X86InstrInfo.cpp revision 224145
1193323Sed//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed// This file contains the X86 implementation of the TargetInstrInfo class.
11193323Sed//
12193323Sed//===----------------------------------------------------------------------===//
13193323Sed
14193323Sed#include "X86InstrInfo.h"
15193323Sed#include "X86.h"
16193323Sed#include "X86InstrBuilder.h"
17193323Sed#include "X86MachineFunctionInfo.h"
18193323Sed#include "X86Subtarget.h"
19193323Sed#include "X86TargetMachine.h"
20193323Sed#include "llvm/DerivedTypes.h"
21198090Srdivacky#include "llvm/LLVMContext.h"
22193323Sed#include "llvm/ADT/STLExtras.h"
23193323Sed#include "llvm/CodeGen/MachineConstantPool.h"
24193323Sed#include "llvm/CodeGen/MachineFrameInfo.h"
25193323Sed#include "llvm/CodeGen/MachineInstrBuilder.h"
26193323Sed#include "llvm/CodeGen/MachineRegisterInfo.h"
27193323Sed#include "llvm/CodeGen/LiveVariables.h"
28199481Srdivacky#include "llvm/CodeGen/PseudoSourceValue.h"
29207618Srdivacky#include "llvm/MC/MCInst.h"
30193323Sed#include "llvm/Support/CommandLine.h"
31202375Srdivacky#include "llvm/Support/Debug.h"
32198090Srdivacky#include "llvm/Support/ErrorHandling.h"
33198090Srdivacky#include "llvm/Support/raw_ostream.h"
34193323Sed#include "llvm/Target/TargetOptions.h"
35198090Srdivacky#include "llvm/MC/MCAsmInfo.h"
36199481Srdivacky#include <limits>
37199481Srdivacky
38224145Sdim#define GET_INSTRINFO_CTOR
39224145Sdim#include "X86GenInstrInfo.inc"
40224145Sdim
41193323Sedusing namespace llvm;
42193323Sed
43198090Srdivackystatic cl::opt<bool>
44198090SrdivackyNoFusing("disable-spill-fusing",
45198090Srdivacky         cl::desc("Disable fusing of spill code into instructions"));
46198090Srdivackystatic cl::opt<bool>
47198090SrdivackyPrintFailedFusing("print-failed-fuse-candidates",
48198090Srdivacky                  cl::desc("Print instructions that the allocator wants to"
49198090Srdivacky                           " fuse, but the X86 backend currently can't"),
50198090Srdivacky                  cl::Hidden);
51198090Srdivackystatic cl::opt<bool>
52198090SrdivackyReMatPICStubLoad("remat-pic-stub-load",
53198090Srdivacky                 cl::desc("Re-materialize load from stub in PIC mode"),
54198090Srdivacky                 cl::init(false), cl::Hidden);
55193323Sed
56193323SedX86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
57224145Sdim  : X86GenInstrInfo((tm.getSubtarget<X86Subtarget>().is64Bit()
58224145Sdim                     ? X86::ADJCALLSTACKDOWN64
59224145Sdim                     : X86::ADJCALLSTACKDOWN32),
60224145Sdim                    (tm.getSubtarget<X86Subtarget>().is64Bit()
61224145Sdim                     ? X86::ADJCALLSTACKUP64
62224145Sdim                     : X86::ADJCALLSTACKUP32)),
63193323Sed    TM(tm), RI(tm, *this) {
64218893Sdim  enum {
65218893Sdim    TB_NOT_REVERSABLE = 1U << 31,
66218893Sdim    TB_FLAGS = TB_NOT_REVERSABLE
67218893Sdim  };
68218893Sdim
69193323Sed  static const unsigned OpTbl2Addr[][2] = {
70193323Sed    { X86::ADC32ri,     X86::ADC32mi },
71193323Sed    { X86::ADC32ri8,    X86::ADC32mi8 },
72193323Sed    { X86::ADC32rr,     X86::ADC32mr },
73193323Sed    { X86::ADC64ri32,   X86::ADC64mi32 },
74193323Sed    { X86::ADC64ri8,    X86::ADC64mi8 },
75193323Sed    { X86::ADC64rr,     X86::ADC64mr },
76193323Sed    { X86::ADD16ri,     X86::ADD16mi },
77193323Sed    { X86::ADD16ri8,    X86::ADD16mi8 },
78218893Sdim    { X86::ADD16ri_DB,  X86::ADD16mi  | TB_NOT_REVERSABLE },
79218893Sdim    { X86::ADD16ri8_DB, X86::ADD16mi8 | TB_NOT_REVERSABLE },
80193323Sed    { X86::ADD16rr,     X86::ADD16mr },
81218893Sdim    { X86::ADD16rr_DB,  X86::ADD16mr | TB_NOT_REVERSABLE },
82193323Sed    { X86::ADD32ri,     X86::ADD32mi },
83193323Sed    { X86::ADD32ri8,    X86::ADD32mi8 },
84218893Sdim    { X86::ADD32ri_DB,  X86::ADD32mi | TB_NOT_REVERSABLE },
85218893Sdim    { X86::ADD32ri8_DB, X86::ADD32mi8 | TB_NOT_REVERSABLE },
86193323Sed    { X86::ADD32rr,     X86::ADD32mr },
87218893Sdim    { X86::ADD32rr_DB,  X86::ADD32mr | TB_NOT_REVERSABLE },
88193323Sed    { X86::ADD64ri32,   X86::ADD64mi32 },
89193323Sed    { X86::ADD64ri8,    X86::ADD64mi8 },
90218893Sdim    { X86::ADD64ri32_DB,X86::ADD64mi32 | TB_NOT_REVERSABLE },
91218893Sdim    { X86::ADD64ri8_DB, X86::ADD64mi8 | TB_NOT_REVERSABLE },
92193323Sed    { X86::ADD64rr,     X86::ADD64mr },
93218893Sdim    { X86::ADD64rr_DB,  X86::ADD64mr | TB_NOT_REVERSABLE },
94193323Sed    { X86::ADD8ri,      X86::ADD8mi },
95193323Sed    { X86::ADD8rr,      X86::ADD8mr },
96193323Sed    { X86::AND16ri,     X86::AND16mi },
97193323Sed    { X86::AND16ri8,    X86::AND16mi8 },
98193323Sed    { X86::AND16rr,     X86::AND16mr },
99193323Sed    { X86::AND32ri,     X86::AND32mi },
100193323Sed    { X86::AND32ri8,    X86::AND32mi8 },
101193323Sed    { X86::AND32rr,     X86::AND32mr },
102193323Sed    { X86::AND64ri32,   X86::AND64mi32 },
103193323Sed    { X86::AND64ri8,    X86::AND64mi8 },
104193323Sed    { X86::AND64rr,     X86::AND64mr },
105193323Sed    { X86::AND8ri,      X86::AND8mi },
106193323Sed    { X86::AND8rr,      X86::AND8mr },
107193323Sed    { X86::DEC16r,      X86::DEC16m },
108193323Sed    { X86::DEC32r,      X86::DEC32m },
109193323Sed    { X86::DEC64_16r,   X86::DEC64_16m },
110193323Sed    { X86::DEC64_32r,   X86::DEC64_32m },
111193323Sed    { X86::DEC64r,      X86::DEC64m },
112193323Sed    { X86::DEC8r,       X86::DEC8m },
113193323Sed    { X86::INC16r,      X86::INC16m },
114193323Sed    { X86::INC32r,      X86::INC32m },
115193323Sed    { X86::INC64_16r,   X86::INC64_16m },
116193323Sed    { X86::INC64_32r,   X86::INC64_32m },
117193323Sed    { X86::INC64r,      X86::INC64m },
118193323Sed    { X86::INC8r,       X86::INC8m },
119193323Sed    { X86::NEG16r,      X86::NEG16m },
120193323Sed    { X86::NEG32r,      X86::NEG32m },
121193323Sed    { X86::NEG64r,      X86::NEG64m },
122193323Sed    { X86::NEG8r,       X86::NEG8m },
123193323Sed    { X86::NOT16r,      X86::NOT16m },
124193323Sed    { X86::NOT32r,      X86::NOT32m },
125193323Sed    { X86::NOT64r,      X86::NOT64m },
126193323Sed    { X86::NOT8r,       X86::NOT8m },
127193323Sed    { X86::OR16ri,      X86::OR16mi },
128193323Sed    { X86::OR16ri8,     X86::OR16mi8 },
129193323Sed    { X86::OR16rr,      X86::OR16mr },
130193323Sed    { X86::OR32ri,      X86::OR32mi },
131193323Sed    { X86::OR32ri8,     X86::OR32mi8 },
132193323Sed    { X86::OR32rr,      X86::OR32mr },
133193323Sed    { X86::OR64ri32,    X86::OR64mi32 },
134193323Sed    { X86::OR64ri8,     X86::OR64mi8 },
135193323Sed    { X86::OR64rr,      X86::OR64mr },
136193323Sed    { X86::OR8ri,       X86::OR8mi },
137193323Sed    { X86::OR8rr,       X86::OR8mr },
138193323Sed    { X86::ROL16r1,     X86::ROL16m1 },
139193323Sed    { X86::ROL16rCL,    X86::ROL16mCL },
140193323Sed    { X86::ROL16ri,     X86::ROL16mi },
141193323Sed    { X86::ROL32r1,     X86::ROL32m1 },
142193323Sed    { X86::ROL32rCL,    X86::ROL32mCL },
143193323Sed    { X86::ROL32ri,     X86::ROL32mi },
144193323Sed    { X86::ROL64r1,     X86::ROL64m1 },
145193323Sed    { X86::ROL64rCL,    X86::ROL64mCL },
146193323Sed    { X86::ROL64ri,     X86::ROL64mi },
147193323Sed    { X86::ROL8r1,      X86::ROL8m1 },
148193323Sed    { X86::ROL8rCL,     X86::ROL8mCL },
149193323Sed    { X86::ROL8ri,      X86::ROL8mi },
150193323Sed    { X86::ROR16r1,     X86::ROR16m1 },
151193323Sed    { X86::ROR16rCL,    X86::ROR16mCL },
152193323Sed    { X86::ROR16ri,     X86::ROR16mi },
153193323Sed    { X86::ROR32r1,     X86::ROR32m1 },
154193323Sed    { X86::ROR32rCL,    X86::ROR32mCL },
155193323Sed    { X86::ROR32ri,     X86::ROR32mi },
156193323Sed    { X86::ROR64r1,     X86::ROR64m1 },
157193323Sed    { X86::ROR64rCL,    X86::ROR64mCL },
158193323Sed    { X86::ROR64ri,     X86::ROR64mi },
159193323Sed    { X86::ROR8r1,      X86::ROR8m1 },
160193323Sed    { X86::ROR8rCL,     X86::ROR8mCL },
161193323Sed    { X86::ROR8ri,      X86::ROR8mi },
162193323Sed    { X86::SAR16r1,     X86::SAR16m1 },
163193323Sed    { X86::SAR16rCL,    X86::SAR16mCL },
164193323Sed    { X86::SAR16ri,     X86::SAR16mi },
165193323Sed    { X86::SAR32r1,     X86::SAR32m1 },
166193323Sed    { X86::SAR32rCL,    X86::SAR32mCL },
167193323Sed    { X86::SAR32ri,     X86::SAR32mi },
168193323Sed    { X86::SAR64r1,     X86::SAR64m1 },
169193323Sed    { X86::SAR64rCL,    X86::SAR64mCL },
170193323Sed    { X86::SAR64ri,     X86::SAR64mi },
171193323Sed    { X86::SAR8r1,      X86::SAR8m1 },
172193323Sed    { X86::SAR8rCL,     X86::SAR8mCL },
173193323Sed    { X86::SAR8ri,      X86::SAR8mi },
174193323Sed    { X86::SBB32ri,     X86::SBB32mi },
175193323Sed    { X86::SBB32ri8,    X86::SBB32mi8 },
176193323Sed    { X86::SBB32rr,     X86::SBB32mr },
177193323Sed    { X86::SBB64ri32,   X86::SBB64mi32 },
178193323Sed    { X86::SBB64ri8,    X86::SBB64mi8 },
179193323Sed    { X86::SBB64rr,     X86::SBB64mr },
180193323Sed    { X86::SHL16rCL,    X86::SHL16mCL },
181193323Sed    { X86::SHL16ri,     X86::SHL16mi },
182193323Sed    { X86::SHL32rCL,    X86::SHL32mCL },
183193323Sed    { X86::SHL32ri,     X86::SHL32mi },
184193323Sed    { X86::SHL64rCL,    X86::SHL64mCL },
185193323Sed    { X86::SHL64ri,     X86::SHL64mi },
186193323Sed    { X86::SHL8rCL,     X86::SHL8mCL },
187193323Sed    { X86::SHL8ri,      X86::SHL8mi },
188193323Sed    { X86::SHLD16rrCL,  X86::SHLD16mrCL },
189193323Sed    { X86::SHLD16rri8,  X86::SHLD16mri8 },
190193323Sed    { X86::SHLD32rrCL,  X86::SHLD32mrCL },
191193323Sed    { X86::SHLD32rri8,  X86::SHLD32mri8 },
192193323Sed    { X86::SHLD64rrCL,  X86::SHLD64mrCL },
193193323Sed    { X86::SHLD64rri8,  X86::SHLD64mri8 },
194193323Sed    { X86::SHR16r1,     X86::SHR16m1 },
195193323Sed    { X86::SHR16rCL,    X86::SHR16mCL },
196193323Sed    { X86::SHR16ri,     X86::SHR16mi },
197193323Sed    { X86::SHR32r1,     X86::SHR32m1 },
198193323Sed    { X86::SHR32rCL,    X86::SHR32mCL },
199193323Sed    { X86::SHR32ri,     X86::SHR32mi },
200193323Sed    { X86::SHR64r1,     X86::SHR64m1 },
201193323Sed    { X86::SHR64rCL,    X86::SHR64mCL },
202193323Sed    { X86::SHR64ri,     X86::SHR64mi },
203193323Sed    { X86::SHR8r1,      X86::SHR8m1 },
204193323Sed    { X86::SHR8rCL,     X86::SHR8mCL },
205193323Sed    { X86::SHR8ri,      X86::SHR8mi },
206193323Sed    { X86::SHRD16rrCL,  X86::SHRD16mrCL },
207193323Sed    { X86::SHRD16rri8,  X86::SHRD16mri8 },
208193323Sed    { X86::SHRD32rrCL,  X86::SHRD32mrCL },
209193323Sed    { X86::SHRD32rri8,  X86::SHRD32mri8 },
210193323Sed    { X86::SHRD64rrCL,  X86::SHRD64mrCL },
211193323Sed    { X86::SHRD64rri8,  X86::SHRD64mri8 },
212193323Sed    { X86::SUB16ri,     X86::SUB16mi },
213193323Sed    { X86::SUB16ri8,    X86::SUB16mi8 },
214193323Sed    { X86::SUB16rr,     X86::SUB16mr },
215193323Sed    { X86::SUB32ri,     X86::SUB32mi },
216193323Sed    { X86::SUB32ri8,    X86::SUB32mi8 },
217193323Sed    { X86::SUB32rr,     X86::SUB32mr },
218193323Sed    { X86::SUB64ri32,   X86::SUB64mi32 },
219193323Sed    { X86::SUB64ri8,    X86::SUB64mi8 },
220193323Sed    { X86::SUB64rr,     X86::SUB64mr },
221193323Sed    { X86::SUB8ri,      X86::SUB8mi },
222193323Sed    { X86::SUB8rr,      X86::SUB8mr },
223193323Sed    { X86::XOR16ri,     X86::XOR16mi },
224193323Sed    { X86::XOR16ri8,    X86::XOR16mi8 },
225193323Sed    { X86::XOR16rr,     X86::XOR16mr },
226193323Sed    { X86::XOR32ri,     X86::XOR32mi },
227193323Sed    { X86::XOR32ri8,    X86::XOR32mi8 },
228193323Sed    { X86::XOR32rr,     X86::XOR32mr },
229193323Sed    { X86::XOR64ri32,   X86::XOR64mi32 },
230193323Sed    { X86::XOR64ri8,    X86::XOR64mi8 },
231193323Sed    { X86::XOR64rr,     X86::XOR64mr },
232193323Sed    { X86::XOR8ri,      X86::XOR8mi },
233193323Sed    { X86::XOR8rr,      X86::XOR8mr }
234193323Sed  };
235193323Sed
236193323Sed  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
237193323Sed    unsigned RegOp = OpTbl2Addr[i][0];
238218893Sdim    unsigned MemOp = OpTbl2Addr[i][1] & ~TB_FLAGS;
239218893Sdim    assert(!RegOp2MemOpTable2Addr.count(RegOp) && "Duplicated entries?");
240218893Sdim    RegOp2MemOpTable2Addr[RegOp] = std::make_pair(MemOp, 0U);
241218893Sdim
242221345Sdim    // If this is not a reversible operation (because there is a many->one)
243218893Sdim    // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
244218893Sdim    if (OpTbl2Addr[i][1] & TB_NOT_REVERSABLE)
245218893Sdim      continue;
246218893Sdim
247198090Srdivacky    // Index 0, folded load and store, no alignment requirement.
248198090Srdivacky    unsigned AuxInfo = 0 | (1 << 4) | (1 << 5);
249218893Sdim
250218893Sdim    assert(!MemOp2RegOpTable.count(MemOp) &&
251218893Sdim            "Duplicated entries in unfolding maps?");
252218893Sdim    MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo);
253193323Sed  }
254193323Sed
255193323Sed  // If the third value is 1, then it's folding either a load or a store.
256198090Srdivacky  static const unsigned OpTbl0[][4] = {
257198090Srdivacky    { X86::BT16ri8,     X86::BT16mi8, 1, 0 },
258198090Srdivacky    { X86::BT32ri8,     X86::BT32mi8, 1, 0 },
259198090Srdivacky    { X86::BT64ri8,     X86::BT64mi8, 1, 0 },
260198090Srdivacky    { X86::CALL32r,     X86::CALL32m, 1, 0 },
261198090Srdivacky    { X86::CALL64r,     X86::CALL64m, 1, 0 },
262212904Sdim    { X86::WINCALL64r,  X86::WINCALL64m, 1, 0 },
263198090Srdivacky    { X86::CMP16ri,     X86::CMP16mi, 1, 0 },
264198090Srdivacky    { X86::CMP16ri8,    X86::CMP16mi8, 1, 0 },
265198090Srdivacky    { X86::CMP16rr,     X86::CMP16mr, 1, 0 },
266198090Srdivacky    { X86::CMP32ri,     X86::CMP32mi, 1, 0 },
267198090Srdivacky    { X86::CMP32ri8,    X86::CMP32mi8, 1, 0 },
268198090Srdivacky    { X86::CMP32rr,     X86::CMP32mr, 1, 0 },
269198090Srdivacky    { X86::CMP64ri32,   X86::CMP64mi32, 1, 0 },
270198090Srdivacky    { X86::CMP64ri8,    X86::CMP64mi8, 1, 0 },
271198090Srdivacky    { X86::CMP64rr,     X86::CMP64mr, 1, 0 },
272198090Srdivacky    { X86::CMP8ri,      X86::CMP8mi, 1, 0 },
273198090Srdivacky    { X86::CMP8rr,      X86::CMP8mr, 1, 0 },
274198090Srdivacky    { X86::DIV16r,      X86::DIV16m, 1, 0 },
275198090Srdivacky    { X86::DIV32r,      X86::DIV32m, 1, 0 },
276198090Srdivacky    { X86::DIV64r,      X86::DIV64m, 1, 0 },
277198090Srdivacky    { X86::DIV8r,       X86::DIV8m, 1, 0 },
278198090Srdivacky    { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 },
279218893Sdim    { X86::FsMOVAPDrr,  X86::MOVSDmr | TB_NOT_REVERSABLE , 0, 0 },
280218893Sdim    { X86::FsMOVAPSrr,  X86::MOVSSmr | TB_NOT_REVERSABLE , 0, 0 },
281198090Srdivacky    { X86::IDIV16r,     X86::IDIV16m, 1, 0 },
282198090Srdivacky    { X86::IDIV32r,     X86::IDIV32m, 1, 0 },
283198090Srdivacky    { X86::IDIV64r,     X86::IDIV64m, 1, 0 },
284198090Srdivacky    { X86::IDIV8r,      X86::IDIV8m, 1, 0 },
285198090Srdivacky    { X86::IMUL16r,     X86::IMUL16m, 1, 0 },
286198090Srdivacky    { X86::IMUL32r,     X86::IMUL32m, 1, 0 },
287198090Srdivacky    { X86::IMUL64r,     X86::IMUL64m, 1, 0 },
288198090Srdivacky    { X86::IMUL8r,      X86::IMUL8m, 1, 0 },
289198090Srdivacky    { X86::JMP32r,      X86::JMP32m, 1, 0 },
290198090Srdivacky    { X86::JMP64r,      X86::JMP64m, 1, 0 },
291198090Srdivacky    { X86::MOV16ri,     X86::MOV16mi, 0, 0 },
292198090Srdivacky    { X86::MOV16rr,     X86::MOV16mr, 0, 0 },
293198090Srdivacky    { X86::MOV32ri,     X86::MOV32mi, 0, 0 },
294198090Srdivacky    { X86::MOV32rr,     X86::MOV32mr, 0, 0 },
295198090Srdivacky    { X86::MOV64ri32,   X86::MOV64mi32, 0, 0 },
296198090Srdivacky    { X86::MOV64rr,     X86::MOV64mr, 0, 0 },
297198090Srdivacky    { X86::MOV8ri,      X86::MOV8mi, 0, 0 },
298198090Srdivacky    { X86::MOV8rr,      X86::MOV8mr, 0, 0 },
299198090Srdivacky    { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 },
300198090Srdivacky    { X86::MOVAPDrr,    X86::MOVAPDmr, 0, 16 },
301198090Srdivacky    { X86::MOVAPSrr,    X86::MOVAPSmr, 0, 16 },
302198090Srdivacky    { X86::MOVDQArr,    X86::MOVDQAmr, 0, 16 },
303224145Sdim    { X86::VMOVAPDYrr,  X86::VMOVAPDYmr, 0, 32 },
304224145Sdim    { X86::VMOVAPSYrr,  X86::VMOVAPSYmr, 0, 32 },
305224145Sdim    { X86::VMOVDQAYrr,  X86::VMOVDQAYmr, 0, 32 },
306198090Srdivacky    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 },
307198090Srdivacky    { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 },
308198090Srdivacky    { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 },
309198090Srdivacky    { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0, 0 },
310198090Srdivacky    { X86::MOVUPDrr,    X86::MOVUPDmr, 0, 0 },
311198090Srdivacky    { X86::MOVUPSrr,    X86::MOVUPSmr, 0, 0 },
312224145Sdim    { X86::VMOVUPDYrr,  X86::VMOVUPDYmr, 0, 0 },
313224145Sdim    { X86::VMOVUPSYrr,  X86::VMOVUPSYmr, 0, 0 },
314198090Srdivacky    { X86::MUL16r,      X86::MUL16m, 1, 0 },
315198090Srdivacky    { X86::MUL32r,      X86::MUL32m, 1, 0 },
316198090Srdivacky    { X86::MUL64r,      X86::MUL64m, 1, 0 },
317198090Srdivacky    { X86::MUL8r,       X86::MUL8m, 1, 0 },
318198090Srdivacky    { X86::SETAEr,      X86::SETAEm, 0, 0 },
319198090Srdivacky    { X86::SETAr,       X86::SETAm, 0, 0 },
320198090Srdivacky    { X86::SETBEr,      X86::SETBEm, 0, 0 },
321198090Srdivacky    { X86::SETBr,       X86::SETBm, 0, 0 },
322198090Srdivacky    { X86::SETEr,       X86::SETEm, 0, 0 },
323198090Srdivacky    { X86::SETGEr,      X86::SETGEm, 0, 0 },
324198090Srdivacky    { X86::SETGr,       X86::SETGm, 0, 0 },
325198090Srdivacky    { X86::SETLEr,      X86::SETLEm, 0, 0 },
326198090Srdivacky    { X86::SETLr,       X86::SETLm, 0, 0 },
327198090Srdivacky    { X86::SETNEr,      X86::SETNEm, 0, 0 },
328198090Srdivacky    { X86::SETNOr,      X86::SETNOm, 0, 0 },
329198090Srdivacky    { X86::SETNPr,      X86::SETNPm, 0, 0 },
330198090Srdivacky    { X86::SETNSr,      X86::SETNSm, 0, 0 },
331198090Srdivacky    { X86::SETOr,       X86::SETOm, 0, 0 },
332198090Srdivacky    { X86::SETPr,       X86::SETPm, 0, 0 },
333198090Srdivacky    { X86::SETSr,       X86::SETSm, 0, 0 },
334198090Srdivacky    { X86::TAILJMPr,    X86::TAILJMPm, 1, 0 },
335205218Srdivacky    { X86::TAILJMPr64,  X86::TAILJMPm64, 1, 0 },
336198090Srdivacky    { X86::TEST16ri,    X86::TEST16mi, 1, 0 },
337198090Srdivacky    { X86::TEST32ri,    X86::TEST32mi, 1, 0 },
338198090Srdivacky    { X86::TEST64ri32,  X86::TEST64mi32, 1, 0 },
339198090Srdivacky    { X86::TEST8ri,     X86::TEST8mi, 1, 0 }
340193323Sed  };
341193323Sed
342193323Sed  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
343218893Sdim    unsigned RegOp      = OpTbl0[i][0];
344218893Sdim    unsigned MemOp      = OpTbl0[i][1] & ~TB_FLAGS;
345193323Sed    unsigned FoldedLoad = OpTbl0[i][2];
346218893Sdim    unsigned Align      = OpTbl0[i][3];
347218893Sdim    assert(!RegOp2MemOpTable0.count(RegOp) && "Duplicated entries?");
348218893Sdim    RegOp2MemOpTable0[RegOp] = std::make_pair(MemOp, Align);
349218893Sdim
350221345Sdim    // If this is not a reversible operation (because there is a many->one)
351218893Sdim    // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
352218893Sdim    if (OpTbl0[i][1] & TB_NOT_REVERSABLE)
353218893Sdim      continue;
354218893Sdim
355193323Sed    // Index 0, folded load or store.
356193323Sed    unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
357218893Sdim    assert(!MemOp2RegOpTable.count(MemOp) && "Duplicated entries?");
358218893Sdim    MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo);
359193323Sed  }
360193323Sed
361198090Srdivacky  static const unsigned OpTbl1[][3] = {
362198090Srdivacky    { X86::CMP16rr,         X86::CMP16rm, 0 },
363198090Srdivacky    { X86::CMP32rr,         X86::CMP32rm, 0 },
364198090Srdivacky    { X86::CMP64rr,         X86::CMP64rm, 0 },
365198090Srdivacky    { X86::CMP8rr,          X86::CMP8rm, 0 },
366198090Srdivacky    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm, 0 },
367198090Srdivacky    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm, 0 },
368198090Srdivacky    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm, 0 },
369198090Srdivacky    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm, 0 },
370198090Srdivacky    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm, 0 },
371198090Srdivacky    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm, 0 },
372198090Srdivacky    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm, 0 },
373198090Srdivacky    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm, 0 },
374198090Srdivacky    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm, 0 },
375198090Srdivacky    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm, 0 },
376218893Sdim    { X86::FsMOVAPDrr,      X86::MOVSDrm | TB_NOT_REVERSABLE , 0 },
377218893Sdim    { X86::FsMOVAPSrr,      X86::MOVSSrm | TB_NOT_REVERSABLE , 0 },
378198090Srdivacky    { X86::IMUL16rri,       X86::IMUL16rmi, 0 },
379198090Srdivacky    { X86::IMUL16rri8,      X86::IMUL16rmi8, 0 },
380198090Srdivacky    { X86::IMUL32rri,       X86::IMUL32rmi, 0 },
381198090Srdivacky    { X86::IMUL32rri8,      X86::IMUL32rmi8, 0 },
382198090Srdivacky    { X86::IMUL64rri32,     X86::IMUL64rmi32, 0 },
383198090Srdivacky    { X86::IMUL64rri8,      X86::IMUL64rmi8, 0 },
384198090Srdivacky    { X86::Int_COMISDrr,    X86::Int_COMISDrm, 0 },
385198090Srdivacky    { X86::Int_COMISSrr,    X86::Int_COMISSrm, 0 },
386198090Srdivacky    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm, 16 },
387198090Srdivacky    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm, 16 },
388198090Srdivacky    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm, 16 },
389198090Srdivacky    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm, 16 },
390198090Srdivacky    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm, 16 },
391198090Srdivacky    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm, 0 },
392218893Sdim    { X86::CVTSD2SI64rr,    X86::CVTSD2SI64rm, 0 },
393218893Sdim    { X86::CVTSD2SIrr,      X86::CVTSD2SIrm, 0 },
394198090Srdivacky    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm, 0 },
395198090Srdivacky    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
396198090Srdivacky    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm, 0 },
397198090Srdivacky    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
398198090Srdivacky    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm, 0 },
399198090Srdivacky    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm, 0 },
400198090Srdivacky    { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 },
401198090Srdivacky    { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm, 0 },
402218893Sdim    { X86::CVTTPD2DQrr,     X86::CVTTPD2DQrm, 16 },
403218893Sdim    { X86::CVTTPS2DQrr,     X86::CVTTPS2DQrm, 16 },
404198090Srdivacky    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
405198090Srdivacky    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
406198090Srdivacky    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
407198090Srdivacky    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
408198090Srdivacky    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm, 0 },
409198090Srdivacky    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm, 0 },
410198090Srdivacky    { X86::MOV16rr,         X86::MOV16rm, 0 },
411198090Srdivacky    { X86::MOV32rr,         X86::MOV32rm, 0 },
412198090Srdivacky    { X86::MOV64rr,         X86::MOV64rm, 0 },
413198090Srdivacky    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm, 0 },
414198090Srdivacky    { X86::MOV64toSDrr,     X86::MOV64toSDrm, 0 },
415198090Srdivacky    { X86::MOV8rr,          X86::MOV8rm, 0 },
416198090Srdivacky    { X86::MOVAPDrr,        X86::MOVAPDrm, 16 },
417198090Srdivacky    { X86::MOVAPSrr,        X86::MOVAPSrm, 16 },
418224145Sdim    { X86::VMOVAPDYrr,      X86::VMOVAPDYrm, 32 },
419224145Sdim    { X86::VMOVAPSYrr,      X86::VMOVAPSYrm, 32 },
420198090Srdivacky    { X86::MOVDDUPrr,       X86::MOVDDUPrm, 0 },
421198090Srdivacky    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm, 0 },
422198090Srdivacky    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm, 0 },
423198090Srdivacky    { X86::MOVDQArr,        X86::MOVDQArm, 16 },
424224145Sdim    { X86::VMOVDQAYrr,      X86::VMOVDQAYrm, 16 },
425198090Srdivacky    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm, 16 },
426198090Srdivacky    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm, 16 },
427198090Srdivacky    { X86::MOVSX16rr8,      X86::MOVSX16rm8, 0 },
428198090Srdivacky    { X86::MOVSX32rr16,     X86::MOVSX32rm16, 0 },
429198090Srdivacky    { X86::MOVSX32rr8,      X86::MOVSX32rm8, 0 },
430198090Srdivacky    { X86::MOVSX64rr16,     X86::MOVSX64rm16, 0 },
431198090Srdivacky    { X86::MOVSX64rr32,     X86::MOVSX64rm32, 0 },
432198090Srdivacky    { X86::MOVSX64rr8,      X86::MOVSX64rm8, 0 },
433198090Srdivacky    { X86::MOVUPDrr,        X86::MOVUPDrm, 16 },
434202878Srdivacky    { X86::MOVUPSrr,        X86::MOVUPSrm, 0 },
435224145Sdim    { X86::VMOVUPDYrr,      X86::VMOVUPDYrm, 0 },
436224145Sdim    { X86::VMOVUPSYrr,      X86::VMOVUPSYrm, 0 },
437198090Srdivacky    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm, 0 },
438198090Srdivacky    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm, 0 },
439198090Srdivacky    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 },
440198090Srdivacky    { X86::MOVZX16rr8,      X86::MOVZX16rm8, 0 },
441198090Srdivacky    { X86::MOVZX32rr16,     X86::MOVZX32rm16, 0 },
442198090Srdivacky    { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
443198090Srdivacky    { X86::MOVZX32rr8,      X86::MOVZX32rm8, 0 },
444198090Srdivacky    { X86::MOVZX64rr16,     X86::MOVZX64rm16, 0 },
445198090Srdivacky    { X86::MOVZX64rr32,     X86::MOVZX64rm32, 0 },
446198090Srdivacky    { X86::MOVZX64rr8,      X86::MOVZX64rm8, 0 },
447198090Srdivacky    { X86::PSHUFDri,        X86::PSHUFDmi, 16 },
448198090Srdivacky    { X86::PSHUFHWri,       X86::PSHUFHWmi, 16 },
449198090Srdivacky    { X86::PSHUFLWri,       X86::PSHUFLWmi, 16 },
450198090Srdivacky    { X86::RCPPSr,          X86::RCPPSm, 16 },
451198090Srdivacky    { X86::RCPPSr_Int,      X86::RCPPSm_Int, 16 },
452198090Srdivacky    { X86::RSQRTPSr,        X86::RSQRTPSm, 16 },
453198090Srdivacky    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int, 16 },
454198090Srdivacky    { X86::RSQRTSSr,        X86::RSQRTSSm, 0 },
455198090Srdivacky    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int, 0 },
456198090Srdivacky    { X86::SQRTPDr,         X86::SQRTPDm, 16 },
457198090Srdivacky    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int, 16 },
458198090Srdivacky    { X86::SQRTPSr,         X86::SQRTPSm, 16 },
459198090Srdivacky    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int, 16 },
460198090Srdivacky    { X86::SQRTSDr,         X86::SQRTSDm, 0 },
461198090Srdivacky    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int, 0 },
462198090Srdivacky    { X86::SQRTSSr,         X86::SQRTSSm, 0 },
463198090Srdivacky    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int, 0 },
464198090Srdivacky    { X86::TEST16rr,        X86::TEST16rm, 0 },
465198090Srdivacky    { X86::TEST32rr,        X86::TEST32rm, 0 },
466198090Srdivacky    { X86::TEST64rr,        X86::TEST64rm, 0 },
467198090Srdivacky    { X86::TEST8rr,         X86::TEST8rm, 0 },
468193323Sed    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
469198090Srdivacky    { X86::UCOMISDrr,       X86::UCOMISDrm, 0 },
470198090Srdivacky    { X86::UCOMISSrr,       X86::UCOMISSrm, 0 }
471193323Sed  };
472193323Sed
473193323Sed  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
474193323Sed    unsigned RegOp = OpTbl1[i][0];
475218893Sdim    unsigned MemOp = OpTbl1[i][1] & ~TB_FLAGS;
476198090Srdivacky    unsigned Align = OpTbl1[i][2];
477218893Sdim    assert(!RegOp2MemOpTable1.count(RegOp) && "Duplicate entries");
478218893Sdim    RegOp2MemOpTable1[RegOp] = std::make_pair(MemOp, Align);
479218893Sdim
480221345Sdim    // If this is not a reversible operation (because there is a many->one)
481218893Sdim    // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
482218893Sdim    if (OpTbl1[i][1] & TB_NOT_REVERSABLE)
483218893Sdim      continue;
484218893Sdim
485198090Srdivacky    // Index 1, folded load
486198090Srdivacky    unsigned AuxInfo = 1 | (1 << 4);
487218893Sdim    assert(!MemOp2RegOpTable.count(MemOp) && "Duplicate entries");
488218893Sdim    MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo);
489193323Sed  }
490193323Sed
491198090Srdivacky  static const unsigned OpTbl2[][3] = {
492198090Srdivacky    { X86::ADC32rr,         X86::ADC32rm, 0 },
493198090Srdivacky    { X86::ADC64rr,         X86::ADC64rm, 0 },
494198090Srdivacky    { X86::ADD16rr,         X86::ADD16rm, 0 },
495218893Sdim    { X86::ADD16rr_DB,      X86::ADD16rm | TB_NOT_REVERSABLE, 0 },
496198090Srdivacky    { X86::ADD32rr,         X86::ADD32rm, 0 },
497218893Sdim    { X86::ADD32rr_DB,      X86::ADD32rm | TB_NOT_REVERSABLE, 0 },
498198090Srdivacky    { X86::ADD64rr,         X86::ADD64rm, 0 },
499218893Sdim    { X86::ADD64rr_DB,      X86::ADD64rm | TB_NOT_REVERSABLE, 0 },
500198090Srdivacky    { X86::ADD8rr,          X86::ADD8rm, 0 },
501198090Srdivacky    { X86::ADDPDrr,         X86::ADDPDrm, 16 },
502198090Srdivacky    { X86::ADDPSrr,         X86::ADDPSrm, 16 },
503198090Srdivacky    { X86::ADDSDrr,         X86::ADDSDrm, 0 },
504198090Srdivacky    { X86::ADDSSrr,         X86::ADDSSrm, 0 },
505198090Srdivacky    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm, 16 },
506198090Srdivacky    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm, 16 },
507198090Srdivacky    { X86::AND16rr,         X86::AND16rm, 0 },
508198090Srdivacky    { X86::AND32rr,         X86::AND32rm, 0 },
509198090Srdivacky    { X86::AND64rr,         X86::AND64rm, 0 },
510198090Srdivacky    { X86::AND8rr,          X86::AND8rm, 0 },
511198090Srdivacky    { X86::ANDNPDrr,        X86::ANDNPDrm, 16 },
512198090Srdivacky    { X86::ANDNPSrr,        X86::ANDNPSrm, 16 },
513198090Srdivacky    { X86::ANDPDrr,         X86::ANDPDrm, 16 },
514198090Srdivacky    { X86::ANDPSrr,         X86::ANDPSrm, 16 },
515198090Srdivacky    { X86::CMOVA16rr,       X86::CMOVA16rm, 0 },
516198090Srdivacky    { X86::CMOVA32rr,       X86::CMOVA32rm, 0 },
517198090Srdivacky    { X86::CMOVA64rr,       X86::CMOVA64rm, 0 },
518198090Srdivacky    { X86::CMOVAE16rr,      X86::CMOVAE16rm, 0 },
519198090Srdivacky    { X86::CMOVAE32rr,      X86::CMOVAE32rm, 0 },
520198090Srdivacky    { X86::CMOVAE64rr,      X86::CMOVAE64rm, 0 },
521198090Srdivacky    { X86::CMOVB16rr,       X86::CMOVB16rm, 0 },
522198090Srdivacky    { X86::CMOVB32rr,       X86::CMOVB32rm, 0 },
523198090Srdivacky    { X86::CMOVB64rr,       X86::CMOVB64rm, 0 },
524198090Srdivacky    { X86::CMOVBE16rr,      X86::CMOVBE16rm, 0 },
525198090Srdivacky    { X86::CMOVBE32rr,      X86::CMOVBE32rm, 0 },
526198090Srdivacky    { X86::CMOVBE64rr,      X86::CMOVBE64rm, 0 },
527198090Srdivacky    { X86::CMOVE16rr,       X86::CMOVE16rm, 0 },
528198090Srdivacky    { X86::CMOVE32rr,       X86::CMOVE32rm, 0 },
529198090Srdivacky    { X86::CMOVE64rr,       X86::CMOVE64rm, 0 },
530198090Srdivacky    { X86::CMOVG16rr,       X86::CMOVG16rm, 0 },
531198090Srdivacky    { X86::CMOVG32rr,       X86::CMOVG32rm, 0 },
532198090Srdivacky    { X86::CMOVG64rr,       X86::CMOVG64rm, 0 },
533198090Srdivacky    { X86::CMOVGE16rr,      X86::CMOVGE16rm, 0 },
534198090Srdivacky    { X86::CMOVGE32rr,      X86::CMOVGE32rm, 0 },
535198090Srdivacky    { X86::CMOVGE64rr,      X86::CMOVGE64rm, 0 },
536198090Srdivacky    { X86::CMOVL16rr,       X86::CMOVL16rm, 0 },
537198090Srdivacky    { X86::CMOVL32rr,       X86::CMOVL32rm, 0 },
538198090Srdivacky    { X86::CMOVL64rr,       X86::CMOVL64rm, 0 },
539198090Srdivacky    { X86::CMOVLE16rr,      X86::CMOVLE16rm, 0 },
540198090Srdivacky    { X86::CMOVLE32rr,      X86::CMOVLE32rm, 0 },
541198090Srdivacky    { X86::CMOVLE64rr,      X86::CMOVLE64rm, 0 },
542198090Srdivacky    { X86::CMOVNE16rr,      X86::CMOVNE16rm, 0 },
543198090Srdivacky    { X86::CMOVNE32rr,      X86::CMOVNE32rm, 0 },
544198090Srdivacky    { X86::CMOVNE64rr,      X86::CMOVNE64rm, 0 },
545198090Srdivacky    { X86::CMOVNO16rr,      X86::CMOVNO16rm, 0 },
546198090Srdivacky    { X86::CMOVNO32rr,      X86::CMOVNO32rm, 0 },
547198090Srdivacky    { X86::CMOVNO64rr,      X86::CMOVNO64rm, 0 },
548198090Srdivacky    { X86::CMOVNP16rr,      X86::CMOVNP16rm, 0 },
549198090Srdivacky    { X86::CMOVNP32rr,      X86::CMOVNP32rm, 0 },
550198090Srdivacky    { X86::CMOVNP64rr,      X86::CMOVNP64rm, 0 },
551198090Srdivacky    { X86::CMOVNS16rr,      X86::CMOVNS16rm, 0 },
552198090Srdivacky    { X86::CMOVNS32rr,      X86::CMOVNS32rm, 0 },
553198090Srdivacky    { X86::CMOVNS64rr,      X86::CMOVNS64rm, 0 },
554198090Srdivacky    { X86::CMOVO16rr,       X86::CMOVO16rm, 0 },
555198090Srdivacky    { X86::CMOVO32rr,       X86::CMOVO32rm, 0 },
556198090Srdivacky    { X86::CMOVO64rr,       X86::CMOVO64rm, 0 },
557198090Srdivacky    { X86::CMOVP16rr,       X86::CMOVP16rm, 0 },
558198090Srdivacky    { X86::CMOVP32rr,       X86::CMOVP32rm, 0 },
559198090Srdivacky    { X86::CMOVP64rr,       X86::CMOVP64rm, 0 },
560198090Srdivacky    { X86::CMOVS16rr,       X86::CMOVS16rm, 0 },
561198090Srdivacky    { X86::CMOVS32rr,       X86::CMOVS32rm, 0 },
562198090Srdivacky    { X86::CMOVS64rr,       X86::CMOVS64rm, 0 },
563198090Srdivacky    { X86::CMPPDrri,        X86::CMPPDrmi, 16 },
564198090Srdivacky    { X86::CMPPSrri,        X86::CMPPSrmi, 16 },
565198090Srdivacky    { X86::CMPSDrr,         X86::CMPSDrm, 0 },
566198090Srdivacky    { X86::CMPSSrr,         X86::CMPSSrm, 0 },
567198090Srdivacky    { X86::DIVPDrr,         X86::DIVPDrm, 16 },
568198090Srdivacky    { X86::DIVPSrr,         X86::DIVPSrm, 16 },
569198090Srdivacky    { X86::DIVSDrr,         X86::DIVSDrm, 0 },
570198090Srdivacky    { X86::DIVSSrr,         X86::DIVSSrm, 0 },
571198090Srdivacky    { X86::FsANDNPDrr,      X86::FsANDNPDrm, 16 },
572198090Srdivacky    { X86::FsANDNPSrr,      X86::FsANDNPSrm, 16 },
573198090Srdivacky    { X86::FsANDPDrr,       X86::FsANDPDrm, 16 },
574198090Srdivacky    { X86::FsANDPSrr,       X86::FsANDPSrm, 16 },
575198090Srdivacky    { X86::FsORPDrr,        X86::FsORPDrm, 16 },
576198090Srdivacky    { X86::FsORPSrr,        X86::FsORPSrm, 16 },
577198090Srdivacky    { X86::FsXORPDrr,       X86::FsXORPDrm, 16 },
578198090Srdivacky    { X86::FsXORPSrr,       X86::FsXORPSrm, 16 },
579198090Srdivacky    { X86::HADDPDrr,        X86::HADDPDrm, 16 },
580198090Srdivacky    { X86::HADDPSrr,        X86::HADDPSrm, 16 },
581198090Srdivacky    { X86::HSUBPDrr,        X86::HSUBPDrm, 16 },
582198090Srdivacky    { X86::HSUBPSrr,        X86::HSUBPSrm, 16 },
583198090Srdivacky    { X86::IMUL16rr,        X86::IMUL16rm, 0 },
584198090Srdivacky    { X86::IMUL32rr,        X86::IMUL32rm, 0 },
585198090Srdivacky    { X86::IMUL64rr,        X86::IMUL64rm, 0 },
586219077Sdim    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm, 0 },
587219077Sdim    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm, 0 },
588198090Srdivacky    { X86::MAXPDrr,         X86::MAXPDrm, 16 },
589198090Srdivacky    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int, 16 },
590198090Srdivacky    { X86::MAXPSrr,         X86::MAXPSrm, 16 },
591198090Srdivacky    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int, 16 },
592198090Srdivacky    { X86::MAXSDrr,         X86::MAXSDrm, 0 },
593198090Srdivacky    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int, 0 },
594198090Srdivacky    { X86::MAXSSrr,         X86::MAXSSrm, 0 },
595198090Srdivacky    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int, 0 },
596198090Srdivacky    { X86::MINPDrr,         X86::MINPDrm, 16 },
597198090Srdivacky    { X86::MINPDrr_Int,     X86::MINPDrm_Int, 16 },
598198090Srdivacky    { X86::MINPSrr,         X86::MINPSrm, 16 },
599198090Srdivacky    { X86::MINPSrr_Int,     X86::MINPSrm_Int, 16 },
600198090Srdivacky    { X86::MINSDrr,         X86::MINSDrm, 0 },
601198090Srdivacky    { X86::MINSDrr_Int,     X86::MINSDrm_Int, 0 },
602198090Srdivacky    { X86::MINSSrr,         X86::MINSSrm, 0 },
603198090Srdivacky    { X86::MINSSrr_Int,     X86::MINSSrm_Int, 0 },
604198090Srdivacky    { X86::MULPDrr,         X86::MULPDrm, 16 },
605198090Srdivacky    { X86::MULPSrr,         X86::MULPSrm, 16 },
606198090Srdivacky    { X86::MULSDrr,         X86::MULSDrm, 0 },
607198090Srdivacky    { X86::MULSSrr,         X86::MULSSrm, 0 },
608198090Srdivacky    { X86::OR16rr,          X86::OR16rm, 0 },
609198090Srdivacky    { X86::OR32rr,          X86::OR32rm, 0 },
610198090Srdivacky    { X86::OR64rr,          X86::OR64rm, 0 },
611198090Srdivacky    { X86::OR8rr,           X86::OR8rm, 0 },
612198090Srdivacky    { X86::ORPDrr,          X86::ORPDrm, 16 },
613198090Srdivacky    { X86::ORPSrr,          X86::ORPSrm, 16 },
614198090Srdivacky    { X86::PACKSSDWrr,      X86::PACKSSDWrm, 16 },
615198090Srdivacky    { X86::PACKSSWBrr,      X86::PACKSSWBrm, 16 },
616198090Srdivacky    { X86::PACKUSWBrr,      X86::PACKUSWBrm, 16 },
617198090Srdivacky    { X86::PADDBrr,         X86::PADDBrm, 16 },
618198090Srdivacky    { X86::PADDDrr,         X86::PADDDrm, 16 },
619198090Srdivacky    { X86::PADDQrr,         X86::PADDQrm, 16 },
620198090Srdivacky    { X86::PADDSBrr,        X86::PADDSBrm, 16 },
621198090Srdivacky    { X86::PADDSWrr,        X86::PADDSWrm, 16 },
622198090Srdivacky    { X86::PADDWrr,         X86::PADDWrm, 16 },
623198090Srdivacky    { X86::PANDNrr,         X86::PANDNrm, 16 },
624198090Srdivacky    { X86::PANDrr,          X86::PANDrm, 16 },
625198090Srdivacky    { X86::PAVGBrr,         X86::PAVGBrm, 16 },
626198090Srdivacky    { X86::PAVGWrr,         X86::PAVGWrm, 16 },
627198090Srdivacky    { X86::PCMPEQBrr,       X86::PCMPEQBrm, 16 },
628198090Srdivacky    { X86::PCMPEQDrr,       X86::PCMPEQDrm, 16 },
629198090Srdivacky    { X86::PCMPEQWrr,       X86::PCMPEQWrm, 16 },
630198090Srdivacky    { X86::PCMPGTBrr,       X86::PCMPGTBrm, 16 },
631198090Srdivacky    { X86::PCMPGTDrr,       X86::PCMPGTDrm, 16 },
632198090Srdivacky    { X86::PCMPGTWrr,       X86::PCMPGTWrm, 16 },
633198090Srdivacky    { X86::PINSRWrri,       X86::PINSRWrmi, 16 },
634198090Srdivacky    { X86::PMADDWDrr,       X86::PMADDWDrm, 16 },
635198090Srdivacky    { X86::PMAXSWrr,        X86::PMAXSWrm, 16 },
636198090Srdivacky    { X86::PMAXUBrr,        X86::PMAXUBrm, 16 },
637198090Srdivacky    { X86::PMINSWrr,        X86::PMINSWrm, 16 },
638198090Srdivacky    { X86::PMINUBrr,        X86::PMINUBrm, 16 },
639198090Srdivacky    { X86::PMULDQrr,        X86::PMULDQrm, 16 },
640198090Srdivacky    { X86::PMULHUWrr,       X86::PMULHUWrm, 16 },
641198090Srdivacky    { X86::PMULHWrr,        X86::PMULHWrm, 16 },
642198090Srdivacky    { X86::PMULLDrr,        X86::PMULLDrm, 16 },
643198090Srdivacky    { X86::PMULLWrr,        X86::PMULLWrm, 16 },
644198090Srdivacky    { X86::PMULUDQrr,       X86::PMULUDQrm, 16 },
645198090Srdivacky    { X86::PORrr,           X86::PORrm, 16 },
646198090Srdivacky    { X86::PSADBWrr,        X86::PSADBWrm, 16 },
647198090Srdivacky    { X86::PSLLDrr,         X86::PSLLDrm, 16 },
648198090Srdivacky    { X86::PSLLQrr,         X86::PSLLQrm, 16 },
649198090Srdivacky    { X86::PSLLWrr,         X86::PSLLWrm, 16 },
650198090Srdivacky    { X86::PSRADrr,         X86::PSRADrm, 16 },
651198090Srdivacky    { X86::PSRAWrr,         X86::PSRAWrm, 16 },
652198090Srdivacky    { X86::PSRLDrr,         X86::PSRLDrm, 16 },
653198090Srdivacky    { X86::PSRLQrr,         X86::PSRLQrm, 16 },
654198090Srdivacky    { X86::PSRLWrr,         X86::PSRLWrm, 16 },
655198090Srdivacky    { X86::PSUBBrr,         X86::PSUBBrm, 16 },
656198090Srdivacky    { X86::PSUBDrr,         X86::PSUBDrm, 16 },
657198090Srdivacky    { X86::PSUBSBrr,        X86::PSUBSBrm, 16 },
658198090Srdivacky    { X86::PSUBSWrr,        X86::PSUBSWrm, 16 },
659198090Srdivacky    { X86::PSUBWrr,         X86::PSUBWrm, 16 },
660198090Srdivacky    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm, 16 },
661198090Srdivacky    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm, 16 },
662198090Srdivacky    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm, 16 },
663198090Srdivacky    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm, 16 },
664198090Srdivacky    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm, 16 },
665198090Srdivacky    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm, 16 },
666198090Srdivacky    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm, 16 },
667198090Srdivacky    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm, 16 },
668198090Srdivacky    { X86::PXORrr,          X86::PXORrm, 16 },
669198090Srdivacky    { X86::SBB32rr,         X86::SBB32rm, 0 },
670198090Srdivacky    { X86::SBB64rr,         X86::SBB64rm, 0 },
671198090Srdivacky    { X86::SHUFPDrri,       X86::SHUFPDrmi, 16 },
672198090Srdivacky    { X86::SHUFPSrri,       X86::SHUFPSrmi, 16 },
673198090Srdivacky    { X86::SUB16rr,         X86::SUB16rm, 0 },
674198090Srdivacky    { X86::SUB32rr,         X86::SUB32rm, 0 },
675198090Srdivacky    { X86::SUB64rr,         X86::SUB64rm, 0 },
676198090Srdivacky    { X86::SUB8rr,          X86::SUB8rm, 0 },
677198090Srdivacky    { X86::SUBPDrr,         X86::SUBPDrm, 16 },
678198090Srdivacky    { X86::SUBPSrr,         X86::SUBPSrm, 16 },
679198090Srdivacky    { X86::SUBSDrr,         X86::SUBSDrm, 0 },
680198090Srdivacky    { X86::SUBSSrr,         X86::SUBSSrm, 0 },
681193323Sed    // FIXME: TEST*rr -> swapped operand of TEST*mr.
682198090Srdivacky    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm, 16 },
683198090Srdivacky    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm, 16 },
684198090Srdivacky    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm, 16 },
685198090Srdivacky    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm, 16 },
686198090Srdivacky    { X86::XOR16rr,         X86::XOR16rm, 0 },
687198090Srdivacky    { X86::XOR32rr,         X86::XOR32rm, 0 },
688198090Srdivacky    { X86::XOR64rr,         X86::XOR64rm, 0 },
689198090Srdivacky    { X86::XOR8rr,          X86::XOR8rm, 0 },
690198090Srdivacky    { X86::XORPDrr,         X86::XORPDrm, 16 },
691198090Srdivacky    { X86::XORPSrr,         X86::XORPSrm, 16 }
692193323Sed  };
693193323Sed
694193323Sed  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
695193323Sed    unsigned RegOp = OpTbl2[i][0];
696218893Sdim    unsigned MemOp = OpTbl2[i][1] & ~TB_FLAGS;
697198090Srdivacky    unsigned Align = OpTbl2[i][2];
698218893Sdim
699218893Sdim    assert(!RegOp2MemOpTable2.count(RegOp) && "Duplicate entry!");
700218893Sdim    RegOp2MemOpTable2[RegOp] = std::make_pair(MemOp, Align);
701218893Sdim
702221345Sdim    // If this is not a reversible operation (because there is a many->one)
703218893Sdim    // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
704218893Sdim    if (OpTbl2[i][1] & TB_NOT_REVERSABLE)
705218893Sdim      continue;
706218893Sdim
707198090Srdivacky    // Index 2, folded load
708198090Srdivacky    unsigned AuxInfo = 2 | (1 << 4);
709218893Sdim    assert(!MemOp2RegOpTable.count(MemOp) &&
710218893Sdim           "Duplicated entries in unfolding maps?");
711218893Sdim    MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo);
712193323Sed  }
713193323Sed}
714193323Sed
715202375Srdivackybool
716202375SrdivackyX86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
717202375Srdivacky                                    unsigned &SrcReg, unsigned &DstReg,
718202375Srdivacky                                    unsigned &SubIdx) const {
719202375Srdivacky  switch (MI.getOpcode()) {
720202375Srdivacky  default: break;
721202375Srdivacky  case X86::MOVSX16rr8:
722202375Srdivacky  case X86::MOVZX16rr8:
723202375Srdivacky  case X86::MOVSX32rr8:
724202375Srdivacky  case X86::MOVZX32rr8:
725202375Srdivacky  case X86::MOVSX64rr8:
726202375Srdivacky  case X86::MOVZX64rr8:
727202375Srdivacky    if (!TM.getSubtarget<X86Subtarget>().is64Bit())
728202375Srdivacky      // It's not always legal to reference the low 8-bit of the larger
729202375Srdivacky      // register in 32-bit mode.
730202375Srdivacky      return false;
731202375Srdivacky  case X86::MOVSX32rr16:
732202375Srdivacky  case X86::MOVZX32rr16:
733202375Srdivacky  case X86::MOVSX64rr16:
734202375Srdivacky  case X86::MOVZX64rr16:
735202375Srdivacky  case X86::MOVSX64rr32:
736202375Srdivacky  case X86::MOVZX64rr32: {
737202375Srdivacky    if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
738202375Srdivacky      // Be conservative.
739202375Srdivacky      return false;
740202375Srdivacky    SrcReg = MI.getOperand(1).getReg();
741202375Srdivacky    DstReg = MI.getOperand(0).getReg();
742202375Srdivacky    switch (MI.getOpcode()) {
743202375Srdivacky    default:
744202375Srdivacky      llvm_unreachable(0);
745202375Srdivacky      break;
746202375Srdivacky    case X86::MOVSX16rr8:
747202375Srdivacky    case X86::MOVZX16rr8:
748202375Srdivacky    case X86::MOVSX32rr8:
749202375Srdivacky    case X86::MOVZX32rr8:
750202375Srdivacky    case X86::MOVSX64rr8:
751202375Srdivacky    case X86::MOVZX64rr8:
752208599Srdivacky      SubIdx = X86::sub_8bit;
753202375Srdivacky      break;
754202375Srdivacky    case X86::MOVSX32rr16:
755202375Srdivacky    case X86::MOVZX32rr16:
756202375Srdivacky    case X86::MOVSX64rr16:
757202375Srdivacky    case X86::MOVZX64rr16:
758208599Srdivacky      SubIdx = X86::sub_16bit;
759202375Srdivacky      break;
760202375Srdivacky    case X86::MOVSX64rr32:
761202375Srdivacky    case X86::MOVZX64rr32:
762208599Srdivacky      SubIdx = X86::sub_32bit;
763202375Srdivacky      break;
764202375Srdivacky    }
765202375Srdivacky    return true;
766202375Srdivacky  }
767202375Srdivacky  }
768202375Srdivacky  return false;
769202375Srdivacky}
770202375Srdivacky
771199481Srdivacky/// isFrameOperand - Return true and the FrameIndex if the specified
772199481Srdivacky/// operand and follow operands form a reference to the stack frame.
773199481Srdivackybool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
774199481Srdivacky                                  int &FrameIndex) const {
775199481Srdivacky  if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
776199481Srdivacky      MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
777199481Srdivacky      MI->getOperand(Op+1).getImm() == 1 &&
778199481Srdivacky      MI->getOperand(Op+2).getReg() == 0 &&
779199481Srdivacky      MI->getOperand(Op+3).getImm() == 0) {
780199481Srdivacky    FrameIndex = MI->getOperand(Op).getIndex();
781199481Srdivacky    return true;
782199481Srdivacky  }
783199481Srdivacky  return false;
784199481Srdivacky}
785199481Srdivacky
786199481Srdivackystatic bool isFrameLoadOpcode(int Opcode) {
787199481Srdivacky  switch (Opcode) {
788193323Sed  default: break;
789193323Sed  case X86::MOV8rm:
790193323Sed  case X86::MOV16rm:
791193323Sed  case X86::MOV32rm:
792193323Sed  case X86::MOV64rm:
793193323Sed  case X86::LD_Fp64m:
794193323Sed  case X86::MOVSSrm:
795193323Sed  case X86::MOVSDrm:
796193323Sed  case X86::MOVAPSrm:
797193323Sed  case X86::MOVAPDrm:
798193323Sed  case X86::MOVDQArm:
799224145Sdim  case X86::VMOVAPSYrm:
800224145Sdim  case X86::VMOVAPDYrm:
801224145Sdim  case X86::VMOVDQAYrm:
802193323Sed  case X86::MMX_MOVD64rm:
803193323Sed  case X86::MMX_MOVQ64rm:
804199481Srdivacky    return true;
805193323Sed    break;
806193323Sed  }
807199481Srdivacky  return false;
808193323Sed}
809193323Sed
810199481Srdivackystatic bool isFrameStoreOpcode(int Opcode) {
811199481Srdivacky  switch (Opcode) {
812193323Sed  default: break;
813193323Sed  case X86::MOV8mr:
814193323Sed  case X86::MOV16mr:
815193323Sed  case X86::MOV32mr:
816193323Sed  case X86::MOV64mr:
817193323Sed  case X86::ST_FpP64m:
818193323Sed  case X86::MOVSSmr:
819193323Sed  case X86::MOVSDmr:
820193323Sed  case X86::MOVAPSmr:
821193323Sed  case X86::MOVAPDmr:
822193323Sed  case X86::MOVDQAmr:
823224145Sdim  case X86::VMOVAPSYmr:
824224145Sdim  case X86::VMOVAPDYmr:
825224145Sdim  case X86::VMOVDQAYmr:
826193323Sed  case X86::MMX_MOVD64mr:
827193323Sed  case X86::MMX_MOVQ64mr:
828193323Sed  case X86::MMX_MOVNTQmr:
829199481Srdivacky    return true;
830199481Srdivacky  }
831199481Srdivacky  return false;
832199481Srdivacky}
833199481Srdivacky
834218893Sdimunsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
835199481Srdivacky                                           int &FrameIndex) const {
836199481Srdivacky  if (isFrameLoadOpcode(MI->getOpcode()))
837212904Sdim    if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
838199481Srdivacky      return MI->getOperand(0).getReg();
839199481Srdivacky  return 0;
840199481Srdivacky}
841199481Srdivacky
842218893Sdimunsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
843199481Srdivacky                                                 int &FrameIndex) const {
844199481Srdivacky  if (isFrameLoadOpcode(MI->getOpcode())) {
845199481Srdivacky    unsigned Reg;
846199481Srdivacky    if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
847199481Srdivacky      return Reg;
848199481Srdivacky    // Check for post-frame index elimination operations
849200581Srdivacky    const MachineMemOperand *Dummy;
850200581Srdivacky    return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
851199481Srdivacky  }
852199481Srdivacky  return 0;
853199481Srdivacky}
854199481Srdivacky
855199481Srdivackybool X86InstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
856200581Srdivacky                                        const MachineMemOperand *&MMO,
857199481Srdivacky                                        int &FrameIndex) const {
858199481Srdivacky  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
859199481Srdivacky         oe = MI->memoperands_end();
860199481Srdivacky       o != oe;
861199481Srdivacky       ++o) {
862199481Srdivacky    if ((*o)->isLoad() && (*o)->getValue())
863199481Srdivacky      if (const FixedStackPseudoSourceValue *Value =
864199481Srdivacky          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
865199481Srdivacky        FrameIndex = Value->getFrameIndex();
866200581Srdivacky        MMO = *o;
867199481Srdivacky        return true;
868199481Srdivacky      }
869199481Srdivacky  }
870199481Srdivacky  return false;
871199481Srdivacky}
872199481Srdivacky
873199481Srdivackyunsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
874199481Srdivacky                                          int &FrameIndex) const {
875199481Srdivacky  if (isFrameStoreOpcode(MI->getOpcode()))
876212904Sdim    if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
877212904Sdim        isFrameOperand(MI, 0, FrameIndex))
878210299Sed      return MI->getOperand(X86::AddrNumOperands).getReg();
879199481Srdivacky  return 0;
880199481Srdivacky}
881199481Srdivacky
882199481Srdivackyunsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
883199481Srdivacky                                                int &FrameIndex) const {
884199481Srdivacky  if (isFrameStoreOpcode(MI->getOpcode())) {
885199481Srdivacky    unsigned Reg;
886199481Srdivacky    if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
887199481Srdivacky      return Reg;
888199481Srdivacky    // Check for post-frame index elimination operations
889200581Srdivacky    const MachineMemOperand *Dummy;
890200581Srdivacky    return hasStoreToStackSlot(MI, Dummy, FrameIndex);
891193323Sed  }
892193323Sed  return 0;
893193323Sed}
894193323Sed
895199481Srdivackybool X86InstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
896200581Srdivacky                                       const MachineMemOperand *&MMO,
897199481Srdivacky                                       int &FrameIndex) const {
898199481Srdivacky  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
899199481Srdivacky         oe = MI->memoperands_end();
900199481Srdivacky       o != oe;
901199481Srdivacky       ++o) {
902199481Srdivacky    if ((*o)->isStore() && (*o)->getValue())
903199481Srdivacky      if (const FixedStackPseudoSourceValue *Value =
904199481Srdivacky          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
905199481Srdivacky        FrameIndex = Value->getFrameIndex();
906200581Srdivacky        MMO = *o;
907199481Srdivacky        return true;
908199481Srdivacky      }
909199481Srdivacky  }
910199481Srdivacky  return false;
911199481Srdivacky}
912199481Srdivacky
913193323Sed/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
914193323Sed/// X86::MOVPC32r.
915193323Sedstatic bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
916193323Sed  bool isPICBase = false;
917193323Sed  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
918193323Sed         E = MRI.def_end(); I != E; ++I) {
919193323Sed    MachineInstr *DefMI = I.getOperand().getParent();
920193323Sed    if (DefMI->getOpcode() != X86::MOVPC32r)
921193323Sed      return false;
922193323Sed    assert(!isPICBase && "More than one PIC base?");
923193323Sed    isPICBase = true;
924193323Sed  }
925193323Sed  return isPICBase;
926193323Sed}
927193323Sed
928193323Sedbool
929198090SrdivackyX86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
930198090Srdivacky                                                AliasAnalysis *AA) const {
931193323Sed  switch (MI->getOpcode()) {
932193323Sed  default: break;
933193323Sed    case X86::MOV8rm:
934193323Sed    case X86::MOV16rm:
935193323Sed    case X86::MOV32rm:
936193323Sed    case X86::MOV64rm:
937193323Sed    case X86::LD_Fp64m:
938193323Sed    case X86::MOVSSrm:
939193323Sed    case X86::MOVSDrm:
940193323Sed    case X86::MOVAPSrm:
941199481Srdivacky    case X86::MOVUPSrm:
942193323Sed    case X86::MOVAPDrm:
943193323Sed    case X86::MOVDQArm:
944224145Sdim    case X86::VMOVAPSYrm:
945224145Sdim    case X86::VMOVUPSYrm:
946224145Sdim    case X86::VMOVAPDYrm:
947224145Sdim    case X86::VMOVDQAYrm:
948193323Sed    case X86::MMX_MOVD64rm:
949199481Srdivacky    case X86::MMX_MOVQ64rm:
950199481Srdivacky    case X86::FsMOVAPSrm:
951199481Srdivacky    case X86::FsMOVAPDrm: {
952193323Sed      // Loads from constant pools are trivially rematerializable.
953193323Sed      if (MI->getOperand(1).isReg() &&
954193323Sed          MI->getOperand(2).isImm() &&
955193323Sed          MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
956198090Srdivacky          MI->isInvariantLoad(AA)) {
957193323Sed        unsigned BaseReg = MI->getOperand(1).getReg();
958195098Sed        if (BaseReg == 0 || BaseReg == X86::RIP)
959193323Sed          return true;
960193323Sed        // Allow re-materialization of PIC load.
961193323Sed        if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
962193323Sed          return false;
963193323Sed        const MachineFunction &MF = *MI->getParent()->getParent();
964193323Sed        const MachineRegisterInfo &MRI = MF.getRegInfo();
965193323Sed        bool isPICBase = false;
966193323Sed        for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
967193323Sed               E = MRI.def_end(); I != E; ++I) {
968193323Sed          MachineInstr *DefMI = I.getOperand().getParent();
969193323Sed          if (DefMI->getOpcode() != X86::MOVPC32r)
970193323Sed            return false;
971193323Sed          assert(!isPICBase && "More than one PIC base?");
972193323Sed          isPICBase = true;
973193323Sed        }
974193323Sed        return isPICBase;
975218893Sdim      }
976193323Sed      return false;
977193323Sed    }
978218893Sdim
979193323Sed     case X86::LEA32r:
980193323Sed     case X86::LEA64r: {
981193323Sed       if (MI->getOperand(2).isImm() &&
982193323Sed           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
983193323Sed           !MI->getOperand(4).isReg()) {
984193323Sed         // lea fi#, lea GV, etc. are all rematerializable.
985193323Sed         if (!MI->getOperand(1).isReg())
986193323Sed           return true;
987193323Sed         unsigned BaseReg = MI->getOperand(1).getReg();
988193323Sed         if (BaseReg == 0)
989193323Sed           return true;
990193323Sed         // Allow re-materialization of lea PICBase + x.
991193323Sed         const MachineFunction &MF = *MI->getParent()->getParent();
992193323Sed         const MachineRegisterInfo &MRI = MF.getRegInfo();
993193323Sed         return regIsPICBase(BaseReg, MRI);
994193323Sed       }
995193323Sed       return false;
996193323Sed     }
997193323Sed  }
998193323Sed
999193323Sed  // All other instructions marked M_REMATERIALIZABLE are always trivially
1000193323Sed  // rematerializable.
1001193323Sed  return true;
1002193323Sed}
1003193323Sed
1004193323Sed/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
1005193323Sed/// would clobber the EFLAGS condition register. Note the result may be
1006193323Sed/// conservative. If it cannot definitely determine the safety after visiting
1007198090Srdivacky/// a few instructions in each direction it assumes it's not safe.
1008193323Sedstatic bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
1009193323Sed                                  MachineBasicBlock::iterator I) {
1010206083Srdivacky  MachineBasicBlock::iterator E = MBB.end();
1011206083Srdivacky
1012193323Sed  // It's always safe to clobber EFLAGS at the end of a block.
1013206083Srdivacky  if (I == E)
1014193323Sed    return true;
1015193323Sed
1016193323Sed  // For compile time consideration, if we are not able to determine the
1017198090Srdivacky  // safety after visiting 4 instructions in each direction, we will assume
1018198090Srdivacky  // it's not safe.
1019198090Srdivacky  MachineBasicBlock::iterator Iter = I;
1020198090Srdivacky  for (unsigned i = 0; i < 4; ++i) {
1021193323Sed    bool SeenDef = false;
1022198090Srdivacky    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1023198090Srdivacky      MachineOperand &MO = Iter->getOperand(j);
1024193323Sed      if (!MO.isReg())
1025193323Sed        continue;
1026193323Sed      if (MO.getReg() == X86::EFLAGS) {
1027193323Sed        if (MO.isUse())
1028193323Sed          return false;
1029193323Sed        SeenDef = true;
1030193323Sed      }
1031193323Sed    }
1032193323Sed
1033193323Sed    if (SeenDef)
1034193323Sed      // This instruction defines EFLAGS, no need to look any further.
1035193323Sed      return true;
1036198090Srdivacky    ++Iter;
1037206083Srdivacky    // Skip over DBG_VALUE.
1038206083Srdivacky    while (Iter != E && Iter->isDebugValue())
1039206083Srdivacky      ++Iter;
1040193323Sed
1041193323Sed    // If we make it to the end of the block, it's safe to clobber EFLAGS.
1042206083Srdivacky    if (Iter == E)
1043193323Sed      return true;
1044193323Sed  }
1045193323Sed
1046206083Srdivacky  MachineBasicBlock::iterator B = MBB.begin();
1047198090Srdivacky  Iter = I;
1048198090Srdivacky  for (unsigned i = 0; i < 4; ++i) {
1049198090Srdivacky    // If we make it to the beginning of the block, it's safe to clobber
1050198090Srdivacky    // EFLAGS iff EFLAGS is not live-in.
1051206083Srdivacky    if (Iter == B)
1052198090Srdivacky      return !MBB.isLiveIn(X86::EFLAGS);
1053198090Srdivacky
1054198090Srdivacky    --Iter;
1055206083Srdivacky    // Skip over DBG_VALUE.
1056206083Srdivacky    while (Iter != B && Iter->isDebugValue())
1057206083Srdivacky      --Iter;
1058206083Srdivacky
1059198090Srdivacky    bool SawKill = false;
1060198090Srdivacky    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1061198090Srdivacky      MachineOperand &MO = Iter->getOperand(j);
1062198090Srdivacky      if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
1063198090Srdivacky        if (MO.isDef()) return MO.isDead();
1064198090Srdivacky        if (MO.isKill()) SawKill = true;
1065198090Srdivacky      }
1066198090Srdivacky    }
1067198090Srdivacky
1068198090Srdivacky    if (SawKill)
1069198090Srdivacky      // This instruction kills EFLAGS and doesn't redefine it, so
1070198090Srdivacky      // there's no need to look further.
1071198090Srdivacky      return true;
1072198090Srdivacky  }
1073198090Srdivacky
1074193323Sed  // Conservative answer.
1075193323Sed  return false;
1076193323Sed}
1077193323Sed
1078193323Sedvoid X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1079193323Sed                                 MachineBasicBlock::iterator I,
1080198090Srdivacky                                 unsigned DestReg, unsigned SubIdx,
1081199481Srdivacky                                 const MachineInstr *Orig,
1082210299Sed                                 const TargetRegisterInfo &TRI) const {
1083208599Srdivacky  DebugLoc DL = Orig->getDebugLoc();
1084193323Sed
1085193323Sed  // MOV32r0 etc. are implemented with xor which clobbers condition code.
1086193323Sed  // Re-materialize them as movri instructions to avoid side effects.
1087198090Srdivacky  bool Clone = true;
1088198090Srdivacky  unsigned Opc = Orig->getOpcode();
1089198090Srdivacky  switch (Opc) {
1090193323Sed  default: break;
1091193323Sed  case X86::MOV8r0:
1092202375Srdivacky  case X86::MOV16r0:
1093202375Srdivacky  case X86::MOV32r0:
1094202375Srdivacky  case X86::MOV64r0: {
1095193323Sed    if (!isSafeToClobberEFLAGS(MBB, I)) {
1096198090Srdivacky      switch (Opc) {
1097193323Sed      default: break;
1098193323Sed      case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
1099202375Srdivacky      case X86::MOV16r0: Opc = X86::MOV16ri; break;
1100193323Sed      case X86::MOV32r0: Opc = X86::MOV32ri; break;
1101204642Srdivacky      case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
1102193323Sed      }
1103198090Srdivacky      Clone = false;
1104193323Sed    }
1105193323Sed    break;
1106193323Sed  }
1107193323Sed  }
1108193323Sed
1109198090Srdivacky  if (Clone) {
1110193323Sed    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1111193323Sed    MBB.insert(I, MI);
1112198090Srdivacky  } else {
1113210299Sed    BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0);
1114193323Sed  }
1115193323Sed
1116198090Srdivacky  MachineInstr *NewMI = prior(I);
1117210299Sed  NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1118193323Sed}
1119193323Sed
1120193323Sed/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1121193323Sed/// is not marked dead.
1122193323Sedstatic bool hasLiveCondCodeDef(MachineInstr *MI) {
1123193323Sed  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1124193323Sed    MachineOperand &MO = MI->getOperand(i);
1125193323Sed    if (MO.isReg() && MO.isDef() &&
1126193323Sed        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1127193323Sed      return true;
1128193323Sed    }
1129193323Sed  }
1130193323Sed  return false;
1131193323Sed}
1132193323Sed
1133200581Srdivacky/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
1134200581Srdivacky/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1135200581Srdivacky/// to a 32-bit superregister and then truncating back down to a 16-bit
1136200581Srdivacky/// subregister.
1137200581SrdivackyMachineInstr *
1138200581SrdivackyX86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1139200581Srdivacky                                           MachineFunction::iterator &MFI,
1140200581Srdivacky                                           MachineBasicBlock::iterator &MBBI,
1141200581Srdivacky                                           LiveVariables *LV) const {
1142200581Srdivacky  MachineInstr *MI = MBBI;
1143200581Srdivacky  unsigned Dest = MI->getOperand(0).getReg();
1144200581Srdivacky  unsigned Src = MI->getOperand(1).getReg();
1145200581Srdivacky  bool isDead = MI->getOperand(0).isDead();
1146200581Srdivacky  bool isKill = MI->getOperand(1).isKill();
1147200581Srdivacky
1148200581Srdivacky  unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1149200581Srdivacky    ? X86::LEA64_32r : X86::LEA32r;
1150200581Srdivacky  MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1151218893Sdim  unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1152200581Srdivacky  unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1153218893Sdim
1154200581Srdivacky  // Build and insert into an implicit UNDEF value. This is OK because
1155218893Sdim  // well be shifting and then extracting the lower 16-bits.
1156200581Srdivacky  // This has the potential to cause partial register stall. e.g.
1157200581Srdivacky  //   movw    (%rbp,%rcx,2), %dx
1158200581Srdivacky  //   leal    -65(%rdx), %esi
1159200581Srdivacky  // But testing has shown this *does* help performance in 64-bit mode (at
1160200581Srdivacky  // least on modern x86 machines).
1161200581Srdivacky  BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1162200581Srdivacky  MachineInstr *InsMI =
1163210299Sed    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1164210299Sed    .addReg(leaInReg, RegState::Define, X86::sub_16bit)
1165210299Sed    .addReg(Src, getKillRegState(isKill));
1166200581Srdivacky
1167200581Srdivacky  MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
1168200581Srdivacky                                    get(Opc), leaOutReg);
1169200581Srdivacky  switch (MIOpc) {
1170200581Srdivacky  default:
1171200581Srdivacky    llvm_unreachable(0);
1172200581Srdivacky    break;
1173200581Srdivacky  case X86::SHL16ri: {
1174200581Srdivacky    unsigned ShAmt = MI->getOperand(2).getImm();
1175200581Srdivacky    MIB.addReg(0).addImm(1 << ShAmt)
1176210299Sed       .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
1177200581Srdivacky    break;
1178200581Srdivacky  }
1179200581Srdivacky  case X86::INC16r:
1180200581Srdivacky  case X86::INC64_16r:
1181210299Sed    addRegOffset(MIB, leaInReg, true, 1);
1182200581Srdivacky    break;
1183200581Srdivacky  case X86::DEC16r:
1184200581Srdivacky  case X86::DEC64_16r:
1185210299Sed    addRegOffset(MIB, leaInReg, true, -1);
1186200581Srdivacky    break;
1187200581Srdivacky  case X86::ADD16ri:
1188200581Srdivacky  case X86::ADD16ri8:
1189218893Sdim  case X86::ADD16ri_DB:
1190218893Sdim  case X86::ADD16ri8_DB:
1191218893Sdim    addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
1192200581Srdivacky    break;
1193218893Sdim  case X86::ADD16rr:
1194218893Sdim  case X86::ADD16rr_DB: {
1195200581Srdivacky    unsigned Src2 = MI->getOperand(2).getReg();
1196200581Srdivacky    bool isKill2 = MI->getOperand(2).isKill();
1197200581Srdivacky    unsigned leaInReg2 = 0;
1198200581Srdivacky    MachineInstr *InsMI2 = 0;
1199200581Srdivacky    if (Src == Src2) {
1200200581Srdivacky      // ADD16rr %reg1028<kill>, %reg1028
1201200581Srdivacky      // just a single insert_subreg.
1202200581Srdivacky      addRegReg(MIB, leaInReg, true, leaInReg, false);
1203200581Srdivacky    } else {
1204218893Sdim      leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1205200581Srdivacky      // Build and insert into an implicit UNDEF value. This is OK because
1206218893Sdim      // well be shifting and then extracting the lower 16-bits.
1207200581Srdivacky      BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2);
1208200581Srdivacky      InsMI2 =
1209210299Sed        BuildMI(*MFI, MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
1210210299Sed        .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
1211210299Sed        .addReg(Src2, getKillRegState(isKill2));
1212200581Srdivacky      addRegReg(MIB, leaInReg, true, leaInReg2, true);
1213200581Srdivacky    }
1214200581Srdivacky    if (LV && isKill2 && InsMI2)
1215200581Srdivacky      LV->replaceKillInstruction(Src2, MI, InsMI2);
1216200581Srdivacky    break;
1217200581Srdivacky  }
1218200581Srdivacky  }
1219200581Srdivacky
1220200581Srdivacky  MachineInstr *NewMI = MIB;
1221200581Srdivacky  MachineInstr *ExtMI =
1222210299Sed    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1223200581Srdivacky    .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1224210299Sed    .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
1225200581Srdivacky
1226200581Srdivacky  if (LV) {
1227200581Srdivacky    // Update live variables
1228200581Srdivacky    LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1229200581Srdivacky    LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1230200581Srdivacky    if (isKill)
1231200581Srdivacky      LV->replaceKillInstruction(Src, MI, InsMI);
1232200581Srdivacky    if (isDead)
1233200581Srdivacky      LV->replaceKillInstruction(Dest, MI, ExtMI);
1234200581Srdivacky  }
1235200581Srdivacky
1236200581Srdivacky  return ExtMI;
1237200581Srdivacky}
1238200581Srdivacky
1239193323Sed/// convertToThreeAddress - This method must be implemented by targets that
1240193323Sed/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
1241193323Sed/// may be able to convert a two-address instruction into a true
1242193323Sed/// three-address instruction on demand.  This allows the X86 target (for
1243193323Sed/// example) to convert ADD and SHL instructions into LEA instructions if they
1244193323Sed/// would require register copies due to two-addressness.
1245193323Sed///
1246193323Sed/// This method returns a null pointer if the transformation cannot be
1247193323Sed/// performed, otherwise it returns the new instruction.
1248193323Sed///
1249193323SedMachineInstr *
1250193323SedX86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1251193323Sed                                    MachineBasicBlock::iterator &MBBI,
1252193323Sed                                    LiveVariables *LV) const {
1253193323Sed  MachineInstr *MI = MBBI;
1254193323Sed  MachineFunction &MF = *MI->getParent()->getParent();
1255193323Sed  // All instructions input are two-addr instructions.  Get the known operands.
1256193323Sed  unsigned Dest = MI->getOperand(0).getReg();
1257193323Sed  unsigned Src = MI->getOperand(1).getReg();
1258193323Sed  bool isDead = MI->getOperand(0).isDead();
1259193323Sed  bool isKill = MI->getOperand(1).isKill();
1260193323Sed
1261193323Sed  MachineInstr *NewMI = NULL;
1262193323Sed  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
1263193323Sed  // we have better subtarget support, enable the 16-bit LEA generation here.
1264200581Srdivacky  // 16-bit LEA is also slow on Core2.
1265193323Sed  bool DisableLEA16 = true;
1266200581Srdivacky  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1267193323Sed
1268193323Sed  unsigned MIOpc = MI->getOpcode();
1269193323Sed  switch (MIOpc) {
1270193323Sed  case X86::SHUFPSrri: {
1271193323Sed    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1272193323Sed    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1273218893Sdim
1274193323Sed    unsigned B = MI->getOperand(1).getReg();
1275193323Sed    unsigned C = MI->getOperand(2).getReg();
1276193323Sed    if (B != C) return 0;
1277193323Sed    unsigned A = MI->getOperand(0).getReg();
1278193323Sed    unsigned M = MI->getOperand(3).getImm();
1279193323Sed    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1280193323Sed      .addReg(A, RegState::Define | getDeadRegState(isDead))
1281193323Sed      .addReg(B, getKillRegState(isKill)).addImm(M);
1282193323Sed    break;
1283193323Sed  }
1284193323Sed  case X86::SHL64ri: {
1285193323Sed    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1286193323Sed    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1287193323Sed    // the flags produced by a shift yet, so this is safe.
1288193323Sed    unsigned ShAmt = MI->getOperand(2).getImm();
1289193323Sed    if (ShAmt == 0 || ShAmt >= 4) return 0;
1290193323Sed
1291218893Sdim    // LEA can't handle RSP.
1292218893Sdim    if (TargetRegisterInfo::isVirtualRegister(Src) &&
1293218893Sdim        !MF.getRegInfo().constrainRegClass(Src, &X86::GR64_NOSPRegClass))
1294218893Sdim      return 0;
1295218893Sdim
1296193323Sed    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1297193323Sed      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1298193323Sed      .addReg(0).addImm(1 << ShAmt)
1299193323Sed      .addReg(Src, getKillRegState(isKill))
1300210299Sed      .addImm(0).addReg(0);
1301193323Sed    break;
1302193323Sed  }
1303193323Sed  case X86::SHL32ri: {
1304193323Sed    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1305193323Sed    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1306193323Sed    // the flags produced by a shift yet, so this is safe.
1307193323Sed    unsigned ShAmt = MI->getOperand(2).getImm();
1308193323Sed    if (ShAmt == 0 || ShAmt >= 4) return 0;
1309193323Sed
1310218893Sdim    // LEA can't handle ESP.
1311218893Sdim    if (TargetRegisterInfo::isVirtualRegister(Src) &&
1312218893Sdim        !MF.getRegInfo().constrainRegClass(Src, &X86::GR32_NOSPRegClass))
1313218893Sdim      return 0;
1314218893Sdim
1315200581Srdivacky    unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1316193323Sed    NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
1317193323Sed      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1318193323Sed      .addReg(0).addImm(1 << ShAmt)
1319210299Sed      .addReg(Src, getKillRegState(isKill)).addImm(0).addReg(0);
1320193323Sed    break;
1321193323Sed  }
1322193323Sed  case X86::SHL16ri: {
1323193323Sed    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1324193323Sed    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1325193323Sed    // the flags produced by a shift yet, so this is safe.
1326193323Sed    unsigned ShAmt = MI->getOperand(2).getImm();
1327193323Sed    if (ShAmt == 0 || ShAmt >= 4) return 0;
1328193323Sed
1329200581Srdivacky    if (DisableLEA16)
1330200581Srdivacky      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1331200581Srdivacky    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1332200581Srdivacky      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1333200581Srdivacky      .addReg(0).addImm(1 << ShAmt)
1334200581Srdivacky      .addReg(Src, getKillRegState(isKill))
1335210299Sed      .addImm(0).addReg(0);
1336193323Sed    break;
1337193323Sed  }
1338193323Sed  default: {
1339193323Sed    // The following opcodes also sets the condition code register(s). Only
1340193323Sed    // convert them to equivalent lea if the condition code register def's
1341193323Sed    // are dead!
1342193323Sed    if (hasLiveCondCodeDef(MI))
1343193323Sed      return 0;
1344193323Sed
1345193323Sed    switch (MIOpc) {
1346193323Sed    default: return 0;
1347193323Sed    case X86::INC64r:
1348193323Sed    case X86::INC32r:
1349193323Sed    case X86::INC64_32r: {
1350193323Sed      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1351193323Sed      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1352193323Sed        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1353218893Sdim
1354218893Sdim      // LEA can't handle RSP.
1355218893Sdim      if (TargetRegisterInfo::isVirtualRegister(Src) &&
1356218893Sdim          !MF.getRegInfo().constrainRegClass(Src,
1357218893Sdim                            MIOpc == X86::INC64r ? X86::GR64_NOSPRegisterClass :
1358218893Sdim                                                   X86::GR32_NOSPRegisterClass))
1359218893Sdim        return 0;
1360218893Sdim
1361210299Sed      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1362193323Sed                              .addReg(Dest, RegState::Define |
1363193323Sed                                      getDeadRegState(isDead)),
1364193323Sed                              Src, isKill, 1);
1365193323Sed      break;
1366193323Sed    }
1367193323Sed    case X86::INC16r:
1368193323Sed    case X86::INC64_16r:
1369200581Srdivacky      if (DisableLEA16)
1370200581Srdivacky        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1371193323Sed      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1372193323Sed      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1373193323Sed                           .addReg(Dest, RegState::Define |
1374193323Sed                                   getDeadRegState(isDead)),
1375193323Sed                           Src, isKill, 1);
1376193323Sed      break;
1377193323Sed    case X86::DEC64r:
1378193323Sed    case X86::DEC32r:
1379193323Sed    case X86::DEC64_32r: {
1380193323Sed      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1381193323Sed      unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1382193323Sed        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1383218893Sdim      // LEA can't handle RSP.
1384218893Sdim      if (TargetRegisterInfo::isVirtualRegister(Src) &&
1385218893Sdim          !MF.getRegInfo().constrainRegClass(Src,
1386218893Sdim                            MIOpc == X86::DEC64r ? X86::GR64_NOSPRegisterClass :
1387218893Sdim                                                   X86::GR32_NOSPRegisterClass))
1388218893Sdim        return 0;
1389218893Sdim
1390210299Sed      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1391193323Sed                              .addReg(Dest, RegState::Define |
1392193323Sed                                      getDeadRegState(isDead)),
1393193323Sed                              Src, isKill, -1);
1394193323Sed      break;
1395193323Sed    }
1396193323Sed    case X86::DEC16r:
1397193323Sed    case X86::DEC64_16r:
1398200581Srdivacky      if (DisableLEA16)
1399200581Srdivacky        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1400193323Sed      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1401193323Sed      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1402193323Sed                           .addReg(Dest, RegState::Define |
1403193323Sed                                   getDeadRegState(isDead)),
1404193323Sed                           Src, isKill, -1);
1405193323Sed      break;
1406193323Sed    case X86::ADD64rr:
1407218893Sdim    case X86::ADD64rr_DB:
1408218893Sdim    case X86::ADD32rr:
1409218893Sdim    case X86::ADD32rr_DB: {
1410193323Sed      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1411218893Sdim      unsigned Opc;
1412218893Sdim      TargetRegisterClass *RC;
1413218893Sdim      if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) {
1414218893Sdim        Opc = X86::LEA64r;
1415218893Sdim        RC = X86::GR64_NOSPRegisterClass;
1416218893Sdim      } else {
1417218893Sdim        Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1418218893Sdim        RC = X86::GR32_NOSPRegisterClass;
1419218893Sdim      }
1420218893Sdim
1421218893Sdim
1422193323Sed      unsigned Src2 = MI->getOperand(2).getReg();
1423193323Sed      bool isKill2 = MI->getOperand(2).isKill();
1424218893Sdim
1425218893Sdim      // LEA can't handle RSP.
1426218893Sdim      if (TargetRegisterInfo::isVirtualRegister(Src2) &&
1427218893Sdim          !MF.getRegInfo().constrainRegClass(Src2, RC))
1428218893Sdim        return 0;
1429218893Sdim
1430193323Sed      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1431193323Sed                        .addReg(Dest, RegState::Define |
1432193323Sed                                getDeadRegState(isDead)),
1433193323Sed                        Src, isKill, Src2, isKill2);
1434193323Sed      if (LV && isKill2)
1435193323Sed        LV->replaceKillInstruction(Src2, MI, NewMI);
1436193323Sed      break;
1437193323Sed    }
1438218893Sdim    case X86::ADD16rr:
1439218893Sdim    case X86::ADD16rr_DB: {
1440200581Srdivacky      if (DisableLEA16)
1441200581Srdivacky        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1442193323Sed      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1443193323Sed      unsigned Src2 = MI->getOperand(2).getReg();
1444193323Sed      bool isKill2 = MI->getOperand(2).isKill();
1445193323Sed      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1446193323Sed                        .addReg(Dest, RegState::Define |
1447193323Sed                                getDeadRegState(isDead)),
1448193323Sed                        Src, isKill, Src2, isKill2);
1449193323Sed      if (LV && isKill2)
1450193323Sed        LV->replaceKillInstruction(Src2, MI, NewMI);
1451193323Sed      break;
1452193323Sed    }
1453193323Sed    case X86::ADD64ri32:
1454193323Sed    case X86::ADD64ri8:
1455218893Sdim    case X86::ADD64ri32_DB:
1456218893Sdim    case X86::ADD64ri8_DB:
1457193323Sed      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1458210299Sed      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1459200581Srdivacky                              .addReg(Dest, RegState::Define |
1460200581Srdivacky                                      getDeadRegState(isDead)),
1461200581Srdivacky                              Src, isKill, MI->getOperand(2).getImm());
1462193323Sed      break;
1463193323Sed    case X86::ADD32ri:
1464218893Sdim    case X86::ADD32ri8:
1465218893Sdim    case X86::ADD32ri_DB:
1466218893Sdim    case X86::ADD32ri8_DB: {
1467193323Sed      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1468200581Srdivacky      unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1469210299Sed      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1470200581Srdivacky                              .addReg(Dest, RegState::Define |
1471200581Srdivacky                                      getDeadRegState(isDead)),
1472193323Sed                                Src, isKill, MI->getOperand(2).getImm());
1473193323Sed      break;
1474200581Srdivacky    }
1475193323Sed    case X86::ADD16ri:
1476193323Sed    case X86::ADD16ri8:
1477218893Sdim    case X86::ADD16ri_DB:
1478218893Sdim    case X86::ADD16ri8_DB:
1479200581Srdivacky      if (DisableLEA16)
1480200581Srdivacky        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1481193323Sed      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1482210299Sed      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1483200581Srdivacky                              .addReg(Dest, RegState::Define |
1484200581Srdivacky                                      getDeadRegState(isDead)),
1485200581Srdivacky                              Src, isKill, MI->getOperand(2).getImm());
1486193323Sed      break;
1487193323Sed    }
1488193323Sed  }
1489193323Sed  }
1490193323Sed
1491193323Sed  if (!NewMI) return 0;
1492193323Sed
1493193323Sed  if (LV) {  // Update live variables
1494193323Sed    if (isKill)
1495193323Sed      LV->replaceKillInstruction(Src, MI, NewMI);
1496193323Sed    if (isDead)
1497193323Sed      LV->replaceKillInstruction(Dest, MI, NewMI);
1498193323Sed  }
1499193323Sed
1500218893Sdim  MFI->insert(MBBI, NewMI);          // Insert the new inst
1501193323Sed  return NewMI;
1502193323Sed}
1503193323Sed
1504193323Sed/// commuteInstruction - We have a few instructions that must be hacked on to
1505193323Sed/// commute them.
1506193323Sed///
1507193323SedMachineInstr *
1508193323SedX86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1509193323Sed  switch (MI->getOpcode()) {
1510193323Sed  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1511193323Sed  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1512193323Sed  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1513193323Sed  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1514193323Sed  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1515193323Sed  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1516193323Sed    unsigned Opc;
1517193323Sed    unsigned Size;
1518193323Sed    switch (MI->getOpcode()) {
1519198090Srdivacky    default: llvm_unreachable("Unreachable!");
1520193323Sed    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1521193323Sed    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1522193323Sed    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1523193323Sed    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1524193323Sed    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1525193323Sed    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1526193323Sed    }
1527193323Sed    unsigned Amt = MI->getOperand(3).getImm();
1528193323Sed    if (NewMI) {
1529193323Sed      MachineFunction &MF = *MI->getParent()->getParent();
1530193323Sed      MI = MF.CloneMachineInstr(MI);
1531193323Sed      NewMI = false;
1532193323Sed    }
1533193323Sed    MI->setDesc(get(Opc));
1534193323Sed    MI->getOperand(3).setImm(Size-Amt);
1535193323Sed    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1536193323Sed  }
1537193323Sed  case X86::CMOVB16rr:
1538193323Sed  case X86::CMOVB32rr:
1539193323Sed  case X86::CMOVB64rr:
1540193323Sed  case X86::CMOVAE16rr:
1541193323Sed  case X86::CMOVAE32rr:
1542193323Sed  case X86::CMOVAE64rr:
1543193323Sed  case X86::CMOVE16rr:
1544193323Sed  case X86::CMOVE32rr:
1545193323Sed  case X86::CMOVE64rr:
1546193323Sed  case X86::CMOVNE16rr:
1547193323Sed  case X86::CMOVNE32rr:
1548193323Sed  case X86::CMOVNE64rr:
1549193323Sed  case X86::CMOVBE16rr:
1550193323Sed  case X86::CMOVBE32rr:
1551193323Sed  case X86::CMOVBE64rr:
1552193323Sed  case X86::CMOVA16rr:
1553193323Sed  case X86::CMOVA32rr:
1554193323Sed  case X86::CMOVA64rr:
1555193323Sed  case X86::CMOVL16rr:
1556193323Sed  case X86::CMOVL32rr:
1557193323Sed  case X86::CMOVL64rr:
1558193323Sed  case X86::CMOVGE16rr:
1559193323Sed  case X86::CMOVGE32rr:
1560193323Sed  case X86::CMOVGE64rr:
1561193323Sed  case X86::CMOVLE16rr:
1562193323Sed  case X86::CMOVLE32rr:
1563193323Sed  case X86::CMOVLE64rr:
1564193323Sed  case X86::CMOVG16rr:
1565193323Sed  case X86::CMOVG32rr:
1566193323Sed  case X86::CMOVG64rr:
1567193323Sed  case X86::CMOVS16rr:
1568193323Sed  case X86::CMOVS32rr:
1569193323Sed  case X86::CMOVS64rr:
1570193323Sed  case X86::CMOVNS16rr:
1571193323Sed  case X86::CMOVNS32rr:
1572193323Sed  case X86::CMOVNS64rr:
1573193323Sed  case X86::CMOVP16rr:
1574193323Sed  case X86::CMOVP32rr:
1575193323Sed  case X86::CMOVP64rr:
1576193323Sed  case X86::CMOVNP16rr:
1577193323Sed  case X86::CMOVNP32rr:
1578193323Sed  case X86::CMOVNP64rr:
1579193323Sed  case X86::CMOVO16rr:
1580193323Sed  case X86::CMOVO32rr:
1581193323Sed  case X86::CMOVO64rr:
1582193323Sed  case X86::CMOVNO16rr:
1583193323Sed  case X86::CMOVNO32rr:
1584193323Sed  case X86::CMOVNO64rr: {
1585193323Sed    unsigned Opc = 0;
1586193323Sed    switch (MI->getOpcode()) {
1587193323Sed    default: break;
1588193323Sed    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
1589193323Sed    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
1590193323Sed    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
1591193323Sed    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1592193323Sed    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1593193323Sed    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1594193323Sed    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
1595193323Sed    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
1596193323Sed    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
1597193323Sed    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1598193323Sed    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1599193323Sed    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1600193323Sed    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1601193323Sed    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1602193323Sed    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1603193323Sed    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
1604193323Sed    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
1605193323Sed    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
1606193323Sed    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
1607193323Sed    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
1608193323Sed    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
1609193323Sed    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1610193323Sed    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1611193323Sed    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1612193323Sed    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1613193323Sed    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1614193323Sed    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1615193323Sed    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
1616193323Sed    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
1617193323Sed    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
1618193323Sed    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
1619193323Sed    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
1620193323Sed    case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
1621193323Sed    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1622193323Sed    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1623193323Sed    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1624193323Sed    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
1625193323Sed    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
1626193323Sed    case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
1627193323Sed    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1628193323Sed    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1629193323Sed    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1630193323Sed    case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
1631193323Sed    case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
1632193323Sed    case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
1633193323Sed    case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1634193323Sed    case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1635193323Sed    case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
1636193323Sed    }
1637193323Sed    if (NewMI) {
1638193323Sed      MachineFunction &MF = *MI->getParent()->getParent();
1639193323Sed      MI = MF.CloneMachineInstr(MI);
1640193323Sed      NewMI = false;
1641193323Sed    }
1642193323Sed    MI->setDesc(get(Opc));
1643193323Sed    // Fallthrough intended.
1644193323Sed  }
1645193323Sed  default:
1646193323Sed    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1647193323Sed  }
1648193323Sed}
1649193323Sed
1650193323Sedstatic X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1651193323Sed  switch (BrOpc) {
1652193323Sed  default: return X86::COND_INVALID;
1653203954Srdivacky  case X86::JE_4:  return X86::COND_E;
1654203954Srdivacky  case X86::JNE_4: return X86::COND_NE;
1655203954Srdivacky  case X86::JL_4:  return X86::COND_L;
1656203954Srdivacky  case X86::JLE_4: return X86::COND_LE;
1657203954Srdivacky  case X86::JG_4:  return X86::COND_G;
1658203954Srdivacky  case X86::JGE_4: return X86::COND_GE;
1659203954Srdivacky  case X86::JB_4:  return X86::COND_B;
1660203954Srdivacky  case X86::JBE_4: return X86::COND_BE;
1661203954Srdivacky  case X86::JA_4:  return X86::COND_A;
1662203954Srdivacky  case X86::JAE_4: return X86::COND_AE;
1663203954Srdivacky  case X86::JS_4:  return X86::COND_S;
1664203954Srdivacky  case X86::JNS_4: return X86::COND_NS;
1665203954Srdivacky  case X86::JP_4:  return X86::COND_P;
1666203954Srdivacky  case X86::JNP_4: return X86::COND_NP;
1667203954Srdivacky  case X86::JO_4:  return X86::COND_O;
1668203954Srdivacky  case X86::JNO_4: return X86::COND_NO;
1669193323Sed  }
1670193323Sed}
1671193323Sed
1672193323Sedunsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1673193323Sed  switch (CC) {
1674198090Srdivacky  default: llvm_unreachable("Illegal condition code!");
1675203954Srdivacky  case X86::COND_E:  return X86::JE_4;
1676203954Srdivacky  case X86::COND_NE: return X86::JNE_4;
1677203954Srdivacky  case X86::COND_L:  return X86::JL_4;
1678203954Srdivacky  case X86::COND_LE: return X86::JLE_4;
1679203954Srdivacky  case X86::COND_G:  return X86::JG_4;
1680203954Srdivacky  case X86::COND_GE: return X86::JGE_4;
1681203954Srdivacky  case X86::COND_B:  return X86::JB_4;
1682203954Srdivacky  case X86::COND_BE: return X86::JBE_4;
1683203954Srdivacky  case X86::COND_A:  return X86::JA_4;
1684203954Srdivacky  case X86::COND_AE: return X86::JAE_4;
1685203954Srdivacky  case X86::COND_S:  return X86::JS_4;
1686203954Srdivacky  case X86::COND_NS: return X86::JNS_4;
1687203954Srdivacky  case X86::COND_P:  return X86::JP_4;
1688203954Srdivacky  case X86::COND_NP: return X86::JNP_4;
1689203954Srdivacky  case X86::COND_O:  return X86::JO_4;
1690203954Srdivacky  case X86::COND_NO: return X86::JNO_4;
1691193323Sed  }
1692193323Sed}
1693193323Sed
1694193323Sed/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1695193323Sed/// e.g. turning COND_E to COND_NE.
1696193323SedX86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1697193323Sed  switch (CC) {
1698198090Srdivacky  default: llvm_unreachable("Illegal condition code!");
1699193323Sed  case X86::COND_E:  return X86::COND_NE;
1700193323Sed  case X86::COND_NE: return X86::COND_E;
1701193323Sed  case X86::COND_L:  return X86::COND_GE;
1702193323Sed  case X86::COND_LE: return X86::COND_G;
1703193323Sed  case X86::COND_G:  return X86::COND_LE;
1704193323Sed  case X86::COND_GE: return X86::COND_L;
1705193323Sed  case X86::COND_B:  return X86::COND_AE;
1706193323Sed  case X86::COND_BE: return X86::COND_A;
1707193323Sed  case X86::COND_A:  return X86::COND_BE;
1708193323Sed  case X86::COND_AE: return X86::COND_B;
1709193323Sed  case X86::COND_S:  return X86::COND_NS;
1710193323Sed  case X86::COND_NS: return X86::COND_S;
1711193323Sed  case X86::COND_P:  return X86::COND_NP;
1712193323Sed  case X86::COND_NP: return X86::COND_P;
1713193323Sed  case X86::COND_O:  return X86::COND_NO;
1714193323Sed  case X86::COND_NO: return X86::COND_O;
1715193323Sed  }
1716193323Sed}
1717193323Sed
1718193323Sedbool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1719224145Sdim  const MCInstrDesc &MCID = MI->getDesc();
1720224145Sdim  if (!MCID.isTerminator()) return false;
1721218893Sdim
1722193323Sed  // Conditional branch is a special case.
1723224145Sdim  if (MCID.isBranch() && !MCID.isBarrier())
1724193323Sed    return true;
1725224145Sdim  if (!MCID.isPredicable())
1726193323Sed    return true;
1727193323Sed  return !isPredicated(MI);
1728193323Sed}
1729193323Sed
1730218893Sdimbool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1731193323Sed                                 MachineBasicBlock *&TBB,
1732193323Sed                                 MachineBasicBlock *&FBB,
1733193323Sed                                 SmallVectorImpl<MachineOperand> &Cond,
1734193323Sed                                 bool AllowModify) const {
1735193323Sed  // Start from the bottom of the block and work up, examining the
1736193323Sed  // terminator instructions.
1737193323Sed  MachineBasicBlock::iterator I = MBB.end();
1738207618Srdivacky  MachineBasicBlock::iterator UnCondBrIter = MBB.end();
1739193323Sed  while (I != MBB.begin()) {
1740193323Sed    --I;
1741206083Srdivacky    if (I->isDebugValue())
1742206083Srdivacky      continue;
1743200581Srdivacky
1744200581Srdivacky    // Working from the bottom, when we see a non-terminator instruction, we're
1745200581Srdivacky    // done.
1746212904Sdim    if (!isUnpredicatedTerminator(I))
1747193323Sed      break;
1748200581Srdivacky
1749200581Srdivacky    // A terminator that isn't a branch can't easily be handled by this
1750200581Srdivacky    // analysis.
1751193323Sed    if (!I->getDesc().isBranch())
1752193323Sed      return true;
1753200581Srdivacky
1754193323Sed    // Handle unconditional branches.
1755203954Srdivacky    if (I->getOpcode() == X86::JMP_4) {
1756207618Srdivacky      UnCondBrIter = I;
1757207618Srdivacky
1758193323Sed      if (!AllowModify) {
1759193323Sed        TBB = I->getOperand(0).getMBB();
1760193323Sed        continue;
1761193323Sed      }
1762193323Sed
1763193323Sed      // If the block has any instructions after a JMP, delete them.
1764200581Srdivacky      while (llvm::next(I) != MBB.end())
1765200581Srdivacky        llvm::next(I)->eraseFromParent();
1766200581Srdivacky
1767193323Sed      Cond.clear();
1768193323Sed      FBB = 0;
1769200581Srdivacky
1770193323Sed      // Delete the JMP if it's equivalent to a fall-through.
1771193323Sed      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1772193323Sed        TBB = 0;
1773193323Sed        I->eraseFromParent();
1774193323Sed        I = MBB.end();
1775207618Srdivacky        UnCondBrIter = MBB.end();
1776193323Sed        continue;
1777193323Sed      }
1778200581Srdivacky
1779207618Srdivacky      // TBB is used to indicate the unconditional destination.
1780193323Sed      TBB = I->getOperand(0).getMBB();
1781193323Sed      continue;
1782193323Sed    }
1783200581Srdivacky
1784193323Sed    // Handle conditional branches.
1785193323Sed    X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
1786193323Sed    if (BranchCode == X86::COND_INVALID)
1787193323Sed      return true;  // Can't handle indirect branch.
1788200581Srdivacky
1789193323Sed    // Working from the bottom, handle the first conditional branch.
1790193323Sed    if (Cond.empty()) {
1791207618Srdivacky      MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
1792207618Srdivacky      if (AllowModify && UnCondBrIter != MBB.end() &&
1793207618Srdivacky          MBB.isLayoutSuccessor(TargetBB)) {
1794207618Srdivacky        // If we can modify the code and it ends in something like:
1795207618Srdivacky        //
1796207618Srdivacky        //     jCC L1
1797207618Srdivacky        //     jmp L2
1798207618Srdivacky        //   L1:
1799207618Srdivacky        //     ...
1800207618Srdivacky        //   L2:
1801207618Srdivacky        //
1802207618Srdivacky        // Then we can change this to:
1803207618Srdivacky        //
1804207618Srdivacky        //     jnCC L2
1805207618Srdivacky        //   L1:
1806207618Srdivacky        //     ...
1807207618Srdivacky        //   L2:
1808207618Srdivacky        //
1809207618Srdivacky        // Which is a bit more efficient.
1810207618Srdivacky        // We conditionally jump to the fall-through block.
1811207618Srdivacky        BranchCode = GetOppositeBranchCondition(BranchCode);
1812207618Srdivacky        unsigned JNCC = GetCondBranchFromCond(BranchCode);
1813207618Srdivacky        MachineBasicBlock::iterator OldInst = I;
1814207618Srdivacky
1815207618Srdivacky        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
1816207618Srdivacky          .addMBB(UnCondBrIter->getOperand(0).getMBB());
1817207618Srdivacky        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
1818207618Srdivacky          .addMBB(TargetBB);
1819207618Srdivacky
1820207618Srdivacky        OldInst->eraseFromParent();
1821207618Srdivacky        UnCondBrIter->eraseFromParent();
1822207618Srdivacky
1823207618Srdivacky        // Restart the analysis.
1824207618Srdivacky        UnCondBrIter = MBB.end();
1825207618Srdivacky        I = MBB.end();
1826207618Srdivacky        continue;
1827207618Srdivacky      }
1828207618Srdivacky
1829193323Sed      FBB = TBB;
1830193323Sed      TBB = I->getOperand(0).getMBB();
1831193323Sed      Cond.push_back(MachineOperand::CreateImm(BranchCode));
1832193323Sed      continue;
1833193323Sed    }
1834200581Srdivacky
1835200581Srdivacky    // Handle subsequent conditional branches. Only handle the case where all
1836200581Srdivacky    // conditional branches branch to the same destination and their condition
1837200581Srdivacky    // opcodes fit one of the special multi-branch idioms.
1838193323Sed    assert(Cond.size() == 1);
1839193323Sed    assert(TBB);
1840200581Srdivacky
1841200581Srdivacky    // Only handle the case where all conditional branches branch to the same
1842200581Srdivacky    // destination.
1843193323Sed    if (TBB != I->getOperand(0).getMBB())
1844193323Sed      return true;
1845200581Srdivacky
1846200581Srdivacky    // If the conditions are the same, we can leave them alone.
1847193323Sed    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1848193323Sed    if (OldBranchCode == BranchCode)
1849193323Sed      continue;
1850200581Srdivacky
1851200581Srdivacky    // If they differ, see if they fit one of the known patterns. Theoretically,
1852200581Srdivacky    // we could handle more patterns here, but we shouldn't expect to see them
1853200581Srdivacky    // if instruction selection has done a reasonable job.
1854193323Sed    if ((OldBranchCode == X86::COND_NP &&
1855193323Sed         BranchCode == X86::COND_E) ||
1856193323Sed        (OldBranchCode == X86::COND_E &&
1857193323Sed         BranchCode == X86::COND_NP))
1858193323Sed      BranchCode = X86::COND_NP_OR_E;
1859193323Sed    else if ((OldBranchCode == X86::COND_P &&
1860193323Sed              BranchCode == X86::COND_NE) ||
1861193323Sed             (OldBranchCode == X86::COND_NE &&
1862193323Sed              BranchCode == X86::COND_P))
1863193323Sed      BranchCode = X86::COND_NE_OR_P;
1864193323Sed    else
1865193323Sed      return true;
1866200581Srdivacky
1867193323Sed    // Update the MachineOperand.
1868193323Sed    Cond[0].setImm(BranchCode);
1869193323Sed  }
1870193323Sed
1871193323Sed  return false;
1872193323Sed}
1873193323Sed
1874193323Sedunsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1875193323Sed  MachineBasicBlock::iterator I = MBB.end();
1876193323Sed  unsigned Count = 0;
1877193323Sed
1878193323Sed  while (I != MBB.begin()) {
1879193323Sed    --I;
1880206083Srdivacky    if (I->isDebugValue())
1881206083Srdivacky      continue;
1882203954Srdivacky    if (I->getOpcode() != X86::JMP_4 &&
1883193323Sed        GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1884193323Sed      break;
1885193323Sed    // Remove the branch.
1886193323Sed    I->eraseFromParent();
1887193323Sed    I = MBB.end();
1888193323Sed    ++Count;
1889193323Sed  }
1890218893Sdim
1891193323Sed  return Count;
1892193323Sed}
1893193323Sed
1894193323Sedunsigned
1895193323SedX86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1896193323Sed                           MachineBasicBlock *FBB,
1897210299Sed                           const SmallVectorImpl<MachineOperand> &Cond,
1898210299Sed                           DebugLoc DL) const {
1899193323Sed  // Shouldn't be a fall through.
1900193323Sed  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1901193323Sed  assert((Cond.size() == 1 || Cond.size() == 0) &&
1902193323Sed         "X86 branch conditions have one component!");
1903193323Sed
1904193323Sed  if (Cond.empty()) {
1905193323Sed    // Unconditional branch?
1906193323Sed    assert(!FBB && "Unconditional branch with multiple successors!");
1907210299Sed    BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
1908193323Sed    return 1;
1909193323Sed  }
1910193323Sed
1911193323Sed  // Conditional branch.
1912193323Sed  unsigned Count = 0;
1913193323Sed  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1914193323Sed  switch (CC) {
1915193323Sed  case X86::COND_NP_OR_E:
1916193323Sed    // Synthesize NP_OR_E with two branches.
1917210299Sed    BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
1918193323Sed    ++Count;
1919210299Sed    BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
1920193323Sed    ++Count;
1921193323Sed    break;
1922193323Sed  case X86::COND_NE_OR_P:
1923193323Sed    // Synthesize NE_OR_P with two branches.
1924210299Sed    BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
1925193323Sed    ++Count;
1926210299Sed    BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
1927193323Sed    ++Count;
1928193323Sed    break;
1929193323Sed  default: {
1930193323Sed    unsigned Opc = GetCondBranchFromCond(CC);
1931210299Sed    BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
1932193323Sed    ++Count;
1933193323Sed  }
1934193323Sed  }
1935193323Sed  if (FBB) {
1936193323Sed    // Two-way Conditional branch. Insert the second branch.
1937210299Sed    BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
1938193323Sed    ++Count;
1939193323Sed  }
1940193323Sed  return Count;
1941193323Sed}
1942193323Sed
1943193323Sed/// isHReg - Test if the given register is a physical h register.
1944193323Sedstatic bool isHReg(unsigned Reg) {
1945193323Sed  return X86::GR8_ABCD_HRegClass.contains(Reg);
1946193323Sed}
1947193323Sed
1948212904Sdim// Try and copy between VR128/VR64 and GR64 registers.
1949212904Sdimstatic unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg) {
1950212904Sdim  // SrcReg(VR128) -> DestReg(GR64)
1951212904Sdim  // SrcReg(VR64)  -> DestReg(GR64)
1952212904Sdim  // SrcReg(GR64)  -> DestReg(VR128)
1953212904Sdim  // SrcReg(GR64)  -> DestReg(VR64)
1954212904Sdim
1955212904Sdim  if (X86::GR64RegClass.contains(DestReg)) {
1956212904Sdim    if (X86::VR128RegClass.contains(SrcReg)) {
1957212904Sdim      // Copy from a VR128 register to a GR64 register.
1958212904Sdim      return X86::MOVPQIto64rr;
1959212904Sdim    } else if (X86::VR64RegClass.contains(SrcReg)) {
1960212904Sdim      // Copy from a VR64 register to a GR64 register.
1961212904Sdim      return X86::MOVSDto64rr;
1962212904Sdim    }
1963212904Sdim  } else if (X86::GR64RegClass.contains(SrcReg)) {
1964212904Sdim    // Copy from a GR64 register to a VR128 register.
1965212904Sdim    if (X86::VR128RegClass.contains(DestReg))
1966212904Sdim      return X86::MOV64toPQIrr;
1967212904Sdim    // Copy from a GR64 register to a VR64 register.
1968212904Sdim    else if (X86::VR64RegClass.contains(DestReg))
1969212904Sdim      return X86::MOV64toSDrr;
1970212904Sdim  }
1971212904Sdim
1972212904Sdim  return 0;
1973212904Sdim}
1974212904Sdim
1975210299Sedvoid X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
1976210299Sed                               MachineBasicBlock::iterator MI, DebugLoc DL,
1977210299Sed                               unsigned DestReg, unsigned SrcReg,
1978210299Sed                               bool KillSrc) const {
1979210299Sed  // First deal with the normal symmetric copies.
1980210299Sed  unsigned Opc = 0;
1981210299Sed  if (X86::GR64RegClass.contains(DestReg, SrcReg))
1982210299Sed    Opc = X86::MOV64rr;
1983210299Sed  else if (X86::GR32RegClass.contains(DestReg, SrcReg))
1984210299Sed    Opc = X86::MOV32rr;
1985210299Sed  else if (X86::GR16RegClass.contains(DestReg, SrcReg))
1986210299Sed    Opc = X86::MOV16rr;
1987210299Sed  else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
1988210299Sed    // Copying to or from a physical H register on x86-64 requires a NOREX
1989210299Sed    // move.  Otherwise use a normal move.
1990210299Sed    if ((isHReg(DestReg) || isHReg(SrcReg)) &&
1991210299Sed        TM.getSubtarget<X86Subtarget>().is64Bit())
1992210299Sed      Opc = X86::MOV8rr_NOREX;
1993198090Srdivacky    else
1994210299Sed      Opc = X86::MOV8rr;
1995210299Sed  } else if (X86::VR128RegClass.contains(DestReg, SrcReg))
1996210299Sed    Opc = X86::MOVAPSrr;
1997224145Sdim  else if (X86::VR256RegClass.contains(DestReg, SrcReg))
1998224145Sdim    Opc = X86::VMOVAPSYrr;
1999210299Sed  else if (X86::VR64RegClass.contains(DestReg, SrcReg))
2000210299Sed    Opc = X86::MMX_MOVQ64rr;
2001212904Sdim  else
2002212904Sdim    Opc = CopyToFromAsymmetricReg(DestReg, SrcReg);
2003193323Sed
2004210299Sed  if (Opc) {
2005210299Sed    BuildMI(MBB, MI, DL, get(Opc), DestReg)
2006210299Sed      .addReg(SrcReg, getKillRegState(KillSrc));
2007210299Sed    return;
2008193323Sed  }
2009198090Srdivacky
2010193323Sed  // Moving EFLAGS to / from another register requires a push and a pop.
2011210299Sed  if (SrcReg == X86::EFLAGS) {
2012210299Sed    if (X86::GR64RegClass.contains(DestReg)) {
2013208599Srdivacky      BuildMI(MBB, MI, DL, get(X86::PUSHF64));
2014193323Sed      BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
2015210299Sed      return;
2016210299Sed    } else if (X86::GR32RegClass.contains(DestReg)) {
2017208599Srdivacky      BuildMI(MBB, MI, DL, get(X86::PUSHF32));
2018193323Sed      BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
2019210299Sed      return;
2020193323Sed    }
2021210299Sed  }
2022210299Sed  if (DestReg == X86::EFLAGS) {
2023210299Sed    if (X86::GR64RegClass.contains(SrcReg)) {
2024210299Sed      BuildMI(MBB, MI, DL, get(X86::PUSH64r))
2025210299Sed        .addReg(SrcReg, getKillRegState(KillSrc));
2026208599Srdivacky      BuildMI(MBB, MI, DL, get(X86::POPF64));
2027210299Sed      return;
2028210299Sed    } else if (X86::GR32RegClass.contains(SrcReg)) {
2029210299Sed      BuildMI(MBB, MI, DL, get(X86::PUSH32r))
2030210299Sed        .addReg(SrcReg, getKillRegState(KillSrc));
2031208599Srdivacky      BuildMI(MBB, MI, DL, get(X86::POPF32));
2032210299Sed      return;
2033193323Sed    }
2034193323Sed  }
2035193323Sed
2036210299Sed  DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
2037210299Sed               << " to " << RI.getName(DestReg) << '\n');
2038210299Sed  llvm_unreachable("Cannot emit physreg copy instruction");
2039193323Sed}
2040193323Sed
2041210299Sedstatic unsigned getLoadStoreRegOpcode(unsigned Reg,
2042210299Sed                                      const TargetRegisterClass *RC,
2043210299Sed                                      bool isStackAligned,
2044210299Sed                                      const TargetMachine &TM,
2045210299Sed                                      bool load) {
2046223017Sdim  switch (RC->getSize()) {
2047210299Sed  default:
2048223017Sdim    llvm_unreachable("Unknown spill size");
2049223017Sdim  case 1:
2050223017Sdim    assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
2051223017Sdim    if (TM.getSubtarget<X86Subtarget>().is64Bit())
2052223017Sdim      // Copying to or from a physical H register on x86-64 requires a NOREX
2053223017Sdim      // move.  Otherwise use a normal move.
2054223017Sdim      if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
2055223017Sdim        return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
2056223017Sdim    return load ? X86::MOV8rm : X86::MOV8mr;
2057223017Sdim  case 2:
2058223017Sdim    assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
2059210299Sed    return load ? X86::MOV16rm : X86::MOV16mr;
2060223017Sdim  case 4:
2061223017Sdim    if (X86::GR32RegClass.hasSubClassEq(RC))
2062223017Sdim      return load ? X86::MOV32rm : X86::MOV32mr;
2063223017Sdim    if (X86::FR32RegClass.hasSubClassEq(RC))
2064223017Sdim      return load ? X86::MOVSSrm : X86::MOVSSmr;
2065223017Sdim    if (X86::RFP32RegClass.hasSubClassEq(RC))
2066223017Sdim      return load ? X86::LD_Fp32m : X86::ST_Fp32m;
2067223017Sdim    llvm_unreachable("Unknown 4-byte regclass");
2068223017Sdim  case 8:
2069223017Sdim    if (X86::GR64RegClass.hasSubClassEq(RC))
2070223017Sdim      return load ? X86::MOV64rm : X86::MOV64mr;
2071223017Sdim    if (X86::FR64RegClass.hasSubClassEq(RC))
2072223017Sdim      return load ? X86::MOVSDrm : X86::MOVSDmr;
2073223017Sdim    if (X86::VR64RegClass.hasSubClassEq(RC))
2074223017Sdim      return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
2075223017Sdim    if (X86::RFP64RegClass.hasSubClassEq(RC))
2076223017Sdim      return load ? X86::LD_Fp64m : X86::ST_Fp64m;
2077223017Sdim    llvm_unreachable("Unknown 8-byte regclass");
2078223017Sdim  case 10:
2079223017Sdim    assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
2080210299Sed    return load ? X86::LD_Fp80m : X86::ST_FpP80m;
2081223017Sdim  case 16:
2082223017Sdim    assert(X86::VR128RegClass.hasSubClassEq(RC) && "Unknown 16-byte regclass");
2083193323Sed    // If stack is realigned we can use aligned stores.
2084210299Sed    if (isStackAligned)
2085210299Sed      return load ? X86::MOVAPSrm : X86::MOVAPSmr;
2086210299Sed    else
2087210299Sed      return load ? X86::MOVUPSrm : X86::MOVUPSmr;
2088224145Sdim  case 32:
2089224145Sdim    assert(X86::VR256RegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
2090224145Sdim    // If stack is realigned we can use aligned stores.
2091224145Sdim    if (isStackAligned)
2092224145Sdim      return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
2093224145Sdim    else
2094224145Sdim      return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
2095193323Sed  }
2096210299Sed}
2097193323Sed
2098210299Sedstatic unsigned getStoreRegOpcode(unsigned SrcReg,
2099210299Sed                                  const TargetRegisterClass *RC,
2100210299Sed                                  bool isStackAligned,
2101210299Sed                                  TargetMachine &TM) {
2102210299Sed  return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
2103193323Sed}
2104193323Sed
2105210299Sed
2106210299Sedstatic unsigned getLoadRegOpcode(unsigned DestReg,
2107210299Sed                                 const TargetRegisterClass *RC,
2108210299Sed                                 bool isStackAligned,
2109210299Sed                                 const TargetMachine &TM) {
2110210299Sed  return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
2111210299Sed}
2112210299Sed
2113193323Sedvoid X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
2114193323Sed                                       MachineBasicBlock::iterator MI,
2115193323Sed                                       unsigned SrcReg, bool isKill, int FrameIdx,
2116208599Srdivacky                                       const TargetRegisterClass *RC,
2117208599Srdivacky                                       const TargetRegisterInfo *TRI) const {
2118193323Sed  const MachineFunction &MF = *MBB.getParent();
2119212904Sdim  assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
2120212904Sdim         "Stack slot too small for store");
2121224145Sdim  bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= 16) ||
2122224145Sdim    RI.canRealignStack(MF);
2123193323Sed  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2124203954Srdivacky  DebugLoc DL = MBB.findDebugLoc(MI);
2125193323Sed  addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
2126193323Sed    .addReg(SrcReg, getKillRegState(isKill));
2127193323Sed}
2128193323Sed
2129193323Sedvoid X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
2130193323Sed                                  bool isKill,
2131193323Sed                                  SmallVectorImpl<MachineOperand> &Addr,
2132193323Sed                                  const TargetRegisterClass *RC,
2133198090Srdivacky                                  MachineInstr::mmo_iterator MMOBegin,
2134198090Srdivacky                                  MachineInstr::mmo_iterator MMOEnd,
2135193323Sed                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
2136210299Sed  bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16;
2137193323Sed  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2138206124Srdivacky  DebugLoc DL;
2139193323Sed  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
2140193323Sed  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2141193323Sed    MIB.addOperand(Addr[i]);
2142193323Sed  MIB.addReg(SrcReg, getKillRegState(isKill));
2143198090Srdivacky  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2144193323Sed  NewMIs.push_back(MIB);
2145193323Sed}
2146193323Sed
2147193323Sed
2148193323Sedvoid X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
2149193323Sed                                        MachineBasicBlock::iterator MI,
2150193323Sed                                        unsigned DestReg, int FrameIdx,
2151208599Srdivacky                                        const TargetRegisterClass *RC,
2152208599Srdivacky                                        const TargetRegisterInfo *TRI) const {
2153193323Sed  const MachineFunction &MF = *MBB.getParent();
2154224145Sdim  bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= 16) ||
2155224145Sdim    RI.canRealignStack(MF);
2156193323Sed  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2157203954Srdivacky  DebugLoc DL = MBB.findDebugLoc(MI);
2158193323Sed  addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
2159193323Sed}
2160193323Sed
2161193323Sedvoid X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
2162193323Sed                                 SmallVectorImpl<MachineOperand> &Addr,
2163193323Sed                                 const TargetRegisterClass *RC,
2164198090Srdivacky                                 MachineInstr::mmo_iterator MMOBegin,
2165198090Srdivacky                                 MachineInstr::mmo_iterator MMOEnd,
2166193323Sed                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2167210299Sed  bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16;
2168193323Sed  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2169206124Srdivacky  DebugLoc DL;
2170193323Sed  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
2171193323Sed  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2172193323Sed    MIB.addOperand(Addr[i]);
2173198090Srdivacky  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2174193323Sed  NewMIs.push_back(MIB);
2175193323Sed}
2176193323Sed
2177207618SrdivackyMachineInstr*
2178207618SrdivackyX86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
2179207618Srdivacky                                       int FrameIx, uint64_t Offset,
2180207618Srdivacky                                       const MDNode *MDPtr,
2181207618Srdivacky                                       DebugLoc DL) const {
2182207618Srdivacky  X86AddressMode AM;
2183207618Srdivacky  AM.BaseType = X86AddressMode::FrameIndexBase;
2184207618Srdivacky  AM.Base.FrameIndex = FrameIx;
2185207618Srdivacky  MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE));
2186207618Srdivacky  addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr);
2187207618Srdivacky  return &*MIB;
2188207618Srdivacky}
2189207618Srdivacky
2190193323Sedstatic MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
2191193323Sed                                     const SmallVectorImpl<MachineOperand> &MOs,
2192193323Sed                                     MachineInstr *MI,
2193193323Sed                                     const TargetInstrInfo &TII) {
2194193323Sed  // Create the base instruction with the memory operand as the first part.
2195193323Sed  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2196193323Sed                                              MI->getDebugLoc(), true);
2197193323Sed  MachineInstrBuilder MIB(NewMI);
2198193323Sed  unsigned NumAddrOps = MOs.size();
2199193323Sed  for (unsigned i = 0; i != NumAddrOps; ++i)
2200193323Sed    MIB.addOperand(MOs[i]);
2201193323Sed  if (NumAddrOps < 4)  // FrameIndex only
2202193323Sed    addOffset(MIB, 0);
2203218893Sdim
2204193323Sed  // Loop over the rest of the ri operands, converting them over.
2205193323Sed  unsigned NumOps = MI->getDesc().getNumOperands()-2;
2206193323Sed  for (unsigned i = 0; i != NumOps; ++i) {
2207193323Sed    MachineOperand &MO = MI->getOperand(i+2);
2208193323Sed    MIB.addOperand(MO);
2209193323Sed  }
2210193323Sed  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2211193323Sed    MachineOperand &MO = MI->getOperand(i);
2212193323Sed    MIB.addOperand(MO);
2213193323Sed  }
2214193323Sed  return MIB;
2215193323Sed}
2216193323Sed
2217193323Sedstatic MachineInstr *FuseInst(MachineFunction &MF,
2218193323Sed                              unsigned Opcode, unsigned OpNo,
2219193323Sed                              const SmallVectorImpl<MachineOperand> &MOs,
2220193323Sed                              MachineInstr *MI, const TargetInstrInfo &TII) {
2221193323Sed  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2222193323Sed                                              MI->getDebugLoc(), true);
2223193323Sed  MachineInstrBuilder MIB(NewMI);
2224218893Sdim
2225193323Sed  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2226193323Sed    MachineOperand &MO = MI->getOperand(i);
2227193323Sed    if (i == OpNo) {
2228193323Sed      assert(MO.isReg() && "Expected to fold into reg operand!");
2229193323Sed      unsigned NumAddrOps = MOs.size();
2230193323Sed      for (unsigned i = 0; i != NumAddrOps; ++i)
2231193323Sed        MIB.addOperand(MOs[i]);
2232193323Sed      if (NumAddrOps < 4)  // FrameIndex only
2233193323Sed        addOffset(MIB, 0);
2234193323Sed    } else {
2235193323Sed      MIB.addOperand(MO);
2236193323Sed    }
2237193323Sed  }
2238193323Sed  return MIB;
2239193323Sed}
2240193323Sed
2241193323Sedstatic MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
2242193323Sed                                const SmallVectorImpl<MachineOperand> &MOs,
2243193323Sed                                MachineInstr *MI) {
2244193323Sed  MachineFunction &MF = *MI->getParent()->getParent();
2245193323Sed  MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
2246193323Sed
2247193323Sed  unsigned NumAddrOps = MOs.size();
2248193323Sed  for (unsigned i = 0; i != NumAddrOps; ++i)
2249193323Sed    MIB.addOperand(MOs[i]);
2250193323Sed  if (NumAddrOps < 4)  // FrameIndex only
2251193323Sed    addOffset(MIB, 0);
2252193323Sed  return MIB.addImm(0);
2253193323Sed}
2254193323Sed
2255193323SedMachineInstr*
2256193323SedX86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2257193323Sed                                    MachineInstr *MI, unsigned i,
2258198090Srdivacky                                    const SmallVectorImpl<MachineOperand> &MOs,
2259198090Srdivacky                                    unsigned Size, unsigned Align) const {
2260218893Sdim  const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
2261193323Sed  bool isTwoAddrFold = false;
2262193323Sed  unsigned NumOps = MI->getDesc().getNumOperands();
2263193323Sed  bool isTwoAddr = NumOps > 1 &&
2264224145Sdim    MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
2265193323Sed
2266221345Sdim  // FIXME: AsmPrinter doesn't know how to handle
2267221345Sdim  // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
2268221345Sdim  if (MI->getOpcode() == X86::ADD32ri &&
2269221345Sdim      MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
2270221345Sdim    return NULL;
2271221345Sdim
2272193323Sed  MachineInstr *NewMI = NULL;
2273193323Sed  // Folding a memory location into the two-address part of a two-address
2274193323Sed  // instruction is different than folding it other places.  It requires
2275193323Sed  // replacing the *two* registers with the memory location.
2276193323Sed  if (isTwoAddr && NumOps >= 2 && i < 2 &&
2277193323Sed      MI->getOperand(0).isReg() &&
2278193323Sed      MI->getOperand(1).isReg() &&
2279218893Sdim      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2280193323Sed    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2281193323Sed    isTwoAddrFold = true;
2282193323Sed  } else if (i == 0) { // If operand 0
2283202375Srdivacky    if (MI->getOpcode() == X86::MOV64r0)
2284202375Srdivacky      NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2285202375Srdivacky    else if (MI->getOpcode() == X86::MOV32r0)
2286193323Sed      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2287202375Srdivacky    else if (MI->getOpcode() == X86::MOV16r0)
2288202375Srdivacky      NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2289193323Sed    else if (MI->getOpcode() == X86::MOV8r0)
2290193323Sed      NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
2291193323Sed    if (NewMI)
2292193323Sed      return NewMI;
2293218893Sdim
2294193323Sed    OpcodeTablePtr = &RegOp2MemOpTable0;
2295193323Sed  } else if (i == 1) {
2296193323Sed    OpcodeTablePtr = &RegOp2MemOpTable1;
2297193323Sed  } else if (i == 2) {
2298193323Sed    OpcodeTablePtr = &RegOp2MemOpTable2;
2299193323Sed  }
2300218893Sdim
2301193323Sed  // If table selected...
2302193323Sed  if (OpcodeTablePtr) {
2303193323Sed    // Find the Opcode to fuse
2304218893Sdim    DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
2305218893Sdim      OpcodeTablePtr->find(MI->getOpcode());
2306193323Sed    if (I != OpcodeTablePtr->end()) {
2307198090Srdivacky      unsigned Opcode = I->second.first;
2308198090Srdivacky      unsigned MinAlign = I->second.second;
2309198090Srdivacky      if (Align < MinAlign)
2310198090Srdivacky        return NULL;
2311198090Srdivacky      bool NarrowToMOV32rm = false;
2312198090Srdivacky      if (Size) {
2313224145Sdim        unsigned RCSize = getRegClass(MI->getDesc(), i, &RI)->getSize();
2314198090Srdivacky        if (Size < RCSize) {
2315198090Srdivacky          // Check if it's safe to fold the load. If the size of the object is
2316198090Srdivacky          // narrower than the load width, then it's not.
2317198090Srdivacky          if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
2318198090Srdivacky            return NULL;
2319198090Srdivacky          // If this is a 64-bit load, but the spill slot is 32, then we can do
2320198090Srdivacky          // a 32-bit load which is implicitly zero-extended. This likely is due
2321198090Srdivacky          // to liveintervalanalysis remat'ing a load from stack slot.
2322198090Srdivacky          if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
2323198090Srdivacky            return NULL;
2324198090Srdivacky          Opcode = X86::MOV32rm;
2325198090Srdivacky          NarrowToMOV32rm = true;
2326198090Srdivacky        }
2327198090Srdivacky      }
2328198090Srdivacky
2329193323Sed      if (isTwoAddrFold)
2330198090Srdivacky        NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
2331193323Sed      else
2332198090Srdivacky        NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
2333198090Srdivacky
2334198090Srdivacky      if (NarrowToMOV32rm) {
2335198090Srdivacky        // If this is the special case where we use a MOV32rm to load a 32-bit
2336198090Srdivacky        // value and zero-extend the top bits. Change the destination register
2337198090Srdivacky        // to a 32-bit one.
2338198090Srdivacky        unsigned DstReg = NewMI->getOperand(0).getReg();
2339198090Srdivacky        if (TargetRegisterInfo::isPhysicalRegister(DstReg))
2340198090Srdivacky          NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
2341208599Srdivacky                                                   X86::sub_32bit));
2342198090Srdivacky        else
2343208599Srdivacky          NewMI->getOperand(0).setSubReg(X86::sub_32bit);
2344198090Srdivacky      }
2345193323Sed      return NewMI;
2346193323Sed    }
2347193323Sed  }
2348218893Sdim
2349218893Sdim  // No fusion
2350210299Sed  if (PrintFailedFusing && !MI->isCopy())
2351202375Srdivacky    dbgs() << "We failed to fuse operand " << i << " in " << *MI;
2352193323Sed  return NULL;
2353193323Sed}
2354193323Sed
2355193323Sed
2356193323SedMachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2357193323Sed                                                  MachineInstr *MI,
2358198090Srdivacky                                           const SmallVectorImpl<unsigned> &Ops,
2359193323Sed                                                  int FrameIndex) const {
2360218893Sdim  // Check switch flag
2361193323Sed  if (NoFusing) return NULL;
2362193323Sed
2363201360Srdivacky  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2364201360Srdivacky    switch (MI->getOpcode()) {
2365201360Srdivacky    case X86::CVTSD2SSrr:
2366201360Srdivacky    case X86::Int_CVTSD2SSrr:
2367201360Srdivacky    case X86::CVTSS2SDrr:
2368201360Srdivacky    case X86::Int_CVTSS2SDrr:
2369201360Srdivacky    case X86::RCPSSr:
2370201360Srdivacky    case X86::RCPSSr_Int:
2371218893Sdim    case X86::ROUNDSDr:
2372218893Sdim    case X86::ROUNDSSr:
2373201360Srdivacky    case X86::RSQRTSSr:
2374201360Srdivacky    case X86::RSQRTSSr_Int:
2375201360Srdivacky    case X86::SQRTSSr:
2376201360Srdivacky    case X86::SQRTSSr_Int:
2377201360Srdivacky      return 0;
2378201360Srdivacky    }
2379201360Srdivacky
2380193323Sed  const MachineFrameInfo *MFI = MF.getFrameInfo();
2381198090Srdivacky  unsigned Size = MFI->getObjectSize(FrameIndex);
2382193323Sed  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2383193323Sed  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2384193323Sed    unsigned NewOpc = 0;
2385198090Srdivacky    unsigned RCSize = 0;
2386193323Sed    switch (MI->getOpcode()) {
2387193323Sed    default: return NULL;
2388198090Srdivacky    case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
2389208599Srdivacky    case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
2390208599Srdivacky    case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
2391208599Srdivacky    case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
2392193323Sed    }
2393198090Srdivacky    // Check if it's safe to fold the load. If the size of the object is
2394198090Srdivacky    // narrower than the load width, then it's not.
2395198090Srdivacky    if (Size < RCSize)
2396198090Srdivacky      return NULL;
2397193323Sed    // Change to CMPXXri r, 0 first.
2398193323Sed    MI->setDesc(get(NewOpc));
2399193323Sed    MI->getOperand(1).ChangeToImmediate(0);
2400193323Sed  } else if (Ops.size() != 1)
2401193323Sed    return NULL;
2402193323Sed
2403193323Sed  SmallVector<MachineOperand,4> MOs;
2404193323Sed  MOs.push_back(MachineOperand::CreateFI(FrameIndex));
2405198090Srdivacky  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
2406193323Sed}
2407193323Sed
2408193323SedMachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2409193323Sed                                                  MachineInstr *MI,
2410198090Srdivacky                                           const SmallVectorImpl<unsigned> &Ops,
2411193323Sed                                                  MachineInstr *LoadMI) const {
2412218893Sdim  // Check switch flag
2413193323Sed  if (NoFusing) return NULL;
2414193323Sed
2415201360Srdivacky  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2416201360Srdivacky    switch (MI->getOpcode()) {
2417201360Srdivacky    case X86::CVTSD2SSrr:
2418201360Srdivacky    case X86::Int_CVTSD2SSrr:
2419201360Srdivacky    case X86::CVTSS2SDrr:
2420201360Srdivacky    case X86::Int_CVTSS2SDrr:
2421201360Srdivacky    case X86::RCPSSr:
2422201360Srdivacky    case X86::RCPSSr_Int:
2423218893Sdim    case X86::ROUNDSDr:
2424218893Sdim    case X86::ROUNDSSr:
2425201360Srdivacky    case X86::RSQRTSSr:
2426201360Srdivacky    case X86::RSQRTSSr_Int:
2427201360Srdivacky    case X86::SQRTSSr:
2428201360Srdivacky    case X86::SQRTSSr_Int:
2429201360Srdivacky      return 0;
2430201360Srdivacky    }
2431201360Srdivacky
2432193323Sed  // Determine the alignment of the load.
2433193323Sed  unsigned Alignment = 0;
2434193323Sed  if (LoadMI->hasOneMemOperand())
2435198090Srdivacky    Alignment = (*LoadMI->memoperands_begin())->getAlignment();
2436198090Srdivacky  else
2437198090Srdivacky    switch (LoadMI->getOpcode()) {
2438212904Sdim    case X86::AVX_SET0PSY:
2439212904Sdim    case X86::AVX_SET0PDY:
2440212904Sdim      Alignment = 32;
2441212904Sdim      break;
2442206083Srdivacky    case X86::V_SET0PS:
2443206083Srdivacky    case X86::V_SET0PD:
2444206083Srdivacky    case X86::V_SET0PI:
2445198090Srdivacky    case X86::V_SETALLONES:
2446212904Sdim    case X86::AVX_SET0PS:
2447212904Sdim    case X86::AVX_SET0PD:
2448212904Sdim    case X86::AVX_SET0PI:
2449198090Srdivacky      Alignment = 16;
2450198090Srdivacky      break;
2451198090Srdivacky    case X86::FsFLD0SD:
2452218893Sdim    case X86::VFsFLD0SD:
2453198090Srdivacky      Alignment = 8;
2454198090Srdivacky      break;
2455198090Srdivacky    case X86::FsFLD0SS:
2456218893Sdim    case X86::VFsFLD0SS:
2457198090Srdivacky      Alignment = 4;
2458198090Srdivacky      break;
2459198090Srdivacky    default:
2460223017Sdim      return 0;
2461193323Sed    }
2462193323Sed  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2463193323Sed    unsigned NewOpc = 0;
2464193323Sed    switch (MI->getOpcode()) {
2465193323Sed    default: return NULL;
2466193323Sed    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
2467208599Srdivacky    case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
2468208599Srdivacky    case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
2469208599Srdivacky    case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
2470193323Sed    }
2471193323Sed    // Change to CMPXXri r, 0 first.
2472193323Sed    MI->setDesc(get(NewOpc));
2473193323Sed    MI->getOperand(1).ChangeToImmediate(0);
2474193323Sed  } else if (Ops.size() != 1)
2475193323Sed    return NULL;
2476193323Sed
2477212904Sdim  // Make sure the subregisters match.
2478212904Sdim  // Otherwise we risk changing the size of the load.
2479212904Sdim  if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
2480212904Sdim    return NULL;
2481212904Sdim
2482210299Sed  SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
2483198090Srdivacky  switch (LoadMI->getOpcode()) {
2484206083Srdivacky  case X86::V_SET0PS:
2485206083Srdivacky  case X86::V_SET0PD:
2486206083Srdivacky  case X86::V_SET0PI:
2487198090Srdivacky  case X86::V_SETALLONES:
2488212904Sdim  case X86::AVX_SET0PS:
2489212904Sdim  case X86::AVX_SET0PD:
2490212904Sdim  case X86::AVX_SET0PI:
2491212904Sdim  case X86::AVX_SET0PSY:
2492212904Sdim  case X86::AVX_SET0PDY:
2493198090Srdivacky  case X86::FsFLD0SD:
2494198090Srdivacky  case X86::FsFLD0SS: {
2495206083Srdivacky    // Folding a V_SET0P? or V_SETALLONES as a load, to ease register pressure.
2496193323Sed    // Create a constant-pool entry and operands to load from it.
2497193323Sed
2498204961Srdivacky    // Medium and large mode can't fold loads this way.
2499204961Srdivacky    if (TM.getCodeModel() != CodeModel::Small &&
2500204961Srdivacky        TM.getCodeModel() != CodeModel::Kernel)
2501204961Srdivacky      return NULL;
2502204961Srdivacky
2503193323Sed    // x86-32 PIC requires a PIC base register for constant pools.
2504193323Sed    unsigned PICBase = 0;
2505198090Srdivacky    if (TM.getRelocationModel() == Reloc::PIC_) {
2506198090Srdivacky      if (TM.getSubtarget<X86Subtarget>().is64Bit())
2507198090Srdivacky        PICBase = X86::RIP;
2508198090Srdivacky      else
2509210299Sed        // FIXME: PICBase = getGlobalBaseReg(&MF);
2510198090Srdivacky        // This doesn't work for several reasons.
2511198090Srdivacky        // 1. GlobalBaseReg may have been spilled.
2512198090Srdivacky        // 2. It may not be live at MI.
2513198090Srdivacky        return NULL;
2514198090Srdivacky    }
2515193323Sed
2516198090Srdivacky    // Create a constant-pool entry.
2517193323Sed    MachineConstantPool &MCP = *MF.getConstantPool();
2518198090Srdivacky    const Type *Ty;
2519212904Sdim    unsigned Opc = LoadMI->getOpcode();
2520218893Sdim    if (Opc == X86::FsFLD0SS || Opc == X86::VFsFLD0SS)
2521198090Srdivacky      Ty = Type::getFloatTy(MF.getFunction()->getContext());
2522218893Sdim    else if (Opc == X86::FsFLD0SD || Opc == X86::VFsFLD0SD)
2523198090Srdivacky      Ty = Type::getDoubleTy(MF.getFunction()->getContext());
2524212904Sdim    else if (Opc == X86::AVX_SET0PSY || Opc == X86::AVX_SET0PDY)
2525212904Sdim      Ty = VectorType::get(Type::getFloatTy(MF.getFunction()->getContext()), 8);
2526198090Srdivacky    else
2527198090Srdivacky      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
2528207618Srdivacky    const Constant *C = LoadMI->getOpcode() == X86::V_SETALLONES ?
2529198090Srdivacky                    Constant::getAllOnesValue(Ty) :
2530198090Srdivacky                    Constant::getNullValue(Ty);
2531198090Srdivacky    unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
2532193323Sed
2533193323Sed    // Create operands to load from the constant pool entry.
2534193323Sed    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2535193323Sed    MOs.push_back(MachineOperand::CreateImm(1));
2536193323Sed    MOs.push_back(MachineOperand::CreateReg(0, false));
2537193323Sed    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
2538193323Sed    MOs.push_back(MachineOperand::CreateReg(0, false));
2539198090Srdivacky    break;
2540198090Srdivacky  }
2541198090Srdivacky  default: {
2542193323Sed    // Folding a normal load. Just copy the load's address operands.
2543193323Sed    unsigned NumOps = LoadMI->getDesc().getNumOperands();
2544210299Sed    for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
2545193323Sed      MOs.push_back(LoadMI->getOperand(i));
2546198090Srdivacky    break;
2547193323Sed  }
2548198090Srdivacky  }
2549198090Srdivacky  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
2550193323Sed}
2551193323Sed
2552193323Sed
2553193323Sedbool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2554193323Sed                                  const SmallVectorImpl<unsigned> &Ops) const {
2555218893Sdim  // Check switch flag
2556193323Sed  if (NoFusing) return 0;
2557193323Sed
2558193323Sed  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2559193323Sed    switch (MI->getOpcode()) {
2560193323Sed    default: return false;
2561218893Sdim    case X86::TEST8rr:
2562193323Sed    case X86::TEST16rr:
2563193323Sed    case X86::TEST32rr:
2564193323Sed    case X86::TEST64rr:
2565193323Sed      return true;
2566221345Sdim    case X86::ADD32ri:
2567221345Sdim      // FIXME: AsmPrinter doesn't know how to handle
2568221345Sdim      // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
2569221345Sdim      if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
2570221345Sdim        return false;
2571221345Sdim      break;
2572193323Sed    }
2573193323Sed  }
2574193323Sed
2575193323Sed  if (Ops.size() != 1)
2576193323Sed    return false;
2577193323Sed
2578193323Sed  unsigned OpNum = Ops[0];
2579193323Sed  unsigned Opc = MI->getOpcode();
2580193323Sed  unsigned NumOps = MI->getDesc().getNumOperands();
2581193323Sed  bool isTwoAddr = NumOps > 1 &&
2582224145Sdim    MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
2583193323Sed
2584193323Sed  // Folding a memory location into the two-address part of a two-address
2585193323Sed  // instruction is different than folding it other places.  It requires
2586193323Sed  // replacing the *two* registers with the memory location.
2587218893Sdim  const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
2588218893Sdim  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2589193323Sed    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2590193323Sed  } else if (OpNum == 0) { // If operand 0
2591193323Sed    switch (Opc) {
2592198090Srdivacky    case X86::MOV8r0:
2593202375Srdivacky    case X86::MOV16r0:
2594193323Sed    case X86::MOV32r0:
2595218893Sdim    case X86::MOV64r0: return true;
2596193323Sed    default: break;
2597193323Sed    }
2598193323Sed    OpcodeTablePtr = &RegOp2MemOpTable0;
2599193323Sed  } else if (OpNum == 1) {
2600193323Sed    OpcodeTablePtr = &RegOp2MemOpTable1;
2601193323Sed  } else if (OpNum == 2) {
2602193323Sed    OpcodeTablePtr = &RegOp2MemOpTable2;
2603193323Sed  }
2604218893Sdim
2605218893Sdim  if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
2606218893Sdim    return true;
2607210299Sed  return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops);
2608193323Sed}
2609193323Sed
2610193323Sedbool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2611193323Sed                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2612193323Sed                                SmallVectorImpl<MachineInstr*> &NewMIs) const {
2613218893Sdim  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
2614218893Sdim    MemOp2RegOpTable.find(MI->getOpcode());
2615193323Sed  if (I == MemOp2RegOpTable.end())
2616193323Sed    return false;
2617193323Sed  unsigned Opc = I->second.first;
2618193323Sed  unsigned Index = I->second.second & 0xf;
2619193323Sed  bool FoldedLoad = I->second.second & (1 << 4);
2620193323Sed  bool FoldedStore = I->second.second & (1 << 5);
2621193323Sed  if (UnfoldLoad && !FoldedLoad)
2622193323Sed    return false;
2623193323Sed  UnfoldLoad &= FoldedLoad;
2624193323Sed  if (UnfoldStore && !FoldedStore)
2625193323Sed    return false;
2626193323Sed  UnfoldStore &= FoldedStore;
2627193323Sed
2628224145Sdim  const MCInstrDesc &MCID = get(Opc);
2629224145Sdim  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI);
2630210299Sed  if (!MI->hasOneMemOperand() &&
2631210299Sed      RC == &X86::VR128RegClass &&
2632210299Sed      !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2633210299Sed    // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
2634210299Sed    // conservatively assume the address is unaligned. That's bad for
2635210299Sed    // performance.
2636210299Sed    return false;
2637210299Sed  SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
2638193323Sed  SmallVector<MachineOperand,2> BeforeOps;
2639193323Sed  SmallVector<MachineOperand,2> AfterOps;
2640193323Sed  SmallVector<MachineOperand,4> ImpOps;
2641193323Sed  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2642193323Sed    MachineOperand &Op = MI->getOperand(i);
2643210299Sed    if (i >= Index && i < Index + X86::AddrNumOperands)
2644193323Sed      AddrOps.push_back(Op);
2645193323Sed    else if (Op.isReg() && Op.isImplicit())
2646193323Sed      ImpOps.push_back(Op);
2647193323Sed    else if (i < Index)
2648193323Sed      BeforeOps.push_back(Op);
2649193323Sed    else if (i > Index)
2650193323Sed      AfterOps.push_back(Op);
2651193323Sed  }
2652193323Sed
2653193323Sed  // Emit the load instruction.
2654193323Sed  if (UnfoldLoad) {
2655198090Srdivacky    std::pair<MachineInstr::mmo_iterator,
2656198090Srdivacky              MachineInstr::mmo_iterator> MMOs =
2657198090Srdivacky      MF.extractLoadMemRefs(MI->memoperands_begin(),
2658198090Srdivacky                            MI->memoperands_end());
2659198090Srdivacky    loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
2660193323Sed    if (UnfoldStore) {
2661193323Sed      // Address operands cannot be marked isKill.
2662210299Sed      for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
2663193323Sed        MachineOperand &MO = NewMIs[0]->getOperand(i);
2664193323Sed        if (MO.isReg())
2665193323Sed          MO.setIsKill(false);
2666193323Sed      }
2667193323Sed    }
2668193323Sed  }
2669193323Sed
2670193323Sed  // Emit the data processing instruction.
2671224145Sdim  MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
2672193323Sed  MachineInstrBuilder MIB(DataMI);
2673218893Sdim
2674193323Sed  if (FoldedStore)
2675193323Sed    MIB.addReg(Reg, RegState::Define);
2676193323Sed  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2677193323Sed    MIB.addOperand(BeforeOps[i]);
2678193323Sed  if (FoldedLoad)
2679193323Sed    MIB.addReg(Reg);
2680193323Sed  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2681193323Sed    MIB.addOperand(AfterOps[i]);
2682193323Sed  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2683193323Sed    MachineOperand &MO = ImpOps[i];
2684193323Sed    MIB.addReg(MO.getReg(),
2685193323Sed               getDefRegState(MO.isDef()) |
2686193323Sed               RegState::Implicit |
2687193323Sed               getKillRegState(MO.isKill()) |
2688195340Sed               getDeadRegState(MO.isDead()) |
2689195340Sed               getUndefRegState(MO.isUndef()));
2690193323Sed  }
2691193323Sed  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2692193323Sed  unsigned NewOpc = 0;
2693193323Sed  switch (DataMI->getOpcode()) {
2694193323Sed  default: break;
2695193323Sed  case X86::CMP64ri32:
2696208599Srdivacky  case X86::CMP64ri8:
2697193323Sed  case X86::CMP32ri:
2698208599Srdivacky  case X86::CMP32ri8:
2699193323Sed  case X86::CMP16ri:
2700208599Srdivacky  case X86::CMP16ri8:
2701193323Sed  case X86::CMP8ri: {
2702193323Sed    MachineOperand &MO0 = DataMI->getOperand(0);
2703193323Sed    MachineOperand &MO1 = DataMI->getOperand(1);
2704193323Sed    if (MO1.getImm() == 0) {
2705193323Sed      switch (DataMI->getOpcode()) {
2706193323Sed      default: break;
2707208599Srdivacky      case X86::CMP64ri8:
2708193323Sed      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2709208599Srdivacky      case X86::CMP32ri8:
2710193323Sed      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
2711208599Srdivacky      case X86::CMP16ri8:
2712193323Sed      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
2713193323Sed      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
2714193323Sed      }
2715193323Sed      DataMI->setDesc(get(NewOpc));
2716193323Sed      MO1.ChangeToRegister(MO0.getReg(), false);
2717193323Sed    }
2718193323Sed  }
2719193323Sed  }
2720193323Sed  NewMIs.push_back(DataMI);
2721193323Sed
2722193323Sed  // Emit the store instruction.
2723193323Sed  if (UnfoldStore) {
2724224145Sdim    const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI);
2725198090Srdivacky    std::pair<MachineInstr::mmo_iterator,
2726198090Srdivacky              MachineInstr::mmo_iterator> MMOs =
2727198090Srdivacky      MF.extractStoreMemRefs(MI->memoperands_begin(),
2728198090Srdivacky                             MI->memoperands_end());
2729198090Srdivacky    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
2730193323Sed  }
2731193323Sed
2732193323Sed  return true;
2733193323Sed}
2734193323Sed
2735193323Sedbool
2736193323SedX86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2737193323Sed                                  SmallVectorImpl<SDNode*> &NewNodes) const {
2738193323Sed  if (!N->isMachineOpcode())
2739193323Sed    return false;
2740193323Sed
2741218893Sdim  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
2742218893Sdim    MemOp2RegOpTable.find(N->getMachineOpcode());
2743193323Sed  if (I == MemOp2RegOpTable.end())
2744193323Sed    return false;
2745193323Sed  unsigned Opc = I->second.first;
2746193323Sed  unsigned Index = I->second.second & 0xf;
2747193323Sed  bool FoldedLoad = I->second.second & (1 << 4);
2748193323Sed  bool FoldedStore = I->second.second & (1 << 5);
2749224145Sdim  const MCInstrDesc &MCID = get(Opc);
2750224145Sdim  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI);
2751224145Sdim  unsigned NumDefs = MCID.NumDefs;
2752193323Sed  std::vector<SDValue> AddrOps;
2753193323Sed  std::vector<SDValue> BeforeOps;
2754193323Sed  std::vector<SDValue> AfterOps;
2755193323Sed  DebugLoc dl = N->getDebugLoc();
2756193323Sed  unsigned NumOps = N->getNumOperands();
2757193323Sed  for (unsigned i = 0; i != NumOps-1; ++i) {
2758193323Sed    SDValue Op = N->getOperand(i);
2759210299Sed    if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
2760193323Sed      AddrOps.push_back(Op);
2761193323Sed    else if (i < Index-NumDefs)
2762193323Sed      BeforeOps.push_back(Op);
2763193323Sed    else if (i > Index-NumDefs)
2764193323Sed      AfterOps.push_back(Op);
2765193323Sed  }
2766193323Sed  SDValue Chain = N->getOperand(NumOps-1);
2767193323Sed  AddrOps.push_back(Chain);
2768193323Sed
2769193323Sed  // Emit the load instruction.
2770193323Sed  SDNode *Load = 0;
2771198090Srdivacky  MachineFunction &MF = DAG.getMachineFunction();
2772193323Sed  if (FoldedLoad) {
2773198090Srdivacky    EVT VT = *RC->vt_begin();
2774199481Srdivacky    std::pair<MachineInstr::mmo_iterator,
2775199481Srdivacky              MachineInstr::mmo_iterator> MMOs =
2776199481Srdivacky      MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2777199481Srdivacky                            cast<MachineSDNode>(N)->memoperands_end());
2778210299Sed    if (!(*MMOs.first) &&
2779210299Sed        RC == &X86::VR128RegClass &&
2780210299Sed        !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2781210299Sed      // Do not introduce a slow unaligned load.
2782210299Sed      return false;
2783210299Sed    bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16;
2784198090Srdivacky    Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
2785198090Srdivacky                              VT, MVT::Other, &AddrOps[0], AddrOps.size());
2786193323Sed    NewNodes.push_back(Load);
2787198090Srdivacky
2788198090Srdivacky    // Preserve memory reference information.
2789198090Srdivacky    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
2790193323Sed  }
2791193323Sed
2792193323Sed  // Emit the data processing instruction.
2793198090Srdivacky  std::vector<EVT> VTs;
2794193323Sed  const TargetRegisterClass *DstRC = 0;
2795224145Sdim  if (MCID.getNumDefs() > 0) {
2796224145Sdim    DstRC = getRegClass(MCID, 0, &RI);
2797193323Sed    VTs.push_back(*DstRC->vt_begin());
2798193323Sed  }
2799193323Sed  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2800198090Srdivacky    EVT VT = N->getValueType(i);
2801224145Sdim    if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
2802193323Sed      VTs.push_back(VT);
2803193323Sed  }
2804193323Sed  if (Load)
2805193323Sed    BeforeOps.push_back(SDValue(Load, 0));
2806193323Sed  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2807198090Srdivacky  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
2808198090Srdivacky                                      BeforeOps.size());
2809193323Sed  NewNodes.push_back(NewNode);
2810193323Sed
2811193323Sed  // Emit the store instruction.
2812193323Sed  if (FoldedStore) {
2813193323Sed    AddrOps.pop_back();
2814193323Sed    AddrOps.push_back(SDValue(NewNode, 0));
2815193323Sed    AddrOps.push_back(Chain);
2816199481Srdivacky    std::pair<MachineInstr::mmo_iterator,
2817199481Srdivacky              MachineInstr::mmo_iterator> MMOs =
2818199481Srdivacky      MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2819199481Srdivacky                             cast<MachineSDNode>(N)->memoperands_end());
2820210299Sed    if (!(*MMOs.first) &&
2821210299Sed        RC == &X86::VR128RegClass &&
2822210299Sed        !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2823210299Sed      // Do not introduce a slow unaligned store.
2824210299Sed      return false;
2825210299Sed    bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16;
2826198090Srdivacky    SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
2827198090Srdivacky                                                         isAligned, TM),
2828198090Srdivacky                                       dl, MVT::Other,
2829198090Srdivacky                                       &AddrOps[0], AddrOps.size());
2830193323Sed    NewNodes.push_back(Store);
2831198090Srdivacky
2832198090Srdivacky    // Preserve memory reference information.
2833198090Srdivacky    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
2834193323Sed  }
2835193323Sed
2836193323Sed  return true;
2837193323Sed}
2838193323Sed
2839193323Sedunsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2840198892Srdivacky                                      bool UnfoldLoad, bool UnfoldStore,
2841198892Srdivacky                                      unsigned *LoadRegIndex) const {
2842218893Sdim  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
2843218893Sdim    MemOp2RegOpTable.find(Opc);
2844193323Sed  if (I == MemOp2RegOpTable.end())
2845193323Sed    return 0;
2846193323Sed  bool FoldedLoad = I->second.second & (1 << 4);
2847193323Sed  bool FoldedStore = I->second.second & (1 << 5);
2848193323Sed  if (UnfoldLoad && !FoldedLoad)
2849193323Sed    return 0;
2850193323Sed  if (UnfoldStore && !FoldedStore)
2851193323Sed    return 0;
2852198892Srdivacky  if (LoadRegIndex)
2853198892Srdivacky    *LoadRegIndex = I->second.second & 0xf;
2854193323Sed  return I->second.first;
2855193323Sed}
2856193323Sed
2857202878Srdivackybool
2858202878SrdivackyX86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
2859202878Srdivacky                                     int64_t &Offset1, int64_t &Offset2) const {
2860202878Srdivacky  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
2861202878Srdivacky    return false;
2862202878Srdivacky  unsigned Opc1 = Load1->getMachineOpcode();
2863202878Srdivacky  unsigned Opc2 = Load2->getMachineOpcode();
2864202878Srdivacky  switch (Opc1) {
2865202878Srdivacky  default: return false;
2866202878Srdivacky  case X86::MOV8rm:
2867202878Srdivacky  case X86::MOV16rm:
2868202878Srdivacky  case X86::MOV32rm:
2869202878Srdivacky  case X86::MOV64rm:
2870202878Srdivacky  case X86::LD_Fp32m:
2871202878Srdivacky  case X86::LD_Fp64m:
2872202878Srdivacky  case X86::LD_Fp80m:
2873202878Srdivacky  case X86::MOVSSrm:
2874202878Srdivacky  case X86::MOVSDrm:
2875202878Srdivacky  case X86::MMX_MOVD64rm:
2876202878Srdivacky  case X86::MMX_MOVQ64rm:
2877202878Srdivacky  case X86::FsMOVAPSrm:
2878202878Srdivacky  case X86::FsMOVAPDrm:
2879202878Srdivacky  case X86::MOVAPSrm:
2880202878Srdivacky  case X86::MOVUPSrm:
2881202878Srdivacky  case X86::MOVAPDrm:
2882202878Srdivacky  case X86::MOVDQArm:
2883202878Srdivacky  case X86::MOVDQUrm:
2884224145Sdim  case X86::VMOVAPSYrm:
2885224145Sdim  case X86::VMOVUPSYrm:
2886224145Sdim  case X86::VMOVAPDYrm:
2887224145Sdim  case X86::VMOVDQAYrm:
2888224145Sdim  case X86::VMOVDQUYrm:
2889202878Srdivacky    break;
2890202878Srdivacky  }
2891202878Srdivacky  switch (Opc2) {
2892202878Srdivacky  default: return false;
2893202878Srdivacky  case X86::MOV8rm:
2894202878Srdivacky  case X86::MOV16rm:
2895202878Srdivacky  case X86::MOV32rm:
2896202878Srdivacky  case X86::MOV64rm:
2897202878Srdivacky  case X86::LD_Fp32m:
2898202878Srdivacky  case X86::LD_Fp64m:
2899202878Srdivacky  case X86::LD_Fp80m:
2900202878Srdivacky  case X86::MOVSSrm:
2901202878Srdivacky  case X86::MOVSDrm:
2902202878Srdivacky  case X86::MMX_MOVD64rm:
2903202878Srdivacky  case X86::MMX_MOVQ64rm:
2904202878Srdivacky  case X86::FsMOVAPSrm:
2905202878Srdivacky  case X86::FsMOVAPDrm:
2906202878Srdivacky  case X86::MOVAPSrm:
2907202878Srdivacky  case X86::MOVUPSrm:
2908202878Srdivacky  case X86::MOVAPDrm:
2909202878Srdivacky  case X86::MOVDQArm:
2910202878Srdivacky  case X86::MOVDQUrm:
2911224145Sdim  case X86::VMOVAPSYrm:
2912224145Sdim  case X86::VMOVUPSYrm:
2913224145Sdim  case X86::VMOVAPDYrm:
2914224145Sdim  case X86::VMOVDQAYrm:
2915224145Sdim  case X86::VMOVDQUYrm:
2916202878Srdivacky    break;
2917202878Srdivacky  }
2918202878Srdivacky
2919202878Srdivacky  // Check if chain operands and base addresses match.
2920202878Srdivacky  if (Load1->getOperand(0) != Load2->getOperand(0) ||
2921202878Srdivacky      Load1->getOperand(5) != Load2->getOperand(5))
2922202878Srdivacky    return false;
2923202878Srdivacky  // Segment operands should match as well.
2924202878Srdivacky  if (Load1->getOperand(4) != Load2->getOperand(4))
2925202878Srdivacky    return false;
2926202878Srdivacky  // Scale should be 1, Index should be Reg0.
2927202878Srdivacky  if (Load1->getOperand(1) == Load2->getOperand(1) &&
2928202878Srdivacky      Load1->getOperand(2) == Load2->getOperand(2)) {
2929202878Srdivacky    if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
2930202878Srdivacky      return false;
2931202878Srdivacky
2932202878Srdivacky    // Now let's examine the displacements.
2933202878Srdivacky    if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
2934202878Srdivacky        isa<ConstantSDNode>(Load2->getOperand(3))) {
2935202878Srdivacky      Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
2936202878Srdivacky      Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
2937202878Srdivacky      return true;
2938202878Srdivacky    }
2939202878Srdivacky  }
2940202878Srdivacky  return false;
2941202878Srdivacky}
2942202878Srdivacky
2943202878Srdivackybool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
2944202878Srdivacky                                           int64_t Offset1, int64_t Offset2,
2945202878Srdivacky                                           unsigned NumLoads) const {
2946202878Srdivacky  assert(Offset2 > Offset1);
2947202878Srdivacky  if ((Offset2 - Offset1) / 8 > 64)
2948202878Srdivacky    return false;
2949202878Srdivacky
2950202878Srdivacky  unsigned Opc1 = Load1->getMachineOpcode();
2951202878Srdivacky  unsigned Opc2 = Load2->getMachineOpcode();
2952202878Srdivacky  if (Opc1 != Opc2)
2953202878Srdivacky    return false;  // FIXME: overly conservative?
2954202878Srdivacky
2955202878Srdivacky  switch (Opc1) {
2956202878Srdivacky  default: break;
2957202878Srdivacky  case X86::LD_Fp32m:
2958202878Srdivacky  case X86::LD_Fp64m:
2959202878Srdivacky  case X86::LD_Fp80m:
2960202878Srdivacky  case X86::MMX_MOVD64rm:
2961202878Srdivacky  case X86::MMX_MOVQ64rm:
2962202878Srdivacky    return false;
2963202878Srdivacky  }
2964202878Srdivacky
2965202878Srdivacky  EVT VT = Load1->getValueType(0);
2966202878Srdivacky  switch (VT.getSimpleVT().SimpleTy) {
2967210299Sed  default:
2968202878Srdivacky    // XMM registers. In 64-bit mode we can be a bit more aggressive since we
2969202878Srdivacky    // have 16 of them to play with.
2970202878Srdivacky    if (TM.getSubtargetImpl()->is64Bit()) {
2971202878Srdivacky      if (NumLoads >= 3)
2972202878Srdivacky        return false;
2973210299Sed    } else if (NumLoads) {
2974202878Srdivacky      return false;
2975210299Sed    }
2976202878Srdivacky    break;
2977202878Srdivacky  case MVT::i8:
2978202878Srdivacky  case MVT::i16:
2979202878Srdivacky  case MVT::i32:
2980202878Srdivacky  case MVT::i64:
2981202878Srdivacky  case MVT::f32:
2982202878Srdivacky  case MVT::f64:
2983202878Srdivacky    if (NumLoads)
2984202878Srdivacky      return false;
2985210299Sed    break;
2986202878Srdivacky  }
2987202878Srdivacky
2988202878Srdivacky  return true;
2989202878Srdivacky}
2990202878Srdivacky
2991202878Srdivacky
2992193323Sedbool X86InstrInfo::
2993193323SedReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
2994193323Sed  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2995193323Sed  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
2996193323Sed  if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2997193323Sed    return true;
2998193323Sed  Cond[0].setImm(GetOppositeBranchCondition(CC));
2999193323Sed  return false;
3000193323Sed}
3001193323Sed
3002193323Sedbool X86InstrInfo::
3003193323SedisSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
3004193323Sed  // FIXME: Return false for x87 stack register classes for now. We can't
3005193323Sed  // allow any loads of these registers before FpGet_ST0_80.
3006193323Sed  return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
3007193323Sed           RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
3008193323Sed}
3009193323Sed
3010193323Sed
3011203954Srdivacky/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or higher)
3012203954Srdivacky/// register?  e.g. r8, xmm8, xmm13, etc.
3013203954Srdivackybool X86InstrInfo::isX86_64ExtendedReg(unsigned RegNo) {
3014203954Srdivacky  switch (RegNo) {
3015193323Sed  default: break;
3016193323Sed  case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
3017193323Sed  case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
3018193323Sed  case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
3019193323Sed  case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
3020193323Sed  case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
3021193323Sed  case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
3022193323Sed  case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
3023193323Sed  case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
3024193323Sed  case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
3025193323Sed  case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
3026210299Sed  case X86::YMM8:  case X86::YMM9:  case X86::YMM10: case X86::YMM11:
3027210299Sed  case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15:
3028218893Sdim  case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
3029218893Sdim  case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
3030193323Sed    return true;
3031193323Sed  }
3032193323Sed  return false;
3033193323Sed}
3034193323Sed
3035193323Sed/// getGlobalBaseReg - Return a virtual register initialized with the
3036193323Sed/// the global base register value. Output instructions required to
3037193323Sed/// initialize the register in the function entry block, if necessary.
3038193323Sed///
3039210299Sed/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
3040210299Sed///
3041193323Sedunsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3042193323Sed  assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3043193323Sed         "X86-64 PIC uses RIP relative addressing");
3044193323Sed
3045193323Sed  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3046193323Sed  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3047193323Sed  if (GlobalBaseReg != 0)
3048193323Sed    return GlobalBaseReg;
3049193323Sed
3050210299Sed  // Create the register. The code to initialize it is inserted
3051210299Sed  // later, by the CGBR pass (below).
3052193323Sed  MachineRegisterInfo &RegInfo = MF->getRegInfo();
3053210299Sed  GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3054193323Sed  X86FI->setGlobalBaseReg(GlobalBaseReg);
3055193323Sed  return GlobalBaseReg;
3056193323Sed}
3057206083Srdivacky
3058206083Srdivacky// These are the replaceable SSE instructions. Some of these have Int variants
3059206083Srdivacky// that we don't include here. We don't want to replace instructions selected
3060206083Srdivacky// by intrinsics.
3061206083Srdivackystatic const unsigned ReplaceableInstrs[][3] = {
3062212904Sdim  //PackedSingle     PackedDouble    PackedInt
3063206083Srdivacky  { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
3064206083Srdivacky  { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
3065206083Srdivacky  { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
3066206083Srdivacky  { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
3067206083Srdivacky  { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
3068206083Srdivacky  { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
3069206083Srdivacky  { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
3070206083Srdivacky  { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
3071206083Srdivacky  { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
3072206083Srdivacky  { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
3073206083Srdivacky  { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
3074206083Srdivacky  { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
3075206083Srdivacky  { X86::V_SET0PS,   X86::V_SET0PD,  X86::V_SET0PI  },
3076206083Srdivacky  { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
3077206083Srdivacky  { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
3078212904Sdim  // AVX 128-bit support
3079212904Sdim  { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
3080212904Sdim  { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
3081212904Sdim  { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
3082212904Sdim  { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
3083212904Sdim  { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
3084212904Sdim  { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
3085212904Sdim  { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
3086212904Sdim  { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
3087212904Sdim  { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
3088212904Sdim  { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
3089212904Sdim  { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
3090212904Sdim  { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
3091212904Sdim  { X86::AVX_SET0PS, X86::AVX_SET0PD, X86::AVX_SET0PI },
3092212904Sdim  { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
3093212904Sdim  { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
3094224145Sdim  // AVX 256-bit support
3095224145Sdim  { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
3096224145Sdim  { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
3097224145Sdim  { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
3098224145Sdim  { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
3099224145Sdim  { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
3100224145Sdim  { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr },
3101206083Srdivacky};
3102206083Srdivacky
3103206083Srdivacky// FIXME: Some shuffle and unpack instructions have equivalents in different
3104206083Srdivacky// domains, but they require a bit more work than just switching opcodes.
3105206083Srdivacky
3106206083Srdivackystatic const unsigned *lookup(unsigned opcode, unsigned domain) {
3107206083Srdivacky  for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
3108206083Srdivacky    if (ReplaceableInstrs[i][domain-1] == opcode)
3109206083Srdivacky      return ReplaceableInstrs[i];
3110206083Srdivacky  return 0;
3111206083Srdivacky}
3112206083Srdivacky
3113206083Srdivackystd::pair<uint16_t, uint16_t>
3114206083SrdivackyX86InstrInfo::GetSSEDomain(const MachineInstr *MI) const {
3115206083Srdivacky  uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
3116206083Srdivacky  return std::make_pair(domain,
3117206083Srdivacky                        domain && lookup(MI->getOpcode(), domain) ? 0xe : 0);
3118206083Srdivacky}
3119206083Srdivacky
3120206083Srdivackyvoid X86InstrInfo::SetSSEDomain(MachineInstr *MI, unsigned Domain) const {
3121206083Srdivacky  assert(Domain>0 && Domain<4 && "Invalid execution domain");
3122206083Srdivacky  uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
3123206083Srdivacky  assert(dom && "Not an SSE instruction");
3124206083Srdivacky  const unsigned *table = lookup(MI->getOpcode(), dom);
3125206083Srdivacky  assert(table && "Cannot change domain");
3126206083Srdivacky  MI->setDesc(get(table[Domain-1]));
3127206083Srdivacky}
3128207618Srdivacky
3129207618Srdivacky/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
3130207618Srdivackyvoid X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
3131207618Srdivacky  NopInst.setOpcode(X86::NOOP);
3132207618Srdivacky}
3133207618Srdivacky
3134221345Sdimbool X86InstrInfo::isHighLatencyDef(int opc) const {
3135221345Sdim  switch (opc) {
3136218893Sdim  default: return false;
3137218893Sdim  case X86::DIVSDrm:
3138218893Sdim  case X86::DIVSDrm_Int:
3139218893Sdim  case X86::DIVSDrr:
3140218893Sdim  case X86::DIVSDrr_Int:
3141218893Sdim  case X86::DIVSSrm:
3142218893Sdim  case X86::DIVSSrm_Int:
3143218893Sdim  case X86::DIVSSrr:
3144218893Sdim  case X86::DIVSSrr_Int:
3145218893Sdim  case X86::SQRTPDm:
3146218893Sdim  case X86::SQRTPDm_Int:
3147218893Sdim  case X86::SQRTPDr:
3148218893Sdim  case X86::SQRTPDr_Int:
3149218893Sdim  case X86::SQRTPSm:
3150218893Sdim  case X86::SQRTPSm_Int:
3151218893Sdim  case X86::SQRTPSr:
3152218893Sdim  case X86::SQRTPSr_Int:
3153218893Sdim  case X86::SQRTSDm:
3154218893Sdim  case X86::SQRTSDm_Int:
3155218893Sdim  case X86::SQRTSDr:
3156218893Sdim  case X86::SQRTSDr_Int:
3157218893Sdim  case X86::SQRTSSm:
3158218893Sdim  case X86::SQRTSSm_Int:
3159218893Sdim  case X86::SQRTSSr:
3160218893Sdim  case X86::SQRTSSr_Int:
3161218893Sdim    return true;
3162218893Sdim  }
3163218893Sdim}
3164218893Sdim
3165221345Sdimbool X86InstrInfo::
3166221345SdimhasHighOperandLatency(const InstrItineraryData *ItinData,
3167221345Sdim                      const MachineRegisterInfo *MRI,
3168221345Sdim                      const MachineInstr *DefMI, unsigned DefIdx,
3169221345Sdim                      const MachineInstr *UseMI, unsigned UseIdx) const {
3170221345Sdim  return isHighLatencyDef(DefMI->getOpcode());
3171221345Sdim}
3172221345Sdim
3173210299Sednamespace {
3174210299Sed  /// CGBR - Create Global Base Reg pass. This initializes the PIC
3175210299Sed  /// global base register for x86-32.
3176210299Sed  struct CGBR : public MachineFunctionPass {
3177210299Sed    static char ID;
3178212904Sdim    CGBR() : MachineFunctionPass(ID) {}
3179210299Sed
3180210299Sed    virtual bool runOnMachineFunction(MachineFunction &MF) {
3181210299Sed      const X86TargetMachine *TM =
3182210299Sed        static_cast<const X86TargetMachine *>(&MF.getTarget());
3183210299Sed
3184210299Sed      assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
3185210299Sed             "X86-64 PIC uses RIP relative addressing");
3186210299Sed
3187210299Sed      // Only emit a global base reg in PIC mode.
3188210299Sed      if (TM->getRelocationModel() != Reloc::PIC_)
3189210299Sed        return false;
3190210299Sed
3191218893Sdim      X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3192218893Sdim      unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3193218893Sdim
3194218893Sdim      // If we didn't need a GlobalBaseReg, don't insert code.
3195218893Sdim      if (GlobalBaseReg == 0)
3196218893Sdim        return false;
3197218893Sdim
3198210299Sed      // Insert the set of GlobalBaseReg into the first MBB of the function
3199210299Sed      MachineBasicBlock &FirstMBB = MF.front();
3200210299Sed      MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3201210299Sed      DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
3202210299Sed      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3203210299Sed      const X86InstrInfo *TII = TM->getInstrInfo();
3204210299Sed
3205210299Sed      unsigned PC;
3206210299Sed      if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
3207210299Sed        PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3208210299Sed      else
3209218893Sdim        PC = GlobalBaseReg;
3210218893Sdim
3211210299Sed      // Operand of MovePCtoStack is completely ignored by asm printer. It's
3212210299Sed      // only used in JIT code emission as displacement to pc.
3213210299Sed      BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
3214218893Sdim
3215210299Sed      // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3216210299Sed      // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
3217210299Sed      if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
3218210299Sed        // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
3219210299Sed        BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
3220210299Sed          .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
3221210299Sed                                        X86II::MO_GOT_ABSOLUTE_ADDRESS);
3222210299Sed      }
3223210299Sed
3224210299Sed      return true;
3225210299Sed    }
3226210299Sed
3227210299Sed    virtual const char *getPassName() const {
3228210299Sed      return "X86 PIC Global Base Reg Initialization";
3229210299Sed    }
3230210299Sed
3231210299Sed    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
3232210299Sed      AU.setPreservesCFG();
3233210299Sed      MachineFunctionPass::getAnalysisUsage(AU);
3234210299Sed    }
3235210299Sed  };
3236210299Sed}
3237210299Sed
3238210299Sedchar CGBR::ID = 0;
3239210299SedFunctionPass*
3240210299Sedllvm::createGlobalBaseRegPass() { return new CGBR(); }
3241