X86InstrInfo.cpp revision 212904
1193323Sed//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed// This file contains the X86 implementation of the TargetInstrInfo class.
11193323Sed//
12193323Sed//===----------------------------------------------------------------------===//
13193323Sed
14193323Sed#include "X86InstrInfo.h"
15193323Sed#include "X86.h"
16193323Sed#include "X86GenInstrInfo.inc"
17193323Sed#include "X86InstrBuilder.h"
18193323Sed#include "X86MachineFunctionInfo.h"
19193323Sed#include "X86Subtarget.h"
20193323Sed#include "X86TargetMachine.h"
21193323Sed#include "llvm/DerivedTypes.h"
22198090Srdivacky#include "llvm/LLVMContext.h"
23193323Sed#include "llvm/ADT/STLExtras.h"
24193323Sed#include "llvm/CodeGen/MachineConstantPool.h"
25193323Sed#include "llvm/CodeGen/MachineFrameInfo.h"
26193323Sed#include "llvm/CodeGen/MachineInstrBuilder.h"
27193323Sed#include "llvm/CodeGen/MachineRegisterInfo.h"
28193323Sed#include "llvm/CodeGen/LiveVariables.h"
29199481Srdivacky#include "llvm/CodeGen/PseudoSourceValue.h"
30207618Srdivacky#include "llvm/MC/MCInst.h"
31193323Sed#include "llvm/Support/CommandLine.h"
32202375Srdivacky#include "llvm/Support/Debug.h"
33198090Srdivacky#include "llvm/Support/ErrorHandling.h"
34198090Srdivacky#include "llvm/Support/raw_ostream.h"
35193323Sed#include "llvm/Target/TargetOptions.h"
36198090Srdivacky#include "llvm/MC/MCAsmInfo.h"
37199481Srdivacky
38199481Srdivacky#include <limits>
39199481Srdivacky
40193323Sedusing namespace llvm;
41193323Sed
42198090Srdivackystatic cl::opt<bool>
43198090SrdivackyNoFusing("disable-spill-fusing",
44198090Srdivacky         cl::desc("Disable fusing of spill code into instructions"));
45198090Srdivackystatic cl::opt<bool>
46198090SrdivackyPrintFailedFusing("print-failed-fuse-candidates",
47198090Srdivacky                  cl::desc("Print instructions that the allocator wants to"
48198090Srdivacky                           " fuse, but the X86 backend currently can't"),
49198090Srdivacky                  cl::Hidden);
50198090Srdivackystatic cl::opt<bool>
51198090SrdivackyReMatPICStubLoad("remat-pic-stub-load",
52198090Srdivacky                 cl::desc("Re-materialize load from stub in PIC mode"),
53198090Srdivacky                 cl::init(false), cl::Hidden);
54193323Sed
55193323SedX86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
56193323Sed  : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
57193323Sed    TM(tm), RI(tm, *this) {
58193323Sed  SmallVector<unsigned,16> AmbEntries;
59193323Sed  static const unsigned OpTbl2Addr[][2] = {
60193323Sed    { X86::ADC32ri,     X86::ADC32mi },
61193323Sed    { X86::ADC32ri8,    X86::ADC32mi8 },
62193323Sed    { X86::ADC32rr,     X86::ADC32mr },
63193323Sed    { X86::ADC64ri32,   X86::ADC64mi32 },
64193323Sed    { X86::ADC64ri8,    X86::ADC64mi8 },
65193323Sed    { X86::ADC64rr,     X86::ADC64mr },
66193323Sed    { X86::ADD16ri,     X86::ADD16mi },
67193323Sed    { X86::ADD16ri8,    X86::ADD16mi8 },
68193323Sed    { X86::ADD16rr,     X86::ADD16mr },
69193323Sed    { X86::ADD32ri,     X86::ADD32mi },
70193323Sed    { X86::ADD32ri8,    X86::ADD32mi8 },
71193323Sed    { X86::ADD32rr,     X86::ADD32mr },
72193323Sed    { X86::ADD64ri32,   X86::ADD64mi32 },
73193323Sed    { X86::ADD64ri8,    X86::ADD64mi8 },
74193323Sed    { X86::ADD64rr,     X86::ADD64mr },
75193323Sed    { X86::ADD8ri,      X86::ADD8mi },
76193323Sed    { X86::ADD8rr,      X86::ADD8mr },
77193323Sed    { X86::AND16ri,     X86::AND16mi },
78193323Sed    { X86::AND16ri8,    X86::AND16mi8 },
79193323Sed    { X86::AND16rr,     X86::AND16mr },
80193323Sed    { X86::AND32ri,     X86::AND32mi },
81193323Sed    { X86::AND32ri8,    X86::AND32mi8 },
82193323Sed    { X86::AND32rr,     X86::AND32mr },
83193323Sed    { X86::AND64ri32,   X86::AND64mi32 },
84193323Sed    { X86::AND64ri8,    X86::AND64mi8 },
85193323Sed    { X86::AND64rr,     X86::AND64mr },
86193323Sed    { X86::AND8ri,      X86::AND8mi },
87193323Sed    { X86::AND8rr,      X86::AND8mr },
88193323Sed    { X86::DEC16r,      X86::DEC16m },
89193323Sed    { X86::DEC32r,      X86::DEC32m },
90193323Sed    { X86::DEC64_16r,   X86::DEC64_16m },
91193323Sed    { X86::DEC64_32r,   X86::DEC64_32m },
92193323Sed    { X86::DEC64r,      X86::DEC64m },
93193323Sed    { X86::DEC8r,       X86::DEC8m },
94193323Sed    { X86::INC16r,      X86::INC16m },
95193323Sed    { X86::INC32r,      X86::INC32m },
96193323Sed    { X86::INC64_16r,   X86::INC64_16m },
97193323Sed    { X86::INC64_32r,   X86::INC64_32m },
98193323Sed    { X86::INC64r,      X86::INC64m },
99193323Sed    { X86::INC8r,       X86::INC8m },
100193323Sed    { X86::NEG16r,      X86::NEG16m },
101193323Sed    { X86::NEG32r,      X86::NEG32m },
102193323Sed    { X86::NEG64r,      X86::NEG64m },
103193323Sed    { X86::NEG8r,       X86::NEG8m },
104193323Sed    { X86::NOT16r,      X86::NOT16m },
105193323Sed    { X86::NOT32r,      X86::NOT32m },
106193323Sed    { X86::NOT64r,      X86::NOT64m },
107193323Sed    { X86::NOT8r,       X86::NOT8m },
108193323Sed    { X86::OR16ri,      X86::OR16mi },
109193323Sed    { X86::OR16ri8,     X86::OR16mi8 },
110193323Sed    { X86::OR16rr,      X86::OR16mr },
111193323Sed    { X86::OR32ri,      X86::OR32mi },
112193323Sed    { X86::OR32ri8,     X86::OR32mi8 },
113193323Sed    { X86::OR32rr,      X86::OR32mr },
114193323Sed    { X86::OR64ri32,    X86::OR64mi32 },
115193323Sed    { X86::OR64ri8,     X86::OR64mi8 },
116193323Sed    { X86::OR64rr,      X86::OR64mr },
117193323Sed    { X86::OR8ri,       X86::OR8mi },
118193323Sed    { X86::OR8rr,       X86::OR8mr },
119193323Sed    { X86::ROL16r1,     X86::ROL16m1 },
120193323Sed    { X86::ROL16rCL,    X86::ROL16mCL },
121193323Sed    { X86::ROL16ri,     X86::ROL16mi },
122193323Sed    { X86::ROL32r1,     X86::ROL32m1 },
123193323Sed    { X86::ROL32rCL,    X86::ROL32mCL },
124193323Sed    { X86::ROL32ri,     X86::ROL32mi },
125193323Sed    { X86::ROL64r1,     X86::ROL64m1 },
126193323Sed    { X86::ROL64rCL,    X86::ROL64mCL },
127193323Sed    { X86::ROL64ri,     X86::ROL64mi },
128193323Sed    { X86::ROL8r1,      X86::ROL8m1 },
129193323Sed    { X86::ROL8rCL,     X86::ROL8mCL },
130193323Sed    { X86::ROL8ri,      X86::ROL8mi },
131193323Sed    { X86::ROR16r1,     X86::ROR16m1 },
132193323Sed    { X86::ROR16rCL,    X86::ROR16mCL },
133193323Sed    { X86::ROR16ri,     X86::ROR16mi },
134193323Sed    { X86::ROR32r1,     X86::ROR32m1 },
135193323Sed    { X86::ROR32rCL,    X86::ROR32mCL },
136193323Sed    { X86::ROR32ri,     X86::ROR32mi },
137193323Sed    { X86::ROR64r1,     X86::ROR64m1 },
138193323Sed    { X86::ROR64rCL,    X86::ROR64mCL },
139193323Sed    { X86::ROR64ri,     X86::ROR64mi },
140193323Sed    { X86::ROR8r1,      X86::ROR8m1 },
141193323Sed    { X86::ROR8rCL,     X86::ROR8mCL },
142193323Sed    { X86::ROR8ri,      X86::ROR8mi },
143193323Sed    { X86::SAR16r1,     X86::SAR16m1 },
144193323Sed    { X86::SAR16rCL,    X86::SAR16mCL },
145193323Sed    { X86::SAR16ri,     X86::SAR16mi },
146193323Sed    { X86::SAR32r1,     X86::SAR32m1 },
147193323Sed    { X86::SAR32rCL,    X86::SAR32mCL },
148193323Sed    { X86::SAR32ri,     X86::SAR32mi },
149193323Sed    { X86::SAR64r1,     X86::SAR64m1 },
150193323Sed    { X86::SAR64rCL,    X86::SAR64mCL },
151193323Sed    { X86::SAR64ri,     X86::SAR64mi },
152193323Sed    { X86::SAR8r1,      X86::SAR8m1 },
153193323Sed    { X86::SAR8rCL,     X86::SAR8mCL },
154193323Sed    { X86::SAR8ri,      X86::SAR8mi },
155193323Sed    { X86::SBB32ri,     X86::SBB32mi },
156193323Sed    { X86::SBB32ri8,    X86::SBB32mi8 },
157193323Sed    { X86::SBB32rr,     X86::SBB32mr },
158193323Sed    { X86::SBB64ri32,   X86::SBB64mi32 },
159193323Sed    { X86::SBB64ri8,    X86::SBB64mi8 },
160193323Sed    { X86::SBB64rr,     X86::SBB64mr },
161193323Sed    { X86::SHL16rCL,    X86::SHL16mCL },
162193323Sed    { X86::SHL16ri,     X86::SHL16mi },
163193323Sed    { X86::SHL32rCL,    X86::SHL32mCL },
164193323Sed    { X86::SHL32ri,     X86::SHL32mi },
165193323Sed    { X86::SHL64rCL,    X86::SHL64mCL },
166193323Sed    { X86::SHL64ri,     X86::SHL64mi },
167193323Sed    { X86::SHL8rCL,     X86::SHL8mCL },
168193323Sed    { X86::SHL8ri,      X86::SHL8mi },
169193323Sed    { X86::SHLD16rrCL,  X86::SHLD16mrCL },
170193323Sed    { X86::SHLD16rri8,  X86::SHLD16mri8 },
171193323Sed    { X86::SHLD32rrCL,  X86::SHLD32mrCL },
172193323Sed    { X86::SHLD32rri8,  X86::SHLD32mri8 },
173193323Sed    { X86::SHLD64rrCL,  X86::SHLD64mrCL },
174193323Sed    { X86::SHLD64rri8,  X86::SHLD64mri8 },
175193323Sed    { X86::SHR16r1,     X86::SHR16m1 },
176193323Sed    { X86::SHR16rCL,    X86::SHR16mCL },
177193323Sed    { X86::SHR16ri,     X86::SHR16mi },
178193323Sed    { X86::SHR32r1,     X86::SHR32m1 },
179193323Sed    { X86::SHR32rCL,    X86::SHR32mCL },
180193323Sed    { X86::SHR32ri,     X86::SHR32mi },
181193323Sed    { X86::SHR64r1,     X86::SHR64m1 },
182193323Sed    { X86::SHR64rCL,    X86::SHR64mCL },
183193323Sed    { X86::SHR64ri,     X86::SHR64mi },
184193323Sed    { X86::SHR8r1,      X86::SHR8m1 },
185193323Sed    { X86::SHR8rCL,     X86::SHR8mCL },
186193323Sed    { X86::SHR8ri,      X86::SHR8mi },
187193323Sed    { X86::SHRD16rrCL,  X86::SHRD16mrCL },
188193323Sed    { X86::SHRD16rri8,  X86::SHRD16mri8 },
189193323Sed    { X86::SHRD32rrCL,  X86::SHRD32mrCL },
190193323Sed    { X86::SHRD32rri8,  X86::SHRD32mri8 },
191193323Sed    { X86::SHRD64rrCL,  X86::SHRD64mrCL },
192193323Sed    { X86::SHRD64rri8,  X86::SHRD64mri8 },
193193323Sed    { X86::SUB16ri,     X86::SUB16mi },
194193323Sed    { X86::SUB16ri8,    X86::SUB16mi8 },
195193323Sed    { X86::SUB16rr,     X86::SUB16mr },
196193323Sed    { X86::SUB32ri,     X86::SUB32mi },
197193323Sed    { X86::SUB32ri8,    X86::SUB32mi8 },
198193323Sed    { X86::SUB32rr,     X86::SUB32mr },
199193323Sed    { X86::SUB64ri32,   X86::SUB64mi32 },
200193323Sed    { X86::SUB64ri8,    X86::SUB64mi8 },
201193323Sed    { X86::SUB64rr,     X86::SUB64mr },
202193323Sed    { X86::SUB8ri,      X86::SUB8mi },
203193323Sed    { X86::SUB8rr,      X86::SUB8mr },
204193323Sed    { X86::XOR16ri,     X86::XOR16mi },
205193323Sed    { X86::XOR16ri8,    X86::XOR16mi8 },
206193323Sed    { X86::XOR16rr,     X86::XOR16mr },
207193323Sed    { X86::XOR32ri,     X86::XOR32mi },
208193323Sed    { X86::XOR32ri8,    X86::XOR32mi8 },
209193323Sed    { X86::XOR32rr,     X86::XOR32mr },
210193323Sed    { X86::XOR64ri32,   X86::XOR64mi32 },
211193323Sed    { X86::XOR64ri8,    X86::XOR64mi8 },
212193323Sed    { X86::XOR64rr,     X86::XOR64mr },
213193323Sed    { X86::XOR8ri,      X86::XOR8mi },
214193323Sed    { X86::XOR8rr,      X86::XOR8mr }
215193323Sed  };
216193323Sed
217193323Sed  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
218193323Sed    unsigned RegOp = OpTbl2Addr[i][0];
219193323Sed    unsigned MemOp = OpTbl2Addr[i][1];
220193323Sed    if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
221198090Srdivacky                                               std::make_pair(MemOp,0))).second)
222193323Sed      assert(false && "Duplicated entries?");
223198090Srdivacky    // Index 0, folded load and store, no alignment requirement.
224198090Srdivacky    unsigned AuxInfo = 0 | (1 << 4) | (1 << 5);
225193323Sed    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
226193323Sed                                                std::make_pair(RegOp,
227193323Sed                                                              AuxInfo))).second)
228193323Sed      AmbEntries.push_back(MemOp);
229193323Sed  }
230193323Sed
231193323Sed  // If the third value is 1, then it's folding either a load or a store.
232198090Srdivacky  static const unsigned OpTbl0[][4] = {
233198090Srdivacky    { X86::BT16ri8,     X86::BT16mi8, 1, 0 },
234198090Srdivacky    { X86::BT32ri8,     X86::BT32mi8, 1, 0 },
235198090Srdivacky    { X86::BT64ri8,     X86::BT64mi8, 1, 0 },
236198090Srdivacky    { X86::CALL32r,     X86::CALL32m, 1, 0 },
237198090Srdivacky    { X86::CALL64r,     X86::CALL64m, 1, 0 },
238212904Sdim    { X86::WINCALL64r,  X86::WINCALL64m, 1, 0 },
239198090Srdivacky    { X86::CMP16ri,     X86::CMP16mi, 1, 0 },
240198090Srdivacky    { X86::CMP16ri8,    X86::CMP16mi8, 1, 0 },
241198090Srdivacky    { X86::CMP16rr,     X86::CMP16mr, 1, 0 },
242198090Srdivacky    { X86::CMP32ri,     X86::CMP32mi, 1, 0 },
243198090Srdivacky    { X86::CMP32ri8,    X86::CMP32mi8, 1, 0 },
244198090Srdivacky    { X86::CMP32rr,     X86::CMP32mr, 1, 0 },
245198090Srdivacky    { X86::CMP64ri32,   X86::CMP64mi32, 1, 0 },
246198090Srdivacky    { X86::CMP64ri8,    X86::CMP64mi8, 1, 0 },
247198090Srdivacky    { X86::CMP64rr,     X86::CMP64mr, 1, 0 },
248198090Srdivacky    { X86::CMP8ri,      X86::CMP8mi, 1, 0 },
249198090Srdivacky    { X86::CMP8rr,      X86::CMP8mr, 1, 0 },
250198090Srdivacky    { X86::DIV16r,      X86::DIV16m, 1, 0 },
251198090Srdivacky    { X86::DIV32r,      X86::DIV32m, 1, 0 },
252198090Srdivacky    { X86::DIV64r,      X86::DIV64m, 1, 0 },
253198090Srdivacky    { X86::DIV8r,       X86::DIV8m, 1, 0 },
254198090Srdivacky    { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 },
255198090Srdivacky    { X86::FsMOVAPDrr,  X86::MOVSDmr, 0, 0 },
256198090Srdivacky    { X86::FsMOVAPSrr,  X86::MOVSSmr, 0, 0 },
257198090Srdivacky    { X86::IDIV16r,     X86::IDIV16m, 1, 0 },
258198090Srdivacky    { X86::IDIV32r,     X86::IDIV32m, 1, 0 },
259198090Srdivacky    { X86::IDIV64r,     X86::IDIV64m, 1, 0 },
260198090Srdivacky    { X86::IDIV8r,      X86::IDIV8m, 1, 0 },
261198090Srdivacky    { X86::IMUL16r,     X86::IMUL16m, 1, 0 },
262198090Srdivacky    { X86::IMUL32r,     X86::IMUL32m, 1, 0 },
263198090Srdivacky    { X86::IMUL64r,     X86::IMUL64m, 1, 0 },
264198090Srdivacky    { X86::IMUL8r,      X86::IMUL8m, 1, 0 },
265198090Srdivacky    { X86::JMP32r,      X86::JMP32m, 1, 0 },
266198090Srdivacky    { X86::JMP64r,      X86::JMP64m, 1, 0 },
267198090Srdivacky    { X86::MOV16ri,     X86::MOV16mi, 0, 0 },
268198090Srdivacky    { X86::MOV16rr,     X86::MOV16mr, 0, 0 },
269198090Srdivacky    { X86::MOV32ri,     X86::MOV32mi, 0, 0 },
270198090Srdivacky    { X86::MOV32rr,     X86::MOV32mr, 0, 0 },
271205218Srdivacky    { X86::MOV32rr_TC,  X86::MOV32mr_TC, 0, 0 },
272198090Srdivacky    { X86::MOV64ri32,   X86::MOV64mi32, 0, 0 },
273198090Srdivacky    { X86::MOV64rr,     X86::MOV64mr, 0, 0 },
274198090Srdivacky    { X86::MOV8ri,      X86::MOV8mi, 0, 0 },
275198090Srdivacky    { X86::MOV8rr,      X86::MOV8mr, 0, 0 },
276198090Srdivacky    { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 },
277198090Srdivacky    { X86::MOVAPDrr,    X86::MOVAPDmr, 0, 16 },
278198090Srdivacky    { X86::MOVAPSrr,    X86::MOVAPSmr, 0, 16 },
279198090Srdivacky    { X86::MOVDQArr,    X86::MOVDQAmr, 0, 16 },
280198090Srdivacky    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 },
281198090Srdivacky    { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 },
282198090Srdivacky    { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 },
283198090Srdivacky    { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0, 0 },
284198090Srdivacky    { X86::MOVUPDrr,    X86::MOVUPDmr, 0, 0 },
285198090Srdivacky    { X86::MOVUPSrr,    X86::MOVUPSmr, 0, 0 },
286198090Srdivacky    { X86::MUL16r,      X86::MUL16m, 1, 0 },
287198090Srdivacky    { X86::MUL32r,      X86::MUL32m, 1, 0 },
288198090Srdivacky    { X86::MUL64r,      X86::MUL64m, 1, 0 },
289198090Srdivacky    { X86::MUL8r,       X86::MUL8m, 1, 0 },
290198090Srdivacky    { X86::SETAEr,      X86::SETAEm, 0, 0 },
291198090Srdivacky    { X86::SETAr,       X86::SETAm, 0, 0 },
292198090Srdivacky    { X86::SETBEr,      X86::SETBEm, 0, 0 },
293198090Srdivacky    { X86::SETBr,       X86::SETBm, 0, 0 },
294198090Srdivacky    { X86::SETEr,       X86::SETEm, 0, 0 },
295198090Srdivacky    { X86::SETGEr,      X86::SETGEm, 0, 0 },
296198090Srdivacky    { X86::SETGr,       X86::SETGm, 0, 0 },
297198090Srdivacky    { X86::SETLEr,      X86::SETLEm, 0, 0 },
298198090Srdivacky    { X86::SETLr,       X86::SETLm, 0, 0 },
299198090Srdivacky    { X86::SETNEr,      X86::SETNEm, 0, 0 },
300198090Srdivacky    { X86::SETNOr,      X86::SETNOm, 0, 0 },
301198090Srdivacky    { X86::SETNPr,      X86::SETNPm, 0, 0 },
302198090Srdivacky    { X86::SETNSr,      X86::SETNSm, 0, 0 },
303198090Srdivacky    { X86::SETOr,       X86::SETOm, 0, 0 },
304198090Srdivacky    { X86::SETPr,       X86::SETPm, 0, 0 },
305198090Srdivacky    { X86::SETSr,       X86::SETSm, 0, 0 },
306198090Srdivacky    { X86::TAILJMPr,    X86::TAILJMPm, 1, 0 },
307205218Srdivacky    { X86::TAILJMPr64,  X86::TAILJMPm64, 1, 0 },
308198090Srdivacky    { X86::TEST16ri,    X86::TEST16mi, 1, 0 },
309198090Srdivacky    { X86::TEST32ri,    X86::TEST32mi, 1, 0 },
310198090Srdivacky    { X86::TEST64ri32,  X86::TEST64mi32, 1, 0 },
311198090Srdivacky    { X86::TEST8ri,     X86::TEST8mi, 1, 0 }
312193323Sed  };
313193323Sed
314193323Sed  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
315193323Sed    unsigned RegOp = OpTbl0[i][0];
316193323Sed    unsigned MemOp = OpTbl0[i][1];
317198090Srdivacky    unsigned Align = OpTbl0[i][3];
318193323Sed    if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
319198090Srdivacky                                           std::make_pair(MemOp,Align))).second)
320193323Sed      assert(false && "Duplicated entries?");
321193323Sed    unsigned FoldedLoad = OpTbl0[i][2];
322193323Sed    // Index 0, folded load or store.
323193323Sed    unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
324193323Sed    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
325193323Sed      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
326193323Sed                                     std::make_pair(RegOp, AuxInfo))).second)
327193323Sed        AmbEntries.push_back(MemOp);
328193323Sed  }
329193323Sed
330198090Srdivacky  static const unsigned OpTbl1[][3] = {
331198090Srdivacky    { X86::CMP16rr,         X86::CMP16rm, 0 },
332198090Srdivacky    { X86::CMP32rr,         X86::CMP32rm, 0 },
333198090Srdivacky    { X86::CMP64rr,         X86::CMP64rm, 0 },
334198090Srdivacky    { X86::CMP8rr,          X86::CMP8rm, 0 },
335198090Srdivacky    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm, 0 },
336198090Srdivacky    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm, 0 },
337198090Srdivacky    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm, 0 },
338198090Srdivacky    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm, 0 },
339198090Srdivacky    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm, 0 },
340198090Srdivacky    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm, 0 },
341198090Srdivacky    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm, 0 },
342198090Srdivacky    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm, 0 },
343198090Srdivacky    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm, 0 },
344198090Srdivacky    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm, 0 },
345198090Srdivacky    { X86::FsMOVAPDrr,      X86::MOVSDrm, 0 },
346198090Srdivacky    { X86::FsMOVAPSrr,      X86::MOVSSrm, 0 },
347198090Srdivacky    { X86::IMUL16rri,       X86::IMUL16rmi, 0 },
348198090Srdivacky    { X86::IMUL16rri8,      X86::IMUL16rmi8, 0 },
349198090Srdivacky    { X86::IMUL32rri,       X86::IMUL32rmi, 0 },
350198090Srdivacky    { X86::IMUL32rri8,      X86::IMUL32rmi8, 0 },
351198090Srdivacky    { X86::IMUL64rri32,     X86::IMUL64rmi32, 0 },
352198090Srdivacky    { X86::IMUL64rri8,      X86::IMUL64rmi8, 0 },
353198090Srdivacky    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm, 0 },
354198090Srdivacky    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm, 0 },
355198090Srdivacky    { X86::Int_COMISDrr,    X86::Int_COMISDrm, 0 },
356198090Srdivacky    { X86::Int_COMISSrr,    X86::Int_COMISSrm, 0 },
357198090Srdivacky    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm, 16 },
358198090Srdivacky    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm, 16 },
359198090Srdivacky    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm, 16 },
360198090Srdivacky    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm, 16 },
361198090Srdivacky    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm, 16 },
362198090Srdivacky    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm, 0 },
363198090Srdivacky    { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm, 0 },
364198090Srdivacky    { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm, 0 },
365198090Srdivacky    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm, 0 },
366198090Srdivacky    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
367198090Srdivacky    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm, 0 },
368198090Srdivacky    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
369198090Srdivacky    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm, 0 },
370198090Srdivacky    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm, 0 },
371198090Srdivacky    { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 },
372198090Srdivacky    { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm, 0 },
373198090Srdivacky    { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm, 16 },
374198090Srdivacky    { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm, 16 },
375198090Srdivacky    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
376198090Srdivacky    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
377198090Srdivacky    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
378198090Srdivacky    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
379198090Srdivacky    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm, 0 },
380198090Srdivacky    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm, 0 },
381198090Srdivacky    { X86::MOV16rr,         X86::MOV16rm, 0 },
382198090Srdivacky    { X86::MOV32rr,         X86::MOV32rm, 0 },
383205218Srdivacky    { X86::MOV32rr_TC,      X86::MOV32rm_TC, 0 },
384198090Srdivacky    { X86::MOV64rr,         X86::MOV64rm, 0 },
385198090Srdivacky    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm, 0 },
386198090Srdivacky    { X86::MOV64toSDrr,     X86::MOV64toSDrm, 0 },
387198090Srdivacky    { X86::MOV8rr,          X86::MOV8rm, 0 },
388198090Srdivacky    { X86::MOVAPDrr,        X86::MOVAPDrm, 16 },
389198090Srdivacky    { X86::MOVAPSrr,        X86::MOVAPSrm, 16 },
390198090Srdivacky    { X86::MOVDDUPrr,       X86::MOVDDUPrm, 0 },
391198090Srdivacky    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm, 0 },
392198090Srdivacky    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm, 0 },
393198090Srdivacky    { X86::MOVDQArr,        X86::MOVDQArm, 16 },
394198090Srdivacky    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm, 16 },
395198090Srdivacky    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm, 16 },
396198090Srdivacky    { X86::MOVSX16rr8,      X86::MOVSX16rm8, 0 },
397198090Srdivacky    { X86::MOVSX32rr16,     X86::MOVSX32rm16, 0 },
398198090Srdivacky    { X86::MOVSX32rr8,      X86::MOVSX32rm8, 0 },
399198090Srdivacky    { X86::MOVSX64rr16,     X86::MOVSX64rm16, 0 },
400198090Srdivacky    { X86::MOVSX64rr32,     X86::MOVSX64rm32, 0 },
401198090Srdivacky    { X86::MOVSX64rr8,      X86::MOVSX64rm8, 0 },
402198090Srdivacky    { X86::MOVUPDrr,        X86::MOVUPDrm, 16 },
403202878Srdivacky    { X86::MOVUPSrr,        X86::MOVUPSrm, 0 },
404198090Srdivacky    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm, 0 },
405198090Srdivacky    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm, 0 },
406198090Srdivacky    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 },
407198090Srdivacky    { X86::MOVZX16rr8,      X86::MOVZX16rm8, 0 },
408198090Srdivacky    { X86::MOVZX32rr16,     X86::MOVZX32rm16, 0 },
409198090Srdivacky    { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
410198090Srdivacky    { X86::MOVZX32rr8,      X86::MOVZX32rm8, 0 },
411198090Srdivacky    { X86::MOVZX64rr16,     X86::MOVZX64rm16, 0 },
412198090Srdivacky    { X86::MOVZX64rr32,     X86::MOVZX64rm32, 0 },
413198090Srdivacky    { X86::MOVZX64rr8,      X86::MOVZX64rm8, 0 },
414198090Srdivacky    { X86::PSHUFDri,        X86::PSHUFDmi, 16 },
415198090Srdivacky    { X86::PSHUFHWri,       X86::PSHUFHWmi, 16 },
416198090Srdivacky    { X86::PSHUFLWri,       X86::PSHUFLWmi, 16 },
417198090Srdivacky    { X86::RCPPSr,          X86::RCPPSm, 16 },
418198090Srdivacky    { X86::RCPPSr_Int,      X86::RCPPSm_Int, 16 },
419198090Srdivacky    { X86::RSQRTPSr,        X86::RSQRTPSm, 16 },
420198090Srdivacky    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int, 16 },
421198090Srdivacky    { X86::RSQRTSSr,        X86::RSQRTSSm, 0 },
422198090Srdivacky    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int, 0 },
423198090Srdivacky    { X86::SQRTPDr,         X86::SQRTPDm, 16 },
424198090Srdivacky    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int, 16 },
425198090Srdivacky    { X86::SQRTPSr,         X86::SQRTPSm, 16 },
426198090Srdivacky    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int, 16 },
427198090Srdivacky    { X86::SQRTSDr,         X86::SQRTSDm, 0 },
428198090Srdivacky    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int, 0 },
429198090Srdivacky    { X86::SQRTSSr,         X86::SQRTSSm, 0 },
430198090Srdivacky    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int, 0 },
431198090Srdivacky    { X86::TEST16rr,        X86::TEST16rm, 0 },
432198090Srdivacky    { X86::TEST32rr,        X86::TEST32rm, 0 },
433198090Srdivacky    { X86::TEST64rr,        X86::TEST64rm, 0 },
434198090Srdivacky    { X86::TEST8rr,         X86::TEST8rm, 0 },
435193323Sed    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
436198090Srdivacky    { X86::UCOMISDrr,       X86::UCOMISDrm, 0 },
437198090Srdivacky    { X86::UCOMISSrr,       X86::UCOMISSrm, 0 }
438193323Sed  };
439193323Sed
440193323Sed  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
441193323Sed    unsigned RegOp = OpTbl1[i][0];
442193323Sed    unsigned MemOp = OpTbl1[i][1];
443198090Srdivacky    unsigned Align = OpTbl1[i][2];
444193323Sed    if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
445198090Srdivacky                                           std::make_pair(MemOp,Align))).second)
446193323Sed      assert(false && "Duplicated entries?");
447198090Srdivacky    // Index 1, folded load
448198090Srdivacky    unsigned AuxInfo = 1 | (1 << 4);
449193323Sed    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
450193323Sed      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
451193323Sed                                     std::make_pair(RegOp, AuxInfo))).second)
452193323Sed        AmbEntries.push_back(MemOp);
453193323Sed  }
454193323Sed
455198090Srdivacky  static const unsigned OpTbl2[][3] = {
456198090Srdivacky    { X86::ADC32rr,         X86::ADC32rm, 0 },
457198090Srdivacky    { X86::ADC64rr,         X86::ADC64rm, 0 },
458198090Srdivacky    { X86::ADD16rr,         X86::ADD16rm, 0 },
459198090Srdivacky    { X86::ADD32rr,         X86::ADD32rm, 0 },
460198090Srdivacky    { X86::ADD64rr,         X86::ADD64rm, 0 },
461198090Srdivacky    { X86::ADD8rr,          X86::ADD8rm, 0 },
462198090Srdivacky    { X86::ADDPDrr,         X86::ADDPDrm, 16 },
463198090Srdivacky    { X86::ADDPSrr,         X86::ADDPSrm, 16 },
464198090Srdivacky    { X86::ADDSDrr,         X86::ADDSDrm, 0 },
465198090Srdivacky    { X86::ADDSSrr,         X86::ADDSSrm, 0 },
466198090Srdivacky    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm, 16 },
467198090Srdivacky    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm, 16 },
468198090Srdivacky    { X86::AND16rr,         X86::AND16rm, 0 },
469198090Srdivacky    { X86::AND32rr,         X86::AND32rm, 0 },
470198090Srdivacky    { X86::AND64rr,         X86::AND64rm, 0 },
471198090Srdivacky    { X86::AND8rr,          X86::AND8rm, 0 },
472198090Srdivacky    { X86::ANDNPDrr,        X86::ANDNPDrm, 16 },
473198090Srdivacky    { X86::ANDNPSrr,        X86::ANDNPSrm, 16 },
474198090Srdivacky    { X86::ANDPDrr,         X86::ANDPDrm, 16 },
475198090Srdivacky    { X86::ANDPSrr,         X86::ANDPSrm, 16 },
476198090Srdivacky    { X86::CMOVA16rr,       X86::CMOVA16rm, 0 },
477198090Srdivacky    { X86::CMOVA32rr,       X86::CMOVA32rm, 0 },
478198090Srdivacky    { X86::CMOVA64rr,       X86::CMOVA64rm, 0 },
479198090Srdivacky    { X86::CMOVAE16rr,      X86::CMOVAE16rm, 0 },
480198090Srdivacky    { X86::CMOVAE32rr,      X86::CMOVAE32rm, 0 },
481198090Srdivacky    { X86::CMOVAE64rr,      X86::CMOVAE64rm, 0 },
482198090Srdivacky    { X86::CMOVB16rr,       X86::CMOVB16rm, 0 },
483198090Srdivacky    { X86::CMOVB32rr,       X86::CMOVB32rm, 0 },
484198090Srdivacky    { X86::CMOVB64rr,       X86::CMOVB64rm, 0 },
485198090Srdivacky    { X86::CMOVBE16rr,      X86::CMOVBE16rm, 0 },
486198090Srdivacky    { X86::CMOVBE32rr,      X86::CMOVBE32rm, 0 },
487198090Srdivacky    { X86::CMOVBE64rr,      X86::CMOVBE64rm, 0 },
488198090Srdivacky    { X86::CMOVE16rr,       X86::CMOVE16rm, 0 },
489198090Srdivacky    { X86::CMOVE32rr,       X86::CMOVE32rm, 0 },
490198090Srdivacky    { X86::CMOVE64rr,       X86::CMOVE64rm, 0 },
491198090Srdivacky    { X86::CMOVG16rr,       X86::CMOVG16rm, 0 },
492198090Srdivacky    { X86::CMOVG32rr,       X86::CMOVG32rm, 0 },
493198090Srdivacky    { X86::CMOVG64rr,       X86::CMOVG64rm, 0 },
494198090Srdivacky    { X86::CMOVGE16rr,      X86::CMOVGE16rm, 0 },
495198090Srdivacky    { X86::CMOVGE32rr,      X86::CMOVGE32rm, 0 },
496198090Srdivacky    { X86::CMOVGE64rr,      X86::CMOVGE64rm, 0 },
497198090Srdivacky    { X86::CMOVL16rr,       X86::CMOVL16rm, 0 },
498198090Srdivacky    { X86::CMOVL32rr,       X86::CMOVL32rm, 0 },
499198090Srdivacky    { X86::CMOVL64rr,       X86::CMOVL64rm, 0 },
500198090Srdivacky    { X86::CMOVLE16rr,      X86::CMOVLE16rm, 0 },
501198090Srdivacky    { X86::CMOVLE32rr,      X86::CMOVLE32rm, 0 },
502198090Srdivacky    { X86::CMOVLE64rr,      X86::CMOVLE64rm, 0 },
503198090Srdivacky    { X86::CMOVNE16rr,      X86::CMOVNE16rm, 0 },
504198090Srdivacky    { X86::CMOVNE32rr,      X86::CMOVNE32rm, 0 },
505198090Srdivacky    { X86::CMOVNE64rr,      X86::CMOVNE64rm, 0 },
506198090Srdivacky    { X86::CMOVNO16rr,      X86::CMOVNO16rm, 0 },
507198090Srdivacky    { X86::CMOVNO32rr,      X86::CMOVNO32rm, 0 },
508198090Srdivacky    { X86::CMOVNO64rr,      X86::CMOVNO64rm, 0 },
509198090Srdivacky    { X86::CMOVNP16rr,      X86::CMOVNP16rm, 0 },
510198090Srdivacky    { X86::CMOVNP32rr,      X86::CMOVNP32rm, 0 },
511198090Srdivacky    { X86::CMOVNP64rr,      X86::CMOVNP64rm, 0 },
512198090Srdivacky    { X86::CMOVNS16rr,      X86::CMOVNS16rm, 0 },
513198090Srdivacky    { X86::CMOVNS32rr,      X86::CMOVNS32rm, 0 },
514198090Srdivacky    { X86::CMOVNS64rr,      X86::CMOVNS64rm, 0 },
515198090Srdivacky    { X86::CMOVO16rr,       X86::CMOVO16rm, 0 },
516198090Srdivacky    { X86::CMOVO32rr,       X86::CMOVO32rm, 0 },
517198090Srdivacky    { X86::CMOVO64rr,       X86::CMOVO64rm, 0 },
518198090Srdivacky    { X86::CMOVP16rr,       X86::CMOVP16rm, 0 },
519198090Srdivacky    { X86::CMOVP32rr,       X86::CMOVP32rm, 0 },
520198090Srdivacky    { X86::CMOVP64rr,       X86::CMOVP64rm, 0 },
521198090Srdivacky    { X86::CMOVS16rr,       X86::CMOVS16rm, 0 },
522198090Srdivacky    { X86::CMOVS32rr,       X86::CMOVS32rm, 0 },
523198090Srdivacky    { X86::CMOVS64rr,       X86::CMOVS64rm, 0 },
524198090Srdivacky    { X86::CMPPDrri,        X86::CMPPDrmi, 16 },
525198090Srdivacky    { X86::CMPPSrri,        X86::CMPPSrmi, 16 },
526198090Srdivacky    { X86::CMPSDrr,         X86::CMPSDrm, 0 },
527198090Srdivacky    { X86::CMPSSrr,         X86::CMPSSrm, 0 },
528198090Srdivacky    { X86::DIVPDrr,         X86::DIVPDrm, 16 },
529198090Srdivacky    { X86::DIVPSrr,         X86::DIVPSrm, 16 },
530198090Srdivacky    { X86::DIVSDrr,         X86::DIVSDrm, 0 },
531198090Srdivacky    { X86::DIVSSrr,         X86::DIVSSrm, 0 },
532198090Srdivacky    { X86::FsANDNPDrr,      X86::FsANDNPDrm, 16 },
533198090Srdivacky    { X86::FsANDNPSrr,      X86::FsANDNPSrm, 16 },
534198090Srdivacky    { X86::FsANDPDrr,       X86::FsANDPDrm, 16 },
535198090Srdivacky    { X86::FsANDPSrr,       X86::FsANDPSrm, 16 },
536198090Srdivacky    { X86::FsORPDrr,        X86::FsORPDrm, 16 },
537198090Srdivacky    { X86::FsORPSrr,        X86::FsORPSrm, 16 },
538198090Srdivacky    { X86::FsXORPDrr,       X86::FsXORPDrm, 16 },
539198090Srdivacky    { X86::FsXORPSrr,       X86::FsXORPSrm, 16 },
540198090Srdivacky    { X86::HADDPDrr,        X86::HADDPDrm, 16 },
541198090Srdivacky    { X86::HADDPSrr,        X86::HADDPSrm, 16 },
542198090Srdivacky    { X86::HSUBPDrr,        X86::HSUBPDrm, 16 },
543198090Srdivacky    { X86::HSUBPSrr,        X86::HSUBPSrm, 16 },
544198090Srdivacky    { X86::IMUL16rr,        X86::IMUL16rm, 0 },
545198090Srdivacky    { X86::IMUL32rr,        X86::IMUL32rm, 0 },
546198090Srdivacky    { X86::IMUL64rr,        X86::IMUL64rm, 0 },
547198090Srdivacky    { X86::MAXPDrr,         X86::MAXPDrm, 16 },
548198090Srdivacky    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int, 16 },
549198090Srdivacky    { X86::MAXPSrr,         X86::MAXPSrm, 16 },
550198090Srdivacky    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int, 16 },
551198090Srdivacky    { X86::MAXSDrr,         X86::MAXSDrm, 0 },
552198090Srdivacky    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int, 0 },
553198090Srdivacky    { X86::MAXSSrr,         X86::MAXSSrm, 0 },
554198090Srdivacky    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int, 0 },
555198090Srdivacky    { X86::MINPDrr,         X86::MINPDrm, 16 },
556198090Srdivacky    { X86::MINPDrr_Int,     X86::MINPDrm_Int, 16 },
557198090Srdivacky    { X86::MINPSrr,         X86::MINPSrm, 16 },
558198090Srdivacky    { X86::MINPSrr_Int,     X86::MINPSrm_Int, 16 },
559198090Srdivacky    { X86::MINSDrr,         X86::MINSDrm, 0 },
560198090Srdivacky    { X86::MINSDrr_Int,     X86::MINSDrm_Int, 0 },
561198090Srdivacky    { X86::MINSSrr,         X86::MINSSrm, 0 },
562198090Srdivacky    { X86::MINSSrr_Int,     X86::MINSSrm_Int, 0 },
563198090Srdivacky    { X86::MULPDrr,         X86::MULPDrm, 16 },
564198090Srdivacky    { X86::MULPSrr,         X86::MULPSrm, 16 },
565198090Srdivacky    { X86::MULSDrr,         X86::MULSDrm, 0 },
566198090Srdivacky    { X86::MULSSrr,         X86::MULSSrm, 0 },
567198090Srdivacky    { X86::OR16rr,          X86::OR16rm, 0 },
568198090Srdivacky    { X86::OR32rr,          X86::OR32rm, 0 },
569198090Srdivacky    { X86::OR64rr,          X86::OR64rm, 0 },
570198090Srdivacky    { X86::OR8rr,           X86::OR8rm, 0 },
571198090Srdivacky    { X86::ORPDrr,          X86::ORPDrm, 16 },
572198090Srdivacky    { X86::ORPSrr,          X86::ORPSrm, 16 },
573198090Srdivacky    { X86::PACKSSDWrr,      X86::PACKSSDWrm, 16 },
574198090Srdivacky    { X86::PACKSSWBrr,      X86::PACKSSWBrm, 16 },
575198090Srdivacky    { X86::PACKUSWBrr,      X86::PACKUSWBrm, 16 },
576198090Srdivacky    { X86::PADDBrr,         X86::PADDBrm, 16 },
577198090Srdivacky    { X86::PADDDrr,         X86::PADDDrm, 16 },
578198090Srdivacky    { X86::PADDQrr,         X86::PADDQrm, 16 },
579198090Srdivacky    { X86::PADDSBrr,        X86::PADDSBrm, 16 },
580198090Srdivacky    { X86::PADDSWrr,        X86::PADDSWrm, 16 },
581198090Srdivacky    { X86::PADDWrr,         X86::PADDWrm, 16 },
582198090Srdivacky    { X86::PANDNrr,         X86::PANDNrm, 16 },
583198090Srdivacky    { X86::PANDrr,          X86::PANDrm, 16 },
584198090Srdivacky    { X86::PAVGBrr,         X86::PAVGBrm, 16 },
585198090Srdivacky    { X86::PAVGWrr,         X86::PAVGWrm, 16 },
586198090Srdivacky    { X86::PCMPEQBrr,       X86::PCMPEQBrm, 16 },
587198090Srdivacky    { X86::PCMPEQDrr,       X86::PCMPEQDrm, 16 },
588198090Srdivacky    { X86::PCMPEQWrr,       X86::PCMPEQWrm, 16 },
589198090Srdivacky    { X86::PCMPGTBrr,       X86::PCMPGTBrm, 16 },
590198090Srdivacky    { X86::PCMPGTDrr,       X86::PCMPGTDrm, 16 },
591198090Srdivacky    { X86::PCMPGTWrr,       X86::PCMPGTWrm, 16 },
592198090Srdivacky    { X86::PINSRWrri,       X86::PINSRWrmi, 16 },
593198090Srdivacky    { X86::PMADDWDrr,       X86::PMADDWDrm, 16 },
594198090Srdivacky    { X86::PMAXSWrr,        X86::PMAXSWrm, 16 },
595198090Srdivacky    { X86::PMAXUBrr,        X86::PMAXUBrm, 16 },
596198090Srdivacky    { X86::PMINSWrr,        X86::PMINSWrm, 16 },
597198090Srdivacky    { X86::PMINUBrr,        X86::PMINUBrm, 16 },
598198090Srdivacky    { X86::PMULDQrr,        X86::PMULDQrm, 16 },
599198090Srdivacky    { X86::PMULHUWrr,       X86::PMULHUWrm, 16 },
600198090Srdivacky    { X86::PMULHWrr,        X86::PMULHWrm, 16 },
601198090Srdivacky    { X86::PMULLDrr,        X86::PMULLDrm, 16 },
602198090Srdivacky    { X86::PMULLWrr,        X86::PMULLWrm, 16 },
603198090Srdivacky    { X86::PMULUDQrr,       X86::PMULUDQrm, 16 },
604198090Srdivacky    { X86::PORrr,           X86::PORrm, 16 },
605198090Srdivacky    { X86::PSADBWrr,        X86::PSADBWrm, 16 },
606198090Srdivacky    { X86::PSLLDrr,         X86::PSLLDrm, 16 },
607198090Srdivacky    { X86::PSLLQrr,         X86::PSLLQrm, 16 },
608198090Srdivacky    { X86::PSLLWrr,         X86::PSLLWrm, 16 },
609198090Srdivacky    { X86::PSRADrr,         X86::PSRADrm, 16 },
610198090Srdivacky    { X86::PSRAWrr,         X86::PSRAWrm, 16 },
611198090Srdivacky    { X86::PSRLDrr,         X86::PSRLDrm, 16 },
612198090Srdivacky    { X86::PSRLQrr,         X86::PSRLQrm, 16 },
613198090Srdivacky    { X86::PSRLWrr,         X86::PSRLWrm, 16 },
614198090Srdivacky    { X86::PSUBBrr,         X86::PSUBBrm, 16 },
615198090Srdivacky    { X86::PSUBDrr,         X86::PSUBDrm, 16 },
616198090Srdivacky    { X86::PSUBSBrr,        X86::PSUBSBrm, 16 },
617198090Srdivacky    { X86::PSUBSWrr,        X86::PSUBSWrm, 16 },
618198090Srdivacky    { X86::PSUBWrr,         X86::PSUBWrm, 16 },
619198090Srdivacky    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm, 16 },
620198090Srdivacky    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm, 16 },
621198090Srdivacky    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm, 16 },
622198090Srdivacky    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm, 16 },
623198090Srdivacky    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm, 16 },
624198090Srdivacky    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm, 16 },
625198090Srdivacky    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm, 16 },
626198090Srdivacky    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm, 16 },
627198090Srdivacky    { X86::PXORrr,          X86::PXORrm, 16 },
628198090Srdivacky    { X86::SBB32rr,         X86::SBB32rm, 0 },
629198090Srdivacky    { X86::SBB64rr,         X86::SBB64rm, 0 },
630198090Srdivacky    { X86::SHUFPDrri,       X86::SHUFPDrmi, 16 },
631198090Srdivacky    { X86::SHUFPSrri,       X86::SHUFPSrmi, 16 },
632198090Srdivacky    { X86::SUB16rr,         X86::SUB16rm, 0 },
633198090Srdivacky    { X86::SUB32rr,         X86::SUB32rm, 0 },
634198090Srdivacky    { X86::SUB64rr,         X86::SUB64rm, 0 },
635198090Srdivacky    { X86::SUB8rr,          X86::SUB8rm, 0 },
636198090Srdivacky    { X86::SUBPDrr,         X86::SUBPDrm, 16 },
637198090Srdivacky    { X86::SUBPSrr,         X86::SUBPSrm, 16 },
638198090Srdivacky    { X86::SUBSDrr,         X86::SUBSDrm, 0 },
639198090Srdivacky    { X86::SUBSSrr,         X86::SUBSSrm, 0 },
640193323Sed    // FIXME: TEST*rr -> swapped operand of TEST*mr.
641198090Srdivacky    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm, 16 },
642198090Srdivacky    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm, 16 },
643198090Srdivacky    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm, 16 },
644198090Srdivacky    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm, 16 },
645198090Srdivacky    { X86::XOR16rr,         X86::XOR16rm, 0 },
646198090Srdivacky    { X86::XOR32rr,         X86::XOR32rm, 0 },
647198090Srdivacky    { X86::XOR64rr,         X86::XOR64rm, 0 },
648198090Srdivacky    { X86::XOR8rr,          X86::XOR8rm, 0 },
649198090Srdivacky    { X86::XORPDrr,         X86::XORPDrm, 16 },
650198090Srdivacky    { X86::XORPSrr,         X86::XORPSrm, 16 }
651193323Sed  };
652193323Sed
653193323Sed  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
654193323Sed    unsigned RegOp = OpTbl2[i][0];
655193323Sed    unsigned MemOp = OpTbl2[i][1];
656198090Srdivacky    unsigned Align = OpTbl2[i][2];
657193323Sed    if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
658198090Srdivacky                                           std::make_pair(MemOp,Align))).second)
659193323Sed      assert(false && "Duplicated entries?");
660198090Srdivacky    // Index 2, folded load
661198090Srdivacky    unsigned AuxInfo = 2 | (1 << 4);
662193323Sed    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
663193323Sed                                   std::make_pair(RegOp, AuxInfo))).second)
664193323Sed      AmbEntries.push_back(MemOp);
665193323Sed  }
666193323Sed
667193323Sed  // Remove ambiguous entries.
668193323Sed  assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
669193323Sed}
670193323Sed
671202375Srdivackybool
672202375SrdivackyX86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
673202375Srdivacky                                    unsigned &SrcReg, unsigned &DstReg,
674202375Srdivacky                                    unsigned &SubIdx) const {
675202375Srdivacky  switch (MI.getOpcode()) {
676202375Srdivacky  default: break;
677202375Srdivacky  case X86::MOVSX16rr8:
678202375Srdivacky  case X86::MOVZX16rr8:
679202375Srdivacky  case X86::MOVSX32rr8:
680202375Srdivacky  case X86::MOVZX32rr8:
681202375Srdivacky  case X86::MOVSX64rr8:
682202375Srdivacky  case X86::MOVZX64rr8:
683202375Srdivacky    if (!TM.getSubtarget<X86Subtarget>().is64Bit())
684202375Srdivacky      // It's not always legal to reference the low 8-bit of the larger
685202375Srdivacky      // register in 32-bit mode.
686202375Srdivacky      return false;
687202375Srdivacky  case X86::MOVSX32rr16:
688202375Srdivacky  case X86::MOVZX32rr16:
689202375Srdivacky  case X86::MOVSX64rr16:
690202375Srdivacky  case X86::MOVZX64rr16:
691202375Srdivacky  case X86::MOVSX64rr32:
692202375Srdivacky  case X86::MOVZX64rr32: {
693202375Srdivacky    if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
694202375Srdivacky      // Be conservative.
695202375Srdivacky      return false;
696202375Srdivacky    SrcReg = MI.getOperand(1).getReg();
697202375Srdivacky    DstReg = MI.getOperand(0).getReg();
698202375Srdivacky    switch (MI.getOpcode()) {
699202375Srdivacky    default:
700202375Srdivacky      llvm_unreachable(0);
701202375Srdivacky      break;
702202375Srdivacky    case X86::MOVSX16rr8:
703202375Srdivacky    case X86::MOVZX16rr8:
704202375Srdivacky    case X86::MOVSX32rr8:
705202375Srdivacky    case X86::MOVZX32rr8:
706202375Srdivacky    case X86::MOVSX64rr8:
707202375Srdivacky    case X86::MOVZX64rr8:
708208599Srdivacky      SubIdx = X86::sub_8bit;
709202375Srdivacky      break;
710202375Srdivacky    case X86::MOVSX32rr16:
711202375Srdivacky    case X86::MOVZX32rr16:
712202375Srdivacky    case X86::MOVSX64rr16:
713202375Srdivacky    case X86::MOVZX64rr16:
714208599Srdivacky      SubIdx = X86::sub_16bit;
715202375Srdivacky      break;
716202375Srdivacky    case X86::MOVSX64rr32:
717202375Srdivacky    case X86::MOVZX64rr32:
718208599Srdivacky      SubIdx = X86::sub_32bit;
719202375Srdivacky      break;
720202375Srdivacky    }
721202375Srdivacky    return true;
722202375Srdivacky  }
723202375Srdivacky  }
724202375Srdivacky  return false;
725202375Srdivacky}
726202375Srdivacky
727199481Srdivacky/// isFrameOperand - Return true and the FrameIndex if the specified
728199481Srdivacky/// operand and follow operands form a reference to the stack frame.
729199481Srdivackybool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
730199481Srdivacky                                  int &FrameIndex) const {
731199481Srdivacky  if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
732199481Srdivacky      MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
733199481Srdivacky      MI->getOperand(Op+1).getImm() == 1 &&
734199481Srdivacky      MI->getOperand(Op+2).getReg() == 0 &&
735199481Srdivacky      MI->getOperand(Op+3).getImm() == 0) {
736199481Srdivacky    FrameIndex = MI->getOperand(Op).getIndex();
737199481Srdivacky    return true;
738199481Srdivacky  }
739199481Srdivacky  return false;
740199481Srdivacky}
741199481Srdivacky
742199481Srdivackystatic bool isFrameLoadOpcode(int Opcode) {
743199481Srdivacky  switch (Opcode) {
744193323Sed  default: break;
745193323Sed  case X86::MOV8rm:
746193323Sed  case X86::MOV16rm:
747193323Sed  case X86::MOV32rm:
748210299Sed  case X86::MOV32rm_TC:
749193323Sed  case X86::MOV64rm:
750210299Sed  case X86::MOV64rm_TC:
751193323Sed  case X86::LD_Fp64m:
752193323Sed  case X86::MOVSSrm:
753193323Sed  case X86::MOVSDrm:
754193323Sed  case X86::MOVAPSrm:
755193323Sed  case X86::MOVAPDrm:
756193323Sed  case X86::MOVDQArm:
757193323Sed  case X86::MMX_MOVD64rm:
758193323Sed  case X86::MMX_MOVQ64rm:
759199481Srdivacky    return true;
760193323Sed    break;
761193323Sed  }
762199481Srdivacky  return false;
763193323Sed}
764193323Sed
765199481Srdivackystatic bool isFrameStoreOpcode(int Opcode) {
766199481Srdivacky  switch (Opcode) {
767193323Sed  default: break;
768193323Sed  case X86::MOV8mr:
769193323Sed  case X86::MOV16mr:
770193323Sed  case X86::MOV32mr:
771210299Sed  case X86::MOV32mr_TC:
772193323Sed  case X86::MOV64mr:
773210299Sed  case X86::MOV64mr_TC:
774193323Sed  case X86::ST_FpP64m:
775193323Sed  case X86::MOVSSmr:
776193323Sed  case X86::MOVSDmr:
777193323Sed  case X86::MOVAPSmr:
778193323Sed  case X86::MOVAPDmr:
779193323Sed  case X86::MOVDQAmr:
780193323Sed  case X86::MMX_MOVD64mr:
781193323Sed  case X86::MMX_MOVQ64mr:
782193323Sed  case X86::MMX_MOVNTQmr:
783199481Srdivacky    return true;
784199481Srdivacky  }
785199481Srdivacky  return false;
786199481Srdivacky}
787199481Srdivacky
788199481Srdivackyunsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
789199481Srdivacky                                           int &FrameIndex) const {
790199481Srdivacky  if (isFrameLoadOpcode(MI->getOpcode()))
791212904Sdim    if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
792199481Srdivacky      return MI->getOperand(0).getReg();
793199481Srdivacky  return 0;
794199481Srdivacky}
795199481Srdivacky
796199481Srdivackyunsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
797199481Srdivacky                                                 int &FrameIndex) const {
798199481Srdivacky  if (isFrameLoadOpcode(MI->getOpcode())) {
799199481Srdivacky    unsigned Reg;
800199481Srdivacky    if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
801199481Srdivacky      return Reg;
802199481Srdivacky    // Check for post-frame index elimination operations
803200581Srdivacky    const MachineMemOperand *Dummy;
804200581Srdivacky    return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
805199481Srdivacky  }
806199481Srdivacky  return 0;
807199481Srdivacky}
808199481Srdivacky
809199481Srdivackybool X86InstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
810200581Srdivacky                                        const MachineMemOperand *&MMO,
811199481Srdivacky                                        int &FrameIndex) const {
812199481Srdivacky  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
813199481Srdivacky         oe = MI->memoperands_end();
814199481Srdivacky       o != oe;
815199481Srdivacky       ++o) {
816199481Srdivacky    if ((*o)->isLoad() && (*o)->getValue())
817199481Srdivacky      if (const FixedStackPseudoSourceValue *Value =
818199481Srdivacky          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
819199481Srdivacky        FrameIndex = Value->getFrameIndex();
820200581Srdivacky        MMO = *o;
821199481Srdivacky        return true;
822199481Srdivacky      }
823199481Srdivacky  }
824199481Srdivacky  return false;
825199481Srdivacky}
826199481Srdivacky
827199481Srdivackyunsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
828199481Srdivacky                                          int &FrameIndex) const {
829199481Srdivacky  if (isFrameStoreOpcode(MI->getOpcode()))
830212904Sdim    if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
831212904Sdim        isFrameOperand(MI, 0, FrameIndex))
832210299Sed      return MI->getOperand(X86::AddrNumOperands).getReg();
833199481Srdivacky  return 0;
834199481Srdivacky}
835199481Srdivacky
836199481Srdivackyunsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
837199481Srdivacky                                                int &FrameIndex) const {
838199481Srdivacky  if (isFrameStoreOpcode(MI->getOpcode())) {
839199481Srdivacky    unsigned Reg;
840199481Srdivacky    if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
841199481Srdivacky      return Reg;
842199481Srdivacky    // Check for post-frame index elimination operations
843200581Srdivacky    const MachineMemOperand *Dummy;
844200581Srdivacky    return hasStoreToStackSlot(MI, Dummy, FrameIndex);
845193323Sed  }
846193323Sed  return 0;
847193323Sed}
848193323Sed
849199481Srdivackybool X86InstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
850200581Srdivacky                                       const MachineMemOperand *&MMO,
851199481Srdivacky                                       int &FrameIndex) const {
852199481Srdivacky  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
853199481Srdivacky         oe = MI->memoperands_end();
854199481Srdivacky       o != oe;
855199481Srdivacky       ++o) {
856199481Srdivacky    if ((*o)->isStore() && (*o)->getValue())
857199481Srdivacky      if (const FixedStackPseudoSourceValue *Value =
858199481Srdivacky          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
859199481Srdivacky        FrameIndex = Value->getFrameIndex();
860200581Srdivacky        MMO = *o;
861199481Srdivacky        return true;
862199481Srdivacky      }
863199481Srdivacky  }
864199481Srdivacky  return false;
865199481Srdivacky}
866199481Srdivacky
867193323Sed/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
868193323Sed/// X86::MOVPC32r.
869193323Sedstatic bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
870193323Sed  bool isPICBase = false;
871193323Sed  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
872193323Sed         E = MRI.def_end(); I != E; ++I) {
873193323Sed    MachineInstr *DefMI = I.getOperand().getParent();
874193323Sed    if (DefMI->getOpcode() != X86::MOVPC32r)
875193323Sed      return false;
876193323Sed    assert(!isPICBase && "More than one PIC base?");
877193323Sed    isPICBase = true;
878193323Sed  }
879193323Sed  return isPICBase;
880193323Sed}
881193323Sed
882193323Sedbool
883198090SrdivackyX86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
884198090Srdivacky                                                AliasAnalysis *AA) const {
885193323Sed  switch (MI->getOpcode()) {
886193323Sed  default: break;
887193323Sed    case X86::MOV8rm:
888193323Sed    case X86::MOV16rm:
889193323Sed    case X86::MOV32rm:
890193323Sed    case X86::MOV64rm:
891193323Sed    case X86::LD_Fp64m:
892193323Sed    case X86::MOVSSrm:
893193323Sed    case X86::MOVSDrm:
894193323Sed    case X86::MOVAPSrm:
895199481Srdivacky    case X86::MOVUPSrm:
896199481Srdivacky    case X86::MOVUPSrm_Int:
897193323Sed    case X86::MOVAPDrm:
898193323Sed    case X86::MOVDQArm:
899193323Sed    case X86::MMX_MOVD64rm:
900199481Srdivacky    case X86::MMX_MOVQ64rm:
901199481Srdivacky    case X86::FsMOVAPSrm:
902199481Srdivacky    case X86::FsMOVAPDrm: {
903193323Sed      // Loads from constant pools are trivially rematerializable.
904193323Sed      if (MI->getOperand(1).isReg() &&
905193323Sed          MI->getOperand(2).isImm() &&
906193323Sed          MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
907198090Srdivacky          MI->isInvariantLoad(AA)) {
908193323Sed        unsigned BaseReg = MI->getOperand(1).getReg();
909195098Sed        if (BaseReg == 0 || BaseReg == X86::RIP)
910193323Sed          return true;
911193323Sed        // Allow re-materialization of PIC load.
912193323Sed        if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
913193323Sed          return false;
914193323Sed        const MachineFunction &MF = *MI->getParent()->getParent();
915193323Sed        const MachineRegisterInfo &MRI = MF.getRegInfo();
916193323Sed        bool isPICBase = false;
917193323Sed        for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
918193323Sed               E = MRI.def_end(); I != E; ++I) {
919193323Sed          MachineInstr *DefMI = I.getOperand().getParent();
920193323Sed          if (DefMI->getOpcode() != X86::MOVPC32r)
921193323Sed            return false;
922193323Sed          assert(!isPICBase && "More than one PIC base?");
923193323Sed          isPICBase = true;
924193323Sed        }
925193323Sed        return isPICBase;
926193323Sed      }
927193323Sed      return false;
928193323Sed    }
929193323Sed
930193323Sed     case X86::LEA32r:
931193323Sed     case X86::LEA64r: {
932193323Sed       if (MI->getOperand(2).isImm() &&
933193323Sed           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
934193323Sed           !MI->getOperand(4).isReg()) {
935193323Sed         // lea fi#, lea GV, etc. are all rematerializable.
936193323Sed         if (!MI->getOperand(1).isReg())
937193323Sed           return true;
938193323Sed         unsigned BaseReg = MI->getOperand(1).getReg();
939193323Sed         if (BaseReg == 0)
940193323Sed           return true;
941193323Sed         // Allow re-materialization of lea PICBase + x.
942193323Sed         const MachineFunction &MF = *MI->getParent()->getParent();
943193323Sed         const MachineRegisterInfo &MRI = MF.getRegInfo();
944193323Sed         return regIsPICBase(BaseReg, MRI);
945193323Sed       }
946193323Sed       return false;
947193323Sed     }
948193323Sed  }
949193323Sed
950193323Sed  // All other instructions marked M_REMATERIALIZABLE are always trivially
951193323Sed  // rematerializable.
952193323Sed  return true;
953193323Sed}
954193323Sed
955193323Sed/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
956193323Sed/// would clobber the EFLAGS condition register. Note the result may be
957193323Sed/// conservative. If it cannot definitely determine the safety after visiting
958198090Srdivacky/// a few instructions in each direction it assumes it's not safe.
959193323Sedstatic bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
960193323Sed                                  MachineBasicBlock::iterator I) {
961206083Srdivacky  MachineBasicBlock::iterator E = MBB.end();
962206083Srdivacky
963193323Sed  // It's always safe to clobber EFLAGS at the end of a block.
964206083Srdivacky  if (I == E)
965193323Sed    return true;
966193323Sed
967193323Sed  // For compile time consideration, if we are not able to determine the
968198090Srdivacky  // safety after visiting 4 instructions in each direction, we will assume
969198090Srdivacky  // it's not safe.
970198090Srdivacky  MachineBasicBlock::iterator Iter = I;
971198090Srdivacky  for (unsigned i = 0; i < 4; ++i) {
972193323Sed    bool SeenDef = false;
973198090Srdivacky    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
974198090Srdivacky      MachineOperand &MO = Iter->getOperand(j);
975193323Sed      if (!MO.isReg())
976193323Sed        continue;
977193323Sed      if (MO.getReg() == X86::EFLAGS) {
978193323Sed        if (MO.isUse())
979193323Sed          return false;
980193323Sed        SeenDef = true;
981193323Sed      }
982193323Sed    }
983193323Sed
984193323Sed    if (SeenDef)
985193323Sed      // This instruction defines EFLAGS, no need to look any further.
986193323Sed      return true;
987198090Srdivacky    ++Iter;
988206083Srdivacky    // Skip over DBG_VALUE.
989206083Srdivacky    while (Iter != E && Iter->isDebugValue())
990206083Srdivacky      ++Iter;
991193323Sed
992193323Sed    // If we make it to the end of the block, it's safe to clobber EFLAGS.
993206083Srdivacky    if (Iter == E)
994193323Sed      return true;
995193323Sed  }
996193323Sed
997206083Srdivacky  MachineBasicBlock::iterator B = MBB.begin();
998198090Srdivacky  Iter = I;
999198090Srdivacky  for (unsigned i = 0; i < 4; ++i) {
1000198090Srdivacky    // If we make it to the beginning of the block, it's safe to clobber
1001198090Srdivacky    // EFLAGS iff EFLAGS is not live-in.
1002206083Srdivacky    if (Iter == B)
1003198090Srdivacky      return !MBB.isLiveIn(X86::EFLAGS);
1004198090Srdivacky
1005198090Srdivacky    --Iter;
1006206083Srdivacky    // Skip over DBG_VALUE.
1007206083Srdivacky    while (Iter != B && Iter->isDebugValue())
1008206083Srdivacky      --Iter;
1009206083Srdivacky
1010198090Srdivacky    bool SawKill = false;
1011198090Srdivacky    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1012198090Srdivacky      MachineOperand &MO = Iter->getOperand(j);
1013198090Srdivacky      if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
1014198090Srdivacky        if (MO.isDef()) return MO.isDead();
1015198090Srdivacky        if (MO.isKill()) SawKill = true;
1016198090Srdivacky      }
1017198090Srdivacky    }
1018198090Srdivacky
1019198090Srdivacky    if (SawKill)
1020198090Srdivacky      // This instruction kills EFLAGS and doesn't redefine it, so
1021198090Srdivacky      // there's no need to look further.
1022198090Srdivacky      return true;
1023198090Srdivacky  }
1024198090Srdivacky
1025193323Sed  // Conservative answer.
1026193323Sed  return false;
1027193323Sed}
1028193323Sed
1029193323Sedvoid X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1030193323Sed                                 MachineBasicBlock::iterator I,
1031198090Srdivacky                                 unsigned DestReg, unsigned SubIdx,
1032199481Srdivacky                                 const MachineInstr *Orig,
1033210299Sed                                 const TargetRegisterInfo &TRI) const {
1034208599Srdivacky  DebugLoc DL = Orig->getDebugLoc();
1035193323Sed
1036193323Sed  // MOV32r0 etc. are implemented with xor which clobbers condition code.
1037193323Sed  // Re-materialize them as movri instructions to avoid side effects.
1038198090Srdivacky  bool Clone = true;
1039198090Srdivacky  unsigned Opc = Orig->getOpcode();
1040198090Srdivacky  switch (Opc) {
1041193323Sed  default: break;
1042193323Sed  case X86::MOV8r0:
1043202375Srdivacky  case X86::MOV16r0:
1044202375Srdivacky  case X86::MOV32r0:
1045202375Srdivacky  case X86::MOV64r0: {
1046193323Sed    if (!isSafeToClobberEFLAGS(MBB, I)) {
1047198090Srdivacky      switch (Opc) {
1048193323Sed      default: break;
1049193323Sed      case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
1050202375Srdivacky      case X86::MOV16r0: Opc = X86::MOV16ri; break;
1051193323Sed      case X86::MOV32r0: Opc = X86::MOV32ri; break;
1052204642Srdivacky      case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
1053193323Sed      }
1054198090Srdivacky      Clone = false;
1055193323Sed    }
1056193323Sed    break;
1057193323Sed  }
1058193323Sed  }
1059193323Sed
1060198090Srdivacky  if (Clone) {
1061193323Sed    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1062193323Sed    MBB.insert(I, MI);
1063198090Srdivacky  } else {
1064210299Sed    BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0);
1065193323Sed  }
1066193323Sed
1067198090Srdivacky  MachineInstr *NewMI = prior(I);
1068210299Sed  NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1069193323Sed}
1070193323Sed
1071193323Sed/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1072193323Sed/// is not marked dead.
1073193323Sedstatic bool hasLiveCondCodeDef(MachineInstr *MI) {
1074193323Sed  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1075193323Sed    MachineOperand &MO = MI->getOperand(i);
1076193323Sed    if (MO.isReg() && MO.isDef() &&
1077193323Sed        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1078193323Sed      return true;
1079193323Sed    }
1080193323Sed  }
1081193323Sed  return false;
1082193323Sed}
1083193323Sed
1084200581Srdivacky/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
1085200581Srdivacky/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1086200581Srdivacky/// to a 32-bit superregister and then truncating back down to a 16-bit
1087200581Srdivacky/// subregister.
1088200581SrdivackyMachineInstr *
1089200581SrdivackyX86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1090200581Srdivacky                                           MachineFunction::iterator &MFI,
1091200581Srdivacky                                           MachineBasicBlock::iterator &MBBI,
1092200581Srdivacky                                           LiveVariables *LV) const {
1093200581Srdivacky  MachineInstr *MI = MBBI;
1094200581Srdivacky  unsigned Dest = MI->getOperand(0).getReg();
1095200581Srdivacky  unsigned Src = MI->getOperand(1).getReg();
1096200581Srdivacky  bool isDead = MI->getOperand(0).isDead();
1097200581Srdivacky  bool isKill = MI->getOperand(1).isKill();
1098200581Srdivacky
1099200581Srdivacky  unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1100200581Srdivacky    ? X86::LEA64_32r : X86::LEA32r;
1101200581Srdivacky  MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1102200581Srdivacky  unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1103200581Srdivacky  unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1104200581Srdivacky
1105200581Srdivacky  // Build and insert into an implicit UNDEF value. This is OK because
1106200581Srdivacky  // well be shifting and then extracting the lower 16-bits.
1107200581Srdivacky  // This has the potential to cause partial register stall. e.g.
1108200581Srdivacky  //   movw    (%rbp,%rcx,2), %dx
1109200581Srdivacky  //   leal    -65(%rdx), %esi
1110200581Srdivacky  // But testing has shown this *does* help performance in 64-bit mode (at
1111200581Srdivacky  // least on modern x86 machines).
1112200581Srdivacky  BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1113200581Srdivacky  MachineInstr *InsMI =
1114210299Sed    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1115210299Sed    .addReg(leaInReg, RegState::Define, X86::sub_16bit)
1116210299Sed    .addReg(Src, getKillRegState(isKill));
1117200581Srdivacky
1118200581Srdivacky  MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
1119200581Srdivacky                                    get(Opc), leaOutReg);
1120200581Srdivacky  switch (MIOpc) {
1121200581Srdivacky  default:
1122200581Srdivacky    llvm_unreachable(0);
1123200581Srdivacky    break;
1124200581Srdivacky  case X86::SHL16ri: {
1125200581Srdivacky    unsigned ShAmt = MI->getOperand(2).getImm();
1126200581Srdivacky    MIB.addReg(0).addImm(1 << ShAmt)
1127210299Sed       .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
1128200581Srdivacky    break;
1129200581Srdivacky  }
1130200581Srdivacky  case X86::INC16r:
1131200581Srdivacky  case X86::INC64_16r:
1132210299Sed    addRegOffset(MIB, leaInReg, true, 1);
1133200581Srdivacky    break;
1134200581Srdivacky  case X86::DEC16r:
1135200581Srdivacky  case X86::DEC64_16r:
1136210299Sed    addRegOffset(MIB, leaInReg, true, -1);
1137200581Srdivacky    break;
1138200581Srdivacky  case X86::ADD16ri:
1139200581Srdivacky  case X86::ADD16ri8:
1140210299Sed    addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
1141200581Srdivacky    break;
1142200581Srdivacky  case X86::ADD16rr: {
1143200581Srdivacky    unsigned Src2 = MI->getOperand(2).getReg();
1144200581Srdivacky    bool isKill2 = MI->getOperand(2).isKill();
1145200581Srdivacky    unsigned leaInReg2 = 0;
1146200581Srdivacky    MachineInstr *InsMI2 = 0;
1147200581Srdivacky    if (Src == Src2) {
1148200581Srdivacky      // ADD16rr %reg1028<kill>, %reg1028
1149200581Srdivacky      // just a single insert_subreg.
1150200581Srdivacky      addRegReg(MIB, leaInReg, true, leaInReg, false);
1151200581Srdivacky    } else {
1152200581Srdivacky      leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1153200581Srdivacky      // Build and insert into an implicit UNDEF value. This is OK because
1154200581Srdivacky      // well be shifting and then extracting the lower 16-bits.
1155200581Srdivacky      BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2);
1156200581Srdivacky      InsMI2 =
1157210299Sed        BuildMI(*MFI, MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
1158210299Sed        .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
1159210299Sed        .addReg(Src2, getKillRegState(isKill2));
1160200581Srdivacky      addRegReg(MIB, leaInReg, true, leaInReg2, true);
1161200581Srdivacky    }
1162200581Srdivacky    if (LV && isKill2 && InsMI2)
1163200581Srdivacky      LV->replaceKillInstruction(Src2, MI, InsMI2);
1164200581Srdivacky    break;
1165200581Srdivacky  }
1166200581Srdivacky  }
1167200581Srdivacky
1168200581Srdivacky  MachineInstr *NewMI = MIB;
1169200581Srdivacky  MachineInstr *ExtMI =
1170210299Sed    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1171200581Srdivacky    .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1172210299Sed    .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
1173200581Srdivacky
1174200581Srdivacky  if (LV) {
1175200581Srdivacky    // Update live variables
1176200581Srdivacky    LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1177200581Srdivacky    LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1178200581Srdivacky    if (isKill)
1179200581Srdivacky      LV->replaceKillInstruction(Src, MI, InsMI);
1180200581Srdivacky    if (isDead)
1181200581Srdivacky      LV->replaceKillInstruction(Dest, MI, ExtMI);
1182200581Srdivacky  }
1183200581Srdivacky
1184200581Srdivacky  return ExtMI;
1185200581Srdivacky}
1186200581Srdivacky
1187193323Sed/// convertToThreeAddress - This method must be implemented by targets that
1188193323Sed/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
1189193323Sed/// may be able to convert a two-address instruction into a true
1190193323Sed/// three-address instruction on demand.  This allows the X86 target (for
1191193323Sed/// example) to convert ADD and SHL instructions into LEA instructions if they
1192193323Sed/// would require register copies due to two-addressness.
1193193323Sed///
1194193323Sed/// This method returns a null pointer if the transformation cannot be
1195193323Sed/// performed, otherwise it returns the new instruction.
1196193323Sed///
1197193323SedMachineInstr *
1198193323SedX86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1199193323Sed                                    MachineBasicBlock::iterator &MBBI,
1200193323Sed                                    LiveVariables *LV) const {
1201193323Sed  MachineInstr *MI = MBBI;
1202193323Sed  MachineFunction &MF = *MI->getParent()->getParent();
1203193323Sed  // All instructions input are two-addr instructions.  Get the known operands.
1204193323Sed  unsigned Dest = MI->getOperand(0).getReg();
1205193323Sed  unsigned Src = MI->getOperand(1).getReg();
1206193323Sed  bool isDead = MI->getOperand(0).isDead();
1207193323Sed  bool isKill = MI->getOperand(1).isKill();
1208193323Sed
1209193323Sed  MachineInstr *NewMI = NULL;
1210193323Sed  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
1211193323Sed  // we have better subtarget support, enable the 16-bit LEA generation here.
1212200581Srdivacky  // 16-bit LEA is also slow on Core2.
1213193323Sed  bool DisableLEA16 = true;
1214200581Srdivacky  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1215193323Sed
1216193323Sed  unsigned MIOpc = MI->getOpcode();
1217193323Sed  switch (MIOpc) {
1218193323Sed  case X86::SHUFPSrri: {
1219193323Sed    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1220193323Sed    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1221193323Sed
1222193323Sed    unsigned B = MI->getOperand(1).getReg();
1223193323Sed    unsigned C = MI->getOperand(2).getReg();
1224193323Sed    if (B != C) return 0;
1225193323Sed    unsigned A = MI->getOperand(0).getReg();
1226193323Sed    unsigned M = MI->getOperand(3).getImm();
1227193323Sed    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1228193323Sed      .addReg(A, RegState::Define | getDeadRegState(isDead))
1229193323Sed      .addReg(B, getKillRegState(isKill)).addImm(M);
1230193323Sed    break;
1231193323Sed  }
1232193323Sed  case X86::SHL64ri: {
1233193323Sed    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1234193323Sed    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1235193323Sed    // the flags produced by a shift yet, so this is safe.
1236193323Sed    unsigned ShAmt = MI->getOperand(2).getImm();
1237193323Sed    if (ShAmt == 0 || ShAmt >= 4) return 0;
1238193323Sed
1239193323Sed    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1240193323Sed      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1241193323Sed      .addReg(0).addImm(1 << ShAmt)
1242193323Sed      .addReg(Src, getKillRegState(isKill))
1243210299Sed      .addImm(0).addReg(0);
1244193323Sed    break;
1245193323Sed  }
1246193323Sed  case X86::SHL32ri: {
1247193323Sed    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1248193323Sed    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1249193323Sed    // the flags produced by a shift yet, so this is safe.
1250193323Sed    unsigned ShAmt = MI->getOperand(2).getImm();
1251193323Sed    if (ShAmt == 0 || ShAmt >= 4) return 0;
1252193323Sed
1253200581Srdivacky    unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1254193323Sed    NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
1255193323Sed      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1256193323Sed      .addReg(0).addImm(1 << ShAmt)
1257210299Sed      .addReg(Src, getKillRegState(isKill)).addImm(0).addReg(0);
1258193323Sed    break;
1259193323Sed  }
1260193323Sed  case X86::SHL16ri: {
1261193323Sed    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1262193323Sed    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1263193323Sed    // the flags produced by a shift yet, so this is safe.
1264193323Sed    unsigned ShAmt = MI->getOperand(2).getImm();
1265193323Sed    if (ShAmt == 0 || ShAmt >= 4) return 0;
1266193323Sed
1267200581Srdivacky    if (DisableLEA16)
1268200581Srdivacky      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1269200581Srdivacky    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1270200581Srdivacky      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1271200581Srdivacky      .addReg(0).addImm(1 << ShAmt)
1272200581Srdivacky      .addReg(Src, getKillRegState(isKill))
1273210299Sed      .addImm(0).addReg(0);
1274193323Sed    break;
1275193323Sed  }
1276193323Sed  default: {
1277193323Sed    // The following opcodes also sets the condition code register(s). Only
1278193323Sed    // convert them to equivalent lea if the condition code register def's
1279193323Sed    // are dead!
1280193323Sed    if (hasLiveCondCodeDef(MI))
1281193323Sed      return 0;
1282193323Sed
1283193323Sed    switch (MIOpc) {
1284193323Sed    default: return 0;
1285193323Sed    case X86::INC64r:
1286193323Sed    case X86::INC32r:
1287193323Sed    case X86::INC64_32r: {
1288193323Sed      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1289193323Sed      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1290193323Sed        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1291210299Sed      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1292193323Sed                              .addReg(Dest, RegState::Define |
1293193323Sed                                      getDeadRegState(isDead)),
1294193323Sed                              Src, isKill, 1);
1295193323Sed      break;
1296193323Sed    }
1297193323Sed    case X86::INC16r:
1298193323Sed    case X86::INC64_16r:
1299200581Srdivacky      if (DisableLEA16)
1300200581Srdivacky        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1301193323Sed      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1302193323Sed      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1303193323Sed                           .addReg(Dest, RegState::Define |
1304193323Sed                                   getDeadRegState(isDead)),
1305193323Sed                           Src, isKill, 1);
1306193323Sed      break;
1307193323Sed    case X86::DEC64r:
1308193323Sed    case X86::DEC32r:
1309193323Sed    case X86::DEC64_32r: {
1310193323Sed      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1311193323Sed      unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1312193323Sed        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1313210299Sed      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1314193323Sed                              .addReg(Dest, RegState::Define |
1315193323Sed                                      getDeadRegState(isDead)),
1316193323Sed                              Src, isKill, -1);
1317193323Sed      break;
1318193323Sed    }
1319193323Sed    case X86::DEC16r:
1320193323Sed    case X86::DEC64_16r:
1321200581Srdivacky      if (DisableLEA16)
1322200581Srdivacky        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1323193323Sed      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1324193323Sed      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1325193323Sed                           .addReg(Dest, RegState::Define |
1326193323Sed                                   getDeadRegState(isDead)),
1327193323Sed                           Src, isKill, -1);
1328193323Sed      break;
1329193323Sed    case X86::ADD64rr:
1330193323Sed    case X86::ADD32rr: {
1331193323Sed      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1332193323Sed      unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1333193323Sed        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1334193323Sed      unsigned Src2 = MI->getOperand(2).getReg();
1335193323Sed      bool isKill2 = MI->getOperand(2).isKill();
1336193323Sed      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1337193323Sed                        .addReg(Dest, RegState::Define |
1338193323Sed                                getDeadRegState(isDead)),
1339193323Sed                        Src, isKill, Src2, isKill2);
1340193323Sed      if (LV && isKill2)
1341193323Sed        LV->replaceKillInstruction(Src2, MI, NewMI);
1342193323Sed      break;
1343193323Sed    }
1344193323Sed    case X86::ADD16rr: {
1345200581Srdivacky      if (DisableLEA16)
1346200581Srdivacky        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1347193323Sed      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1348193323Sed      unsigned Src2 = MI->getOperand(2).getReg();
1349193323Sed      bool isKill2 = MI->getOperand(2).isKill();
1350193323Sed      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1351193323Sed                        .addReg(Dest, RegState::Define |
1352193323Sed                                getDeadRegState(isDead)),
1353193323Sed                        Src, isKill, Src2, isKill2);
1354193323Sed      if (LV && isKill2)
1355193323Sed        LV->replaceKillInstruction(Src2, MI, NewMI);
1356193323Sed      break;
1357193323Sed    }
1358193323Sed    case X86::ADD64ri32:
1359193323Sed    case X86::ADD64ri8:
1360193323Sed      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1361210299Sed      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1362200581Srdivacky                              .addReg(Dest, RegState::Define |
1363200581Srdivacky                                      getDeadRegState(isDead)),
1364200581Srdivacky                              Src, isKill, MI->getOperand(2).getImm());
1365193323Sed      break;
1366193323Sed    case X86::ADD32ri:
1367200581Srdivacky    case X86::ADD32ri8: {
1368193323Sed      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1369200581Srdivacky      unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1370210299Sed      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1371200581Srdivacky                              .addReg(Dest, RegState::Define |
1372200581Srdivacky                                      getDeadRegState(isDead)),
1373193323Sed                                Src, isKill, MI->getOperand(2).getImm());
1374193323Sed      break;
1375200581Srdivacky    }
1376193323Sed    case X86::ADD16ri:
1377193323Sed    case X86::ADD16ri8:
1378200581Srdivacky      if (DisableLEA16)
1379200581Srdivacky        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1380193323Sed      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1381210299Sed      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1382200581Srdivacky                              .addReg(Dest, RegState::Define |
1383200581Srdivacky                                      getDeadRegState(isDead)),
1384200581Srdivacky                              Src, isKill, MI->getOperand(2).getImm());
1385193323Sed      break;
1386193323Sed    }
1387193323Sed  }
1388193323Sed  }
1389193323Sed
1390193323Sed  if (!NewMI) return 0;
1391193323Sed
1392193323Sed  if (LV) {  // Update live variables
1393193323Sed    if (isKill)
1394193323Sed      LV->replaceKillInstruction(Src, MI, NewMI);
1395193323Sed    if (isDead)
1396193323Sed      LV->replaceKillInstruction(Dest, MI, NewMI);
1397193323Sed  }
1398193323Sed
1399193323Sed  MFI->insert(MBBI, NewMI);          // Insert the new inst
1400193323Sed  return NewMI;
1401193323Sed}
1402193323Sed
1403193323Sed/// commuteInstruction - We have a few instructions that must be hacked on to
1404193323Sed/// commute them.
1405193323Sed///
1406193323SedMachineInstr *
1407193323SedX86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1408193323Sed  switch (MI->getOpcode()) {
1409193323Sed  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1410193323Sed  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1411193323Sed  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1412193323Sed  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1413193323Sed  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1414193323Sed  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1415193323Sed    unsigned Opc;
1416193323Sed    unsigned Size;
1417193323Sed    switch (MI->getOpcode()) {
1418198090Srdivacky    default: llvm_unreachable("Unreachable!");
1419193323Sed    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1420193323Sed    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1421193323Sed    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1422193323Sed    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1423193323Sed    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1424193323Sed    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1425193323Sed    }
1426193323Sed    unsigned Amt = MI->getOperand(3).getImm();
1427193323Sed    if (NewMI) {
1428193323Sed      MachineFunction &MF = *MI->getParent()->getParent();
1429193323Sed      MI = MF.CloneMachineInstr(MI);
1430193323Sed      NewMI = false;
1431193323Sed    }
1432193323Sed    MI->setDesc(get(Opc));
1433193323Sed    MI->getOperand(3).setImm(Size-Amt);
1434193323Sed    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1435193323Sed  }
1436193323Sed  case X86::CMOVB16rr:
1437193323Sed  case X86::CMOVB32rr:
1438193323Sed  case X86::CMOVB64rr:
1439193323Sed  case X86::CMOVAE16rr:
1440193323Sed  case X86::CMOVAE32rr:
1441193323Sed  case X86::CMOVAE64rr:
1442193323Sed  case X86::CMOVE16rr:
1443193323Sed  case X86::CMOVE32rr:
1444193323Sed  case X86::CMOVE64rr:
1445193323Sed  case X86::CMOVNE16rr:
1446193323Sed  case X86::CMOVNE32rr:
1447193323Sed  case X86::CMOVNE64rr:
1448193323Sed  case X86::CMOVBE16rr:
1449193323Sed  case X86::CMOVBE32rr:
1450193323Sed  case X86::CMOVBE64rr:
1451193323Sed  case X86::CMOVA16rr:
1452193323Sed  case X86::CMOVA32rr:
1453193323Sed  case X86::CMOVA64rr:
1454193323Sed  case X86::CMOVL16rr:
1455193323Sed  case X86::CMOVL32rr:
1456193323Sed  case X86::CMOVL64rr:
1457193323Sed  case X86::CMOVGE16rr:
1458193323Sed  case X86::CMOVGE32rr:
1459193323Sed  case X86::CMOVGE64rr:
1460193323Sed  case X86::CMOVLE16rr:
1461193323Sed  case X86::CMOVLE32rr:
1462193323Sed  case X86::CMOVLE64rr:
1463193323Sed  case X86::CMOVG16rr:
1464193323Sed  case X86::CMOVG32rr:
1465193323Sed  case X86::CMOVG64rr:
1466193323Sed  case X86::CMOVS16rr:
1467193323Sed  case X86::CMOVS32rr:
1468193323Sed  case X86::CMOVS64rr:
1469193323Sed  case X86::CMOVNS16rr:
1470193323Sed  case X86::CMOVNS32rr:
1471193323Sed  case X86::CMOVNS64rr:
1472193323Sed  case X86::CMOVP16rr:
1473193323Sed  case X86::CMOVP32rr:
1474193323Sed  case X86::CMOVP64rr:
1475193323Sed  case X86::CMOVNP16rr:
1476193323Sed  case X86::CMOVNP32rr:
1477193323Sed  case X86::CMOVNP64rr:
1478193323Sed  case X86::CMOVO16rr:
1479193323Sed  case X86::CMOVO32rr:
1480193323Sed  case X86::CMOVO64rr:
1481193323Sed  case X86::CMOVNO16rr:
1482193323Sed  case X86::CMOVNO32rr:
1483193323Sed  case X86::CMOVNO64rr: {
1484193323Sed    unsigned Opc = 0;
1485193323Sed    switch (MI->getOpcode()) {
1486193323Sed    default: break;
1487193323Sed    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
1488193323Sed    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
1489193323Sed    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
1490193323Sed    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1491193323Sed    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1492193323Sed    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1493193323Sed    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
1494193323Sed    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
1495193323Sed    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
1496193323Sed    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1497193323Sed    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1498193323Sed    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1499193323Sed    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1500193323Sed    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1501193323Sed    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1502193323Sed    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
1503193323Sed    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
1504193323Sed    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
1505193323Sed    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
1506193323Sed    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
1507193323Sed    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
1508193323Sed    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1509193323Sed    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1510193323Sed    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1511193323Sed    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1512193323Sed    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1513193323Sed    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1514193323Sed    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
1515193323Sed    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
1516193323Sed    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
1517193323Sed    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
1518193323Sed    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
1519193323Sed    case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
1520193323Sed    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1521193323Sed    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1522193323Sed    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1523193323Sed    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
1524193323Sed    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
1525193323Sed    case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
1526193323Sed    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1527193323Sed    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1528193323Sed    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1529193323Sed    case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
1530193323Sed    case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
1531193323Sed    case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
1532193323Sed    case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1533193323Sed    case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1534193323Sed    case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
1535193323Sed    }
1536193323Sed    if (NewMI) {
1537193323Sed      MachineFunction &MF = *MI->getParent()->getParent();
1538193323Sed      MI = MF.CloneMachineInstr(MI);
1539193323Sed      NewMI = false;
1540193323Sed    }
1541193323Sed    MI->setDesc(get(Opc));
1542193323Sed    // Fallthrough intended.
1543193323Sed  }
1544193323Sed  default:
1545193323Sed    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1546193323Sed  }
1547193323Sed}
1548193323Sed
1549193323Sedstatic X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1550193323Sed  switch (BrOpc) {
1551193323Sed  default: return X86::COND_INVALID;
1552203954Srdivacky  case X86::JE_4:  return X86::COND_E;
1553203954Srdivacky  case X86::JNE_4: return X86::COND_NE;
1554203954Srdivacky  case X86::JL_4:  return X86::COND_L;
1555203954Srdivacky  case X86::JLE_4: return X86::COND_LE;
1556203954Srdivacky  case X86::JG_4:  return X86::COND_G;
1557203954Srdivacky  case X86::JGE_4: return X86::COND_GE;
1558203954Srdivacky  case X86::JB_4:  return X86::COND_B;
1559203954Srdivacky  case X86::JBE_4: return X86::COND_BE;
1560203954Srdivacky  case X86::JA_4:  return X86::COND_A;
1561203954Srdivacky  case X86::JAE_4: return X86::COND_AE;
1562203954Srdivacky  case X86::JS_4:  return X86::COND_S;
1563203954Srdivacky  case X86::JNS_4: return X86::COND_NS;
1564203954Srdivacky  case X86::JP_4:  return X86::COND_P;
1565203954Srdivacky  case X86::JNP_4: return X86::COND_NP;
1566203954Srdivacky  case X86::JO_4:  return X86::COND_O;
1567203954Srdivacky  case X86::JNO_4: return X86::COND_NO;
1568193323Sed  }
1569193323Sed}
1570193323Sed
1571193323Sedunsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1572193323Sed  switch (CC) {
1573198090Srdivacky  default: llvm_unreachable("Illegal condition code!");
1574203954Srdivacky  case X86::COND_E:  return X86::JE_4;
1575203954Srdivacky  case X86::COND_NE: return X86::JNE_4;
1576203954Srdivacky  case X86::COND_L:  return X86::JL_4;
1577203954Srdivacky  case X86::COND_LE: return X86::JLE_4;
1578203954Srdivacky  case X86::COND_G:  return X86::JG_4;
1579203954Srdivacky  case X86::COND_GE: return X86::JGE_4;
1580203954Srdivacky  case X86::COND_B:  return X86::JB_4;
1581203954Srdivacky  case X86::COND_BE: return X86::JBE_4;
1582203954Srdivacky  case X86::COND_A:  return X86::JA_4;
1583203954Srdivacky  case X86::COND_AE: return X86::JAE_4;
1584203954Srdivacky  case X86::COND_S:  return X86::JS_4;
1585203954Srdivacky  case X86::COND_NS: return X86::JNS_4;
1586203954Srdivacky  case X86::COND_P:  return X86::JP_4;
1587203954Srdivacky  case X86::COND_NP: return X86::JNP_4;
1588203954Srdivacky  case X86::COND_O:  return X86::JO_4;
1589203954Srdivacky  case X86::COND_NO: return X86::JNO_4;
1590193323Sed  }
1591193323Sed}
1592193323Sed
1593193323Sed/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1594193323Sed/// e.g. turning COND_E to COND_NE.
1595193323SedX86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1596193323Sed  switch (CC) {
1597198090Srdivacky  default: llvm_unreachable("Illegal condition code!");
1598193323Sed  case X86::COND_E:  return X86::COND_NE;
1599193323Sed  case X86::COND_NE: return X86::COND_E;
1600193323Sed  case X86::COND_L:  return X86::COND_GE;
1601193323Sed  case X86::COND_LE: return X86::COND_G;
1602193323Sed  case X86::COND_G:  return X86::COND_LE;
1603193323Sed  case X86::COND_GE: return X86::COND_L;
1604193323Sed  case X86::COND_B:  return X86::COND_AE;
1605193323Sed  case X86::COND_BE: return X86::COND_A;
1606193323Sed  case X86::COND_A:  return X86::COND_BE;
1607193323Sed  case X86::COND_AE: return X86::COND_B;
1608193323Sed  case X86::COND_S:  return X86::COND_NS;
1609193323Sed  case X86::COND_NS: return X86::COND_S;
1610193323Sed  case X86::COND_P:  return X86::COND_NP;
1611193323Sed  case X86::COND_NP: return X86::COND_P;
1612193323Sed  case X86::COND_O:  return X86::COND_NO;
1613193323Sed  case X86::COND_NO: return X86::COND_O;
1614193323Sed  }
1615193323Sed}
1616193323Sed
1617193323Sedbool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1618193323Sed  const TargetInstrDesc &TID = MI->getDesc();
1619193323Sed  if (!TID.isTerminator()) return false;
1620193323Sed
1621193323Sed  // Conditional branch is a special case.
1622193323Sed  if (TID.isBranch() && !TID.isBarrier())
1623193323Sed    return true;
1624193323Sed  if (!TID.isPredicable())
1625193323Sed    return true;
1626193323Sed  return !isPredicated(MI);
1627193323Sed}
1628193323Sed
1629193323Sedbool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1630193323Sed                                 MachineBasicBlock *&TBB,
1631193323Sed                                 MachineBasicBlock *&FBB,
1632193323Sed                                 SmallVectorImpl<MachineOperand> &Cond,
1633193323Sed                                 bool AllowModify) const {
1634193323Sed  // Start from the bottom of the block and work up, examining the
1635193323Sed  // terminator instructions.
1636193323Sed  MachineBasicBlock::iterator I = MBB.end();
1637207618Srdivacky  MachineBasicBlock::iterator UnCondBrIter = MBB.end();
1638193323Sed  while (I != MBB.begin()) {
1639193323Sed    --I;
1640206083Srdivacky    if (I->isDebugValue())
1641206083Srdivacky      continue;
1642200581Srdivacky
1643200581Srdivacky    // Working from the bottom, when we see a non-terminator instruction, we're
1644200581Srdivacky    // done.
1645212904Sdim    if (!isUnpredicatedTerminator(I))
1646193323Sed      break;
1647200581Srdivacky
1648200581Srdivacky    // A terminator that isn't a branch can't easily be handled by this
1649200581Srdivacky    // analysis.
1650193323Sed    if (!I->getDesc().isBranch())
1651193323Sed      return true;
1652200581Srdivacky
1653193323Sed    // Handle unconditional branches.
1654203954Srdivacky    if (I->getOpcode() == X86::JMP_4) {
1655207618Srdivacky      UnCondBrIter = I;
1656207618Srdivacky
1657193323Sed      if (!AllowModify) {
1658193323Sed        TBB = I->getOperand(0).getMBB();
1659193323Sed        continue;
1660193323Sed      }
1661193323Sed
1662193323Sed      // If the block has any instructions after a JMP, delete them.
1663200581Srdivacky      while (llvm::next(I) != MBB.end())
1664200581Srdivacky        llvm::next(I)->eraseFromParent();
1665200581Srdivacky
1666193323Sed      Cond.clear();
1667193323Sed      FBB = 0;
1668200581Srdivacky
1669193323Sed      // Delete the JMP if it's equivalent to a fall-through.
1670193323Sed      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1671193323Sed        TBB = 0;
1672193323Sed        I->eraseFromParent();
1673193323Sed        I = MBB.end();
1674207618Srdivacky        UnCondBrIter = MBB.end();
1675193323Sed        continue;
1676193323Sed      }
1677200581Srdivacky
1678207618Srdivacky      // TBB is used to indicate the unconditional destination.
1679193323Sed      TBB = I->getOperand(0).getMBB();
1680193323Sed      continue;
1681193323Sed    }
1682200581Srdivacky
1683193323Sed    // Handle conditional branches.
1684193323Sed    X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
1685193323Sed    if (BranchCode == X86::COND_INVALID)
1686193323Sed      return true;  // Can't handle indirect branch.
1687200581Srdivacky
1688193323Sed    // Working from the bottom, handle the first conditional branch.
1689193323Sed    if (Cond.empty()) {
1690207618Srdivacky      MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
1691207618Srdivacky      if (AllowModify && UnCondBrIter != MBB.end() &&
1692207618Srdivacky          MBB.isLayoutSuccessor(TargetBB)) {
1693207618Srdivacky        // If we can modify the code and it ends in something like:
1694207618Srdivacky        //
1695207618Srdivacky        //     jCC L1
1696207618Srdivacky        //     jmp L2
1697207618Srdivacky        //   L1:
1698207618Srdivacky        //     ...
1699207618Srdivacky        //   L2:
1700207618Srdivacky        //
1701207618Srdivacky        // Then we can change this to:
1702207618Srdivacky        //
1703207618Srdivacky        //     jnCC L2
1704207618Srdivacky        //   L1:
1705207618Srdivacky        //     ...
1706207618Srdivacky        //   L2:
1707207618Srdivacky        //
1708207618Srdivacky        // Which is a bit more efficient.
1709207618Srdivacky        // We conditionally jump to the fall-through block.
1710207618Srdivacky        BranchCode = GetOppositeBranchCondition(BranchCode);
1711207618Srdivacky        unsigned JNCC = GetCondBranchFromCond(BranchCode);
1712207618Srdivacky        MachineBasicBlock::iterator OldInst = I;
1713207618Srdivacky
1714207618Srdivacky        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
1715207618Srdivacky          .addMBB(UnCondBrIter->getOperand(0).getMBB());
1716207618Srdivacky        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
1717207618Srdivacky          .addMBB(TargetBB);
1718207618Srdivacky        MBB.addSuccessor(TargetBB);
1719207618Srdivacky
1720207618Srdivacky        OldInst->eraseFromParent();
1721207618Srdivacky        UnCondBrIter->eraseFromParent();
1722207618Srdivacky
1723207618Srdivacky        // Restart the analysis.
1724207618Srdivacky        UnCondBrIter = MBB.end();
1725207618Srdivacky        I = MBB.end();
1726207618Srdivacky        continue;
1727207618Srdivacky      }
1728207618Srdivacky
1729193323Sed      FBB = TBB;
1730193323Sed      TBB = I->getOperand(0).getMBB();
1731193323Sed      Cond.push_back(MachineOperand::CreateImm(BranchCode));
1732193323Sed      continue;
1733193323Sed    }
1734200581Srdivacky
1735200581Srdivacky    // Handle subsequent conditional branches. Only handle the case where all
1736200581Srdivacky    // conditional branches branch to the same destination and their condition
1737200581Srdivacky    // opcodes fit one of the special multi-branch idioms.
1738193323Sed    assert(Cond.size() == 1);
1739193323Sed    assert(TBB);
1740200581Srdivacky
1741200581Srdivacky    // Only handle the case where all conditional branches branch to the same
1742200581Srdivacky    // destination.
1743193323Sed    if (TBB != I->getOperand(0).getMBB())
1744193323Sed      return true;
1745200581Srdivacky
1746200581Srdivacky    // If the conditions are the same, we can leave them alone.
1747193323Sed    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1748193323Sed    if (OldBranchCode == BranchCode)
1749193323Sed      continue;
1750200581Srdivacky
1751200581Srdivacky    // If they differ, see if they fit one of the known patterns. Theoretically,
1752200581Srdivacky    // we could handle more patterns here, but we shouldn't expect to see them
1753200581Srdivacky    // if instruction selection has done a reasonable job.
1754193323Sed    if ((OldBranchCode == X86::COND_NP &&
1755193323Sed         BranchCode == X86::COND_E) ||
1756193323Sed        (OldBranchCode == X86::COND_E &&
1757193323Sed         BranchCode == X86::COND_NP))
1758193323Sed      BranchCode = X86::COND_NP_OR_E;
1759193323Sed    else if ((OldBranchCode == X86::COND_P &&
1760193323Sed              BranchCode == X86::COND_NE) ||
1761193323Sed             (OldBranchCode == X86::COND_NE &&
1762193323Sed              BranchCode == X86::COND_P))
1763193323Sed      BranchCode = X86::COND_NE_OR_P;
1764193323Sed    else
1765193323Sed      return true;
1766200581Srdivacky
1767193323Sed    // Update the MachineOperand.
1768193323Sed    Cond[0].setImm(BranchCode);
1769193323Sed  }
1770193323Sed
1771193323Sed  return false;
1772193323Sed}
1773193323Sed
1774193323Sedunsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1775193323Sed  MachineBasicBlock::iterator I = MBB.end();
1776193323Sed  unsigned Count = 0;
1777193323Sed
1778193323Sed  while (I != MBB.begin()) {
1779193323Sed    --I;
1780206083Srdivacky    if (I->isDebugValue())
1781206083Srdivacky      continue;
1782203954Srdivacky    if (I->getOpcode() != X86::JMP_4 &&
1783193323Sed        GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1784193323Sed      break;
1785193323Sed    // Remove the branch.
1786193323Sed    I->eraseFromParent();
1787193323Sed    I = MBB.end();
1788193323Sed    ++Count;
1789193323Sed  }
1790193323Sed
1791193323Sed  return Count;
1792193323Sed}
1793193323Sed
1794193323Sedunsigned
1795193323SedX86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1796193323Sed                           MachineBasicBlock *FBB,
1797210299Sed                           const SmallVectorImpl<MachineOperand> &Cond,
1798210299Sed                           DebugLoc DL) const {
1799193323Sed  // Shouldn't be a fall through.
1800193323Sed  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1801193323Sed  assert((Cond.size() == 1 || Cond.size() == 0) &&
1802193323Sed         "X86 branch conditions have one component!");
1803193323Sed
1804193323Sed  if (Cond.empty()) {
1805193323Sed    // Unconditional branch?
1806193323Sed    assert(!FBB && "Unconditional branch with multiple successors!");
1807210299Sed    BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
1808193323Sed    return 1;
1809193323Sed  }
1810193323Sed
1811193323Sed  // Conditional branch.
1812193323Sed  unsigned Count = 0;
1813193323Sed  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1814193323Sed  switch (CC) {
1815193323Sed  case X86::COND_NP_OR_E:
1816193323Sed    // Synthesize NP_OR_E with two branches.
1817210299Sed    BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
1818193323Sed    ++Count;
1819210299Sed    BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
1820193323Sed    ++Count;
1821193323Sed    break;
1822193323Sed  case X86::COND_NE_OR_P:
1823193323Sed    // Synthesize NE_OR_P with two branches.
1824210299Sed    BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
1825193323Sed    ++Count;
1826210299Sed    BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
1827193323Sed    ++Count;
1828193323Sed    break;
1829193323Sed  default: {
1830193323Sed    unsigned Opc = GetCondBranchFromCond(CC);
1831210299Sed    BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
1832193323Sed    ++Count;
1833193323Sed  }
1834193323Sed  }
1835193323Sed  if (FBB) {
1836193323Sed    // Two-way Conditional branch. Insert the second branch.
1837210299Sed    BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
1838193323Sed    ++Count;
1839193323Sed  }
1840193323Sed  return Count;
1841193323Sed}
1842193323Sed
1843193323Sed/// isHReg - Test if the given register is a physical h register.
1844193323Sedstatic bool isHReg(unsigned Reg) {
1845193323Sed  return X86::GR8_ABCD_HRegClass.contains(Reg);
1846193323Sed}
1847193323Sed
1848212904Sdim// Try and copy between VR128/VR64 and GR64 registers.
1849212904Sdimstatic unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg) {
1850212904Sdim  // SrcReg(VR128) -> DestReg(GR64)
1851212904Sdim  // SrcReg(VR64)  -> DestReg(GR64)
1852212904Sdim  // SrcReg(GR64)  -> DestReg(VR128)
1853212904Sdim  // SrcReg(GR64)  -> DestReg(VR64)
1854212904Sdim
1855212904Sdim  if (X86::GR64RegClass.contains(DestReg)) {
1856212904Sdim    if (X86::VR128RegClass.contains(SrcReg)) {
1857212904Sdim      // Copy from a VR128 register to a GR64 register.
1858212904Sdim      return X86::MOVPQIto64rr;
1859212904Sdim    } else if (X86::VR64RegClass.contains(SrcReg)) {
1860212904Sdim      // Copy from a VR64 register to a GR64 register.
1861212904Sdim      return X86::MOVSDto64rr;
1862212904Sdim    }
1863212904Sdim  } else if (X86::GR64RegClass.contains(SrcReg)) {
1864212904Sdim    // Copy from a GR64 register to a VR128 register.
1865212904Sdim    if (X86::VR128RegClass.contains(DestReg))
1866212904Sdim      return X86::MOV64toPQIrr;
1867212904Sdim    // Copy from a GR64 register to a VR64 register.
1868212904Sdim    else if (X86::VR64RegClass.contains(DestReg))
1869212904Sdim      return X86::MOV64toSDrr;
1870212904Sdim  }
1871212904Sdim
1872212904Sdim  return 0;
1873212904Sdim}
1874212904Sdim
1875210299Sedvoid X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
1876210299Sed                               MachineBasicBlock::iterator MI, DebugLoc DL,
1877210299Sed                               unsigned DestReg, unsigned SrcReg,
1878210299Sed                               bool KillSrc) const {
1879210299Sed  // First deal with the normal symmetric copies.
1880210299Sed  unsigned Opc = 0;
1881210299Sed  if (X86::GR64RegClass.contains(DestReg, SrcReg))
1882210299Sed    Opc = X86::MOV64rr;
1883210299Sed  else if (X86::GR32RegClass.contains(DestReg, SrcReg))
1884210299Sed    Opc = X86::MOV32rr;
1885210299Sed  else if (X86::GR16RegClass.contains(DestReg, SrcReg))
1886210299Sed    Opc = X86::MOV16rr;
1887210299Sed  else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
1888210299Sed    // Copying to or from a physical H register on x86-64 requires a NOREX
1889210299Sed    // move.  Otherwise use a normal move.
1890210299Sed    if ((isHReg(DestReg) || isHReg(SrcReg)) &&
1891210299Sed        TM.getSubtarget<X86Subtarget>().is64Bit())
1892210299Sed      Opc = X86::MOV8rr_NOREX;
1893198090Srdivacky    else
1894210299Sed      Opc = X86::MOV8rr;
1895210299Sed  } else if (X86::VR128RegClass.contains(DestReg, SrcReg))
1896210299Sed    Opc = X86::MOVAPSrr;
1897210299Sed  else if (X86::VR64RegClass.contains(DestReg, SrcReg))
1898210299Sed    Opc = X86::MMX_MOVQ64rr;
1899212904Sdim  else
1900212904Sdim    Opc = CopyToFromAsymmetricReg(DestReg, SrcReg);
1901193323Sed
1902210299Sed  if (Opc) {
1903210299Sed    BuildMI(MBB, MI, DL, get(Opc), DestReg)
1904210299Sed      .addReg(SrcReg, getKillRegState(KillSrc));
1905210299Sed    return;
1906193323Sed  }
1907198090Srdivacky
1908193323Sed  // Moving EFLAGS to / from another register requires a push and a pop.
1909210299Sed  if (SrcReg == X86::EFLAGS) {
1910210299Sed    if (X86::GR64RegClass.contains(DestReg)) {
1911208599Srdivacky      BuildMI(MBB, MI, DL, get(X86::PUSHF64));
1912193323Sed      BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
1913210299Sed      return;
1914210299Sed    } else if (X86::GR32RegClass.contains(DestReg)) {
1915208599Srdivacky      BuildMI(MBB, MI, DL, get(X86::PUSHF32));
1916193323Sed      BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
1917210299Sed      return;
1918193323Sed    }
1919210299Sed  }
1920210299Sed  if (DestReg == X86::EFLAGS) {
1921210299Sed    if (X86::GR64RegClass.contains(SrcReg)) {
1922210299Sed      BuildMI(MBB, MI, DL, get(X86::PUSH64r))
1923210299Sed        .addReg(SrcReg, getKillRegState(KillSrc));
1924208599Srdivacky      BuildMI(MBB, MI, DL, get(X86::POPF64));
1925210299Sed      return;
1926210299Sed    } else if (X86::GR32RegClass.contains(SrcReg)) {
1927210299Sed      BuildMI(MBB, MI, DL, get(X86::PUSH32r))
1928210299Sed        .addReg(SrcReg, getKillRegState(KillSrc));
1929208599Srdivacky      BuildMI(MBB, MI, DL, get(X86::POPF32));
1930210299Sed      return;
1931193323Sed    }
1932193323Sed  }
1933193323Sed
1934210299Sed  DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
1935210299Sed               << " to " << RI.getName(DestReg) << '\n');
1936210299Sed  llvm_unreachable("Cannot emit physreg copy instruction");
1937193323Sed}
1938193323Sed
1939210299Sedstatic unsigned getLoadStoreRegOpcode(unsigned Reg,
1940210299Sed                                      const TargetRegisterClass *RC,
1941210299Sed                                      bool isStackAligned,
1942210299Sed                                      const TargetMachine &TM,
1943210299Sed                                      bool load) {
1944210299Sed  switch (RC->getID()) {
1945210299Sed  default:
1946210299Sed    llvm_unreachable("Unknown regclass");
1947210299Sed  case X86::GR64RegClassID:
1948210299Sed  case X86::GR64_NOSPRegClassID:
1949210299Sed    return load ? X86::MOV64rm : X86::MOV64mr;
1950210299Sed  case X86::GR32RegClassID:
1951210299Sed  case X86::GR32_NOSPRegClassID:
1952210299Sed  case X86::GR32_ADRegClassID:
1953210299Sed    return load ? X86::MOV32rm : X86::MOV32mr;
1954210299Sed  case X86::GR16RegClassID:
1955210299Sed    return load ? X86::MOV16rm : X86::MOV16mr;
1956210299Sed  case X86::GR8RegClassID:
1957193323Sed    // Copying to or from a physical H register on x86-64 requires a NOREX
1958193323Sed    // move.  Otherwise use a normal move.
1959210299Sed    if (isHReg(Reg) &&
1960193323Sed        TM.getSubtarget<X86Subtarget>().is64Bit())
1961210299Sed      return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
1962193323Sed    else
1963210299Sed      return load ? X86::MOV8rm : X86::MOV8mr;
1964210299Sed  case X86::GR64_ABCDRegClassID:
1965210299Sed    return load ? X86::MOV64rm : X86::MOV64mr;
1966210299Sed  case X86::GR32_ABCDRegClassID:
1967210299Sed    return load ? X86::MOV32rm : X86::MOV32mr;
1968210299Sed  case X86::GR16_ABCDRegClassID:
1969210299Sed    return load ? X86::MOV16rm : X86::MOV16mr;
1970210299Sed  case X86::GR8_ABCD_LRegClassID:
1971210299Sed    return load ? X86::MOV8rm :X86::MOV8mr;
1972210299Sed  case X86::GR8_ABCD_HRegClassID:
1973193323Sed    if (TM.getSubtarget<X86Subtarget>().is64Bit())
1974210299Sed      return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
1975193323Sed    else
1976210299Sed      return load ? X86::MOV8rm : X86::MOV8mr;
1977210299Sed  case X86::GR64_NOREXRegClassID:
1978210299Sed  case X86::GR64_NOREX_NOSPRegClassID:
1979210299Sed    return load ? X86::MOV64rm : X86::MOV64mr;
1980210299Sed  case X86::GR32_NOREXRegClassID:
1981210299Sed    return load ? X86::MOV32rm : X86::MOV32mr;
1982210299Sed  case X86::GR16_NOREXRegClassID:
1983210299Sed    return load ? X86::MOV16rm : X86::MOV16mr;
1984210299Sed  case X86::GR8_NOREXRegClassID:
1985210299Sed    return load ? X86::MOV8rm : X86::MOV8mr;
1986210299Sed  case X86::GR64_TCRegClassID:
1987210299Sed    return load ? X86::MOV64rm_TC : X86::MOV64mr_TC;
1988210299Sed  case X86::GR32_TCRegClassID:
1989210299Sed    return load ? X86::MOV32rm_TC : X86::MOV32mr_TC;
1990210299Sed  case X86::RFP80RegClassID:
1991210299Sed    return load ? X86::LD_Fp80m : X86::ST_FpP80m;
1992210299Sed  case X86::RFP64RegClassID:
1993210299Sed    return load ? X86::LD_Fp64m : X86::ST_Fp64m;
1994210299Sed  case X86::RFP32RegClassID:
1995210299Sed    return load ? X86::LD_Fp32m : X86::ST_Fp32m;
1996210299Sed  case X86::FR32RegClassID:
1997210299Sed    return load ? X86::MOVSSrm : X86::MOVSSmr;
1998210299Sed  case X86::FR64RegClassID:
1999210299Sed    return load ? X86::MOVSDrm : X86::MOVSDmr;
2000210299Sed  case X86::VR128RegClassID:
2001193323Sed    // If stack is realigned we can use aligned stores.
2002210299Sed    if (isStackAligned)
2003210299Sed      return load ? X86::MOVAPSrm : X86::MOVAPSmr;
2004210299Sed    else
2005210299Sed      return load ? X86::MOVUPSrm : X86::MOVUPSmr;
2006210299Sed  case X86::VR64RegClassID:
2007210299Sed    return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
2008193323Sed  }
2009210299Sed}
2010193323Sed
2011210299Sedstatic unsigned getStoreRegOpcode(unsigned SrcReg,
2012210299Sed                                  const TargetRegisterClass *RC,
2013210299Sed                                  bool isStackAligned,
2014210299Sed                                  TargetMachine &TM) {
2015210299Sed  return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
2016193323Sed}
2017193323Sed
2018210299Sed
2019210299Sedstatic unsigned getLoadRegOpcode(unsigned DestReg,
2020210299Sed                                 const TargetRegisterClass *RC,
2021210299Sed                                 bool isStackAligned,
2022210299Sed                                 const TargetMachine &TM) {
2023210299Sed  return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
2024210299Sed}
2025210299Sed
2026193323Sedvoid X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
2027193323Sed                                       MachineBasicBlock::iterator MI,
2028193323Sed                                       unsigned SrcReg, bool isKill, int FrameIdx,
2029208599Srdivacky                                       const TargetRegisterClass *RC,
2030208599Srdivacky                                       const TargetRegisterInfo *TRI) const {
2031193323Sed  const MachineFunction &MF = *MBB.getParent();
2032212904Sdim  assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
2033212904Sdim         "Stack slot too small for store");
2034202878Srdivacky  bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
2035193323Sed  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2036203954Srdivacky  DebugLoc DL = MBB.findDebugLoc(MI);
2037193323Sed  addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
2038193323Sed    .addReg(SrcReg, getKillRegState(isKill));
2039193323Sed}
2040193323Sed
2041193323Sedvoid X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
2042193323Sed                                  bool isKill,
2043193323Sed                                  SmallVectorImpl<MachineOperand> &Addr,
2044193323Sed                                  const TargetRegisterClass *RC,
2045198090Srdivacky                                  MachineInstr::mmo_iterator MMOBegin,
2046198090Srdivacky                                  MachineInstr::mmo_iterator MMOEnd,
2047193323Sed                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
2048210299Sed  bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16;
2049193323Sed  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2050206124Srdivacky  DebugLoc DL;
2051193323Sed  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
2052193323Sed  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2053193323Sed    MIB.addOperand(Addr[i]);
2054193323Sed  MIB.addReg(SrcReg, getKillRegState(isKill));
2055198090Srdivacky  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2056193323Sed  NewMIs.push_back(MIB);
2057193323Sed}
2058193323Sed
2059193323Sed
2060193323Sedvoid X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
2061193323Sed                                        MachineBasicBlock::iterator MI,
2062193323Sed                                        unsigned DestReg, int FrameIdx,
2063208599Srdivacky                                        const TargetRegisterClass *RC,
2064208599Srdivacky                                        const TargetRegisterInfo *TRI) const {
2065193323Sed  const MachineFunction &MF = *MBB.getParent();
2066202878Srdivacky  bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
2067193323Sed  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2068203954Srdivacky  DebugLoc DL = MBB.findDebugLoc(MI);
2069193323Sed  addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
2070193323Sed}
2071193323Sed
2072193323Sedvoid X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
2073193323Sed                                 SmallVectorImpl<MachineOperand> &Addr,
2074193323Sed                                 const TargetRegisterClass *RC,
2075198090Srdivacky                                 MachineInstr::mmo_iterator MMOBegin,
2076198090Srdivacky                                 MachineInstr::mmo_iterator MMOEnd,
2077193323Sed                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2078210299Sed  bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16;
2079193323Sed  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2080206124Srdivacky  DebugLoc DL;
2081193323Sed  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
2082193323Sed  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2083193323Sed    MIB.addOperand(Addr[i]);
2084198090Srdivacky  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2085193323Sed  NewMIs.push_back(MIB);
2086193323Sed}
2087193323Sed
2088193323Sedbool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
2089193323Sed                                             MachineBasicBlock::iterator MI,
2090208599Srdivacky                                        const std::vector<CalleeSavedInfo> &CSI,
2091208599Srdivacky                                          const TargetRegisterInfo *TRI) const {
2092193323Sed  if (CSI.empty())
2093193323Sed    return false;
2094193323Sed
2095202878Srdivacky  DebugLoc DL = MBB.findDebugLoc(MI);
2096193323Sed
2097193323Sed  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2098198090Srdivacky  bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
2099193323Sed  unsigned SlotSize = is64Bit ? 8 : 4;
2100193323Sed
2101193323Sed  MachineFunction &MF = *MBB.getParent();
2102198090Srdivacky  unsigned FPReg = RI.getFrameRegister(MF);
2103193323Sed  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2104193574Sed  unsigned CalleeFrameSize = 0;
2105193323Sed
2106193323Sed  unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
2107193323Sed  for (unsigned i = CSI.size(); i != 0; --i) {
2108193323Sed    unsigned Reg = CSI[i-1].getReg();
2109193323Sed    // Add the callee-saved register as live-in. It's killed at the spill.
2110193323Sed    MBB.addLiveIn(Reg);
2111198090Srdivacky    if (Reg == FPReg)
2112198090Srdivacky      // X86RegisterInfo::emitPrologue will handle spilling of frame register.
2113198090Srdivacky      continue;
2114210299Sed    if (!X86::VR128RegClass.contains(Reg) && !isWin64) {
2115193574Sed      CalleeFrameSize += SlotSize;
2116198090Srdivacky      BuildMI(MBB, MI, DL, get(Opc)).addReg(Reg, RegState::Kill);
2117193574Sed    } else {
2118212904Sdim      const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
2119210299Sed      storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(),
2120212904Sdim                          RC, &RI);
2121193574Sed    }
2122193323Sed  }
2123193574Sed
2124193574Sed  X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
2125193323Sed  return true;
2126193323Sed}
2127193323Sed
2128193323Sedbool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
2129193323Sed                                               MachineBasicBlock::iterator MI,
2130208599Srdivacky                                        const std::vector<CalleeSavedInfo> &CSI,
2131208599Srdivacky                                          const TargetRegisterInfo *TRI) const {
2132193323Sed  if (CSI.empty())
2133193323Sed    return false;
2134193323Sed
2135202878Srdivacky  DebugLoc DL = MBB.findDebugLoc(MI);
2136193323Sed
2137198090Srdivacky  MachineFunction &MF = *MBB.getParent();
2138198090Srdivacky  unsigned FPReg = RI.getFrameRegister(MF);
2139193323Sed  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2140198090Srdivacky  bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
2141193323Sed  unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
2142193323Sed  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2143193323Sed    unsigned Reg = CSI[i].getReg();
2144198090Srdivacky    if (Reg == FPReg)
2145198090Srdivacky      // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
2146198090Srdivacky      continue;
2147210299Sed    if (!X86::VR128RegClass.contains(Reg) && !isWin64) {
2148193574Sed      BuildMI(MBB, MI, DL, get(Opc), Reg);
2149193574Sed    } else {
2150212904Sdim      const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
2151210299Sed      loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(),
2152212904Sdim                           RC, &RI);
2153193574Sed    }
2154193323Sed  }
2155193323Sed  return true;
2156193323Sed}
2157193323Sed
2158207618SrdivackyMachineInstr*
2159207618SrdivackyX86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
2160207618Srdivacky                                       int FrameIx, uint64_t Offset,
2161207618Srdivacky                                       const MDNode *MDPtr,
2162207618Srdivacky                                       DebugLoc DL) const {
2163207618Srdivacky  X86AddressMode AM;
2164207618Srdivacky  AM.BaseType = X86AddressMode::FrameIndexBase;
2165207618Srdivacky  AM.Base.FrameIndex = FrameIx;
2166207618Srdivacky  MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE));
2167207618Srdivacky  addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr);
2168207618Srdivacky  return &*MIB;
2169207618Srdivacky}
2170207618Srdivacky
2171193323Sedstatic MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
2172193323Sed                                     const SmallVectorImpl<MachineOperand> &MOs,
2173193323Sed                                     MachineInstr *MI,
2174193323Sed                                     const TargetInstrInfo &TII) {
2175193323Sed  // Create the base instruction with the memory operand as the first part.
2176193323Sed  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2177193323Sed                                              MI->getDebugLoc(), true);
2178193323Sed  MachineInstrBuilder MIB(NewMI);
2179193323Sed  unsigned NumAddrOps = MOs.size();
2180193323Sed  for (unsigned i = 0; i != NumAddrOps; ++i)
2181193323Sed    MIB.addOperand(MOs[i]);
2182193323Sed  if (NumAddrOps < 4)  // FrameIndex only
2183193323Sed    addOffset(MIB, 0);
2184193323Sed
2185193323Sed  // Loop over the rest of the ri operands, converting them over.
2186193323Sed  unsigned NumOps = MI->getDesc().getNumOperands()-2;
2187193323Sed  for (unsigned i = 0; i != NumOps; ++i) {
2188193323Sed    MachineOperand &MO = MI->getOperand(i+2);
2189193323Sed    MIB.addOperand(MO);
2190193323Sed  }
2191193323Sed  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2192193323Sed    MachineOperand &MO = MI->getOperand(i);
2193193323Sed    MIB.addOperand(MO);
2194193323Sed  }
2195193323Sed  return MIB;
2196193323Sed}
2197193323Sed
2198193323Sedstatic MachineInstr *FuseInst(MachineFunction &MF,
2199193323Sed                              unsigned Opcode, unsigned OpNo,
2200193323Sed                              const SmallVectorImpl<MachineOperand> &MOs,
2201193323Sed                              MachineInstr *MI, const TargetInstrInfo &TII) {
2202193323Sed  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2203193323Sed                                              MI->getDebugLoc(), true);
2204193323Sed  MachineInstrBuilder MIB(NewMI);
2205193323Sed
2206193323Sed  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2207193323Sed    MachineOperand &MO = MI->getOperand(i);
2208193323Sed    if (i == OpNo) {
2209193323Sed      assert(MO.isReg() && "Expected to fold into reg operand!");
2210193323Sed      unsigned NumAddrOps = MOs.size();
2211193323Sed      for (unsigned i = 0; i != NumAddrOps; ++i)
2212193323Sed        MIB.addOperand(MOs[i]);
2213193323Sed      if (NumAddrOps < 4)  // FrameIndex only
2214193323Sed        addOffset(MIB, 0);
2215193323Sed    } else {
2216193323Sed      MIB.addOperand(MO);
2217193323Sed    }
2218193323Sed  }
2219193323Sed  return MIB;
2220193323Sed}
2221193323Sed
2222193323Sedstatic MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
2223193323Sed                                const SmallVectorImpl<MachineOperand> &MOs,
2224193323Sed                                MachineInstr *MI) {
2225193323Sed  MachineFunction &MF = *MI->getParent()->getParent();
2226193323Sed  MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
2227193323Sed
2228193323Sed  unsigned NumAddrOps = MOs.size();
2229193323Sed  for (unsigned i = 0; i != NumAddrOps; ++i)
2230193323Sed    MIB.addOperand(MOs[i]);
2231193323Sed  if (NumAddrOps < 4)  // FrameIndex only
2232193323Sed    addOffset(MIB, 0);
2233193323Sed  return MIB.addImm(0);
2234193323Sed}
2235193323Sed
2236193323SedMachineInstr*
2237193323SedX86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2238193323Sed                                    MachineInstr *MI, unsigned i,
2239198090Srdivacky                                    const SmallVectorImpl<MachineOperand> &MOs,
2240198090Srdivacky                                    unsigned Size, unsigned Align) const {
2241198090Srdivacky  const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
2242193323Sed  bool isTwoAddrFold = false;
2243193323Sed  unsigned NumOps = MI->getDesc().getNumOperands();
2244193323Sed  bool isTwoAddr = NumOps > 1 &&
2245193323Sed    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2246193323Sed
2247193323Sed  MachineInstr *NewMI = NULL;
2248193323Sed  // Folding a memory location into the two-address part of a two-address
2249193323Sed  // instruction is different than folding it other places.  It requires
2250193323Sed  // replacing the *two* registers with the memory location.
2251193323Sed  if (isTwoAddr && NumOps >= 2 && i < 2 &&
2252193323Sed      MI->getOperand(0).isReg() &&
2253193323Sed      MI->getOperand(1).isReg() &&
2254193323Sed      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2255193323Sed    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2256193323Sed    isTwoAddrFold = true;
2257193323Sed  } else if (i == 0) { // If operand 0
2258202375Srdivacky    if (MI->getOpcode() == X86::MOV64r0)
2259202375Srdivacky      NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2260202375Srdivacky    else if (MI->getOpcode() == X86::MOV32r0)
2261193323Sed      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2262202375Srdivacky    else if (MI->getOpcode() == X86::MOV16r0)
2263202375Srdivacky      NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2264193323Sed    else if (MI->getOpcode() == X86::MOV8r0)
2265193323Sed      NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
2266193323Sed    if (NewMI)
2267193323Sed      return NewMI;
2268193323Sed
2269193323Sed    OpcodeTablePtr = &RegOp2MemOpTable0;
2270193323Sed  } else if (i == 1) {
2271193323Sed    OpcodeTablePtr = &RegOp2MemOpTable1;
2272193323Sed  } else if (i == 2) {
2273193323Sed    OpcodeTablePtr = &RegOp2MemOpTable2;
2274193323Sed  }
2275193323Sed
2276193323Sed  // If table selected...
2277193323Sed  if (OpcodeTablePtr) {
2278193323Sed    // Find the Opcode to fuse
2279199481Srdivacky    DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2280193323Sed      OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2281193323Sed    if (I != OpcodeTablePtr->end()) {
2282198090Srdivacky      unsigned Opcode = I->second.first;
2283198090Srdivacky      unsigned MinAlign = I->second.second;
2284198090Srdivacky      if (Align < MinAlign)
2285198090Srdivacky        return NULL;
2286198090Srdivacky      bool NarrowToMOV32rm = false;
2287198090Srdivacky      if (Size) {
2288198090Srdivacky        unsigned RCSize =  MI->getDesc().OpInfo[i].getRegClass(&RI)->getSize();
2289198090Srdivacky        if (Size < RCSize) {
2290198090Srdivacky          // Check if it's safe to fold the load. If the size of the object is
2291198090Srdivacky          // narrower than the load width, then it's not.
2292198090Srdivacky          if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
2293198090Srdivacky            return NULL;
2294198090Srdivacky          // If this is a 64-bit load, but the spill slot is 32, then we can do
2295198090Srdivacky          // a 32-bit load which is implicitly zero-extended. This likely is due
2296198090Srdivacky          // to liveintervalanalysis remat'ing a load from stack slot.
2297198090Srdivacky          if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
2298198090Srdivacky            return NULL;
2299198090Srdivacky          Opcode = X86::MOV32rm;
2300198090Srdivacky          NarrowToMOV32rm = true;
2301198090Srdivacky        }
2302198090Srdivacky      }
2303198090Srdivacky
2304193323Sed      if (isTwoAddrFold)
2305198090Srdivacky        NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
2306193323Sed      else
2307198090Srdivacky        NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
2308198090Srdivacky
2309198090Srdivacky      if (NarrowToMOV32rm) {
2310198090Srdivacky        // If this is the special case where we use a MOV32rm to load a 32-bit
2311198090Srdivacky        // value and zero-extend the top bits. Change the destination register
2312198090Srdivacky        // to a 32-bit one.
2313198090Srdivacky        unsigned DstReg = NewMI->getOperand(0).getReg();
2314198090Srdivacky        if (TargetRegisterInfo::isPhysicalRegister(DstReg))
2315198090Srdivacky          NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
2316208599Srdivacky                                                   X86::sub_32bit));
2317198090Srdivacky        else
2318208599Srdivacky          NewMI->getOperand(0).setSubReg(X86::sub_32bit);
2319198090Srdivacky      }
2320193323Sed      return NewMI;
2321193323Sed    }
2322193323Sed  }
2323193323Sed
2324193323Sed  // No fusion
2325210299Sed  if (PrintFailedFusing && !MI->isCopy())
2326202375Srdivacky    dbgs() << "We failed to fuse operand " << i << " in " << *MI;
2327193323Sed  return NULL;
2328193323Sed}
2329193323Sed
2330193323Sed
2331193323SedMachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2332193323Sed                                                  MachineInstr *MI,
2333198090Srdivacky                                           const SmallVectorImpl<unsigned> &Ops,
2334193323Sed                                                  int FrameIndex) const {
2335193323Sed  // Check switch flag
2336193323Sed  if (NoFusing) return NULL;
2337193323Sed
2338201360Srdivacky  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2339201360Srdivacky    switch (MI->getOpcode()) {
2340201360Srdivacky    case X86::CVTSD2SSrr:
2341201360Srdivacky    case X86::Int_CVTSD2SSrr:
2342201360Srdivacky    case X86::CVTSS2SDrr:
2343201360Srdivacky    case X86::Int_CVTSS2SDrr:
2344201360Srdivacky    case X86::RCPSSr:
2345201360Srdivacky    case X86::RCPSSr_Int:
2346201360Srdivacky    case X86::ROUNDSDr_Int:
2347201360Srdivacky    case X86::ROUNDSSr_Int:
2348201360Srdivacky    case X86::RSQRTSSr:
2349201360Srdivacky    case X86::RSQRTSSr_Int:
2350201360Srdivacky    case X86::SQRTSSr:
2351201360Srdivacky    case X86::SQRTSSr_Int:
2352201360Srdivacky      return 0;
2353201360Srdivacky    }
2354201360Srdivacky
2355193323Sed  const MachineFrameInfo *MFI = MF.getFrameInfo();
2356198090Srdivacky  unsigned Size = MFI->getObjectSize(FrameIndex);
2357193323Sed  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2358193323Sed  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2359193323Sed    unsigned NewOpc = 0;
2360198090Srdivacky    unsigned RCSize = 0;
2361193323Sed    switch (MI->getOpcode()) {
2362193323Sed    default: return NULL;
2363198090Srdivacky    case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
2364208599Srdivacky    case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
2365208599Srdivacky    case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
2366208599Srdivacky    case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
2367193323Sed    }
2368198090Srdivacky    // Check if it's safe to fold the load. If the size of the object is
2369198090Srdivacky    // narrower than the load width, then it's not.
2370198090Srdivacky    if (Size < RCSize)
2371198090Srdivacky      return NULL;
2372193323Sed    // Change to CMPXXri r, 0 first.
2373193323Sed    MI->setDesc(get(NewOpc));
2374193323Sed    MI->getOperand(1).ChangeToImmediate(0);
2375193323Sed  } else if (Ops.size() != 1)
2376193323Sed    return NULL;
2377193323Sed
2378193323Sed  SmallVector<MachineOperand,4> MOs;
2379193323Sed  MOs.push_back(MachineOperand::CreateFI(FrameIndex));
2380198090Srdivacky  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
2381193323Sed}
2382193323Sed
2383193323SedMachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2384193323Sed                                                  MachineInstr *MI,
2385198090Srdivacky                                           const SmallVectorImpl<unsigned> &Ops,
2386193323Sed                                                  MachineInstr *LoadMI) const {
2387193323Sed  // Check switch flag
2388193323Sed  if (NoFusing) return NULL;
2389193323Sed
2390201360Srdivacky  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2391201360Srdivacky    switch (MI->getOpcode()) {
2392201360Srdivacky    case X86::CVTSD2SSrr:
2393201360Srdivacky    case X86::Int_CVTSD2SSrr:
2394201360Srdivacky    case X86::CVTSS2SDrr:
2395201360Srdivacky    case X86::Int_CVTSS2SDrr:
2396201360Srdivacky    case X86::RCPSSr:
2397201360Srdivacky    case X86::RCPSSr_Int:
2398201360Srdivacky    case X86::ROUNDSDr_Int:
2399201360Srdivacky    case X86::ROUNDSSr_Int:
2400201360Srdivacky    case X86::RSQRTSSr:
2401201360Srdivacky    case X86::RSQRTSSr_Int:
2402201360Srdivacky    case X86::SQRTSSr:
2403201360Srdivacky    case X86::SQRTSSr_Int:
2404201360Srdivacky      return 0;
2405201360Srdivacky    }
2406201360Srdivacky
2407193323Sed  // Determine the alignment of the load.
2408193323Sed  unsigned Alignment = 0;
2409193323Sed  if (LoadMI->hasOneMemOperand())
2410198090Srdivacky    Alignment = (*LoadMI->memoperands_begin())->getAlignment();
2411198090Srdivacky  else
2412198090Srdivacky    switch (LoadMI->getOpcode()) {
2413212904Sdim    case X86::AVX_SET0PSY:
2414212904Sdim    case X86::AVX_SET0PDY:
2415212904Sdim      Alignment = 32;
2416212904Sdim      break;
2417206083Srdivacky    case X86::V_SET0PS:
2418206083Srdivacky    case X86::V_SET0PD:
2419206083Srdivacky    case X86::V_SET0PI:
2420198090Srdivacky    case X86::V_SETALLONES:
2421212904Sdim    case X86::AVX_SET0PS:
2422212904Sdim    case X86::AVX_SET0PD:
2423212904Sdim    case X86::AVX_SET0PI:
2424198090Srdivacky      Alignment = 16;
2425198090Srdivacky      break;
2426198090Srdivacky    case X86::FsFLD0SD:
2427198090Srdivacky      Alignment = 8;
2428198090Srdivacky      break;
2429198090Srdivacky    case X86::FsFLD0SS:
2430198090Srdivacky      Alignment = 4;
2431198090Srdivacky      break;
2432198090Srdivacky    default:
2433198090Srdivacky      llvm_unreachable("Don't know how to fold this instruction!");
2434193323Sed    }
2435193323Sed  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2436193323Sed    unsigned NewOpc = 0;
2437193323Sed    switch (MI->getOpcode()) {
2438193323Sed    default: return NULL;
2439193323Sed    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
2440208599Srdivacky    case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
2441208599Srdivacky    case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
2442208599Srdivacky    case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
2443193323Sed    }
2444193323Sed    // Change to CMPXXri r, 0 first.
2445193323Sed    MI->setDesc(get(NewOpc));
2446193323Sed    MI->getOperand(1).ChangeToImmediate(0);
2447193323Sed  } else if (Ops.size() != 1)
2448193323Sed    return NULL;
2449193323Sed
2450212904Sdim  // Make sure the subregisters match.
2451212904Sdim  // Otherwise we risk changing the size of the load.
2452212904Sdim  if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
2453212904Sdim    return NULL;
2454212904Sdim
2455210299Sed  SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
2456198090Srdivacky  switch (LoadMI->getOpcode()) {
2457206083Srdivacky  case X86::V_SET0PS:
2458206083Srdivacky  case X86::V_SET0PD:
2459206083Srdivacky  case X86::V_SET0PI:
2460198090Srdivacky  case X86::V_SETALLONES:
2461212904Sdim  case X86::AVX_SET0PS:
2462212904Sdim  case X86::AVX_SET0PD:
2463212904Sdim  case X86::AVX_SET0PI:
2464212904Sdim  case X86::AVX_SET0PSY:
2465212904Sdim  case X86::AVX_SET0PDY:
2466198090Srdivacky  case X86::FsFLD0SD:
2467198090Srdivacky  case X86::FsFLD0SS: {
2468206083Srdivacky    // Folding a V_SET0P? or V_SETALLONES as a load, to ease register pressure.
2469193323Sed    // Create a constant-pool entry and operands to load from it.
2470193323Sed
2471204961Srdivacky    // Medium and large mode can't fold loads this way.
2472204961Srdivacky    if (TM.getCodeModel() != CodeModel::Small &&
2473204961Srdivacky        TM.getCodeModel() != CodeModel::Kernel)
2474204961Srdivacky      return NULL;
2475204961Srdivacky
2476193323Sed    // x86-32 PIC requires a PIC base register for constant pools.
2477193323Sed    unsigned PICBase = 0;
2478198090Srdivacky    if (TM.getRelocationModel() == Reloc::PIC_) {
2479198090Srdivacky      if (TM.getSubtarget<X86Subtarget>().is64Bit())
2480198090Srdivacky        PICBase = X86::RIP;
2481198090Srdivacky      else
2482210299Sed        // FIXME: PICBase = getGlobalBaseReg(&MF);
2483198090Srdivacky        // This doesn't work for several reasons.
2484198090Srdivacky        // 1. GlobalBaseReg may have been spilled.
2485198090Srdivacky        // 2. It may not be live at MI.
2486198090Srdivacky        return NULL;
2487198090Srdivacky    }
2488193323Sed
2489198090Srdivacky    // Create a constant-pool entry.
2490193323Sed    MachineConstantPool &MCP = *MF.getConstantPool();
2491198090Srdivacky    const Type *Ty;
2492212904Sdim    unsigned Opc = LoadMI->getOpcode();
2493212904Sdim    if (Opc == X86::FsFLD0SS)
2494198090Srdivacky      Ty = Type::getFloatTy(MF.getFunction()->getContext());
2495212904Sdim    else if (Opc == X86::FsFLD0SD)
2496198090Srdivacky      Ty = Type::getDoubleTy(MF.getFunction()->getContext());
2497212904Sdim    else if (Opc == X86::AVX_SET0PSY || Opc == X86::AVX_SET0PDY)
2498212904Sdim      Ty = VectorType::get(Type::getFloatTy(MF.getFunction()->getContext()), 8);
2499198090Srdivacky    else
2500198090Srdivacky      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
2501207618Srdivacky    const Constant *C = LoadMI->getOpcode() == X86::V_SETALLONES ?
2502198090Srdivacky                    Constant::getAllOnesValue(Ty) :
2503198090Srdivacky                    Constant::getNullValue(Ty);
2504198090Srdivacky    unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
2505193323Sed
2506193323Sed    // Create operands to load from the constant pool entry.
2507193323Sed    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2508193323Sed    MOs.push_back(MachineOperand::CreateImm(1));
2509193323Sed    MOs.push_back(MachineOperand::CreateReg(0, false));
2510193323Sed    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
2511193323Sed    MOs.push_back(MachineOperand::CreateReg(0, false));
2512198090Srdivacky    break;
2513198090Srdivacky  }
2514198090Srdivacky  default: {
2515193323Sed    // Folding a normal load. Just copy the load's address operands.
2516193323Sed    unsigned NumOps = LoadMI->getDesc().getNumOperands();
2517210299Sed    for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
2518193323Sed      MOs.push_back(LoadMI->getOperand(i));
2519198090Srdivacky    break;
2520193323Sed  }
2521198090Srdivacky  }
2522198090Srdivacky  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
2523193323Sed}
2524193323Sed
2525193323Sed
2526193323Sedbool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2527193323Sed                                  const SmallVectorImpl<unsigned> &Ops) const {
2528193323Sed  // Check switch flag
2529193323Sed  if (NoFusing) return 0;
2530193323Sed
2531193323Sed  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2532193323Sed    switch (MI->getOpcode()) {
2533193323Sed    default: return false;
2534193323Sed    case X86::TEST8rr:
2535193323Sed    case X86::TEST16rr:
2536193323Sed    case X86::TEST32rr:
2537193323Sed    case X86::TEST64rr:
2538193323Sed      return true;
2539193323Sed    }
2540193323Sed  }
2541193323Sed
2542193323Sed  if (Ops.size() != 1)
2543193323Sed    return false;
2544193323Sed
2545193323Sed  unsigned OpNum = Ops[0];
2546193323Sed  unsigned Opc = MI->getOpcode();
2547193323Sed  unsigned NumOps = MI->getDesc().getNumOperands();
2548193323Sed  bool isTwoAddr = NumOps > 1 &&
2549193323Sed    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2550193323Sed
2551193323Sed  // Folding a memory location into the two-address part of a two-address
2552193323Sed  // instruction is different than folding it other places.  It requires
2553193323Sed  // replacing the *two* registers with the memory location.
2554198090Srdivacky  const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
2555193323Sed  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2556193323Sed    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2557193323Sed  } else if (OpNum == 0) { // If operand 0
2558193323Sed    switch (Opc) {
2559198090Srdivacky    case X86::MOV8r0:
2560202375Srdivacky    case X86::MOV16r0:
2561193323Sed    case X86::MOV32r0:
2562202375Srdivacky    case X86::MOV64r0:
2563193323Sed      return true;
2564193323Sed    default: break;
2565193323Sed    }
2566193323Sed    OpcodeTablePtr = &RegOp2MemOpTable0;
2567193323Sed  } else if (OpNum == 1) {
2568193323Sed    OpcodeTablePtr = &RegOp2MemOpTable1;
2569193323Sed  } else if (OpNum == 2) {
2570193323Sed    OpcodeTablePtr = &RegOp2MemOpTable2;
2571193323Sed  }
2572193323Sed
2573193323Sed  if (OpcodeTablePtr) {
2574193323Sed    // Find the Opcode to fuse
2575199481Srdivacky    DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2576193323Sed      OpcodeTablePtr->find((unsigned*)Opc);
2577193323Sed    if (I != OpcodeTablePtr->end())
2578193323Sed      return true;
2579193323Sed  }
2580210299Sed  return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops);
2581193323Sed}
2582193323Sed
2583193323Sedbool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2584193323Sed                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2585193323Sed                                SmallVectorImpl<MachineInstr*> &NewMIs) const {
2586199481Srdivacky  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2587193323Sed    MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2588193323Sed  if (I == MemOp2RegOpTable.end())
2589193323Sed    return false;
2590193323Sed  unsigned Opc = I->second.first;
2591193323Sed  unsigned Index = I->second.second & 0xf;
2592193323Sed  bool FoldedLoad = I->second.second & (1 << 4);
2593193323Sed  bool FoldedStore = I->second.second & (1 << 5);
2594193323Sed  if (UnfoldLoad && !FoldedLoad)
2595193323Sed    return false;
2596193323Sed  UnfoldLoad &= FoldedLoad;
2597193323Sed  if (UnfoldStore && !FoldedStore)
2598193323Sed    return false;
2599193323Sed  UnfoldStore &= FoldedStore;
2600193323Sed
2601193323Sed  const TargetInstrDesc &TID = get(Opc);
2602193323Sed  const TargetOperandInfo &TOI = TID.OpInfo[Index];
2603198090Srdivacky  const TargetRegisterClass *RC = TOI.getRegClass(&RI);
2604210299Sed  if (!MI->hasOneMemOperand() &&
2605210299Sed      RC == &X86::VR128RegClass &&
2606210299Sed      !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2607210299Sed    // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
2608210299Sed    // conservatively assume the address is unaligned. That's bad for
2609210299Sed    // performance.
2610210299Sed    return false;
2611210299Sed  SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
2612193323Sed  SmallVector<MachineOperand,2> BeforeOps;
2613193323Sed  SmallVector<MachineOperand,2> AfterOps;
2614193323Sed  SmallVector<MachineOperand,4> ImpOps;
2615193323Sed  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2616193323Sed    MachineOperand &Op = MI->getOperand(i);
2617210299Sed    if (i >= Index && i < Index + X86::AddrNumOperands)
2618193323Sed      AddrOps.push_back(Op);
2619193323Sed    else if (Op.isReg() && Op.isImplicit())
2620193323Sed      ImpOps.push_back(Op);
2621193323Sed    else if (i < Index)
2622193323Sed      BeforeOps.push_back(Op);
2623193323Sed    else if (i > Index)
2624193323Sed      AfterOps.push_back(Op);
2625193323Sed  }
2626193323Sed
2627193323Sed  // Emit the load instruction.
2628193323Sed  if (UnfoldLoad) {
2629198090Srdivacky    std::pair<MachineInstr::mmo_iterator,
2630198090Srdivacky              MachineInstr::mmo_iterator> MMOs =
2631198090Srdivacky      MF.extractLoadMemRefs(MI->memoperands_begin(),
2632198090Srdivacky                            MI->memoperands_end());
2633198090Srdivacky    loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
2634193323Sed    if (UnfoldStore) {
2635193323Sed      // Address operands cannot be marked isKill.
2636210299Sed      for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
2637193323Sed        MachineOperand &MO = NewMIs[0]->getOperand(i);
2638193323Sed        if (MO.isReg())
2639193323Sed          MO.setIsKill(false);
2640193323Sed      }
2641193323Sed    }
2642193323Sed  }
2643193323Sed
2644193323Sed  // Emit the data processing instruction.
2645193323Sed  MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
2646193323Sed  MachineInstrBuilder MIB(DataMI);
2647193323Sed
2648193323Sed  if (FoldedStore)
2649193323Sed    MIB.addReg(Reg, RegState::Define);
2650193323Sed  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2651193323Sed    MIB.addOperand(BeforeOps[i]);
2652193323Sed  if (FoldedLoad)
2653193323Sed    MIB.addReg(Reg);
2654193323Sed  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2655193323Sed    MIB.addOperand(AfterOps[i]);
2656193323Sed  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2657193323Sed    MachineOperand &MO = ImpOps[i];
2658193323Sed    MIB.addReg(MO.getReg(),
2659193323Sed               getDefRegState(MO.isDef()) |
2660193323Sed               RegState::Implicit |
2661193323Sed               getKillRegState(MO.isKill()) |
2662195340Sed               getDeadRegState(MO.isDead()) |
2663195340Sed               getUndefRegState(MO.isUndef()));
2664193323Sed  }
2665193323Sed  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2666193323Sed  unsigned NewOpc = 0;
2667193323Sed  switch (DataMI->getOpcode()) {
2668193323Sed  default: break;
2669193323Sed  case X86::CMP64ri32:
2670208599Srdivacky  case X86::CMP64ri8:
2671193323Sed  case X86::CMP32ri:
2672208599Srdivacky  case X86::CMP32ri8:
2673193323Sed  case X86::CMP16ri:
2674208599Srdivacky  case X86::CMP16ri8:
2675193323Sed  case X86::CMP8ri: {
2676193323Sed    MachineOperand &MO0 = DataMI->getOperand(0);
2677193323Sed    MachineOperand &MO1 = DataMI->getOperand(1);
2678193323Sed    if (MO1.getImm() == 0) {
2679193323Sed      switch (DataMI->getOpcode()) {
2680193323Sed      default: break;
2681208599Srdivacky      case X86::CMP64ri8:
2682193323Sed      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2683208599Srdivacky      case X86::CMP32ri8:
2684193323Sed      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
2685208599Srdivacky      case X86::CMP16ri8:
2686193323Sed      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
2687193323Sed      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
2688193323Sed      }
2689193323Sed      DataMI->setDesc(get(NewOpc));
2690193323Sed      MO1.ChangeToRegister(MO0.getReg(), false);
2691193323Sed    }
2692193323Sed  }
2693193323Sed  }
2694193323Sed  NewMIs.push_back(DataMI);
2695193323Sed
2696193323Sed  // Emit the store instruction.
2697193323Sed  if (UnfoldStore) {
2698198090Srdivacky    const TargetRegisterClass *DstRC = TID.OpInfo[0].getRegClass(&RI);
2699198090Srdivacky    std::pair<MachineInstr::mmo_iterator,
2700198090Srdivacky              MachineInstr::mmo_iterator> MMOs =
2701198090Srdivacky      MF.extractStoreMemRefs(MI->memoperands_begin(),
2702198090Srdivacky                             MI->memoperands_end());
2703198090Srdivacky    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
2704193323Sed  }
2705193323Sed
2706193323Sed  return true;
2707193323Sed}
2708193323Sed
2709193323Sedbool
2710193323SedX86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2711193323Sed                                  SmallVectorImpl<SDNode*> &NewNodes) const {
2712193323Sed  if (!N->isMachineOpcode())
2713193323Sed    return false;
2714193323Sed
2715199481Srdivacky  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2716193323Sed    MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
2717193323Sed  if (I == MemOp2RegOpTable.end())
2718193323Sed    return false;
2719193323Sed  unsigned Opc = I->second.first;
2720193323Sed  unsigned Index = I->second.second & 0xf;
2721193323Sed  bool FoldedLoad = I->second.second & (1 << 4);
2722193323Sed  bool FoldedStore = I->second.second & (1 << 5);
2723193323Sed  const TargetInstrDesc &TID = get(Opc);
2724198090Srdivacky  const TargetRegisterClass *RC = TID.OpInfo[Index].getRegClass(&RI);
2725193323Sed  unsigned NumDefs = TID.NumDefs;
2726193323Sed  std::vector<SDValue> AddrOps;
2727193323Sed  std::vector<SDValue> BeforeOps;
2728193323Sed  std::vector<SDValue> AfterOps;
2729193323Sed  DebugLoc dl = N->getDebugLoc();
2730193323Sed  unsigned NumOps = N->getNumOperands();
2731193323Sed  for (unsigned i = 0; i != NumOps-1; ++i) {
2732193323Sed    SDValue Op = N->getOperand(i);
2733210299Sed    if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
2734193323Sed      AddrOps.push_back(Op);
2735193323Sed    else if (i < Index-NumDefs)
2736193323Sed      BeforeOps.push_back(Op);
2737193323Sed    else if (i > Index-NumDefs)
2738193323Sed      AfterOps.push_back(Op);
2739193323Sed  }
2740193323Sed  SDValue Chain = N->getOperand(NumOps-1);
2741193323Sed  AddrOps.push_back(Chain);
2742193323Sed
2743193323Sed  // Emit the load instruction.
2744193323Sed  SDNode *Load = 0;
2745198090Srdivacky  MachineFunction &MF = DAG.getMachineFunction();
2746193323Sed  if (FoldedLoad) {
2747198090Srdivacky    EVT VT = *RC->vt_begin();
2748199481Srdivacky    std::pair<MachineInstr::mmo_iterator,
2749199481Srdivacky              MachineInstr::mmo_iterator> MMOs =
2750199481Srdivacky      MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2751199481Srdivacky                            cast<MachineSDNode>(N)->memoperands_end());
2752210299Sed    if (!(*MMOs.first) &&
2753210299Sed        RC == &X86::VR128RegClass &&
2754210299Sed        !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2755210299Sed      // Do not introduce a slow unaligned load.
2756210299Sed      return false;
2757210299Sed    bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16;
2758198090Srdivacky    Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
2759198090Srdivacky                              VT, MVT::Other, &AddrOps[0], AddrOps.size());
2760193323Sed    NewNodes.push_back(Load);
2761198090Srdivacky
2762198090Srdivacky    // Preserve memory reference information.
2763198090Srdivacky    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
2764193323Sed  }
2765193323Sed
2766193323Sed  // Emit the data processing instruction.
2767198090Srdivacky  std::vector<EVT> VTs;
2768193323Sed  const TargetRegisterClass *DstRC = 0;
2769193323Sed  if (TID.getNumDefs() > 0) {
2770198090Srdivacky    DstRC = TID.OpInfo[0].getRegClass(&RI);
2771193323Sed    VTs.push_back(*DstRC->vt_begin());
2772193323Sed  }
2773193323Sed  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2774198090Srdivacky    EVT VT = N->getValueType(i);
2775193323Sed    if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
2776193323Sed      VTs.push_back(VT);
2777193323Sed  }
2778193323Sed  if (Load)
2779193323Sed    BeforeOps.push_back(SDValue(Load, 0));
2780193323Sed  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2781198090Srdivacky  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
2782198090Srdivacky                                      BeforeOps.size());
2783193323Sed  NewNodes.push_back(NewNode);
2784193323Sed
2785193323Sed  // Emit the store instruction.
2786193323Sed  if (FoldedStore) {
2787193323Sed    AddrOps.pop_back();
2788193323Sed    AddrOps.push_back(SDValue(NewNode, 0));
2789193323Sed    AddrOps.push_back(Chain);
2790199481Srdivacky    std::pair<MachineInstr::mmo_iterator,
2791199481Srdivacky              MachineInstr::mmo_iterator> MMOs =
2792199481Srdivacky      MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2793199481Srdivacky                             cast<MachineSDNode>(N)->memoperands_end());
2794210299Sed    if (!(*MMOs.first) &&
2795210299Sed        RC == &X86::VR128RegClass &&
2796210299Sed        !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2797210299Sed      // Do not introduce a slow unaligned store.
2798210299Sed      return false;
2799210299Sed    bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16;
2800198090Srdivacky    SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
2801198090Srdivacky                                                         isAligned, TM),
2802198090Srdivacky                                       dl, MVT::Other,
2803198090Srdivacky                                       &AddrOps[0], AddrOps.size());
2804193323Sed    NewNodes.push_back(Store);
2805198090Srdivacky
2806198090Srdivacky    // Preserve memory reference information.
2807198090Srdivacky    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
2808193323Sed  }
2809193323Sed
2810193323Sed  return true;
2811193323Sed}
2812193323Sed
2813193323Sedunsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2814198892Srdivacky                                      bool UnfoldLoad, bool UnfoldStore,
2815198892Srdivacky                                      unsigned *LoadRegIndex) const {
2816199481Srdivacky  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2817193323Sed    MemOp2RegOpTable.find((unsigned*)Opc);
2818193323Sed  if (I == MemOp2RegOpTable.end())
2819193323Sed    return 0;
2820193323Sed  bool FoldedLoad = I->second.second & (1 << 4);
2821193323Sed  bool FoldedStore = I->second.second & (1 << 5);
2822193323Sed  if (UnfoldLoad && !FoldedLoad)
2823193323Sed    return 0;
2824193323Sed  if (UnfoldStore && !FoldedStore)
2825193323Sed    return 0;
2826198892Srdivacky  if (LoadRegIndex)
2827198892Srdivacky    *LoadRegIndex = I->second.second & 0xf;
2828193323Sed  return I->second.first;
2829193323Sed}
2830193323Sed
2831202878Srdivackybool
2832202878SrdivackyX86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
2833202878Srdivacky                                     int64_t &Offset1, int64_t &Offset2) const {
2834202878Srdivacky  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
2835202878Srdivacky    return false;
2836202878Srdivacky  unsigned Opc1 = Load1->getMachineOpcode();
2837202878Srdivacky  unsigned Opc2 = Load2->getMachineOpcode();
2838202878Srdivacky  switch (Opc1) {
2839202878Srdivacky  default: return false;
2840202878Srdivacky  case X86::MOV8rm:
2841202878Srdivacky  case X86::MOV16rm:
2842202878Srdivacky  case X86::MOV32rm:
2843202878Srdivacky  case X86::MOV64rm:
2844202878Srdivacky  case X86::LD_Fp32m:
2845202878Srdivacky  case X86::LD_Fp64m:
2846202878Srdivacky  case X86::LD_Fp80m:
2847202878Srdivacky  case X86::MOVSSrm:
2848202878Srdivacky  case X86::MOVSDrm:
2849202878Srdivacky  case X86::MMX_MOVD64rm:
2850202878Srdivacky  case X86::MMX_MOVQ64rm:
2851202878Srdivacky  case X86::FsMOVAPSrm:
2852202878Srdivacky  case X86::FsMOVAPDrm:
2853202878Srdivacky  case X86::MOVAPSrm:
2854202878Srdivacky  case X86::MOVUPSrm:
2855202878Srdivacky  case X86::MOVUPSrm_Int:
2856202878Srdivacky  case X86::MOVAPDrm:
2857202878Srdivacky  case X86::MOVDQArm:
2858202878Srdivacky  case X86::MOVDQUrm:
2859202878Srdivacky  case X86::MOVDQUrm_Int:
2860202878Srdivacky    break;
2861202878Srdivacky  }
2862202878Srdivacky  switch (Opc2) {
2863202878Srdivacky  default: return false;
2864202878Srdivacky  case X86::MOV8rm:
2865202878Srdivacky  case X86::MOV16rm:
2866202878Srdivacky  case X86::MOV32rm:
2867202878Srdivacky  case X86::MOV64rm:
2868202878Srdivacky  case X86::LD_Fp32m:
2869202878Srdivacky  case X86::LD_Fp64m:
2870202878Srdivacky  case X86::LD_Fp80m:
2871202878Srdivacky  case X86::MOVSSrm:
2872202878Srdivacky  case X86::MOVSDrm:
2873202878Srdivacky  case X86::MMX_MOVD64rm:
2874202878Srdivacky  case X86::MMX_MOVQ64rm:
2875202878Srdivacky  case X86::FsMOVAPSrm:
2876202878Srdivacky  case X86::FsMOVAPDrm:
2877202878Srdivacky  case X86::MOVAPSrm:
2878202878Srdivacky  case X86::MOVUPSrm:
2879202878Srdivacky  case X86::MOVUPSrm_Int:
2880202878Srdivacky  case X86::MOVAPDrm:
2881202878Srdivacky  case X86::MOVDQArm:
2882202878Srdivacky  case X86::MOVDQUrm:
2883202878Srdivacky  case X86::MOVDQUrm_Int:
2884202878Srdivacky    break;
2885202878Srdivacky  }
2886202878Srdivacky
2887202878Srdivacky  // Check if chain operands and base addresses match.
2888202878Srdivacky  if (Load1->getOperand(0) != Load2->getOperand(0) ||
2889202878Srdivacky      Load1->getOperand(5) != Load2->getOperand(5))
2890202878Srdivacky    return false;
2891202878Srdivacky  // Segment operands should match as well.
2892202878Srdivacky  if (Load1->getOperand(4) != Load2->getOperand(4))
2893202878Srdivacky    return false;
2894202878Srdivacky  // Scale should be 1, Index should be Reg0.
2895202878Srdivacky  if (Load1->getOperand(1) == Load2->getOperand(1) &&
2896202878Srdivacky      Load1->getOperand(2) == Load2->getOperand(2)) {
2897202878Srdivacky    if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
2898202878Srdivacky      return false;
2899202878Srdivacky
2900202878Srdivacky    // Now let's examine the displacements.
2901202878Srdivacky    if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
2902202878Srdivacky        isa<ConstantSDNode>(Load2->getOperand(3))) {
2903202878Srdivacky      Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
2904202878Srdivacky      Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
2905202878Srdivacky      return true;
2906202878Srdivacky    }
2907202878Srdivacky  }
2908202878Srdivacky  return false;
2909202878Srdivacky}
2910202878Srdivacky
2911202878Srdivackybool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
2912202878Srdivacky                                           int64_t Offset1, int64_t Offset2,
2913202878Srdivacky                                           unsigned NumLoads) const {
2914202878Srdivacky  assert(Offset2 > Offset1);
2915202878Srdivacky  if ((Offset2 - Offset1) / 8 > 64)
2916202878Srdivacky    return false;
2917202878Srdivacky
2918202878Srdivacky  unsigned Opc1 = Load1->getMachineOpcode();
2919202878Srdivacky  unsigned Opc2 = Load2->getMachineOpcode();
2920202878Srdivacky  if (Opc1 != Opc2)
2921202878Srdivacky    return false;  // FIXME: overly conservative?
2922202878Srdivacky
2923202878Srdivacky  switch (Opc1) {
2924202878Srdivacky  default: break;
2925202878Srdivacky  case X86::LD_Fp32m:
2926202878Srdivacky  case X86::LD_Fp64m:
2927202878Srdivacky  case X86::LD_Fp80m:
2928202878Srdivacky  case X86::MMX_MOVD64rm:
2929202878Srdivacky  case X86::MMX_MOVQ64rm:
2930202878Srdivacky    return false;
2931202878Srdivacky  }
2932202878Srdivacky
2933202878Srdivacky  EVT VT = Load1->getValueType(0);
2934202878Srdivacky  switch (VT.getSimpleVT().SimpleTy) {
2935210299Sed  default:
2936202878Srdivacky    // XMM registers. In 64-bit mode we can be a bit more aggressive since we
2937202878Srdivacky    // have 16 of them to play with.
2938202878Srdivacky    if (TM.getSubtargetImpl()->is64Bit()) {
2939202878Srdivacky      if (NumLoads >= 3)
2940202878Srdivacky        return false;
2941210299Sed    } else if (NumLoads) {
2942202878Srdivacky      return false;
2943210299Sed    }
2944202878Srdivacky    break;
2945202878Srdivacky  case MVT::i8:
2946202878Srdivacky  case MVT::i16:
2947202878Srdivacky  case MVT::i32:
2948202878Srdivacky  case MVT::i64:
2949202878Srdivacky  case MVT::f32:
2950202878Srdivacky  case MVT::f64:
2951202878Srdivacky    if (NumLoads)
2952202878Srdivacky      return false;
2953210299Sed    break;
2954202878Srdivacky  }
2955202878Srdivacky
2956202878Srdivacky  return true;
2957202878Srdivacky}
2958202878Srdivacky
2959202878Srdivacky
2960193323Sedbool X86InstrInfo::
2961193323SedReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
2962193323Sed  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2963193323Sed  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
2964193323Sed  if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2965193323Sed    return true;
2966193323Sed  Cond[0].setImm(GetOppositeBranchCondition(CC));
2967193323Sed  return false;
2968193323Sed}
2969193323Sed
2970193323Sedbool X86InstrInfo::
2971193323SedisSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
2972193323Sed  // FIXME: Return false for x87 stack register classes for now. We can't
2973193323Sed  // allow any loads of these registers before FpGet_ST0_80.
2974193323Sed  return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2975193323Sed           RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
2976193323Sed}
2977193323Sed
2978193323Sed
2979203954Srdivacky/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or higher)
2980203954Srdivacky/// register?  e.g. r8, xmm8, xmm13, etc.
2981203954Srdivackybool X86InstrInfo::isX86_64ExtendedReg(unsigned RegNo) {
2982203954Srdivacky  switch (RegNo) {
2983193323Sed  default: break;
2984193323Sed  case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
2985193323Sed  case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
2986193323Sed  case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
2987193323Sed  case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
2988193323Sed  case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
2989193323Sed  case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
2990193323Sed  case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
2991193323Sed  case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
2992193323Sed  case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
2993193323Sed  case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2994210299Sed  case X86::YMM8:  case X86::YMM9:  case X86::YMM10: case X86::YMM11:
2995210299Sed  case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15:
2996193323Sed    return true;
2997193323Sed  }
2998193323Sed  return false;
2999193323Sed}
3000193323Sed
3001193323Sed/// getGlobalBaseReg - Return a virtual register initialized with the
3002193323Sed/// the global base register value. Output instructions required to
3003193323Sed/// initialize the register in the function entry block, if necessary.
3004193323Sed///
3005210299Sed/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
3006210299Sed///
3007193323Sedunsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3008193323Sed  assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3009193323Sed         "X86-64 PIC uses RIP relative addressing");
3010193323Sed
3011193323Sed  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3012193323Sed  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3013193323Sed  if (GlobalBaseReg != 0)
3014193323Sed    return GlobalBaseReg;
3015193323Sed
3016210299Sed  // Create the register. The code to initialize it is inserted
3017210299Sed  // later, by the CGBR pass (below).
3018193323Sed  MachineRegisterInfo &RegInfo = MF->getRegInfo();
3019210299Sed  GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3020193323Sed  X86FI->setGlobalBaseReg(GlobalBaseReg);
3021193323Sed  return GlobalBaseReg;
3022193323Sed}
3023206083Srdivacky
3024206083Srdivacky// These are the replaceable SSE instructions. Some of these have Int variants
3025206083Srdivacky// that we don't include here. We don't want to replace instructions selected
3026206083Srdivacky// by intrinsics.
3027206083Srdivackystatic const unsigned ReplaceableInstrs[][3] = {
3028212904Sdim  //PackedSingle     PackedDouble    PackedInt
3029206083Srdivacky  { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
3030206083Srdivacky  { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
3031206083Srdivacky  { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
3032206083Srdivacky  { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
3033206083Srdivacky  { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
3034206083Srdivacky  { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
3035206083Srdivacky  { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
3036206083Srdivacky  { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
3037206083Srdivacky  { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
3038206083Srdivacky  { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
3039206083Srdivacky  { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
3040206083Srdivacky  { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
3041206083Srdivacky  { X86::V_SET0PS,   X86::V_SET0PD,  X86::V_SET0PI  },
3042206083Srdivacky  { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
3043206083Srdivacky  { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
3044212904Sdim  // AVX 128-bit support
3045212904Sdim  { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
3046212904Sdim  { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
3047212904Sdim  { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
3048212904Sdim  { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
3049212904Sdim  { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
3050212904Sdim  { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
3051212904Sdim  { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
3052212904Sdim  { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
3053212904Sdim  { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
3054212904Sdim  { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
3055212904Sdim  { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
3056212904Sdim  { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
3057212904Sdim  { X86::AVX_SET0PS, X86::AVX_SET0PD, X86::AVX_SET0PI },
3058212904Sdim  { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
3059212904Sdim  { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
3060206083Srdivacky};
3061206083Srdivacky
3062206083Srdivacky// FIXME: Some shuffle and unpack instructions have equivalents in different
3063206083Srdivacky// domains, but they require a bit more work than just switching opcodes.
3064206083Srdivacky
3065206083Srdivackystatic const unsigned *lookup(unsigned opcode, unsigned domain) {
3066206083Srdivacky  for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
3067206083Srdivacky    if (ReplaceableInstrs[i][domain-1] == opcode)
3068206083Srdivacky      return ReplaceableInstrs[i];
3069206083Srdivacky  return 0;
3070206083Srdivacky}
3071206083Srdivacky
3072206083Srdivackystd::pair<uint16_t, uint16_t>
3073206083SrdivackyX86InstrInfo::GetSSEDomain(const MachineInstr *MI) const {
3074206083Srdivacky  uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
3075206083Srdivacky  return std::make_pair(domain,
3076206083Srdivacky                        domain && lookup(MI->getOpcode(), domain) ? 0xe : 0);
3077206083Srdivacky}
3078206083Srdivacky
3079206083Srdivackyvoid X86InstrInfo::SetSSEDomain(MachineInstr *MI, unsigned Domain) const {
3080206083Srdivacky  assert(Domain>0 && Domain<4 && "Invalid execution domain");
3081206083Srdivacky  uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
3082206083Srdivacky  assert(dom && "Not an SSE instruction");
3083206083Srdivacky  const unsigned *table = lookup(MI->getOpcode(), dom);
3084206083Srdivacky  assert(table && "Cannot change domain");
3085206083Srdivacky  MI->setDesc(get(table[Domain-1]));
3086206083Srdivacky}
3087207618Srdivacky
3088207618Srdivacky/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
3089207618Srdivackyvoid X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
3090207618Srdivacky  NopInst.setOpcode(X86::NOOP);
3091207618Srdivacky}
3092207618Srdivacky
3093210299Sednamespace {
3094210299Sed  /// CGBR - Create Global Base Reg pass. This initializes the PIC
3095210299Sed  /// global base register for x86-32.
3096210299Sed  struct CGBR : public MachineFunctionPass {
3097210299Sed    static char ID;
3098212904Sdim    CGBR() : MachineFunctionPass(ID) {}
3099210299Sed
3100210299Sed    virtual bool runOnMachineFunction(MachineFunction &MF) {
3101210299Sed      const X86TargetMachine *TM =
3102210299Sed        static_cast<const X86TargetMachine *>(&MF.getTarget());
3103210299Sed
3104210299Sed      assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
3105210299Sed             "X86-64 PIC uses RIP relative addressing");
3106210299Sed
3107210299Sed      // Only emit a global base reg in PIC mode.
3108210299Sed      if (TM->getRelocationModel() != Reloc::PIC_)
3109210299Sed        return false;
3110210299Sed
3111210299Sed      // Insert the set of GlobalBaseReg into the first MBB of the function
3112210299Sed      MachineBasicBlock &FirstMBB = MF.front();
3113210299Sed      MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3114210299Sed      DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
3115210299Sed      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3116210299Sed      const X86InstrInfo *TII = TM->getInstrInfo();
3117210299Sed
3118210299Sed      unsigned PC;
3119210299Sed      if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
3120210299Sed        PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3121210299Sed      else
3122210299Sed        PC = TII->getGlobalBaseReg(&MF);
3123210299Sed
3124210299Sed      // Operand of MovePCtoStack is completely ignored by asm printer. It's
3125210299Sed      // only used in JIT code emission as displacement to pc.
3126210299Sed      BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
3127210299Sed
3128210299Sed      // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3129210299Sed      // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
3130210299Sed      if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
3131210299Sed        unsigned GlobalBaseReg = TII->getGlobalBaseReg(&MF);
3132210299Sed        // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
3133210299Sed        BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
3134210299Sed          .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
3135210299Sed                                        X86II::MO_GOT_ABSOLUTE_ADDRESS);
3136210299Sed      }
3137210299Sed
3138210299Sed      return true;
3139210299Sed    }
3140210299Sed
3141210299Sed    virtual const char *getPassName() const {
3142210299Sed      return "X86 PIC Global Base Reg Initialization";
3143210299Sed    }
3144210299Sed
3145210299Sed    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
3146210299Sed      AU.setPreservesCFG();
3147210299Sed      MachineFunctionPass::getAnalysisUsage(AU);
3148210299Sed    }
3149210299Sed  };
3150210299Sed}
3151210299Sed
3152210299Sedchar CGBR::ID = 0;
3153210299SedFunctionPass*
3154210299Sedllvm::createGlobalBaseRegPass() { return new CGBR(); }
3155