdim    { X86::SETNSr,      X86::SETNSm,        TB_FOLDED_STORE },
348226633Sdim    { X86::SETOr,       X86::SETOm,         TB_FOLDED_STORE },
349226633Sdim    { X86::SETPr,       X86::SETPm,         TB_FOLDED_STORE },
350226633Sdim    { X86::SETSr,       X86::SETSm,         TB_FOLDED_STORE },
351226633Sdim    { X86::TAILJMPr,    X86::TAILJMPm,      TB_FOLDED_LOAD },
352226633Sdim    { X86::TAILJMPr64,  X86::TAILJMPm64,    TB_FOLDED_LOAD },
353226633Sdim    { X86::TEST16ri,    X86::TEST16mi,      TB_FOLDED_LOAD },
354226633Sdim    { X86::TEST32ri,    X86::TEST32mi,      TB_FOLDED_LOAD },
355226633Sdim    { X86::TEST64ri32,  X86::TEST64mi32,    TB_FOLDED_LOAD },
356226633Sdim    { X86::TEST8ri,     X86::TEST8mi,       TB_FOLDED_LOAD },
357226633Sdim    // AVX 128-bit versions of foldable instructions
358226633Sdim    { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr,  TB_FOLDED_STORE | TB_ALIGN_16 },
359226633Sdim    { X86::FsVMOVAPDrr, X86::VMOVSDmr,      TB_FOLDED_STORE | TB_NO_REVERSE },
360226633Sdim    { X86::FsVMOVAPSrr, X86::VMOVSSmr,      TB_FOLDED_STORE | TB_NO_REVERSE },
361234353Sdim    { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
362226633Sdim    { X86::VMOVAPDrr,   X86::VMOVAPDmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
363226633Sdim    { X86::VMOVAPSrr,   X86::VMOVAPSmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
364226633Sdim    { X86::VMOVDQArr,   X86::VMOVDQAmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
365226633Sdim    { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr,  TB_FOLDED_STORE },
366226633Sdim    { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
367226633Sdim    { X86::VMOVSDto64rr,X86::VMOVSDto64mr,  TB_FOLDED_STORE },
368226633Sdim    { X86::VMOVSS2DIrr, X86::VMOVSS2DImr,   TB_FOLDED_STORE },
369226633Sdim    { X86::VMOVUPDrr,   X86::VMOVUPDmr,     TB_FOLDED_STORE },
370226633Sdim    { X86::VMOVUPSrr,   X86::VMOVUPSmr,     TB_FOLDED_STORE },
371226633Sdim    // AVX 256-bit foldable instructions
372234353Sdim    { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
373226633Sdim    { X86::VMOVAPDYrr,  X86::VMOVAPDYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
374226633Sdim    { X86::VMOVAPSYrr,  X86::VMOVAPSYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
375226633Sdim    { X86::VMOVDQAYrr,  X86::VMOVDQAYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
376226633Sdim    { X86::VMOVUPDYrr,  X86::VMOVUPDYmr,    TB_FOLDED_STORE },
377226633Sdim    { X86::VMOVUPSYrr,  X86::VMOVUPSYmr,    TB_FOLDED_STORE }
378193323Sed  };
379193323Sed
380193323Sed  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
381234353Sdim    unsigned RegOp      = OpTbl0[i].RegOp;
382234353Sdim    unsigned MemOp      = OpTbl0[i].MemOp;
383234353Sdim    unsigned Flags      = OpTbl0[i].Flags;
384226633Sdim    AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
385226633Sdim                  RegOp, MemOp, TB_INDEX_0 | Flags);
386193323Sed  }
387193323Sed
388234353Sdim  static const X86OpTblEntry OpTbl1[] = {
389226633Sdim    { X86::CMP16rr,         X86::CMP16rm,             0 },
390226633Sdim    { X86::CMP32rr,         X86::CMP32rm,             0 },
391226633Sdim    { X86::CMP64rr,         X86::CMP64rm,             0 },
392226633Sdim    { X86::CMP8rr,          X86::CMP8rm,              0 },
393226633Sdim    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm,          0 },
394226633Sdim    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm,        0 },
395226633Sdim    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm,          0 },
396226633Sdim    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm,        0 },
397226633Sdim    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm,          0 },
398226633Sdim    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm,          0 },
399226633Sdim    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm,       0 },
400226633Sdim    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm,         0 },
401226633Sdim    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm,       0 },
402226633Sdim    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm,         0 },
403226633Sdim    { X86::FsMOVAPDrr,      X86::MOVSDrm,             TB_NO_REVERSE },
404226633Sdim    { X86::FsMOVAPSrr,      X86::MOVSSrm,             TB_NO_REVERSE },
405226633Sdim    { X86::IMUL16rri,       X86::IMUL16rmi,           0 },
406226633Sdim    { X86::IMUL16rri8,      X86::IMUL16rmi8,          0 },
407226633Sdim    { X86::IMUL32rri,       X86::IMUL32rmi,           0 },
408226633Sdim    { X86::IMUL32rri8,      X86::IMUL32rmi8,          0 },
409226633Sdim    { X86::IMUL64rri32,     X86::IMUL64rmi32,         0 },
410226633Sdim    { X86::IMUL64rri8,      X86::IMUL64rmi8,          0 },
411226633Sdim    { X86::Int_COMISDrr,    X86::Int_COMISDrm,        0 },
412226633Sdim    { X86::Int_COMISSrr,    X86::Int_COMISSrm,        0 },
413226633Sdim    { X86::CVTSD2SI64rr,    X86::CVTSD2SI64rm,        0 },
414226633Sdim    { X86::CVTSD2SIrr,      X86::CVTSD2SIrm,          0 },
415239462Sdim    { X86::CVTSS2SI64rr,    X86::CVTSS2SI64rm,        0 },
416239462Sdim    { X86::CVTSS2SIrr,      X86::CVTSS2SIrm,          0 },
417226633Sdim    { X86::CVTTPD2DQrr,     X86::CVTTPD2DQrm,         TB_ALIGN_16 },
418226633Sdim    { X86::CVTTPS2DQrr,     X86::CVTTPS2DQrm,         TB_ALIGN_16 },
419226633Sdim    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm,  0 },
420226633Sdim    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm,     0 },
421226633Sdim    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm,  0 },
422226633Sdim    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm,     0 },
423226633Sdim    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm,       0 },
424226633Sdim    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm,       0 },
425226633Sdim    { X86::MOV16rr,         X86::MOV16rm,             0 },
426226633Sdim    { X86::MOV32rr,         X86::MOV32rm,             0 },
427226633Sdim    { X86::MOV64rr,         X86::MOV64rm,             0 },
428226633Sdim    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm,         0 },
429226633Sdim    { X86::MOV64toSDrr,     X86::MOV64toSDrm,         0 },
430226633Sdim    { X86::MOV8rr,          X86::MOV8rm,              0 },
431226633Sdim    { X86::MOVAPDrr,        X86::MOVAPDrm,            TB_ALIGN_16 },
432226633Sdim    { X86::MOVAPSrr,        X86::MOVAPSrm,            TB_ALIGN_16 },
433226633Sdim    { X86::MOVDDUPrr,       X86::MOVDDUPrm,           0 },
434226633Sdim    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm,         0 },
435226633Sdim    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm,          0 },
436226633Sdim    { X86::MOVDQArr,        X86::MOVDQArm,            TB_ALIGN_16 },
437226633Sdim    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm,          TB_ALIGN_16 },
438226633Sdim    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm,          TB_ALIGN_16 },
439226633Sdim    { X86::MOVSX16rr8,      X86::MOVSX16rm8,          0 },
440226633Sdim    { X86::MOVSX32rr16,     X86::MOVSX32rm16,         0 },
441226633Sdim    { X86::MOVSX32rr8,      X86::MOVSX32rm8,          0 },
442226633Sdim    { X86::MOVSX64rr16,     X86::MOVSX64rm16,         0 },
443226633Sdim    { X86::MOVSX64rr32,     X86::MOVSX64rm32,         0 },
444226633Sdim    { X86::MOVSX64rr8,      X86::MOVSX64rm8,          0 },
445226633Sdim    { X86::MOVUPDrr,        X86::MOVUPDrm,            TB_ALIGN_16 },
446226633Sdim    { X86::MOVUPSrr,        X86::MOVUPSrm,            0 },
447226633Sdim    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm,        0 },
448226633Sdim    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm,        0 },
449226633Sdim    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm,     TB_ALIGN_16 },
450226633Sdim    { X86::MOVZX16rr8,      X86::MOVZX16rm8,          0 },
451226633Sdim    { X86::MOVZX32rr16,     X86::MOVZX32rm16,         0 },
452226633Sdim    { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8,   0 },
453226633Sdim    { X86::MOVZX32rr8,      X86::MOVZX32rm8,          0 },
454226633Sdim    { X86::MOVZX64rr16,     X86::MOVZX64rm16,         0 },
455226633Sdim    { X86::MOVZX64rr32,     X86::MOVZX64rm32,         0 },
456226633Sdim    { X86::MOVZX64rr8,      X86::MOVZX64rm8,          0 },
457234353Sdim    { X86::PABSBrr128,      X86::PABSBrm128,          TB_ALIGN_16 },
458234353Sdim    { X86::PABSDrr128,      X86::PABSDrm128,          TB_ALIGN_16 },
459234353Sdim    { X86::PABSWrr128,      X86::PABSWrm128,          TB_ALIGN_16 },
460226633Sdim    { X86::PSHUFDri,        X86::PSHUFDmi,            TB_ALIGN_16 },
461226633Sdim    { X86::PSHUFHWri,       X86::PSHUFHWmi,           TB_ALIGN_16 },
462226633Sdim    { X86::PSHUFLWri,       X86::PSHUFLWmi,           TB_ALIGN_16 },
463226633Sdim    { X86::RCPPSr,          X86::RCPPSm,              TB_ALIGN_16 },
464226633Sdim    { X86::RCPPSr_Int,      X86::RCPPSm_Int,          TB_ALIGN_16 },
465226633Sdim    { X86::RSQRTPSr,        X86::RSQRTPSm,            TB_ALIGN_16 },
466226633Sdim    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int,        TB_ALIGN_16 },
467226633Sdim    { X86::RSQRTSSr,        X86::RSQRTSSm,            0 },
468226633Sdim    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int,        0 },
469226633Sdim    { X86::SQRTPDr,         X86::SQRTPDm,             TB_ALIGN_16 },
470226633Sdim    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int,         TB_ALIGN_16 },
471226633Sdim    { X86::SQRTPSr,         X86::SQRTPSm,             TB_ALIGN_16 },
472226633Sdim    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int,         TB_ALIGN_16 },
473226633Sdim    { X86::SQRTSDr,         X86::SQRTSDm,             0 },
474226633Sdim    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int,         0 },
475226633Sdim    { X86::SQRTSSr,         X86::SQRTSSm,             0 },
476226633Sdim    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int,         0 },
477226633Sdim    { X86::TEST16rr,        X86::TEST16rm,            0 },
478226633Sdim    { X86::TEST32rr,        X86::TEST32rm,            0 },
479226633Sdim    { X86::TEST64rr,        X86::TEST64rm,            0 },
480226633Sdim    { X86::TEST8rr,         X86::TEST8rm,             0 },
481193323Sed    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
482226633Sdim    { X86::UCOMISDrr,       X86::UCOMISDrm,           0 },
483226633Sdim    { X86::UCOMISSrr,       X86::UCOMISSrm,           0 },
484226633Sdim    // AVX 128-bit versions of foldable instructions
485226633Sdim    { X86::Int_VCOMISDrr,   X86::Int_VCOMISDrm,       0 },
486226633Sdim    { X86::Int_VCOMISSrr,   X86::Int_VCOMISSrm,       0 },
487226633Sdim    { X86::Int_VUCOMISDrr,  X86::Int_VUCOMISDrm,      0 },
488226633Sdim    { X86::Int_VUCOMISSrr,  X86::Int_VUCOMISSrm,      0 },
489239462Sdim    { X86::VCVTTSD2SI64rr,  X86::VCVTTSD2SI64rm,      0 },
490239462Sdim    { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 },
491239462Sdim    { X86::VCVTTSD2SIrr,    X86::VCVTTSD2SIrm,        0 },
492239462Sdim    { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm,    0 },
493239462Sdim    { X86::VCVTTSS2SI64rr,  X86::VCVTTSS2SI64rm,      0 },
494239462Sdim    { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 },
495239462Sdim    { X86::VCVTTSS2SIrr,    X86::VCVTTSS2SIrm,        0 },
496239462Sdim    { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm,    0 },
497239462Sdim    { X86::VCVTSD2SI64rr,   X86::VCVTSD2SI64rm,       0 },
498239462Sdim    { X86::VCVTSD2SIrr,     X86::VCVTSD2SIrm,         0 },
499239462Sdim    { X86::VCVTSS2SI64rr,   X86::VCVTSS2SI64rm,       0 },
500239462Sdim    { X86::VCVTSS2SIrr,     X86::VCVTSS2SIrm,         0 },
501226633Sdim    { X86::FsVMOVAPDrr,     X86::VMOVSDrm,            TB_NO_REVERSE },
502226633Sdim    { X86::FsVMOVAPSrr,     X86::VMOVSSrm,            TB_NO_REVERSE },
503226633Sdim    { X86::VMOV64toPQIrr,   X86::VMOVQI2PQIrm,        0 },
504226633Sdim    { X86::VMOV64toSDrr,    X86::VMOV64toSDrm,        0 },
505226633Sdim    { X86::VMOVAPDrr,       X86::VMOVAPDrm,           TB_ALIGN_16 },
506226633Sdim    { X86::VMOVAPSrr,       X86::VMOVAPSrm,           TB_ALIGN_16 },
507226633Sdim    { X86::VMOVDDUPrr,      X86::VMOVDDUPrm,          0 },
508226633Sdim    { X86::VMOVDI2PDIrr,    X86::VMOVDI2PDIrm,        0 },
509226633Sdim    { X86::VMOVDI2SSrr,     X86::VMOVDI2SSrm,         0 },
510226633Sdim    { X86::VMOVDQArr,       X86::VMOVDQArm,           TB_ALIGN_16 },
511226633Sdim    { X86::VMOVSLDUPrr,     X86::VMOVSLDUPrm,         TB_ALIGN_16 },
512226633Sdim    { X86::VMOVSHDUPrr,     X86::VMOVSHDUPrm,         TB_ALIGN_16 },
513226633Sdim    { X86::VMOVUPDrr,       X86::VMOVUPDrm,           TB_ALIGN_16 },
514226633Sdim    { X86::VMOVUPSrr,       X86::VMOVUPSrm,           0 },
515226633Sdim    { X86::VMOVZDI2PDIrr,   X86::VMOVZDI2PDIrm,       0 },
516226633Sdim    { X86::VMOVZQI2PQIrr,   X86::VMOVZQI2PQIrm,       0 },
517226633Sdim    { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm,    TB_ALIGN_16 },
518234353Sdim    { X86::VPABSBrr128,     X86::VPABSBrm128,         TB_ALIGN_16 },
519234353Sdim    { X86::VPABSDrr128,     X86::VPABSDrm128,         TB_ALIGN_16 },
520234353Sdim    { X86::VPABSWrr128,     X86::VPABSWrm128,         TB_ALIGN_16 },
521234353Sdim    { X86::VPERMILPDri,     X86::VPERMILPDmi,         TB_ALIGN_16 },
522234353Sdim    { X86::VPERMILPSri,     X86::VPERMILPSmi,         TB_ALIGN_16 },
523226633Sdim    { X86::VPSHUFDri,       X86::VPSHUFDmi,           TB_ALIGN_16 },
524226633Sdim    { X86::VPSHUFHWri,      X86::VPSHUFHWmi,          TB_ALIGN_16 },
525226633Sdim    { X86::VPSHUFLWri,      X86::VPSHUFLWmi,          TB_ALIGN_16 },
526226633Sdim    { X86::VRCPPSr,         X86::VRCPPSm,             TB_ALIGN_16 },
527226633Sdim    { X86::VRCPPSr_Int,     X86::VRCPPSm_Int,         TB_ALIGN_16 },
528226633Sdim    { X86::VRSQRTPSr,       X86::VRSQRTPSm,           TB_ALIGN_16 },
529226633Sdim    { X86::VRSQRTPSr_Int,   X86::VRSQRTPSm_Int,       TB_ALIGN_16 },
530226633Sdim    { X86::VSQRTPDr,        X86::VSQRTPDm,            TB_ALIGN_16 },
531226633Sdim    { X86::VSQRTPDr_Int,    X86::VSQRTPDm_Int,        TB_ALIGN_16 },
532226633Sdim    { X86::VSQRTPSr,        X86::VSQRTPSm,            TB_ALIGN_16 },
533226633Sdim    { X86::VSQRTPSr_Int,    X86::VSQRTPSm_Int,        TB_ALIGN_16 },
534226633Sdim    { X86::VUCOMISDrr,      X86::VUCOMISDrm,          0 },
535226633Sdim    { X86::VUCOMISSrr,      X86::VUCOMISSrm,          0 },
536239462Sdim    { X86::VBROADCASTSSrr,  X86::VBROADCASTSSrm,      TB_NO_REVERSE },
537239462Sdim
538226633Sdim    // AVX 256-bit foldable instructions
539226633Sdim    { X86::VMOVAPDYrr,      X86::VMOVAPDYrm,          TB_ALIGN_32 },
540226633Sdim    { X86::VMOVAPSYrr,      X86::VMOVAPSYrm,          TB_ALIGN_32 },
541234353Sdim    { X86::VMOVDQAYrr,      X86::VMOVDQAYrm,          TB_ALIGN_32 },
542226633Sdim    { X86::VMOVUPDYrr,      X86::VMOVUPDYrm,          0 },
543234353Sdim    { X86::VMOVUPSYrr,      X86::VMOVUPSYrm,          0 },
544234353Sdim    { X86::VPERMILPDYri,    X86::VPERMILPDYmi,        TB_ALIGN_32 },
545234353Sdim    { X86::VPERMILPSYri,    X86::VPERMILPSYmi,        TB_ALIGN_32 },
546239462Sdim
547234353Sdim    // AVX2 foldable instructions
548234353Sdim    { X86::VPABSBrr256,     X86::VPABSBrm256,         TB_ALIGN_32 },
549234353Sdim    { X86::VPABSDrr256,     X86::VPABSDrm256,         TB_ALIGN_32 },
550234353Sdim    { X86::VPABSWrr256,     X86::VPABSWrm256,         TB_ALIGN_32 },
551234353Sdim    { X86::VPSHUFDYri,      X86::VPSHUFDYmi,          TB_ALIGN_32 },
552234353Sdim    { X86::VPSHUFHWYri,     X86::VPSHUFHWYmi,         TB_ALIGN_32 },
553234353Sdim    { X86::VPSHUFLWYri,     X86::VPSHUFLWYmi,         TB_ALIGN_32 },
554234353Sdim    { X86::VRCPPSYr,        X86::VRCPPSYm,            TB_ALIGN_32 },
555234353Sdim    { X86::VRCPPSYr_Int,    X86::VRCPPSYm_Int,        TB_ALIGN_32 },
556234353Sdim    { X86::VRSQRTPSYr,      X86::VRSQRTPSYm,          TB_ALIGN_32 },
557234353Sdim    { X86::VRSQRTPSYr_Int,  X86::VRSQRTPSYm_Int,      TB_ALIGN_32 },
558234353Sdim    { X86::VSQRTPDYr,       X86::VSQRTPDYm,           TB_ALIGN_32 },
559234353Sdim    { X86::VSQRTPDYr_Int,   X86::VSQRTPDYm_Int,       TB_ALIGN_32 },
560234353Sdim    { X86::VSQRTPSYr,       X86::VSQRTPSYm,           TB_ALIGN_32 },
561234353Sdim    { X86::VSQRTPSYr_Int,   X86::VSQRTPSYm_Int,       TB_ALIGN_32 },
562239462Sdim    { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm,     TB_NO_REVERSE },
563239462Sdim    { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm,     TB_NO_REVERSE },
564243830Sdim
565243830Sdim    // BMI/BMI2 foldable instructions
566243830Sdim    { X86::RORX32ri,        X86::RORX32mi,            0 },
567243830Sdim    { X86::RORX64ri,        X86::RORX64mi,            0 },
568243830Sdim    { X86::SARX32rr,        X86::SARX32rm,            0 },
569243830Sdim    { X86::SARX64rr,        X86::SARX64rm,            0 },
570243830Sdim    { X86::SHRX32rr,        X86::SHRX32rm,            0 },
571243830Sdim    { X86::SHRX64rr,        X86::SHRX64rm,            0 },
572243830Sdim    { X86::SHLX32rr,        X86::SHLX32rm,            0 },
573243830Sdim    { X86::SHLX64rr,        X86::SHLX64rm,            0 },
574193323Sed  };
575193323Sed
576193323Sed  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
577234353Sdim    unsigned RegOp = OpTbl1[i].RegOp;
578234353Sdim    unsigned MemOp = OpTbl1[i].MemOp;
579234353Sdim    unsigned Flags = OpTbl1[i].Flags;
580226633Sdim    AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
581226633Sdim                  RegOp, MemOp,
582226633Sdim                  // Index 1, folded load
583226633Sdim                  Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
584193323Sed  }
585193323Sed
586234353Sdim  static const X86OpTblEntry OpTbl2[] = {
587226633Sdim    { X86::ADC32rr,         X86::ADC32rm,       0 },
588226633Sdim    { X86::ADC64rr,         X86::ADC64rm,       0 },
589226633Sdim    { X86::ADD16rr,         X86::ADD16rm,       0 },
590226633Sdim    { X86::ADD16rr_DB,      X86::ADD16rm,       TB_NO_REVERSE },
591226633Sdim    { X86::ADD32rr,         X86::ADD32rm,       0 },
592226633Sdim    { X86::ADD32rr_DB,      X86::ADD32rm,       TB_NO_REVERSE },
593226633Sdim    { X86::ADD64rr,         X86::ADD64rm,       0 },
594226633Sdim    { X86::ADD64rr_DB,      X86::ADD64rm,       TB_NO_REVERSE },
595226633Sdim    { X86::ADD8rr,          X86::ADD8rm,        0 },
596226633Sdim    { X86::ADDPDrr,         X86::ADDPDrm,       TB_ALIGN_16 },
597226633Sdim    { X86::ADDPSrr,         X86::ADDPSrm,       TB_ALIGN_16 },
598226633Sdim    { X86::ADDSDrr,         X86::ADDSDrm,       0 },
599226633Sdim    { X86::ADDSSrr,         X86::ADDSSrm,       0 },
600226633Sdim    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm,    TB_ALIGN_16 },
601226633Sdim    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm,    TB_ALIGN_16 },
602226633Sdim    { X86::AND16rr,         X86::AND16rm,       0 },
603226633Sdim    { X86::AND32rr,         X86::AND32rm,       0 },
604226633Sdim    { X86::AND64rr,         X86::AND64rm,       0 },
605226633Sdim    { X86::AND8rr,          X86::AND8rm,        0 },
606226633Sdim    { X86::ANDNPDrr,        X86::ANDNPDrm,      TB_ALIGN_16 },
607226633Sdim    { X86::ANDNPSrr,        X86::ANDNPSrm,      TB_ALIGN_16 },
608226633Sdim    { X86::ANDPDrr,         X86::ANDPDrm,       TB_ALIGN_16 },
609226633Sdim    { X86::ANDPSrr,         X86::ANDPSrm,       TB_ALIGN_16 },
610234353Sdim    { X86::BLENDPDrri,      X86::BLENDPDrmi,    TB_ALIGN_16 },
611234353Sdim    { X86::BLENDPSrri,      X86::BLENDPSrmi,    TB_ALIGN_16 },
612234353Sdim    { X86::BLENDVPDrr0,     X86::BLENDVPDrm0,   TB_ALIGN_16 },
613234353Sdim    { X86::BLENDVPSrr0,     X86::BLENDVPSrm0,   TB_ALIGN_16 },
614226633Sdim    { X86::CMOVA16rr,       X86::CMOVA16rm,     0 },
615226633Sdim    { X86::CMOVA32rr,       X86::CMOVA32rm,     0 },
616226633Sdim    { X86::CMOVA64rr,       X86::CMOVA64rm,     0 },
617226633Sdim    { X86::CMOVAE16rr,      X86::CMOVAE16rm,    0 },
618226633Sdim    { X86::CMOVAE32rr,      X86::CMOVAE32rm,    0 },
619226633Sdim    { X86::CMOVAE64rr,      X86::CMOVAE64rm,    0 },
620226633Sdim    { X86::CMOVB16rr,       X86::CMOVB16rm,     0 },
621226633Sdim    { X86::CMOVB32rr,       X86::CMOVB32rm,     0 },
622226633Sdim    { X86::CMOVB64rr,       X86::CMOVB64rm,     0 },
623226633Sdim    { X86::CMOVBE16rr,      X86::CMOVBE16rm,    0 },
624226633Sdim    { X86::CMOVBE32rr,      X86::CMOVBE32rm,    0 },
625226633Sdim    { X86::CMOVBE64rr,      X86::CMOVBE64rm,    0 },
626226633Sdim    { X86::CMOVE16rr,       X86::CMOVE16rm,     0 },
627226633Sdim    { X86::CMOVE32rr,       X86::CMOVE32rm,     0 },
628226633Sdim    { X86::CMOVE64rr,       X86::CMOVE64rm,     0 },
629226633Sdim    { X86::CMOVG16rr,       X86::CMOVG16rm,     0 },
630226633Sdim    { X86::CMOVG32rr,       X86::CMOVG32rm,     0 },
631226633Sdim    { X86::CMOVG64rr,       X86::CMOVG64rm,     0 },
632226633Sdim    { X86::CMOVGE16rr,      X86::CMOVGE16rm,    0 },
633226633Sdim    { X86::CMOVGE32rr,      X86::CMOVGE32rm,    0 },
634226633Sdim    { X86::CMOVGE64rr,      X86::CMOVGE64rm,    0 },
635226633Sdim    { X86::CMOVL16rr,       X86::CMOVL16rm,     0 },
636226633Sdim    { X86::CMOVL32rr,       X86::CMOVL32rm,     0 },
637226633Sdim    { X86::CMOVL64rr,       X86::CMOVL64rm,     0 },
638226633Sdim    { X86::CMOVLE16rr,      X86::CMOVLE16rm,    0 },
639226633Sdim    { X86::CMOVLE32rr,      X86::CMOVLE32rm,    0 },
640226633Sdim    { X86::CMOVLE64rr,      X86::CMOVLE64rm,    0 },
641226633Sdim    { X86::CMOVNE16rr,      X86::CMOVNE16rm,    0 },
642226633Sdim    { X86::CMOVNE32rr,      X86::CMOVNE32rm,    0 },
643226633Sdim    { X86::CMOVNE64rr,      X86::CMOVNE64rm,    0 },
644226633Sdim    { X86::CMOVNO16rr,      X86::CMOVNO16rm,    0 },
645226633Sdim    { X86::CMOVNO32rr,      X86::CMOVNO32rm,    0 },
646226633Sdim    { X86::CMOVNO64rr,      X86::CMOVNO64rm,    0 },
647226633Sdim    { X86::CMOVNP16rr,      X86::CMOVNP16rm,    0 },
648226633Sdim    { X86::CMOVNP32rr,      X86::CMOVNP32rm,    0 },
649226633Sdim    { X86::CMOVNP64rr,      X86::CMOVNP64rm,    0 },
650226633Sdim    { X86::CMOVNS16rr,      X86::CMOVNS16rm,    0 },
651226633Sdim    { X86::CMOVNS32rr,      X86::CMOVNS32rm,    0 },
652226633Sdim    { X86::CMOVNS64rr,      X86::CMOVNS64rm,    0 },
653226633Sdim    { X86::CMOVO16rr,       X86::CMOVO16rm,     0 },
654226633Sdim    { X86::CMOVO32rr,       X86::CMOVO32rm,     0 },
655226633Sdim    { X86::CMOVO64rr,       X86::CMOVO64rm,     0 },
656226633Sdim    { X86::CMOVP16rr,       X86::CMOVP16rm,     0 },
657226633Sdim    { X86::CMOVP32rr,       X86::CMOVP32rm,     0 },
658226633Sdim    { X86::CMOVP64rr,       X86::CMOVP64rm,     0 },
659226633Sdim    { X86::CMOVS16rr,       X86::CMOVS16rm,     0 },
660226633Sdim    { X86::CMOVS32rr,       X86::CMOVS32rm,     0 },
661226633Sdim    { X86::CMOVS64rr,       X86::CMOVS64rm,     0 },
662226633Sdim    { X86::CMPPDrri,        X86::CMPPDrmi,      TB_ALIGN_16 },
663226633Sdim    { X86::CMPPSrri,        X86::CMPPSrmi,      TB_ALIGN_16 },
664226633Sdim    { X86::CMPSDrr,         X86::CMPSDrm,       0 },
665226633Sdim    { X86::CMPSSrr,         X86::CMPSSrm,       0 },
666226633Sdim    { X86::DIVPDrr,         X86::DIVPDrm,       TB_ALIGN_16 },
667226633Sdim    { X86::DIVPSrr,         X86::DIVPSrm,       TB_ALIGN_16 },
668226633Sdim    { X86::DIVSDrr,         X86::DIVSDrm,       0 },
669226633Sdim    { X86::DIVSSrr,         X86::DIVSSrm,       0 },
670226633Sdim    { X86::FsANDNPDrr,      X86::FsANDNPDrm,    TB_ALIGN_16 },
671226633Sdim    { X86::FsANDNPSrr,      X86::FsANDNPSrm,    TB_ALIGN_16 },
672226633Sdim    { X86::FsANDPDrr,       X86::FsANDPDrm,     TB_ALIGN_16 },
673226633Sdim    { X86::FsANDPSrr,       X86::FsANDPSrm,     TB_ALIGN_16 },
674226633Sdim    { X86::FsORPDrr,        X86::FsORPDrm,      TB_ALIGN_16 },
675226633Sdim    { X86::FsORPSrr,        X86::FsORPSrm,      TB_ALIGN_16 },
676226633Sdim    { X86::FsXORPDrr,       X86::FsXORPDrm,     TB_ALIGN_16 },
677226633Sdim    { X86::FsXORPSrr,       X86::FsXORPSrm,     TB_ALIGN_16 },
678226633Sdim    { X86::HADDPDrr,        X86::HADDPDrm,      TB_ALIGN_16 },
679226633Sdim    { X86::HADDPSrr,        X86::HADDPSrm,      TB_ALIGN_16 },
680226633Sdim    { X86::HSUBPDrr,        X86::HSUBPDrm,      TB_ALIGN_16 },
681226633Sdim    { X86::HSUBPSrr,        X86::HSUBPSrm,      TB_ALIGN_16 },
682226633Sdim    { X86::IMUL16rr,        X86::IMUL16rm,      0 },
683226633Sdim    { X86::IMUL32rr,        X86::IMUL32rm,      0 },
684226633Sdim    { X86::IMUL64rr,        X86::IMUL64rm,      0 },
685226633Sdim    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm,   0 },
686226633Sdim    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm,   0 },
687239462Sdim    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm,      0 },
688239462Sdim    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm,    0 },
689239462Sdim    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm,      0 },
690239462Sdim    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm,    0 },
691239462Sdim    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm,      0 },
692239462Sdim    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm,      0 },
693226633Sdim    { X86::MAXPDrr,         X86::MAXPDrm,       TB_ALIGN_16 },
694226633Sdim    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int,   TB_ALIGN_16 },
695226633Sdim    { X86::MAXPSrr,         X86::MAXPSrm,       TB_ALIGN_16 },
696226633Sdim    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int,   TB_ALIGN_16 },
697226633Sdim    { X86::MAXSDrr,         X86::MAXSDrm,       0 },
698226633Sdim    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int,   0 },
699226633Sdim    { X86::MAXSSrr,         X86::MAXSSrm,       0 },
700226633Sdim    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int,   0 },
701226633Sdim    { X86::MINPDrr,         X86::MINPDrm,       TB_ALIGN_16 },
702226633Sdim    { X86::MINPDrr_Int,     X86::MINPDrm_Int,   TB_ALIGN_16 },
703226633Sdim    { X86::MINPSrr,         X86::MINPSrm,       TB_ALIGN_16 },
704226633Sdim    { X86::MINPSrr_Int,     X86::MINPSrm_Int,   TB_ALIGN_16 },
705226633Sdim    { X86::MINSDrr,         X86::MINSDrm,       0 },
706226633Sdim    { X86::MINSDrr_Int,     X86::MINSDrm_Int,   0 },
707226633Sdim    { X86::MINSSrr,         X86::MINSSrm,       0 },
708226633Sdim    { X86::MINSSrr_Int,     X86::MINSSrm_Int,   0 },
709234353Sdim    { X86::MPSADBWrri,      X86::MPSADBWrmi,    TB_ALIGN_16 },
710226633Sdim    { X86::MULPDrr,         X86::MULPDrm,       TB_ALIGN_16 },
711226633Sdim    { X86::MULPSrr,         X86::MULPSrm,       TB_ALIGN_16 },
712226633Sdim    { X86::MULSDrr,         X86::MULSDrm,       0 },
713226633Sdim    { X86::MULSSrr,         X86::MULSSrm,       0 },
714226633Sdim    { X86::OR16rr,          X86::OR16rm,        0 },
715226633Sdim    { X86::OR32rr,          X86::OR32rm,        0 },
716226633Sdim    { X86::OR64rr,          X86::OR64rm,        0 },
717226633Sdim    { X86::OR8rr,           X86::OR8rm,         0 },
718226633Sdim    { X86::ORPDrr,          X86::ORPDrm,        TB_ALIGN_16 },
719226633Sdim    { X86::ORPSrr,          X86::ORPSrm,        TB_ALIGN_16 },
720226633Sdim    { X86::PACKSSDWrr,      X86::PACKSSDWrm,    TB_ALIGN_16 },
721226633Sdim    { X86::PACKSSWBrr,      X86::PACKSSWBrm,    TB_ALIGN_16 },
722234353Sdim    { X86::PACKUSDWrr,      X86::PACKUSDWrm,    TB_ALIGN_16 },
723226633Sdim    { X86::PACKUSWBrr,      X86::PACKUSWBrm,    TB_ALIGN_16 },
724226633Sdim    { X86::PADDBrr,         X86::PADDBrm,       TB_ALIGN_16 },
725226633Sdim    { X86::PADDDrr,         X86::PADDDrm,       TB_ALIGN_16 },
726226633Sdim    { X86::PADDQrr,         X86::PADDQrm,       TB_ALIGN_16 },
727226633Sdim    { X86::PADDSBrr,        X86::PADDSBrm,      TB_ALIGN_16 },
728226633Sdim    { X86::PADDSWrr,        X86::PADDSWrm,      TB_ALIGN_16 },
729234353Sdim    { X86::PADDUSBrr,       X86::PADDUSBrm,     TB_ALIGN_16 },
730234353Sdim    { X86::PADDUSWrr,       X86::PADDUSWrm,     TB_ALIGN_16 },
731226633Sdim    { X86::PADDWrr,         X86::PADDWrm,       TB_ALIGN_16 },
732234353Sdim    { X86::PALIGNR128rr,    X86::PALIGNR128rm,  TB_ALIGN_16 },
733226633Sdim    { X86::PANDNrr,         X86::PANDNrm,       TB_ALIGN_16 },
734226633Sdim    { X86::PANDrr,          X86::PANDrm,        TB_ALIGN_16 },
735226633Sdim    { X86::PAVGBrr,         X86::PAVGBrm,       TB_ALIGN_16 },
736226633Sdim    { X86::PAVGWrr,         X86::PAVGWrm,       TB_ALIGN_16 },
737234353Sdim    { X86::PBLENDWrri,      X86::PBLENDWrmi,    TB_ALIGN_16 },
738226633Sdim    { X86::PCMPEQBrr,       X86::PCMPEQBrm,     TB_ALIGN_16 },
739226633Sdim    { X86::PCMPEQDrr,       X86::PCMPEQDrm,     TB_ALIGN_16 },
740234353Sdim    { X86::PCMPEQQrr,       X86::PCMPEQQrm,     TB_ALIGN_16 },
741226633Sdim    { X86::PCMPEQWrr,       X86::PCMPEQWrm,     TB_ALIGN_16 },
742226633Sdim    { X86::PCMPGTBrr,       X86::PCMPGTBrm,     TB_ALIGN_16 },
743226633Sdim    { X86::PCMPGTDrr,       X86::PCMPGTDrm,     TB_ALIGN_16 },
744234353Sdim    { X86::PCMPGTQrr,       X86::PCMPGTQrm,     TB_ALIGN_16 },
745226633Sdim    { X86::PCMPGTWrr,       X86::PCMPGTWrm,     TB_ALIGN_16 },
746234353Sdim    { X86::PHADDDrr,        X86::PHADDDrm,      TB_ALIGN_16 },
747234353Sdim    { X86::PHADDWrr,        X86::PHADDWrm,      TB_ALIGN_16 },
748234353Sdim    { X86::PHADDSWrr128,    X86::PHADDSWrm128,  TB_ALIGN_16 },
749234353Sdim    { X86::PHSUBDrr,        X86::PHSUBDrm,      TB_ALIGN_16 },
750234353Sdim    { X86::PHSUBSWrr128,    X86::PHSUBSWrm128,  TB_ALIGN_16 },
751234353Sdim    { X86::PHSUBWrr,        X86::PHSUBWrm,      TB_ALIGN_16 },
752226633Sdim    { X86::PINSRWrri,       X86::PINSRWrmi,     TB_ALIGN_16 },
753234353Sdim    { X86::PMADDUBSWrr128,  X86::PMADDUBSWrm128, TB_ALIGN_16 },
754226633Sdim    { X86::PMADDWDrr,       X86::PMADDWDrm,     TB_ALIGN_16 },
755226633Sdim    { X86::PMAXSWrr,        X86::PMAXSWrm,      TB_ALIGN_16 },
756226633Sdim    { X86::PMAXUBrr,        X86::PMAXUBrm,      TB_ALIGN_16 },
757226633Sdim    { X86::PMINSWrr,        X86::PMINSWrm,      TB_ALIGN_16 },
758226633Sdim    { X86::PMINUBrr,        X86::PMINUBrm,      TB_ALIGN_16 },
759226633Sdim    { X86::PMULDQrr,        X86::PMULDQrm,      TB_ALIGN_16 },
760234353Sdim    { X86::PMULHRSWrr128,   X86::PMULHRSWrm128, TB_ALIGN_16 },
761226633Sdim    { X86::PMULHUWrr,       X86::PMULHUWrm,     TB_ALIGN_16 },
762226633Sdim    { X86::PMULHWrr,        X86::PMULHWrm,      TB_ALIGN_16 },
763226633Sdim    { X86::PMULLDrr,        X86::PMULLDrm,      TB_ALIGN_16 },
764226633Sdim    { X86::PMULLWrr,        X86::PMULLWrm,      TB_ALIGN_16 },
765226633Sdim    { X86::PMULUDQrr,       X86::PMULUDQrm,     TB_ALIGN_16 },
766226633Sdim    { X86::PORrr,           X86::PORrm,         TB_ALIGN_16 },
767226633Sdim    { X86::PSADBWrr,        X86::PSADBWrm,      TB_ALIGN_16 },
768234353Sdim    { X86::PSHUFBrr,        X86::PSHUFBrm,      TB_ALIGN_16 },
769234353Sdim    { X86::PSIGNBrr,        X86::PSIGNBrm,      TB_ALIGN_16 },
770234353Sdim    { X86::PSIGNWrr,        X86::PSIGNWrm,      TB_ALIGN_16 },
771234353Sdim    { X86::PSIGNDrr,        X86::PSIGNDrm,      TB_ALIGN_16 },
772226633Sdim    { X86::PSLLDrr,         X86::PSLLDrm,       TB_ALIGN_16 },
773226633Sdim    { X86::PSLLQrr,         X86::PSLLQrm,       TB_ALIGN_16 },
774226633Sdim    { X86::PSLLWrr,         X86::PSLLWrm,       TB_ALIGN_16 },
775226633Sdim    { X86::PSRADrr,         X86::PSRADrm,       TB_ALIGN_16 },
776226633Sdim    { X86::PSRAWrr,         X86::PSRAWrm,       TB_ALIGN_16 },
777226633Sdim    { X86::PSRLDrr,         X86::PSRLDrm,       TB_ALIGN_16 },
778226633Sdim    { X86::PSRLQrr,         X86::PSRLQrm,       TB_ALIGN_16 },
779226633Sdim    { X86::PSRLWrr,         X86::PSRLWrm,       TB_ALIGN_16 },
780226633Sdim    { X86::PSUBBrr,         X86::PSUBBrm,       TB_ALIGN_16 },
781226633Sdim    { X86::PSUBDrr,         X86::PSUBDrm,       TB_ALIGN_16 },
782226633Sdim    { X86::PSUBSBrr,        X86::PSUBSBrm,      TB_ALIGN_16 },
783226633Sdim    { X86::PSUBSWrr,        X86::PSUBSWrm,      TB_ALIGN_16 },
784226633Sdim    { X86::PSUBWrr,         X86::PSUBWrm,       TB_ALIGN_16 },
785226633Sdim    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm,   TB_ALIGN_16 },
786226633Sdim    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm,   TB_ALIGN_16 },
787226633Sdim    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm,  TB_ALIGN_16 },
788226633Sdim    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm,   TB_ALIGN_16 },
789226633Sdim    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm,   TB_ALIGN_16 },
790226633Sdim    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm,   TB_ALIGN_16 },
791226633Sdim    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm,  TB_ALIGN_16 },
792226633Sdim    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm,   TB_ALIGN_16 },
793226633Sdim    { X86::PXORrr,          X86::PXORrm,        TB_ALIGN_16 },
794226633Sdim    { X86::SBB32rr,         X86::SBB32rm,       0 },
795226633Sdim    { X86::SBB64rr,         X86::SBB64rm,       0 },
796226633Sdim    { X86::SHUFPDrri,       X86::SHUFPDrmi,     TB_ALIGN_16 },
797226633Sdim    { X86::SHUFPSrri,       X86::SHUFPSrmi,     TB_ALIGN_16 },
798226633Sdim    { X86::SUB16rr,         X86::SUB16rm,       0 },
799226633Sdim    { X86::SUB32rr,         X86::SUB32rm,       0 },
800226633Sdim    { X86::SUB64rr,         X86::SUB64rm,       0 },
801226633Sdim    { X86::SUB8rr,          X86::SUB8rm,        0 },
802226633Sdim    { X86::SUBPDrr,         X86::SUBPDrm,       TB_ALIGN_16 },
803226633Sdim    { X86::SUBPSrr,         X86::SUBPSrm,       TB_ALIGN_16 },
804226633Sdim    { X86::SUBSDrr,         X86::SUBSDrm,       0 },
805226633Sdim    { X86::SUBSSrr,         X86::SUBSSrm,       0 },
806193323Sed    // FIXME: TEST*rr -> swapped operand of TEST*mr.
807226633Sdim    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm,    TB_ALIGN_16 },
808226633Sdim    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm,    TB_ALIGN_16 },
809226633Sdim    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm,    TB_ALIGN_16 },
810226633Sdim    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm,    TB_ALIGN_16 },
811226633Sdim    { X86::XOR16rr,         X86::XOR16rm,       0 },
812226633Sdim    { X86::XOR32rr,         X86::XOR32rm,       0 },
813226633Sdim    { X86::XOR64rr,         X86::XOR64rm,       0 },
814226633Sdim    { X86::XOR8rr,          X86::XOR8rm,        0 },
815226633Sdim    { X86::XORPDrr,         X86::XORPDrm,       TB_ALIGN_16 },
816226633Sdim    { X86::XORPSrr,         X86::XORPSrm,       TB_ALIGN_16 },
817226633Sdim    // AVX 128-bit versions of foldable instructions
818226633Sdim    { X86::VCVTSD2SSrr,       X86::VCVTSD2SSrm,        0 },
819226633Sdim    { X86::Int_VCVTSD2SSrr,   X86::Int_VCVTSD2SSrm,    0 },
820226633Sdim    { X86::VCVTSI2SD64rr,     X86::VCVTSI2SD64rm,      0 },
821226633Sdim    { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm,  0 },
822226633Sdim    { X86::VCVTSI2SDrr,       X86::VCVTSI2SDrm,        0 },
823226633Sdim    { X86::Int_VCVTSI2SDrr,   X86::Int_VCVTSI2SDrm,    0 },
824226633Sdim    { X86::VCVTSI2SS64rr,     X86::VCVTSI2SS64rm,      0 },
825226633Sdim    { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm,  0 },
826226633Sdim    { X86::VCVTSI2SSrr,       X86::VCVTSI2SSrm,        0 },
827226633Sdim    { X86::Int_VCVTSI2SSrr,   X86::Int_VCVTSI2SSrm,    0 },
828226633Sdim    { X86::VCVTSS2SDrr,       X86::VCVTSS2SDrm,        0 },
829226633Sdim    { X86::Int_VCVTSS2SDrr,   X86::Int_VCVTSS2SDrm,    0 },
830239462Sdim    { X86::VCVTTPD2DQrr,      X86::VCVTTPD2DQXrm,      TB_ALIGN_16 },
831226633Sdim    { X86::VCVTTPS2DQrr,      X86::VCVTTPS2DQrm,       TB_ALIGN_16 },
832226633Sdim    { X86::VRSQRTSSr,         X86::VRSQRTSSm,          0 },
833226633Sdim    { X86::VSQRTSDr,          X86::VSQRTSDm,           0 },
834226633Sdim    { X86::VSQRTSSr,          X86::VSQRTSSm,           0 },
835226633Sdim    { X86::VADDPDrr,          X86::VADDPDrm,           TB_ALIGN_16 },
836226633Sdim    { X86::VADDPSrr,          X86::VADDPSrm,           TB_ALIGN_16 },
837226633Sdim    { X86::VADDSDrr,          X86::VADDSDrm,           0 },
838226633Sdim    { X86::VADDSSrr,          X86::VADDSSrm,           0 },
839226633Sdim    { X86::VADDSUBPDrr,       X86::VADDSUBPDrm,        TB_ALIGN_16 },
840226633Sdim    { X86::VADDSUBPSrr,       X86::VADDSUBPSrm,        TB_ALIGN_16 },
841226633Sdim    { X86::VANDNPDrr,         X86::VANDNPDrm,          TB_ALIGN_16 },
842226633Sdim    { X86::VANDNPSrr,         X86::VANDNPSrm,          TB_ALIGN_16 },
843226633Sdim    { X86::VANDPDrr,          X86::VANDPDrm,           TB_ALIGN_16 },
844226633Sdim    { X86::VANDPSrr,          X86::VANDPSrm,           TB_ALIGN_16 },
845234353Sdim    { X86::VBLENDPDrri,       X86::VBLENDPDrmi,        TB_ALIGN_16 },
846234353Sdim    { X86::VBLENDPSrri,       X86::VBLENDPSrmi,        TB_ALIGN_16 },
847234353Sdim    { X86::VBLENDVPDrr,       X86::VBLENDVPDrm,        TB_ALIGN_16 },
848234353Sdim    { X86::VBLENDVPSrr,       X86::VBLENDVPSrm,        TB_ALIGN_16 },
849226633Sdim    { X86::VCMPPDrri,         X86::VCMPPDrmi,          TB_ALIGN_16 },
850226633Sdim    { X86::VCMPPSrri,         X86::VCMPPSrmi,          TB_ALIGN_16 },
851226633Sdim    { X86::VCMPSDrr,          X86::VCMPSDrm,           0 },
852226633Sdim    { X86::VCMPSSrr,          X86::VCMPSSrm,           0 },
853226633Sdim    { X86::VDIVPDrr,          X86::VDIVPDrm,           TB_ALIGN_16 },
854226633Sdim    { X86::VDIVPSrr,          X86::VDIVPSrm,           TB_ALIGN_16 },
855226633Sdim    { X86::VDIVSDrr,          X86::VDIVSDrm,           0 },
856226633Sdim    { X86::VDIVSSrr,          X86::VDIVSSrm,           0 },
857226633Sdim    { X86::VFsANDNPDrr,       X86::VFsANDNPDrm,        TB_ALIGN_16 },
858226633Sdim    { X86::VFsANDNPSrr,       X86::VFsANDNPSrm,        TB_ALIGN_16 },
859226633Sdim    { X86::VFsANDPDrr,        X86::VFsANDPDrm,         TB_ALIGN_16 },
860226633Sdim    { X86::VFsANDPSrr,        X86::VFsANDPSrm,         TB_ALIGN_16 },
861226633Sdim    { X86::VFsORPDrr,         X86::VFsORPDrm,          TB_ALIGN_16 },
862226633Sdim    { X86::VFsORPSrr,         X86::VFsORPSrm,          TB_ALIGN_16 },
863226633Sdim    { X86::VFsXORPDrr,        X86::VFsXORPDrm,         TB_ALIGN_16 },
864226633Sdim    { X86::VFsXORPSrr,        X86::VFsXORPSrm,         TB_ALIGN_16 },
865226633Sdim    { X86::VHADDPDrr,         X86::VHADDPDrm,          TB_ALIGN_16 },
866226633Sdim    { X86::VHADDPSrr,         X86::VHADDPSrm,          TB_ALIGN_16 },
867226633Sdim    { X86::VHSUBPDrr,         X86::VHSUBPDrm,          TB_ALIGN_16 },
868226633Sdim    { X86::VHSUBPSrr,         X86::VHSUBPSrm,          TB_ALIGN_16 },
869226633Sdim    { X86::Int_VCMPSDrr,      X86::Int_VCMPSDrm,       0 },
870226633Sdim    { X86::Int_VCMPSSrr,      X86::Int_VCMPSSrm,       0 },
871226633Sdim    { X86::VMAXPDrr,          X86::VMAXPDrm,           TB_ALIGN_16 },
872226633Sdim    { X86::VMAXPDrr_Int,      X86::VMAXPDrm_Int,       TB_ALIGN_16 },
873226633Sdim    { X86::VMAXPSrr,          X86::VMAXPSrm,           TB_ALIGN_16 },
874226633Sdim    { X86::VMAXPSrr_Int,      X86::VMAXPSrm_Int,       TB_ALIGN_16 },
875226633Sdim    { X86::VMAXSDrr,          X86::VMAXSDrm,           0 },
876226633Sdim    { X86::VMAXSDrr_Int,      X86::VMAXSDrm_Int,       0 },
877226633Sdim    { X86::VMAXSSrr,          X86::VMAXSSrm,           0 },
878226633Sdim    { X86::VMAXSSrr_Int,      X86::VMAXSSrm_Int,       0 },
879226633Sdim    { X86::VMINPDrr,          X86::VMINPDrm,           TB_ALIGN_16 },
880226633Sdim    { X86::VMINPDrr_Int,      X86::VMINPDrm_Int,       TB_ALIGN_16 },
881226633Sdim    { X86::VMINPSrr,          X86::VMINPSrm,           TB_ALIGN_16 },
882226633Sdim    { X86::VMINPSrr_Int,      X86::VMINPSrm_Int,       TB_ALIGN_16 },
883226633Sdim    { X86::VMINSDrr,          X86::VMINSDrm,           0 },
884226633Sdim    { X86::VMINSDrr_Int,      X86::VMINSDrm_Int,       0 },
885226633Sdim    { X86::VMINSSrr,          X86::VMINSSrm,           0 },
886226633Sdim    { X86::VMINSSrr_Int,      X86::VMINSSrm_Int,       0 },
887234353Sdim    { X86::VMPSADBWrri,       X86::VMPSADBWrmi,        TB_ALIGN_16 },
888226633Sdim    { X86::VMULPDrr,          X86::VMULPDrm,           TB_ALIGN_16 },
889226633Sdim    { X86::VMULPSrr,          X86::VMULPSrm,           TB_ALIGN_16 },
890226633Sdim    { X86::VMULSDrr,          X86::VMULSDrm,           0 },
891226633Sdim    { X86::VMULSSrr,          X86::VMULSSrm,           0 },
892226633Sdim    { X86::VORPDrr,           X86::VORPDrm,            TB_ALIGN_16 },
893226633Sdim    { X86::VORPSrr,           X86::VORPSrm,            TB_ALIGN_16 },
894226633Sdim    { X86::VPACKSSDWrr,       X86::VPACKSSDWrm,        TB_ALIGN_16 },
895226633Sdim    { X86::VPACKSSWBrr,       X86::VPACKSSWBrm,        TB_ALIGN_16 },
896234353Sdim    { X86::VPACKUSDWrr,       X86::VPACKUSDWrm,        TB_ALIGN_16 },
897226633Sdim    { X86::VPACKUSWBrr,       X86::VPACKUSWBrm,        TB_ALIGN_16 },
898226633Sdim    { X86::VPADDBrr,          X86::VPADDBrm,           TB_ALIGN_16 },
899226633Sdim    { X86::VPADDDrr,          X86::VPADDDrm,           TB_ALIGN_16 },
900226633Sdim    { X86::VPADDQrr,          X86::VPADDQrm,           TB_ALIGN_16 },
901226633Sdim    { X86::VPADDSBrr,         X86::VPADDSBrm,          TB_ALIGN_16 },
902226633Sdim    { X86::VPADDSWrr,         X86::VPADDSWrm,          TB_ALIGN_16 },
903234353Sdim    { X86::VPADDUSBrr,        X86::VPADDUSBrm,         TB_ALIGN_16 },
904234353Sdim    { X86::VPADDUSWrr,        X86::VPADDUSWrm,         TB_ALIGN_16 },
905226633Sdim    { X86::VPADDWrr,          X86::VPADDWrm,           TB_ALIGN_16 },
906234353Sdim    { X86::VPALIGNR128rr,     X86::VPALIGNR128rm,      TB_ALIGN_16 },
907226633Sdim    { X86::VPANDNrr,          X86::VPANDNrm,           TB_ALIGN_16 },
908226633Sdim    { X86::VPANDrr,           X86::VPANDrm,            TB_ALIGN_16 },
909234353Sdim    { X86::VPAVGBrr,          X86::VPAVGBrm,           TB_ALIGN_16 },
910234353Sdim    { X86::VPAVGWrr,          X86::VPAVGWrm,           TB_ALIGN_16 },
911234353Sdim    { X86::VPBLENDWrri,       X86::VPBLENDWrmi,        TB_ALIGN_16 },
912226633Sdim    { X86::VPCMPEQBrr,        X86::VPCMPEQBrm,         TB_ALIGN_16 },
913226633Sdim    { X86::VPCMPEQDrr,        X86::VPCMPEQDrm,         TB_ALIGN_16 },
914234353Sdim    { X86::VPCMPEQQrr,        X86::VPCMPEQQrm,         TB_ALIGN_16 },
915226633Sdim    { X86::VPCMPEQWrr,        X86::VPCMPEQWrm,         TB_ALIGN_16 },
916226633Sdim    { X86::VPCMPGTBrr,        X86::VPCMPGTBrm,         TB_ALIGN_16 },
917226633Sdim    { X86::VPCMPGTDrr,        X86::VPCMPGTDrm,         TB_ALIGN_16 },
918234353Sdim    { X86::VPCMPGTQrr,        X86::VPCMPGTQrm,         TB_ALIGN_16 },
919226633Sdim    { X86::VPCMPGTWrr,        X86::VPCMPGTWrm,         TB_ALIGN_16 },
920234353Sdim    { X86::VPHADDDrr,         X86::VPHADDDrm,          TB_ALIGN_16 },
921234353Sdim    { X86::VPHADDSWrr128,     X86::VPHADDSWrm128,      TB_ALIGN_16 },
922234353Sdim    { X86::VPHADDWrr,         X86::VPHADDWrm,          TB_ALIGN_16 },
923234353Sdim    { X86::VPHSUBDrr,         X86::VPHSUBDrm,          TB_ALIGN_16 },
924234353Sdim    { X86::VPHSUBSWrr128,     X86::VPHSUBSWrm128,      TB_ALIGN_16 },
925234353Sdim    { X86::VPHSUBWrr,         X86::VPHSUBWrm,          TB_ALIGN_16 },
926234353Sdim    { X86::VPERMILPDrr,       X86::VPERMILPDrm,        TB_ALIGN_16 },
927234353Sdim    { X86::VPERMILPSrr,       X86::VPERMILPSrm,        TB_ALIGN_16 },
928226633Sdim    { X86::VPINSRWrri,        X86::VPINSRWrmi,         TB_ALIGN_16 },
929234353Sdim    { X86::VPMADDUBSWrr128,   X86::VPMADDUBSWrm128,    TB_ALIGN_16 },
930226633Sdim    { X86::VPMADDWDrr,        X86::VPMADDWDrm,         TB_ALIGN_16 },
931226633Sdim    { X86::VPMAXSWrr,         X86::VPMAXSWrm,          TB_ALIGN_16 },
932226633Sdim    { X86::VPMAXUBrr,         X86::VPMAXUBrm,          TB_ALIGN_16 },
933226633Sdim    { X86::VPMINSWrr,         X86::VPMINSWrm,          TB_ALIGN_16 },
934226633Sdim    { X86::VPMINUBrr,         X86::VPMINUBrm,          TB_ALIGN_16 },
935226633Sdim    { X86::VPMULDQrr,         X86::VPMULDQrm,          TB_ALIGN_16 },
936234353Sdim    { X86::VPMULHRSWrr128,    X86::VPMULHRSWrm128,     TB_ALIGN_16 },
937226633Sdim    { X86::VPMULHUWrr,        X86::VPMULHUWrm,         TB_ALIGN_16 },
938226633Sdim    { X86::VPMULHWrr,         X86::VPMULHWrm,          TB_ALIGN_16 },
939226633Sdim    { X86::VPMULLDrr,         X86::VPMULLDrm,          TB_ALIGN_16 },
940226633Sdim    { X86::VPMULLWrr,         X86::VPMULLWrm,          TB_ALIGN_16 },
941226633Sdim    { X86::VPMULUDQrr,        X86::VPMULUDQrm,         TB_ALIGN_16 },
942226633Sdim    { X86::VPORrr,            X86::VPORrm,             TB_ALIGN_16 },
943226633Sdim    { X86::VPSADBWrr,         X86::VPSADBWrm,          TB_ALIGN_16 },
944234353Sdim    { X86::VPSHUFBrr,         X86::VPSHUFBrm,          TB_ALIGN_16 },
945234353Sdim    { X86::VPSIGNBrr,         X86::VPSIGNBrm,          TB_ALIGN_16 },
946234353Sdim    { X86::VPSIGNWrr,         X86::VPSIGNWrm,          TB_ALIGN_16 },
947234353Sdim    { X86::VPSIGNDrr,         X86::VPSIGNDrm,          TB_ALIGN_16 },
948226633Sdim    { X86::VPSLLDrr,          X86::VPSLLDrm,           TB_ALIGN_16 },
949226633Sdim    { X86::VPSLLQrr,          X86::VPSLLQrm,           TB_ALIGN_16 },
950226633Sdim    { X86::VPSLLWrr,          X86::VPSLLWrm,           TB_ALIGN_16 },
951226633Sdim    { X86::VPSRADrr,          X86::VPSRADrm,           TB_ALIGN_16 },
952226633Sdim    { X86::VPSRAWrr,          X86::VPSRAWrm,           TB_ALIGN_16 },
953226633Sdim    { X86::VPSRLDrr,          X86::VPSRLDrm,           TB_ALIGN_16 },
954226633Sdim    { X86::VPSRLQrr,          X86::VPSRLQrm,           TB_ALIGN_16 },
955226633Sdim    { X86::VPSRLWrr,          X86::VPSRLWrm,           TB_ALIGN_16 },
956226633Sdim    { X86::VPSUBBrr,          X86::VPSUBBrm,           TB_ALIGN_16 },
957226633Sdim    { X86::VPSUBDrr,          X86::VPSUBDrm,           TB_ALIGN_16 },
958226633Sdim    { X86::VPSUBSBrr,         X86::VPSUBSBrm,          TB_ALIGN_16 },
959226633Sdim    { X86::VPSUBSWrr,         X86::VPSUBSWrm,          TB_ALIGN_16 },
960226633Sdim    { X86::VPSUBWrr,          X86::VPSUBWrm,           TB_ALIGN_16 },
961226633Sdim    { X86::VPUNPCKHBWrr,      X86::VPUNPCKHBWrm,       TB_ALIGN_16 },
962226633Sdim    { X86::VPUNPCKHDQrr,      X86::VPUNPCKHDQrm,       TB_ALIGN_16 },
963226633Sdim    { X86::VPUNPCKHQDQrr,     X86::VPUNPCKHQDQrm,      TB_ALIGN_16 },
964226633Sdim    { X86::VPUNPCKHWDrr,      X86::VPUNPCKHWDrm,       TB_ALIGN_16 },
965226633Sdim    { X86::VPUNPCKLBWrr,      X86::VPUNPCKLBWrm,       TB_ALIGN_16 },
966226633Sdim    { X86::VPUNPCKLDQrr,      X86::VPUNPCKLDQrm,       TB_ALIGN_16 },
967226633Sdim    { X86::VPUNPCKLQDQrr,     X86::VPUNPCKLQDQrm,      TB_ALIGN_16 },
968226633Sdim    { X86::VPUNPCKLWDrr,      X86::VPUNPCKLWDrm,       TB_ALIGN_16 },
969226633Sdim    { X86::VPXORrr,           X86::VPXORrm,            TB_ALIGN_16 },
970226633Sdim    { X86::VSHUFPDrri,        X86::VSHUFPDrmi,         TB_ALIGN_16 },
971226633Sdim    { X86::VSHUFPSrri,        X86::VSHUFPSrmi,         TB_ALIGN_16 },
972226633Sdim    { X86::VSUBPDrr,          X86::VSUBPDrm,           TB_ALIGN_16 },
973226633Sdim    { X86::VSUBPSrr,          X86::VSUBPSrm,           TB_ALIGN_16 },
974226633Sdim    { X86::VSUBSDrr,          X86::VSUBSDrm,           0 },
975226633Sdim    { X86::VSUBSSrr,          X86::VSUBSSrm,           0 },
976226633Sdim    { X86::VUNPCKHPDrr,       X86::VUNPCKHPDrm,        TB_ALIGN_16 },
977226633Sdim    { X86::VUNPCKHPSrr,       X86::VUNPCKHPSrm,        TB_ALIGN_16 },
978226633Sdim    { X86::VUNPCKLPDrr,       X86::VUNPCKLPDrm,        TB_ALIGN_16 },
979226633Sdim    { X86::VUNPCKLPSrr,       X86::VUNPCKLPSrm,        TB_ALIGN_16 },
980226633Sdim    { X86::VXORPDrr,          X86::VXORPDrm,           TB_ALIGN_16 },
981234353Sdim    { X86::VXORPSrr,          X86::VXORPSrm,           TB_ALIGN_16 },
982234353Sdim    // AVX 256-bit foldable instructions
983234353Sdim    { X86::VADDPDYrr,         X86::VADDPDYrm,          TB_ALIGN_32 },
984234353Sdim    { X86::VADDPSYrr,         X86::VADDPSYrm,          TB_ALIGN_32 },
985234353Sdim    { X86::VADDSUBPDYrr,      X86::VADDSUBPDYrm,       TB_ALIGN_32 },
986234353Sdim    { X86::VADDSUBPSYrr,      X86::VADDSUBPSYrm,       TB_ALIGN_32 },
987234353Sdim    { X86::VANDNPDYrr,        X86::VANDNPDYrm,         TB_ALIGN_32 },
988234353Sdim    { X86::VANDNPSYrr,        X86::VANDNPSYrm,         TB_ALIGN_32 },
989234353Sdim    { X86::VANDPDYrr,         X86::VANDPDYrm,          TB_ALIGN_32 },
990234353Sdim    { X86::VANDPSYrr,         X86::VANDPSYrm,          TB_ALIGN_32 },
991234353Sdim    { X86::VBLENDPDYrri,      X86::VBLENDPDYrmi,       TB_ALIGN_32 },
992234353Sdim    { X86::VBLENDPSYrri,      X86::VBLENDPSYrmi,       TB_ALIGN_32 },
993234353Sdim    { X86::VBLENDVPDYrr,      X86::VBLENDVPDYrm,       TB_ALIGN_32 },
994234353Sdim    { X86::VBLENDVPSYrr,      X86::VBLENDVPSYrm,       TB_ALIGN_32 },
995234353Sdim    { X86::VCMPPDYrri,        X86::VCMPPDYrmi,         TB_ALIGN_32 },
996234353Sdim    { X86::VCMPPSYrri,        X86::VCMPPSYrmi,         TB_ALIGN_32 },
997234353Sdim    { X86::VDIVPDYrr,         X86::VDIVPDYrm,          TB_ALIGN_32 },
998234353Sdim    { X86::VDIVPSYrr,         X86::VDIVPSYrm,          TB_ALIGN_32 },
999234353Sdim    { X86::VHADDPDYrr,        X86::VHADDPDYrm,         TB_ALIGN_32 },
1000234353Sdim    { X86::VHADDPSYrr,        X86::VHADDPSYrm,         TB_ALIGN_32 },
1001234353Sdim    { X86::VHSUBPDYrr,        X86::VHSUBPDYrm,         TB_ALIGN_32 },
1002234353Sdim    { X86::VHSUBPSYrr,        X86::VHSUBPSYrm,         TB_ALIGN_32 },
1003234353Sdim    { X86::VINSERTF128rr,     X86::VINSERTF128rm,      TB_ALIGN_32 },
1004234353Sdim    { X86::VMAXPDYrr,         X86::VMAXPDYrm,          TB_ALIGN_32 },
1005234353Sdim    { X86::VMAXPDYrr_Int,     X86::VMAXPDYrm_Int,      TB_ALIGN_32 },
1006234353Sdim    { X86::VMAXPSYrr,         X86::VMAXPSYrm,          TB_ALIGN_32 },
1007234353Sdim    { X86::VMAXPSYrr_Int,     X86::VMAXPSYrm_Int,      TB_ALIGN_32 },
1008234353Sdim    { X86::VMINPDYrr,         X86::VMINPDYrm,          TB_ALIGN_32 },
1009234353Sdim    { X86::VMINPDYrr_Int,     X86::VMINPDYrm_Int,      TB_ALIGN_32 },
1010234353Sdim    { X86::VMINPSYrr,         X86::VMINPSYrm,          TB_ALIGN_32 },
1011234353Sdim    { X86::VMINPSYrr_Int,     X86::VMINPSYrm_Int,      TB_ALIGN_32 },
1012234353Sdim    { X86::VMULPDYrr,         X86::VMULPDYrm,          TB_ALIGN_32 },
1013234353Sdim    { X86::VMULPSYrr,         X86::VMULPSYrm,          TB_ALIGN_32 },
1014234353Sdim    { X86::VORPDYrr,          X86::VORPDYrm,           TB_ALIGN_32 },
1015234353Sdim    { X86::VORPSYrr,          X86::VORPSYrm,           TB_ALIGN_32 },
1016234353Sdim    { X86::VPERM2F128rr,      X86::VPERM2F128rm,       TB_ALIGN_32 },
1017234353Sdim    { X86::VPERMILPDYrr,      X86::VPERMILPDYrm,       TB_ALIGN_32 },
1018234353Sdim    { X86::VPERMILPSYrr,      X86::VPERMILPSYrm,       TB_ALIGN_32 },
1019234353Sdim    { X86::VSHUFPDYrri,       X86::VSHUFPDYrmi,        TB_ALIGN_32 },
1020234353Sdim    { X86::VSHUFPSYrri,       X86::VSHUFPSYrmi,        TB_ALIGN_32 },
1021234353Sdim    { X86::VSUBPDYrr,         X86::VSUBPDYrm,          TB_ALIGN_32 },
1022234353Sdim    { X86::VSUBPSYrr,         X86::VSUBPSYrm,          TB_ALIGN_32 },
1023234353Sdim    { X86::VUNPCKHPDYrr,      X86::VUNPCKHPDYrm,       TB_ALIGN_32 },
1024234353Sdim    { X86::VUNPCKHPSYrr,      X86::VUNPCKHPSYrm,       TB_ALIGN_32 },
1025234353Sdim    { X86::VUNPCKLPDYrr,      X86::VUNPCKLPDYrm,       TB_ALIGN_32 },
1026234353Sdim    { X86::VUNPCKLPSYrr,      X86::VUNPCKLPSYrm,       TB_ALIGN_32 },
1027234353Sdim    { X86::VXORPDYrr,         X86::VXORPDYrm,          TB_ALIGN_32 },
1028234353Sdim    { X86::VXORPSYrr,         X86::VXORPSYrm,          TB_ALIGN_32 },
1029234353Sdim    // AVX2 foldable instructions
1030234353Sdim    { X86::VINSERTI128rr,     X86::VINSERTI128rm,      TB_ALIGN_16 },
1031234353Sdim    { X86::VPACKSSDWYrr,      X86::VPACKSSDWYrm,       TB_ALIGN_32 },
1032234353Sdim    { X86::VPACKSSWBYrr,      X86::VPACKSSWBYrm,       TB_ALIGN_32 },
1033234353Sdim    { X86::VPACKUSDWYrr,      X86::VPACKUSDWYrm,       TB_ALIGN_32 },
1034234353Sdim    { X86::VPACKUSWBYrr,      X86::VPACKUSWBYrm,       TB_ALIGN_32 },
1035234353Sdim    { X86::VPADDBYrr,         X86::VPADDBYrm,          TB_ALIGN_32 },
1036234353Sdim    { X86::VPADDDYrr,         X86::VPADDDYrm,          TB_ALIGN_32 },
1037234353Sdim    { X86::VPADDQYrr,         X86::VPADDQYrm,          TB_ALIGN_32 },
1038234353Sdim    { X86::VPADDSBYrr,        X86::VPADDSBYrm,         TB_ALIGN_32 },
1039234353Sdim    { X86::VPADDSWYrr,        X86::VPADDSWYrm,         TB_ALIGN_32 },
1040234353Sdim    { X86::VPADDUSBYrr,       X86::VPADDUSBYrm,        TB_ALIGN_32 },
1041234353Sdim    { X86::VPADDUSWYrr,       X86::VPADDUSWYrm,        TB_ALIGN_32 },
1042234353Sdim    { X86::VPADDWYrr,         X86::VPADDWYrm,          TB_ALIGN_32 },
1043234353Sdim    { X86::VPALIGNR256rr,     X86::VPALIGNR256rm,      TB_ALIGN_32 },
1044234353Sdim    { X86::VPANDNYrr,         X86::VPANDNYrm,          TB_ALIGN_32 },
1045234353Sdim    { X86::VPANDYrr,          X86::VPANDYrm,           TB_ALIGN_32 },
1046234353Sdim    { X86::VPAVGBYrr,         X86::VPAVGBYrm,          TB_ALIGN_32 },
1047234353Sdim    { X86::VPAVGWYrr,         X86::VPAVGWYrm,          TB_ALIGN_32 },
1048234353Sdim    { X86::VPBLENDDrri,       X86::VPBLENDDrmi,        TB_ALIGN_32 },
1049234353Sdim    { X86::VPBLENDDYrri,      X86::VPBLENDDYrmi,       TB_ALIGN_32 },
1050234353Sdim    { X86::VPBLENDWYrri,      X86::VPBLENDWYrmi,       TB_ALIGN_32 },
1051234353Sdim    { X86::VPCMPEQBYrr,       X86::VPCMPEQBYrm,        TB_ALIGN_32 },
1052234353Sdim    { X86::VPCMPEQDYrr,       X86::VPCMPEQDYrm,        TB_ALIGN_32 },
1053234353Sdim    { X86::VPCMPEQQYrr,       X86::VPCMPEQQYrm,        TB_ALIGN_32 },
1054234353Sdim    { X86::VPCMPEQWYrr,       X86::VPCMPEQWYrm,        TB_ALIGN_32 },
1055234353Sdim    { X86::VPCMPGTBYrr,       X86::VPCMPGTBYrm,        TB_ALIGN_32 },
1056234353Sdim    { X86::VPCMPGTDYrr,       X86::VPCMPGTDYrm,        TB_ALIGN_32 },
1057234353Sdim    { X86::VPCMPGTQYrr,       X86::VPCMPGTQYrm,        TB_ALIGN_32 },
1058234353Sdim    { X86::VPCMPGTWYrr,       X86::VPCMPGTWYrm,        TB_ALIGN_32 },
1059234353Sdim    { X86::VPERM2I128rr,      X86::VPERM2I128rm,       TB_ALIGN_32 },
1060234353Sdim    { X86::VPERMDYrr,         X86::VPERMDYrm,          TB_ALIGN_32 },
1061234982Sdim    { X86::VPERMPDYri,        X86::VPERMPDYmi,         TB_ALIGN_32 },
1062234353Sdim    { X86::VPERMPSYrr,        X86::VPERMPSYrm,         TB_ALIGN_32 },
1063234982Sdim    { X86::VPERMQYri,         X86::VPERMQYmi,          TB_ALIGN_32 },
1064234353Sdim    { X86::VPHADDDYrr,        X86::VPHADDDYrm,         TB_ALIGN_32 },
1065234353Sdim    { X86::VPHADDSWrr256,     X86::VPHADDSWrm256,      TB_ALIGN_32 },
1066234353Sdim    { X86::VPHADDWYrr,        X86::VPHADDWYrm,         TB_ALIGN_32 },
1067234353Sdim    { X86::VPHSUBDYrr,        X86::VPHSUBDYrm,         TB_ALIGN_32 },
1068234353Sdim    { X86::VPHSUBSWrr256,     X86::VPHSUBSWrm256,      TB_ALIGN_32 },
1069234353Sdim    { X86::VPHSUBWYrr,        X86::VPHSUBWYrm,         TB_ALIGN_32 },
1070234353Sdim    { X86::VPMADDUBSWrr256,   X86::VPMADDUBSWrm256,    TB_ALIGN_32 },
1071234353Sdim    { X86::VPMADDWDYrr,       X86::VPMADDWDYrm,        TB_ALIGN_32 },
1072234353Sdim    { X86::VPMAXSWYrr,        X86::VPMAXSWYrm,         TB_ALIGN_32 },
1073234353Sdim    { X86::VPMAXUBYrr,        X86::VPMAXUBYrm,         TB_ALIGN_32 },
1074234353Sdim    { X86::VPMINSWYrr,        X86::VPMINSWYrm,         TB_ALIGN_32 },
1075234353Sdim    { X86::VPMINUBYrr,        X86::VPMINUBYrm,         TB_ALIGN_32 },
1076234353Sdim    { X86::VMPSADBWYrri,      X86::VMPSADBWYrmi,       TB_ALIGN_32 },
1077234353Sdim    { X86::VPMULDQYrr,        X86::VPMULDQYrm,         TB_ALIGN_32 },
1078234353Sdim    { X86::VPMULHRSWrr256,    X86::VPMULHRSWrm256,     TB_ALIGN_32 },
1079234353Sdim    { X86::VPMULHUWYrr,       X86::VPMULHUWYrm,        TB_ALIGN_32 },
1080234353Sdim    { X86::VPMULHWYrr,        X86::VPMULHWYrm,         TB_ALIGN_32 },
1081234353Sdim    { X86::VPMULLDYrr,        X86::VPMULLDYrm,         TB_ALIGN_32 },
1082234353Sdim    { X86::VPMULLWYrr,        X86::VPMULLWYrm,         TB_ALIGN_32 },
1083234353Sdim    { X86::VPMULUDQYrr,       X86::VPMULUDQYrm,        TB_ALIGN_32 },
1084234353Sdim    { X86::VPORYrr,           X86::VPORYrm,            TB_ALIGN_32 },
1085234353Sdim    { X86::VPSADBWYrr,        X86::VPSADBWYrm,         TB_ALIGN_32 },
1086234353Sdim    { X86::VPSHUFBYrr,        X86::VPSHUFBYrm,         TB_ALIGN_32 },
1087234353Sdim    { X86::VPSIGNBYrr,        X86::VPSIGNBYrm,         TB_ALIGN_32 },
1088234353Sdim    { X86::VPSIGNWYrr,        X86::VPSIGNWYrm,         TB_ALIGN_32 },
1089234353Sdim    { X86::VPSIGNDYrr,        X86::VPSIGNDYrm,         TB_ALIGN_32 },
1090234353Sdim    { X86::VPSLLDYrr,         X86::VPSLLDYrm,          TB_ALIGN_16 },
1091234353Sdim    { X86::VPSLLQYrr,         X86::VPSLLQYrm,          TB_ALIGN_16 },
1092234353Sdim    { X86::VPSLLWYrr,         X86::VPSLLWYrm,          TB_ALIGN_16 },
1093234353Sdim    { X86::VPSLLVDrr,         X86::VPSLLVDrm,          TB_ALIGN_16 },
1094234353Sdim    { X86::VPSLLVDYrr,        X86::VPSLLVDYrm,         TB_ALIGN_32 },
1095234353Sdim    { X86::VPSLLVQrr,         X86::VPSLLVQrm,          TB_ALIGN_16 },
1096234353Sdim    { X86::VPSLLVQYrr,        X86::VPSLLVQYrm,         TB_ALIGN_32 },
1097234353Sdim    { X86::VPSRADYrr,         X86::VPSRADYrm,          TB_ALIGN_16 },
1098234353Sdim    { X86::VPSRAWYrr,         X86::VPSRAWYrm,          TB_ALIGN_16 },
1099234353Sdim    { X86::VPSRAVDrr,         X86::VPSRAVDrm,          TB_ALIGN_16 },
1100234353Sdim    { X86::VPSRAVDYrr,        X86::VPSRAVDYrm,         TB_ALIGN_32 },
1101234353Sdim    { X86::VPSRLDYrr,         X86::VPSRLDYrm,          TB_ALIGN_16 },
1102234353Sdim    { X86::VPSRLQYrr,         X86::VPSRLQYrm,          TB_ALIGN_16 },
1103234353Sdim    { X86::VPSRLWYrr,         X86::VPSRLWYrm,          TB_ALIGN_16 },
1104234353Sdim    { X86::VPSRLVDrr,         X86::VPSRLVDrm,          TB_ALIGN_16 },
1105234353Sdim    { X86::VPSRLVDYrr,        X86::VPSRLVDYrm,         TB_ALIGN_32 },
1106234353Sdim    { X86::VPSRLVQrr,         X86::VPSRLVQrm,          TB_ALIGN_16 },
1107234353Sdim    { X86::VPSRLVQYrr,        X86::VPSRLVQYrm,         TB_ALIGN_32 },
1108234353Sdim    { X86::VPSUBBYrr,         X86::VPSUBBYrm,          TB_ALIGN_32 },
1109234353Sdim    { X86::VPSUBDYrr,         X86::VPSUBDYrm,          TB_ALIGN_32 },
1110234353Sdim    { X86::VPSUBSBYrr,        X86::VPSUBSBYrm,         TB_ALIGN_32 },
1111234353Sdim    { X86::VPSUBSWYrr,        X86::VPSUBSWYrm,         TB_ALIGN_32 },
1112234353Sdim    { X86::VPSUBWYrr,         X86::VPSUBWYrm,          TB_ALIGN_32 },
1113234353Sdim    { X86::VPUNPCKHBWYrr,     X86::VPUNPCKHBWYrm,      TB_ALIGN_32 },
1114234353Sdim    { X86::VPUNPCKHDQYrr,     X86::VPUNPCKHDQYrm,      TB_ALIGN_32 },
1115234353Sdim    { X86::VPUNPCKHQDQYrr,    X86::VPUNPCKHQDQYrm,     TB_ALIGN_16 },
1116234353Sdim    { X86::VPUNPCKHWDYrr,     X86::VPUNPCKHWDYrm,      TB_ALIGN_32 },
1117234353Sdim    { X86::VPUNPCKLBWYrr,     X86::VPUNPCKLBWYrm,      TB_ALIGN_32 },
1118234353Sdim    { X86::VPUNPCKLDQYrr,     X86::VPUNPCKLDQYrm,      TB_ALIGN_32 },
1119234353Sdim    { X86::VPUNPCKLQDQYrr,    X86::VPUNPCKLQDQYrm,     TB_ALIGN_32 },
1120234353Sdim    { X86::VPUNPCKLWDYrr,     X86::VPUNPCKLWDYrm,      TB_ALIGN_32 },
1121234353Sdim    { X86::VPXORYrr,          X86::VPXORYrm,           TB_ALIGN_32 },
1122226633Sdim    // FIXME: add AVX 256-bit foldable instructions
1123243830Sdim
1124243830Sdim    // FMA4 foldable patterns
1125243830Sdim    { X86::VFMADDSS4rr,       X86::VFMADDSS4mr,        0           },
1126243830Sdim    { X86::VFMADDSD4rr,       X86::VFMADDSD4mr,        0           },
1127243830Sdim    { X86::VFMADDPS4rr,       X86::VFMADDPS4mr,        TB_ALIGN_16 },
1128243830Sdim    { X86::VFMADDPD4rr,       X86::VFMADDPD4mr,        TB_ALIGN_16 },
1129243830Sdim    { X86::VFMADDPS4rrY,      X86::VFMADDPS4mrY,       TB_ALIGN_32 },
1130243830Sdim    { X86::VFMADDPD4rrY,      X86::VFMADDPD4mrY,       TB_ALIGN_32 },
1131243830Sdim    { X86::VFNMADDSS4rr,      X86::VFNMADDSS4mr,       0           },
1132243830Sdim    { X86::VFNMADDSD4rr,      X86::VFNMADDSD4mr,       0           },
1133243830Sdim    { X86::VFNMADDPS4rr,      X86::VFNMADDPS4mr,       TB_ALIGN_16 },
1134243830Sdim    { X86::VFNMADDPD4rr,      X86::VFNMADDPD4mr,       TB_ALIGN_16 },
1135243830Sdim    { X86::VFNMADDPS4rrY,     X86::VFNMADDPS4mrY,      TB_ALIGN_32 },
1136243830Sdim    { X86::VFNMADDPD4rrY,     X86::VFNMADDPD4mrY,      TB_ALIGN_32 },
1137243830Sdim    { X86::VFMSUBSS4rr,       X86::VFMSUBSS4mr,        0           },
1138243830Sdim    { X86::VFMSUBSD4rr,       X86::VFMSUBSD4mr,        0           },
1139243830Sdim    { X86::VFMSUBPS4rr,       X86::VFMSUBPS4mr,        TB_ALIGN_16 },
1140243830Sdim    { X86::VFMSUBPD4rr,       X86::VFMSUBPD4mr,        TB_ALIGN_16 },
1141243830Sdim    { X86::VFMSUBPS4rrY,      X86::VFMSUBPS4mrY,       TB_ALIGN_32 },
1142243830Sdim    { X86::VFMSUBPD4rrY,      X86::VFMSUBPD4mrY,       TB_ALIGN_32 },
1143243830Sdim    { X86::VFNMSUBSS4rr,      X86::VFNMSUBSS4mr,       0           },
1144243830Sdim    { X86::VFNMSUBSD4rr,      X86::VFNMSUBSD4mr,       0           },
1145243830Sdim    { X86::VFNMSUBPS4rr,      X86::VFNMSUBPS4mr,       TB_ALIGN_16 },
1146243830Sdim    { X86::VFNMSUBPD4rr,      X86::VFNMSUBPD4mr,       TB_ALIGN_16 },
1147243830Sdim    { X86::VFNMSUBPS4rrY,     X86::VFNMSUBPS4mrY,      TB_ALIGN_32 },
1148243830Sdim    { X86::VFNMSUBPD4rrY,     X86::VFNMSUBPD4mrY,      TB_ALIGN_32 },
1149243830Sdim    { X86::VFMADDSUBPS4rr,    X86::VFMADDSUBPS4mr,     TB_ALIGN_16 },
1150243830Sdim    { X86::VFMADDSUBPD4rr,    X86::VFMADDSUBPD4mr,     TB_ALIGN_16 },
1151243830Sdim    { X86::VFMADDSUBPS4rrY,   X86::VFMADDSUBPS4mrY,    TB_ALIGN_32 },
1152243830Sdim    { X86::VFMADDSUBPD4rrY,   X86::VFMADDSUBPD4mrY,    TB_ALIGN_32 },
1153243830Sdim    { X86::VFMSUBADDPS4rr,    X86::VFMSUBADDPS4mr,     TB_ALIGN_16 },
1154243830Sdim    { X86::VFMSUBADDPD4rr,    X86::VFMSUBADDPD4mr,     TB_ALIGN_16 },
1155243830Sdim    { X86::VFMSUBADDPS4rrY,   X86::VFMSUBADDPS4mrY,    TB_ALIGN_32 },
1156243830Sdim    { X86::VFMSUBADDPD4rrY,   X86::VFMSUBADDPD4mrY,    TB_ALIGN_32 },
1157243830Sdim
1158243830Sdim    // BMI/BMI2 foldable instructions
1159243830Sdim    { X86::MULX32rr,          X86::MULX32rm,            0 },
1160243830Sdim    { X86::MULX64rr,          X86::MULX64rm,            0 },
1161193323Sed  };
1162193323Sed
1163193323Sed  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
1164234353Sdim    unsigned RegOp = OpTbl2[i].RegOp;
1165234353Sdim    unsigned MemOp = OpTbl2[i].MemOp;
1166234353Sdim    unsigned Flags = OpTbl2[i].Flags;
1167226633Sdim    AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
1168226633Sdim                  RegOp, MemOp,
1169226633Sdim                  // Index 2, folded load
1170226633Sdim                  Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
1171226633Sdim  }
1172239462Sdim
1173239462Sdim  static const X86OpTblEntry OpTbl3[] = {
1174239462Sdim    // FMA foldable instructions
1175239462Sdim    { X86::VFMADDSSr231r,         X86::VFMADDSSr231m,         0 },
1176239462Sdim    { X86::VFMADDSDr231r,         X86::VFMADDSDr231m,         0 },
1177239462Sdim    { X86::VFMADDSSr132r,         X86::VFMADDSSr132m,         0 },
1178239462Sdim    { X86::VFMADDSDr132r,         X86::VFMADDSDr132m,         0 },
1179239462Sdim    { X86::VFMADDSSr213r,         X86::VFMADDSSr213m,         0 },
1180239462Sdim    { X86::VFMADDSDr213r,         X86::VFMADDSDr213m,         0 },
1181239462Sdim    { X86::VFMADDSSr213r_Int,     X86::VFMADDSSr213m_Int,     0 },
1182239462Sdim    { X86::VFMADDSDr213r_Int,     X86::VFMADDSDr213m_Int,     0 },
1183239462Sdim
1184239462Sdim    { X86::VFMADDPSr231r,         X86::VFMADDPSr231m,         TB_ALIGN_16 },
1185239462Sdim    { X86::VFMADDPDr231r,         X86::VFMADDPDr231m,         TB_ALIGN_16 },
1186239462Sdim    { X86::VFMADDPSr132r,         X86::VFMADDPSr132m,         TB_ALIGN_16 },
1187239462Sdim    { X86::VFMADDPDr132r,         X86::VFMADDPDr132m,         TB_ALIGN_16 },
1188239462Sdim    { X86::VFMADDPSr213r,         X86::VFMADDPSr213m,         TB_ALIGN_16 },
1189239462Sdim    { X86::VFMADDPDr213r,         X86::VFMADDPDr213m,         TB_ALIGN_16 },
1190239462Sdim    { X86::VFMADDPSr231rY,        X86::VFMADDPSr231mY,        TB_ALIGN_32 },
1191239462Sdim    { X86::VFMADDPDr231rY,        X86::VFMADDPDr231mY,        TB_ALIGN_32 },
1192239462Sdim    { X86::VFMADDPSr132rY,        X86::VFMADDPSr132mY,        TB_ALIGN_32 },
1193239462Sdim    { X86::VFMADDPDr132rY,        X86::VFMADDPDr132mY,        TB_ALIGN_32 },
1194239462Sdim    { X86::VFMADDPSr213rY,        X86::VFMADDPSr213mY,        TB_ALIGN_32 },
1195239462Sdim    { X86::VFMADDPDr213rY,        X86::VFMADDPDr213mY,        TB_ALIGN_32 },
1196239462Sdim
1197239462Sdim    { X86::VFNMADDSSr231r,        X86::VFNMADDSSr231m,        0 },
1198239462Sdim    { X86::VFNMADDSDr231r,        X86::VFNMADDSDr231m,        0 },
1199239462Sdim    { X86::VFNMADDSSr132r,        X86::VFNMADDSSr132m,        0 },
1200239462Sdim    { X86::VFNMADDSDr132r,        X86::VFNMADDSDr132m,        0 },
1201239462Sdim    { X86::VFNMADDSSr213r,        X86::VFNMADDSSr213m,        0 },
1202239462Sdim    { X86::VFNMADDSDr213r,        X86::VFNMADDSDr213m,        0 },
1203239462Sdim    { X86::VFNMADDSSr213r_Int,    X86::VFNMADDSSr213m_Int,    0 },
1204239462Sdim    { X86::VFNMADDSDr213r_Int,    X86::VFNMADDSDr213m_Int,    0 },
1205239462Sdim
1206239462Sdim    { X86::VFNMADDPSr231r,        X86::VFNMADDPSr231m,        TB_ALIGN_16 },
1207239462Sdim    { X86::VFNMADDPDr231r,        X86::VFNMADDPDr231m,        TB_ALIGN_16 },
1208239462Sdim    { X86::VFNMADDPSr132r,        X86::VFNMADDPSr132m,        TB_ALIGN_16 },
1209239462Sdim    { X86::VFNMADDPDr132r,        X86::VFNMADDPDr132m,        TB_ALIGN_16 },
1210239462Sdim    { X86::VFNMADDPSr213r,        X86::VFNMADDPSr213m,        TB_ALIGN_16 },
1211239462Sdim    { X86::VFNMADDPDr213r,        X86::VFNMADDPDr213m,        TB_ALIGN_16 },
1212239462Sdim    { X86::VFNMADDPSr231rY,       X86::VFNMADDPSr231mY,       TB_ALIGN_32 },
1213239462Sdim    { X86::VFNMADDPDr231rY,       X86::VFNMADDPDr231mY,       TB_ALIGN_32 },
1214239462Sdim    { X86::VFNMADDPSr132rY,       X86::VFNMADDPSr132mY,       TB_ALIGN_32 },
1215239462Sdim    { X86::VFNMADDPDr132rY,       X86::VFNMADDPDr132mY,       TB_ALIGN_32 },
1216239462Sdim    { X86::VFNMADDPSr213rY,       X86::VFNMADDPSr213mY,       TB_ALIGN_32 },
1217239462Sdim    { X86::VFNMADDPDr213rY,       X86::VFNMADDPDr213mY,       TB_ALIGN_32 },
1218239462Sdim
1219239462Sdim    { X86::VFMSUBSSr231r,         X86::VFMSUBSSr231m,         0 },
1220239462Sdim    { X86::VFMSUBSDr231r,         X86::VFMSUBSDr231m,         0 },
1221239462Sdim    { X86::VFMSUBSSr132r,         X86::VFMSUBSSr132m,         0 },
1222239462Sdim    { X86::VFMSUBSDr132r,         X86::VFMSUBSDr132m,         0 },
1223239462Sdim    { X86::VFMSUBSSr213r,         X86::VFMSUBSSr213m,         0 },
1224239462Sdim    { X86::VFMSUBSDr213r,         X86::VFMSUBSDr213m,         0 },
1225239462Sdim    { X86::VFMSUBSSr213r_Int,     X86::VFMSUBSSr213m_Int,     0 },
1226239462Sdim    { X86::VFMSUBSDr213r_Int,     X86::VFMSUBSDr213m_Int,     0 },
1227239462Sdim
1228239462Sdim    { X86::VFMSUBPSr231r,         X86::VFMSUBPSr231m,         TB_ALIGN_16 },
1229239462Sdim    { X86::VFMSUBPDr231r,         X86::VFMSUBPDr231m,         TB_ALIGN_16 },
1230239462Sdim    { X86::VFMSUBPSr132r,         X86::VFMSUBPSr132m,         TB_ALIGN_16 },
1231239462Sdim    { X86::VFMSUBPDr132r,         X86::VFMSUBPDr132m,         TB_ALIGN_16 },
1232239462Sdim    { X86::VFMSUBPSr213r,         X86::VFMSUBPSr213m,         TB_ALIGN_16 },
1233239462Sdim    { X86::VFMSUBPDr213r,         X86::VFMSUBPDr213m,         TB_ALIGN_16 },
1234239462Sdim    { X86::VFMSUBPSr231rY,        X86::VFMSUBPSr231mY,        TB_ALIGN_32 },
1235239462Sdim    { X86::VFMSUBPDr231rY,        X86::VFMSUBPDr231mY,        TB_ALIGN_32 },
1236239462Sdim    { X86::VFMSUBPSr132rY,        X86::VFMSUBPSr132mY,        TB_ALIGN_32 },
1237239462Sdim    { X86::VFMSUBPDr132rY,        X86::VFMSUBPDr132mY,        TB_ALIGN_32 },
1238239462Sdim    { X86::VFMSUBPSr213rY,        X86::VFMSUBPSr213mY,        TB_ALIGN_32 },
1239239462Sdim    { X86::VFMSUBPDr213rY,        X86::VFMSUBPDr213mY,        TB_ALIGN_32 },
1240239462Sdim
1241239462Sdim    { X86::VFNMSUBSSr231r,        X86::VFNMSUBSSr231m,        0 },
1242239462Sdim    { X86::VFNMSUBSDr231r,        X86::VFNMSUBSDr231m,        0 },
1243239462Sdim    { X86::VFNMSUBSSr132r,        X86::VFNMSUBSSr132m,        0 },
1244239462Sdim    { X86::VFNMSUBSDr132r,        X86::VFNMSUBSDr132m,        0 },
1245239462Sdim    { X86::VFNMSUBSSr213r,        X86::VFNMSUBSSr213m,        0 },
1246239462Sdim    { X86::VFNMSUBSDr213r,        X86::VFNMSUBSDr213m,        0 },
1247239462Sdim    { X86::VFNMSUBSSr213r_Int,    X86::VFNMSUBSSr213m_Int,    0 },
1248239462Sdim    { X86::VFNMSUBSDr213r_Int,    X86::VFNMSUBSDr213m_Int,    0 },
1249239462Sdim
1250239462Sdim    { X86::VFNMSUBPSr231r,        X86::VFNMSUBPSr231m,        TB_ALIGN_16 },
1251239462Sdim    { X86::VFNMSUBPDr231r,        X86::VFNMSUBPDr231m,        TB_ALIGN_16 },
1252239462Sdim    { X86::VFNMSUBPSr132r,        X86::VFNMSUBPSr132m,        TB_ALIGN_16 },
1253239462Sdim    { X86::VFNMSUBPDr132r,        X86::VFNMSUBPDr132m,        TB_ALIGN_16 },
1254239462Sdim    { X86::VFNMSUBPSr213r,        X86::VFNMSUBPSr213m,        TB_ALIGN_16 },
1255239462Sdim    { X86::VFNMSUBPDr213r,        X86::VFNMSUBPDr213m,        TB_ALIGN_16 },
1256239462Sdim    { X86::VFNMSUBPSr231rY,       X86::VFNMSUBPSr231mY,       TB_ALIGN_32 },
1257239462Sdim    { X86::VFNMSUBPDr231rY,       X86::VFNMSUBPDr231mY,       TB_ALIGN_32 },
1258239462Sdim    { X86::VFNMSUBPSr132rY,       X86::VFNMSUBPSr132mY,       TB_ALIGN_32 },
1259239462Sdim    { X86::VFNMSUBPDr132rY,       X86::VFNMSUBPDr132mY,       TB_ALIGN_32 },
1260239462Sdim    { X86::VFNMSUBPSr213rY,       X86::VFNMSUBPSr213mY,       TB_ALIGN_32 },
1261239462Sdim    { X86::VFNMSUBPDr213rY,       X86::VFNMSUBPDr213mY,       TB_ALIGN_32 },
1262239462Sdim
1263239462Sdim    { X86::VFMADDSUBPSr231r,      X86::VFMADDSUBPSr231m,      TB_ALIGN_16 },
1264239462Sdim    { X86::VFMADDSUBPDr231r,      X86::VFMADDSUBPDr231m,      TB_ALIGN_16 },
1265239462Sdim    { X86::VFMADDSUBPSr132r,      X86::VFMADDSUBPSr132m,      TB_ALIGN_16 },
1266239462Sdim    { X86::VFMADDSUBPDr132r,      X86::VFMADDSUBPDr132m,      TB_ALIGN_16 },
1267239462Sdim    { X86::VFMADDSUBPSr213r,      X86::VFMADDSUBPSr213m,      TB_ALIGN_16 },
1268239462Sdim    { X86::VFMADDSUBPDr213r,      X86::VFMADDSUBPDr213m,      TB_ALIGN_16 },
1269239462Sdim    { X86::VFMADDSUBPSr231rY,     X86::VFMADDSUBPSr231mY,     TB_ALIGN_32 },
1270239462Sdim    { X86::VFMADDSUBPDr231rY,     X86::VFMADDSUBPDr231mY,     TB_ALIGN_32 },
1271239462Sdim    { X86::VFMADDSUBPSr132rY,     X86::VFMADDSUBPSr132mY,     TB_ALIGN_32 },
1272239462Sdim    { X86::VFMADDSUBPDr132rY,     X86::VFMADDSUBPDr132mY,     TB_ALIGN_32 },
1273239462Sdim    { X86::VFMADDSUBPSr213rY,     X86::VFMADDSUBPSr213mY,     TB_ALIGN_32 },
1274239462Sdim    { X86::VFMADDSUBPDr213rY,     X86::VFMADDSUBPDr213mY,     TB_ALIGN_32 },
1275239462Sdim
1276239462Sdim    { X86::VFMSUBADDPSr231r,      X86::VFMSUBADDPSr231m,      TB_ALIGN_16 },
1277239462Sdim    { X86::VFMSUBADDPDr231r,      X86::VFMSUBADDPDr231m,      TB_ALIGN_16 },
1278239462Sdim    { X86::VFMSUBADDPSr132r,      X86::VFMSUBADDPSr132m,      TB_ALIGN_16 },
1279239462Sdim    { X86::VFMSUBADDPDr132r,      X86::VFMSUBADDPDr132m,      TB_ALIGN_16 },
1280239462Sdim    { X86::VFMSUBADDPSr213r,      X86::VFMSUBADDPSr213m,      TB_ALIGN_16 },
1281239462Sdim    { X86::VFMSUBADDPDr213r,      X86::VFMSUBADDPDr213m,      TB_ALIGN_16 },
1282239462Sdim    { X86::VFMSUBADDPSr231rY,     X86::VFMSUBADDPSr231mY,     TB_ALIGN_32 },
1283239462Sdim    { X86::VFMSUBADDPDr231rY,     X86::VFMSUBADDPDr231mY,     TB_ALIGN_32 },
1284239462Sdim    { X86::VFMSUBADDPSr132rY,     X86::VFMSUBADDPSr132mY,     TB_ALIGN_32 },
1285239462Sdim    { X86::VFMSUBADDPDr132rY,     X86::VFMSUBADDPDr132mY,     TB_ALIGN_32 },
1286239462Sdim    { X86::VFMSUBADDPSr213rY,     X86::VFMSUBADDPSr213mY,     TB_ALIGN_32 },
1287239462Sdim    { X86::VFMSUBADDPDr213rY,     X86::VFMSUBADDPDr213mY,     TB_ALIGN_32 },
1288243830Sdim
1289243830Sdim    // FMA4 foldable patterns
1290243830Sdim    { X86::VFMADDSS4rr,           X86::VFMADDSS4rm,           0           },
1291243830Sdim    { X86::VFMADDSD4rr,           X86::VFMADDSD4rm,           0           },
1292243830Sdim    { X86::VFMADDPS4rr,           X86::VFMADDPS4rm,           TB_ALIGN_16 },
1293243830Sdim    { X86::VFMADDPD4rr,           X86::VFMADDPD4rm,           TB_ALIGN_16 },
1294243830Sdim    { X86::VFMADDPS4rrY,          X86::VFMADDPS4rmY,          TB_ALIGN_32 },
1295243830Sdim    { X86::VFMADDPD4rrY,          X86::VFMADDPD4rmY,          TB_ALIGN_32 },
1296243830Sdim    { X86::VFNMADDSS4rr,          X86::VFNMADDSS4rm,          0           },
1297243830Sdim    { X86::VFNMADDSD4rr,          X86::VFNMADDSD4rm,          0           },
1298243830Sdim    { X86::VFNMADDPS4rr,          X86::VFNMADDPS4rm,          TB_ALIGN_16 },
1299243830Sdim    { X86::VFNMADDPD4rr,          X86::VFNMADDPD4rm,          TB_ALIGN_16 },
1300243830Sdim    { X86::VFNMADDPS4rrY,         X86::VFNMADDPS4rmY,         TB_ALIGN_32 },
1301243830Sdim    { X86::VFNMADDPD4rrY,         X86::VFNMADDPD4rmY,         TB_ALIGN_32 },
1302243830Sdim    { X86::VFMSUBSS4rr,           X86::VFMSUBSS4rm,           0           },
1303243830Sdim    { X86::VFMSUBSD4rr,           X86::VFMSUBSD4rm,           0           },
1304243830Sdim    { X86::VFMSUBPS4rr,           X86::VFMSUBPS4rm,           TB_ALIGN_16 },
1305243830Sdim    { X86::VFMSUBPD4rr,           X86::VFMSUBPD4rm,           TB_ALIGN_16 },
1306243830Sdim    { X86::VFMSUBPS4rrY,          X86::VFMSUBPS4rmY,          TB_ALIGN_32 },
1307243830Sdim    { X86::VFMSUBPD4rrY,          X86::VFMSUBPD4rmY,          TB_ALIGN_32 },
1308243830Sdim    { X86::VFNMSUBSS4rr,          X86::VFNMSUBSS4rm,          0           },
1309243830Sdim    { X86::VFNMSUBSD4rr,          X86::VFNMSUBSD4rm,          0           },
1310243830Sdim    { X86::VFNMSUBPS4rr,          X86::VFNMSUBPS4rm,          TB_ALIGN_16 },
1311243830Sdim    { X86::VFNMSUBPD4rr,          X86::VFNMSUBPD4rm,          TB_ALIGN_16 },
1312243830Sdim    { X86::VFNMSUBPS4rrY,         X86::VFNMSUBPS4rmY,         TB_ALIGN_32 },
1313243830Sdim    { X86::VFNMSUBPD4rrY,         X86::VFNMSUBPD4rmY,         TB_ALIGN_32 },
1314243830Sdim    { X86::VFMADDSUBPS4rr,        X86::VFMADDSUBPS4rm,        TB_ALIGN_16 },
1315243830Sdim    { X86::VFMADDSUBPD4rr,        X86::VFMADDSUBPD4rm,        TB_ALIGN_16 },
1316243830Sdim    { X86::VFMADDSUBPS4rrY,       X86::VFMADDSUBPS4rmY,       TB_ALIGN_32 },
1317243830Sdim    { X86::VFMADDSUBPD4rrY,       X86::VFMADDSUBPD4rmY,       TB_ALIGN_32 },
1318243830Sdim    { X86::VFMSUBADDPS4rr,        X86::VFMSUBADDPS4rm,        TB_ALIGN_16 },
1319243830Sdim    { X86::VFMSUBADDPD4rr,        X86::VFMSUBADDPD4rm,        TB_ALIGN_16 },
1320243830Sdim    { X86::VFMSUBADDPS4rrY,       X86::VFMSUBADDPS4rmY,       TB_ALIGN_32 },
1321243830Sdim    { X86::VFMSUBADDPD4rrY,       X86::VFMSUBADDPD4rmY,       TB_ALIGN_32 },
1322239462Sdim  };
1323239462Sdim
1324239462Sdim  for (unsigned i = 0, e = array_lengthof(OpTbl3); i != e; ++i) {
1325239462Sdim    unsigned RegOp = OpTbl3[i].RegOp;
1326239462Sdim    unsigned MemOp = OpTbl3[i].MemOp;
1327239462Sdim    unsigned Flags = OpTbl3[i].Flags;
1328239462Sdim    AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
1329239462Sdim                  RegOp, MemOp,
1330239462Sdim                  // Index 3, folded load
1331239462Sdim                  Flags | TB_INDEX_3 | TB_FOLDED_LOAD);
1332239462Sdim  }
1333239462Sdim
1334226633Sdim}
1335218893Sdim
1336226633Sdimvoid
1337226633SdimX86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
1338226633Sdim                            MemOp2RegOpTableType &M2RTable,
1339226633Sdim                            unsigned RegOp, unsigned MemOp, unsigned Flags) {
1340226633Sdim    if ((Flags & TB_NO_FORWARD) == 0) {
1341226633Sdim      assert(!R2MTable.count(RegOp) && "Duplicate entry!");
1342226633Sdim      R2MTable[RegOp] = std::make_pair(MemOp, Flags);
1343226633Sdim    }
1344226633Sdim    if ((Flags & TB_NO_REVERSE) == 0) {
1345226633Sdim      assert(!M2RTable.count(MemOp) &&
1346218893Sdim           "Duplicated entries in unfolding maps?");
1347226633Sdim      M2RTable[MemOp] = std::make_pair(RegOp, Flags);
1348226633Sdim    }
1349193323Sed}
1350193323Sed
1351202375Srdivackybool
1352202375SrdivackyX86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
1353202375Srdivacky                                    unsigned &SrcReg, unsigned &DstReg,
1354202375Srdivacky                                    unsigned &SubIdx) const {
1355202375Srdivacky  switch (MI.getOpcode()) {
1356202375Srdivacky  default: break;
1357202375Srdivacky  case X86::MOVSX16rr8:
1358202375Srdivacky  case X86::MOVZX16rr8:
1359202375Srdivacky  case X86::MOVSX32rr8:
1360202375Srdivacky  case X86::MOVZX32rr8:
1361202375Srdivacky  case X86::MOVSX64rr8:
1362202375Srdivacky  case X86::MOVZX64rr8:
1363202375Srdivacky    if (!TM.getSubtarget<X86Subtarget>().is64Bit())
1364202375Srdivacky      // It's not always legal to reference the low 8-bit of the larger
1365202375Srdivacky      // register in 32-bit mode.
1366202375Srdivacky      return false;
1367202375Srdivacky  case X86::MOVSX32rr16:
1368202375Srdivacky  case X86::MOVZX32rr16:
1369202375Srdivacky  case X86::MOVSX64rr16:
1370202375Srdivacky  case X86::MOVZX64rr16:
1371202375Srdivacky  case X86::MOVSX64rr32:
1372202375Srdivacky  case X86::MOVZX64rr32: {
1373202375Srdivacky    if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
1374202375Srdivacky      // Be conservative.
1375202375Srdivacky      return false;
1376202375Srdivacky    SrcReg = MI.getOperand(1).getReg();
1377202375Srdivacky    DstReg = MI.getOperand(0).getReg();
1378202375Srdivacky    switch (MI.getOpcode()) {
1379243830Sdim    default: llvm_unreachable("Unreachable!");
1380202375Srdivacky    case X86::MOVSX16rr8:
1381202375Srdivacky    case X86::MOVZX16rr8:
1382202375Srdivacky    case X86::MOVSX32rr8:
1383202375Srdivacky    case X86::MOVZX32rr8:
1384202375Srdivacky    case X86::MOVSX64rr8:
1385202375Srdivacky    case X86::MOVZX64rr8:
1386208599Srdivacky      SubIdx = X86::sub_8bit;
1387202375Srdivacky      break;
1388202375Srdivacky    case X86::MOVSX32rr16:
1389202375Srdivacky    case X86::MOVZX32rr16:
1390202375Srdivacky    case X86::MOVSX64rr16:
1391202375Srdivacky    case X86::MOVZX64rr16:
1392208599Srdivacky      SubIdx = X86::sub_16bit;
1393202375Srdivacky      break;
1394202375Srdivacky    case X86::MOVSX64rr32:
1395202375Srdivacky    case X86::MOVZX64rr32:
1396208599Srdivacky      SubIdx = X86::sub_32bit;
1397202375Srdivacky      break;
1398202375Srdivacky    }
1399202375Srdivacky    return true;
1400202375Srdivacky  }
1401202375Srdivacky  }
1402202375Srdivacky  return false;
1403202375Srdivacky}
1404202375Srdivacky
1405199481Srdivacky/// isFrameOperand - Return true and the FrameIndex if the specified
1406199481Srdivacky/// operand and follow operands form a reference to the stack frame.
1407199481Srdivackybool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
1408199481Srdivacky                                  int &FrameIndex) const {
1409199481Srdivacky  if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
1410199481Srdivacky      MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
1411199481Srdivacky      MI->getOperand(Op+1).getImm() == 1 &&
1412199481Srdivacky      MI->getOperand(Op+2).getReg() == 0 &&
1413199481Srdivacky      MI->getOperand(Op+3).getImm() == 0) {
1414199481Srdivacky    FrameIndex = MI->getOperand(Op).getIndex();
1415199481Srdivacky    return true;
1416199481Srdivacky  }
1417199481Srdivacky  return false;
1418199481Srdivacky}
1419199481Srdivacky
1420199481Srdivackystatic bool isFrameLoadOpcode(int Opcode) {
1421199481Srdivacky  switch (Opcode) {
1422234353Sdim  default:
1423234353Sdim    return false;
1424193323Sed  case X86::MOV8rm:
1425193323Sed  case X86::MOV16rm:
1426193323Sed  case X86::MOV32rm:
1427193323Sed  case X86::MOV64rm:
1428193323Sed  case X86::LD_Fp64m:
1429193323Sed  case X86::MOVSSrm:
1430193323Sed  case X86::MOVSDrm:
1431193323Sed  case X86::MOVAPSrm:
1432193323Sed  case X86::MOVAPDrm:
1433193323Sed  case X86::MOVDQArm:
1434226633Sdim  case X86::VMOVSSrm:
1435226633Sdim  case X86::VMOVSDrm:
1436226633Sdim  case X86::VMOVAPSrm:
1437226633Sdim  case X86::VMOVAPDrm:
1438226633Sdim  case X86::VMOVDQArm:
1439224145Sdim  case X86::VMOVAPSYrm:
1440224145Sdim  case X86::VMOVAPDYrm:
1441224145Sdim  case X86::VMOVDQAYrm:
1442193323Sed  case X86::MMX_MOVD64rm:
1443193323Sed  case X86::MMX_MOVQ64rm:
1444199481Srdivacky    return true;
1445193323Sed  }
1446193323Sed}
1447193323Sed
1448199481Srdivackystatic bool isFrameStoreOpcode(int Opcode) {
1449199481Srdivacky  switch (Opcode) {
1450193323Sed  default: break;
1451193323Sed  case X86::MOV8mr:
1452193323Sed  case X86::MOV16mr:
1453193323Sed  case X86::MOV32mr:
1454193323Sed  case X86::MOV64mr:
1455193323Sed  case X86::ST_FpP64m:
1456193323Sed  case X86::MOVSSmr:
1457193323Sed  case X86::MOVSDmr:
1458193323Sed  case X86::MOVAPSmr:
1459193323Sed  case X86::MOVAPDmr:
1460193323Sed  case X86::MOVDQAmr:
1461226633Sdim  case X86::VMOVSSmr:
1462226633Sdim  case X86::VMOVSDmr:
1463226633Sdim  case X86::VMOVAPSmr:
1464226633Sdim  case X86::VMOVAPDmr:
1465226633Sdim  case X86::VMOVDQAmr:
1466224145Sdim  case X86::VMOVAPSYmr:
1467224145Sdim  case X86::VMOVAPDYmr:
1468224145Sdim  case X86::VMOVDQAYmr:
1469193323Sed  case X86::MMX_MOVD64mr:
1470193323Sed  case X86::MMX_MOVQ64mr:
1471193323Sed  case X86::MMX_MOVNTQmr:
1472199481Srdivacky    return true;
1473199481Srdivacky  }
1474199481Srdivacky  return false;
1475199481Srdivacky}
1476199481Srdivacky
1477218893Sdimunsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
1478199481Srdivacky                                           int &FrameIndex) const {
1479199481Srdivacky  if (isFrameLoadOpcode(MI->getOpcode()))
1480212904Sdim    if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
1481199481Srdivacky      return MI->getOperand(0).getReg();
1482199481Srdivacky  return 0;
1483199481Srdivacky}
1484199481Srdivacky
1485218893Sdimunsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
1486199481Srdivacky                                                 int &FrameIndex) const {
1487199481Srdivacky  if (isFrameLoadOpcode(MI->getOpcode())) {
1488199481Srdivacky    unsigned Reg;
1489199481Srdivacky    if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
1490199481Srdivacky      return Reg;
1491199481Srdivacky    // Check for post-frame index elimination operations
1492200581Srdivacky    const MachineMemOperand *Dummy;
1493200581Srdivacky    return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
1494199481Srdivacky  }
1495199481Srdivacky  return 0;
1496199481Srdivacky}
1497199481Srdivacky
1498199481Srdivackyunsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
1499199481Srdivacky                                          int &FrameIndex) const {
1500199481Srdivacky  if (isFrameStoreOpcode(MI->getOpcode()))
1501212904Sdim    if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
1502212904Sdim        isFrameOperand(MI, 0, FrameIndex))
1503210299Sed      return MI->getOperand(X86::AddrNumOperands).getReg();
1504199481Srdivacky  return 0;
1505199481Srdivacky}
1506199481Srdivacky
1507199481Srdivackyunsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
1508199481Srdivacky                                                int &FrameIndex) const {
1509199481Srdivacky  if (isFrameStoreOpcode(MI->getOpcode())) {
1510199481Srdivacky    unsigned Reg;
1511199481Srdivacky    if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
1512199481Srdivacky      return Reg;
1513199481Srdivacky    // Check for post-frame index elimination operations
1514200581Srdivacky    const MachineMemOperand *Dummy;
1515200581Srdivacky    return hasStoreToStackSlot(MI, Dummy, FrameIndex);
1516193323Sed  }
1517193323Sed  return 0;
1518193323Sed}
1519193323Sed
1520193323Sed/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
1521193323Sed/// X86::MOVPC32r.
1522193323Sedstatic bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
1523239462Sdim  // Don't waste compile time scanning use-def chains of physregs.
1524239462Sdim  if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
1525239462Sdim    return false;
1526193323Sed  bool isPICBase = false;
1527193323Sed  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
1528193323Sed         E = MRI.def_end(); I != E; ++I) {
1529193323Sed    MachineInstr *DefMI = I.getOperand().getParent();
1530193323Sed    if (DefMI->getOpcode() != X86::MOVPC32r)
1531193323Sed      return false;
1532193323Sed    assert(!isPICBase && "More than one PIC base?");
1533193323Sed    isPICBase = true;
1534193323Sed  }
1535193323Sed  return isPICBase;
1536193323Sed}
1537193323Sed
1538193323Sedbool
1539198090SrdivackyX86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
1540198090Srdivacky                                                AliasAnalysis *AA) const {
1541193323Sed  switch (MI->getOpcode()) {
1542193323Sed  default: break;
1543243830Sdim  case X86::MOV8rm:
1544243830Sdim  case X86::MOV16rm:
1545243830Sdim  case X86::MOV32rm:
1546243830Sdim  case X86::MOV64rm:
1547243830Sdim  case X86::LD_Fp64m:
1548243830Sdim  case X86::MOVSSrm:
1549243830Sdim  case X86::MOVSDrm:
1550243830Sdim  case X86::MOVAPSrm:
1551243830Sdim  case X86::MOVUPSrm:
1552243830Sdim  case X86::MOVAPDrm:
1553243830Sdim  case X86::MOVDQArm:
1554243830Sdim  case X86::VMOVSSrm:
1555243830Sdim  case X86::VMOVSDrm:
1556243830Sdim  case X86::VMOVAPSrm:
1557243830Sdim  case X86::VMOVUPSrm:
1558243830Sdim  case X86::VMOVAPDrm:
1559243830Sdim  case X86::VMOVDQArm:
1560243830Sdim  case X86::VMOVAPSYrm:
1561243830Sdim  case X86::VMOVUPSYrm:
1562243830Sdim  case X86::VMOVAPDYrm:
1563243830Sdim  case X86::VMOVDQAYrm:
1564243830Sdim  case X86::MMX_MOVD64rm:
1565243830Sdim  case X86::MMX_MOVQ64rm:
1566243830Sdim  case X86::FsVMOVAPSrm:
1567243830Sdim  case X86::FsVMOVAPDrm:
1568243830Sdim  case X86::FsMOVAPSrm:
1569243830Sdim  case X86::FsMOVAPDrm: {
1570243830Sdim    // Loads from constant pools are trivially rematerializable.
1571243830Sdim    if (MI->getOperand(1).isReg() &&
1572243830Sdim        MI->getOperand(2).isImm() &&
1573243830Sdim        MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
1574243830Sdim        MI->isInvariantLoad(AA)) {
1575243830Sdim      unsigned BaseReg = MI->getOperand(1).getReg();
1576243830Sdim      if (BaseReg == 0 || BaseReg == X86::RIP)
1577243830Sdim        return true;
1578243830Sdim      // Allow re-materialization of PIC load.
1579243830Sdim      if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
1580243830Sdim        return false;
1581243830Sdim      const MachineFunction &MF = *MI->getParent()->getParent();
1582243830Sdim      const MachineRegisterInfo &MRI = MF.getRegInfo();
1583243830Sdim      return regIsPICBase(BaseReg, MRI);
1584193323Sed    }
1585243830Sdim    return false;
1586243830Sdim  }
1587218893Sdim
1588243830Sdim  case X86::LEA32r:
1589243830Sdim  case X86::LEA64r: {
1590243830Sdim    if (MI->getOperand(2).isImm() &&
1591243830Sdim        MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
1592243830Sdim        !MI->getOperand(4).isReg()) {
1593243830Sdim      // lea fi#, lea GV, etc. are all rematerializable.
1594243830Sdim      if (!MI->getOperand(1).isReg())
1595243830Sdim        return true;
1596243830Sdim      unsigned BaseReg = MI->getOperand(1).getReg();
1597243830Sdim      if (BaseReg == 0)
1598243830Sdim        return true;
1599243830Sdim      // Allow re-materialization of lea PICBase + x.
1600243830Sdim      const MachineFunction &MF = *MI->getParent()->getParent();
1601243830Sdim      const MachineRegisterInfo &MRI = MF.getRegInfo();
1602243830Sdim      return regIsPICBase(BaseReg, MRI);
1603243830Sdim    }
1604243830Sdim    return false;
1605193323Sed  }
1606243830Sdim  }
1607193323Sed
1608193323Sed  // All other instructions marked M_REMATERIALIZABLE are always trivially
1609193323Sed  // rematerializable.
1610193323Sed  return true;
1611193323Sed}
1612193323Sed
1613193323Sed/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
1614193323Sed/// would clobber the EFLAGS condition register. Note the result may be
1615193323Sed/// conservative. If it cannot definitely determine the safety after visiting
1616198090Srdivacky/// a few instructions in each direction it assumes it's not safe.
1617193323Sedstatic bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
1618193323Sed                                  MachineBasicBlock::iterator I) {
1619206083Srdivacky  MachineBasicBlock::iterator E = MBB.end();
1620206083Srdivacky
1621193323Sed  // For compile time consideration, if we are not able to determine the
1622198090Srdivacky  // safety after visiting 4 instructions in each direction, we will assume
1623198090Srdivacky  // it's not safe.
1624198090Srdivacky  MachineBasicBlock::iterator Iter = I;
1625226633Sdim  for (unsigned i = 0; Iter != E && i < 4; ++i) {
1626193323Sed    bool SeenDef = false;
1627198090Srdivacky    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1628198090Srdivacky      MachineOperand &MO = Iter->getOperand(j);
1629234353Sdim      if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
1630234353Sdim        SeenDef = true;
1631193323Sed      if (!MO.isReg())
1632193323Sed        continue;
1633193323Sed      if (MO.getReg() == X86::EFLAGS) {
1634193323Sed        if (MO.isUse())
1635193323Sed          return false;
1636193323Sed        SeenDef = true;
1637193323Sed      }
1638193323Sed    }
1639193323Sed
1640193323Sed    if (SeenDef)
1641193323Sed      // This instruction defines EFLAGS, no need to look any further.
1642193323Sed      return true;
1643198090Srdivacky    ++Iter;
1644206083Srdivacky    // Skip over DBG_VALUE.
1645206083Srdivacky    while (Iter != E && Iter->isDebugValue())
1646206083Srdivacky      ++Iter;
1647226633Sdim  }
1648193323Sed
1649226633Sdim  // It is safe to clobber EFLAGS at the end of a block of no successor has it
1650226633Sdim  // live in.
1651226633Sdim  if (Iter == E) {
1652226633Sdim    for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
1653226633Sdim           SE = MBB.succ_end(); SI != SE; ++SI)
1654226633Sdim      if ((*SI)->isLiveIn(X86::EFLAGS))
1655226633Sdim        return false;
1656226633Sdim    return true;
1657193323Sed  }
1658193323Sed
1659206083Srdivacky  MachineBasicBlock::iterator B = MBB.begin();
1660198090Srdivacky  Iter = I;
1661198090Srdivacky  for (unsigned i = 0; i < 4; ++i) {
1662198090Srdivacky    // If we make it to the beginning of the block, it's safe to clobber
1663198090Srdivacky    // EFLAGS iff EFLAGS is not live-in.
1664206083Srdivacky    if (Iter == B)
1665198090Srdivacky      return !MBB.isLiveIn(X86::EFLAGS);
1666198090Srdivacky
1667198090Srdivacky    --Iter;
1668206083Srdivacky    // Skip over DBG_VALUE.
1669206083Srdivacky    while (Iter != B && Iter->isDebugValue())
1670206083Srdivacky      --Iter;
1671206083Srdivacky
1672198090Srdivacky    bool SawKill = false;
1673198090Srdivacky    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1674198090Srdivacky      MachineOperand &MO = Iter->getOperand(j);
1675234353Sdim      // A register mask may clobber EFLAGS, but we should still look for a
1676234353Sdim      // live EFLAGS def.
1677234353Sdim      if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
1678234353Sdim        SawKill = true;
1679198090Srdivacky      if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
1680198090Srdivacky        if (MO.isDef()) return MO.isDead();
1681198090Srdivacky        if (MO.isKill()) SawKill = true;
1682198090Srdivacky      }
1683198090Srdivacky    }
1684198090Srdivacky
1685198090Srdivacky    if (SawKill)
1686198090Srdivacky      // This instruction kills EFLAGS and doesn't redefine it, so
1687198090Srdivacky      // there's no need to look further.
1688198090Srdivacky      return true;
1689198090Srdivacky  }
1690198090Srdivacky
1691193323Sed  // Conservative answer.
1692193323Sed  return false;
1693193323Sed}
1694193323Sed
1695193323Sedvoid X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1696193323Sed                                 MachineBasicBlock::iterator I,
1697198090Srdivacky                                 unsigned DestReg, unsigned SubIdx,
1698199481Srdivacky                                 const MachineInstr *Orig,
1699210299Sed                                 const TargetRegisterInfo &TRI) const {
1700208599Srdivacky  DebugLoc DL = Orig->getDebugLoc();
1701193323Sed
1702193323Sed  // MOV32r0 etc. are implemented with xor which clobbers condition code.
1703193323Sed  // Re-materialize them as movri instructions to avoid side effects.
1704198090Srdivacky  bool Clone = true;
1705198090Srdivacky  unsigned Opc = Orig->getOpcode();
1706198090Srdivacky  switch (Opc) {
1707193323Sed  default: break;
1708193323Sed  case X86::MOV8r0:
1709202375Srdivacky  case X86::MOV16r0:
1710202375Srdivacky  case X86::MOV32r0:
1711202375Srdivacky  case X86::MOV64r0: {
1712193323Sed    if (!isSafeToClobberEFLAGS(MBB, I)) {
1713198090Srdivacky      switch (Opc) {
1714243830Sdim      default: llvm_unreachable("Unreachable!");
1715193323Sed      case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
1716202375Srdivacky      case X86::MOV16r0: Opc = X86::MOV16ri; break;
1717193323Sed      case X86::MOV32r0: Opc = X86::MOV32ri; break;
1718204642Srdivacky      case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
1719193323Sed      }
1720198090Srdivacky      Clone = false;
1721193323Sed    }
1722193323Sed    break;
1723193323Sed  }
1724193323Sed  }
1725193323Sed
1726198090Srdivacky  if (Clone) {
1727193323Sed    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1728193323Sed    MBB.insert(I, MI);
1729198090Srdivacky  } else {
1730210299Sed    BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0);
1731193323Sed  }
1732193323Sed
1733198090Srdivacky  MachineInstr *NewMI = prior(I);
1734210299Sed  NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1735193323Sed}
1736193323Sed
1737193323Sed/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1738193323Sed/// is not marked dead.
1739193323Sedstatic bool hasLiveCondCodeDef(MachineInstr *MI) {
1740193323Sed  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1741193323Sed    MachineOperand &MO = MI->getOperand(i);
1742193323Sed    if (MO.isReg() && MO.isDef() &&
1743193323Sed        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1744193323Sed      return true;
1745193323Sed    }
1746193323Sed  }
1747193323Sed  return false;
1748193323Sed}
1749193323Sed
1750200581Srdivacky/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
1751200581Srdivacky/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1752200581Srdivacky/// to a 32-bit superregister and then truncating back down to a 16-bit
1753200581Srdivacky/// subregister.
1754200581SrdivackyMachineInstr *
1755200581SrdivackyX86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1756200581Srdivacky                                           MachineFunction::iterator &MFI,
1757200581Srdivacky                                           MachineBasicBlock::iterator &MBBI,
1758200581Srdivacky                                           LiveVariables *LV) const {
1759200581Srdivacky  MachineInstr *MI = MBBI;
1760200581Srdivacky  unsigned Dest = MI->getOperand(0).getReg();
1761200581Srdivacky  unsigned Src = MI->getOperand(1).getReg();
1762200581Srdivacky  bool isDead = MI->getOperand(0).isDead();
1763200581Srdivacky  bool isKill = MI->getOperand(1).isKill();
1764200581Srdivacky
1765200581Srdivacky  unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1766200581Srdivacky    ? X86::LEA64_32r : X86::LEA32r;
1767200581Srdivacky  MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1768218893Sdim  unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1769200581Srdivacky  unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1770218893Sdim
1771200581Srdivacky  // Build and insert into an implicit UNDEF value. This is OK because
1772218893Sdim  // well be shifting and then extracting the lower 16-bits.
1773200581Srdivacky  // This has the potential to cause partial register stall. e.g.
1774200581Srdivacky  //   movw    (%rbp,%rcx,2), %dx
1775200581Srdivacky  //   leal    -65(%rdx), %esi
1776200581Srdivacky  // But testing has shown this *does* help performance in 64-bit mode (at
1777200581Srdivacky  // least on modern x86 machines).
1778200581Srdivacky  BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1779200581Srdivacky  MachineInstr *InsMI =
1780210299Sed    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1781210299Sed    .addReg(leaInReg, RegState::Define, X86::sub_16bit)
1782210299Sed    .addReg(Src, getKillRegState(isKill));
1783200581Srdivacky
1784200581Srdivacky  MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
1785200581Srdivacky                                    get(Opc), leaOutReg);
1786200581Srdivacky  switch (MIOpc) {
1787243830Sdim  default: llvm_unreachable("Unreachable!");
1788200581Srdivacky  case X86::SHL16ri: {
1789200581Srdivacky    unsigned ShAmt = MI->getOperand(2).getImm();
1790200581Srdivacky    MIB.addReg(0).addImm(1 << ShAmt)
1791210299Sed       .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
1792200581Srdivacky    break;
1793200581Srdivacky  }
1794200581Srdivacky  case X86::INC16r:
1795200581Srdivacky  case X86::INC64_16r:
1796210299Sed    addRegOffset(MIB, leaInReg, true, 1);
1797200581Srdivacky    break;
1798200581Srdivacky  case X86::DEC16r:
1799200581Srdivacky  case X86::DEC64_16r:
1800210299Sed    addRegOffset(MIB, leaInReg, true, -1);
1801200581Srdivacky    break;
1802200581Srdivacky  case X86::ADD16ri:
1803200581Srdivacky  case X86::ADD16ri8:
1804218893Sdim  case X86::ADD16ri_DB:
1805218893Sdim  case X86::ADD16ri8_DB:
1806218893Sdim    addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
1807200581Srdivacky    break;
1808218893Sdim  case X86::ADD16rr:
1809218893Sdim  case X86::ADD16rr_DB: {
1810200581Srdivacky    unsigned Src2 = MI->getOperand(2).getReg();
1811200581Srdivacky    bool isKill2 = MI->getOperand(2).isKill();
1812200581Srdivacky    unsigned leaInReg2 = 0;
1813200581Srdivacky    MachineInstr *InsMI2 = 0;
1814200581Srdivacky    if (Src == Src2) {
1815200581Srdivacky      // ADD16rr %reg1028<kill>, %reg1028
1816200581Srdivacky      // just a single insert_subreg.
1817200581Srdivacky      addRegReg(MIB, leaInReg, true, leaInReg, false);
1818200581Srdivacky    } else {
1819218893Sdim      leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1820200581Srdivacky      // Build and insert into an implicit UNDEF value. This is OK because
1821218893Sdim      // well be shifting and then extracting the lower 16-bits.
1822234353Sdim      BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
1823200581Srdivacky      InsMI2 =
1824234353Sdim        BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
1825210299Sed        .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
1826210299Sed        .addReg(Src2, getKillRegState(isKill2));
1827200581Srdivacky      addRegReg(MIB, leaInReg, true, leaInReg2, true);
1828200581Srdivacky    }
1829200581Srdivacky    if (LV && isKill2 && InsMI2)
1830200581Srdivacky      LV->replaceKillInstruction(Src2, MI, InsMI2);
1831200581Srdivacky    break;
1832200581Srdivacky  }
1833200581Srdivacky  }
1834200581Srdivacky
1835200581Srdivacky  MachineInstr *NewMI = MIB;
1836200581Srdivacky  MachineInstr *ExtMI =
1837210299Sed    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1838200581Srdivacky    .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1839210299Sed    .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
1840200581Srdivacky
1841200581Srdivacky  if (LV) {
1842200581Srdivacky    // Update live variables
1843200581Srdivacky    LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1844200581Srdivacky    LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1845200581Srdivacky    if (isKill)
1846200581Srdivacky      LV->replaceKillInstruction(Src, MI, InsMI);
1847200581Srdivacky    if (isDead)
1848200581Srdivacky      LV->replaceKillInstruction(Dest, MI, ExtMI);
1849200581Srdivacky  }
1850200581Srdivacky
1851200581Srdivacky  return ExtMI;
1852200581Srdivacky}
1853200581Srdivacky
1854193323Sed/// convertToThreeAddress - This method must be implemented by targets that
1855193323Sed/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
1856193323Sed/// may be able to convert a two-address instruction into a true
1857193323Sed/// three-address instruction on demand.  This allows the X86 target (for
1858193323Sed/// example) to convert ADD and SHL instructions into LEA instructions if they
1859193323Sed/// would require register copies due to two-addressness.
1860193323Sed///
1861193323Sed/// This method returns a null pointer if the transformation cannot be
1862193323Sed/// performed, otherwise it returns the new instruction.
1863193323Sed///
1864193323SedMachineInstr *
1865193323SedX86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1866193323Sed                                    MachineBasicBlock::iterator &MBBI,
1867193323Sed                                    LiveVariables *LV) const {
1868193323Sed  MachineInstr *MI = MBBI;
1869193323Sed  MachineFunction &MF = *MI->getParent()->getParent();
1870193323Sed  // All instructions input are two-addr instructions.  Get the known operands.
1871243830Sdim  const MachineOperand &Dest = MI->getOperand(0);
1872243830Sdim  const MachineOperand &Src = MI->getOperand(1);
1873193323Sed
1874193323Sed  MachineInstr *NewMI = NULL;
1875193323Sed  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
1876193323Sed  // we have better subtarget support, enable the 16-bit LEA generation here.
1877200581Srdivacky  // 16-bit LEA is also slow on Core2.
1878193323Sed  bool DisableLEA16 = true;
1879200581Srdivacky  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1880193323Sed
1881193323Sed  unsigned MIOpc = MI->getOpcode();
1882193323Sed  switch (MIOpc) {
1883193323Sed  case X86::SHUFPSrri: {
1884193323Sed    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1885193323Sed    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1886218893Sdim
1887193323Sed    unsigned B = MI->getOperand(1).getReg();
1888193323Sed    unsigned C = MI->getOperand(2).getReg();
1889193323Sed    if (B != C) return 0;
1890193323Sed    unsigned M = MI->getOperand(3).getImm();
1891193323Sed    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1892243830Sdim      .addOperand(Dest).addOperand(Src).addImm(M);
1893193323Sed    break;
1894193323Sed  }
1895234353Sdim  case X86::SHUFPDrri: {
1896234353Sdim    assert(MI->getNumOperands() == 4 && "Unknown shufpd instruction!");
1897234353Sdim    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1898234353Sdim
1899234353Sdim    unsigned B = MI->getOperand(1).getReg();
1900234353Sdim    unsigned C = MI->getOperand(2).getReg();
1901234353Sdim    if (B != C) return 0;
1902234353Sdim    unsigned M = MI->getOperand(3).getImm();
1903234353Sdim
1904234353Sdim    // Convert to PSHUFD mask.
1905234353Sdim    M = ((M & 1) << 1) | ((M & 1) << 3) | ((M & 2) << 4) | ((M & 2) << 6)| 0x44;
1906234353Sdim
1907234353Sdim    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1908243830Sdim      .addOperand(Dest).addOperand(Src).addImm(M);
1909234353Sdim    break;
1910234353Sdim  }
1911193323Sed  case X86::SHL64ri: {
1912193323Sed    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1913193323Sed    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1914193323Sed    // the flags produced by a shift yet, so this is safe.
1915193323Sed    unsigned ShAmt = MI->getOperand(2).getImm();
1916193323Sed    if (ShAmt == 0 || ShAmt >= 4) return 0;
1917193323Sed
1918218893Sdim    // LEA can't handle RSP.
1919243830Sdim    if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
1920243830Sdim        !MF.getRegInfo().constrainRegClass(Src.getReg(),
1921243830Sdim                                           &X86::GR64_NOSPRegClass))
1922218893Sdim      return 0;
1923218893Sdim
1924193323Sed    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1925243830Sdim      .addOperand(Dest)
1926243830Sdim      .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
1927193323Sed    break;
1928193323Sed  }
1929193323Sed  case X86::SHL32ri: {
1930193323Sed    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1931193323Sed    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1932193323Sed    // the flags produced by a shift yet, so this is safe.
1933193323Sed    unsigned ShAmt = MI->getOperand(2).getImm();
1934193323Sed    if (ShAmt == 0 || ShAmt >= 4) return 0;
1935193323Sed
1936218893Sdim    // LEA can't handle ESP.
1937243830Sdim    if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
1938243830Sdim        !MF.getRegInfo().constrainRegClass(Src.getReg(),
1939243830Sdim                                           &X86::GR32_NOSPRegClass))
1940218893Sdim      return 0;
1941218893Sdim
1942200581Srdivacky    unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1943193323Sed    NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
1944243830Sdim      .addOperand(Dest)
1945243830Sdim      .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
1946193323Sed    break;
1947193323Sed  }
1948193323Sed  case X86::SHL16ri: {
1949193323Sed    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1950193323Sed    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1951193323Sed    // the flags produced by a shift yet, so this is safe.
1952193323Sed    unsigned ShAmt = MI->getOperand(2).getImm();
1953193323Sed    if (ShAmt == 0 || ShAmt >= 4) return 0;
1954193323Sed
1955200581Srdivacky    if (DisableLEA16)
1956200581Srdivacky      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1957200581Srdivacky    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1958243830Sdim      .addOperand(Dest)
1959243830Sdim      .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
1960193323Sed    break;
1961193323Sed  }
1962193323Sed  default: {
1963193323Sed    // The following opcodes also sets the condition code register(s). Only
1964193323Sed    // convert them to equivalent lea if the condition code register def's
1965193323Sed    // are dead!
1966193323Sed    if (hasLiveCondCodeDef(MI))
1967193323Sed      return 0;
1968193323Sed
1969193323Sed    switch (MIOpc) {
1970193323Sed    default: return 0;
1971193323Sed    case X86::INC64r:
1972193323Sed    case X86::INC32r:
1973193323Sed    case X86::INC64_32r: {
1974193323Sed      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1975193323Sed      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1976193323Sed        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1977239462Sdim      const TargetRegisterClass *RC = MIOpc == X86::INC64r ?
1978239462Sdim        (const TargetRegisterClass*)&X86::GR64_NOSPRegClass :
1979239462Sdim        (const TargetRegisterClass*)&X86::GR32_NOSPRegClass;
1980218893Sdim
1981218893Sdim      // LEA can't handle RSP.
1982243830Sdim      if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
1983243830Sdim          !MF.getRegInfo().constrainRegClass(Src.getReg(), RC))
1984218893Sdim        return 0;
1985218893Sdim
1986243830Sdim      NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1987243830Sdim                        .addOperand(Dest).addOperand(Src), 1);
1988193323Sed      break;
1989193323Sed    }
1990193323Sed    case X86::INC16r:
1991193323Sed    case X86::INC64_16r:
1992200581Srdivacky      if (DisableLEA16)
1993200581Srdivacky        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1994193323Sed      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1995243830Sdim      NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1996243830Sdim                        .addOperand(Dest).addOperand(Src), 1);
1997193323Sed      break;
1998193323Sed    case X86::DEC64r:
1999193323Sed    case X86::DEC32r:
2000193323Sed    case X86::DEC64_32r: {
2001193323Sed      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
2002193323Sed      unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
2003193323Sed        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
2004239462Sdim      const TargetRegisterClass *RC = MIOpc == X86::DEC64r ?
2005239462Sdim        (const TargetRegisterClass*)&X86::GR64_NOSPRegClass :
2006239462Sdim        (const TargetRegisterClass*)&X86::GR32_NOSPRegClass;
2007218893Sdim      // LEA can't handle RSP.
2008243830Sdim      if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
2009243830Sdim          !MF.getRegInfo().constrainRegClass(Src.getReg(), RC))
2010218893Sdim        return 0;
2011218893Sdim
2012243830Sdim      NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
2013243830Sdim                        .addOperand(Dest).addOperand(Src), -1);
2014193323Sed      break;
2015193323Sed    }
2016193323Sed    case X86::DEC16r:
2017193323Sed    case X86::DEC64_16r:
2018200581Srdivacky      if (DisableLEA16)
2019200581Srdivacky        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
2020193323Sed      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
2021243830Sdim      NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2022243830Sdim                        .addOperand(Dest).addOperand(Src), -1);
2023193323Sed      break;
2024193323Sed    case X86::ADD64rr:
2025218893Sdim    case X86::ADD64rr_DB:
2026218893Sdim    case X86::ADD32rr:
2027218893Sdim    case X86::ADD32rr_DB: {
2028193323Sed      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2029218893Sdim      unsigned Opc;
2030234353Sdim      const TargetRegisterClass *RC;
2031218893Sdim      if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) {
2032218893Sdim        Opc = X86::LEA64r;
2033239462Sdim        RC = &X86::GR64_NOSPRegClass;
2034218893Sdim      } else {
2035218893Sdim        Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2036239462Sdim        RC = &X86::GR32_NOSPRegClass;
2037218893Sdim      }
2038218893Sdim
2039218893Sdim
2040193323Sed      unsigned Src2 = MI->getOperand(2).getReg();
2041193323Sed      bool isKill2 = MI->getOperand(2).isKill();
2042218893Sdim
2043218893Sdim      // LEA can't handle RSP.
2044218893Sdim      if (TargetRegisterInfo::isVirtualRegister(Src2) &&
2045218893Sdim          !MF.getRegInfo().constrainRegClass(Src2, RC))
2046218893Sdim        return 0;
2047218893Sdim
2048193323Sed      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
2049243830Sdim                        .addOperand(Dest),
2050243830Sdim                        Src.getReg(), Src.isKill(), Src2, isKill2);
2051239462Sdim
2052239462Sdim      // Preserve undefness of the operands.
2053239462Sdim      bool isUndef = MI->getOperand(1).isUndef();
2054239462Sdim      bool isUndef2 = MI->getOperand(2).isUndef();
2055239462Sdim      NewMI->getOperand(1).setIsUndef(isUndef);
2056239462Sdim      NewMI->getOperand(3).setIsUndef(isUndef2);
2057239462Sdim
2058193323Sed      if (LV && isKill2)
2059193323Sed        LV->replaceKillInstruction(Src2, MI, NewMI);
2060193323Sed      break;
2061193323Sed    }
2062218893Sdim    case X86::ADD16rr:
2063218893Sdim    case X86::ADD16rr_DB: {
2064200581Srdivacky      if (DisableLEA16)
2065200581Srdivacky        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
2066193323Sed      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2067193323Sed      unsigned Src2 = MI->getOperand(2).getReg();
2068193323Sed      bool isKill2 = MI->getOperand(2).isKill();
2069193323Sed      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2070243830Sdim                        .addOperand(Dest),
2071243830Sdim                        Src.getReg(), Src.isKill(), Src2, isKill2);
2072243830Sdim
2073243830Sdim      // Preserve undefness of the operands.
2074243830Sdim      bool isUndef = MI->getOperand(1).isUndef();
2075243830Sdim      bool isUndef2 = MI->getOperand(2).isUndef();
2076243830Sdim      NewMI->getOperand(1).setIsUndef(isUndef);
2077243830Sdim      NewMI->getOperand(3).setIsUndef(isUndef2);
2078243830Sdim
2079193323Sed      if (LV && isKill2)
2080193323Sed        LV->replaceKillInstruction(Src2, MI, NewMI);
2081193323Sed      break;
2082193323Sed    }
2083193323Sed    case X86::ADD64ri32:
2084193323Sed    case X86::ADD64ri8:
2085218893Sdim    case X86::ADD64ri32_DB:
2086218893Sdim    case X86::ADD64ri8_DB:
2087193323Sed      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2088243830Sdim      NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
2089243830Sdim                        .addOperand(Dest).addOperand(Src),
2090243830Sdim                        MI->getOperand(2).getImm());
2091193323Sed      break;
2092193323Sed    case X86::ADD32ri:
2093218893Sdim    case X86::ADD32ri8:
2094218893Sdim    case X86::ADD32ri_DB:
2095218893Sdim    case X86::ADD32ri8_DB: {
2096193323Sed      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2097200581Srdivacky      unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
2098243830Sdim      NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
2099243830Sdim                        .addOperand(Dest).addOperand(Src),
2100243830Sdim                        MI->getOperand(2).getImm());
2101193323Sed      break;
2102200581Srdivacky    }
2103193323Sed    case X86::ADD16ri:
2104193323Sed    case X86::ADD16ri8:
2105218893Sdim    case X86::ADD16ri_DB:
2106218893Sdim    case X86::ADD16ri8_DB:
2107200581Srdivacky      if (DisableLEA16)
2108200581Srdivacky        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
2109193323Sed      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
2110243830Sdim      NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
2111243830Sdim                        .addOperand(Dest).addOperand(Src),
2112243830Sdim                        MI->getOperand(2).getImm());
2113193323Sed      break;
2114193323Sed    }
2115193323Sed  }
2116193323Sed  }
2117193323Sed
2118193323Sed  if (!NewMI) return 0;
2119193323Sed
2120193323Sed  if (LV) {  // Update live variables
2121243830Sdim    if (Src.isKill())
2122243830Sdim      LV->replaceKillInstruction(Src.getReg(), MI, NewMI);
2123243830Sdim    if (Dest.isDead())
2124243830Sdim      LV->replaceKillInstruction(Dest.getReg(), MI, NewMI);
2125193323Sed  }
2126193323Sed
2127218893Sdim  MFI->insert(MBBI, NewMI);          // Insert the new inst
2128193323Sed  return NewMI;
2129193323Sed}
2130193323Sed
2131193323Sed/// commuteInstruction - We have a few instructions that must be hacked on to
2132193323Sed/// commute them.
2133193323Sed///
2134193323SedMachineInstr *
2135193323SedX86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
2136193323Sed  switch (MI->getOpcode()) {
2137193323Sed  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
2138193323Sed  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
2139193323Sed  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
2140193323Sed  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
2141193323Sed  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
2142193323Sed  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
2143193323Sed    unsigned Opc;
2144193323Sed    unsigned Size;
2145193323Sed    switch (MI->getOpcode()) {
2146198090Srdivacky    default: llvm_unreachable("Unreachable!");
2147193323Sed    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
2148193323Sed    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
2149193323Sed    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
2150193323Sed    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
2151193323Sed    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
2152193323Sed    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
2153193323Sed    }
2154193323Sed    unsigned Amt = MI->getOperand(3).getImm();
2155193323Sed    if (NewMI) {
2156193323Sed      MachineFunction &MF = *MI->getParent()->getParent();
2157193323Sed      MI = MF.CloneMachineInstr(MI);
2158193323Sed      NewMI = false;
2159193323Sed    }
2160193323Sed    MI->setDesc(get(Opc));
2161193323Sed    MI->getOperand(3).setImm(Size-Amt);
2162193323Sed    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
2163193323Sed  }
2164243830Sdim  case X86::CMOVB16rr:  case X86::CMOVB32rr:  case X86::CMOVB64rr:
2165243830Sdim  case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr:
2166243830Sdim  case X86::CMOVE16rr:  case X86::CMOVE32rr:  case X86::CMOVE64rr:
2167243830Sdim  case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr:
2168243830Sdim  case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr:
2169243830Sdim  case X86::CMOVA16rr:  case X86::CMOVA32rr:  case X86::CMOVA64rr:
2170243830Sdim  case X86::CMOVL16rr:  case X86::CMOVL32rr:  case X86::CMOVL64rr:
2171243830Sdim  case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr:
2172243830Sdim  case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr:
2173243830Sdim  case X86::CMOVG16rr:  case X86::CMOVG32rr:  case X86::CMOVG64rr:
2174243830Sdim  case X86::CMOVS16rr:  case X86::CMOVS32rr:  case X86::CMOVS64rr:
2175243830Sdim  case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr:
2176243830Sdim  case X86::CMOVP16rr:  case X86::CMOVP32rr:  case X86::CMOVP64rr:
2177243830Sdim  case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr:
2178243830Sdim  case X86::CMOVO16rr:  case X86::CMOVO32rr:  case X86::CMOVO64rr:
2179243830Sdim  case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: {
2180243830Sdim    unsigned Opc;
2181193323Sed    switch (MI->getOpcode()) {
2182243830Sdim    default: llvm_unreachable("Unreachable!");
2183193323Sed    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
2184193323Sed    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
2185193323Sed    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
2186193323Sed    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
2187193323Sed    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
2188193323Sed    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
2189193323Sed    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
2190193323Sed    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
2191193323Sed    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
2192193323Sed    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
2193193323Sed    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
2194193323Sed    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
2195193323Sed    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
2196193323Sed    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
2197193323Sed    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
2198193323Sed    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
2199193323Sed    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
2200193323Sed    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
2201193323Sed    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
2202193323Sed    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
2203193323Sed    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
2204193323Sed    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
2205193323Sed    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
2206193323Sed    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
2207193323Sed    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
2208193323Sed    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
2209193323Sed    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
2210193323Sed    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
2211193323Sed    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
2212193323Sed    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
2213193323Sed    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
2214193323Sed    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
2215193323Sed    case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
2216193323Sed    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
2217193323Sed    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
2218193323Sed    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
2219193323Sed    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
2220193323Sed    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
2221193323Sed    case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
2222193323Sed    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
2223193323Sed    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
2224193323Sed    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
2225193323Sed    case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
2226193323Sed    case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
2227193323Sed    case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
2228193323Sed    case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
2229193323Sed    case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
2230193323Sed    case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
2231193323Sed    }
2232193323Sed    if (NewMI) {
2233193323Sed      MachineFunction &MF = *MI->getParent()->getParent();
2234193323Sed      MI = MF.CloneMachineInstr(MI);
2235193323Sed      NewMI = false;
2236193323Sed    }
2237193323Sed    MI->setDesc(get(Opc));
2238193323Sed    // Fallthrough intended.
2239193323Sed  }
2240193323Sed  default:
2241193323Sed    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
2242193323Sed  }
2243193323Sed}
2244193323Sed
2245239462Sdimstatic X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
2246193323Sed  switch (BrOpc) {
2247193323Sed  default: return X86::COND_INVALID;
2248203954Srdivacky  case X86::JE_4:  return X86::COND_E;
2249203954Srdivacky  case X86::JNE_4: return X86::COND_NE;
2250203954Srdivacky  case X86::JL_4:  return X86::COND_L;
2251203954Srdivacky  case X86::JLE_4: return X86::COND_LE;
2252203954Srdivacky  case X86::JG_4:  return X86::COND_G;
2253203954Srdivacky  case X86::JGE_4: return X86::COND_GE;
2254203954Srdivacky  case X86::JB_4:  return X86::COND_B;
2255203954Srdivacky  case X86::JBE_4: return X86::COND_BE;
2256203954Srdivacky  case X86::JA_4:  return X86::COND_A;
2257203954Srdivacky  case X86::JAE_4: return X86::COND_AE;
2258203954Srdivacky  case X86::JS_4:  return X86::COND_S;
2259203954Srdivacky  case X86::JNS_4: return X86::COND_NS;
2260203954Srdivacky  case X86::JP_4:  return X86::COND_P;
2261203954Srdivacky  case X86::JNP_4: return X86::COND_NP;
2262203954Srdivacky  case X86::JO_4:  return X86::COND_O;
2263203954Srdivacky  case X86::JNO_4: return X86::COND_NO;
2264193323Sed  }
2265193323Sed}
2266193323Sed
2267239462Sdim/// getCondFromSETOpc - return condition code of a SET opcode.
2268239462Sdimstatic X86::CondCode getCondFromSETOpc(unsigned Opc) {
2269239462Sdim  switch (Opc) {
2270239462Sdim  default: return X86::COND_INVALID;
2271239462Sdim  case X86::SETAr:  case X86::SETAm:  return X86::COND_A;
2272239462Sdim  case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
2273239462Sdim  case X86::SETBr:  case X86::SETBm:  return X86::COND_B;
2274239462Sdim  case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
2275239462Sdim  case X86::SETEr:  case X86::SETEm:  return X86::COND_E;
2276239462Sdim  case X86::SETGr:  case X86::SETGm:  return X86::COND_G;
2277239462Sdim  case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
2278239462Sdim  case X86::SETLr:  case X86::SETLm:  return X86::COND_L;
2279239462Sdim  case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
2280239462Sdim  case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
2281239462Sdim  case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
2282239462Sdim  case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
2283239462Sdim  case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
2284239462Sdim  case X86::SETOr:  case X86::SETOm:  return X86::COND_O;
2285239462Sdim  case X86::SETPr:  case X86::SETPm:  return X86::COND_P;
2286239462Sdim  case X86::SETSr:  case X86::SETSm:  return X86::COND_S;
2287239462Sdim  }
2288239462Sdim}
2289239462Sdim
2290239462Sdim/// getCondFromCmovOpc - return condition code of a CMov opcode.
2291243830SdimX86::CondCode X86::getCondFromCMovOpc(unsigned Opc) {
2292239462Sdim  switch (Opc) {
2293239462Sdim  default: return X86::COND_INVALID;
2294239462Sdim  case X86::CMOVA16rm:  case X86::CMOVA16rr:  case X86::CMOVA32rm:
2295239462Sdim  case X86::CMOVA32rr:  case X86::CMOVA64rm:  case X86::CMOVA64rr:
2296239462Sdim    return X86::COND_A;
2297239462Sdim  case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
2298239462Sdim  case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
2299239462Sdim    return X86::COND_AE;
2300239462Sdim  case X86::CMOVB16rm:  case X86::CMOVB16rr:  case X86::CMOVB32rm:
2301239462Sdim  case X86::CMOVB32rr:  case X86::CMOVB64rm:  case X86::CMOVB64rr:
2302239462Sdim    return X86::COND_B;
2303239462Sdim  case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
2304239462Sdim  case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
2305239462Sdim    return X86::COND_BE;
2306239462Sdim  case X86::CMOVE16rm:  case X86::CMOVE16rr:  case X86::CMOVE32rm:
2307239462Sdim  case X86::CMOVE32rr:  case X86::CMOVE64rm:  case X86::CMOVE64rr:
2308239462Sdim    return X86::COND_E;
2309239462Sdim  case X86::CMOVG16rm:  case X86::CMOVG16rr:  case X86::CMOVG32rm:
2310239462Sdim  case X86::CMOVG32rr:  case X86::CMOVG64rm:  case X86::CMOVG64rr:
2311239462Sdim    return X86::COND_G;
2312239462Sdim  case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
2313239462Sdim  case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
2314239462Sdim    return X86::COND_GE;
2315239462Sdim  case X86::CMOVL16rm:  case X86::CMOVL16rr:  case X86::CMOVL32rm:
2316239462Sdim  case X86::CMOVL32rr:  case X86::CMOVL64rm:  case X86::CMOVL64rr:
2317239462Sdim    return X86::COND_L;
2318239462Sdim  case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
2319239462Sdim  case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
2320239462Sdim    return X86::COND_LE;
2321239462Sdim  case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
2322239462Sdim  case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
2323239462Sdim    return X86::COND_NE;
2324239462Sdim  case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
2325239462Sdim  case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
2326239462Sdim    return X86::COND_NO;
2327239462Sdim  case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
2328239462Sdim  case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
2329239462Sdim    return X86::COND_NP;
2330239462Sdim  case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
2331239462Sdim  case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
2332239462Sdim    return X86::COND_NS;
2333239462Sdim  case X86::CMOVO16rm:  case X86::CMOVO16rr:  case X86::CMOVO32rm:
2334239462Sdim  case X86::CMOVO32rr:  case X86::CMOVO64rm:  case X86::CMOVO64rr:
2335239462Sdim    return X86::COND_O;
2336239462Sdim  case X86::CMOVP16rm:  case X86::CMOVP16rr:  case X86::CMOVP32rm:
2337239462Sdim  case X86::CMOVP32rr:  case X86::CMOVP64rm:  case X86::CMOVP64rr:
2338239462Sdim    return X86::COND_P;
2339239462Sdim  case X86::CMOVS16rm:  case X86::CMOVS16rr:  case X86::CMOVS32rm:
2340239462Sdim  case X86::CMOVS32rr:  case X86::CMOVS64rm:  case X86::CMOVS64rr:
2341239462Sdim    return X86::COND_S;
2342239462Sdim  }
2343239462Sdim}
2344239462Sdim
2345193323Sedunsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
2346193323Sed  switch (CC) {
2347198090Srdivacky  default: llvm_unreachable("Illegal condition code!");
2348203954Srdivacky  case X86::COND_E:  return X86::JE_4;
2349203954Srdivacky  case X86::COND_NE: return X86::JNE_4;
2350203954Srdivacky  case X86::COND_L:  return X86::JL_4;
2351203954Srdivacky  case X86::COND_LE: return X86::JLE_4;
2352203954Srdivacky  case X86::COND_G:  return X86::JG_4;
2353203954Srdivacky  case X86::COND_GE: return X86::JGE_4;
2354203954Srdivacky  case X86::COND_B:  return X86::JB_4;
2355203954Srdivacky  case X86::COND_BE: return X86::JBE_4;
2356203954Srdivacky  case X86::COND_A:  return X86::JA_4;
2357203954Srdivacky  case X86::COND_AE: return X86::JAE_4;
2358203954Srdivacky  case X86::COND_S:  return X86::JS_4;
2359203954Srdivacky  case X86::COND_NS: return X86::JNS_4;
2360203954Srdivacky  case X86::COND_P:  return X86::JP_4;
2361203954Srdivacky  case X86::COND_NP: return X86::JNP_4;
2362203954Srdivacky  case X86::COND_O:  return X86::JO_4;
2363203954Srdivacky  case X86::COND_NO: return X86::JNO_4;
2364193323Sed  }
2365193323Sed}
2366193323Sed
2367193323Sed/// GetOppositeBranchCondition - Return the inverse of the specified condition,
2368193323Sed/// e.g. turning COND_E to COND_NE.
2369193323SedX86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2370193323Sed  switch (CC) {
2371198090Srdivacky  default: llvm_unreachable("Illegal condition code!");
2372193323Sed  case X86::COND_E:  return X86::COND_NE;
2373193323Sed  case X86::COND_NE: return X86::COND_E;
2374193323Sed  case X86::COND_L:  return X86::COND_GE;
2375193323Sed  case X86::COND_LE: return X86::COND_G;
2376193323Sed  case X86::COND_G:  return X86::COND_LE;
2377193323Sed  case X86::COND_GE: return X86::COND_L;
2378193323Sed  case X86::COND_B:  return X86::COND_AE;
2379193323Sed  case X86::COND_BE: return X86::COND_A;
2380193323Sed  case X86::COND_A:  return X86::COND_BE;
2381193323Sed  case X86::COND_AE: return X86::COND_B;
2382193323Sed  case X86::COND_S:  return X86::COND_NS;
2383193323Sed  case X86::COND_NS: return X86::COND_S;
2384193323Sed  case X86::COND_P:  return X86::COND_NP;
2385193323Sed  case X86::COND_NP: return X86::COND_P;
2386193323Sed  case X86::COND_O:  return X86::COND_NO;
2387193323Sed  case X86::COND_NO: return X86::COND_O;
2388193323Sed  }
2389193323Sed}
2390193323Sed
2391239462Sdim/// getSwappedCondition - assume the flags are set by MI(a,b), return
2392239462Sdim/// the condition code if we modify the instructions such that flags are
2393239462Sdim/// set by MI(b,a).
2394239462Sdimstatic X86::CondCode getSwappedCondition(X86::CondCode CC) {
2395239462Sdim  switch (CC) {
2396239462Sdim  default: return X86::COND_INVALID;
2397239462Sdim  case X86::COND_E:  return X86::COND_E;
2398239462Sdim  case X86::COND_NE: return X86::COND_NE;
2399239462Sdim  case X86::COND_L:  return X86::COND_G;
2400239462Sdim  case X86::COND_LE: return X86::COND_GE;
2401239462Sdim  case X86::COND_G:  return X86::COND_L;
2402239462Sdim  case X86::COND_GE: return X86::COND_LE;
2403239462Sdim  case X86::COND_B:  return X86::COND_A;
2404239462Sdim  case X86::COND_BE: return X86::COND_AE;
2405239462Sdim  case X86::COND_A:  return X86::COND_B;
2406239462Sdim  case X86::COND_AE: return X86::COND_BE;
2407239462Sdim  }
2408239462Sdim}
2409239462Sdim
2410239462Sdim/// getSETFromCond - Return a set opcode for the given condition and
2411239462Sdim/// whether it has memory operand.
2412239462Sdimstatic unsigned getSETFromCond(X86::CondCode CC,
2413239462Sdim                               bool HasMemoryOperand) {
2414243830Sdim  static const uint16_t Opc[16][2] = {
2415239462Sdim    { X86::SETAr,  X86::SETAm  },
2416239462Sdim    { X86::SETAEr, X86::SETAEm },
2417239462Sdim    { X86::SETBr,  X86::SETBm  },
2418239462Sdim    { X86::SETBEr, X86::SETBEm },
2419239462Sdim    { X86::SETEr,  X86::SETEm  },
2420239462Sdim    { X86::SETGr,  X86::SETGm  },
2421239462Sdim    { X86::SETGEr, X86::SETGEm },
2422239462Sdim    { X86::SETLr,  X86::SETLm  },
2423239462Sdim    { X86::SETLEr, X86::SETLEm },
2424239462Sdim    { X86::SETNEr, X86::SETNEm },
2425239462Sdim    { X86::SETNOr, X86::SETNOm },
2426239462Sdim    { X86::SETNPr, X86::SETNPm },
2427239462Sdim    { X86::SETNSr, X86::SETNSm },
2428239462Sdim    { X86::SETOr,  X86::SETOm  },
2429239462Sdim    { X86::SETPr,  X86::SETPm  },
2430239462Sdim    { X86::SETSr,  X86::SETSm  }
2431239462Sdim  };
2432239462Sdim
2433239462Sdim  assert(CC < 16 && "Can only handle standard cond codes");
2434239462Sdim  return Opc[CC][HasMemoryOperand ? 1 : 0];
2435239462Sdim}
2436239462Sdim
2437239462Sdim/// getCMovFromCond - Return a cmov opcode for the given condition,
2438239462Sdim/// register size in bytes, and operand type.
2439239462Sdimstatic unsigned getCMovFromCond(X86::CondCode CC, unsigned RegBytes,
2440239462Sdim                                bool HasMemoryOperand) {
2441243830Sdim  static const uint16_t Opc[32][3] = {
2442239462Sdim    { X86::CMOVA16rr,  X86::CMOVA32rr,  X86::CMOVA64rr  },
2443239462Sdim    { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
2444239462Sdim    { X86::CMOVB16rr,  X86::CMOVB32rr,  X86::CMOVB64rr  },
2445239462Sdim    { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
2446239462Sdim    { X86::CMOVE16rr,  X86::CMOVE32rr,  X86::CMOVE64rr  },
2447239462Sdim    { X86::CMOVG16rr,  X86::CMOVG32rr,  X86::CMOVG64rr  },
2448239462Sdim    { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
2449239462Sdim    { X86::CMOVL16rr,  X86::CMOVL32rr,  X86::CMOVL64rr  },
2450239462Sdim    { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
2451239462Sdim    { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
2452239462Sdim    { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
2453239462Sdim    { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
2454239462Sdim    { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
2455239462Sdim    { X86::CMOVO16rr,  X86::CMOVO32rr,  X86::CMOVO64rr  },
2456239462Sdim    { X86::CMOVP16rr,  X86::CMOVP32rr,  X86::CMOVP64rr  },
2457239462Sdim    { X86::CMOVS16rr,  X86::CMOVS32rr,  X86::CMOVS64rr  },
2458239462Sdim    { X86::CMOVA16rm,  X86::CMOVA32rm,  X86::CMOVA64rm  },
2459239462Sdim    { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
2460239462Sdim    { X86::CMOVB16rm,  X86::CMOVB32rm,  X86::CMOVB64rm  },
2461239462Sdim    { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
2462239462Sdim    { X86::CMOVE16rm,  X86::CMOVE32rm,  X86::CMOVE64rm  },
2463239462Sdim    { X86::CMOVG16rm,  X86::CMOVG32rm,  X86::CMOVG64rm  },
2464239462Sdim    { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
2465239462Sdim    { X86::CMOVL16rm,  X86::CMOVL32rm,  X86::CMOVL64rm  },
2466239462Sdim    { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
2467239462Sdim    { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
2468239462Sdim    { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
2469239462Sdim    { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
2470239462Sdim    { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
2471239462Sdim    { X86::CMOVO16rm,  X86::CMOVO32rm,  X86::CMOVO64rm  },
2472239462Sdim    { X86::CMOVP16rm,  X86::CMOVP32rm,  X86::CMOVP64rm  },
2473239462Sdim    { X86::CMOVS16rm,  X86::CMOVS32rm,  X86::CMOVS64rm  }
2474239462Sdim  };
2475239462Sdim
2476239462Sdim  assert(CC < 16 && "Can only handle standard cond codes");
2477239462Sdim  unsigned Idx = HasMemoryOperand ? 16+CC : CC;
2478239462Sdim  switch(RegBytes) {
2479239462Sdim  default: llvm_unreachable("Illegal register size!");
2480239462Sdim  case 2: return Opc[Idx][0];
2481239462Sdim  case 4: return Opc[Idx][1];
2482239462Sdim  case 8: return Opc[Idx][2];
2483239462Sdim  }
2484239462Sdim}
2485239462Sdim
2486193323Sedbool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
2487234353Sdim  if (!MI->isTerminator()) return false;
2488218893Sdim
2489193323Sed  // Conditional branch is a special case.
2490234353Sdim  if (MI->isBranch() && !MI->isBarrier())
2491193323Sed    return true;
2492234353Sdim  if (!MI->isPredicable())
2493193323Sed    return true;
2494193323Sed  return !isPredicated(MI);
2495193323Sed}
2496193323Sed
2497218893Sdimbool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
2498193323Sed                                 MachineBasicBlock *&TBB,
2499193323Sed                                 MachineBasicBlock *&FBB,
2500193323Sed                                 SmallVectorImpl<MachineOperand> &Cond,
2501193323Sed                                 bool AllowModify) const {
2502193323Sed  // Start from the bottom of the block and work up, examining the
2503193323Sed  // terminator instructions.
2504193323Sed  MachineBasicBlock::iterator I = MBB.end();
2505207618Srdivacky  MachineBasicBlock::iterator UnCondBrIter = MBB.end();
2506193323Sed  while (I != MBB.begin()) {
2507193323Sed    --I;
2508206083Srdivacky    if (I->isDebugValue())
2509206083Srdivacky      continue;
2510200581Srdivacky
2511200581Srdivacky    // Working from the bottom, when we see a non-terminator instruction, we're
2512200581Srdivacky    // done.
2513212904Sdim    if (!isUnpredicatedTerminator(I))
2514193323Sed      break;
2515200581Srdivacky
2516200581Srdivacky    // A terminator that isn't a branch can't easily be handled by this
2517200581Srdivacky    // analysis.
2518234353Sdim    if (!I->isBranch())
2519193323Sed      return true;
2520200581Srdivacky
2521193323Sed    // Handle unconditional branches.
2522203954Srdivacky    if (I->getOpcode() == X86::JMP_4) {
2523207618Srdivacky      UnCondBrIter = I;
2524207618Srdivacky
2525193323Sed      if (!AllowModify) {
2526193323Sed        TBB = I->getOperand(0).getMBB();
2527193323Sed        continue;
2528193323Sed      }
2529193323Sed
2530193323Sed      // If the block has any instructions after a JMP, delete them.
2531200581Srdivacky      while (llvm::next(I) != MBB.end())
2532200581Srdivacky        llvm::next(I)->eraseFromParent();
2533200581Srdivacky
2534193323Sed      Cond.clear();
2535193323Sed      FBB = 0;
2536200581Srdivacky
2537193323Sed      // Delete the JMP if it's equivalent to a fall-through.
2538193323Sed      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
2539193323Sed        TBB = 0;
2540193323Sed        I->eraseFromParent();
2541193323Sed        I = MBB.end();
2542207618Srdivacky        UnCondBrIter = MBB.end();
2543193323Sed        continue;
2544193323Sed      }
2545200581Srdivacky
2546207618Srdivacky      // TBB is used to indicate the unconditional destination.
2547193323Sed      TBB = I->getOperand(0).getMBB();
2548193323Sed      continue;
2549193323Sed    }
2550200581Srdivacky
2551193323Sed    // Handle conditional branches.
2552239462Sdim    X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode());
2553193323Sed    if (BranchCode == X86::COND_INVALID)
2554193323Sed      return true;  // Can't handle indirect branch.
2555200581Srdivacky
2556193323Sed    // Working from the bottom, handle the first conditional branch.
2557193323Sed    if (Cond.empty()) {
2558207618Srdivacky      MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
2559207618Srdivacky      if (AllowModify && UnCondBrIter != MBB.end() &&
2560207618Srdivacky          MBB.isLayoutSuccessor(TargetBB)) {
2561207618Srdivacky        // If we can modify the code and it ends in something like:
2562207618Srdivacky        //
2563207618Srdivacky        //     jCC L1
2564207618Srdivacky        //     jmp L2
2565207618Srdivacky        //   L1:
2566207618Srdivacky        //     ...
2567207618Srdivacky        //   L2:
2568207618Srdivacky        //
2569207618Srdivacky        // Then we can change this to:
2570207618Srdivacky        //
2571207618Srdivacky        //     jnCC L2
2572207618Srdivacky        //   L1:
2573207618Srdivacky        //     ...
2574207618Srdivacky        //   L2:
2575207618Srdivacky        //
2576207618Srdivacky        // Which is a bit more efficient.
2577207618Srdivacky        // We conditionally jump to the fall-through block.
2578207618Srdivacky        BranchCode = GetOppositeBranchCondition(BranchCode);
2579207618Srdivacky        unsigned JNCC = GetCondBranchFromCond(BranchCode);
2580207618Srdivacky        MachineBasicBlock::iterator OldInst = I;
2581207618Srdivacky
2582207618Srdivacky        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
2583207618Srdivacky          .addMBB(UnCondBrIter->getOperand(0).getMBB());
2584207618Srdivacky        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
2585207618Srdivacky          .addMBB(TargetBB);
2586207618Srdivacky
2587207618Srdivacky        OldInst->eraseFromParent();
2588207618Srdivacky        UnCondBrIter->eraseFromParent();
2589207618Srdivacky
2590207618Srdivacky        // Restart the analysis.
2591207618Srdivacky        UnCondBrIter = MBB.end();
2592207618Srdivacky        I = MBB.end();
2593207618Srdivacky        continue;
2594207618Srdivacky      }
2595207618Srdivacky
2596193323Sed      FBB = TBB;
2597193323Sed      TBB = I->getOperand(0).getMBB();
2598193323Sed      Cond.push_back(MachineOperand::CreateImm(BranchCode));
2599193323Sed      continue;
2600193323Sed    }
2601200581Srdivacky
2602200581Srdivacky    // Handle subsequent conditional branches. Only handle the case where all
2603200581Srdivacky    // conditional branches branch to the same destination and their condition
2604200581Srdivacky    // opcodes fit one of the special multi-branch idioms.
2605193323Sed    assert(Cond.size() == 1);
2606193323Sed    assert(TBB);
2607200581Srdivacky
2608200581Srdivacky    // Only handle the case where all conditional branches branch to the same
2609200581Srdivacky    // destination.
2610193323Sed    if (TBB != I->getOperand(0).getMBB())
2611193323Sed      return true;
2612200581Srdivacky
2613200581Srdivacky    // If the conditions are the same, we can leave them alone.
2614193323Sed    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
2615193323Sed    if (OldBranchCode == BranchCode)
2616193323Sed      continue;
2617200581Srdivacky
2618200581Srdivacky    // If they differ, see if they fit one of the known patterns. Theoretically,
2619200581Srdivacky    // we could handle more patterns here, but we shouldn't expect to see them
2620200581Srdivacky    // if instruction selection has done a reasonable job.
2621193323Sed    if ((OldBranchCode == X86::COND_NP &&
2622193323Sed         BranchCode == X86::COND_E) ||
2623193323Sed        (OldBranchCode == X86::COND_E &&
2624193323Sed         BranchCode == X86::COND_NP))
2625193323Sed      BranchCode = X86::COND_NP_OR_E;
2626193323Sed    else if ((OldBranchCode == X86::COND_P &&
2627193323Sed              BranchCode == X86::COND_NE) ||
2628193323Sed             (OldBranchCode == X86::COND_NE &&
2629193323Sed              BranchCode == X86::COND_P))
2630193323Sed      BranchCode = X86::COND_NE_OR_P;
2631193323Sed    else
2632193323Sed      return true;
2633200581Srdivacky
2634193323Sed    // Update the MachineOperand.
2635193323Sed    Cond[0].setImm(BranchCode);
2636193323Sed  }
2637193323Sed
2638193323Sed  return false;
2639193323Sed}
2640193323Sed
2641193323Sedunsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
2642193323Sed  MachineBasicBlock::iterator I = MBB.end();
2643193323Sed  unsigned Count = 0;
2644193323Sed
2645193323Sed  while (I != MBB.begin()) {
2646193323Sed    --I;
2647206083Srdivacky    if (I->isDebugValue())
2648206083Srdivacky      continue;
2649203954Srdivacky    if (I->getOpcode() != X86::JMP_4 &&
2650239462Sdim        getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
2651193323Sed      break;
2652193323Sed    // Remove the branch.
2653193323Sed    I->eraseFromParent();
2654193323Sed    I = MBB.end();
2655193323Sed    ++Count;
2656193323Sed  }
2657218893Sdim
2658193323Sed  return Count;
2659193323Sed}
2660193323Sed
2661193323Sedunsigned
2662193323SedX86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
2663193323Sed                           MachineBasicBlock *FBB,
2664210299Sed                           const SmallVectorImpl<MachineOperand> &Cond,
2665210299Sed                           DebugLoc DL) const {
2666193323Sed  // Shouldn't be a fall through.
2667193323Sed  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
2668193323Sed  assert((Cond.size() == 1 || Cond.size() == 0) &&
2669193323Sed         "X86 branch conditions have one component!");
2670193323Sed
2671193323Sed  if (Cond.empty()) {
2672193323Sed    // Unconditional branch?
2673193323Sed    assert(!FBB && "Unconditional branch with multiple successors!");
2674210299Sed    BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
2675193323Sed    return 1;
2676193323Sed  }
2677193323Sed
2678193323Sed  // Conditional branch.
2679193323Sed  unsigned Count = 0;
2680193323Sed  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
2681193323Sed  switch (CC) {
2682193323Sed  case X86::COND_NP_OR_E:
2683193323Sed    // Synthesize NP_OR_E with two branches.
2684210299Sed    BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
2685193323Sed    ++Count;
2686210299Sed    BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
2687193323Sed    ++Count;
2688193323Sed    break;
2689193323Sed  case X86::COND_NE_OR_P:
2690193323Sed    // Synthesize NE_OR_P with two branches.
2691210299Sed    BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
2692193323Sed    ++Count;
2693210299Sed    BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
2694193323Sed    ++Count;
2695193323Sed    break;
2696193323Sed  default: {
2697193323Sed    unsigned Opc = GetCondBranchFromCond(CC);
2698210299Sed    BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
2699193323Sed    ++Count;
2700193323Sed  }
2701193323Sed  }
2702193323Sed  if (FBB) {
2703193323Sed    // Two-way Conditional branch. Insert the second branch.
2704210299Sed    BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
2705193323Sed    ++Count;
2706193323Sed  }
2707193323Sed  return Count;
2708193323Sed}
2709193323Sed
2710239462Sdimbool X86InstrInfo::
2711239462SdimcanInsertSelect(const MachineBasicBlock &MBB,
2712239462Sdim                const SmallVectorImpl<MachineOperand> &Cond,
2713239462Sdim                unsigned TrueReg, unsigned FalseReg,
2714239462Sdim                int &CondCycles, int &TrueCycles, int &FalseCycles) const {
2715239462Sdim  // Not all subtargets have cmov instructions.
2716239462Sdim  if (!TM.getSubtarget<X86Subtarget>().hasCMov())
2717239462Sdim    return false;
2718239462Sdim  if (Cond.size() != 1)
2719239462Sdim    return false;
2720239462Sdim  // We cannot do the composite conditions, at least not in SSA form.
2721239462Sdim  if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
2722239462Sdim    return false;
2723239462Sdim
2724239462Sdim  // Check register classes.
2725239462Sdim  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2726239462Sdim  const TargetRegisterClass *RC =
2727239462Sdim    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
2728239462Sdim  if (!RC)
2729239462Sdim    return false;
2730239462Sdim
2731239462Sdim  // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
2732239462Sdim  if (X86::GR16RegClass.hasSubClassEq(RC) ||
2733239462Sdim      X86::GR32RegClass.hasSubClassEq(RC) ||
2734239462Sdim      X86::GR64RegClass.hasSubClassEq(RC)) {
2735239462Sdim    // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
2736239462Sdim    // Bridge. Probably Ivy Bridge as well.
2737239462Sdim    CondCycles = 2;
2738239462Sdim    TrueCycles = 2;
2739239462Sdim    FalseCycles = 2;
2740239462Sdim    return true;
2741239462Sdim  }
2742239462Sdim
2743239462Sdim  // Can't do vectors.
2744239462Sdim  return false;
2745239462Sdim}
2746239462Sdim
2747239462Sdimvoid X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
2748239462Sdim                                MachineBasicBlock::iterator I, DebugLoc DL,
2749239462Sdim                                unsigned DstReg,
2750239462Sdim                                const SmallVectorImpl<MachineOperand> &Cond,
2751239462Sdim                                unsigned TrueReg, unsigned FalseReg) const {
2752239462Sdim   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2753239462Sdim   assert(Cond.size() == 1 && "Invalid Cond array");
2754239462Sdim   unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
2755239462Sdim                                  MRI.getRegClass(DstReg)->getSize(),
2756239462Sdim                                  false/*HasMemoryOperand*/);
2757239462Sdim   BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
2758239462Sdim}
2759239462Sdim
2760193323Sed/// isHReg - Test if the given register is a physical h register.
2761193323Sedstatic bool isHReg(unsigned Reg) {
2762193323Sed  return X86::GR8_ABCD_HRegClass.contains(Reg);
2763193323Sed}
2764193323Sed
2765212904Sdim// Try and copy between VR128/VR64 and GR64 registers.
2766226633Sdimstatic unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
2767226633Sdim                                        bool HasAVX) {
2768212904Sdim  // SrcReg(VR128) -> DestReg(GR64)
2769212904Sdim  // SrcReg(VR64)  -> DestReg(GR64)
2770212904Sdim  // SrcReg(GR64)  -> DestReg(VR128)
2771212904Sdim  // SrcReg(GR64)  -> DestReg(VR64)
2772212904Sdim
2773212904Sdim  if (X86::GR64RegClass.contains(DestReg)) {
2774243830Sdim    if (X86::VR128RegClass.contains(SrcReg))
2775212904Sdim      // Copy from a VR128 register to a GR64 register.
2776226633Sdim      return HasAVX ? X86::VMOVPQIto64rr : X86::MOVPQIto64rr;
2777243830Sdim    if (X86::VR64RegClass.contains(SrcReg))
2778212904Sdim      // Copy from a VR64 register to a GR64 register.
2779212904Sdim      return X86::MOVSDto64rr;
2780212904Sdim  } else if (X86::GR64RegClass.contains(SrcReg)) {
2781212904Sdim    // Copy from a GR64 register to a VR128 register.
2782212904Sdim    if (X86::VR128RegClass.contains(DestReg))
2783226633Sdim      return HasAVX ? X86::VMOV64toPQIrr : X86::MOV64toPQIrr;
2784212904Sdim    // Copy from a GR64 register to a VR64 register.
2785243830Sdim    if (X86::VR64RegClass.contains(DestReg))
2786212904Sdim      return X86::MOV64toSDrr;
2787212904Sdim  }
2788212904Sdim
2789226633Sdim  // SrcReg(FR32) -> DestReg(GR32)
2790226633Sdim  // SrcReg(GR32) -> DestReg(FR32)
2791226633Sdim
2792226633Sdim  if (X86::GR32RegClass.contains(DestReg) && X86::FR32RegClass.contains(SrcReg))
2793243830Sdim    // Copy from a FR32 register to a GR32 register.
2794243830Sdim    return HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr;
2795226633Sdim
2796226633Sdim  if (X86::FR32RegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
2797243830Sdim    // Copy from a GR32 register to a FR32 register.
2798243830Sdim    return HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr;
2799226633Sdim
2800212904Sdim  return 0;
2801212904Sdim}
2802212904Sdim
2803210299Sedvoid X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
2804210299Sed                               MachineBasicBlock::iterator MI, DebugLoc DL,
2805210299Sed                               unsigned DestReg, unsigned SrcReg,
2806210299Sed                               bool KillSrc) const {
2807210299Sed  // First deal with the normal symmetric copies.
2808226633Sdim  bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
2809243830Sdim  unsigned Opc;
2810210299Sed  if (X86::GR64RegClass.contains(DestReg, SrcReg))
2811210299Sed    Opc = X86::MOV64rr;
2812210299Sed  else if (X86::GR32RegClass.contains(DestReg, SrcReg))
2813210299Sed    Opc = X86::MOV32rr;
2814210299Sed  else if (X86::GR16RegClass.contains(DestReg, SrcReg))
2815210299Sed    Opc = X86::MOV16rr;
2816210299Sed  else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
2817210299Sed    // Copying to or from a physical H register on x86-64 requires a NOREX
2818210299Sed    // move.  Otherwise use a normal move.
2819210299Sed    if ((isHReg(DestReg) || isHReg(SrcReg)) &&
2820226633Sdim        TM.getSubtarget<X86Subtarget>().is64Bit()) {
2821210299Sed      Opc = X86::MOV8rr_NOREX;
2822226633Sdim      // Both operands must be encodable without an REX prefix.
2823226633Sdim      assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
2824226633Sdim             "8-bit H register can not be copied outside GR8_NOREX");
2825226633Sdim    } else
2826210299Sed      Opc = X86::MOV8rr;
2827210299Sed  } else if (X86::VR128RegClass.contains(DestReg, SrcReg))
2828226633Sdim    Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
2829224145Sdim  else if (X86::VR256RegClass.contains(DestReg, SrcReg))
2830224145Sdim    Opc = X86::VMOVAPSYrr;
2831210299Sed  else if (X86::VR64RegClass.contains(DestReg, SrcReg))
2832210299Sed    Opc = X86::MMX_MOVQ64rr;
2833212904Sdim  else
2834226633Sdim    Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, HasAVX);
2835193323Sed
2836210299Sed  if (Opc) {
2837210299Sed    BuildMI(MBB, MI, DL, get(Opc), DestReg)
2838210299Sed      .addReg(SrcReg, getKillRegState(KillSrc));
2839210299Sed    return;
2840193323Sed  }
2841198090Srdivacky
2842193323Sed  // Moving EFLAGS to / from another register requires a push and a pop.
2843210299Sed  if (SrcReg == X86::EFLAGS) {
2844210299Sed    if (X86::GR64RegClass.contains(DestReg)) {
2845208599Srdivacky      BuildMI(MBB, MI, DL, get(X86::PUSHF64));
2846193323Sed      BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
2847210299Sed      return;
2848243830Sdim    }
2849243830Sdim    if (X86::GR32RegClass.contains(DestReg)) {
2850208599Srdivacky      BuildMI(MBB, MI, DL, get(X86::PUSHF32));
2851193323Sed      BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
2852210299Sed      return;
2853193323Sed    }
2854210299Sed  }
2855210299Sed  if (DestReg == X86::EFLAGS) {
2856210299Sed    if (X86::GR64RegClass.contains(SrcReg)) {
2857210299Sed      BuildMI(MBB, MI, DL, get(X86::PUSH64r))
2858210299Sed        .addReg(SrcReg, getKillRegState(KillSrc));
2859208599Srdivacky      BuildMI(MBB, MI, DL, get(X86::POPF64));
2860210299Sed      return;
2861243830Sdim    }
2862243830Sdim    if (X86::GR32RegClass.contains(SrcReg)) {
2863210299Sed      BuildMI(MBB, MI, DL, get(X86::PUSH32r))
2864210299Sed        .addReg(SrcReg, getKillRegState(KillSrc));
2865208599Srdivacky      BuildMI(MBB, MI, DL, get(X86::POPF32));
2866210299Sed      return;
2867193323Sed    }
2868193323Sed  }
2869193323Sed
2870210299Sed  DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
2871210299Sed               << " to " << RI.getName(DestReg) << '\n');
2872210299Sed  llvm_unreachable("Cannot emit physreg copy instruction");
2873193323Sed}
2874193323Sed
2875210299Sedstatic unsigned getLoadStoreRegOpcode(unsigned Reg,
2876210299Sed                                      const TargetRegisterClass *RC,
2877210299Sed                                      bool isStackAligned,
2878210299Sed                                      const TargetMachine &TM,
2879210299Sed                                      bool load) {
2880226633Sdim  bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
2881223017Sdim  switch (RC->getSize()) {
2882210299Sed  default:
2883223017Sdim    llvm_unreachable("Unknown spill size");
2884223017Sdim  case 1:
2885223017Sdim    assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
2886223017Sdim    if (TM.getSubtarget<X86Subtarget>().is64Bit())
2887223017Sdim      // Copying to or from a physical H register on x86-64 requires a NOREX
2888223017Sdim      // move.  Otherwise use a normal move.
2889223017Sdim      if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
2890223017Sdim        return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
2891223017Sdim    return load ? X86::MOV8rm : X86::MOV8mr;
2892223017Sdim  case 2:
2893223017Sdim    assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
2894210299Sed    return load ? X86::MOV16rm : X86::MOV16mr;
2895223017Sdim  case 4:
2896223017Sdim    if (X86::GR32RegClass.hasSubClassEq(RC))
2897223017Sdim      return load ? X86::MOV32rm : X86::MOV32mr;
2898223017Sdim    if (X86::FR32RegClass.hasSubClassEq(RC))
2899226633Sdim      return load ?
2900226633Sdim        (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
2901226633Sdim        (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
2902223017Sdim    if (X86::RFP32RegClass.hasSubClassEq(RC))
2903223017Sdim      return load ? X86::LD_Fp32m : X86::ST_Fp32m;
2904223017Sdim    llvm_unreachable("Unknown 4-byte regclass");
2905223017Sdim  case 8:
2906223017Sdim    if (X86::GR64RegClass.hasSubClassEq(RC))
2907223017Sdim      return load ? X86::MOV64rm : X86::MOV64mr;
2908223017Sdim    if (X86::FR64RegClass.hasSubClassEq(RC))
2909226633Sdim      return load ?
2910226633Sdim        (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
2911226633Sdim        (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
2912223017Sdim    if (X86::VR64RegClass.hasSubClassEq(RC))
2913223017Sdim      return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
2914223017Sdim    if (X86::RFP64RegClass.hasSubClassEq(RC))
2915223017Sdim      return load ? X86::LD_Fp64m : X86::ST_Fp64m;
2916223017Sdim    llvm_unreachable("Unknown 8-byte regclass");
2917223017Sdim  case 10:
2918223017Sdim    assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
2919210299Sed    return load ? X86::LD_Fp80m : X86::ST_FpP80m;
2920226633Sdim  case 16: {
2921223017Sdim    assert(X86::VR128RegClass.hasSubClassEq(RC) && "Unknown 16-byte regclass");
2922193323Sed    // If stack is realigned we can use aligned stores.
2923210299Sed    if (isStackAligned)
2924226633Sdim      return load ?
2925226633Sdim        (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
2926226633Sdim        (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
2927210299Sed    else
2928226633Sdim      return load ?
2929226633Sdim        (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
2930226633Sdim        (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
2931226633Sdim  }
2932224145Sdim  case 32:
2933224145Sdim    assert(X86::VR256RegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
2934224145Sdim    // If stack is realigned we can use aligned stores.
2935224145Sdim    if (isStackAligned)
2936224145Sdim      return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
2937224145Sdim    else
2938224145Sdim      return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
2939193323Sed  }
2940210299Sed}
2941193323Sed
2942210299Sedstatic unsigned getStoreRegOpcode(unsigned SrcReg,
2943210299Sed                                  const TargetRegisterClass *RC,
2944210299Sed                                  bool isStackAligned,
2945210299Sed                                  TargetMachine &TM) {
2946210299Sed  return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
2947193323Sed}
2948193323Sed
2949210299Sed
2950210299Sedstatic unsigned getLoadRegOpcode(unsigned DestReg,
2951210299Sed                                 const TargetRegisterClass *RC,
2952210299Sed                                 bool isStackAligned,
2953210299Sed                                 const TargetMachine &TM) {
2954210299Sed  return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
2955210299Sed}
2956210299Sed
2957193323Sedvoid X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
2958193323Sed                                       MachineBasicBlock::iterator MI,
2959193323Sed                                       unsigned SrcReg, bool isKill, int FrameIdx,
2960208599Srdivacky                                       const TargetRegisterClass *RC,
2961208599Srdivacky                                       const TargetRegisterInfo *TRI) const {
2962193323Sed  const MachineFunction &MF = *MBB.getParent();
2963212904Sdim  assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
2964212904Sdim         "Stack slot too small for store");
2965226633Sdim  unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
2966226633Sdim  bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
2967224145Sdim    RI.canRealignStack(MF);
2968193323Sed  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2969203954Srdivacky  DebugLoc DL = MBB.findDebugLoc(MI);
2970193323Sed  addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
2971193323Sed    .addReg(SrcReg, getKillRegState(isKill));
2972193323Sed}
2973193323Sed
2974193323Sedvoid X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
2975193323Sed                                  bool isKill,
2976193323Sed                                  SmallVectorImpl<MachineOperand> &Addr,
2977193323Sed                                  const TargetRegisterClass *RC,
2978198090Srdivacky                                  MachineInstr::mmo_iterator MMOBegin,
2979198090Srdivacky                                  MachineInstr::mmo_iterator MMOEnd,
2980193323Sed                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
2981226633Sdim  unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
2982226633Sdim  bool isAligned = MMOBegin != MMOEnd &&
2983226633Sdim                   (*MMOBegin)->getAlignment() >= Alignment;
2984193323Sed  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2985206124Srdivacky  DebugLoc DL;
2986193323Sed  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
2987193323Sed  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2988193323Sed    MIB.addOperand(Addr[i]);
2989193323Sed  MIB.addReg(SrcReg, getKillRegState(isKill));
2990198090Srdivacky  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2991193323Sed  NewMIs.push_back(MIB);
2992193323Sed}
2993193323Sed
2994193323Sed
2995193323Sedvoid X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
2996193323Sed                                        MachineBasicBlock::iterator MI,
2997193323Sed                                        unsigned DestReg, int FrameIdx,
2998208599Srdivacky                                        const TargetRegisterClass *RC,
2999208599Srdivacky                                        const TargetRegisterInfo *TRI) const {
3000193323Sed  const MachineFunction &MF = *MBB.getParent();
3001226633Sdim  unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
3002226633Sdim  bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
3003224145Sdim    RI.canRealignStack(MF);
3004193323Sed  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
3005203954Srdivacky  DebugLoc DL = MBB.findDebugLoc(MI);
3006193323Sed  addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
3007193323Sed}
3008193323Sed
3009193323Sedvoid X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
3010193323Sed                                 SmallVectorImpl<MachineOperand> &Addr,
3011193323Sed                                 const TargetRegisterClass *RC,
3012198090Srdivacky                                 MachineInstr::mmo_iterator MMOBegin,
3013198090Srdivacky                                 MachineInstr::mmo_iterator MMOEnd,
3014193323Sed                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
3015226633Sdim  unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
3016226633Sdim  bool isAligned = MMOBegin != MMOEnd &&
3017226633Sdim                   (*MMOBegin)->getAlignment() >= Alignment;
3018193323Sed  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
3019206124Srdivacky  DebugLoc DL;
3020193323Sed  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
3021193323Sed  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
3022193323Sed    MIB.addOperand(Addr[i]);
3023198090Srdivacky  (*MIB).setMemRefs(MMOBegin, MMOEnd);
3024193323Sed  NewMIs.push_back(MIB);
3025193323Sed}
3026193323Sed
3027239462Sdimbool X86InstrInfo::
3028239462SdimanalyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
3029239462Sdim               int &CmpMask, int &CmpValue) const {
3030239462Sdim  switch (MI->getOpcode()) {
3031239462Sdim  default: break;
3032239462Sdim  case X86::CMP64ri32:
3033239462Sdim  case X86::CMP64ri8:
3034239462Sdim  case X86::CMP32ri:
3035239462Sdim  case X86::CMP32ri8:
3036239462Sdim  case X86::CMP16ri:
3037239462Sdim  case X86::CMP16ri8:
3038239462Sdim  case X86::CMP8ri:
3039239462Sdim    SrcReg = MI->getOperand(0).getReg();
3040239462Sdim    SrcReg2 = 0;
3041239462Sdim    CmpMask = ~0;
3042239462Sdim    CmpValue = MI->getOperand(1).getImm();
3043239462Sdim    return true;
3044239462Sdim  // A SUB can be used to perform comparison.
3045239462Sdim  case X86::SUB64rm:
3046239462Sdim  case X86::SUB32rm:
3047239462Sdim  case X86::SUB16rm:
3048239462Sdim  case X86::SUB8rm:
3049239462Sdim    SrcReg = MI->getOperand(1).getReg();
3050239462Sdim    SrcReg2 = 0;
3051239462Sdim    CmpMask = ~0;
3052239462Sdim    CmpValue = 0;
3053239462Sdim    return true;
3054239462Sdim  case X86::SUB64rr:
3055239462Sdim  case X86::SUB32rr:
3056239462Sdim  case X86::SUB16rr:
3057239462Sdim  case X86::SUB8rr:
3058239462Sdim    SrcReg = MI->getOperand(1).getReg();
3059239462Sdim    SrcReg2 = MI->getOperand(2).getReg();
3060239462Sdim    CmpMask = ~0;
3061239462Sdim    CmpValue = 0;
3062239462Sdim    return true;
3063239462Sdim  case X86::SUB64ri32:
3064239462Sdim  case X86::SUB64ri8:
3065239462Sdim  case X86::SUB32ri:
3066239462Sdim  case X86::SUB32ri8:
3067239462Sdim  case X86::SUB16ri:
3068239462Sdim  case X86::SUB16ri8:
3069239462Sdim  case X86::SUB8ri:
3070239462Sdim    SrcReg = MI->getOperand(1).getReg();
3071239462Sdim    SrcReg2 = 0;
3072239462Sdim    CmpMask = ~0;
3073239462Sdim    CmpValue = MI->getOperand(2).getImm();
3074239462Sdim    return true;
3075239462Sdim  case X86::CMP64rr:
3076239462Sdim  case X86::CMP32rr:
3077239462Sdim  case X86::CMP16rr:
3078239462Sdim  case X86::CMP8rr:
3079239462Sdim    SrcReg = MI->getOperand(0).getReg();
3080239462Sdim    SrcReg2 = MI->getOperand(1).getReg();
3081239462Sdim    CmpMask = ~0;
3082239462Sdim    CmpValue = 0;
3083239462Sdim    return true;
3084239462Sdim  case X86::TEST8rr:
3085239462Sdim  case X86::TEST16rr:
3086239462Sdim  case X86::TEST32rr:
3087239462Sdim  case X86::TEST64rr:
3088239462Sdim    SrcReg = MI->getOperand(0).getReg();
3089239462Sdim    if (MI->getOperand(1).getReg() != SrcReg) return false;
3090239462Sdim    // Compare against zero.
3091239462Sdim    SrcReg2 = 0;
3092239462Sdim    CmpMask = ~0;
3093239462Sdim    CmpValue = 0;
3094239462Sdim    return true;
3095239462Sdim  }
3096239462Sdim  return false;
3097239462Sdim}
3098239462Sdim
3099239462Sdim/// isRedundantFlagInstr - check whether the first instruction, whose only
3100239462Sdim/// purpose is to update flags, can be made redundant.
3101239462Sdim/// CMPrr can be made redundant by SUBrr if the operands are the same.
3102239462Sdim/// This function can be extended later on.
3103239462Sdim/// SrcReg, SrcRegs: register operands for FlagI.
3104239462Sdim/// ImmValue: immediate for FlagI if it takes an immediate.
3105239462Sdiminline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg,
3106239462Sdim                                        unsigned SrcReg2, int ImmValue,
3107239462Sdim                                        MachineInstr *OI) {
3108239462Sdim  if (((FlagI->getOpcode() == X86::CMP64rr &&
3109239462Sdim        OI->getOpcode() == X86::SUB64rr) ||
3110239462Sdim       (FlagI->getOpcode() == X86::CMP32rr &&
3111239462Sdim        OI->getOpcode() == X86::SUB32rr)||
3112239462Sdim       (FlagI->getOpcode() == X86::CMP16rr &&
3113239462Sdim        OI->getOpcode() == X86::SUB16rr)||
3114239462Sdim       (FlagI->getOpcode() == X86::CMP8rr &&
3115239462Sdim        OI->getOpcode() == X86::SUB8rr)) &&
3116239462Sdim      ((OI->getOperand(1).getReg() == SrcReg &&
3117239462Sdim        OI->getOperand(2).getReg() == SrcReg2) ||
3118239462Sdim       (OI->getOperand(1).getReg() == SrcReg2 &&
3119239462Sdim        OI->getOperand(2).getReg() == SrcReg)))
3120239462Sdim    return true;
3121239462Sdim
3122239462Sdim  if (((FlagI->getOpcode() == X86::CMP64ri32 &&
3123239462Sdim        OI->getOpcode() == X86::SUB64ri32) ||
3124239462Sdim       (FlagI->getOpcode() == X86::CMP64ri8 &&
3125239462Sdim        OI->getOpcode() == X86::SUB64ri8) ||
3126239462Sdim       (FlagI->getOpcode() == X86::CMP32ri &&
3127239462Sdim        OI->getOpcode() == X86::SUB32ri) ||
3128239462Sdim       (FlagI->getOpcode() == X86::CMP32ri8 &&
3129239462Sdim        OI->getOpcode() == X86::SUB32ri8) ||
3130239462Sdim       (FlagI->getOpcode() == X86::CMP16ri &&
3131239462Sdim        OI->getOpcode() == X86::SUB16ri) ||
3132239462Sdim       (FlagI->getOpcode() == X86::CMP16ri8 &&
3133239462Sdim        OI->getOpcode() == X86::SUB16ri8) ||
3134239462Sdim       (FlagI->getOpcode() == X86::CMP8ri &&
3135239462Sdim        OI->getOpcode() == X86::SUB8ri)) &&
3136239462Sdim      OI->getOperand(1).getReg() == SrcReg &&
3137239462Sdim      OI->getOperand(2).getImm() == ImmValue)
3138239462Sdim    return true;
3139239462Sdim  return false;
3140239462Sdim}
3141239462Sdim
3142239462Sdim/// isDefConvertible - check whether the definition can be converted
3143239462Sdim/// to remove a comparison against zero.
3144239462Sdiminline static bool isDefConvertible(MachineInstr *MI) {
3145239462Sdim  switch (MI->getOpcode()) {
3146239462Sdim  default: return false;
3147239462Sdim  case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
3148239462Sdim  case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
3149239462Sdim  case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
3150239462Sdim  case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm:
3151239462Sdim  case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm:
3152243830Sdim  case X86::DEC64r:  case X86::DEC32r:  case X86::DEC16r: case X86::DEC8r:
3153243830Sdim  case X86::DEC64m:  case X86::DEC32m:  case X86::DEC16m: case X86::DEC8m:
3154243830Sdim  case X86::DEC64_32r: case X86::DEC64_16r:
3155243830Sdim  case X86::DEC64_32m: case X86::DEC64_16m:
3156239462Sdim  case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
3157239462Sdim  case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8:
3158239462Sdim  case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr:
3159239462Sdim  case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm:
3160239462Sdim  case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm:
3161243830Sdim  case X86::INC64r:  case X86::INC32r:  case X86::INC16r: case X86::INC8r:
3162243830Sdim  case X86::INC64m:  case X86::INC32m:  case X86::INC16m: case X86::INC8m:
3163243830Sdim  case X86::INC64_32r: case X86::INC64_16r:
3164243830Sdim  case X86::INC64_32m: case X86::INC64_16m:
3165239462Sdim  case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
3166239462Sdim  case X86::AND32ri8:  case X86::AND16ri:  case X86::AND16ri8:
3167239462Sdim  case X86::AND8ri:    case X86::AND64rr:  case X86::AND32rr:
3168239462Sdim  case X86::AND16rr:   case X86::AND8rr:   case X86::AND64rm:
3169239462Sdim  case X86::AND32rm:   case X86::AND16rm:  case X86::AND8rm:
3170239462Sdim  case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
3171239462Sdim  case X86::XOR32ri8:  case X86::XOR16ri:  case X86::XOR16ri8:
3172239462Sdim  case X86::XOR8ri:    case X86::XOR64rr:  case X86::XOR32rr:
3173239462Sdim  case X86::XOR16rr:   case X86::XOR8rr:   case X86::XOR64rm:
3174239462Sdim  case X86::XOR32rm:   case X86::XOR16rm:  case X86::XOR8rm:
3175239462Sdim  case X86::OR64ri32:  case X86::OR64ri8:  case X86::OR32ri:
3176239462Sdim  case X86::OR32ri8:   case X86::OR16ri:   case X86::OR16ri8:
3177239462Sdim  case X86::OR8ri:     case X86::OR64rr:   case X86::OR32rr:
3178239462Sdim  case X86::OR16rr:    case X86::OR8rr:    case X86::OR64rm:
3179239462Sdim  case X86::OR32rm:    case X86::OR16rm:   case X86::OR8rm:
3180239462Sdim    return true;
3181239462Sdim  }
3182239462Sdim}
3183239462Sdim
3184239462Sdim/// optimizeCompareInstr - Check if there exists an earlier instruction that
3185239462Sdim/// operates on the same source operands and sets flags in the same way as
3186239462Sdim/// Compare; remove Compare if possible.
3187239462Sdimbool X86InstrInfo::
3188239462SdimoptimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
3189239462Sdim                     int CmpMask, int CmpValue,
3190239462Sdim                     const MachineRegisterInfo *MRI) const {
3191239462Sdim  // Check whether we can replace SUB with CMP.
3192239462Sdim  unsigned NewOpcode = 0;
3193239462Sdim  switch (CmpInstr->getOpcode()) {
3194239462Sdim  default: break;
3195239462Sdim  case X86::SUB64ri32:
3196239462Sdim  case X86::SUB64ri8:
3197239462Sdim  case X86::SUB32ri:
3198239462Sdim  case X86::SUB32ri8:
3199239462Sdim  case X86::SUB16ri:
3200239462Sdim  case X86::SUB16ri8:
3201239462Sdim  case X86::SUB8ri:
3202239462Sdim  case X86::SUB64rm:
3203239462Sdim  case X86::SUB32rm:
3204239462Sdim  case X86::SUB16rm:
3205239462Sdim  case X86::SUB8rm:
3206239462Sdim  case X86::SUB64rr:
3207239462Sdim  case X86::SUB32rr:
3208239462Sdim  case X86::SUB16rr:
3209239462Sdim  case X86::SUB8rr: {
3210239462Sdim    if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
3211239462Sdim      return false;
3212239462Sdim    // There is no use of the destination register, we can replace SUB with CMP.
3213239462Sdim    switch (CmpInstr->getOpcode()) {
3214243830Sdim    default: llvm_unreachable("Unreachable!");
3215239462Sdim    case X86::SUB64rm:   NewOpcode = X86::CMP64rm;   break;
3216239462Sdim    case X86::SUB32rm:   NewOpcode = X86::CMP32rm;   break;
3217239462Sdim    case X86::SUB16rm:   NewOpcode = X86::CMP16rm;   break;
3218239462Sdim    case X86::SUB8rm:    NewOpcode = X86::CMP8rm;    break;
3219239462Sdim    case X86::SUB64rr:   NewOpcode = X86::CMP64rr;   break;
3220239462Sdim    case X86::SUB32rr:   NewOpcode = X86::CMP32rr;   break;
3221239462Sdim    case X86::SUB16rr:   NewOpcode = X86::CMP16rr;   break;
3222239462Sdim    case X86::SUB8rr:    NewOpcode = X86::CMP8rr;    break;
3223239462Sdim    case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
3224239462Sdim    case X86::SUB64ri8:  NewOpcode = X86::CMP64ri8;  break;
3225239462Sdim    case X86::SUB32ri:   NewOpcode = X86::CMP32ri;   break;
3226239462Sdim    case X86::SUB32ri8:  NewOpcode = X86::CMP32ri8;  break;
3227239462Sdim    case X86::SUB16ri:   NewOpcode = X86::CMP16ri;   break;
3228239462Sdim    case X86::SUB16ri8:  NewOpcode = X86::CMP16ri8;  break;
3229239462Sdim    case X86::SUB8ri:    NewOpcode = X86::CMP8ri;    break;
3230239462Sdim    }
3231239462Sdim    CmpInstr->setDesc(get(NewOpcode));
3232239462Sdim    CmpInstr->RemoveOperand(0);
3233239462Sdim    // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
3234239462Sdim    if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
3235239462Sdim        NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
3236239462Sdim      return false;
3237239462Sdim  }
3238239462Sdim  }
3239239462Sdim
3240239462Sdim  // Get the unique definition of SrcReg.
3241239462Sdim  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3242239462Sdim  if (!MI) return false;
3243239462Sdim
3244239462Sdim  // CmpInstr is the first instruction of the BB.
3245239462Sdim  MachineBasicBlock::iterator I = CmpInstr, Def = MI;
3246239462Sdim
3247239462Sdim  // If we are comparing against zero, check whether we can use MI to update
3248239462Sdim  // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
3249239462Sdim  bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0);
3250239462Sdim  if (IsCmpZero && (MI->getParent() != CmpInstr->getParent() ||
3251239462Sdim      !isDefConvertible(MI)))
3252239462Sdim    return false;
3253239462Sdim
3254239462Sdim  // We are searching for an earlier instruction that can make CmpInstr
3255239462Sdim  // redundant and that instruction will be saved in Sub.
3256239462Sdim  MachineInstr *Sub = NULL;
3257239462Sdim  const TargetRegisterInfo *TRI = &getRegisterInfo();
3258239462Sdim
3259239462Sdim  // We iterate backward, starting from the instruction before CmpInstr and
3260239462Sdim  // stop when reaching the definition of a source register or done with the BB.
3261239462Sdim  // RI points to the instruction before CmpInstr.
3262239462Sdim  // If the definition is in this basic block, RE points to the definition;
3263239462Sdim  // otherwise, RE is the rend of the basic block.
3264239462Sdim  MachineBasicBlock::reverse_iterator
3265239462Sdim      RI = MachineBasicBlock::reverse_iterator(I),
3266239462Sdim      RE = CmpInstr->getParent() == MI->getParent() ?
3267239462Sdim           MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ :
3268239462Sdim           CmpInstr->getParent()->rend();
3269239462Sdim  MachineInstr *Movr0Inst = 0;
3270239462Sdim  for (; RI != RE; ++RI) {
3271239462Sdim    MachineInstr *Instr = &*RI;
3272239462Sdim    // Check whether CmpInstr can be made redundant by the current instruction.
3273239462Sdim    if (!IsCmpZero &&
3274239462Sdim        isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) {
3275239462Sdim      Sub = Instr;
3276239462Sdim      break;
3277239462Sdim    }
3278239462Sdim
3279239462Sdim    if (Instr->modifiesRegister(X86::EFLAGS, TRI) ||
3280239462Sdim        Instr->readsRegister(X86::EFLAGS, TRI)) {
3281239462Sdim      // This instruction modifies or uses EFLAGS.
3282239462Sdim
3283239462Sdim      // MOV32r0 etc. are implemented with xor which clobbers condition code.
3284239462Sdim      // They are safe to move up, if the definition to EFLAGS is dead and
3285239462Sdim      // earlier instructions do not read or write EFLAGS.
3286239462Sdim      if (!Movr0Inst && (Instr->getOpcode() == X86::MOV8r0 ||
3287239462Sdim           Instr->getOpcode() == X86::MOV16r0 ||
3288239462Sdim           Instr->getOpcode() == X86::MOV32r0 ||
3289239462Sdim           Instr->getOpcode() == X86::MOV64r0) &&
3290239462Sdim          Instr->registerDefIsDead(X86::EFLAGS, TRI)) {
3291239462Sdim        Movr0Inst = Instr;
3292239462Sdim        continue;
3293239462Sdim      }
3294239462Sdim
3295239462Sdim      // We can't remove CmpInstr.
3296239462Sdim      return false;
3297239462Sdim    }
3298239462Sdim  }
3299239462Sdim
3300239462Sdim  // Return false if no candidates exist.
3301239462Sdim  if (!IsCmpZero && !Sub)
3302239462Sdim    return false;
3303239462Sdim
3304239462Sdim  bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
3305239462Sdim                    Sub->getOperand(2).getReg() == SrcReg);
3306239462Sdim
3307239462Sdim  // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
3308239462Sdim  // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
3309239462Sdim  // If we are done with the basic block, we need to check whether EFLAGS is
3310239462Sdim  // live-out.
3311239462Sdim  bool IsSafe = false;
3312239462Sdim  SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate;
3313239462Sdim  MachineBasicBlock::iterator E = CmpInstr->getParent()->end();
3314239462Sdim  for (++I; I != E; ++I) {
3315239462Sdim    const MachineInstr &Instr = *I;
3316239462Sdim    bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
3317239462Sdim    bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
3318239462Sdim    // We should check the usage if this instruction uses and updates EFLAGS.
3319239462Sdim    if (!UseEFLAGS && ModifyEFLAGS) {
3320239462Sdim      // It is safe to remove CmpInstr if EFLAGS is updated again.
3321239462Sdim      IsSafe = true;
3322239462Sdim      break;
3323239462Sdim    }
3324239462Sdim    if (!UseEFLAGS && !ModifyEFLAGS)
3325239462Sdim      continue;
3326239462Sdim
3327239462Sdim    // EFLAGS is used by this instruction.
3328239462Sdim    X86::CondCode OldCC;
3329239462Sdim    bool OpcIsSET = false;
3330239462Sdim    if (IsCmpZero || IsSwapped) {
3331239462Sdim      // We decode the condition code from opcode.
3332239462Sdim      if (Instr.isBranch())
3333239462Sdim        OldCC = getCondFromBranchOpc(Instr.getOpcode());
3334239462Sdim      else {
3335239462Sdim        OldCC = getCondFromSETOpc(Instr.getOpcode());
3336239462Sdim        if (OldCC != X86::COND_INVALID)
3337239462Sdim          OpcIsSET = true;
3338239462Sdim        else
3339243830Sdim          OldCC = X86::getCondFromCMovOpc(Instr.getOpcode());
3340239462Sdim      }
3341239462Sdim      if (OldCC == X86::COND_INVALID) return false;
3342239462Sdim    }
3343239462Sdim    if (IsCmpZero) {
3344239462Sdim      switch (OldCC) {
3345239462Sdim      default: break;
3346239462Sdim      case X86::COND_A: case X86::COND_AE:
3347239462Sdim      case X86::COND_B: case X86::COND_BE:
3348239462Sdim      case X86::COND_G: case X86::COND_GE:
3349239462Sdim      case X86::COND_L: case X86::COND_LE:
3350239462Sdim      case X86::COND_O: case X86::COND_NO:
3351239462Sdim        // CF and OF are used, we can't perform this optimization.
3352239462Sdim        return false;
3353239462Sdim      }
3354239462Sdim    } else if (IsSwapped) {
3355239462Sdim      // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
3356239462Sdim      // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3357239462Sdim      // We swap the condition code and synthesize the new opcode.
3358239462Sdim      X86::CondCode NewCC = getSwappedCondition(OldCC);
3359239462Sdim      if (NewCC == X86::COND_INVALID) return false;
3360239462Sdim
3361239462Sdim      // Synthesize the new opcode.
3362239462Sdim      bool HasMemoryOperand = Instr.hasOneMemOperand();
3363239462Sdim      unsigned NewOpc;
3364239462Sdim      if (Instr.isBranch())
3365239462Sdim        NewOpc = GetCondBranchFromCond(NewCC);
3366239462Sdim      else if(OpcIsSET)
3367239462Sdim        NewOpc = getSETFromCond(NewCC, HasMemoryOperand);
3368239462Sdim      else {
3369239462Sdim        unsigned DstReg = Instr.getOperand(0).getReg();
3370239462Sdim        NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(),
3371239462Sdim                                 HasMemoryOperand);
3372239462Sdim      }
3373239462Sdim
3374239462Sdim      // Push the MachineInstr to OpsToUpdate.
3375239462Sdim      // If it is safe to remove CmpInstr, the condition code of these
3376239462Sdim      // instructions will be modified.
3377239462Sdim      OpsToUpdate.push_back(std::make_pair(&*I, NewOpc));
3378239462Sdim    }
3379239462Sdim    if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
3380239462Sdim      // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
3381239462Sdim      IsSafe = true;
3382239462Sdim      break;
3383239462Sdim    }
3384239462Sdim  }
3385239462Sdim
3386239462Sdim  // If EFLAGS is not killed nor re-defined, we should check whether it is
3387239462Sdim  // live-out. If it is live-out, do not optimize.
3388239462Sdim  if ((IsCmpZero || IsSwapped) && !IsSafe) {
3389239462Sdim    MachineBasicBlock *MBB = CmpInstr->getParent();
3390239462Sdim    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
3391239462Sdim             SE = MBB->succ_end(); SI != SE; ++SI)
3392239462Sdim      if ((*SI)->isLiveIn(X86::EFLAGS))
3393239462Sdim        return false;
3394239462Sdim  }
3395239462Sdim
3396239462Sdim  // The instruction to be updated is either Sub or MI.
3397239462Sdim  Sub = IsCmpZero ? MI : Sub;
3398239462Sdim  // Move Movr0Inst to the place right before Sub.
3399239462Sdim  if (Movr0Inst) {
3400239462Sdim    Sub->getParent()->remove(Movr0Inst);
3401239462Sdim    Sub->getParent()->insert(MachineBasicBlock::iterator(Sub), Movr0Inst);
3402239462Sdim  }
3403239462Sdim
3404243830Sdim  // Make sure Sub instruction defines EFLAGS and mark the def live.
3405243830Sdim  unsigned LastOperand = Sub->getNumOperands() - 1;
3406239462Sdim  assert(Sub->getNumOperands() >= 2 &&
3407243830Sdim         Sub->getOperand(LastOperand).isReg() &&
3408243830Sdim         Sub->getOperand(LastOperand).getReg() == X86::EFLAGS &&
3409239462Sdim         "EFLAGS should be the last operand of SUB, ADD, OR, XOR, AND");
3410243830Sdim  Sub->getOperand(LastOperand).setIsDef(true);
3411243830Sdim  Sub->getOperand(LastOperand).setIsDead(false);
3412239462Sdim  CmpInstr->eraseFromParent();
3413239462Sdim
3414239462Sdim  // Modify the condition code of instructions in OpsToUpdate.
3415239462Sdim  for (unsigned i = 0, e = OpsToUpdate.size(); i < e; i++)
3416239462Sdim    OpsToUpdate[i].first->setDesc(get(OpsToUpdate[i].second));
3417239462Sdim  return true;
3418239462Sdim}
3419239462Sdim
3420239462Sdim/// optimizeLoadInstr - Try to remove the load by folding it to a register
3421239462Sdim/// operand at the use. We fold the load instructions if load defines a virtual
3422239462Sdim/// register, the virtual register is used once in the same BB, and the
3423239462Sdim/// instructions in-between do not load or store, and have no side effects.
3424239462SdimMachineInstr* X86InstrInfo::
3425239462SdimoptimizeLoadInstr(MachineInstr *MI, const MachineRegisterInfo *MRI,
3426239462Sdim                  unsigned &FoldAsLoadDefReg,
3427239462Sdim                  MachineInstr *&DefMI) const {
3428239462Sdim  if (FoldAsLoadDefReg == 0)
3429239462Sdim    return 0;
3430239462Sdim  // To be conservative, if there exists another load, clear the load candidate.
3431239462Sdim  if (MI->mayLoad()) {
3432239462Sdim    FoldAsLoadDefReg = 0;
3433239462Sdim    return 0;
3434239462Sdim  }
3435239462Sdim
3436239462Sdim  // Check whether we can move DefMI here.
3437239462Sdim  DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
3438239462Sdim  assert(DefMI);
3439239462Sdim  bool SawStore = false;
3440239462Sdim  if (!DefMI->isSafeToMove(this, 0, SawStore))
3441239462Sdim    return 0;
3442239462Sdim
3443239462Sdim  // We try to commute MI if possible.
3444239462Sdim  unsigned IdxEnd = (MI->isCommutable()) ? 2 : 1;
3445239462Sdim  for (unsigned Idx = 0; Idx < IdxEnd; Idx++) {
3446239462Sdim    // Collect information about virtual register operands of MI.
3447239462Sdim    unsigned SrcOperandId = 0;
3448239462Sdim    bool FoundSrcOperand = false;
3449239462Sdim    for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
3450239462Sdim      MachineOperand &MO = MI->getOperand(i);
3451239462Sdim      if (!MO.isReg())
3452239462Sdim        continue;
3453239462Sdim      unsigned Reg = MO.getReg();
3454239462Sdim      if (Reg != FoldAsLoadDefReg)
3455239462Sdim        continue;
3456239462Sdim      // Do not fold if we have a subreg use or a def or multiple uses.
3457239462Sdim      if (MO.getSubReg() || MO.isDef() || FoundSrcOperand)
3458239462Sdim        return 0;
3459239462Sdim
3460239462Sdim      SrcOperandId = i;
3461239462Sdim      FoundSrcOperand = true;
3462239462Sdim    }
3463239462Sdim    if (!FoundSrcOperand) return 0;
3464239462Sdim
3465239462Sdim    // Check whether we can fold the def into SrcOperandId.
3466239462Sdim    SmallVector<unsigned, 8> Ops;
3467239462Sdim    Ops.push_back(SrcOperandId);
3468239462Sdim    MachineInstr *FoldMI = foldMemoryOperand(MI, Ops, DefMI);
3469239462Sdim    if (FoldMI) {
3470239462Sdim      FoldAsLoadDefReg = 0;
3471239462Sdim      return FoldMI;
3472239462Sdim    }
3473239462Sdim
3474239462Sdim    if (Idx == 1) {
3475239462Sdim      // MI was changed but it didn't help, commute it back!
3476239462Sdim      commuteInstruction(MI, false);
3477239462Sdim      return 0;
3478239462Sdim    }
3479239462Sdim
3480239462Sdim    // Check whether we can commute MI and enable folding.
3481239462Sdim    if (MI->isCommutable()) {
3482239462Sdim      MachineInstr *NewMI = commuteInstruction(MI, false);
3483239462Sdim      // Unable to commute.
3484239462Sdim      if (!NewMI) return 0;
3485239462Sdim      if (NewMI != MI) {
3486239462Sdim        // New instruction. It doesn't need to be kept.
3487239462Sdim        NewMI->eraseFromParent();
3488239462Sdim        return 0;
3489239462Sdim      }
3490239462Sdim    }
3491239462Sdim  }
3492239462Sdim  return 0;
3493239462Sdim}
3494239462Sdim
3495226633Sdim/// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr
3496226633Sdim/// instruction with two undef reads of the register being defined.  This is
3497226633Sdim/// used for mapping:
3498226633Sdim///   %xmm4 = V_SET0
3499226633Sdim/// to:
3500226633Sdim///   %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
3501226633Sdim///
3502226633Sdimstatic bool Expand2AddrUndef(MachineInstr *MI, const MCInstrDesc &Desc) {
3503226633Sdim  assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
3504226633Sdim  unsigned Reg = MI->getOperand(0).getReg();
3505226633Sdim  MI->setDesc(Desc);
3506226633Sdim
3507226633Sdim  // MachineInstr::addOperand() will insert explicit operands before any
3508226633Sdim  // implicit operands.
3509226633Sdim  MachineInstrBuilder(MI).addReg(Reg, RegState::Undef)
3510226633Sdim                         .addReg(Reg, RegState::Undef);
3511226633Sdim  // But we don't trust that.
3512226633Sdim  assert(MI->getOperand(1).getReg() == Reg &&
3513226633Sdim         MI->getOperand(2).getReg() == Reg && "Misplaced operand");
3514226633Sdim  return true;
3515226633Sdim}
3516226633Sdim
3517226633Sdimbool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
3518226633Sdim  bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
3519226633Sdim  switch (MI->getOpcode()) {
3520243830Sdim  case X86::SETB_C8r:
3521243830Sdim    return Expand2AddrUndef(MI, get(X86::SBB8rr));
3522243830Sdim  case X86::SETB_C16r:
3523243830Sdim    return Expand2AddrUndef(MI, get(X86::SBB16rr));
3524243830Sdim  case X86::SETB_C32r:
3525243830Sdim    return Expand2AddrUndef(MI, get(X86::SBB32rr));
3526243830Sdim  case X86::SETB_C64r:
3527243830Sdim    return Expand2AddrUndef(MI, get(X86::SBB64rr));
3528226633Sdim  case X86::V_SET0:
3529234353Sdim  case X86::FsFLD0SS:
3530234353Sdim  case X86::FsFLD0SD:
3531234353Sdim    return Expand2AddrUndef(MI, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
3532243830Sdim  case X86::AVX_SET0:
3533243830Sdim    assert(HasAVX && "AVX not supported");
3534243830Sdim    return Expand2AddrUndef(MI, get(X86::VXORPSYrr));
3535243830Sdim  case X86::V_SETALLONES:
3536243830Sdim    return Expand2AddrUndef(MI, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
3537243830Sdim  case X86::AVX2_SETALLONES:
3538243830Sdim    return Expand2AddrUndef(MI, get(X86::VPCMPEQDYrr));
3539226633Sdim  case X86::TEST8ri_NOREX:
3540226633Sdim    MI->setDesc(get(X86::TEST8ri));
3541226633Sdim    return true;
3542226633Sdim  }
3543226633Sdim  return false;
3544226633Sdim}
3545226633Sdim
3546207618SrdivackyMachineInstr*
3547207618SrdivackyX86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
3548207618Srdivacky                                       int FrameIx, uint64_t Offset,
3549207618Srdivacky                                       const MDNode *MDPtr,
3550207618Srdivacky                                       DebugLoc DL) const {
3551207618Srdivacky  X86AddressMode AM;
3552207618Srdivacky  AM.BaseType = X86AddressMode::FrameIndexBase;
3553207618Srdivacky  AM.Base.FrameIndex = FrameIx;
3554207618Srdivacky  MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE));
3555207618Srdivacky  addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr);
3556207618Srdivacky  return &*MIB;
3557207618Srdivacky}
3558207618Srdivacky
3559193323Sedstatic MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
3560193323Sed                                     const SmallVectorImpl<MachineOperand> &MOs,
3561193323Sed                                     MachineInstr *MI,
3562193323Sed                                     const TargetInstrInfo &TII) {
3563193323Sed  // Create the base instruction with the memory operand as the first part.
3564193323Sed  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
3565193323Sed                                              MI->getDebugLoc(), true);
3566193323Sed  MachineInstrBuilder MIB(NewMI);
3567193323Sed  unsigned NumAddrOps = MOs.size();
3568193323Sed  for (unsigned i = 0; i != NumAddrOps; ++i)
3569193323Sed    MIB.addOperand(MOs[i]);
3570193323Sed  if (NumAddrOps < 4)  // FrameIndex only
3571193323Sed    addOffset(MIB, 0);
3572218893Sdim
3573193323Sed  // Loop over the rest of the ri operands, converting them over.
3574193323Sed  unsigned NumOps = MI->getDesc().getNumOperands()-2;
3575193323Sed  for (unsigned i = 0; i != NumOps; ++i) {
3576193323Sed    MachineOperand &MO = MI->getOperand(i+2);
3577193323Sed    MIB.addOperand(MO);
3578193323Sed  }
3579193323Sed  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
3580193323Sed    MachineOperand &MO = MI->getOperand(i);
3581193323Sed    MIB.addOperand(MO);
3582193323Sed  }
3583193323Sed  return MIB;
3584193323Sed}
3585193323Sed
3586193323Sedstatic MachineInstr *FuseInst(MachineFunction &MF,
3587193323Sed                              unsigned Opcode, unsigned OpNo,
3588193323Sed                              const SmallVectorImpl<MachineOperand> &MOs,
3589193323Sed                              MachineInstr *MI, const TargetInstrInfo &TII) {
3590193323Sed  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
3591193323Sed                                              MI->getDebugLoc(), true);
3592193323Sed  MachineInstrBuilder MIB(NewMI);
3593218893Sdim
3594193323Sed  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
3595193323Sed    MachineOperand &MO = MI->getOperand(i);
3596193323Sed    if (i == OpNo) {
3597193323Sed      assert(MO.isReg() && "Expected to fold into reg operand!");
3598193323Sed      unsigned NumAddrOps = MOs.size();
3599193323Sed      for (unsigned i = 0; i != NumAddrOps; ++i)
3600193323Sed        MIB.addOperand(MOs[i]);
3601193323Sed      if (NumAddrOps < 4)  // FrameIndex only
3602193323Sed        addOffset(MIB, 0);
3603193323Sed    } else {
3604193323Sed      MIB.addOperand(MO);
3605193323Sed    }
3606193323Sed  }
3607193323Sed  return MIB;
3608193323Sed}
3609193323Sed
3610193323Sedstatic MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
3611193323Sed                                const SmallVectorImpl<MachineOperand> &MOs,
3612193323Sed                                MachineInstr *MI) {
3613193323Sed  MachineFunction &MF = *MI->getParent()->getParent();
3614193323Sed  MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
3615193323Sed
3616193323Sed  unsigned NumAddrOps = MOs.size();
3617193323Sed  for (unsigned i = 0; i != NumAddrOps; ++i)
3618193323Sed    MIB.addOperand(MOs[i]);
3619193323Sed  if (NumAddrOps < 4)  // FrameIndex only
3620193323Sed    addOffset(MIB, 0);
3621193323Sed  return MIB.addImm(0);
3622193323Sed}
3623193323Sed
3624193323SedMachineInstr*
3625193323SedX86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
3626193323Sed                                    MachineInstr *MI, unsigned i,
3627198090Srdivacky                                    const SmallVectorImpl<MachineOperand> &MOs,
3628198090Srdivacky                                    unsigned Size, unsigned Align) const {
3629218893Sdim  const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
3630193323Sed  bool isTwoAddrFold = false;
3631193323Sed  unsigned NumOps = MI->getDesc().getNumOperands();
3632193323Sed  bool isTwoAddr = NumOps > 1 &&
3633224145Sdim    MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
3634193323Sed
3635221345Sdim  // FIXME: AsmPrinter doesn't know how to handle
3636221345Sdim  // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
3637221345Sdim  if (MI->getOpcode() == X86::ADD32ri &&
3638221345Sdim      MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
3639221345Sdim    return NULL;
3640221345Sdim
3641193323Sed  MachineInstr *NewMI = NULL;
3642193323Sed  // Folding a memory location into the two-address part of a two-address
3643193323Sed  // instruction is different than folding it other places.  It requires
3644193323Sed  // replacing the *two* registers with the memory location.
3645193323Sed  if (isTwoAddr && NumOps >= 2 && i < 2 &&
3646193323Sed      MI->getOperand(0).isReg() &&
3647193323Sed      MI->getOperand(1).isReg() &&
3648218893Sdim      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
3649193323Sed    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
3650193323Sed    isTwoAddrFold = true;
3651193323Sed  } else if (i == 0) { // If operand 0
3652243830Sdim    unsigned Opc = 0;
3653243830Sdim    switch (MI->getOpcode()) {
3654243830Sdim    default: break;
3655243830Sdim    case X86::MOV64r0: Opc = X86::MOV64mi32; break;
3656243830Sdim    case X86::MOV32r0: Opc = X86::MOV32mi;   break;
3657243830Sdim    case X86::MOV16r0: Opc = X86::MOV16mi;   break;
3658243830Sdim    case X86::MOV8r0:  Opc = X86::MOV8mi;    break;
3659243830Sdim    }
3660243830Sdim    if (Opc)
3661243830Sdim       NewMI = MakeM0Inst(*this, Opc, MOs, MI);
3662193323Sed    if (NewMI)
3663193323Sed      return NewMI;
3664218893Sdim
3665193323Sed    OpcodeTablePtr = &RegOp2MemOpTable0;
3666193323Sed  } else if (i == 1) {
3667193323Sed    OpcodeTablePtr = &RegOp2MemOpTable1;
3668193323Sed  } else if (i == 2) {
3669193323Sed    OpcodeTablePtr = &RegOp2MemOpTable2;
3670239462Sdim  } else if (i == 3) {
3671239462Sdim    OpcodeTablePtr = &RegOp2MemOpTable3;
3672193323Sed  }
3673218893Sdim
3674193323Sed  // If table selected...
3675193323Sed  if (OpcodeTablePtr) {
3676193323Sed    // Find the Opcode to fuse
3677218893Sdim    DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
3678218893Sdim      OpcodeTablePtr->find(MI->getOpcode());
3679193323Sed    if (I != OpcodeTablePtr->end()) {
3680198090Srdivacky      unsigned Opcode = I->second.first;
3681226633Sdim      unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
3682198090Srdivacky      if (Align < MinAlign)
3683198090Srdivacky        return NULL;
3684198090Srdivacky      bool NarrowToMOV32rm = false;
3685198090Srdivacky      if (Size) {
3686239462Sdim        unsigned RCSize = getRegClass(MI->getDesc(), i, &RI, MF)->getSize();
3687198090Srdivacky        if (Size < RCSize) {
3688198090Srdivacky          // Check if it's safe to fold the load. If the size of the object is
3689198090Srdivacky          // narrower than the load width, then it's not.
3690198090Srdivacky          if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
3691198090Srdivacky            return NULL;
3692198090Srdivacky          // If this is a 64-bit load, but the spill slot is 32, then we can do
3693198090Srdivacky          // a 32-bit load which is implicitly zero-extended. This likely is due
3694198090Srdivacky          // to liveintervalanalysis remat'ing a load from stack slot.
3695198090Srdivacky          if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
3696198090Srdivacky            return NULL;
3697198090Srdivacky          Opcode = X86::MOV32rm;
3698198090Srdivacky          NarrowToMOV32rm = true;
3699198090Srdivacky        }
3700198090Srdivacky      }
3701198090Srdivacky
3702193323Sed      if (isTwoAddrFold)
3703198090Srdivacky        NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
3704193323Sed      else
3705198090Srdivacky        NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
3706198090Srdivacky
3707198090Srdivacky      if (NarrowToMOV32rm) {
3708198090Srdivacky        // If this is the special case where we use a MOV32rm to load a 32-bit
3709198090Srdivacky        // value and zero-extend the top bits. Change the destination register
3710198090Srdivacky        // to a 32-bit one.
3711198090Srdivacky        unsigned DstReg = NewMI->getOperand(0).getReg();
3712198090Srdivacky        if (TargetRegisterInfo::isPhysicalRegister(DstReg))
3713198090Srdivacky          NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
3714208599Srdivacky                                                   X86::sub_32bit));
3715198090Srdivacky        else
3716208599Srdivacky          NewMI->getOperand(0).setSubReg(X86::sub_32bit);
3717198090Srdivacky      }
3718193323Sed      return NewMI;
3719193323Sed    }
3720193323Sed  }
3721218893Sdim
3722218893Sdim  // No fusion
3723210299Sed  if (PrintFailedFusing && !MI->isCopy())
3724202375Srdivacky    dbgs() << "We failed to fuse operand " << i << " in " << *MI;
3725193323Sed  return NULL;
3726193323Sed}
3727193323Sed
3728226633Sdim/// hasPartialRegUpdate - Return true for all instructions that only update
3729226633Sdim/// the first 32 or 64-bits of the destination register and leave the rest
3730226633Sdim/// unmodified. This can be used to avoid folding loads if the instructions
3731226633Sdim/// only update part of the destination register, and the non-updated part is
3732226633Sdim/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
3733226633Sdim/// instructions breaks the partial register dependency and it can improve
3734226633Sdim/// performance. e.g.:
3735226633Sdim///
3736226633Sdim///   movss (%rdi), %xmm0
3737226633Sdim///   cvtss2sd %xmm0, %xmm0
3738226633Sdim///
3739226633Sdim/// Instead of
3740226633Sdim///   cvtss2sd (%rdi), %xmm0
3741226633Sdim///
3742226633Sdim/// FIXME: This should be turned into a TSFlags.
3743226633Sdim///
3744226633Sdimstatic bool hasPartialRegUpdate(unsigned Opcode) {
3745226633Sdim  switch (Opcode) {
3746234353Sdim  case X86::CVTSI2SSrr:
3747234353Sdim  case X86::CVTSI2SS64rr:
3748234353Sdim  case X86::CVTSI2SDrr:
3749234353Sdim  case X86::CVTSI2SD64rr:
3750226633Sdim  case X86::CVTSD2SSrr:
3751226633Sdim  case X86::Int_CVTSD2SSrr:
3752226633Sdim  case X86::CVTSS2SDrr:
3753226633Sdim  case X86::Int_CVTSS2SDrr:
3754226633Sdim  case X86::RCPSSr:
3755226633Sdim  case X86::RCPSSr_Int:
3756226633Sdim  case X86::ROUNDSDr:
3757234353Sdim  case X86::ROUNDSDr_Int:
3758226633Sdim  case X86::ROUNDSSr:
3759234353Sdim  case X86::ROUNDSSr_Int:
3760226633Sdim  case X86::RSQRTSSr:
3761226633Sdim  case X86::RSQRTSSr_Int:
3762226633Sdim  case X86::SQRTSSr:
3763226633Sdim  case X86::SQRTSSr_Int:
3764226633Sdim  // AVX encoded versions
3765226633Sdim  case X86::VCVTSD2SSrr:
3766226633Sdim  case X86::Int_VCVTSD2SSrr:
3767226633Sdim  case X86::VCVTSS2SDrr:
3768226633Sdim  case X86::Int_VCVTSS2SDrr:
3769226633Sdim  case X86::VRCPSSr:
3770226633Sdim  case X86::VROUNDSDr:
3771234353Sdim  case X86::VROUNDSDr_Int:
3772226633Sdim  case X86::VROUNDSSr:
3773234353Sdim  case X86::VROUNDSSr_Int:
3774226633Sdim  case X86::VRSQRTSSr:
3775226633Sdim  case X86::VSQRTSSr:
3776226633Sdim    return true;
3777226633Sdim  }
3778193323Sed
3779226633Sdim  return false;
3780226633Sdim}
3781226633Sdim
3782234353Sdim/// getPartialRegUpdateClearance - Inform the ExeDepsFix pass how many idle
3783234353Sdim/// instructions we would like before a partial register update.
3784234353Sdimunsigned X86InstrInfo::
3785234353SdimgetPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
3786234353Sdim                             const TargetRegisterInfo *TRI) const {
3787234353Sdim  if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
3788234353Sdim    return 0;
3789234353Sdim
3790234353Sdim  // If MI is marked as reading Reg, the partial register update is wanted.
3791234353Sdim  const MachineOperand &MO = MI->getOperand(0);
3792234353Sdim  unsigned Reg = MO.getReg();
3793234353Sdim  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
3794234353Sdim    if (MO.readsReg() || MI->readsVirtualRegister(Reg))
3795234353Sdim      return 0;
3796234353Sdim  } else {
3797234353Sdim    if (MI->readsRegister(Reg, TRI))
3798234353Sdim      return 0;
3799234353Sdim  }
3800234353Sdim
3801234353Sdim  // If any of the preceding 16 instructions are reading Reg, insert a
3802234353Sdim  // dependency breaking instruction.  The magic number is based on a few
3803234353Sdim  // Nehalem experiments.
3804234353Sdim  return 16;
3805234353Sdim}
3806234353Sdim
3807234353Sdimvoid X86InstrInfo::
3808234353SdimbreakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
3809234353Sdim                          const TargetRegisterInfo *TRI) const {
3810234353Sdim  unsigned Reg = MI->getOperand(OpNum).getReg();
3811234353Sdim  if (X86::VR128RegClass.contains(Reg)) {
3812234353Sdim    // These instructions are all floating point domain, so xorps is the best
3813234353Sdim    // choice.
3814234353Sdim    bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
3815234353Sdim    unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
3816234353Sdim    BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
3817234353Sdim      .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
3818234353Sdim  } else if (X86::VR256RegClass.contains(Reg)) {
3819234353Sdim    // Use vxorps to clear the full ymm register.
3820234353Sdim    // It wants to read and write the xmm sub-register.
3821234353Sdim    unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
3822234353Sdim    BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
3823234353Sdim      .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
3824234353Sdim      .addReg(Reg, RegState::ImplicitDefine);
3825234353Sdim  } else
3826234353Sdim    return;
3827234353Sdim  MI->addRegisterKilled(Reg, TRI, true);
3828234353Sdim}
3829234353Sdim
3830193323SedMachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
3831193323Sed                                                  MachineInstr *MI,
3832198090Srdivacky                                           const SmallVectorImpl<unsigned> &Ops,
3833193323Sed                                                  int FrameIndex) const {
3834218893Sdim  // Check switch flag
3835193323Sed  if (NoFusing) return NULL;
3836193323Sed
3837226633Sdim  // Unless optimizing for size, don't fold to avoid partial
3838226633Sdim  // register update stalls
3839243830Sdim  if (!MF.getFunction()->getFnAttributes().
3840243830Sdim        hasAttribute(Attributes::OptimizeForSize) &&
3841226633Sdim      hasPartialRegUpdate(MI->getOpcode()))
3842226633Sdim    return 0;
3843201360Srdivacky
3844193323Sed  const MachineFrameInfo *MFI = MF.getFrameInfo();
3845198090Srdivacky  unsigned Size = MFI->getObjectSize(FrameIndex);
3846193323Sed  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
3847193323Sed  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
3848193323Sed    unsigned NewOpc = 0;
3849198090Srdivacky    unsigned RCSize = 0;
3850193323Sed    switch (MI->getOpcode()) {
3851193323Sed    default: return NULL;
3852198090Srdivacky    case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
3853208599Srdivacky    case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
3854208599Srdivacky    case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
3855208599Srdivacky    case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
3856193323Sed    }
3857198090Srdivacky    // Check if it's safe to fold the load. If the size of the object is
3858198090Srdivacky    // narrower than the load width, then it's not.
3859198090Srdivacky    if (Size < RCSize)
3860198090Srdivacky      return NULL;
3861193323Sed    // Change to CMPXXri r, 0 first.
3862193323Sed    MI->setDesc(get(NewOpc));
3863193323Sed    MI->getOperand(1).ChangeToImmediate(0);
3864193323Sed  } else if (Ops.size() != 1)
3865193323Sed    return NULL;
3866193323Sed
3867193323Sed  SmallVector<MachineOperand,4> MOs;
3868193323Sed  MOs.push_back(MachineOperand::CreateFI(FrameIndex));
3869198090Srdivacky  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
3870193323Sed}
3871193323Sed
3872193323SedMachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
3873193323Sed                                                  MachineInstr *MI,
3874198090Srdivacky                                           const SmallVectorImpl<unsigned> &Ops,
3875193323Sed                                                  MachineInstr *LoadMI) const {
3876218893Sdim  // Check switch flag
3877193323Sed  if (NoFusing) return NULL;
3878193323Sed
3879226633Sdim  // Unless optimizing for size, don't fold to avoid partial
3880226633Sdim  // register update stalls
3881243830Sdim  if (!MF.getFunction()->getFnAttributes().
3882243830Sdim        hasAttribute(Attributes::OptimizeForSize) &&
3883226633Sdim      hasPartialRegUpdate(MI->getOpcode()))
3884226633Sdim    return 0;
3885201360Srdivacky
3886193323Sed  // Determine the alignment of the load.
3887193323Sed  unsigned Alignment = 0;
3888193323Sed  if (LoadMI->hasOneMemOperand())
3889198090Srdivacky    Alignment = (*LoadMI->memoperands_begin())->getAlignment();
3890198090Srdivacky  else
3891198090Srdivacky    switch (LoadMI->getOpcode()) {
3892234353Sdim    case X86::AVX2_SETALLONES:
3893243830Sdim    case X86::AVX_SET0:
3894212904Sdim      Alignment = 32;
3895212904Sdim      break;
3896226633Sdim    case X86::V_SET0:
3897198090Srdivacky    case X86::V_SETALLONES:
3898198090Srdivacky      Alignment = 16;
3899198090Srdivacky      break;
3900198090Srdivacky    case X86::FsFLD0SD:
3901198090Srdivacky      Alignment = 8;
3902198090Srdivacky      break;
3903198090Srdivacky    case X86::FsFLD0SS:
3904198090Srdivacky      Alignment = 4;
3905198090Srdivacky      break;
3906198090Srdivacky    default:
3907223017Sdim      return 0;
3908193323Sed    }
3909193323Sed  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
3910193323Sed    unsigned NewOpc = 0;
3911193323Sed    switch (MI->getOpcode()) {
3912193323Sed    default: return NULL;
3913193323Sed    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
3914208599Srdivacky    case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
3915208599Srdivacky    case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
3916208599Srdivacky    case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
3917193323Sed    }
3918193323Sed    // Change to CMPXXri r, 0 first.
3919193323Sed    MI->setDesc(get(NewOpc));
3920193323Sed    MI->getOperand(1).ChangeToImmediate(0);
3921193323Sed  } else if (Ops.size() != 1)
3922193323Sed    return NULL;
3923193323Sed
3924212904Sdim  // Make sure the subregisters match.
3925212904Sdim  // Otherwise we risk changing the size of the load.
3926212904Sdim  if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
3927212904Sdim    return NULL;
3928212904Sdim
3929210299Sed  SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
3930198090Srdivacky  switch (LoadMI->getOpcode()) {
3931226633Sdim  case X86::V_SET0:
3932198090Srdivacky  case X86::V_SETALLONES:
3933234353Sdim  case X86::AVX2_SETALLONES:
3934243830Sdim  case X86::AVX_SET0:
3935198090Srdivacky  case X86::FsFLD0SD:
3936234353Sdim  case X86::FsFLD0SS: {
3937226633Sdim    // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
3938193323Sed    // Create a constant-pool entry and operands to load from it.
3939193323Sed
3940204961Srdivacky    // Medium and large mode can't fold loads this way.
3941204961Srdivacky    if (TM.getCodeModel() != CodeModel::Small &&
3942204961Srdivacky        TM.getCodeModel() != CodeModel::Kernel)
3943204961Srdivacky      return NULL;
3944204961Srdivacky
3945193323Sed    // x86-32 PIC requires a PIC base register for constant pools.
3946193323Sed    unsigned PICBase = 0;
3947198090Srdivacky    if (TM.getRelocationModel() == Reloc::PIC_) {
3948198090Srdivacky      if (TM.getSubtarget<X86Subtarget>().is64Bit())
3949198090Srdivacky        PICBase = X86::RIP;
3950198090Srdivacky      else
3951210299Sed        // FIXME: PICBase = getGlobalBaseReg(&MF);
3952198090Srdivacky        // This doesn't work for several reasons.
3953198090Srdivacky        // 1. GlobalBaseReg may have been spilled.
3954198090Srdivacky        // 2. It may not be live at MI.
3955198090Srdivacky        return NULL;
3956198090Srdivacky    }
3957193323Sed
3958198090Srdivacky    // Create a constant-pool entry.
3959193323Sed    MachineConstantPool &MCP = *MF.getConstantPool();
3960226633Sdim    Type *Ty;
3961212904Sdim    unsigned Opc = LoadMI->getOpcode();
3962234353Sdim    if (Opc == X86::FsFLD0SS)
3963198090Srdivacky      Ty = Type::getFloatTy(MF.getFunction()->getContext());
3964234353Sdim    else if (Opc == X86::FsFLD0SD)
3965198090Srdivacky      Ty = Type::getDoubleTy(MF.getFunction()->getContext());
3966243830Sdim    else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0)
3967234353Sdim      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
3968198090Srdivacky    else
3969198090Srdivacky      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
3970226633Sdim
3971243830Sdim    bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES);
3972226633Sdim    const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
3973226633Sdim                                    Constant::getNullValue(Ty);
3974198090Srdivacky    unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
3975193323Sed
3976193323Sed    // Create operands to load from the constant pool entry.
3977193323Sed    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
3978193323Sed    MOs.push_back(MachineOperand::CreateImm(1));
3979193323Sed    MOs.push_back(MachineOperand::CreateReg(0, false));
3980193323Sed    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
3981193323Sed    MOs.push_back(MachineOperand::CreateReg(0, false));
3982198090Srdivacky    break;
3983198090Srdivacky  }
3984198090Srdivacky  default: {
3985193323Sed    // Folding a normal load. Just copy the load's address operands.
3986193323Sed    unsigned NumOps = LoadMI->getDesc().getNumOperands();
3987210299Sed    for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
3988193323Sed      MOs.push_back(LoadMI->getOperand(i));
3989198090Srdivacky    break;
3990193323Sed  }
3991198090Srdivacky  }
3992198090Srdivacky  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
3993193323Sed}
3994193323Sed
3995193323Sed
3996193323Sedbool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
3997193323Sed                                  const SmallVectorImpl<unsigned> &Ops) const {
3998218893Sdim  // Check switch flag
3999193323Sed  if (NoFusing) return 0;
4000193323Sed
4001193323Sed  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
4002193323Sed    switch (MI->getOpcode()) {
4003193323Sed    default: return false;
4004218893Sdim    case X86::TEST8rr:
4005193323Sed    case X86::TEST16rr:
4006193323Sed    case X86::TEST32rr:
4007193323Sed    case X86::TEST64rr:
4008193323Sed      return true;
4009221345Sdim    case X86::ADD32ri:
4010221345Sdim      // FIXME: AsmPrinter doesn't know how to handle
4011221345Sdim      // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
4012221345Sdim      if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
4013221345Sdim        return false;
4014221345Sdim      break;
4015193323Sed    }
4016193323Sed  }
4017193323Sed
4018193323Sed  if (Ops.size() != 1)
4019193323Sed    return false;
4020193323Sed
4021193323Sed  unsigned OpNum = Ops[0];
4022193323Sed  unsigned Opc = MI->getOpcode();
4023193323Sed  unsigned NumOps = MI->getDesc().getNumOperands();
4024193323Sed  bool isTwoAddr = NumOps > 1 &&
4025224145Sdim    MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
4026193323Sed
4027193323Sed  // Folding a memory location into the two-address part of a two-address
4028193323Sed  // instruction is different than folding it other places.  It requires
4029193323Sed  // replacing the *two* registers with the memory location.
4030218893Sdim  const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
4031218893Sdim  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
4032193323Sed    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
4033193323Sed  } else if (OpNum == 0) { // If operand 0
4034193323Sed    switch (Opc) {
4035198090Srdivacky    case X86::MOV8r0:
4036202375Srdivacky    case X86::MOV16r0:
4037193323Sed    case X86::MOV32r0:
4038218893Sdim    case X86::MOV64r0: return true;
4039193323Sed    default: break;
4040193323Sed    }
4041193323Sed    OpcodeTablePtr = &RegOp2MemOpTable0;
4042193323Sed  } else if (OpNum == 1) {
4043193323Sed    OpcodeTablePtr = &RegOp2MemOpTable1;
4044193323Sed  } else if (OpNum == 2) {
4045193323Sed    OpcodeTablePtr = &RegOp2MemOpTable2;
4046243830Sdim  } else if (OpNum == 3) {
4047243830Sdim    OpcodeTablePtr = &RegOp2MemOpTable3;
4048193323Sed  }
4049218893Sdim
4050218893Sdim  if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
4051218893Sdim    return true;
4052210299Sed  return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops);
4053193323Sed}
4054193323Sed
4055193323Sedbool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
4056193323Sed                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
4057193323Sed                                SmallVectorImpl<MachineInstr*> &NewMIs) const {
4058218893Sdim  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
4059218893Sdim    MemOp2RegOpTable.find(MI->getOpcode());
4060193323Sed  if (I == MemOp2RegOpTable.end())
4061193323Sed    return false;
4062193323Sed  unsigned Opc = I->second.first;
4063226633Sdim  unsigned Index = I->second.second & TB_INDEX_MASK;
4064226633Sdim  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
4065226633Sdim  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
4066193323Sed  if (UnfoldLoad && !FoldedLoad)
4067193323Sed    return false;
4068193323Sed  UnfoldLoad &= FoldedLoad;
4069193323Sed  if (UnfoldStore && !FoldedStore)
4070193323Sed    return false;
4071193323Sed  UnfoldStore &= FoldedStore;
4072193323Sed
4073224145Sdim  const MCInstrDesc &MCID = get(Opc);
4074239462Sdim  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
4075210299Sed  if (!MI->hasOneMemOperand() &&
4076210299Sed      RC == &X86::VR128RegClass &&
4077210299Sed      !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
4078210299Sed    // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
4079210299Sed    // conservatively assume the address is unaligned. That's bad for
4080210299Sed    // performance.
4081210299Sed    return false;
4082210299Sed  SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
4083193323Sed  SmallVector<MachineOperand,2> BeforeOps;
4084193323Sed  SmallVector<MachineOperand,2> AfterOps;
4085193323Sed  SmallVector<MachineOperand,4> ImpOps;
4086193323Sed  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
4087193323Sed    MachineOperand &Op = MI->getOperand(i);
4088210299Sed    if (i >= Index && i < Index + X86::AddrNumOperands)
4089193323Sed      AddrOps.push_back(Op);
4090193323Sed    else if (Op.isReg() && Op.isImplicit())
4091193323Sed      ImpOps.push_back(Op);
4092193323Sed    else if (i < Index)
4093193323Sed      BeforeOps.push_back(Op);
4094193323Sed    else if (i > Index)
4095193323Sed      AfterOps.push_back(Op);
4096193323Sed  }
4097193323Sed
4098193323Sed  // Emit the load instruction.
4099193323Sed  if (UnfoldLoad) {
4100198090Srdivacky    std::pair<MachineInstr::mmo_iterator,
4101198090Srdivacky              MachineInstr::mmo_iterator> MMOs =
4102198090Srdivacky      MF.extractLoadMemRefs(MI->memoperands_begin(),
4103198090Srdivacky                            MI->memoperands_end());
4104198090Srdivacky    loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
4105193323Sed    if (UnfoldStore) {
4106193323Sed      // Address operands cannot be marked isKill.
4107210299Sed      for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
4108193323Sed        MachineOperand &MO = NewMIs[0]->getOperand(i);
4109193323Sed        if (MO.isReg())
4110193323Sed          MO.setIsKill(false);
4111193323Sed      }
4112193323Sed    }
4113193323Sed  }
4114193323Sed
4115193323Sed  // Emit the data processing instruction.
4116224145Sdim  MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
4117193323Sed  MachineInstrBuilder MIB(DataMI);
4118218893Sdim
4119193323Sed  if (FoldedStore)
4120193323Sed    MIB.addReg(Reg, RegState::Define);
4121193323Sed  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
4122193323Sed    MIB.addOperand(BeforeOps[i]);
4123193323Sed  if (FoldedLoad)
4124193323Sed    MIB.addReg(Reg);
4125193323Sed  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
4126193323Sed    MIB.addOperand(AfterOps[i]);
4127193323Sed  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
4128193323Sed    MachineOperand &MO = ImpOps[i];
4129193323Sed    MIB.addReg(MO.getReg(),
4130193323Sed               getDefRegState(MO.isDef()) |
4131193323Sed               RegState::Implicit |
4132193323Sed               getKillRegState(MO.isKill()) |
4133195340Sed               getDeadRegState(MO.isDead()) |
4134195340Sed               getUndefRegState(MO.isUndef()));
4135193323Sed  }
4136193323Sed  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
4137193323Sed  switch (DataMI->getOpcode()) {
4138193323Sed  default: break;
4139193323Sed  case X86::CMP64ri32:
4140208599Srdivacky  case X86::CMP64ri8:
4141193323Sed  case X86::CMP32ri:
4142208599Srdivacky  case X86::CMP32ri8:
4143193323Sed  case X86::CMP16ri:
4144208599Srdivacky  case X86::CMP16ri8:
4145193323Sed  case X86::CMP8ri: {
4146193323Sed    MachineOperand &MO0 = DataMI->getOperand(0);
4147193323Sed    MachineOperand &MO1 = DataMI->getOperand(1);
4148193323Sed    if (MO1.getImm() == 0) {
4149243830Sdim      unsigned NewOpc;
4150193323Sed      switch (DataMI->getOpcode()) {
4151243830Sdim      default: llvm_unreachable("Unreachable!");
4152208599Srdivacky      case X86::CMP64ri8:
4153193323Sed      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
4154208599Srdivacky      case X86::CMP32ri8:
4155193323Sed      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
4156208599Srdivacky      case X86::CMP16ri8:
4157193323Sed      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
4158193323Sed      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
4159193323Sed      }
4160193323Sed      DataMI->setDesc(get(NewOpc));
4161193323Sed      MO1.ChangeToRegister(MO0.getReg(), false);
4162193323Sed    }
4163193323Sed  }
4164193323Sed  }
4165193323Sed  NewMIs.push_back(DataMI);
4166193323Sed
4167193323Sed  // Emit the store instruction.
4168193323Sed  if (UnfoldStore) {
4169239462Sdim    const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
4170198090Srdivacky    std::pair<MachineInstr::mmo_iterator,
4171198090Srdivacky              MachineInstr::mmo_iterator> MMOs =
4172198090Srdivacky      MF.extractStoreMemRefs(MI->memoperands_begin(),
4173198090Srdivacky                             MI->memoperands_end());
4174198090Srdivacky    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
4175193323Sed  }
4176193323Sed
4177193323Sed  return true;
4178193323Sed}
4179193323Sed
4180193323Sedbool
4181193323SedX86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
4182193323Sed                                  SmallVectorImpl<SDNode*> &NewNodes) const {
4183193323Sed  if (!N->isMachineOpcode())
4184193323Sed    return false;
4185193323Sed
4186218893Sdim  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
4187218893Sdim    MemOp2RegOpTable.find(N->getMachineOpcode());
4188193323Sed  if (I == MemOp2RegOpTable.end())
4189193323Sed    return false;
4190193323Sed  unsigned Opc = I->second.first;
4191226633Sdim  unsigned Index = I->second.second & TB_INDEX_MASK;
4192226633Sdim  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
4193226633Sdim  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
4194224145Sdim  const MCInstrDesc &MCID = get(Opc);
4195239462Sdim  MachineFunction &MF = DAG.getMachineFunction();
4196239462Sdim  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
4197224145Sdim  unsigned NumDefs = MCID.NumDefs;
4198193323Sed  std::vector<SDValue> AddrOps;
4199193323Sed  std::vector<SDValue> BeforeOps;
4200193323Sed  std::vector<SDValue> AfterOps;
4201193323Sed  DebugLoc dl = N->getDebugLoc();
4202193323Sed  unsigned NumOps = N->getNumOperands();
4203193323Sed  for (unsigned i = 0; i != NumOps-1; ++i) {
4204193323Sed    SDValue Op = N->getOperand(i);
4205210299Sed    if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
4206193323Sed      AddrOps.push_back(Op);
4207193323Sed    else if (i < Index-NumDefs)
4208193323Sed      BeforeOps.push_back(Op);
4209193323Sed    else if (i > Index-NumDefs)
4210193323Sed      AfterOps.push_back(Op);
4211193323Sed  }
4212193323Sed  SDValue Chain = N->getOperand(NumOps-1);
4213193323Sed  AddrOps.push_back(Chain);
4214193323Sed
4215193323Sed  // Emit the load instruction.
4216193323Sed  SDNode *Load = 0;
4217193323Sed  if (FoldedLoad) {
4218198090Srdivacky    EVT VT = *RC->vt_begin();
4219199481Srdivacky    std::pair<MachineInstr::mmo_iterator,
4220199481Srdivacky              MachineInstr::mmo_iterator> MMOs =
4221199481Srdivacky      MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
4222199481Srdivacky                            cast<MachineSDNode>(N)->memoperands_end());
4223210299Sed    if (!(*MMOs.first) &&
4224210299Sed        RC == &X86::VR128RegClass &&
4225210299Sed        !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
4226210299Sed      // Do not introduce a slow unaligned load.
4227210299Sed      return false;
4228226633Sdim    unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
4229226633Sdim    bool isAligned = (*MMOs.first) &&
4230226633Sdim                     (*MMOs.first)->getAlignment() >= Alignment;
4231198090Srdivacky    Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
4232198090Srdivacky                              VT, MVT::Other, &AddrOps[0], AddrOps.size());
4233193323Sed    NewNodes.push_back(Load);
4234198090Srdivacky
4235198090Srdivacky    // Preserve memory reference information.
4236198090Srdivacky    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
4237193323Sed  }
4238193323Sed
4239193323Sed  // Emit the data processing instruction.
4240198090Srdivacky  std::vector<EVT> VTs;
4241193323Sed  const TargetRegisterClass *DstRC = 0;
4242224145Sdim  if (MCID.getNumDefs() > 0) {
4243239462Sdim    DstRC = getRegClass(MCID, 0, &RI, MF);
4244193323Sed    VTs.push_back(*DstRC->vt_begin());
4245193323Sed  }
4246193323Sed  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
4247198090Srdivacky    EVT VT = N->getValueType(i);
4248224145Sdim    if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
4249193323Sed      VTs.push_back(VT);
4250193323Sed  }
4251193323Sed  if (Load)
4252193323Sed    BeforeOps.push_back(SDValue(Load, 0));
4253193323Sed  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
4254198090Srdivacky  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
4255198090Srdivacky                                      BeforeOps.size());
4256193323Sed  NewNodes.push_back(NewNode);
4257193323Sed
4258193323Sed  // Emit the store instruction.
4259193323Sed  if (FoldedStore) {
4260193323Sed    AddrOps.pop_back();
4261193323Sed    AddrOps.push_back(SDValue(NewNode, 0));
4262193323Sed    AddrOps.push_back(Chain);
4263199481Srdivacky    std::pair<MachineInstr::mmo_iterator,
4264199481Srdivacky              MachineInstr::mmo_iterator> MMOs =
4265199481Srdivacky      MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
4266199481Srdivacky                             cast<MachineSDNode>(N)->memoperands_end());
4267210299Sed    if (!(*MMOs.first) &&
4268210299Sed        RC == &X86::VR128RegClass &&
4269210299Sed        !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
4270210299Sed      // Do not introduce a slow unaligned store.
4271210299Sed      return false;
4272226633Sdim    unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
4273226633Sdim    bool isAligned = (*MMOs.first) &&
4274226633Sdim                     (*MMOs.first)->getAlignment() >= Alignment;
4275198090Srdivacky    SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
4276198090Srdivacky                                                         isAligned, TM),
4277198090Srdivacky                                       dl, MVT::Other,
4278198090Srdivacky                                       &AddrOps[0], AddrOps.size());
4279193323Sed    NewNodes.push_back(Store);
4280198090Srdivacky
4281198090Srdivacky    // Preserve memory reference information.
4282198090Srdivacky    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
4283193323Sed  }
4284193323Sed
4285193323Sed  return true;
4286193323Sed}
4287193323Sed
4288193323Sedunsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
4289198892Srdivacky                                      bool UnfoldLoad, bool UnfoldStore,
4290198892Srdivacky                                      unsigned *LoadRegIndex) const {
4291218893Sdim  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
4292218893Sdim    MemOp2RegOpTable.find(Opc);
4293193323Sed  if (I == MemOp2RegOpTable.end())
4294193323Sed    return 0;
4295226633Sdim  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
4296226633Sdim  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
4297193323Sed  if (UnfoldLoad && !FoldedLoad)
4298193323Sed    return 0;
4299193323Sed  if (UnfoldStore && !FoldedStore)
4300193323Sed    return 0;
4301198892Srdivacky  if (LoadRegIndex)
4302226633Sdim    *LoadRegIndex = I->second.second & TB_INDEX_MASK;
4303193323Sed  return I->second.first;
4304193323Sed}
4305193323Sed
4306202878Srdivackybool
4307202878SrdivackyX86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
4308202878Srdivacky                                     int64_t &Offset1, int64_t &Offset2) const {
4309202878Srdivacky  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
4310202878Srdivacky    return false;
4311202878Srdivacky  unsigned Opc1 = Load1->getMachineOpcode();
4312202878Srdivacky  unsigned Opc2 = Load2->getMachineOpcode();
4313202878Srdivacky  switch (Opc1) {
4314202878Srdivacky  default: return false;
4315202878Srdivacky  case X86::MOV8rm:
4316202878Srdivacky  case X86::MOV16rm:
4317202878Srdivacky  case X86::MOV32rm:
4318202878Srdivacky  case X86::MOV64rm:
4319202878Srdivacky  case X86::LD_Fp32m:
4320202878Srdivacky  case X86::LD_Fp64m:
4321202878Srdivacky  case X86::LD_Fp80m:
4322202878Srdivacky  case X86::MOVSSrm:
4323202878Srdivacky  case X86::MOVSDrm:
4324202878Srdivacky  case X86::MMX_MOVD64rm:
4325202878Srdivacky  case X86::MMX_MOVQ64rm:
4326202878Srdivacky  case X86::FsMOVAPSrm:
4327202878Srdivacky  case X86::FsMOVAPDrm:
4328202878Srdivacky  case X86::MOVAPSrm:
4329202878Srdivacky  case X86::MOVUPSrm:
4330202878Srdivacky  case X86::MOVAPDrm:
4331202878Srdivacky  case X86::MOVDQArm:
4332202878Srdivacky  case X86::MOVDQUrm:
4333226633Sdim  // AVX load instructions
4334226633Sdim  case X86::VMOVSSrm:
4335226633Sdim  case X86::VMOVSDrm:
4336226633Sdim  case X86::FsVMOVAPSrm:
4337226633Sdim  case X86::FsVMOVAPDrm:
4338226633Sdim  case X86::VMOVAPSrm:
4339226633Sdim  case X86::VMOVUPSrm:
4340226633Sdim  case X86::VMOVAPDrm:
4341226633Sdim  case X86::VMOVDQArm:
4342226633Sdim  case X86::VMOVDQUrm:
4343224145Sdim  case X86::VMOVAPSYrm:
4344224145Sdim  case X86::VMOVUPSYrm:
4345224145Sdim  case X86::VMOVAPDYrm:
4346224145Sdim  case X86::VMOVDQAYrm:
4347224145Sdim  case X86::VMOVDQUYrm:
4348202878Srdivacky    break;
4349202878Srdivacky  }
4350202878Srdivacky  switch (Opc2) {
4351202878Srdivacky  default: return false;
4352202878Srdivacky  case X86::MOV8rm:
4353202878Srdivacky  case X86::MOV16rm:
4354202878Srdivacky  case X86::MOV32rm:
4355202878Srdivacky  case X86::MOV64rm:
4356202878Srdivacky  case X86::LD_Fp32m:
4357202878Srdivacky  case X86::LD_Fp64m:
4358202878Srdivacky  case X86::LD_Fp80m:
4359202878Srdivacky  case X86::MOVSSrm:
4360202878Srdivacky  case X86::MOVSDrm:
4361202878Srdivacky  case X86::MMX_MOVD64rm:
4362202878Srdivacky  case X86::MMX_MOVQ64rm:
4363202878Srdivacky  case X86::FsMOVAPSrm:
4364202878Srdivacky  case X86::FsMOVAPDrm:
4365202878Srdivacky  case X86::MOVAPSrm:
4366202878Srdivacky  case X86::MOVUPSrm:
4367202878Srdivacky  case X86::MOVAPDrm:
4368202878Srdivacky  case X86::MOVDQArm:
4369202878Srdivacky  case X86::MOVDQUrm:
4370226633Sdim  // AVX load instructions
4371226633Sdim  case X86::VMOVSSrm:
4372226633Sdim  case X86::VMOVSDrm:
4373226633Sdim  case X86::FsVMOVAPSrm:
4374226633Sdim  case X86::FsVMOVAPDrm:
4375226633Sdim  case X86::VMOVAPSrm:
4376226633Sdim  case X86::VMOVUPSrm:
4377226633Sdim  case X86::VMOVAPDrm:
4378226633Sdim  case X86::VMOVDQArm:
4379226633Sdim  case X86::VMOVDQUrm:
4380224145Sdim  case X86::VMOVAPSYrm:
4381224145Sdim  case X86::VMOVUPSYrm:
4382224145Sdim  case X86::VMOVAPDYrm:
4383224145Sdim  case X86::VMOVDQAYrm:
4384224145Sdim  case X86::VMOVDQUYrm:
4385202878Srdivacky    break;
4386202878Srdivacky  }
4387202878Srdivacky
4388202878Srdivacky  // Check if chain operands and base addresses match.
4389202878Srdivacky  if (Load1->getOperand(0) != Load2->getOperand(0) ||
4390202878Srdivacky      Load1->getOperand(5) != Load2->getOperand(5))
4391202878Srdivacky    return false;
4392202878Srdivacky  // Segment operands should match as well.
4393202878Srdivacky  if (Load1->getOperand(4) != Load2->getOperand(4))
4394202878Srdivacky    return false;
4395202878Srdivacky  // Scale should be 1, Index should be Reg0.
4396202878Srdivacky  if (Load1->getOperand(1) == Load2->getOperand(1) &&
4397202878Srdivacky      Load1->getOperand(2) == Load2->getOperand(2)) {
4398202878Srdivacky    if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
4399202878Srdivacky      return false;
4400202878Srdivacky
4401202878Srdivacky    // Now let's examine the displacements.
4402202878Srdivacky    if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
4403202878Srdivacky        isa<ConstantSDNode>(Load2->getOperand(3))) {
4404202878Srdivacky      Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
4405202878Srdivacky      Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
4406202878Srdivacky      return true;
4407202878Srdivacky    }
4408202878Srdivacky  }
4409202878Srdivacky  return false;
4410202878Srdivacky}
4411202878Srdivacky
4412202878Srdivackybool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
4413202878Srdivacky                                           int64_t Offset1, int64_t Offset2,
4414202878Srdivacky                                           unsigned NumLoads) const {
4415202878Srdivacky  assert(Offset2 > Offset1);
4416202878Srdivacky  if ((Offset2 - Offset1) / 8 > 64)
4417202878Srdivacky    return false;
4418202878Srdivacky
4419202878Srdivacky  unsigned Opc1 = Load1->getMachineOpcode();
4420202878Srdivacky  unsigned Opc2 = Load2->getMachineOpcode();
4421202878Srdivacky  if (Opc1 != Opc2)
4422202878Srdivacky    return false;  // FIXME: overly conservative?
4423202878Srdivacky
4424202878Srdivacky  switch (Opc1) {
4425202878Srdivacky  default: break;
4426202878Srdivacky  case X86::LD_Fp32m:
4427202878Srdivacky  case X86::LD_Fp64m:
4428202878Srdivacky  case X86::LD_Fp80m:
4429202878Srdivacky  case X86::MMX_MOVD64rm:
4430202878Srdivacky  case X86::MMX_MOVQ64rm:
4431202878Srdivacky    return false;
4432202878Srdivacky  }
4433202878Srdivacky
4434202878Srdivacky  EVT VT = Load1->getValueType(0);
4435202878Srdivacky  switch (VT.getSimpleVT().SimpleTy) {
4436210299Sed  default:
4437202878Srdivacky    // XMM registers. In 64-bit mode we can be a bit more aggressive since we
4438202878Srdivacky    // have 16 of them to play with.
4439202878Srdivacky    if (TM.getSubtargetImpl()->is64Bit()) {
4440202878Srdivacky      if (NumLoads >= 3)
4441202878Srdivacky        return false;
4442210299Sed    } else if (NumLoads) {
4443202878Srdivacky      return false;
4444210299Sed    }
4445202878Srdivacky    break;
4446202878Srdivacky  case MVT::i8:
4447202878Srdivacky  case MVT::i16:
4448202878Srdivacky  case MVT::i32:
4449202878Srdivacky  case MVT::i64:
4450202878Srdivacky  case MVT::f32:
4451202878Srdivacky  case MVT::f64:
4452202878Srdivacky    if (NumLoads)
4453202878Srdivacky      return false;
4454210299Sed    break;
4455202878Srdivacky  }
4456202878Srdivacky
4457202878Srdivacky  return true;
4458202878Srdivacky}
4459202878Srdivacky
4460202878Srdivacky
4461193323Sedbool X86InstrInfo::
4462193323SedReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
4463193323Sed  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
4464193323Sed  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
4465193323Sed  if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
4466193323Sed    return true;
4467193323Sed  Cond[0].setImm(GetOppositeBranchCondition(CC));
4468193323Sed  return false;
4469193323Sed}
4470193323Sed
4471193323Sedbool X86InstrInfo::
4472193323SedisSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
4473193323Sed  // FIXME: Return false for x87 stack register classes for now. We can't
4474193323Sed  // allow any loads of these registers before FpGet_ST0_80.
4475193323Sed  return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
4476193323Sed           RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
4477193323Sed}
4478193323Sed
4479193323Sed/// getGlobalBaseReg - Return a virtual register initialized with the
4480193323Sed/// the global base register value. Output instructions required to
4481193323Sed/// initialize the register in the function entry block, if necessary.
4482193323Sed///
4483210299Sed/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
4484210299Sed///
4485193323Sedunsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
4486193323Sed  assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
4487193323Sed         "X86-64 PIC uses RIP relative addressing");
4488193323Sed
4489193323Sed  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
4490193323Sed  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
4491193323Sed  if (GlobalBaseReg != 0)
4492193323Sed    return GlobalBaseReg;
4493193323Sed
4494210299Sed  // Create the register. The code to initialize it is inserted
4495210299Sed  // later, by the CGBR pass (below).
4496193323Sed  MachineRegisterInfo &RegInfo = MF->getRegInfo();
4497239462Sdim  GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
4498193323Sed  X86FI->setGlobalBaseReg(GlobalBaseReg);
4499193323Sed  return GlobalBaseReg;
4500193323Sed}
4501206083Srdivacky
4502206083Srdivacky// These are the replaceable SSE instructions. Some of these have Int variants
4503206083Srdivacky// that we don't include here. We don't want to replace instructions selected
4504206083Srdivacky// by intrinsics.
4505234353Sdimstatic const uint16_t ReplaceableInstrs[][3] = {
4506212904Sdim  //PackedSingle     PackedDouble    PackedInt
4507206083Srdivacky  { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
4508206083Srdivacky  { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
4509206083Srdivacky  { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
4510206083Srdivacky  { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
4511206083Srdivacky  { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
4512206083Srdivacky  { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
4513206083Srdivacky  { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
4514206083Srdivacky  { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
4515206083Srdivacky  { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
4516206083Srdivacky  { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
4517206083Srdivacky  { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
4518206083Srdivacky  { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
4519206083Srdivacky  { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
4520206083Srdivacky  { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
4521212904Sdim  // AVX 128-bit support
4522212904Sdim  { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
4523212904Sdim  { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
4524212904Sdim  { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
4525212904Sdim  { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
4526212904Sdim  { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
4527212904Sdim  { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
4528212904Sdim  { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
4529212904Sdim  { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
4530212904Sdim  { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
4531212904Sdim  { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
4532212904Sdim  { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
4533212904Sdim  { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
4534212904Sdim  { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
4535212904Sdim  { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
4536224145Sdim  // AVX 256-bit support
4537224145Sdim  { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
4538224145Sdim  { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
4539224145Sdim  { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
4540224145Sdim  { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
4541224145Sdim  { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
4542234353Sdim  { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr }
4543206083Srdivacky};
4544206083Srdivacky
4545234353Sdimstatic const uint16_t ReplaceableInstrsAVX2[][3] = {
4546234353Sdim  //PackedSingle       PackedDouble       PackedInt
4547234353Sdim  { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
4548234353Sdim  { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
4549234353Sdim  { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
4550234353Sdim  { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
4551234353Sdim  { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
4552234353Sdim  { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
4553234353Sdim  { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
4554234353Sdim  { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
4555234353Sdim  { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
4556234353Sdim  { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
4557234353Sdim  { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
4558234353Sdim  { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
4559234353Sdim  { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
4560234353Sdim  { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr }
4561234353Sdim};
4562234353Sdim
4563206083Srdivacky// FIXME: Some shuffle and unpack instructions have equivalents in different
4564206083Srdivacky// domains, but they require a bit more work than just switching opcodes.
4565206083Srdivacky
4566234353Sdimstatic const uint16_t *lookup(unsigned opcode, unsigned domain) {
4567206083Srdivacky  for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
4568206083Srdivacky    if (ReplaceableInstrs[i][domain-1] == opcode)
4569206083Srdivacky      return ReplaceableInstrs[i];
4570206083Srdivacky  return 0;
4571206083Srdivacky}
4572206083Srdivacky
4573234353Sdimstatic const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) {
4574234353Sdim  for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
4575234353Sdim    if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
4576234353Sdim      return ReplaceableInstrsAVX2[i];
4577234353Sdim  return 0;
4578234353Sdim}
4579234353Sdim
4580206083Srdivackystd::pair<uint16_t, uint16_t>
4581226633SdimX86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
4582206083Srdivacky  uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
4583234353Sdim  bool hasAVX2 = TM.getSubtarget<X86Subtarget>().hasAVX2();
4584234353Sdim  uint16_t validDomains = 0;
4585234353Sdim  if (domain && lookup(MI->getOpcode(), domain))
4586234353Sdim    validDomains = 0xe;
4587234353Sdim  else if (domain && lookupAVX2(MI->getOpcode(), domain))
4588234353Sdim    validDomains = hasAVX2 ? 0xe : 0x6;
4589234353Sdim  return std::make_pair(domain, validDomains);
4590206083Srdivacky}
4591206083Srdivacky
4592226633Sdimvoid X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
4593206083Srdivacky  assert(Domain>0 && Domain<4 && "Invalid execution domain");
4594206083Srdivacky  uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
4595206083Srdivacky  assert(dom && "Not an SSE instruction");
4596234353Sdim  const uint16_t *table = lookup(MI->getOpcode(), dom);
4597234353Sdim  if (!table) { // try the other table
4598234353Sdim    assert((TM.getSubtarget<X86Subtarget>().hasAVX2() || Domain < 3) &&
4599234353Sdim           "256-bit vector operations only available in AVX2");
4600234353Sdim    table = lookupAVX2(MI->getOpcode(), dom);
4601234353Sdim  }
4602206083Srdivacky  assert(table && "Cannot change domain");
4603206083Srdivacky  MI->setDesc(get(table[Domain-1]));
4604206083Srdivacky}
4605207618Srdivacky
4606207618Srdivacky/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
4607207618Srdivackyvoid X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
4608207618Srdivacky  NopInst.setOpcode(X86::NOOP);
4609207618Srdivacky}
4610207618Srdivacky
4611221345Sdimbool X86InstrInfo::isHighLatencyDef(int opc) const {
4612221345Sdim  switch (opc) {
4613218893Sdim  default: return false;
4614218893Sdim  case X86::DIVSDrm:
4615218893Sdim  case X86::DIVSDrm_Int:
4616218893Sdim  case X86::DIVSDrr:
4617218893Sdim  case X86::DIVSDrr_Int:
4618218893Sdim  case X86::DIVSSrm:
4619218893Sdim  case X86::DIVSSrm_Int:
4620218893Sdim  case X86::DIVSSrr:
4621218893Sdim  case X86::DIVSSrr_Int:
4622218893Sdim  case X86::SQRTPDm:
4623218893Sdim  case X86::SQRTPDm_Int:
4624218893Sdim  case X86::SQRTPDr:
4625218893Sdim  case X86::SQRTPDr_Int:
4626218893Sdim  case X86::SQRTPSm:
4627218893Sdim  case X86::SQRTPSm_Int:
4628218893Sdim  case X86::SQRTPSr:
4629218893Sdim  case X86::SQRTPSr_Int:
4630218893Sdim  case X86::SQRTSDm:
4631218893Sdim  case X86::SQRTSDm_Int:
4632218893Sdim  case X86::SQRTSDr:
4633218893Sdim  case X86::SQRTSDr_Int:
4634218893Sdim  case X86::SQRTSSm:
4635218893Sdim  case X86::SQRTSSm_Int:
4636218893Sdim  case X86::SQRTSSr:
4637218893Sdim  case X86::SQRTSSr_Int:
4638226633Sdim  // AVX instructions with high latency
4639226633Sdim  case X86::VDIVSDrm:
4640226633Sdim  case X86::VDIVSDrm_Int:
4641226633Sdim  case X86::VDIVSDrr:
4642226633Sdim  case X86::VDIVSDrr_Int:
4643226633Sdim  case X86::VDIVSSrm:
4644226633Sdim  case X86::VDIVSSrm_Int:
4645226633Sdim  case X86::VDIVSSrr:
4646226633Sdim  case X86::VDIVSSrr_Int:
4647226633Sdim  case X86::VSQRTPDm:
4648226633Sdim  case X86::VSQRTPDm_Int:
4649226633Sdim  case X86::VSQRTPDr:
4650226633Sdim  case X86::VSQRTPDr_Int:
4651226633Sdim  case X86::VSQRTPSm:
4652226633Sdim  case X86::VSQRTPSm_Int:
4653226633Sdim  case X86::VSQRTPSr:
4654226633Sdim  case X86::VSQRTPSr_Int:
4655226633Sdim  case X86::VSQRTSDm:
4656226633Sdim  case X86::VSQRTSDm_Int:
4657226633Sdim  case X86::VSQRTSDr:
4658226633Sdim  case X86::VSQRTSSm:
4659226633Sdim  case X86::VSQRTSSm_Int:
4660226633Sdim  case X86::VSQRTSSr:
4661218893Sdim    return true;
4662218893Sdim  }
4663218893Sdim}
4664218893Sdim
4665221345Sdimbool X86InstrInfo::
4666221345SdimhasHighOperandLatency(const InstrItineraryData *ItinData,
4667221345Sdim                      const MachineRegisterInfo *MRI,
4668221345Sdim                      const MachineInstr *DefMI, unsigned DefIdx,
4669221345Sdim                      const MachineInstr *UseMI, unsigned UseIdx) const {
4670221345Sdim  return isHighLatencyDef(DefMI->getOpcode());
4671221345Sdim}
4672221345Sdim
4673210299Sednamespace {
4674210299Sed  /// CGBR - Create Global Base Reg pass. This initializes the PIC
4675210299Sed  /// global base register for x86-32.
4676210299Sed  struct CGBR : public MachineFunctionPass {
4677210299Sed    static char ID;
4678212904Sdim    CGBR() : MachineFunctionPass(ID) {}
4679210299Sed
4680210299Sed    virtual bool runOnMachineFunction(MachineFunction &MF) {
4681210299Sed      const X86TargetMachine *TM =
4682210299Sed        static_cast<const X86TargetMachine *>(&MF.getTarget());
4683210299Sed
4684210299Sed      assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
4685210299Sed             "X86-64 PIC uses RIP relative addressing");
4686210299Sed
4687210299Sed      // Only emit a global base reg in PIC mode.
4688210299Sed      if (TM->getRelocationModel() != Reloc::PIC_)
4689210299Sed        return false;
4690210299Sed
4691218893Sdim      X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
4692218893Sdim      unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
4693218893Sdim
4694218893Sdim      // If we didn't need a GlobalBaseReg, don't insert code.
4695218893Sdim      if (GlobalBaseReg == 0)
4696218893Sdim        return false;
4697218893Sdim
4698210299Sed      // Insert the set of GlobalBaseReg into the first MBB of the function
4699210299Sed      MachineBasicBlock &FirstMBB = MF.front();
4700210299Sed      MachineBasicBlock::iterator MBBI = FirstMBB.begin();
4701210299Sed      DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
4702210299Sed      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4703210299Sed      const X86InstrInfo *TII = TM->getInstrInfo();
4704210299Sed
4705210299Sed      unsigned PC;
4706210299Sed      if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
4707239462Sdim        PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
4708210299Sed      else
4709218893Sdim        PC = GlobalBaseReg;
4710218893Sdim
4711210299Sed      // Operand of MovePCtoStack is completely ignored by asm printer. It's
4712210299Sed      // only used in JIT code emission as displacement to pc.
4713210299Sed      BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
4714218893Sdim
4715210299Sed      // If we're using vanilla 'GOT' PIC style, we should use relative addressing
4716210299Sed      // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
4717210299Sed      if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
4718210299Sed        // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
4719210299Sed        BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
4720210299Sed          .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
4721210299Sed                                        X86II::MO_GOT_ABSOLUTE_ADDRESS);
4722210299Sed      }
4723210299Sed
4724210299Sed      return true;
4725210299Sed    }
4726210299Sed
4727210299Sed    virtual const char *getPassName() const {
4728210299Sed      return "X86 PIC Global Base Reg Initialization";
4729210299Sed    }
4730210299Sed
4731210299Sed    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
4732210299Sed      AU.setPreservesCFG();
4733210299Sed      MachineFunctionPass::getAnalysisUsage(AU);
4734210299Sed    }
4735210299Sed  };
4736210299Sed}
4737210299Sed
4738210299Sedchar CGBR::ID = 0;
4739210299SedFunctionPass*
4740210299Sedllvm::createGlobalBaseRegPass() { return new CGBR(); }
4741239462Sdim
4742239462Sdimnamespace {
4743239462Sdim  struct LDTLSCleanup : public MachineFunctionPass {
4744239462Sdim    static char ID;
4745239462Sdim    LDTLSCleanup() : MachineFunctionPass(ID) {}
4746239462Sdim
4747239462Sdim    virtual bool runOnMachineFunction(MachineFunction &MF) {
4748239462Sdim      X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>();
4749239462Sdim      if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
4750239462Sdim        // No point folding accesses if there isn't at least two.
4751239462Sdim        return false;
4752239462Sdim      }
4753239462Sdim
4754239462Sdim      MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
4755239462Sdim      return VisitNode(DT->getRootNode(), 0);
4756239462Sdim    }
4757239462Sdim
4758239462Sdim    // Visit the dominator subtree rooted at Node in pre-order.
4759239462Sdim    // If TLSBaseAddrReg is non-null, then use that to replace any
4760239462Sdim    // TLS_base_addr instructions. Otherwise, create the register
4761239462Sdim    // when the first such instruction is seen, and then use it
4762239462Sdim    // as we encounter more instructions.
4763239462Sdim    bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
4764239462Sdim      MachineBasicBlock *BB = Node->getBlock();
4765239462Sdim      bool Changed = false;
4766239462Sdim
4767239462Sdim      // Traverse the current block.
4768239462Sdim      for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
4769239462Sdim           ++I) {
4770239462Sdim        switch (I->getOpcode()) {
4771239462Sdim          case X86::TLS_base_addr32:
4772239462Sdim          case X86::TLS_base_addr64:
4773239462Sdim            if (TLSBaseAddrReg)
4774239462Sdim              I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg);
4775239462Sdim            else
4776239462Sdim              I = SetRegister(I, &TLSBaseAddrReg);
4777239462Sdim            Changed = true;
4778239462Sdim            break;
4779239462Sdim          default:
4780239462Sdim            break;
4781239462Sdim        }
4782239462Sdim      }
4783239462Sdim
4784239462Sdim      // Visit the children of this block in the dominator tree.
4785239462Sdim      for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
4786239462Sdim           I != E; ++I) {
4787239462Sdim        Changed |= VisitNode(*I, TLSBaseAddrReg);
4788239462Sdim      }
4789239462Sdim
4790239462Sdim      return Changed;
4791239462Sdim    }
4792239462Sdim
4793239462Sdim    // Replace the TLS_base_addr instruction I with a copy from
4794239462Sdim    // TLSBaseAddrReg, returning the new instruction.
4795239462Sdim    MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I,
4796239462Sdim                                         unsigned TLSBaseAddrReg) {
4797239462Sdim      MachineFunction *MF = I->getParent()->getParent();
4798239462Sdim      const X86TargetMachine *TM =
4799239462Sdim          static_cast<const X86TargetMachine *>(&MF->getTarget());
4800239462Sdim      const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
4801239462Sdim      const X86InstrInfo *TII = TM->getInstrInfo();
4802239462Sdim
4803239462Sdim      // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
4804239462Sdim      MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
4805239462Sdim                                   TII->get(TargetOpcode::COPY),
4806239462Sdim                                   is64Bit ? X86::RAX : X86::EAX)
4807239462Sdim                                   .addReg(TLSBaseAddrReg);
4808239462Sdim
4809239462Sdim      // Erase the TLS_base_addr instruction.
4810239462Sdim      I->eraseFromParent();
4811239462Sdim
4812239462Sdim      return Copy;
4813239462Sdim    }
4814239462Sdim
4815239462Sdim    // Create a virtal register in *TLSBaseAddrReg, and populate it by
4816239462Sdim    // inserting a copy instruction after I. Returns the new instruction.
4817239462Sdim    MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
4818239462Sdim      MachineFunction *MF = I->getParent()->getParent();
4819239462Sdim      const X86TargetMachine *TM =
4820239462Sdim          static_cast<const X86TargetMachine *>(&MF->getTarget());
4821239462Sdim      const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
4822239462Sdim      const X86InstrInfo *TII = TM->getInstrInfo();
4823239462Sdim
4824239462Sdim      // Create a virtual register for the TLS base address.
4825239462Sdim      MachineRegisterInfo &RegInfo = MF->getRegInfo();
4826239462Sdim      *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
4827239462Sdim                                                      ? &X86::GR64RegClass
4828239462Sdim                                                      : &X86::GR32RegClass);
4829239462Sdim
4830239462Sdim      // Insert a copy from RAX/EAX to TLSBaseAddrReg.
4831239462Sdim      MachineInstr *Next = I->getNextNode();
4832239462Sdim      MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
4833239462Sdim                                   TII->get(TargetOpcode::COPY),
4834239462Sdim                                   *TLSBaseAddrReg)
4835239462Sdim                                   .addReg(is64Bit ? X86::RAX : X86::EAX);
4836239462Sdim
4837239462Sdim      return Copy;
4838239462Sdim    }
4839239462Sdim
4840239462Sdim    virtual const char *getPassName() const {
4841239462Sdim      return "Local Dynamic TLS Access Clean-up";
4842239462Sdim    }
4843239462Sdim
4844239462Sdim    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
4845239462Sdim      AU.setPreservesCFG();
4846239462Sdim      AU.addRequired<MachineDominatorTree>();
4847239462Sdim      MachineFunctionPass::getAnalysisUsage(AU);
4848239462Sdim    }
4849239462Sdim  };
4850239462Sdim}
4851239462Sdim
4852239462Sdimchar LDTLSCleanup::ID = 0;
4853239462SdimFunctionPass*
4854239462Sdimllvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
4855