X86InstrInfo.cpp revision 206083
1193323Sed//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed// This file contains the X86 implementation of the TargetInstrInfo class.
11193323Sed//
12193323Sed//===----------------------------------------------------------------------===//
13193323Sed
14193323Sed#include "X86InstrInfo.h"
15193323Sed#include "X86.h"
16193323Sed#include "X86GenInstrInfo.inc"
17193323Sed#include "X86InstrBuilder.h"
18193323Sed#include "X86MachineFunctionInfo.h"
19193323Sed#include "X86Subtarget.h"
20193323Sed#include "X86TargetMachine.h"
21193323Sed#include "llvm/DerivedTypes.h"
22198090Srdivacky#include "llvm/LLVMContext.h"
23193323Sed#include "llvm/ADT/STLExtras.h"
24193323Sed#include "llvm/CodeGen/MachineConstantPool.h"
25193323Sed#include "llvm/CodeGen/MachineFrameInfo.h"
26193323Sed#include "llvm/CodeGen/MachineInstrBuilder.h"
27193323Sed#include "llvm/CodeGen/MachineRegisterInfo.h"
28193323Sed#include "llvm/CodeGen/LiveVariables.h"
29199481Srdivacky#include "llvm/CodeGen/PseudoSourceValue.h"
30193323Sed#include "llvm/Support/CommandLine.h"
31202375Srdivacky#include "llvm/Support/Debug.h"
32198090Srdivacky#include "llvm/Support/ErrorHandling.h"
33198090Srdivacky#include "llvm/Support/raw_ostream.h"
34193323Sed#include "llvm/Target/TargetOptions.h"
35198090Srdivacky#include "llvm/MC/MCAsmInfo.h"
36199481Srdivacky
37199481Srdivacky#include <limits>
38199481Srdivacky
39193323Sedusing namespace llvm;
40193323Sed
41198090Srdivackystatic cl::opt<bool>
42198090SrdivackyNoFusing("disable-spill-fusing",
43198090Srdivacky         cl::desc("Disable fusing of spill code into instructions"));
44198090Srdivackystatic cl::opt<bool>
45198090SrdivackyPrintFailedFusing("print-failed-fuse-candidates",
46198090Srdivacky                  cl::desc("Print instructions that the allocator wants to"
47198090Srdivacky                           " fuse, but the X86 backend currently can't"),
48198090Srdivacky                  cl::Hidden);
49198090Srdivackystatic cl::opt<bool>
50198090SrdivackyReMatPICStubLoad("remat-pic-stub-load",
51198090Srdivacky                 cl::desc("Re-materialize load from stub in PIC mode"),
52198090Srdivacky                 cl::init(false), cl::Hidden);
53193323Sed
54193323SedX86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
55193323Sed  : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
56193323Sed    TM(tm), RI(tm, *this) {
57193323Sed  SmallVector<unsigned,16> AmbEntries;
58193323Sed  static const unsigned OpTbl2Addr[][2] = {
59193323Sed    { X86::ADC32ri,     X86::ADC32mi },
60193323Sed    { X86::ADC32ri8,    X86::ADC32mi8 },
61193323Sed    { X86::ADC32rr,     X86::ADC32mr },
62193323Sed    { X86::ADC64ri32,   X86::ADC64mi32 },
63193323Sed    { X86::ADC64ri8,    X86::ADC64mi8 },
64193323Sed    { X86::ADC64rr,     X86::ADC64mr },
65193323Sed    { X86::ADD16ri,     X86::ADD16mi },
66193323Sed    { X86::ADD16ri8,    X86::ADD16mi8 },
67193323Sed    { X86::ADD16rr,     X86::ADD16mr },
68193323Sed    { X86::ADD32ri,     X86::ADD32mi },
69193323Sed    { X86::ADD32ri8,    X86::ADD32mi8 },
70193323Sed    { X86::ADD32rr,     X86::ADD32mr },
71193323Sed    { X86::ADD64ri32,   X86::ADD64mi32 },
72193323Sed    { X86::ADD64ri8,    X86::ADD64mi8 },
73193323Sed    { X86::ADD64rr,     X86::ADD64mr },
74193323Sed    { X86::ADD8ri,      X86::ADD8mi },
75193323Sed    { X86::ADD8rr,      X86::ADD8mr },
76193323Sed    { X86::AND16ri,     X86::AND16mi },
77193323Sed    { X86::AND16ri8,    X86::AND16mi8 },
78193323Sed    { X86::AND16rr,     X86::AND16mr },
79193323Sed    { X86::AND32ri,     X86::AND32mi },
80193323Sed    { X86::AND32ri8,    X86::AND32mi8 },
81193323Sed    { X86::AND32rr,     X86::AND32mr },
82193323Sed    { X86::AND64ri32,   X86::AND64mi32 },
83193323Sed    { X86::AND64ri8,    X86::AND64mi8 },
84193323Sed    { X86::AND64rr,     X86::AND64mr },
85193323Sed    { X86::AND8ri,      X86::AND8mi },
86193323Sed    { X86::AND8rr,      X86::AND8mr },
87193323Sed    { X86::DEC16r,      X86::DEC16m },
88193323Sed    { X86::DEC32r,      X86::DEC32m },
89193323Sed    { X86::DEC64_16r,   X86::DEC64_16m },
90193323Sed    { X86::DEC64_32r,   X86::DEC64_32m },
91193323Sed    { X86::DEC64r,      X86::DEC64m },
92193323Sed    { X86::DEC8r,       X86::DEC8m },
93193323Sed    { X86::INC16r,      X86::INC16m },
94193323Sed    { X86::INC32r,      X86::INC32m },
95193323Sed    { X86::INC64_16r,   X86::INC64_16m },
96193323Sed    { X86::INC64_32r,   X86::INC64_32m },
97193323Sed    { X86::INC64r,      X86::INC64m },
98193323Sed    { X86::INC8r,       X86::INC8m },
99193323Sed    { X86::NEG16r,      X86::NEG16m },
100193323Sed    { X86::NEG32r,      X86::NEG32m },
101193323Sed    { X86::NEG64r,      X86::NEG64m },
102193323Sed    { X86::NEG8r,       X86::NEG8m },
103193323Sed    { X86::NOT16r,      X86::NOT16m },
104193323Sed    { X86::NOT32r,      X86::NOT32m },
105193323Sed    { X86::NOT64r,      X86::NOT64m },
106193323Sed    { X86::NOT8r,       X86::NOT8m },
107193323Sed    { X86::OR16ri,      X86::OR16mi },
108193323Sed    { X86::OR16ri8,     X86::OR16mi8 },
109193323Sed    { X86::OR16rr,      X86::OR16mr },
110193323Sed    { X86::OR32ri,      X86::OR32mi },
111193323Sed    { X86::OR32ri8,     X86::OR32mi8 },
112193323Sed    { X86::OR32rr,      X86::OR32mr },
113193323Sed    { X86::OR64ri32,    X86::OR64mi32 },
114193323Sed    { X86::OR64ri8,     X86::OR64mi8 },
115193323Sed    { X86::OR64rr,      X86::OR64mr },
116193323Sed    { X86::OR8ri,       X86::OR8mi },
117193323Sed    { X86::OR8rr,       X86::OR8mr },
118193323Sed    { X86::ROL16r1,     X86::ROL16m1 },
119193323Sed    { X86::ROL16rCL,    X86::ROL16mCL },
120193323Sed    { X86::ROL16ri,     X86::ROL16mi },
121193323Sed    { X86::ROL32r1,     X86::ROL32m1 },
122193323Sed    { X86::ROL32rCL,    X86::ROL32mCL },
123193323Sed    { X86::ROL32ri,     X86::ROL32mi },
124193323Sed    { X86::ROL64r1,     X86::ROL64m1 },
125193323Sed    { X86::ROL64rCL,    X86::ROL64mCL },
126193323Sed    { X86::ROL64ri,     X86::ROL64mi },
127193323Sed    { X86::ROL8r1,      X86::ROL8m1 },
128193323Sed    { X86::ROL8rCL,     X86::ROL8mCL },
129193323Sed    { X86::ROL8ri,      X86::ROL8mi },
130193323Sed    { X86::ROR16r1,     X86::ROR16m1 },
131193323Sed    { X86::ROR16rCL,    X86::ROR16mCL },
132193323Sed    { X86::ROR16ri,     X86::ROR16mi },
133193323Sed    { X86::ROR32r1,     X86::ROR32m1 },
134193323Sed    { X86::ROR32rCL,    X86::ROR32mCL },
135193323Sed    { X86::ROR32ri,     X86::ROR32mi },
136193323Sed    { X86::ROR64r1,     X86::ROR64m1 },
137193323Sed    { X86::ROR64rCL,    X86::ROR64mCL },
138193323Sed    { X86::ROR64ri,     X86::ROR64mi },
139193323Sed    { X86::ROR8r1,      X86::ROR8m1 },
140193323Sed    { X86::ROR8rCL,     X86::ROR8mCL },
141193323Sed    { X86::ROR8ri,      X86::ROR8mi },
142193323Sed    { X86::SAR16r1,     X86::SAR16m1 },
143193323Sed    { X86::SAR16rCL,    X86::SAR16mCL },
144193323Sed    { X86::SAR16ri,     X86::SAR16mi },
145193323Sed    { X86::SAR32r1,     X86::SAR32m1 },
146193323Sed    { X86::SAR32rCL,    X86::SAR32mCL },
147193323Sed    { X86::SAR32ri,     X86::SAR32mi },
148193323Sed    { X86::SAR64r1,     X86::SAR64m1 },
149193323Sed    { X86::SAR64rCL,    X86::SAR64mCL },
150193323Sed    { X86::SAR64ri,     X86::SAR64mi },
151193323Sed    { X86::SAR8r1,      X86::SAR8m1 },
152193323Sed    { X86::SAR8rCL,     X86::SAR8mCL },
153193323Sed    { X86::SAR8ri,      X86::SAR8mi },
154193323Sed    { X86::SBB32ri,     X86::SBB32mi },
155193323Sed    { X86::SBB32ri8,    X86::SBB32mi8 },
156193323Sed    { X86::SBB32rr,     X86::SBB32mr },
157193323Sed    { X86::SBB64ri32,   X86::SBB64mi32 },
158193323Sed    { X86::SBB64ri8,    X86::SBB64mi8 },
159193323Sed    { X86::SBB64rr,     X86::SBB64mr },
160193323Sed    { X86::SHL16rCL,    X86::SHL16mCL },
161193323Sed    { X86::SHL16ri,     X86::SHL16mi },
162193323Sed    { X86::SHL32rCL,    X86::SHL32mCL },
163193323Sed    { X86::SHL32ri,     X86::SHL32mi },
164193323Sed    { X86::SHL64rCL,    X86::SHL64mCL },
165193323Sed    { X86::SHL64ri,     X86::SHL64mi },
166193323Sed    { X86::SHL8rCL,     X86::SHL8mCL },
167193323Sed    { X86::SHL8ri,      X86::SHL8mi },
168193323Sed    { X86::SHLD16rrCL,  X86::SHLD16mrCL },
169193323Sed    { X86::SHLD16rri8,  X86::SHLD16mri8 },
170193323Sed    { X86::SHLD32rrCL,  X86::SHLD32mrCL },
171193323Sed    { X86::SHLD32rri8,  X86::SHLD32mri8 },
172193323Sed    { X86::SHLD64rrCL,  X86::SHLD64mrCL },
173193323Sed    { X86::SHLD64rri8,  X86::SHLD64mri8 },
174193323Sed    { X86::SHR16r1,     X86::SHR16m1 },
175193323Sed    { X86::SHR16rCL,    X86::SHR16mCL },
176193323Sed    { X86::SHR16ri,     X86::SHR16mi },
177193323Sed    { X86::SHR32r1,     X86::SHR32m1 },
178193323Sed    { X86::SHR32rCL,    X86::SHR32mCL },
179193323Sed    { X86::SHR32ri,     X86::SHR32mi },
180193323Sed    { X86::SHR64r1,     X86::SHR64m1 },
181193323Sed    { X86::SHR64rCL,    X86::SHR64mCL },
182193323Sed    { X86::SHR64ri,     X86::SHR64mi },
183193323Sed    { X86::SHR8r1,      X86::SHR8m1 },
184193323Sed    { X86::SHR8rCL,     X86::SHR8mCL },
185193323Sed    { X86::SHR8ri,      X86::SHR8mi },
186193323Sed    { X86::SHRD16rrCL,  X86::SHRD16mrCL },
187193323Sed    { X86::SHRD16rri8,  X86::SHRD16mri8 },
188193323Sed    { X86::SHRD32rrCL,  X86::SHRD32mrCL },
189193323Sed    { X86::SHRD32rri8,  X86::SHRD32mri8 },
190193323Sed    { X86::SHRD64rrCL,  X86::SHRD64mrCL },
191193323Sed    { X86::SHRD64rri8,  X86::SHRD64mri8 },
192193323Sed    { X86::SUB16ri,     X86::SUB16mi },
193193323Sed    { X86::SUB16ri8,    X86::SUB16mi8 },
194193323Sed    { X86::SUB16rr,     X86::SUB16mr },
195193323Sed    { X86::SUB32ri,     X86::SUB32mi },
196193323Sed    { X86::SUB32ri8,    X86::SUB32mi8 },
197193323Sed    { X86::SUB32rr,     X86::SUB32mr },
198193323Sed    { X86::SUB64ri32,   X86::SUB64mi32 },
199193323Sed    { X86::SUB64ri8,    X86::SUB64mi8 },
200193323Sed    { X86::SUB64rr,     X86::SUB64mr },
201193323Sed    { X86::SUB8ri,      X86::SUB8mi },
202193323Sed    { X86::SUB8rr,      X86::SUB8mr },
203193323Sed    { X86::XOR16ri,     X86::XOR16mi },
204193323Sed    { X86::XOR16ri8,    X86::XOR16mi8 },
205193323Sed    { X86::XOR16rr,     X86::XOR16mr },
206193323Sed    { X86::XOR32ri,     X86::XOR32mi },
207193323Sed    { X86::XOR32ri8,    X86::XOR32mi8 },
208193323Sed    { X86::XOR32rr,     X86::XOR32mr },
209193323Sed    { X86::XOR64ri32,   X86::XOR64mi32 },
210193323Sed    { X86::XOR64ri8,    X86::XOR64mi8 },
211193323Sed    { X86::XOR64rr,     X86::XOR64mr },
212193323Sed    { X86::XOR8ri,      X86::XOR8mi },
213193323Sed    { X86::XOR8rr,      X86::XOR8mr }
214193323Sed  };
215193323Sed
216193323Sed  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
217193323Sed    unsigned RegOp = OpTbl2Addr[i][0];
218193323Sed    unsigned MemOp = OpTbl2Addr[i][1];
219193323Sed    if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
220198090Srdivacky                                               std::make_pair(MemOp,0))).second)
221193323Sed      assert(false && "Duplicated entries?");
222198090Srdivacky    // Index 0, folded load and store, no alignment requirement.
223198090Srdivacky    unsigned AuxInfo = 0 | (1 << 4) | (1 << 5);
224193323Sed    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
225193323Sed                                                std::make_pair(RegOp,
226193323Sed                                                              AuxInfo))).second)
227193323Sed      AmbEntries.push_back(MemOp);
228193323Sed  }
229193323Sed
230193323Sed  // If the third value is 1, then it's folding either a load or a store.
231198090Srdivacky  static const unsigned OpTbl0[][4] = {
232198090Srdivacky    { X86::BT16ri8,     X86::BT16mi8, 1, 0 },
233198090Srdivacky    { X86::BT32ri8,     X86::BT32mi8, 1, 0 },
234198090Srdivacky    { X86::BT64ri8,     X86::BT64mi8, 1, 0 },
235198090Srdivacky    { X86::CALL32r,     X86::CALL32m, 1, 0 },
236198090Srdivacky    { X86::CALL64r,     X86::CALL64m, 1, 0 },
237198090Srdivacky    { X86::CMP16ri,     X86::CMP16mi, 1, 0 },
238198090Srdivacky    { X86::CMP16ri8,    X86::CMP16mi8, 1, 0 },
239198090Srdivacky    { X86::CMP16rr,     X86::CMP16mr, 1, 0 },
240198090Srdivacky    { X86::CMP32ri,     X86::CMP32mi, 1, 0 },
241198090Srdivacky    { X86::CMP32ri8,    X86::CMP32mi8, 1, 0 },
242198090Srdivacky    { X86::CMP32rr,     X86::CMP32mr, 1, 0 },
243198090Srdivacky    { X86::CMP64ri32,   X86::CMP64mi32, 1, 0 },
244198090Srdivacky    { X86::CMP64ri8,    X86::CMP64mi8, 1, 0 },
245198090Srdivacky    { X86::CMP64rr,     X86::CMP64mr, 1, 0 },
246198090Srdivacky    { X86::CMP8ri,      X86::CMP8mi, 1, 0 },
247198090Srdivacky    { X86::CMP8rr,      X86::CMP8mr, 1, 0 },
248198090Srdivacky    { X86::DIV16r,      X86::DIV16m, 1, 0 },
249198090Srdivacky    { X86::DIV32r,      X86::DIV32m, 1, 0 },
250198090Srdivacky    { X86::DIV64r,      X86::DIV64m, 1, 0 },
251198090Srdivacky    { X86::DIV8r,       X86::DIV8m, 1, 0 },
252198090Srdivacky    { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 },
253198090Srdivacky    { X86::FsMOVAPDrr,  X86::MOVSDmr, 0, 0 },
254198090Srdivacky    { X86::FsMOVAPSrr,  X86::MOVSSmr, 0, 0 },
255198090Srdivacky    { X86::IDIV16r,     X86::IDIV16m, 1, 0 },
256198090Srdivacky    { X86::IDIV32r,     X86::IDIV32m, 1, 0 },
257198090Srdivacky    { X86::IDIV64r,     X86::IDIV64m, 1, 0 },
258198090Srdivacky    { X86::IDIV8r,      X86::IDIV8m, 1, 0 },
259198090Srdivacky    { X86::IMUL16r,     X86::IMUL16m, 1, 0 },
260198090Srdivacky    { X86::IMUL32r,     X86::IMUL32m, 1, 0 },
261198090Srdivacky    { X86::IMUL64r,     X86::IMUL64m, 1, 0 },
262198090Srdivacky    { X86::IMUL8r,      X86::IMUL8m, 1, 0 },
263198090Srdivacky    { X86::JMP32r,      X86::JMP32m, 1, 0 },
264198090Srdivacky    { X86::JMP64r,      X86::JMP64m, 1, 0 },
265198090Srdivacky    { X86::MOV16ri,     X86::MOV16mi, 0, 0 },
266198090Srdivacky    { X86::MOV16rr,     X86::MOV16mr, 0, 0 },
267198090Srdivacky    { X86::MOV32ri,     X86::MOV32mi, 0, 0 },
268198090Srdivacky    { X86::MOV32rr,     X86::MOV32mr, 0, 0 },
269205218Srdivacky    { X86::MOV32rr_TC,  X86::MOV32mr_TC, 0, 0 },
270198090Srdivacky    { X86::MOV64ri32,   X86::MOV64mi32, 0, 0 },
271198090Srdivacky    { X86::MOV64rr,     X86::MOV64mr, 0, 0 },
272198090Srdivacky    { X86::MOV8ri,      X86::MOV8mi, 0, 0 },
273198090Srdivacky    { X86::MOV8rr,      X86::MOV8mr, 0, 0 },
274198090Srdivacky    { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 },
275198090Srdivacky    { X86::MOVAPDrr,    X86::MOVAPDmr, 0, 16 },
276198090Srdivacky    { X86::MOVAPSrr,    X86::MOVAPSmr, 0, 16 },
277198090Srdivacky    { X86::MOVDQArr,    X86::MOVDQAmr, 0, 16 },
278198090Srdivacky    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 },
279198090Srdivacky    { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 },
280198090Srdivacky    { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 },
281198090Srdivacky    { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0, 0 },
282198090Srdivacky    { X86::MOVUPDrr,    X86::MOVUPDmr, 0, 0 },
283198090Srdivacky    { X86::MOVUPSrr,    X86::MOVUPSmr, 0, 0 },
284198090Srdivacky    { X86::MUL16r,      X86::MUL16m, 1, 0 },
285198090Srdivacky    { X86::MUL32r,      X86::MUL32m, 1, 0 },
286198090Srdivacky    { X86::MUL64r,      X86::MUL64m, 1, 0 },
287198090Srdivacky    { X86::MUL8r,       X86::MUL8m, 1, 0 },
288198090Srdivacky    { X86::SETAEr,      X86::SETAEm, 0, 0 },
289198090Srdivacky    { X86::SETAr,       X86::SETAm, 0, 0 },
290198090Srdivacky    { X86::SETBEr,      X86::SETBEm, 0, 0 },
291198090Srdivacky    { X86::SETBr,       X86::SETBm, 0, 0 },
292198090Srdivacky    { X86::SETEr,       X86::SETEm, 0, 0 },
293198090Srdivacky    { X86::SETGEr,      X86::SETGEm, 0, 0 },
294198090Srdivacky    { X86::SETGr,       X86::SETGm, 0, 0 },
295198090Srdivacky    { X86::SETLEr,      X86::SETLEm, 0, 0 },
296198090Srdivacky    { X86::SETLr,       X86::SETLm, 0, 0 },
297198090Srdivacky    { X86::SETNEr,      X86::SETNEm, 0, 0 },
298198090Srdivacky    { X86::SETNOr,      X86::SETNOm, 0, 0 },
299198090Srdivacky    { X86::SETNPr,      X86::SETNPm, 0, 0 },
300198090Srdivacky    { X86::SETNSr,      X86::SETNSm, 0, 0 },
301198090Srdivacky    { X86::SETOr,       X86::SETOm, 0, 0 },
302198090Srdivacky    { X86::SETPr,       X86::SETPm, 0, 0 },
303198090Srdivacky    { X86::SETSr,       X86::SETSm, 0, 0 },
304198090Srdivacky    { X86::TAILJMPr,    X86::TAILJMPm, 1, 0 },
305205218Srdivacky    { X86::TAILJMPr64,  X86::TAILJMPm64, 1, 0 },
306198090Srdivacky    { X86::TEST16ri,    X86::TEST16mi, 1, 0 },
307198090Srdivacky    { X86::TEST32ri,    X86::TEST32mi, 1, 0 },
308198090Srdivacky    { X86::TEST64ri32,  X86::TEST64mi32, 1, 0 },
309198090Srdivacky    { X86::TEST8ri,     X86::TEST8mi, 1, 0 }
310193323Sed  };
311193323Sed
312193323Sed  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
313193323Sed    unsigned RegOp = OpTbl0[i][0];
314193323Sed    unsigned MemOp = OpTbl0[i][1];
315198090Srdivacky    unsigned Align = OpTbl0[i][3];
316193323Sed    if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
317198090Srdivacky                                           std::make_pair(MemOp,Align))).second)
318193323Sed      assert(false && "Duplicated entries?");
319193323Sed    unsigned FoldedLoad = OpTbl0[i][2];
320193323Sed    // Index 0, folded load or store.
321193323Sed    unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
322193323Sed    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
323193323Sed      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
324193323Sed                                     std::make_pair(RegOp, AuxInfo))).second)
325193323Sed        AmbEntries.push_back(MemOp);
326193323Sed  }
327193323Sed
328198090Srdivacky  static const unsigned OpTbl1[][3] = {
329198090Srdivacky    { X86::CMP16rr,         X86::CMP16rm, 0 },
330198090Srdivacky    { X86::CMP32rr,         X86::CMP32rm, 0 },
331198090Srdivacky    { X86::CMP64rr,         X86::CMP64rm, 0 },
332198090Srdivacky    { X86::CMP8rr,          X86::CMP8rm, 0 },
333198090Srdivacky    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm, 0 },
334198090Srdivacky    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm, 0 },
335198090Srdivacky    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm, 0 },
336198090Srdivacky    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm, 0 },
337198090Srdivacky    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm, 0 },
338198090Srdivacky    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm, 0 },
339198090Srdivacky    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm, 0 },
340198090Srdivacky    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm, 0 },
341198090Srdivacky    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm, 0 },
342198090Srdivacky    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm, 0 },
343198090Srdivacky    { X86::FsMOVAPDrr,      X86::MOVSDrm, 0 },
344198090Srdivacky    { X86::FsMOVAPSrr,      X86::MOVSSrm, 0 },
345198090Srdivacky    { X86::IMUL16rri,       X86::IMUL16rmi, 0 },
346198090Srdivacky    { X86::IMUL16rri8,      X86::IMUL16rmi8, 0 },
347198090Srdivacky    { X86::IMUL32rri,       X86::IMUL32rmi, 0 },
348198090Srdivacky    { X86::IMUL32rri8,      X86::IMUL32rmi8, 0 },
349198090Srdivacky    { X86::IMUL64rri32,     X86::IMUL64rmi32, 0 },
350198090Srdivacky    { X86::IMUL64rri8,      X86::IMUL64rmi8, 0 },
351198090Srdivacky    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm, 0 },
352198090Srdivacky    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm, 0 },
353198090Srdivacky    { X86::Int_COMISDrr,    X86::Int_COMISDrm, 0 },
354198090Srdivacky    { X86::Int_COMISSrr,    X86::Int_COMISSrm, 0 },
355198090Srdivacky    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm, 16 },
356198090Srdivacky    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm, 16 },
357198090Srdivacky    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm, 16 },
358198090Srdivacky    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm, 16 },
359198090Srdivacky    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm, 16 },
360198090Srdivacky    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm, 0 },
361198090Srdivacky    { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm, 0 },
362198090Srdivacky    { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm, 0 },
363198090Srdivacky    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm, 0 },
364198090Srdivacky    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
365198090Srdivacky    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm, 0 },
366198090Srdivacky    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
367198090Srdivacky    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm, 0 },
368198090Srdivacky    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm, 0 },
369198090Srdivacky    { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 },
370198090Srdivacky    { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm, 0 },
371198090Srdivacky    { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm, 16 },
372198090Srdivacky    { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm, 16 },
373198090Srdivacky    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
374198090Srdivacky    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
375198090Srdivacky    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
376198090Srdivacky    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
377198090Srdivacky    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm, 0 },
378198090Srdivacky    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm, 0 },
379198090Srdivacky    { X86::MOV16rr,         X86::MOV16rm, 0 },
380198090Srdivacky    { X86::MOV32rr,         X86::MOV32rm, 0 },
381205218Srdivacky    { X86::MOV32rr_TC,      X86::MOV32rm_TC, 0 },
382198090Srdivacky    { X86::MOV64rr,         X86::MOV64rm, 0 },
383198090Srdivacky    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm, 0 },
384198090Srdivacky    { X86::MOV64toSDrr,     X86::MOV64toSDrm, 0 },
385198090Srdivacky    { X86::MOV8rr,          X86::MOV8rm, 0 },
386198090Srdivacky    { X86::MOVAPDrr,        X86::MOVAPDrm, 16 },
387198090Srdivacky    { X86::MOVAPSrr,        X86::MOVAPSrm, 16 },
388198090Srdivacky    { X86::MOVDDUPrr,       X86::MOVDDUPrm, 0 },
389198090Srdivacky    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm, 0 },
390198090Srdivacky    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm, 0 },
391198090Srdivacky    { X86::MOVDQArr,        X86::MOVDQArm, 16 },
392198090Srdivacky    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm, 16 },
393198090Srdivacky    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm, 16 },
394198090Srdivacky    { X86::MOVSX16rr8,      X86::MOVSX16rm8, 0 },
395198090Srdivacky    { X86::MOVSX32rr16,     X86::MOVSX32rm16, 0 },
396198090Srdivacky    { X86::MOVSX32rr8,      X86::MOVSX32rm8, 0 },
397198090Srdivacky    { X86::MOVSX64rr16,     X86::MOVSX64rm16, 0 },
398198090Srdivacky    { X86::MOVSX64rr32,     X86::MOVSX64rm32, 0 },
399198090Srdivacky    { X86::MOVSX64rr8,      X86::MOVSX64rm8, 0 },
400198090Srdivacky    { X86::MOVUPDrr,        X86::MOVUPDrm, 16 },
401202878Srdivacky    { X86::MOVUPSrr,        X86::MOVUPSrm, 0 },
402198090Srdivacky    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm, 0 },
403198090Srdivacky    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm, 0 },
404198090Srdivacky    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 },
405198090Srdivacky    { X86::MOVZX16rr8,      X86::MOVZX16rm8, 0 },
406198090Srdivacky    { X86::MOVZX32rr16,     X86::MOVZX32rm16, 0 },
407198090Srdivacky    { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
408198090Srdivacky    { X86::MOVZX32rr8,      X86::MOVZX32rm8, 0 },
409198090Srdivacky    { X86::MOVZX64rr16,     X86::MOVZX64rm16, 0 },
410198090Srdivacky    { X86::MOVZX64rr32,     X86::MOVZX64rm32, 0 },
411198090Srdivacky    { X86::MOVZX64rr8,      X86::MOVZX64rm8, 0 },
412198090Srdivacky    { X86::PSHUFDri,        X86::PSHUFDmi, 16 },
413198090Srdivacky    { X86::PSHUFHWri,       X86::PSHUFHWmi, 16 },
414198090Srdivacky    { X86::PSHUFLWri,       X86::PSHUFLWmi, 16 },
415198090Srdivacky    { X86::RCPPSr,          X86::RCPPSm, 16 },
416198090Srdivacky    { X86::RCPPSr_Int,      X86::RCPPSm_Int, 16 },
417198090Srdivacky    { X86::RSQRTPSr,        X86::RSQRTPSm, 16 },
418198090Srdivacky    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int, 16 },
419198090Srdivacky    { X86::RSQRTSSr,        X86::RSQRTSSm, 0 },
420198090Srdivacky    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int, 0 },
421198090Srdivacky    { X86::SQRTPDr,         X86::SQRTPDm, 16 },
422198090Srdivacky    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int, 16 },
423198090Srdivacky    { X86::SQRTPSr,         X86::SQRTPSm, 16 },
424198090Srdivacky    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int, 16 },
425198090Srdivacky    { X86::SQRTSDr,         X86::SQRTSDm, 0 },
426198090Srdivacky    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int, 0 },
427198090Srdivacky    { X86::SQRTSSr,         X86::SQRTSSm, 0 },
428198090Srdivacky    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int, 0 },
429198090Srdivacky    { X86::TEST16rr,        X86::TEST16rm, 0 },
430198090Srdivacky    { X86::TEST32rr,        X86::TEST32rm, 0 },
431198090Srdivacky    { X86::TEST64rr,        X86::TEST64rm, 0 },
432198090Srdivacky    { X86::TEST8rr,         X86::TEST8rm, 0 },
433193323Sed    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
434198090Srdivacky    { X86::UCOMISDrr,       X86::UCOMISDrm, 0 },
435198090Srdivacky    { X86::UCOMISSrr,       X86::UCOMISSrm, 0 }
436193323Sed  };
437193323Sed
438193323Sed  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
439193323Sed    unsigned RegOp = OpTbl1[i][0];
440193323Sed    unsigned MemOp = OpTbl1[i][1];
441198090Srdivacky    unsigned Align = OpTbl1[i][2];
442193323Sed    if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
443198090Srdivacky                                           std::make_pair(MemOp,Align))).second)
444193323Sed      assert(false && "Duplicated entries?");
445198090Srdivacky    // Index 1, folded load
446198090Srdivacky    unsigned AuxInfo = 1 | (1 << 4);
447193323Sed    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
448193323Sed      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
449193323Sed                                     std::make_pair(RegOp, AuxInfo))).second)
450193323Sed        AmbEntries.push_back(MemOp);
451193323Sed  }
452193323Sed
453198090Srdivacky  static const unsigned OpTbl2[][3] = {
454198090Srdivacky    { X86::ADC32rr,         X86::ADC32rm, 0 },
455198090Srdivacky    { X86::ADC64rr,         X86::ADC64rm, 0 },
456198090Srdivacky    { X86::ADD16rr,         X86::ADD16rm, 0 },
457198090Srdivacky    { X86::ADD32rr,         X86::ADD32rm, 0 },
458198090Srdivacky    { X86::ADD64rr,         X86::ADD64rm, 0 },
459198090Srdivacky    { X86::ADD8rr,          X86::ADD8rm, 0 },
460198090Srdivacky    { X86::ADDPDrr,         X86::ADDPDrm, 16 },
461198090Srdivacky    { X86::ADDPSrr,         X86::ADDPSrm, 16 },
462198090Srdivacky    { X86::ADDSDrr,         X86::ADDSDrm, 0 },
463198090Srdivacky    { X86::ADDSSrr,         X86::ADDSSrm, 0 },
464198090Srdivacky    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm, 16 },
465198090Srdivacky    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm, 16 },
466198090Srdivacky    { X86::AND16rr,         X86::AND16rm, 0 },
467198090Srdivacky    { X86::AND32rr,         X86::AND32rm, 0 },
468198090Srdivacky    { X86::AND64rr,         X86::AND64rm, 0 },
469198090Srdivacky    { X86::AND8rr,          X86::AND8rm, 0 },
470198090Srdivacky    { X86::ANDNPDrr,        X86::ANDNPDrm, 16 },
471198090Srdivacky    { X86::ANDNPSrr,        X86::ANDNPSrm, 16 },
472198090Srdivacky    { X86::ANDPDrr,         X86::ANDPDrm, 16 },
473198090Srdivacky    { X86::ANDPSrr,         X86::ANDPSrm, 16 },
474198090Srdivacky    { X86::CMOVA16rr,       X86::CMOVA16rm, 0 },
475198090Srdivacky    { X86::CMOVA32rr,       X86::CMOVA32rm, 0 },
476198090Srdivacky    { X86::CMOVA64rr,       X86::CMOVA64rm, 0 },
477198090Srdivacky    { X86::CMOVAE16rr,      X86::CMOVAE16rm, 0 },
478198090Srdivacky    { X86::CMOVAE32rr,      X86::CMOVAE32rm, 0 },
479198090Srdivacky    { X86::CMOVAE64rr,      X86::CMOVAE64rm, 0 },
480198090Srdivacky    { X86::CMOVB16rr,       X86::CMOVB16rm, 0 },
481198090Srdivacky    { X86::CMOVB32rr,       X86::CMOVB32rm, 0 },
482198090Srdivacky    { X86::CMOVB64rr,       X86::CMOVB64rm, 0 },
483198090Srdivacky    { X86::CMOVBE16rr,      X86::CMOVBE16rm, 0 },
484198090Srdivacky    { X86::CMOVBE32rr,      X86::CMOVBE32rm, 0 },
485198090Srdivacky    { X86::CMOVBE64rr,      X86::CMOVBE64rm, 0 },
486198090Srdivacky    { X86::CMOVE16rr,       X86::CMOVE16rm, 0 },
487198090Srdivacky    { X86::CMOVE32rr,       X86::CMOVE32rm, 0 },
488198090Srdivacky    { X86::CMOVE64rr,       X86::CMOVE64rm, 0 },
489198090Srdivacky    { X86::CMOVG16rr,       X86::CMOVG16rm, 0 },
490198090Srdivacky    { X86::CMOVG32rr,       X86::CMOVG32rm, 0 },
491198090Srdivacky    { X86::CMOVG64rr,       X86::CMOVG64rm, 0 },
492198090Srdivacky    { X86::CMOVGE16rr,      X86::CMOVGE16rm, 0 },
493198090Srdivacky    { X86::CMOVGE32rr,      X86::CMOVGE32rm, 0 },
494198090Srdivacky    { X86::CMOVGE64rr,      X86::CMOVGE64rm, 0 },
495198090Srdivacky    { X86::CMOVL16rr,       X86::CMOVL16rm, 0 },
496198090Srdivacky    { X86::CMOVL32rr,       X86::CMOVL32rm, 0 },
497198090Srdivacky    { X86::CMOVL64rr,       X86::CMOVL64rm, 0 },
498198090Srdivacky    { X86::CMOVLE16rr,      X86::CMOVLE16rm, 0 },
499198090Srdivacky    { X86::CMOVLE32rr,      X86::CMOVLE32rm, 0 },
500198090Srdivacky    { X86::CMOVLE64rr,      X86::CMOVLE64rm, 0 },
501198090Srdivacky    { X86::CMOVNE16rr,      X86::CMOVNE16rm, 0 },
502198090Srdivacky    { X86::CMOVNE32rr,      X86::CMOVNE32rm, 0 },
503198090Srdivacky    { X86::CMOVNE64rr,      X86::CMOVNE64rm, 0 },
504198090Srdivacky    { X86::CMOVNO16rr,      X86::CMOVNO16rm, 0 },
505198090Srdivacky    { X86::CMOVNO32rr,      X86::CMOVNO32rm, 0 },
506198090Srdivacky    { X86::CMOVNO64rr,      X86::CMOVNO64rm, 0 },
507198090Srdivacky    { X86::CMOVNP16rr,      X86::CMOVNP16rm, 0 },
508198090Srdivacky    { X86::CMOVNP32rr,      X86::CMOVNP32rm, 0 },
509198090Srdivacky    { X86::CMOVNP64rr,      X86::CMOVNP64rm, 0 },
510198090Srdivacky    { X86::CMOVNS16rr,      X86::CMOVNS16rm, 0 },
511198090Srdivacky    { X86::CMOVNS32rr,      X86::CMOVNS32rm, 0 },
512198090Srdivacky    { X86::CMOVNS64rr,      X86::CMOVNS64rm, 0 },
513198090Srdivacky    { X86::CMOVO16rr,       X86::CMOVO16rm, 0 },
514198090Srdivacky    { X86::CMOVO32rr,       X86::CMOVO32rm, 0 },
515198090Srdivacky    { X86::CMOVO64rr,       X86::CMOVO64rm, 0 },
516198090Srdivacky    { X86::CMOVP16rr,       X86::CMOVP16rm, 0 },
517198090Srdivacky    { X86::CMOVP32rr,       X86::CMOVP32rm, 0 },
518198090Srdivacky    { X86::CMOVP64rr,       X86::CMOVP64rm, 0 },
519198090Srdivacky    { X86::CMOVS16rr,       X86::CMOVS16rm, 0 },
520198090Srdivacky    { X86::CMOVS32rr,       X86::CMOVS32rm, 0 },
521198090Srdivacky    { X86::CMOVS64rr,       X86::CMOVS64rm, 0 },
522198090Srdivacky    { X86::CMPPDrri,        X86::CMPPDrmi, 16 },
523198090Srdivacky    { X86::CMPPSrri,        X86::CMPPSrmi, 16 },
524198090Srdivacky    { X86::CMPSDrr,         X86::CMPSDrm, 0 },
525198090Srdivacky    { X86::CMPSSrr,         X86::CMPSSrm, 0 },
526198090Srdivacky    { X86::DIVPDrr,         X86::DIVPDrm, 16 },
527198090Srdivacky    { X86::DIVPSrr,         X86::DIVPSrm, 16 },
528198090Srdivacky    { X86::DIVSDrr,         X86::DIVSDrm, 0 },
529198090Srdivacky    { X86::DIVSSrr,         X86::DIVSSrm, 0 },
530198090Srdivacky    { X86::FsANDNPDrr,      X86::FsANDNPDrm, 16 },
531198090Srdivacky    { X86::FsANDNPSrr,      X86::FsANDNPSrm, 16 },
532198090Srdivacky    { X86::FsANDPDrr,       X86::FsANDPDrm, 16 },
533198090Srdivacky    { X86::FsANDPSrr,       X86::FsANDPSrm, 16 },
534198090Srdivacky    { X86::FsORPDrr,        X86::FsORPDrm, 16 },
535198090Srdivacky    { X86::FsORPSrr,        X86::FsORPSrm, 16 },
536198090Srdivacky    { X86::FsXORPDrr,       X86::FsXORPDrm, 16 },
537198090Srdivacky    { X86::FsXORPSrr,       X86::FsXORPSrm, 16 },
538198090Srdivacky    { X86::HADDPDrr,        X86::HADDPDrm, 16 },
539198090Srdivacky    { X86::HADDPSrr,        X86::HADDPSrm, 16 },
540198090Srdivacky    { X86::HSUBPDrr,        X86::HSUBPDrm, 16 },
541198090Srdivacky    { X86::HSUBPSrr,        X86::HSUBPSrm, 16 },
542198090Srdivacky    { X86::IMUL16rr,        X86::IMUL16rm, 0 },
543198090Srdivacky    { X86::IMUL32rr,        X86::IMUL32rm, 0 },
544198090Srdivacky    { X86::IMUL64rr,        X86::IMUL64rm, 0 },
545198090Srdivacky    { X86::MAXPDrr,         X86::MAXPDrm, 16 },
546198090Srdivacky    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int, 16 },
547198090Srdivacky    { X86::MAXPSrr,         X86::MAXPSrm, 16 },
548198090Srdivacky    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int, 16 },
549198090Srdivacky    { X86::MAXSDrr,         X86::MAXSDrm, 0 },
550198090Srdivacky    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int, 0 },
551198090Srdivacky    { X86::MAXSSrr,         X86::MAXSSrm, 0 },
552198090Srdivacky    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int, 0 },
553198090Srdivacky    { X86::MINPDrr,         X86::MINPDrm, 16 },
554198090Srdivacky    { X86::MINPDrr_Int,     X86::MINPDrm_Int, 16 },
555198090Srdivacky    { X86::MINPSrr,         X86::MINPSrm, 16 },
556198090Srdivacky    { X86::MINPSrr_Int,     X86::MINPSrm_Int, 16 },
557198090Srdivacky    { X86::MINSDrr,         X86::MINSDrm, 0 },
558198090Srdivacky    { X86::MINSDrr_Int,     X86::MINSDrm_Int, 0 },
559198090Srdivacky    { X86::MINSSrr,         X86::MINSSrm, 0 },
560198090Srdivacky    { X86::MINSSrr_Int,     X86::MINSSrm_Int, 0 },
561198090Srdivacky    { X86::MULPDrr,         X86::MULPDrm, 16 },
562198090Srdivacky    { X86::MULPSrr,         X86::MULPSrm, 16 },
563198090Srdivacky    { X86::MULSDrr,         X86::MULSDrm, 0 },
564198090Srdivacky    { X86::MULSSrr,         X86::MULSSrm, 0 },
565198090Srdivacky    { X86::OR16rr,          X86::OR16rm, 0 },
566198090Srdivacky    { X86::OR32rr,          X86::OR32rm, 0 },
567198090Srdivacky    { X86::OR64rr,          X86::OR64rm, 0 },
568198090Srdivacky    { X86::OR8rr,           X86::OR8rm, 0 },
569198090Srdivacky    { X86::ORPDrr,          X86::ORPDrm, 16 },
570198090Srdivacky    { X86::ORPSrr,          X86::ORPSrm, 16 },
571198090Srdivacky    { X86::PACKSSDWrr,      X86::PACKSSDWrm, 16 },
572198090Srdivacky    { X86::PACKSSWBrr,      X86::PACKSSWBrm, 16 },
573198090Srdivacky    { X86::PACKUSWBrr,      X86::PACKUSWBrm, 16 },
574198090Srdivacky    { X86::PADDBrr,         X86::PADDBrm, 16 },
575198090Srdivacky    { X86::PADDDrr,         X86::PADDDrm, 16 },
576198090Srdivacky    { X86::PADDQrr,         X86::PADDQrm, 16 },
577198090Srdivacky    { X86::PADDSBrr,        X86::PADDSBrm, 16 },
578198090Srdivacky    { X86::PADDSWrr,        X86::PADDSWrm, 16 },
579198090Srdivacky    { X86::PADDWrr,         X86::PADDWrm, 16 },
580198090Srdivacky    { X86::PANDNrr,         X86::PANDNrm, 16 },
581198090Srdivacky    { X86::PANDrr,          X86::PANDrm, 16 },
582198090Srdivacky    { X86::PAVGBrr,         X86::PAVGBrm, 16 },
583198090Srdivacky    { X86::PAVGWrr,         X86::PAVGWrm, 16 },
584198090Srdivacky    { X86::PCMPEQBrr,       X86::PCMPEQBrm, 16 },
585198090Srdivacky    { X86::PCMPEQDrr,       X86::PCMPEQDrm, 16 },
586198090Srdivacky    { X86::PCMPEQWrr,       X86::PCMPEQWrm, 16 },
587198090Srdivacky    { X86::PCMPGTBrr,       X86::PCMPGTBrm, 16 },
588198090Srdivacky    { X86::PCMPGTDrr,       X86::PCMPGTDrm, 16 },
589198090Srdivacky    { X86::PCMPGTWrr,       X86::PCMPGTWrm, 16 },
590198090Srdivacky    { X86::PINSRWrri,       X86::PINSRWrmi, 16 },
591198090Srdivacky    { X86::PMADDWDrr,       X86::PMADDWDrm, 16 },
592198090Srdivacky    { X86::PMAXSWrr,        X86::PMAXSWrm, 16 },
593198090Srdivacky    { X86::PMAXUBrr,        X86::PMAXUBrm, 16 },
594198090Srdivacky    { X86::PMINSWrr,        X86::PMINSWrm, 16 },
595198090Srdivacky    { X86::PMINUBrr,        X86::PMINUBrm, 16 },
596198090Srdivacky    { X86::PMULDQrr,        X86::PMULDQrm, 16 },
597198090Srdivacky    { X86::PMULHUWrr,       X86::PMULHUWrm, 16 },
598198090Srdivacky    { X86::PMULHWrr,        X86::PMULHWrm, 16 },
599198090Srdivacky    { X86::PMULLDrr,        X86::PMULLDrm, 16 },
600198090Srdivacky    { X86::PMULLWrr,        X86::PMULLWrm, 16 },
601198090Srdivacky    { X86::PMULUDQrr,       X86::PMULUDQrm, 16 },
602198090Srdivacky    { X86::PORrr,           X86::PORrm, 16 },
603198090Srdivacky    { X86::PSADBWrr,        X86::PSADBWrm, 16 },
604198090Srdivacky    { X86::PSLLDrr,         X86::PSLLDrm, 16 },
605198090Srdivacky    { X86::PSLLQrr,         X86::PSLLQrm, 16 },
606198090Srdivacky    { X86::PSLLWrr,         X86::PSLLWrm, 16 },
607198090Srdivacky    { X86::PSRADrr,         X86::PSRADrm, 16 },
608198090Srdivacky    { X86::PSRAWrr,         X86::PSRAWrm, 16 },
609198090Srdivacky    { X86::PSRLDrr,         X86::PSRLDrm, 16 },
610198090Srdivacky    { X86::PSRLQrr,         X86::PSRLQrm, 16 },
611198090Srdivacky    { X86::PSRLWrr,         X86::PSRLWrm, 16 },
612198090Srdivacky    { X86::PSUBBrr,         X86::PSUBBrm, 16 },
613198090Srdivacky    { X86::PSUBDrr,         X86::PSUBDrm, 16 },
614198090Srdivacky    { X86::PSUBSBrr,        X86::PSUBSBrm, 16 },
615198090Srdivacky    { X86::PSUBSWrr,        X86::PSUBSWrm, 16 },
616198090Srdivacky    { X86::PSUBWrr,         X86::PSUBWrm, 16 },
617198090Srdivacky    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm, 16 },
618198090Srdivacky    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm, 16 },
619198090Srdivacky    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm, 16 },
620198090Srdivacky    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm, 16 },
621198090Srdivacky    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm, 16 },
622198090Srdivacky    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm, 16 },
623198090Srdivacky    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm, 16 },
624198090Srdivacky    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm, 16 },
625198090Srdivacky    { X86::PXORrr,          X86::PXORrm, 16 },
626198090Srdivacky    { X86::SBB32rr,         X86::SBB32rm, 0 },
627198090Srdivacky    { X86::SBB64rr,         X86::SBB64rm, 0 },
628198090Srdivacky    { X86::SHUFPDrri,       X86::SHUFPDrmi, 16 },
629198090Srdivacky    { X86::SHUFPSrri,       X86::SHUFPSrmi, 16 },
630198090Srdivacky    { X86::SUB16rr,         X86::SUB16rm, 0 },
631198090Srdivacky    { X86::SUB32rr,         X86::SUB32rm, 0 },
632198090Srdivacky    { X86::SUB64rr,         X86::SUB64rm, 0 },
633198090Srdivacky    { X86::SUB8rr,          X86::SUB8rm, 0 },
634198090Srdivacky    { X86::SUBPDrr,         X86::SUBPDrm, 16 },
635198090Srdivacky    { X86::SUBPSrr,         X86::SUBPSrm, 16 },
636198090Srdivacky    { X86::SUBSDrr,         X86::SUBSDrm, 0 },
637198090Srdivacky    { X86::SUBSSrr,         X86::SUBSSrm, 0 },
638193323Sed    // FIXME: TEST*rr -> swapped operand of TEST*mr.
639198090Srdivacky    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm, 16 },
640198090Srdivacky    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm, 16 },
641198090Srdivacky    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm, 16 },
642198090Srdivacky    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm, 16 },
643198090Srdivacky    { X86::XOR16rr,         X86::XOR16rm, 0 },
644198090Srdivacky    { X86::XOR32rr,         X86::XOR32rm, 0 },
645198090Srdivacky    { X86::XOR64rr,         X86::XOR64rm, 0 },
646198090Srdivacky    { X86::XOR8rr,          X86::XOR8rm, 0 },
647198090Srdivacky    { X86::XORPDrr,         X86::XORPDrm, 16 },
648198090Srdivacky    { X86::XORPSrr,         X86::XORPSrm, 16 }
649193323Sed  };
650193323Sed
651193323Sed  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
652193323Sed    unsigned RegOp = OpTbl2[i][0];
653193323Sed    unsigned MemOp = OpTbl2[i][1];
654198090Srdivacky    unsigned Align = OpTbl2[i][2];
655193323Sed    if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
656198090Srdivacky                                           std::make_pair(MemOp,Align))).second)
657193323Sed      assert(false && "Duplicated entries?");
658198090Srdivacky    // Index 2, folded load
659198090Srdivacky    unsigned AuxInfo = 2 | (1 << 4);
660193323Sed    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
661193323Sed                                   std::make_pair(RegOp, AuxInfo))).second)
662193323Sed      AmbEntries.push_back(MemOp);
663193323Sed  }
664193323Sed
665193323Sed  // Remove ambiguous entries.
666193323Sed  assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
667193323Sed}
668193323Sed
669193323Sedbool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
670193323Sed                               unsigned &SrcReg, unsigned &DstReg,
671193323Sed                               unsigned &SrcSubIdx, unsigned &DstSubIdx) const {
672193323Sed  switch (MI.getOpcode()) {
673193323Sed  default:
674193323Sed    return false;
675193323Sed  case X86::MOV8rr:
676193323Sed  case X86::MOV8rr_NOREX:
677193323Sed  case X86::MOV16rr:
678193323Sed  case X86::MOV32rr:
679193323Sed  case X86::MOV64rr:
680205218Srdivacky  case X86::MOV32rr_TC:
681205218Srdivacky  case X86::MOV64rr_TC:
682193323Sed
683193323Sed  // FP Stack register class copies
684193323Sed  case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
685193323Sed  case X86::MOV_Fp3264: case X86::MOV_Fp3280:
686193323Sed  case X86::MOV_Fp6432: case X86::MOV_Fp8032:
687204642Srdivacky
688204642Srdivacky  // Note that MOVSSrr and MOVSDrr are not considered copies. FR32 and FR64
689204642Srdivacky  // copies are done with FsMOVAPSrr and FsMOVAPDrr.
690204642Srdivacky
691193323Sed  case X86::FsMOVAPSrr:
692193323Sed  case X86::FsMOVAPDrr:
693193323Sed  case X86::MOVAPSrr:
694193323Sed  case X86::MOVAPDrr:
695193323Sed  case X86::MOVDQArr:
696193323Sed  case X86::MMX_MOVQ64rr:
697193323Sed    assert(MI.getNumOperands() >= 2 &&
698193323Sed           MI.getOperand(0).isReg() &&
699193323Sed           MI.getOperand(1).isReg() &&
700193323Sed           "invalid register-register move instruction");
701193323Sed    SrcReg = MI.getOperand(1).getReg();
702193323Sed    DstReg = MI.getOperand(0).getReg();
703193323Sed    SrcSubIdx = MI.getOperand(1).getSubReg();
704193323Sed    DstSubIdx = MI.getOperand(0).getSubReg();
705193323Sed    return true;
706193323Sed  }
707193323Sed}
708193323Sed
709202375Srdivackybool
710202375SrdivackyX86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
711202375Srdivacky                                    unsigned &SrcReg, unsigned &DstReg,
712202375Srdivacky                                    unsigned &SubIdx) const {
713202375Srdivacky  switch (MI.getOpcode()) {
714202375Srdivacky  default: break;
715202375Srdivacky  case X86::MOVSX16rr8:
716202375Srdivacky  case X86::MOVZX16rr8:
717202375Srdivacky  case X86::MOVSX32rr8:
718202375Srdivacky  case X86::MOVZX32rr8:
719202375Srdivacky  case X86::MOVSX64rr8:
720202375Srdivacky  case X86::MOVZX64rr8:
721202375Srdivacky    if (!TM.getSubtarget<X86Subtarget>().is64Bit())
722202375Srdivacky      // It's not always legal to reference the low 8-bit of the larger
723202375Srdivacky      // register in 32-bit mode.
724202375Srdivacky      return false;
725202375Srdivacky  case X86::MOVSX32rr16:
726202375Srdivacky  case X86::MOVZX32rr16:
727202375Srdivacky  case X86::MOVSX64rr16:
728202375Srdivacky  case X86::MOVZX64rr16:
729202375Srdivacky  case X86::MOVSX64rr32:
730202375Srdivacky  case X86::MOVZX64rr32: {
731202375Srdivacky    if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
732202375Srdivacky      // Be conservative.
733202375Srdivacky      return false;
734202375Srdivacky    SrcReg = MI.getOperand(1).getReg();
735202375Srdivacky    DstReg = MI.getOperand(0).getReg();
736202375Srdivacky    switch (MI.getOpcode()) {
737202375Srdivacky    default:
738202375Srdivacky      llvm_unreachable(0);
739202375Srdivacky      break;
740202375Srdivacky    case X86::MOVSX16rr8:
741202375Srdivacky    case X86::MOVZX16rr8:
742202375Srdivacky    case X86::MOVSX32rr8:
743202375Srdivacky    case X86::MOVZX32rr8:
744202375Srdivacky    case X86::MOVSX64rr8:
745202375Srdivacky    case X86::MOVZX64rr8:
746202375Srdivacky      SubIdx = 1;
747202375Srdivacky      break;
748202375Srdivacky    case X86::MOVSX32rr16:
749202375Srdivacky    case X86::MOVZX32rr16:
750202375Srdivacky    case X86::MOVSX64rr16:
751202375Srdivacky    case X86::MOVZX64rr16:
752202375Srdivacky      SubIdx = 3;
753202375Srdivacky      break;
754202375Srdivacky    case X86::MOVSX64rr32:
755202375Srdivacky    case X86::MOVZX64rr32:
756202375Srdivacky      SubIdx = 4;
757202375Srdivacky      break;
758202375Srdivacky    }
759202375Srdivacky    return true;
760202375Srdivacky  }
761202375Srdivacky  }
762202375Srdivacky  return false;
763202375Srdivacky}
764202375Srdivacky
765199481Srdivacky/// isFrameOperand - Return true and the FrameIndex if the specified
766199481Srdivacky/// operand and follow operands form a reference to the stack frame.
767199481Srdivackybool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
768199481Srdivacky                                  int &FrameIndex) const {
769199481Srdivacky  if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
770199481Srdivacky      MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
771199481Srdivacky      MI->getOperand(Op+1).getImm() == 1 &&
772199481Srdivacky      MI->getOperand(Op+2).getReg() == 0 &&
773199481Srdivacky      MI->getOperand(Op+3).getImm() == 0) {
774199481Srdivacky    FrameIndex = MI->getOperand(Op).getIndex();
775199481Srdivacky    return true;
776199481Srdivacky  }
777199481Srdivacky  return false;
778199481Srdivacky}
779199481Srdivacky
780199481Srdivackystatic bool isFrameLoadOpcode(int Opcode) {
781199481Srdivacky  switch (Opcode) {
782193323Sed  default: break;
783193323Sed  case X86::MOV8rm:
784193323Sed  case X86::MOV16rm:
785193323Sed  case X86::MOV32rm:
786193323Sed  case X86::MOV64rm:
787193323Sed  case X86::LD_Fp64m:
788193323Sed  case X86::MOVSSrm:
789193323Sed  case X86::MOVSDrm:
790193323Sed  case X86::MOVAPSrm:
791193323Sed  case X86::MOVAPDrm:
792193323Sed  case X86::MOVDQArm:
793193323Sed  case X86::MMX_MOVD64rm:
794193323Sed  case X86::MMX_MOVQ64rm:
795199481Srdivacky    return true;
796193323Sed    break;
797193323Sed  }
798199481Srdivacky  return false;
799193323Sed}
800193323Sed
801199481Srdivackystatic bool isFrameStoreOpcode(int Opcode) {
802199481Srdivacky  switch (Opcode) {
803193323Sed  default: break;
804193323Sed  case X86::MOV8mr:
805193323Sed  case X86::MOV16mr:
806193323Sed  case X86::MOV32mr:
807193323Sed  case X86::MOV64mr:
808193323Sed  case X86::ST_FpP64m:
809193323Sed  case X86::MOVSSmr:
810193323Sed  case X86::MOVSDmr:
811193323Sed  case X86::MOVAPSmr:
812193323Sed  case X86::MOVAPDmr:
813193323Sed  case X86::MOVDQAmr:
814193323Sed  case X86::MMX_MOVD64mr:
815193323Sed  case X86::MMX_MOVQ64mr:
816193323Sed  case X86::MMX_MOVNTQmr:
817199481Srdivacky    return true;
818199481Srdivacky  }
819199481Srdivacky  return false;
820199481Srdivacky}
821199481Srdivacky
822199481Srdivackyunsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
823199481Srdivacky                                           int &FrameIndex) const {
824199481Srdivacky  if (isFrameLoadOpcode(MI->getOpcode()))
825199481Srdivacky    if (isFrameOperand(MI, 1, FrameIndex))
826199481Srdivacky      return MI->getOperand(0).getReg();
827199481Srdivacky  return 0;
828199481Srdivacky}
829199481Srdivacky
830199481Srdivackyunsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
831199481Srdivacky                                                 int &FrameIndex) const {
832199481Srdivacky  if (isFrameLoadOpcode(MI->getOpcode())) {
833199481Srdivacky    unsigned Reg;
834199481Srdivacky    if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
835199481Srdivacky      return Reg;
836199481Srdivacky    // Check for post-frame index elimination operations
837200581Srdivacky    const MachineMemOperand *Dummy;
838200581Srdivacky    return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
839199481Srdivacky  }
840199481Srdivacky  return 0;
841199481Srdivacky}
842199481Srdivacky
843199481Srdivackybool X86InstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
844200581Srdivacky                                        const MachineMemOperand *&MMO,
845199481Srdivacky                                        int &FrameIndex) const {
846199481Srdivacky  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
847199481Srdivacky         oe = MI->memoperands_end();
848199481Srdivacky       o != oe;
849199481Srdivacky       ++o) {
850199481Srdivacky    if ((*o)->isLoad() && (*o)->getValue())
851199481Srdivacky      if (const FixedStackPseudoSourceValue *Value =
852199481Srdivacky          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
853199481Srdivacky        FrameIndex = Value->getFrameIndex();
854200581Srdivacky        MMO = *o;
855199481Srdivacky        return true;
856199481Srdivacky      }
857199481Srdivacky  }
858199481Srdivacky  return false;
859199481Srdivacky}
860199481Srdivacky
861199481Srdivackyunsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
862199481Srdivacky                                          int &FrameIndex) const {
863199481Srdivacky  if (isFrameStoreOpcode(MI->getOpcode()))
864199481Srdivacky    if (isFrameOperand(MI, 0, FrameIndex))
865193323Sed      return MI->getOperand(X86AddrNumOperands).getReg();
866199481Srdivacky  return 0;
867199481Srdivacky}
868199481Srdivacky
869199481Srdivackyunsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
870199481Srdivacky                                                int &FrameIndex) const {
871199481Srdivacky  if (isFrameStoreOpcode(MI->getOpcode())) {
872199481Srdivacky    unsigned Reg;
873199481Srdivacky    if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
874199481Srdivacky      return Reg;
875199481Srdivacky    // Check for post-frame index elimination operations
876200581Srdivacky    const MachineMemOperand *Dummy;
877200581Srdivacky    return hasStoreToStackSlot(MI, Dummy, FrameIndex);
878193323Sed  }
879193323Sed  return 0;
880193323Sed}
881193323Sed
882199481Srdivackybool X86InstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
883200581Srdivacky                                       const MachineMemOperand *&MMO,
884199481Srdivacky                                       int &FrameIndex) const {
885199481Srdivacky  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
886199481Srdivacky         oe = MI->memoperands_end();
887199481Srdivacky       o != oe;
888199481Srdivacky       ++o) {
889199481Srdivacky    if ((*o)->isStore() && (*o)->getValue())
890199481Srdivacky      if (const FixedStackPseudoSourceValue *Value =
891199481Srdivacky          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
892199481Srdivacky        FrameIndex = Value->getFrameIndex();
893200581Srdivacky        MMO = *o;
894199481Srdivacky        return true;
895199481Srdivacky      }
896199481Srdivacky  }
897199481Srdivacky  return false;
898199481Srdivacky}
899199481Srdivacky
900193323Sed/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
901193323Sed/// X86::MOVPC32r.
902193323Sedstatic bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
903193323Sed  bool isPICBase = false;
904193323Sed  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
905193323Sed         E = MRI.def_end(); I != E; ++I) {
906193323Sed    MachineInstr *DefMI = I.getOperand().getParent();
907193323Sed    if (DefMI->getOpcode() != X86::MOVPC32r)
908193323Sed      return false;
909193323Sed    assert(!isPICBase && "More than one PIC base?");
910193323Sed    isPICBase = true;
911193323Sed  }
912193323Sed  return isPICBase;
913193323Sed}
914193323Sed
915193323Sedbool
916198090SrdivackyX86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
917198090Srdivacky                                                AliasAnalysis *AA) const {
918193323Sed  switch (MI->getOpcode()) {
919193323Sed  default: break;
920193323Sed    case X86::MOV8rm:
921193323Sed    case X86::MOV16rm:
922193323Sed    case X86::MOV32rm:
923193323Sed    case X86::MOV64rm:
924193323Sed    case X86::LD_Fp64m:
925193323Sed    case X86::MOVSSrm:
926193323Sed    case X86::MOVSDrm:
927193323Sed    case X86::MOVAPSrm:
928199481Srdivacky    case X86::MOVUPSrm:
929199481Srdivacky    case X86::MOVUPSrm_Int:
930193323Sed    case X86::MOVAPDrm:
931193323Sed    case X86::MOVDQArm:
932193323Sed    case X86::MMX_MOVD64rm:
933199481Srdivacky    case X86::MMX_MOVQ64rm:
934199481Srdivacky    case X86::FsMOVAPSrm:
935199481Srdivacky    case X86::FsMOVAPDrm: {
936193323Sed      // Loads from constant pools are trivially rematerializable.
937193323Sed      if (MI->getOperand(1).isReg() &&
938193323Sed          MI->getOperand(2).isImm() &&
939193323Sed          MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
940198090Srdivacky          MI->isInvariantLoad(AA)) {
941193323Sed        unsigned BaseReg = MI->getOperand(1).getReg();
942195098Sed        if (BaseReg == 0 || BaseReg == X86::RIP)
943193323Sed          return true;
944193323Sed        // Allow re-materialization of PIC load.
945193323Sed        if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
946193323Sed          return false;
947193323Sed        const MachineFunction &MF = *MI->getParent()->getParent();
948193323Sed        const MachineRegisterInfo &MRI = MF.getRegInfo();
949193323Sed        bool isPICBase = false;
950193323Sed        for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
951193323Sed               E = MRI.def_end(); I != E; ++I) {
952193323Sed          MachineInstr *DefMI = I.getOperand().getParent();
953193323Sed          if (DefMI->getOpcode() != X86::MOVPC32r)
954193323Sed            return false;
955193323Sed          assert(!isPICBase && "More than one PIC base?");
956193323Sed          isPICBase = true;
957193323Sed        }
958193323Sed        return isPICBase;
959193323Sed      }
960193323Sed      return false;
961193323Sed    }
962193323Sed
963193323Sed     case X86::LEA32r:
964193323Sed     case X86::LEA64r: {
965193323Sed       if (MI->getOperand(2).isImm() &&
966193323Sed           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
967193323Sed           !MI->getOperand(4).isReg()) {
968193323Sed         // lea fi#, lea GV, etc. are all rematerializable.
969193323Sed         if (!MI->getOperand(1).isReg())
970193323Sed           return true;
971193323Sed         unsigned BaseReg = MI->getOperand(1).getReg();
972193323Sed         if (BaseReg == 0)
973193323Sed           return true;
974193323Sed         // Allow re-materialization of lea PICBase + x.
975193323Sed         const MachineFunction &MF = *MI->getParent()->getParent();
976193323Sed         const MachineRegisterInfo &MRI = MF.getRegInfo();
977193323Sed         return regIsPICBase(BaseReg, MRI);
978193323Sed       }
979193323Sed       return false;
980193323Sed     }
981193323Sed  }
982193323Sed
983193323Sed  // All other instructions marked M_REMATERIALIZABLE are always trivially
984193323Sed  // rematerializable.
985193323Sed  return true;
986193323Sed}
987193323Sed
988193323Sed/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
989193323Sed/// would clobber the EFLAGS condition register. Note the result may be
990193323Sed/// conservative. If it cannot definitely determine the safety after visiting
991198090Srdivacky/// a few instructions in each direction it assumes it's not safe.
992193323Sedstatic bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
993193323Sed                                  MachineBasicBlock::iterator I) {
994206083Srdivacky  MachineBasicBlock::iterator E = MBB.end();
995206083Srdivacky
996193323Sed  // It's always safe to clobber EFLAGS at the end of a block.
997206083Srdivacky  if (I == E)
998193323Sed    return true;
999193323Sed
1000193323Sed  // For compile time consideration, if we are not able to determine the
1001198090Srdivacky  // safety after visiting 4 instructions in each direction, we will assume
1002198090Srdivacky  // it's not safe.
1003198090Srdivacky  MachineBasicBlock::iterator Iter = I;
1004198090Srdivacky  for (unsigned i = 0; i < 4; ++i) {
1005193323Sed    bool SeenDef = false;
1006198090Srdivacky    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1007198090Srdivacky      MachineOperand &MO = Iter->getOperand(j);
1008193323Sed      if (!MO.isReg())
1009193323Sed        continue;
1010193323Sed      if (MO.getReg() == X86::EFLAGS) {
1011193323Sed        if (MO.isUse())
1012193323Sed          return false;
1013193323Sed        SeenDef = true;
1014193323Sed      }
1015193323Sed    }
1016193323Sed
1017193323Sed    if (SeenDef)
1018193323Sed      // This instruction defines EFLAGS, no need to look any further.
1019193323Sed      return true;
1020198090Srdivacky    ++Iter;
1021206083Srdivacky    // Skip over DBG_VALUE.
1022206083Srdivacky    while (Iter != E && Iter->isDebugValue())
1023206083Srdivacky      ++Iter;
1024193323Sed
1025193323Sed    // If we make it to the end of the block, it's safe to clobber EFLAGS.
1026206083Srdivacky    if (Iter == E)
1027193323Sed      return true;
1028193323Sed  }
1029193323Sed
1030206083Srdivacky  MachineBasicBlock::iterator B = MBB.begin();
1031198090Srdivacky  Iter = I;
1032198090Srdivacky  for (unsigned i = 0; i < 4; ++i) {
1033198090Srdivacky    // If we make it to the beginning of the block, it's safe to clobber
1034198090Srdivacky    // EFLAGS iff EFLAGS is not live-in.
1035206083Srdivacky    if (Iter == B)
1036198090Srdivacky      return !MBB.isLiveIn(X86::EFLAGS);
1037198090Srdivacky
1038198090Srdivacky    --Iter;
1039206083Srdivacky    // Skip over DBG_VALUE.
1040206083Srdivacky    while (Iter != B && Iter->isDebugValue())
1041206083Srdivacky      --Iter;
1042206083Srdivacky
1043198090Srdivacky    bool SawKill = false;
1044198090Srdivacky    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1045198090Srdivacky      MachineOperand &MO = Iter->getOperand(j);
1046198090Srdivacky      if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
1047198090Srdivacky        if (MO.isDef()) return MO.isDead();
1048198090Srdivacky        if (MO.isKill()) SawKill = true;
1049198090Srdivacky      }
1050198090Srdivacky    }
1051198090Srdivacky
1052198090Srdivacky    if (SawKill)
1053198090Srdivacky      // This instruction kills EFLAGS and doesn't redefine it, so
1054198090Srdivacky      // there's no need to look further.
1055198090Srdivacky      return true;
1056198090Srdivacky  }
1057198090Srdivacky
1058193323Sed  // Conservative answer.
1059193323Sed  return false;
1060193323Sed}
1061193323Sed
1062193323Sedvoid X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1063193323Sed                                 MachineBasicBlock::iterator I,
1064198090Srdivacky                                 unsigned DestReg, unsigned SubIdx,
1065199481Srdivacky                                 const MachineInstr *Orig,
1066199481Srdivacky                                 const TargetRegisterInfo *TRI) const {
1067203954Srdivacky  DebugLoc DL = MBB.findDebugLoc(I);
1068193323Sed
1069193323Sed  if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
1070199481Srdivacky    DestReg = TRI->getSubReg(DestReg, SubIdx);
1071193323Sed    SubIdx = 0;
1072193323Sed  }
1073193323Sed
1074193323Sed  // MOV32r0 etc. are implemented with xor which clobbers condition code.
1075193323Sed  // Re-materialize them as movri instructions to avoid side effects.
1076198090Srdivacky  bool Clone = true;
1077198090Srdivacky  unsigned Opc = Orig->getOpcode();
1078198090Srdivacky  switch (Opc) {
1079193323Sed  default: break;
1080193323Sed  case X86::MOV8r0:
1081202375Srdivacky  case X86::MOV16r0:
1082202375Srdivacky  case X86::MOV32r0:
1083202375Srdivacky  case X86::MOV64r0: {
1084193323Sed    if (!isSafeToClobberEFLAGS(MBB, I)) {
1085198090Srdivacky      switch (Opc) {
1086193323Sed      default: break;
1087193323Sed      case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
1088202375Srdivacky      case X86::MOV16r0: Opc = X86::MOV16ri; break;
1089193323Sed      case X86::MOV32r0: Opc = X86::MOV32ri; break;
1090204642Srdivacky      case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
1091193323Sed      }
1092198090Srdivacky      Clone = false;
1093193323Sed    }
1094193323Sed    break;
1095193323Sed  }
1096193323Sed  }
1097193323Sed
1098198090Srdivacky  if (Clone) {
1099193323Sed    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1100193323Sed    MI->getOperand(0).setReg(DestReg);
1101193323Sed    MBB.insert(I, MI);
1102198090Srdivacky  } else {
1103198090Srdivacky    BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0);
1104193323Sed  }
1105193323Sed
1106198090Srdivacky  MachineInstr *NewMI = prior(I);
1107198090Srdivacky  NewMI->getOperand(0).setSubReg(SubIdx);
1108193323Sed}
1109193323Sed
1110193323Sed/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1111193323Sed/// is not marked dead.
1112193323Sedstatic bool hasLiveCondCodeDef(MachineInstr *MI) {
1113193323Sed  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1114193323Sed    MachineOperand &MO = MI->getOperand(i);
1115193323Sed    if (MO.isReg() && MO.isDef() &&
1116193323Sed        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1117193323Sed      return true;
1118193323Sed    }
1119193323Sed  }
1120193323Sed  return false;
1121193323Sed}
1122193323Sed
1123200581Srdivacky/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
1124200581Srdivacky/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1125200581Srdivacky/// to a 32-bit superregister and then truncating back down to a 16-bit
1126200581Srdivacky/// subregister.
1127200581SrdivackyMachineInstr *
1128200581SrdivackyX86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1129200581Srdivacky                                           MachineFunction::iterator &MFI,
1130200581Srdivacky                                           MachineBasicBlock::iterator &MBBI,
1131200581Srdivacky                                           LiveVariables *LV) const {
1132200581Srdivacky  MachineInstr *MI = MBBI;
1133200581Srdivacky  unsigned Dest = MI->getOperand(0).getReg();
1134200581Srdivacky  unsigned Src = MI->getOperand(1).getReg();
1135200581Srdivacky  bool isDead = MI->getOperand(0).isDead();
1136200581Srdivacky  bool isKill = MI->getOperand(1).isKill();
1137200581Srdivacky
1138200581Srdivacky  unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1139200581Srdivacky    ? X86::LEA64_32r : X86::LEA32r;
1140200581Srdivacky  MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1141200581Srdivacky  unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1142200581Srdivacky  unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1143200581Srdivacky
1144200581Srdivacky  // Build and insert into an implicit UNDEF value. This is OK because
1145200581Srdivacky  // well be shifting and then extracting the lower 16-bits.
1146200581Srdivacky  // This has the potential to cause partial register stall. e.g.
1147200581Srdivacky  //   movw    (%rbp,%rcx,2), %dx
1148200581Srdivacky  //   leal    -65(%rdx), %esi
1149200581Srdivacky  // But testing has shown this *does* help performance in 64-bit mode (at
1150200581Srdivacky  // least on modern x86 machines).
1151200581Srdivacky  BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1152200581Srdivacky  MachineInstr *InsMI =
1153200581Srdivacky    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg)
1154200581Srdivacky    .addReg(leaInReg)
1155200581Srdivacky    .addReg(Src, getKillRegState(isKill))
1156200581Srdivacky    .addImm(X86::SUBREG_16BIT);
1157200581Srdivacky
1158200581Srdivacky  MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
1159200581Srdivacky                                    get(Opc), leaOutReg);
1160200581Srdivacky  switch (MIOpc) {
1161200581Srdivacky  default:
1162200581Srdivacky    llvm_unreachable(0);
1163200581Srdivacky    break;
1164200581Srdivacky  case X86::SHL16ri: {
1165200581Srdivacky    unsigned ShAmt = MI->getOperand(2).getImm();
1166200581Srdivacky    MIB.addReg(0).addImm(1 << ShAmt)
1167200581Srdivacky       .addReg(leaInReg, RegState::Kill).addImm(0);
1168200581Srdivacky    break;
1169200581Srdivacky  }
1170200581Srdivacky  case X86::INC16r:
1171200581Srdivacky  case X86::INC64_16r:
1172200581Srdivacky    addLeaRegOffset(MIB, leaInReg, true, 1);
1173200581Srdivacky    break;
1174200581Srdivacky  case X86::DEC16r:
1175200581Srdivacky  case X86::DEC64_16r:
1176200581Srdivacky    addLeaRegOffset(MIB, leaInReg, true, -1);
1177200581Srdivacky    break;
1178200581Srdivacky  case X86::ADD16ri:
1179200581Srdivacky  case X86::ADD16ri8:
1180200581Srdivacky    addLeaRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
1181200581Srdivacky    break;
1182200581Srdivacky  case X86::ADD16rr: {
1183200581Srdivacky    unsigned Src2 = MI->getOperand(2).getReg();
1184200581Srdivacky    bool isKill2 = MI->getOperand(2).isKill();
1185200581Srdivacky    unsigned leaInReg2 = 0;
1186200581Srdivacky    MachineInstr *InsMI2 = 0;
1187200581Srdivacky    if (Src == Src2) {
1188200581Srdivacky      // ADD16rr %reg1028<kill>, %reg1028
1189200581Srdivacky      // just a single insert_subreg.
1190200581Srdivacky      addRegReg(MIB, leaInReg, true, leaInReg, false);
1191200581Srdivacky    } else {
1192200581Srdivacky      leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1193200581Srdivacky      // Build and insert into an implicit UNDEF value. This is OK because
1194200581Srdivacky      // well be shifting and then extracting the lower 16-bits.
1195200581Srdivacky      BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2);
1196200581Srdivacky      InsMI2 =
1197200581Srdivacky        BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg2)
1198200581Srdivacky        .addReg(leaInReg2)
1199200581Srdivacky        .addReg(Src2, getKillRegState(isKill2))
1200200581Srdivacky        .addImm(X86::SUBREG_16BIT);
1201200581Srdivacky      addRegReg(MIB, leaInReg, true, leaInReg2, true);
1202200581Srdivacky    }
1203200581Srdivacky    if (LV && isKill2 && InsMI2)
1204200581Srdivacky      LV->replaceKillInstruction(Src2, MI, InsMI2);
1205200581Srdivacky    break;
1206200581Srdivacky  }
1207200581Srdivacky  }
1208200581Srdivacky
1209200581Srdivacky  MachineInstr *NewMI = MIB;
1210200581Srdivacky  MachineInstr *ExtMI =
1211200581Srdivacky    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::EXTRACT_SUBREG))
1212200581Srdivacky    .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1213200581Srdivacky    .addReg(leaOutReg, RegState::Kill)
1214200581Srdivacky    .addImm(X86::SUBREG_16BIT);
1215200581Srdivacky
1216200581Srdivacky  if (LV) {
1217200581Srdivacky    // Update live variables
1218200581Srdivacky    LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1219200581Srdivacky    LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1220200581Srdivacky    if (isKill)
1221200581Srdivacky      LV->replaceKillInstruction(Src, MI, InsMI);
1222200581Srdivacky    if (isDead)
1223200581Srdivacky      LV->replaceKillInstruction(Dest, MI, ExtMI);
1224200581Srdivacky  }
1225200581Srdivacky
1226200581Srdivacky  return ExtMI;
1227200581Srdivacky}
1228200581Srdivacky
1229193323Sed/// convertToThreeAddress - This method must be implemented by targets that
1230193323Sed/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
1231193323Sed/// may be able to convert a two-address instruction into a true
1232193323Sed/// three-address instruction on demand.  This allows the X86 target (for
1233193323Sed/// example) to convert ADD and SHL instructions into LEA instructions if they
1234193323Sed/// would require register copies due to two-addressness.
1235193323Sed///
1236193323Sed/// This method returns a null pointer if the transformation cannot be
1237193323Sed/// performed, otherwise it returns the new instruction.
1238193323Sed///
1239193323SedMachineInstr *
1240193323SedX86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1241193323Sed                                    MachineBasicBlock::iterator &MBBI,
1242193323Sed                                    LiveVariables *LV) const {
1243193323Sed  MachineInstr *MI = MBBI;
1244193323Sed  MachineFunction &MF = *MI->getParent()->getParent();
1245193323Sed  // All instructions input are two-addr instructions.  Get the known operands.
1246193323Sed  unsigned Dest = MI->getOperand(0).getReg();
1247193323Sed  unsigned Src = MI->getOperand(1).getReg();
1248193323Sed  bool isDead = MI->getOperand(0).isDead();
1249193323Sed  bool isKill = MI->getOperand(1).isKill();
1250193323Sed
1251193323Sed  MachineInstr *NewMI = NULL;
1252193323Sed  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
1253193323Sed  // we have better subtarget support, enable the 16-bit LEA generation here.
1254200581Srdivacky  // 16-bit LEA is also slow on Core2.
1255193323Sed  bool DisableLEA16 = true;
1256200581Srdivacky  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1257193323Sed
1258193323Sed  unsigned MIOpc = MI->getOpcode();
1259193323Sed  switch (MIOpc) {
1260193323Sed  case X86::SHUFPSrri: {
1261193323Sed    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1262193323Sed    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1263193323Sed
1264193323Sed    unsigned B = MI->getOperand(1).getReg();
1265193323Sed    unsigned C = MI->getOperand(2).getReg();
1266193323Sed    if (B != C) return 0;
1267193323Sed    unsigned A = MI->getOperand(0).getReg();
1268193323Sed    unsigned M = MI->getOperand(3).getImm();
1269193323Sed    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1270193323Sed      .addReg(A, RegState::Define | getDeadRegState(isDead))
1271193323Sed      .addReg(B, getKillRegState(isKill)).addImm(M);
1272193323Sed    break;
1273193323Sed  }
1274193323Sed  case X86::SHL64ri: {
1275193323Sed    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1276193323Sed    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1277193323Sed    // the flags produced by a shift yet, so this is safe.
1278193323Sed    unsigned ShAmt = MI->getOperand(2).getImm();
1279193323Sed    if (ShAmt == 0 || ShAmt >= 4) return 0;
1280193323Sed
1281193323Sed    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1282193323Sed      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1283193323Sed      .addReg(0).addImm(1 << ShAmt)
1284193323Sed      .addReg(Src, getKillRegState(isKill))
1285193323Sed      .addImm(0);
1286193323Sed    break;
1287193323Sed  }
1288193323Sed  case X86::SHL32ri: {
1289193323Sed    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1290193323Sed    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1291193323Sed    // the flags produced by a shift yet, so this is safe.
1292193323Sed    unsigned ShAmt = MI->getOperand(2).getImm();
1293193323Sed    if (ShAmt == 0 || ShAmt >= 4) return 0;
1294193323Sed
1295200581Srdivacky    unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1296193323Sed    NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
1297193323Sed      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1298193323Sed      .addReg(0).addImm(1 << ShAmt)
1299193323Sed      .addReg(Src, getKillRegState(isKill)).addImm(0);
1300193323Sed    break;
1301193323Sed  }
1302193323Sed  case X86::SHL16ri: {
1303193323Sed    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1304193323Sed    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1305193323Sed    // the flags produced by a shift yet, so this is safe.
1306193323Sed    unsigned ShAmt = MI->getOperand(2).getImm();
1307193323Sed    if (ShAmt == 0 || ShAmt >= 4) return 0;
1308193323Sed
1309200581Srdivacky    if (DisableLEA16)
1310200581Srdivacky      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1311200581Srdivacky    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1312200581Srdivacky      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1313200581Srdivacky      .addReg(0).addImm(1 << ShAmt)
1314200581Srdivacky      .addReg(Src, getKillRegState(isKill))
1315200581Srdivacky      .addImm(0);
1316193323Sed    break;
1317193323Sed  }
1318193323Sed  default: {
1319193323Sed    // The following opcodes also sets the condition code register(s). Only
1320193323Sed    // convert them to equivalent lea if the condition code register def's
1321193323Sed    // are dead!
1322193323Sed    if (hasLiveCondCodeDef(MI))
1323193323Sed      return 0;
1324193323Sed
1325193323Sed    switch (MIOpc) {
1326193323Sed    default: return 0;
1327193323Sed    case X86::INC64r:
1328193323Sed    case X86::INC32r:
1329193323Sed    case X86::INC64_32r: {
1330193323Sed      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1331193323Sed      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1332193323Sed        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1333193323Sed      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1334193323Sed                              .addReg(Dest, RegState::Define |
1335193323Sed                                      getDeadRegState(isDead)),
1336193323Sed                              Src, isKill, 1);
1337193323Sed      break;
1338193323Sed    }
1339193323Sed    case X86::INC16r:
1340193323Sed    case X86::INC64_16r:
1341200581Srdivacky      if (DisableLEA16)
1342200581Srdivacky        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1343193323Sed      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1344193323Sed      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1345193323Sed                           .addReg(Dest, RegState::Define |
1346193323Sed                                   getDeadRegState(isDead)),
1347193323Sed                           Src, isKill, 1);
1348193323Sed      break;
1349193323Sed    case X86::DEC64r:
1350193323Sed    case X86::DEC32r:
1351193323Sed    case X86::DEC64_32r: {
1352193323Sed      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1353193323Sed      unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1354193323Sed        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1355193323Sed      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1356193323Sed                              .addReg(Dest, RegState::Define |
1357193323Sed                                      getDeadRegState(isDead)),
1358193323Sed                              Src, isKill, -1);
1359193323Sed      break;
1360193323Sed    }
1361193323Sed    case X86::DEC16r:
1362193323Sed    case X86::DEC64_16r:
1363200581Srdivacky      if (DisableLEA16)
1364200581Srdivacky        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1365193323Sed      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1366193323Sed      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1367193323Sed                           .addReg(Dest, RegState::Define |
1368193323Sed                                   getDeadRegState(isDead)),
1369193323Sed                           Src, isKill, -1);
1370193323Sed      break;
1371193323Sed    case X86::ADD64rr:
1372193323Sed    case X86::ADD32rr: {
1373193323Sed      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1374193323Sed      unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1375193323Sed        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1376193323Sed      unsigned Src2 = MI->getOperand(2).getReg();
1377193323Sed      bool isKill2 = MI->getOperand(2).isKill();
1378193323Sed      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1379193323Sed                        .addReg(Dest, RegState::Define |
1380193323Sed                                getDeadRegState(isDead)),
1381193323Sed                        Src, isKill, Src2, isKill2);
1382193323Sed      if (LV && isKill2)
1383193323Sed        LV->replaceKillInstruction(Src2, MI, NewMI);
1384193323Sed      break;
1385193323Sed    }
1386193323Sed    case X86::ADD16rr: {
1387200581Srdivacky      if (DisableLEA16)
1388200581Srdivacky        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1389193323Sed      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1390193323Sed      unsigned Src2 = MI->getOperand(2).getReg();
1391193323Sed      bool isKill2 = MI->getOperand(2).isKill();
1392193323Sed      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1393193323Sed                        .addReg(Dest, RegState::Define |
1394193323Sed                                getDeadRegState(isDead)),
1395193323Sed                        Src, isKill, Src2, isKill2);
1396193323Sed      if (LV && isKill2)
1397193323Sed        LV->replaceKillInstruction(Src2, MI, NewMI);
1398193323Sed      break;
1399193323Sed    }
1400193323Sed    case X86::ADD64ri32:
1401193323Sed    case X86::ADD64ri8:
1402193323Sed      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1403200581Srdivacky      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1404200581Srdivacky                              .addReg(Dest, RegState::Define |
1405200581Srdivacky                                      getDeadRegState(isDead)),
1406200581Srdivacky                              Src, isKill, MI->getOperand(2).getImm());
1407193323Sed      break;
1408193323Sed    case X86::ADD32ri:
1409200581Srdivacky    case X86::ADD32ri8: {
1410193323Sed      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1411200581Srdivacky      unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1412200581Srdivacky      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1413200581Srdivacky                              .addReg(Dest, RegState::Define |
1414200581Srdivacky                                      getDeadRegState(isDead)),
1415193323Sed                                Src, isKill, MI->getOperand(2).getImm());
1416193323Sed      break;
1417200581Srdivacky    }
1418193323Sed    case X86::ADD16ri:
1419193323Sed    case X86::ADD16ri8:
1420200581Srdivacky      if (DisableLEA16)
1421200581Srdivacky        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1422193323Sed      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1423200581Srdivacky      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1424200581Srdivacky                              .addReg(Dest, RegState::Define |
1425200581Srdivacky                                      getDeadRegState(isDead)),
1426200581Srdivacky                              Src, isKill, MI->getOperand(2).getImm());
1427193323Sed      break;
1428193323Sed    }
1429193323Sed  }
1430193323Sed  }
1431193323Sed
1432193323Sed  if (!NewMI) return 0;
1433193323Sed
1434193323Sed  if (LV) {  // Update live variables
1435193323Sed    if (isKill)
1436193323Sed      LV->replaceKillInstruction(Src, MI, NewMI);
1437193323Sed    if (isDead)
1438193323Sed      LV->replaceKillInstruction(Dest, MI, NewMI);
1439193323Sed  }
1440193323Sed
1441193323Sed  MFI->insert(MBBI, NewMI);          // Insert the new inst
1442193323Sed  return NewMI;
1443193323Sed}
1444193323Sed
1445193323Sed/// commuteInstruction - We have a few instructions that must be hacked on to
1446193323Sed/// commute them.
1447193323Sed///
1448193323SedMachineInstr *
1449193323SedX86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1450193323Sed  switch (MI->getOpcode()) {
1451193323Sed  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1452193323Sed  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1453193323Sed  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1454193323Sed  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1455193323Sed  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1456193323Sed  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1457193323Sed    unsigned Opc;
1458193323Sed    unsigned Size;
1459193323Sed    switch (MI->getOpcode()) {
1460198090Srdivacky    default: llvm_unreachable("Unreachable!");
1461193323Sed    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1462193323Sed    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1463193323Sed    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1464193323Sed    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1465193323Sed    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1466193323Sed    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1467193323Sed    }
1468193323Sed    unsigned Amt = MI->getOperand(3).getImm();
1469193323Sed    if (NewMI) {
1470193323Sed      MachineFunction &MF = *MI->getParent()->getParent();
1471193323Sed      MI = MF.CloneMachineInstr(MI);
1472193323Sed      NewMI = false;
1473193323Sed    }
1474193323Sed    MI->setDesc(get(Opc));
1475193323Sed    MI->getOperand(3).setImm(Size-Amt);
1476193323Sed    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1477193323Sed  }
1478193323Sed  case X86::CMOVB16rr:
1479193323Sed  case X86::CMOVB32rr:
1480193323Sed  case X86::CMOVB64rr:
1481193323Sed  case X86::CMOVAE16rr:
1482193323Sed  case X86::CMOVAE32rr:
1483193323Sed  case X86::CMOVAE64rr:
1484193323Sed  case X86::CMOVE16rr:
1485193323Sed  case X86::CMOVE32rr:
1486193323Sed  case X86::CMOVE64rr:
1487193323Sed  case X86::CMOVNE16rr:
1488193323Sed  case X86::CMOVNE32rr:
1489193323Sed  case X86::CMOVNE64rr:
1490193323Sed  case X86::CMOVBE16rr:
1491193323Sed  case X86::CMOVBE32rr:
1492193323Sed  case X86::CMOVBE64rr:
1493193323Sed  case X86::CMOVA16rr:
1494193323Sed  case X86::CMOVA32rr:
1495193323Sed  case X86::CMOVA64rr:
1496193323Sed  case X86::CMOVL16rr:
1497193323Sed  case X86::CMOVL32rr:
1498193323Sed  case X86::CMOVL64rr:
1499193323Sed  case X86::CMOVGE16rr:
1500193323Sed  case X86::CMOVGE32rr:
1501193323Sed  case X86::CMOVGE64rr:
1502193323Sed  case X86::CMOVLE16rr:
1503193323Sed  case X86::CMOVLE32rr:
1504193323Sed  case X86::CMOVLE64rr:
1505193323Sed  case X86::CMOVG16rr:
1506193323Sed  case X86::CMOVG32rr:
1507193323Sed  case X86::CMOVG64rr:
1508193323Sed  case X86::CMOVS16rr:
1509193323Sed  case X86::CMOVS32rr:
1510193323Sed  case X86::CMOVS64rr:
1511193323Sed  case X86::CMOVNS16rr:
1512193323Sed  case X86::CMOVNS32rr:
1513193323Sed  case X86::CMOVNS64rr:
1514193323Sed  case X86::CMOVP16rr:
1515193323Sed  case X86::CMOVP32rr:
1516193323Sed  case X86::CMOVP64rr:
1517193323Sed  case X86::CMOVNP16rr:
1518193323Sed  case X86::CMOVNP32rr:
1519193323Sed  case X86::CMOVNP64rr:
1520193323Sed  case X86::CMOVO16rr:
1521193323Sed  case X86::CMOVO32rr:
1522193323Sed  case X86::CMOVO64rr:
1523193323Sed  case X86::CMOVNO16rr:
1524193323Sed  case X86::CMOVNO32rr:
1525193323Sed  case X86::CMOVNO64rr: {
1526193323Sed    unsigned Opc = 0;
1527193323Sed    switch (MI->getOpcode()) {
1528193323Sed    default: break;
1529193323Sed    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
1530193323Sed    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
1531193323Sed    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
1532193323Sed    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1533193323Sed    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1534193323Sed    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1535193323Sed    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
1536193323Sed    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
1537193323Sed    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
1538193323Sed    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1539193323Sed    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1540193323Sed    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1541193323Sed    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1542193323Sed    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1543193323Sed    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1544193323Sed    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
1545193323Sed    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
1546193323Sed    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
1547193323Sed    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
1548193323Sed    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
1549193323Sed    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
1550193323Sed    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1551193323Sed    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1552193323Sed    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1553193323Sed    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1554193323Sed    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1555193323Sed    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1556193323Sed    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
1557193323Sed    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
1558193323Sed    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
1559193323Sed    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
1560193323Sed    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
1561193323Sed    case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
1562193323Sed    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1563193323Sed    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1564193323Sed    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1565193323Sed    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
1566193323Sed    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
1567193323Sed    case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
1568193323Sed    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1569193323Sed    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1570193323Sed    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1571193323Sed    case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
1572193323Sed    case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
1573193323Sed    case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
1574193323Sed    case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1575193323Sed    case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1576193323Sed    case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
1577193323Sed    }
1578193323Sed    if (NewMI) {
1579193323Sed      MachineFunction &MF = *MI->getParent()->getParent();
1580193323Sed      MI = MF.CloneMachineInstr(MI);
1581193323Sed      NewMI = false;
1582193323Sed    }
1583193323Sed    MI->setDesc(get(Opc));
1584193323Sed    // Fallthrough intended.
1585193323Sed  }
1586193323Sed  default:
1587193323Sed    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1588193323Sed  }
1589193323Sed}
1590193323Sed
1591193323Sedstatic X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1592193323Sed  switch (BrOpc) {
1593193323Sed  default: return X86::COND_INVALID;
1594203954Srdivacky  case X86::JE_4:  return X86::COND_E;
1595203954Srdivacky  case X86::JNE_4: return X86::COND_NE;
1596203954Srdivacky  case X86::JL_4:  return X86::COND_L;
1597203954Srdivacky  case X86::JLE_4: return X86::COND_LE;
1598203954Srdivacky  case X86::JG_4:  return X86::COND_G;
1599203954Srdivacky  case X86::JGE_4: return X86::COND_GE;
1600203954Srdivacky  case X86::JB_4:  return X86::COND_B;
1601203954Srdivacky  case X86::JBE_4: return X86::COND_BE;
1602203954Srdivacky  case X86::JA_4:  return X86::COND_A;
1603203954Srdivacky  case X86::JAE_4: return X86::COND_AE;
1604203954Srdivacky  case X86::JS_4:  return X86::COND_S;
1605203954Srdivacky  case X86::JNS_4: return X86::COND_NS;
1606203954Srdivacky  case X86::JP_4:  return X86::COND_P;
1607203954Srdivacky  case X86::JNP_4: return X86::COND_NP;
1608203954Srdivacky  case X86::JO_4:  return X86::COND_O;
1609203954Srdivacky  case X86::JNO_4: return X86::COND_NO;
1610193323Sed  }
1611193323Sed}
1612193323Sed
1613193323Sedunsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1614193323Sed  switch (CC) {
1615198090Srdivacky  default: llvm_unreachable("Illegal condition code!");
1616203954Srdivacky  case X86::COND_E:  return X86::JE_4;
1617203954Srdivacky  case X86::COND_NE: return X86::JNE_4;
1618203954Srdivacky  case X86::COND_L:  return X86::JL_4;
1619203954Srdivacky  case X86::COND_LE: return X86::JLE_4;
1620203954Srdivacky  case X86::COND_G:  return X86::JG_4;
1621203954Srdivacky  case X86::COND_GE: return X86::JGE_4;
1622203954Srdivacky  case X86::COND_B:  return X86::JB_4;
1623203954Srdivacky  case X86::COND_BE: return X86::JBE_4;
1624203954Srdivacky  case X86::COND_A:  return X86::JA_4;
1625203954Srdivacky  case X86::COND_AE: return X86::JAE_4;
1626203954Srdivacky  case X86::COND_S:  return X86::JS_4;
1627203954Srdivacky  case X86::COND_NS: return X86::JNS_4;
1628203954Srdivacky  case X86::COND_P:  return X86::JP_4;
1629203954Srdivacky  case X86::COND_NP: return X86::JNP_4;
1630203954Srdivacky  case X86::COND_O:  return X86::JO_4;
1631203954Srdivacky  case X86::COND_NO: return X86::JNO_4;
1632193323Sed  }
1633193323Sed}
1634193323Sed
1635193323Sed/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1636193323Sed/// e.g. turning COND_E to COND_NE.
1637193323SedX86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1638193323Sed  switch (CC) {
1639198090Srdivacky  default: llvm_unreachable("Illegal condition code!");
1640193323Sed  case X86::COND_E:  return X86::COND_NE;
1641193323Sed  case X86::COND_NE: return X86::COND_E;
1642193323Sed  case X86::COND_L:  return X86::COND_GE;
1643193323Sed  case X86::COND_LE: return X86::COND_G;
1644193323Sed  case X86::COND_G:  return X86::COND_LE;
1645193323Sed  case X86::COND_GE: return X86::COND_L;
1646193323Sed  case X86::COND_B:  return X86::COND_AE;
1647193323Sed  case X86::COND_BE: return X86::COND_A;
1648193323Sed  case X86::COND_A:  return X86::COND_BE;
1649193323Sed  case X86::COND_AE: return X86::COND_B;
1650193323Sed  case X86::COND_S:  return X86::COND_NS;
1651193323Sed  case X86::COND_NS: return X86::COND_S;
1652193323Sed  case X86::COND_P:  return X86::COND_NP;
1653193323Sed  case X86::COND_NP: return X86::COND_P;
1654193323Sed  case X86::COND_O:  return X86::COND_NO;
1655193323Sed  case X86::COND_NO: return X86::COND_O;
1656193323Sed  }
1657193323Sed}
1658193323Sed
1659193323Sedbool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1660193323Sed  const TargetInstrDesc &TID = MI->getDesc();
1661193323Sed  if (!TID.isTerminator()) return false;
1662193323Sed
1663193323Sed  // Conditional branch is a special case.
1664193323Sed  if (TID.isBranch() && !TID.isBarrier())
1665193323Sed    return true;
1666193323Sed  if (!TID.isPredicable())
1667193323Sed    return true;
1668193323Sed  return !isPredicated(MI);
1669193323Sed}
1670193323Sed
1671193323Sed// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1672193323Sedstatic bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1673193323Sed                                               const X86InstrInfo &TII) {
1674193323Sed  if (MI->getOpcode() == X86::FP_REG_KILL)
1675193323Sed    return false;
1676193323Sed  return TII.isUnpredicatedTerminator(MI);
1677193323Sed}
1678193323Sed
1679193323Sedbool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1680193323Sed                                 MachineBasicBlock *&TBB,
1681193323Sed                                 MachineBasicBlock *&FBB,
1682193323Sed                                 SmallVectorImpl<MachineOperand> &Cond,
1683193323Sed                                 bool AllowModify) const {
1684193323Sed  // Start from the bottom of the block and work up, examining the
1685193323Sed  // terminator instructions.
1686193323Sed  MachineBasicBlock::iterator I = MBB.end();
1687193323Sed  while (I != MBB.begin()) {
1688193323Sed    --I;
1689206083Srdivacky    if (I->isDebugValue())
1690206083Srdivacky      continue;
1691200581Srdivacky
1692200581Srdivacky    // Working from the bottom, when we see a non-terminator instruction, we're
1693200581Srdivacky    // done.
1694193323Sed    if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1695193323Sed      break;
1696200581Srdivacky
1697200581Srdivacky    // A terminator that isn't a branch can't easily be handled by this
1698200581Srdivacky    // analysis.
1699193323Sed    if (!I->getDesc().isBranch())
1700193323Sed      return true;
1701200581Srdivacky
1702193323Sed    // Handle unconditional branches.
1703203954Srdivacky    if (I->getOpcode() == X86::JMP_4) {
1704193323Sed      if (!AllowModify) {
1705193323Sed        TBB = I->getOperand(0).getMBB();
1706193323Sed        continue;
1707193323Sed      }
1708193323Sed
1709193323Sed      // If the block has any instructions after a JMP, delete them.
1710200581Srdivacky      while (llvm::next(I) != MBB.end())
1711200581Srdivacky        llvm::next(I)->eraseFromParent();
1712200581Srdivacky
1713193323Sed      Cond.clear();
1714193323Sed      FBB = 0;
1715200581Srdivacky
1716193323Sed      // Delete the JMP if it's equivalent to a fall-through.
1717193323Sed      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1718193323Sed        TBB = 0;
1719193323Sed        I->eraseFromParent();
1720193323Sed        I = MBB.end();
1721193323Sed        continue;
1722193323Sed      }
1723200581Srdivacky
1724193323Sed      // TBB is used to indicate the unconditinal destination.
1725193323Sed      TBB = I->getOperand(0).getMBB();
1726193323Sed      continue;
1727193323Sed    }
1728200581Srdivacky
1729193323Sed    // Handle conditional branches.
1730193323Sed    X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
1731193323Sed    if (BranchCode == X86::COND_INVALID)
1732193323Sed      return true;  // Can't handle indirect branch.
1733200581Srdivacky
1734193323Sed    // Working from the bottom, handle the first conditional branch.
1735193323Sed    if (Cond.empty()) {
1736193323Sed      FBB = TBB;
1737193323Sed      TBB = I->getOperand(0).getMBB();
1738193323Sed      Cond.push_back(MachineOperand::CreateImm(BranchCode));
1739193323Sed      continue;
1740193323Sed    }
1741200581Srdivacky
1742200581Srdivacky    // Handle subsequent conditional branches. Only handle the case where all
1743200581Srdivacky    // conditional branches branch to the same destination and their condition
1744200581Srdivacky    // opcodes fit one of the special multi-branch idioms.
1745193323Sed    assert(Cond.size() == 1);
1746193323Sed    assert(TBB);
1747200581Srdivacky
1748200581Srdivacky    // Only handle the case where all conditional branches branch to the same
1749200581Srdivacky    // destination.
1750193323Sed    if (TBB != I->getOperand(0).getMBB())
1751193323Sed      return true;
1752200581Srdivacky
1753200581Srdivacky    // If the conditions are the same, we can leave them alone.
1754193323Sed    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1755193323Sed    if (OldBranchCode == BranchCode)
1756193323Sed      continue;
1757200581Srdivacky
1758200581Srdivacky    // If they differ, see if they fit one of the known patterns. Theoretically,
1759200581Srdivacky    // we could handle more patterns here, but we shouldn't expect to see them
1760200581Srdivacky    // if instruction selection has done a reasonable job.
1761193323Sed    if ((OldBranchCode == X86::COND_NP &&
1762193323Sed         BranchCode == X86::COND_E) ||
1763193323Sed        (OldBranchCode == X86::COND_E &&
1764193323Sed         BranchCode == X86::COND_NP))
1765193323Sed      BranchCode = X86::COND_NP_OR_E;
1766193323Sed    else if ((OldBranchCode == X86::COND_P &&
1767193323Sed              BranchCode == X86::COND_NE) ||
1768193323Sed             (OldBranchCode == X86::COND_NE &&
1769193323Sed              BranchCode == X86::COND_P))
1770193323Sed      BranchCode = X86::COND_NE_OR_P;
1771193323Sed    else
1772193323Sed      return true;
1773200581Srdivacky
1774193323Sed    // Update the MachineOperand.
1775193323Sed    Cond[0].setImm(BranchCode);
1776193323Sed  }
1777193323Sed
1778193323Sed  return false;
1779193323Sed}
1780193323Sed
1781193323Sedunsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1782193323Sed  MachineBasicBlock::iterator I = MBB.end();
1783193323Sed  unsigned Count = 0;
1784193323Sed
1785193323Sed  while (I != MBB.begin()) {
1786193323Sed    --I;
1787206083Srdivacky    if (I->isDebugValue())
1788206083Srdivacky      continue;
1789203954Srdivacky    if (I->getOpcode() != X86::JMP_4 &&
1790193323Sed        GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1791193323Sed      break;
1792193323Sed    // Remove the branch.
1793193323Sed    I->eraseFromParent();
1794193323Sed    I = MBB.end();
1795193323Sed    ++Count;
1796193323Sed  }
1797193323Sed
1798193323Sed  return Count;
1799193323Sed}
1800193323Sed
1801193323Sedunsigned
1802193323SedX86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1803193323Sed                           MachineBasicBlock *FBB,
1804193323Sed                           const SmallVectorImpl<MachineOperand> &Cond) const {
1805193323Sed  // FIXME this should probably have a DebugLoc operand
1806193323Sed  DebugLoc dl = DebugLoc::getUnknownLoc();
1807193323Sed  // Shouldn't be a fall through.
1808193323Sed  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1809193323Sed  assert((Cond.size() == 1 || Cond.size() == 0) &&
1810193323Sed         "X86 branch conditions have one component!");
1811193323Sed
1812193323Sed  if (Cond.empty()) {
1813193323Sed    // Unconditional branch?
1814193323Sed    assert(!FBB && "Unconditional branch with multiple successors!");
1815203954Srdivacky    BuildMI(&MBB, dl, get(X86::JMP_4)).addMBB(TBB);
1816193323Sed    return 1;
1817193323Sed  }
1818193323Sed
1819193323Sed  // Conditional branch.
1820193323Sed  unsigned Count = 0;
1821193323Sed  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1822193323Sed  switch (CC) {
1823193323Sed  case X86::COND_NP_OR_E:
1824193323Sed    // Synthesize NP_OR_E with two branches.
1825203954Srdivacky    BuildMI(&MBB, dl, get(X86::JNP_4)).addMBB(TBB);
1826193323Sed    ++Count;
1827203954Srdivacky    BuildMI(&MBB, dl, get(X86::JE_4)).addMBB(TBB);
1828193323Sed    ++Count;
1829193323Sed    break;
1830193323Sed  case X86::COND_NE_OR_P:
1831193323Sed    // Synthesize NE_OR_P with two branches.
1832203954Srdivacky    BuildMI(&MBB, dl, get(X86::JNE_4)).addMBB(TBB);
1833193323Sed    ++Count;
1834203954Srdivacky    BuildMI(&MBB, dl, get(X86::JP_4)).addMBB(TBB);
1835193323Sed    ++Count;
1836193323Sed    break;
1837193323Sed  default: {
1838193323Sed    unsigned Opc = GetCondBranchFromCond(CC);
1839193323Sed    BuildMI(&MBB, dl, get(Opc)).addMBB(TBB);
1840193323Sed    ++Count;
1841193323Sed  }
1842193323Sed  }
1843193323Sed  if (FBB) {
1844193323Sed    // Two-way Conditional branch. Insert the second branch.
1845203954Srdivacky    BuildMI(&MBB, dl, get(X86::JMP_4)).addMBB(FBB);
1846193323Sed    ++Count;
1847193323Sed  }
1848193323Sed  return Count;
1849193323Sed}
1850193323Sed
1851193323Sed/// isHReg - Test if the given register is a physical h register.
1852193323Sedstatic bool isHReg(unsigned Reg) {
1853193323Sed  return X86::GR8_ABCD_HRegClass.contains(Reg);
1854193323Sed}
1855193323Sed
1856193323Sedbool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
1857193323Sed                                MachineBasicBlock::iterator MI,
1858193323Sed                                unsigned DestReg, unsigned SrcReg,
1859193323Sed                                const TargetRegisterClass *DestRC,
1860193323Sed                                const TargetRegisterClass *SrcRC) const {
1861203954Srdivacky  DebugLoc DL = MBB.findDebugLoc(MI);
1862193323Sed
1863193323Sed  // Determine if DstRC and SrcRC have a common superclass in common.
1864193323Sed  const TargetRegisterClass *CommonRC = DestRC;
1865193323Sed  if (DestRC == SrcRC)
1866193323Sed    /* Source and destination have the same register class. */;
1867193323Sed  else if (CommonRC->hasSuperClass(SrcRC))
1868193323Sed    CommonRC = SrcRC;
1869198090Srdivacky  else if (!DestRC->hasSubClass(SrcRC)) {
1870198090Srdivacky    // Neither of GR64_NOREX or GR64_NOSP is a superclass of the other,
1871204642Srdivacky    // but we want to copy them as GR64. Similarly, for GR32_NOREX and
1872198090Srdivacky    // GR32_NOSP, copy as GR32.
1873198090Srdivacky    if (SrcRC->hasSuperClass(&X86::GR64RegClass) &&
1874198090Srdivacky        DestRC->hasSuperClass(&X86::GR64RegClass))
1875198090Srdivacky      CommonRC = &X86::GR64RegClass;
1876198090Srdivacky    else if (SrcRC->hasSuperClass(&X86::GR32RegClass) &&
1877198090Srdivacky             DestRC->hasSuperClass(&X86::GR32RegClass))
1878198090Srdivacky      CommonRC = &X86::GR32RegClass;
1879198090Srdivacky    else
1880198090Srdivacky      CommonRC = 0;
1881198090Srdivacky  }
1882193323Sed
1883193323Sed  if (CommonRC) {
1884193323Sed    unsigned Opc;
1885198090Srdivacky    if (CommonRC == &X86::GR64RegClass || CommonRC == &X86::GR64_NOSPRegClass) {
1886193323Sed      Opc = X86::MOV64rr;
1887198090Srdivacky    } else if (CommonRC == &X86::GR32RegClass ||
1888198090Srdivacky               CommonRC == &X86::GR32_NOSPRegClass) {
1889193323Sed      Opc = X86::MOV32rr;
1890193323Sed    } else if (CommonRC == &X86::GR16RegClass) {
1891193323Sed      Opc = X86::MOV16rr;
1892193323Sed    } else if (CommonRC == &X86::GR8RegClass) {
1893193323Sed      // Copying to or from a physical H register on x86-64 requires a NOREX
1894193323Sed      // move.  Otherwise use a normal move.
1895193323Sed      if ((isHReg(DestReg) || isHReg(SrcReg)) &&
1896193323Sed          TM.getSubtarget<X86Subtarget>().is64Bit())
1897193323Sed        Opc = X86::MOV8rr_NOREX;
1898193323Sed      else
1899193323Sed        Opc = X86::MOV8rr;
1900193323Sed    } else if (CommonRC == &X86::GR64_ABCDRegClass) {
1901193323Sed      Opc = X86::MOV64rr;
1902193323Sed    } else if (CommonRC == &X86::GR32_ABCDRegClass) {
1903193323Sed      Opc = X86::MOV32rr;
1904193323Sed    } else if (CommonRC == &X86::GR16_ABCDRegClass) {
1905193323Sed      Opc = X86::MOV16rr;
1906193323Sed    } else if (CommonRC == &X86::GR8_ABCD_LRegClass) {
1907193323Sed      Opc = X86::MOV8rr;
1908193323Sed    } else if (CommonRC == &X86::GR8_ABCD_HRegClass) {
1909193323Sed      if (TM.getSubtarget<X86Subtarget>().is64Bit())
1910193323Sed        Opc = X86::MOV8rr_NOREX;
1911193323Sed      else
1912193323Sed        Opc = X86::MOV8rr;
1913198090Srdivacky    } else if (CommonRC == &X86::GR64_NOREXRegClass ||
1914198090Srdivacky               CommonRC == &X86::GR64_NOREX_NOSPRegClass) {
1915193323Sed      Opc = X86::MOV64rr;
1916193323Sed    } else if (CommonRC == &X86::GR32_NOREXRegClass) {
1917193323Sed      Opc = X86::MOV32rr;
1918193323Sed    } else if (CommonRC == &X86::GR16_NOREXRegClass) {
1919193323Sed      Opc = X86::MOV16rr;
1920193323Sed    } else if (CommonRC == &X86::GR8_NOREXRegClass) {
1921193323Sed      Opc = X86::MOV8rr;
1922205218Srdivacky    } else if (CommonRC == &X86::GR64_TCRegClass) {
1923205218Srdivacky      Opc = X86::MOV64rr_TC;
1924205218Srdivacky    } else if (CommonRC == &X86::GR32_TCRegClass) {
1925205218Srdivacky      Opc = X86::MOV32rr_TC;
1926193323Sed    } else if (CommonRC == &X86::RFP32RegClass) {
1927193323Sed      Opc = X86::MOV_Fp3232;
1928193323Sed    } else if (CommonRC == &X86::RFP64RegClass || CommonRC == &X86::RSTRegClass) {
1929193323Sed      Opc = X86::MOV_Fp6464;
1930193323Sed    } else if (CommonRC == &X86::RFP80RegClass) {
1931193323Sed      Opc = X86::MOV_Fp8080;
1932193323Sed    } else if (CommonRC == &X86::FR32RegClass) {
1933193323Sed      Opc = X86::FsMOVAPSrr;
1934193323Sed    } else if (CommonRC == &X86::FR64RegClass) {
1935193323Sed      Opc = X86::FsMOVAPDrr;
1936193323Sed    } else if (CommonRC == &X86::VR128RegClass) {
1937193323Sed      Opc = X86::MOVAPSrr;
1938193323Sed    } else if (CommonRC == &X86::VR64RegClass) {
1939193323Sed      Opc = X86::MMX_MOVQ64rr;
1940193323Sed    } else {
1941193323Sed      return false;
1942193323Sed    }
1943193323Sed    BuildMI(MBB, MI, DL, get(Opc), DestReg).addReg(SrcReg);
1944193323Sed    return true;
1945193323Sed  }
1946198090Srdivacky
1947193323Sed  // Moving EFLAGS to / from another register requires a push and a pop.
1948193323Sed  if (SrcRC == &X86::CCRRegClass) {
1949193323Sed    if (SrcReg != X86::EFLAGS)
1950193323Sed      return false;
1951198090Srdivacky    if (DestRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) {
1952201360Srdivacky      BuildMI(MBB, MI, DL, get(X86::PUSHFQ64));
1953193323Sed      BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
1954193323Sed      return true;
1955198090Srdivacky    } else if (DestRC == &X86::GR32RegClass ||
1956198090Srdivacky               DestRC == &X86::GR32_NOSPRegClass) {
1957193323Sed      BuildMI(MBB, MI, DL, get(X86::PUSHFD));
1958193323Sed      BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
1959193323Sed      return true;
1960193323Sed    }
1961193323Sed  } else if (DestRC == &X86::CCRRegClass) {
1962193323Sed    if (DestReg != X86::EFLAGS)
1963193323Sed      return false;
1964198090Srdivacky    if (SrcRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) {
1965193323Sed      BuildMI(MBB, MI, DL, get(X86::PUSH64r)).addReg(SrcReg);
1966193323Sed      BuildMI(MBB, MI, DL, get(X86::POPFQ));
1967193323Sed      return true;
1968198090Srdivacky    } else if (SrcRC == &X86::GR32RegClass ||
1969198090Srdivacky               DestRC == &X86::GR32_NOSPRegClass) {
1970193323Sed      BuildMI(MBB, MI, DL, get(X86::PUSH32r)).addReg(SrcReg);
1971193323Sed      BuildMI(MBB, MI, DL, get(X86::POPFD));
1972193323Sed      return true;
1973193323Sed    }
1974193323Sed  }
1975193323Sed
1976193323Sed  // Moving from ST(0) turns into FpGET_ST0_32 etc.
1977193323Sed  if (SrcRC == &X86::RSTRegClass) {
1978193323Sed    // Copying from ST(0)/ST(1).
1979193323Sed    if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1980193323Sed      // Can only copy from ST(0)/ST(1) right now
1981193323Sed      return false;
1982193323Sed    bool isST0 = SrcReg == X86::ST0;
1983193323Sed    unsigned Opc;
1984193323Sed    if (DestRC == &X86::RFP32RegClass)
1985193323Sed      Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
1986193323Sed    else if (DestRC == &X86::RFP64RegClass)
1987193323Sed      Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
1988193323Sed    else {
1989193323Sed      if (DestRC != &X86::RFP80RegClass)
1990193323Sed        return false;
1991193323Sed      Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
1992193323Sed    }
1993193323Sed    BuildMI(MBB, MI, DL, get(Opc), DestReg);
1994193323Sed    return true;
1995193323Sed  }
1996193323Sed
1997193323Sed  // Moving to ST(0) turns into FpSET_ST0_32 etc.
1998193323Sed  if (DestRC == &X86::RSTRegClass) {
1999193323Sed    // Copying to ST(0) / ST(1).
2000193323Sed    if (DestReg != X86::ST0 && DestReg != X86::ST1)
2001193323Sed      // Can only copy to TOS right now
2002193323Sed      return false;
2003193323Sed    bool isST0 = DestReg == X86::ST0;
2004193323Sed    unsigned Opc;
2005193323Sed    if (SrcRC == &X86::RFP32RegClass)
2006193323Sed      Opc = isST0 ? X86::FpSET_ST0_32 : X86::FpSET_ST1_32;
2007193323Sed    else if (SrcRC == &X86::RFP64RegClass)
2008193323Sed      Opc = isST0 ? X86::FpSET_ST0_64 : X86::FpSET_ST1_64;
2009193323Sed    else {
2010193323Sed      if (SrcRC != &X86::RFP80RegClass)
2011193323Sed        return false;
2012193323Sed      Opc = isST0 ? X86::FpSET_ST0_80 : X86::FpSET_ST1_80;
2013193323Sed    }
2014193323Sed    BuildMI(MBB, MI, DL, get(Opc)).addReg(SrcReg);
2015193323Sed    return true;
2016193323Sed  }
2017193323Sed
2018193323Sed  // Not yet supported!
2019193323Sed  return false;
2020193323Sed}
2021193323Sed
2022193323Sedstatic unsigned getStoreRegOpcode(unsigned SrcReg,
2023193323Sed                                  const TargetRegisterClass *RC,
2024193323Sed                                  bool isStackAligned,
2025193323Sed                                  TargetMachine &TM) {
2026193323Sed  unsigned Opc = 0;
2027198090Srdivacky  if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) {
2028193323Sed    Opc = X86::MOV64mr;
2029198090Srdivacky  } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) {
2030193323Sed    Opc = X86::MOV32mr;
2031193323Sed  } else if (RC == &X86::GR16RegClass) {
2032193323Sed    Opc = X86::MOV16mr;
2033193323Sed  } else if (RC == &X86::GR8RegClass) {
2034193323Sed    // Copying to or from a physical H register on x86-64 requires a NOREX
2035193323Sed    // move.  Otherwise use a normal move.
2036193323Sed    if (isHReg(SrcReg) &&
2037193323Sed        TM.getSubtarget<X86Subtarget>().is64Bit())
2038193323Sed      Opc = X86::MOV8mr_NOREX;
2039193323Sed    else
2040193323Sed      Opc = X86::MOV8mr;
2041193323Sed  } else if (RC == &X86::GR64_ABCDRegClass) {
2042193323Sed    Opc = X86::MOV64mr;
2043193323Sed  } else if (RC == &X86::GR32_ABCDRegClass) {
2044193323Sed    Opc = X86::MOV32mr;
2045193323Sed  } else if (RC == &X86::GR16_ABCDRegClass) {
2046193323Sed    Opc = X86::MOV16mr;
2047193323Sed  } else if (RC == &X86::GR8_ABCD_LRegClass) {
2048193323Sed    Opc = X86::MOV8mr;
2049193323Sed  } else if (RC == &X86::GR8_ABCD_HRegClass) {
2050193323Sed    if (TM.getSubtarget<X86Subtarget>().is64Bit())
2051193323Sed      Opc = X86::MOV8mr_NOREX;
2052193323Sed    else
2053193323Sed      Opc = X86::MOV8mr;
2054198090Srdivacky  } else if (RC == &X86::GR64_NOREXRegClass ||
2055198090Srdivacky             RC == &X86::GR64_NOREX_NOSPRegClass) {
2056193323Sed    Opc = X86::MOV64mr;
2057193323Sed  } else if (RC == &X86::GR32_NOREXRegClass) {
2058193323Sed    Opc = X86::MOV32mr;
2059193323Sed  } else if (RC == &X86::GR16_NOREXRegClass) {
2060193323Sed    Opc = X86::MOV16mr;
2061193323Sed  } else if (RC == &X86::GR8_NOREXRegClass) {
2062193323Sed    Opc = X86::MOV8mr;
2063205218Srdivacky  } else if (RC == &X86::GR64_TCRegClass) {
2064205218Srdivacky    Opc = X86::MOV64mr_TC;
2065205218Srdivacky  } else if (RC == &X86::GR32_TCRegClass) {
2066205218Srdivacky    Opc = X86::MOV32mr_TC;
2067193323Sed  } else if (RC == &X86::RFP80RegClass) {
2068193323Sed    Opc = X86::ST_FpP80m;   // pops
2069193323Sed  } else if (RC == &X86::RFP64RegClass) {
2070193323Sed    Opc = X86::ST_Fp64m;
2071193323Sed  } else if (RC == &X86::RFP32RegClass) {
2072193323Sed    Opc = X86::ST_Fp32m;
2073193323Sed  } else if (RC == &X86::FR32RegClass) {
2074193323Sed    Opc = X86::MOVSSmr;
2075193323Sed  } else if (RC == &X86::FR64RegClass) {
2076193323Sed    Opc = X86::MOVSDmr;
2077193323Sed  } else if (RC == &X86::VR128RegClass) {
2078193323Sed    // If stack is realigned we can use aligned stores.
2079193323Sed    Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
2080193323Sed  } else if (RC == &X86::VR64RegClass) {
2081193323Sed    Opc = X86::MMX_MOVQ64mr;
2082193323Sed  } else {
2083198090Srdivacky    llvm_unreachable("Unknown regclass");
2084193323Sed  }
2085193323Sed
2086193323Sed  return Opc;
2087193323Sed}
2088193323Sed
2089193323Sedvoid X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
2090193323Sed                                       MachineBasicBlock::iterator MI,
2091193323Sed                                       unsigned SrcReg, bool isKill, int FrameIdx,
2092193323Sed                                       const TargetRegisterClass *RC) const {
2093193323Sed  const MachineFunction &MF = *MBB.getParent();
2094202878Srdivacky  bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
2095193323Sed  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2096203954Srdivacky  DebugLoc DL = MBB.findDebugLoc(MI);
2097193323Sed  addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
2098193323Sed    .addReg(SrcReg, getKillRegState(isKill));
2099193323Sed}
2100193323Sed
2101193323Sedvoid X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
2102193323Sed                                  bool isKill,
2103193323Sed                                  SmallVectorImpl<MachineOperand> &Addr,
2104193323Sed                                  const TargetRegisterClass *RC,
2105198090Srdivacky                                  MachineInstr::mmo_iterator MMOBegin,
2106198090Srdivacky                                  MachineInstr::mmo_iterator MMOEnd,
2107193323Sed                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
2108199481Srdivacky  bool isAligned = (*MMOBegin)->getAlignment() >= 16;
2109193323Sed  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2110193323Sed  DebugLoc DL = DebugLoc::getUnknownLoc();
2111193323Sed  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
2112193323Sed  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2113193323Sed    MIB.addOperand(Addr[i]);
2114193323Sed  MIB.addReg(SrcReg, getKillRegState(isKill));
2115198090Srdivacky  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2116193323Sed  NewMIs.push_back(MIB);
2117193323Sed}
2118193323Sed
2119193323Sedstatic unsigned getLoadRegOpcode(unsigned DestReg,
2120193323Sed                                 const TargetRegisterClass *RC,
2121193323Sed                                 bool isStackAligned,
2122193323Sed                                 const TargetMachine &TM) {
2123193323Sed  unsigned Opc = 0;
2124198090Srdivacky  if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) {
2125193323Sed    Opc = X86::MOV64rm;
2126198090Srdivacky  } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) {
2127193323Sed    Opc = X86::MOV32rm;
2128193323Sed  } else if (RC == &X86::GR16RegClass) {
2129193323Sed    Opc = X86::MOV16rm;
2130193323Sed  } else if (RC == &X86::GR8RegClass) {
2131193323Sed    // Copying to or from a physical H register on x86-64 requires a NOREX
2132193323Sed    // move.  Otherwise use a normal move.
2133193323Sed    if (isHReg(DestReg) &&
2134193323Sed        TM.getSubtarget<X86Subtarget>().is64Bit())
2135193323Sed      Opc = X86::MOV8rm_NOREX;
2136193323Sed    else
2137193323Sed      Opc = X86::MOV8rm;
2138193323Sed  } else if (RC == &X86::GR64_ABCDRegClass) {
2139193323Sed    Opc = X86::MOV64rm;
2140193323Sed  } else if (RC == &X86::GR32_ABCDRegClass) {
2141193323Sed    Opc = X86::MOV32rm;
2142193323Sed  } else if (RC == &X86::GR16_ABCDRegClass) {
2143193323Sed    Opc = X86::MOV16rm;
2144193323Sed  } else if (RC == &X86::GR8_ABCD_LRegClass) {
2145193323Sed    Opc = X86::MOV8rm;
2146193323Sed  } else if (RC == &X86::GR8_ABCD_HRegClass) {
2147193323Sed    if (TM.getSubtarget<X86Subtarget>().is64Bit())
2148193323Sed      Opc = X86::MOV8rm_NOREX;
2149193323Sed    else
2150193323Sed      Opc = X86::MOV8rm;
2151198090Srdivacky  } else if (RC == &X86::GR64_NOREXRegClass ||
2152198090Srdivacky             RC == &X86::GR64_NOREX_NOSPRegClass) {
2153193323Sed    Opc = X86::MOV64rm;
2154193323Sed  } else if (RC == &X86::GR32_NOREXRegClass) {
2155193323Sed    Opc = X86::MOV32rm;
2156193323Sed  } else if (RC == &X86::GR16_NOREXRegClass) {
2157193323Sed    Opc = X86::MOV16rm;
2158193323Sed  } else if (RC == &X86::GR8_NOREXRegClass) {
2159193323Sed    Opc = X86::MOV8rm;
2160205218Srdivacky  } else if (RC == &X86::GR64_TCRegClass) {
2161205218Srdivacky    Opc = X86::MOV64rm_TC;
2162205218Srdivacky  } else if (RC == &X86::GR32_TCRegClass) {
2163205218Srdivacky    Opc = X86::MOV32rm_TC;
2164193323Sed  } else if (RC == &X86::RFP80RegClass) {
2165193323Sed    Opc = X86::LD_Fp80m;
2166193323Sed  } else if (RC == &X86::RFP64RegClass) {
2167193323Sed    Opc = X86::LD_Fp64m;
2168193323Sed  } else if (RC == &X86::RFP32RegClass) {
2169193323Sed    Opc = X86::LD_Fp32m;
2170193323Sed  } else if (RC == &X86::FR32RegClass) {
2171193323Sed    Opc = X86::MOVSSrm;
2172193323Sed  } else if (RC == &X86::FR64RegClass) {
2173193323Sed    Opc = X86::MOVSDrm;
2174193323Sed  } else if (RC == &X86::VR128RegClass) {
2175193323Sed    // If stack is realigned we can use aligned loads.
2176193323Sed    Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
2177193323Sed  } else if (RC == &X86::VR64RegClass) {
2178193323Sed    Opc = X86::MMX_MOVQ64rm;
2179193323Sed  } else {
2180198090Srdivacky    llvm_unreachable("Unknown regclass");
2181193323Sed  }
2182193323Sed
2183193323Sed  return Opc;
2184193323Sed}
2185193323Sed
2186193323Sedvoid X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
2187193323Sed                                        MachineBasicBlock::iterator MI,
2188193323Sed                                        unsigned DestReg, int FrameIdx,
2189193323Sed                                        const TargetRegisterClass *RC) const{
2190193323Sed  const MachineFunction &MF = *MBB.getParent();
2191202878Srdivacky  bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
2192193323Sed  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2193203954Srdivacky  DebugLoc DL = MBB.findDebugLoc(MI);
2194193323Sed  addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
2195193323Sed}
2196193323Sed
2197193323Sedvoid X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
2198193323Sed                                 SmallVectorImpl<MachineOperand> &Addr,
2199193323Sed                                 const TargetRegisterClass *RC,
2200198090Srdivacky                                 MachineInstr::mmo_iterator MMOBegin,
2201198090Srdivacky                                 MachineInstr::mmo_iterator MMOEnd,
2202193323Sed                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2203199481Srdivacky  bool isAligned = (*MMOBegin)->getAlignment() >= 16;
2204193323Sed  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2205193323Sed  DebugLoc DL = DebugLoc::getUnknownLoc();
2206193323Sed  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
2207193323Sed  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2208193323Sed    MIB.addOperand(Addr[i]);
2209198090Srdivacky  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2210193323Sed  NewMIs.push_back(MIB);
2211193323Sed}
2212193323Sed
2213193323Sedbool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
2214193323Sed                                             MachineBasicBlock::iterator MI,
2215193323Sed                                const std::vector<CalleeSavedInfo> &CSI) const {
2216193323Sed  if (CSI.empty())
2217193323Sed    return false;
2218193323Sed
2219202878Srdivacky  DebugLoc DL = MBB.findDebugLoc(MI);
2220193323Sed
2221193323Sed  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2222198090Srdivacky  bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
2223193323Sed  unsigned SlotSize = is64Bit ? 8 : 4;
2224193323Sed
2225193323Sed  MachineFunction &MF = *MBB.getParent();
2226198090Srdivacky  unsigned FPReg = RI.getFrameRegister(MF);
2227193323Sed  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2228193574Sed  unsigned CalleeFrameSize = 0;
2229193323Sed
2230193323Sed  unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
2231193323Sed  for (unsigned i = CSI.size(); i != 0; --i) {
2232193323Sed    unsigned Reg = CSI[i-1].getReg();
2233193574Sed    const TargetRegisterClass *RegClass = CSI[i-1].getRegClass();
2234193323Sed    // Add the callee-saved register as live-in. It's killed at the spill.
2235193323Sed    MBB.addLiveIn(Reg);
2236198090Srdivacky    if (Reg == FPReg)
2237198090Srdivacky      // X86RegisterInfo::emitPrologue will handle spilling of frame register.
2238198090Srdivacky      continue;
2239198090Srdivacky    if (RegClass != &X86::VR128RegClass && !isWin64) {
2240193574Sed      CalleeFrameSize += SlotSize;
2241198090Srdivacky      BuildMI(MBB, MI, DL, get(Opc)).addReg(Reg, RegState::Kill);
2242193574Sed    } else {
2243193574Sed      storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(), RegClass);
2244193574Sed    }
2245193323Sed  }
2246193574Sed
2247193574Sed  X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
2248193323Sed  return true;
2249193323Sed}
2250193323Sed
2251193323Sedbool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
2252193323Sed                                               MachineBasicBlock::iterator MI,
2253193323Sed                                const std::vector<CalleeSavedInfo> &CSI) const {
2254193323Sed  if (CSI.empty())
2255193323Sed    return false;
2256193323Sed
2257202878Srdivacky  DebugLoc DL = MBB.findDebugLoc(MI);
2258193323Sed
2259198090Srdivacky  MachineFunction &MF = *MBB.getParent();
2260198090Srdivacky  unsigned FPReg = RI.getFrameRegister(MF);
2261193323Sed  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2262198090Srdivacky  bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
2263193323Sed  unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
2264193323Sed  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2265193323Sed    unsigned Reg = CSI[i].getReg();
2266198090Srdivacky    if (Reg == FPReg)
2267198090Srdivacky      // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
2268198090Srdivacky      continue;
2269193574Sed    const TargetRegisterClass *RegClass = CSI[i].getRegClass();
2270198090Srdivacky    if (RegClass != &X86::VR128RegClass && !isWin64) {
2271193574Sed      BuildMI(MBB, MI, DL, get(Opc), Reg);
2272193574Sed    } else {
2273193574Sed      loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RegClass);
2274193574Sed    }
2275193323Sed  }
2276193323Sed  return true;
2277193323Sed}
2278193323Sed
2279193323Sedstatic MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
2280193323Sed                                     const SmallVectorImpl<MachineOperand> &MOs,
2281193323Sed                                     MachineInstr *MI,
2282193323Sed                                     const TargetInstrInfo &TII) {
2283193323Sed  // Create the base instruction with the memory operand as the first part.
2284193323Sed  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2285193323Sed                                              MI->getDebugLoc(), true);
2286193323Sed  MachineInstrBuilder MIB(NewMI);
2287193323Sed  unsigned NumAddrOps = MOs.size();
2288193323Sed  for (unsigned i = 0; i != NumAddrOps; ++i)
2289193323Sed    MIB.addOperand(MOs[i]);
2290193323Sed  if (NumAddrOps < 4)  // FrameIndex only
2291193323Sed    addOffset(MIB, 0);
2292193323Sed
2293193323Sed  // Loop over the rest of the ri operands, converting them over.
2294193323Sed  unsigned NumOps = MI->getDesc().getNumOperands()-2;
2295193323Sed  for (unsigned i = 0; i != NumOps; ++i) {
2296193323Sed    MachineOperand &MO = MI->getOperand(i+2);
2297193323Sed    MIB.addOperand(MO);
2298193323Sed  }
2299193323Sed  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2300193323Sed    MachineOperand &MO = MI->getOperand(i);
2301193323Sed    MIB.addOperand(MO);
2302193323Sed  }
2303193323Sed  return MIB;
2304193323Sed}
2305193323Sed
2306193323Sedstatic MachineInstr *FuseInst(MachineFunction &MF,
2307193323Sed                              unsigned Opcode, unsigned OpNo,
2308193323Sed                              const SmallVectorImpl<MachineOperand> &MOs,
2309193323Sed                              MachineInstr *MI, const TargetInstrInfo &TII) {
2310193323Sed  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2311193323Sed                                              MI->getDebugLoc(), true);
2312193323Sed  MachineInstrBuilder MIB(NewMI);
2313193323Sed
2314193323Sed  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2315193323Sed    MachineOperand &MO = MI->getOperand(i);
2316193323Sed    if (i == OpNo) {
2317193323Sed      assert(MO.isReg() && "Expected to fold into reg operand!");
2318193323Sed      unsigned NumAddrOps = MOs.size();
2319193323Sed      for (unsigned i = 0; i != NumAddrOps; ++i)
2320193323Sed        MIB.addOperand(MOs[i]);
2321193323Sed      if (NumAddrOps < 4)  // FrameIndex only
2322193323Sed        addOffset(MIB, 0);
2323193323Sed    } else {
2324193323Sed      MIB.addOperand(MO);
2325193323Sed    }
2326193323Sed  }
2327193323Sed  return MIB;
2328193323Sed}
2329193323Sed
2330193323Sedstatic MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
2331193323Sed                                const SmallVectorImpl<MachineOperand> &MOs,
2332193323Sed                                MachineInstr *MI) {
2333193323Sed  MachineFunction &MF = *MI->getParent()->getParent();
2334193323Sed  MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
2335193323Sed
2336193323Sed  unsigned NumAddrOps = MOs.size();
2337193323Sed  for (unsigned i = 0; i != NumAddrOps; ++i)
2338193323Sed    MIB.addOperand(MOs[i]);
2339193323Sed  if (NumAddrOps < 4)  // FrameIndex only
2340193323Sed    addOffset(MIB, 0);
2341193323Sed  return MIB.addImm(0);
2342193323Sed}
2343193323Sed
2344193323SedMachineInstr*
2345193323SedX86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2346193323Sed                                    MachineInstr *MI, unsigned i,
2347198090Srdivacky                                    const SmallVectorImpl<MachineOperand> &MOs,
2348198090Srdivacky                                    unsigned Size, unsigned Align) const {
2349198090Srdivacky  const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
2350193323Sed  bool isTwoAddrFold = false;
2351193323Sed  unsigned NumOps = MI->getDesc().getNumOperands();
2352193323Sed  bool isTwoAddr = NumOps > 1 &&
2353193323Sed    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2354193323Sed
2355193323Sed  MachineInstr *NewMI = NULL;
2356193323Sed  // Folding a memory location into the two-address part of a two-address
2357193323Sed  // instruction is different than folding it other places.  It requires
2358193323Sed  // replacing the *two* registers with the memory location.
2359193323Sed  if (isTwoAddr && NumOps >= 2 && i < 2 &&
2360193323Sed      MI->getOperand(0).isReg() &&
2361193323Sed      MI->getOperand(1).isReg() &&
2362193323Sed      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2363193323Sed    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2364193323Sed    isTwoAddrFold = true;
2365193323Sed  } else if (i == 0) { // If operand 0
2366202375Srdivacky    if (MI->getOpcode() == X86::MOV64r0)
2367202375Srdivacky      NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2368202375Srdivacky    else if (MI->getOpcode() == X86::MOV32r0)
2369193323Sed      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2370202375Srdivacky    else if (MI->getOpcode() == X86::MOV16r0)
2371202375Srdivacky      NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2372193323Sed    else if (MI->getOpcode() == X86::MOV8r0)
2373193323Sed      NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
2374193323Sed    if (NewMI)
2375193323Sed      return NewMI;
2376193323Sed
2377193323Sed    OpcodeTablePtr = &RegOp2MemOpTable0;
2378193323Sed  } else if (i == 1) {
2379193323Sed    OpcodeTablePtr = &RegOp2MemOpTable1;
2380193323Sed  } else if (i == 2) {
2381193323Sed    OpcodeTablePtr = &RegOp2MemOpTable2;
2382193323Sed  }
2383193323Sed
2384193323Sed  // If table selected...
2385193323Sed  if (OpcodeTablePtr) {
2386193323Sed    // Find the Opcode to fuse
2387199481Srdivacky    DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2388193323Sed      OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2389193323Sed    if (I != OpcodeTablePtr->end()) {
2390198090Srdivacky      unsigned Opcode = I->second.first;
2391198090Srdivacky      unsigned MinAlign = I->second.second;
2392198090Srdivacky      if (Align < MinAlign)
2393198090Srdivacky        return NULL;
2394198090Srdivacky      bool NarrowToMOV32rm = false;
2395198090Srdivacky      if (Size) {
2396198090Srdivacky        unsigned RCSize =  MI->getDesc().OpInfo[i].getRegClass(&RI)->getSize();
2397198090Srdivacky        if (Size < RCSize) {
2398198090Srdivacky          // Check if it's safe to fold the load. If the size of the object is
2399198090Srdivacky          // narrower than the load width, then it's not.
2400198090Srdivacky          if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
2401198090Srdivacky            return NULL;
2402198090Srdivacky          // If this is a 64-bit load, but the spill slot is 32, then we can do
2403198090Srdivacky          // a 32-bit load which is implicitly zero-extended. This likely is due
2404198090Srdivacky          // to liveintervalanalysis remat'ing a load from stack slot.
2405198090Srdivacky          if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
2406198090Srdivacky            return NULL;
2407198090Srdivacky          Opcode = X86::MOV32rm;
2408198090Srdivacky          NarrowToMOV32rm = true;
2409198090Srdivacky        }
2410198090Srdivacky      }
2411198090Srdivacky
2412193323Sed      if (isTwoAddrFold)
2413198090Srdivacky        NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
2414193323Sed      else
2415198090Srdivacky        NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
2416198090Srdivacky
2417198090Srdivacky      if (NarrowToMOV32rm) {
2418198090Srdivacky        // If this is the special case where we use a MOV32rm to load a 32-bit
2419198090Srdivacky        // value and zero-extend the top bits. Change the destination register
2420198090Srdivacky        // to a 32-bit one.
2421198090Srdivacky        unsigned DstReg = NewMI->getOperand(0).getReg();
2422198090Srdivacky        if (TargetRegisterInfo::isPhysicalRegister(DstReg))
2423198090Srdivacky          NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
2424198090Srdivacky                                                   4/*x86_subreg_32bit*/));
2425198090Srdivacky        else
2426198090Srdivacky          NewMI->getOperand(0).setSubReg(4/*x86_subreg_32bit*/);
2427198090Srdivacky      }
2428193323Sed      return NewMI;
2429193323Sed    }
2430193323Sed  }
2431193323Sed
2432193323Sed  // No fusion
2433193323Sed  if (PrintFailedFusing)
2434202375Srdivacky    dbgs() << "We failed to fuse operand " << i << " in " << *MI;
2435193323Sed  return NULL;
2436193323Sed}
2437193323Sed
2438193323Sed
2439193323SedMachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2440193323Sed                                                  MachineInstr *MI,
2441198090Srdivacky                                           const SmallVectorImpl<unsigned> &Ops,
2442193323Sed                                                  int FrameIndex) const {
2443193323Sed  // Check switch flag
2444193323Sed  if (NoFusing) return NULL;
2445193323Sed
2446201360Srdivacky  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2447201360Srdivacky    switch (MI->getOpcode()) {
2448201360Srdivacky    case X86::CVTSD2SSrr:
2449201360Srdivacky    case X86::Int_CVTSD2SSrr:
2450201360Srdivacky    case X86::CVTSS2SDrr:
2451201360Srdivacky    case X86::Int_CVTSS2SDrr:
2452201360Srdivacky    case X86::RCPSSr:
2453201360Srdivacky    case X86::RCPSSr_Int:
2454201360Srdivacky    case X86::ROUNDSDr_Int:
2455201360Srdivacky    case X86::ROUNDSSr_Int:
2456201360Srdivacky    case X86::RSQRTSSr:
2457201360Srdivacky    case X86::RSQRTSSr_Int:
2458201360Srdivacky    case X86::SQRTSSr:
2459201360Srdivacky    case X86::SQRTSSr_Int:
2460201360Srdivacky      return 0;
2461201360Srdivacky    }
2462201360Srdivacky
2463193323Sed  const MachineFrameInfo *MFI = MF.getFrameInfo();
2464198090Srdivacky  unsigned Size = MFI->getObjectSize(FrameIndex);
2465193323Sed  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2466193323Sed  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2467193323Sed    unsigned NewOpc = 0;
2468198090Srdivacky    unsigned RCSize = 0;
2469193323Sed    switch (MI->getOpcode()) {
2470193323Sed    default: return NULL;
2471198090Srdivacky    case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
2472198090Srdivacky    case X86::TEST16rr: NewOpc = X86::CMP16ri; RCSize = 2; break;
2473198090Srdivacky    case X86::TEST32rr: NewOpc = X86::CMP32ri; RCSize = 4; break;
2474198090Srdivacky    case X86::TEST64rr: NewOpc = X86::CMP64ri32; RCSize = 8; break;
2475193323Sed    }
2476198090Srdivacky    // Check if it's safe to fold the load. If the size of the object is
2477198090Srdivacky    // narrower than the load width, then it's not.
2478198090Srdivacky    if (Size < RCSize)
2479198090Srdivacky      return NULL;
2480193323Sed    // Change to CMPXXri r, 0 first.
2481193323Sed    MI->setDesc(get(NewOpc));
2482193323Sed    MI->getOperand(1).ChangeToImmediate(0);
2483193323Sed  } else if (Ops.size() != 1)
2484193323Sed    return NULL;
2485193323Sed
2486193323Sed  SmallVector<MachineOperand,4> MOs;
2487193323Sed  MOs.push_back(MachineOperand::CreateFI(FrameIndex));
2488198090Srdivacky  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
2489193323Sed}
2490193323Sed
2491193323SedMachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2492193323Sed                                                  MachineInstr *MI,
2493198090Srdivacky                                           const SmallVectorImpl<unsigned> &Ops,
2494193323Sed                                                  MachineInstr *LoadMI) const {
2495193323Sed  // Check switch flag
2496193323Sed  if (NoFusing) return NULL;
2497193323Sed
2498201360Srdivacky  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2499201360Srdivacky    switch (MI->getOpcode()) {
2500201360Srdivacky    case X86::CVTSD2SSrr:
2501201360Srdivacky    case X86::Int_CVTSD2SSrr:
2502201360Srdivacky    case X86::CVTSS2SDrr:
2503201360Srdivacky    case X86::Int_CVTSS2SDrr:
2504201360Srdivacky    case X86::RCPSSr:
2505201360Srdivacky    case X86::RCPSSr_Int:
2506201360Srdivacky    case X86::ROUNDSDr_Int:
2507201360Srdivacky    case X86::ROUNDSSr_Int:
2508201360Srdivacky    case X86::RSQRTSSr:
2509201360Srdivacky    case X86::RSQRTSSr_Int:
2510201360Srdivacky    case X86::SQRTSSr:
2511201360Srdivacky    case X86::SQRTSSr_Int:
2512201360Srdivacky      return 0;
2513201360Srdivacky    }
2514201360Srdivacky
2515193323Sed  // Determine the alignment of the load.
2516193323Sed  unsigned Alignment = 0;
2517193323Sed  if (LoadMI->hasOneMemOperand())
2518198090Srdivacky    Alignment = (*LoadMI->memoperands_begin())->getAlignment();
2519198090Srdivacky  else
2520198090Srdivacky    switch (LoadMI->getOpcode()) {
2521206083Srdivacky    case X86::V_SET0PS:
2522206083Srdivacky    case X86::V_SET0PD:
2523206083Srdivacky    case X86::V_SET0PI:
2524198090Srdivacky    case X86::V_SETALLONES:
2525198090Srdivacky      Alignment = 16;
2526198090Srdivacky      break;
2527198090Srdivacky    case X86::FsFLD0SD:
2528198090Srdivacky      Alignment = 8;
2529198090Srdivacky      break;
2530198090Srdivacky    case X86::FsFLD0SS:
2531198090Srdivacky      Alignment = 4;
2532198090Srdivacky      break;
2533198090Srdivacky    default:
2534198090Srdivacky      llvm_unreachable("Don't know how to fold this instruction!");
2535193323Sed    }
2536193323Sed  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2537193323Sed    unsigned NewOpc = 0;
2538193323Sed    switch (MI->getOpcode()) {
2539193323Sed    default: return NULL;
2540193323Sed    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
2541193323Sed    case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2542193323Sed    case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2543193323Sed    case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2544193323Sed    }
2545193323Sed    // Change to CMPXXri r, 0 first.
2546193323Sed    MI->setDesc(get(NewOpc));
2547193323Sed    MI->getOperand(1).ChangeToImmediate(0);
2548193323Sed  } else if (Ops.size() != 1)
2549193323Sed    return NULL;
2550193323Sed
2551193323Sed  SmallVector<MachineOperand,X86AddrNumOperands> MOs;
2552198090Srdivacky  switch (LoadMI->getOpcode()) {
2553206083Srdivacky  case X86::V_SET0PS:
2554206083Srdivacky  case X86::V_SET0PD:
2555206083Srdivacky  case X86::V_SET0PI:
2556198090Srdivacky  case X86::V_SETALLONES:
2557198090Srdivacky  case X86::FsFLD0SD:
2558198090Srdivacky  case X86::FsFLD0SS: {
2559206083Srdivacky    // Folding a V_SET0P? or V_SETALLONES as a load, to ease register pressure.
2560193323Sed    // Create a constant-pool entry and operands to load from it.
2561193323Sed
2562204961Srdivacky    // Medium and large mode can't fold loads this way.
2563204961Srdivacky    if (TM.getCodeModel() != CodeModel::Small &&
2564204961Srdivacky        TM.getCodeModel() != CodeModel::Kernel)
2565204961Srdivacky      return NULL;
2566204961Srdivacky
2567193323Sed    // x86-32 PIC requires a PIC base register for constant pools.
2568193323Sed    unsigned PICBase = 0;
2569198090Srdivacky    if (TM.getRelocationModel() == Reloc::PIC_) {
2570198090Srdivacky      if (TM.getSubtarget<X86Subtarget>().is64Bit())
2571198090Srdivacky        PICBase = X86::RIP;
2572198090Srdivacky      else
2573198090Srdivacky        // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2574198090Srdivacky        // This doesn't work for several reasons.
2575198090Srdivacky        // 1. GlobalBaseReg may have been spilled.
2576198090Srdivacky        // 2. It may not be live at MI.
2577198090Srdivacky        return NULL;
2578198090Srdivacky    }
2579193323Sed
2580198090Srdivacky    // Create a constant-pool entry.
2581193323Sed    MachineConstantPool &MCP = *MF.getConstantPool();
2582198090Srdivacky    const Type *Ty;
2583198090Srdivacky    if (LoadMI->getOpcode() == X86::FsFLD0SS)
2584198090Srdivacky      Ty = Type::getFloatTy(MF.getFunction()->getContext());
2585198090Srdivacky    else if (LoadMI->getOpcode() == X86::FsFLD0SD)
2586198090Srdivacky      Ty = Type::getDoubleTy(MF.getFunction()->getContext());
2587198090Srdivacky    else
2588198090Srdivacky      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
2589198090Srdivacky    Constant *C = LoadMI->getOpcode() == X86::V_SETALLONES ?
2590198090Srdivacky                    Constant::getAllOnesValue(Ty) :
2591198090Srdivacky                    Constant::getNullValue(Ty);
2592198090Srdivacky    unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
2593193323Sed
2594193323Sed    // Create operands to load from the constant pool entry.
2595193323Sed    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2596193323Sed    MOs.push_back(MachineOperand::CreateImm(1));
2597193323Sed    MOs.push_back(MachineOperand::CreateReg(0, false));
2598193323Sed    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
2599193323Sed    MOs.push_back(MachineOperand::CreateReg(0, false));
2600198090Srdivacky    break;
2601198090Srdivacky  }
2602198090Srdivacky  default: {
2603193323Sed    // Folding a normal load. Just copy the load's address operands.
2604193323Sed    unsigned NumOps = LoadMI->getDesc().getNumOperands();
2605193323Sed    for (unsigned i = NumOps - X86AddrNumOperands; i != NumOps; ++i)
2606193323Sed      MOs.push_back(LoadMI->getOperand(i));
2607198090Srdivacky    break;
2608193323Sed  }
2609198090Srdivacky  }
2610198090Srdivacky  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
2611193323Sed}
2612193323Sed
2613193323Sed
2614193323Sedbool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2615193323Sed                                  const SmallVectorImpl<unsigned> &Ops) const {
2616193323Sed  // Check switch flag
2617193323Sed  if (NoFusing) return 0;
2618193323Sed
2619193323Sed  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2620193323Sed    switch (MI->getOpcode()) {
2621193323Sed    default: return false;
2622193323Sed    case X86::TEST8rr:
2623193323Sed    case X86::TEST16rr:
2624193323Sed    case X86::TEST32rr:
2625193323Sed    case X86::TEST64rr:
2626193323Sed      return true;
2627193323Sed    }
2628193323Sed  }
2629193323Sed
2630193323Sed  if (Ops.size() != 1)
2631193323Sed    return false;
2632193323Sed
2633193323Sed  unsigned OpNum = Ops[0];
2634193323Sed  unsigned Opc = MI->getOpcode();
2635193323Sed  unsigned NumOps = MI->getDesc().getNumOperands();
2636193323Sed  bool isTwoAddr = NumOps > 1 &&
2637193323Sed    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2638193323Sed
2639193323Sed  // Folding a memory location into the two-address part of a two-address
2640193323Sed  // instruction is different than folding it other places.  It requires
2641193323Sed  // replacing the *two* registers with the memory location.
2642198090Srdivacky  const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
2643193323Sed  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2644193323Sed    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2645193323Sed  } else if (OpNum == 0) { // If operand 0
2646193323Sed    switch (Opc) {
2647198090Srdivacky    case X86::MOV8r0:
2648202375Srdivacky    case X86::MOV16r0:
2649193323Sed    case X86::MOV32r0:
2650202375Srdivacky    case X86::MOV64r0:
2651193323Sed      return true;
2652193323Sed    default: break;
2653193323Sed    }
2654193323Sed    OpcodeTablePtr = &RegOp2MemOpTable0;
2655193323Sed  } else if (OpNum == 1) {
2656193323Sed    OpcodeTablePtr = &RegOp2MemOpTable1;
2657193323Sed  } else if (OpNum == 2) {
2658193323Sed    OpcodeTablePtr = &RegOp2MemOpTable2;
2659193323Sed  }
2660193323Sed
2661193323Sed  if (OpcodeTablePtr) {
2662193323Sed    // Find the Opcode to fuse
2663199481Srdivacky    DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2664193323Sed      OpcodeTablePtr->find((unsigned*)Opc);
2665193323Sed    if (I != OpcodeTablePtr->end())
2666193323Sed      return true;
2667193323Sed  }
2668193323Sed  return false;
2669193323Sed}
2670193323Sed
2671193323Sedbool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2672193323Sed                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2673193323Sed                                SmallVectorImpl<MachineInstr*> &NewMIs) const {
2674199481Srdivacky  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2675193323Sed    MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2676193323Sed  if (I == MemOp2RegOpTable.end())
2677193323Sed    return false;
2678193323Sed  unsigned Opc = I->second.first;
2679193323Sed  unsigned Index = I->second.second & 0xf;
2680193323Sed  bool FoldedLoad = I->second.second & (1 << 4);
2681193323Sed  bool FoldedStore = I->second.second & (1 << 5);
2682193323Sed  if (UnfoldLoad && !FoldedLoad)
2683193323Sed    return false;
2684193323Sed  UnfoldLoad &= FoldedLoad;
2685193323Sed  if (UnfoldStore && !FoldedStore)
2686193323Sed    return false;
2687193323Sed  UnfoldStore &= FoldedStore;
2688193323Sed
2689193323Sed  const TargetInstrDesc &TID = get(Opc);
2690193323Sed  const TargetOperandInfo &TOI = TID.OpInfo[Index];
2691198090Srdivacky  const TargetRegisterClass *RC = TOI.getRegClass(&RI);
2692193323Sed  SmallVector<MachineOperand, X86AddrNumOperands> AddrOps;
2693193323Sed  SmallVector<MachineOperand,2> BeforeOps;
2694193323Sed  SmallVector<MachineOperand,2> AfterOps;
2695193323Sed  SmallVector<MachineOperand,4> ImpOps;
2696193323Sed  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2697193323Sed    MachineOperand &Op = MI->getOperand(i);
2698193323Sed    if (i >= Index && i < Index + X86AddrNumOperands)
2699193323Sed      AddrOps.push_back(Op);
2700193323Sed    else if (Op.isReg() && Op.isImplicit())
2701193323Sed      ImpOps.push_back(Op);
2702193323Sed    else if (i < Index)
2703193323Sed      BeforeOps.push_back(Op);
2704193323Sed    else if (i > Index)
2705193323Sed      AfterOps.push_back(Op);
2706193323Sed  }
2707193323Sed
2708193323Sed  // Emit the load instruction.
2709193323Sed  if (UnfoldLoad) {
2710198090Srdivacky    std::pair<MachineInstr::mmo_iterator,
2711198090Srdivacky              MachineInstr::mmo_iterator> MMOs =
2712198090Srdivacky      MF.extractLoadMemRefs(MI->memoperands_begin(),
2713198090Srdivacky                            MI->memoperands_end());
2714198090Srdivacky    loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
2715193323Sed    if (UnfoldStore) {
2716193323Sed      // Address operands cannot be marked isKill.
2717193323Sed      for (unsigned i = 1; i != 1 + X86AddrNumOperands; ++i) {
2718193323Sed        MachineOperand &MO = NewMIs[0]->getOperand(i);
2719193323Sed        if (MO.isReg())
2720193323Sed          MO.setIsKill(false);
2721193323Sed      }
2722193323Sed    }
2723193323Sed  }
2724193323Sed
2725193323Sed  // Emit the data processing instruction.
2726193323Sed  MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
2727193323Sed  MachineInstrBuilder MIB(DataMI);
2728193323Sed
2729193323Sed  if (FoldedStore)
2730193323Sed    MIB.addReg(Reg, RegState::Define);
2731193323Sed  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2732193323Sed    MIB.addOperand(BeforeOps[i]);
2733193323Sed  if (FoldedLoad)
2734193323Sed    MIB.addReg(Reg);
2735193323Sed  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2736193323Sed    MIB.addOperand(AfterOps[i]);
2737193323Sed  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2738193323Sed    MachineOperand &MO = ImpOps[i];
2739193323Sed    MIB.addReg(MO.getReg(),
2740193323Sed               getDefRegState(MO.isDef()) |
2741193323Sed               RegState::Implicit |
2742193323Sed               getKillRegState(MO.isKill()) |
2743195340Sed               getDeadRegState(MO.isDead()) |
2744195340Sed               getUndefRegState(MO.isUndef()));
2745193323Sed  }
2746193323Sed  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2747193323Sed  unsigned NewOpc = 0;
2748193323Sed  switch (DataMI->getOpcode()) {
2749193323Sed  default: break;
2750193323Sed  case X86::CMP64ri32:
2751193323Sed  case X86::CMP32ri:
2752193323Sed  case X86::CMP16ri:
2753193323Sed  case X86::CMP8ri: {
2754193323Sed    MachineOperand &MO0 = DataMI->getOperand(0);
2755193323Sed    MachineOperand &MO1 = DataMI->getOperand(1);
2756193323Sed    if (MO1.getImm() == 0) {
2757193323Sed      switch (DataMI->getOpcode()) {
2758193323Sed      default: break;
2759193323Sed      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2760193323Sed      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
2761193323Sed      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
2762193323Sed      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
2763193323Sed      }
2764193323Sed      DataMI->setDesc(get(NewOpc));
2765193323Sed      MO1.ChangeToRegister(MO0.getReg(), false);
2766193323Sed    }
2767193323Sed  }
2768193323Sed  }
2769193323Sed  NewMIs.push_back(DataMI);
2770193323Sed
2771193323Sed  // Emit the store instruction.
2772193323Sed  if (UnfoldStore) {
2773198090Srdivacky    const TargetRegisterClass *DstRC = TID.OpInfo[0].getRegClass(&RI);
2774198090Srdivacky    std::pair<MachineInstr::mmo_iterator,
2775198090Srdivacky              MachineInstr::mmo_iterator> MMOs =
2776198090Srdivacky      MF.extractStoreMemRefs(MI->memoperands_begin(),
2777198090Srdivacky                             MI->memoperands_end());
2778198090Srdivacky    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
2779193323Sed  }
2780193323Sed
2781193323Sed  return true;
2782193323Sed}
2783193323Sed
2784193323Sedbool
2785193323SedX86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2786193323Sed                                  SmallVectorImpl<SDNode*> &NewNodes) const {
2787193323Sed  if (!N->isMachineOpcode())
2788193323Sed    return false;
2789193323Sed
2790199481Srdivacky  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2791193323Sed    MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
2792193323Sed  if (I == MemOp2RegOpTable.end())
2793193323Sed    return false;
2794193323Sed  unsigned Opc = I->second.first;
2795193323Sed  unsigned Index = I->second.second & 0xf;
2796193323Sed  bool FoldedLoad = I->second.second & (1 << 4);
2797193323Sed  bool FoldedStore = I->second.second & (1 << 5);
2798193323Sed  const TargetInstrDesc &TID = get(Opc);
2799198090Srdivacky  const TargetRegisterClass *RC = TID.OpInfo[Index].getRegClass(&RI);
2800193323Sed  unsigned NumDefs = TID.NumDefs;
2801193323Sed  std::vector<SDValue> AddrOps;
2802193323Sed  std::vector<SDValue> BeforeOps;
2803193323Sed  std::vector<SDValue> AfterOps;
2804193323Sed  DebugLoc dl = N->getDebugLoc();
2805193323Sed  unsigned NumOps = N->getNumOperands();
2806193323Sed  for (unsigned i = 0; i != NumOps-1; ++i) {
2807193323Sed    SDValue Op = N->getOperand(i);
2808193323Sed    if (i >= Index-NumDefs && i < Index-NumDefs + X86AddrNumOperands)
2809193323Sed      AddrOps.push_back(Op);
2810193323Sed    else if (i < Index-NumDefs)
2811193323Sed      BeforeOps.push_back(Op);
2812193323Sed    else if (i > Index-NumDefs)
2813193323Sed      AfterOps.push_back(Op);
2814193323Sed  }
2815193323Sed  SDValue Chain = N->getOperand(NumOps-1);
2816193323Sed  AddrOps.push_back(Chain);
2817193323Sed
2818193323Sed  // Emit the load instruction.
2819193323Sed  SDNode *Load = 0;
2820198090Srdivacky  MachineFunction &MF = DAG.getMachineFunction();
2821193323Sed  if (FoldedLoad) {
2822198090Srdivacky    EVT VT = *RC->vt_begin();
2823199481Srdivacky    std::pair<MachineInstr::mmo_iterator,
2824199481Srdivacky              MachineInstr::mmo_iterator> MMOs =
2825199481Srdivacky      MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2826199481Srdivacky                            cast<MachineSDNode>(N)->memoperands_end());
2827199481Srdivacky    bool isAligned = (*MMOs.first)->getAlignment() >= 16;
2828198090Srdivacky    Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
2829198090Srdivacky                              VT, MVT::Other, &AddrOps[0], AddrOps.size());
2830193323Sed    NewNodes.push_back(Load);
2831198090Srdivacky
2832198090Srdivacky    // Preserve memory reference information.
2833198090Srdivacky    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
2834193323Sed  }
2835193323Sed
2836193323Sed  // Emit the data processing instruction.
2837198090Srdivacky  std::vector<EVT> VTs;
2838193323Sed  const TargetRegisterClass *DstRC = 0;
2839193323Sed  if (TID.getNumDefs() > 0) {
2840198090Srdivacky    DstRC = TID.OpInfo[0].getRegClass(&RI);
2841193323Sed    VTs.push_back(*DstRC->vt_begin());
2842193323Sed  }
2843193323Sed  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2844198090Srdivacky    EVT VT = N->getValueType(i);
2845193323Sed    if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
2846193323Sed      VTs.push_back(VT);
2847193323Sed  }
2848193323Sed  if (Load)
2849193323Sed    BeforeOps.push_back(SDValue(Load, 0));
2850193323Sed  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2851198090Srdivacky  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
2852198090Srdivacky                                      BeforeOps.size());
2853193323Sed  NewNodes.push_back(NewNode);
2854193323Sed
2855193323Sed  // Emit the store instruction.
2856193323Sed  if (FoldedStore) {
2857193323Sed    AddrOps.pop_back();
2858193323Sed    AddrOps.push_back(SDValue(NewNode, 0));
2859193323Sed    AddrOps.push_back(Chain);
2860199481Srdivacky    std::pair<MachineInstr::mmo_iterator,
2861199481Srdivacky              MachineInstr::mmo_iterator> MMOs =
2862199481Srdivacky      MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2863199481Srdivacky                             cast<MachineSDNode>(N)->memoperands_end());
2864199481Srdivacky    bool isAligned = (*MMOs.first)->getAlignment() >= 16;
2865198090Srdivacky    SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
2866198090Srdivacky                                                         isAligned, TM),
2867198090Srdivacky                                       dl, MVT::Other,
2868198090Srdivacky                                       &AddrOps[0], AddrOps.size());
2869193323Sed    NewNodes.push_back(Store);
2870198090Srdivacky
2871198090Srdivacky    // Preserve memory reference information.
2872198090Srdivacky    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
2873193323Sed  }
2874193323Sed
2875193323Sed  return true;
2876193323Sed}
2877193323Sed
2878193323Sedunsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2879198892Srdivacky                                      bool UnfoldLoad, bool UnfoldStore,
2880198892Srdivacky                                      unsigned *LoadRegIndex) const {
2881199481Srdivacky  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2882193323Sed    MemOp2RegOpTable.find((unsigned*)Opc);
2883193323Sed  if (I == MemOp2RegOpTable.end())
2884193323Sed    return 0;
2885193323Sed  bool FoldedLoad = I->second.second & (1 << 4);
2886193323Sed  bool FoldedStore = I->second.second & (1 << 5);
2887193323Sed  if (UnfoldLoad && !FoldedLoad)
2888193323Sed    return 0;
2889193323Sed  if (UnfoldStore && !FoldedStore)
2890193323Sed    return 0;
2891198892Srdivacky  if (LoadRegIndex)
2892198892Srdivacky    *LoadRegIndex = I->second.second & 0xf;
2893193323Sed  return I->second.first;
2894193323Sed}
2895193323Sed
2896202878Srdivackybool
2897202878SrdivackyX86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
2898202878Srdivacky                                     int64_t &Offset1, int64_t &Offset2) const {
2899202878Srdivacky  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
2900202878Srdivacky    return false;
2901202878Srdivacky  unsigned Opc1 = Load1->getMachineOpcode();
2902202878Srdivacky  unsigned Opc2 = Load2->getMachineOpcode();
2903202878Srdivacky  switch (Opc1) {
2904202878Srdivacky  default: return false;
2905202878Srdivacky  case X86::MOV8rm:
2906202878Srdivacky  case X86::MOV16rm:
2907202878Srdivacky  case X86::MOV32rm:
2908202878Srdivacky  case X86::MOV64rm:
2909202878Srdivacky  case X86::LD_Fp32m:
2910202878Srdivacky  case X86::LD_Fp64m:
2911202878Srdivacky  case X86::LD_Fp80m:
2912202878Srdivacky  case X86::MOVSSrm:
2913202878Srdivacky  case X86::MOVSDrm:
2914202878Srdivacky  case X86::MMX_MOVD64rm:
2915202878Srdivacky  case X86::MMX_MOVQ64rm:
2916202878Srdivacky  case X86::FsMOVAPSrm:
2917202878Srdivacky  case X86::FsMOVAPDrm:
2918202878Srdivacky  case X86::MOVAPSrm:
2919202878Srdivacky  case X86::MOVUPSrm:
2920202878Srdivacky  case X86::MOVUPSrm_Int:
2921202878Srdivacky  case X86::MOVAPDrm:
2922202878Srdivacky  case X86::MOVDQArm:
2923202878Srdivacky  case X86::MOVDQUrm:
2924202878Srdivacky  case X86::MOVDQUrm_Int:
2925202878Srdivacky    break;
2926202878Srdivacky  }
2927202878Srdivacky  switch (Opc2) {
2928202878Srdivacky  default: return false;
2929202878Srdivacky  case X86::MOV8rm:
2930202878Srdivacky  case X86::MOV16rm:
2931202878Srdivacky  case X86::MOV32rm:
2932202878Srdivacky  case X86::MOV64rm:
2933202878Srdivacky  case X86::LD_Fp32m:
2934202878Srdivacky  case X86::LD_Fp64m:
2935202878Srdivacky  case X86::LD_Fp80m:
2936202878Srdivacky  case X86::MOVSSrm:
2937202878Srdivacky  case X86::MOVSDrm:
2938202878Srdivacky  case X86::MMX_MOVD64rm:
2939202878Srdivacky  case X86::MMX_MOVQ64rm:
2940202878Srdivacky  case X86::FsMOVAPSrm:
2941202878Srdivacky  case X86::FsMOVAPDrm:
2942202878Srdivacky  case X86::MOVAPSrm:
2943202878Srdivacky  case X86::MOVUPSrm:
2944202878Srdivacky  case X86::MOVUPSrm_Int:
2945202878Srdivacky  case X86::MOVAPDrm:
2946202878Srdivacky  case X86::MOVDQArm:
2947202878Srdivacky  case X86::MOVDQUrm:
2948202878Srdivacky  case X86::MOVDQUrm_Int:
2949202878Srdivacky    break;
2950202878Srdivacky  }
2951202878Srdivacky
2952202878Srdivacky  // Check if chain operands and base addresses match.
2953202878Srdivacky  if (Load1->getOperand(0) != Load2->getOperand(0) ||
2954202878Srdivacky      Load1->getOperand(5) != Load2->getOperand(5))
2955202878Srdivacky    return false;
2956202878Srdivacky  // Segment operands should match as well.
2957202878Srdivacky  if (Load1->getOperand(4) != Load2->getOperand(4))
2958202878Srdivacky    return false;
2959202878Srdivacky  // Scale should be 1, Index should be Reg0.
2960202878Srdivacky  if (Load1->getOperand(1) == Load2->getOperand(1) &&
2961202878Srdivacky      Load1->getOperand(2) == Load2->getOperand(2)) {
2962202878Srdivacky    if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
2963202878Srdivacky      return false;
2964202878Srdivacky    SDValue Op2 = Load1->getOperand(2);
2965202878Srdivacky    if (!isa<RegisterSDNode>(Op2) ||
2966202878Srdivacky        cast<RegisterSDNode>(Op2)->getReg() != 0)
2967202878Srdivacky      return 0;
2968202878Srdivacky
2969202878Srdivacky    // Now let's examine the displacements.
2970202878Srdivacky    if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
2971202878Srdivacky        isa<ConstantSDNode>(Load2->getOperand(3))) {
2972202878Srdivacky      Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
2973202878Srdivacky      Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
2974202878Srdivacky      return true;
2975202878Srdivacky    }
2976202878Srdivacky  }
2977202878Srdivacky  return false;
2978202878Srdivacky}
2979202878Srdivacky
2980202878Srdivackybool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
2981202878Srdivacky                                           int64_t Offset1, int64_t Offset2,
2982202878Srdivacky                                           unsigned NumLoads) const {
2983202878Srdivacky  assert(Offset2 > Offset1);
2984202878Srdivacky  if ((Offset2 - Offset1) / 8 > 64)
2985202878Srdivacky    return false;
2986202878Srdivacky
2987202878Srdivacky  unsigned Opc1 = Load1->getMachineOpcode();
2988202878Srdivacky  unsigned Opc2 = Load2->getMachineOpcode();
2989202878Srdivacky  if (Opc1 != Opc2)
2990202878Srdivacky    return false;  // FIXME: overly conservative?
2991202878Srdivacky
2992202878Srdivacky  switch (Opc1) {
2993202878Srdivacky  default: break;
2994202878Srdivacky  case X86::LD_Fp32m:
2995202878Srdivacky  case X86::LD_Fp64m:
2996202878Srdivacky  case X86::LD_Fp80m:
2997202878Srdivacky  case X86::MMX_MOVD64rm:
2998202878Srdivacky  case X86::MMX_MOVQ64rm:
2999202878Srdivacky    return false;
3000202878Srdivacky  }
3001202878Srdivacky
3002202878Srdivacky  EVT VT = Load1->getValueType(0);
3003202878Srdivacky  switch (VT.getSimpleVT().SimpleTy) {
3004202878Srdivacky  default: {
3005202878Srdivacky    // XMM registers. In 64-bit mode we can be a bit more aggressive since we
3006202878Srdivacky    // have 16 of them to play with.
3007202878Srdivacky    if (TM.getSubtargetImpl()->is64Bit()) {
3008202878Srdivacky      if (NumLoads >= 3)
3009202878Srdivacky        return false;
3010202878Srdivacky    } else if (NumLoads)
3011202878Srdivacky      return false;
3012202878Srdivacky    break;
3013202878Srdivacky  }
3014202878Srdivacky  case MVT::i8:
3015202878Srdivacky  case MVT::i16:
3016202878Srdivacky  case MVT::i32:
3017202878Srdivacky  case MVT::i64:
3018202878Srdivacky  case MVT::f32:
3019202878Srdivacky  case MVT::f64:
3020202878Srdivacky    if (NumLoads)
3021202878Srdivacky      return false;
3022202878Srdivacky  }
3023202878Srdivacky
3024202878Srdivacky  return true;
3025202878Srdivacky}
3026202878Srdivacky
3027202878Srdivacky
3028193323Sedbool X86InstrInfo::
3029193323SedReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
3030193323Sed  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
3031193323Sed  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
3032193323Sed  if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
3033193323Sed    return true;
3034193323Sed  Cond[0].setImm(GetOppositeBranchCondition(CC));
3035193323Sed  return false;
3036193323Sed}
3037193323Sed
3038193323Sedbool X86InstrInfo::
3039193323SedisSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
3040193323Sed  // FIXME: Return false for x87 stack register classes for now. We can't
3041193323Sed  // allow any loads of these registers before FpGet_ST0_80.
3042193323Sed  return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
3043193323Sed           RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
3044193323Sed}
3045193323Sed
3046193323Sed
3047203954Srdivacky/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or higher)
3048203954Srdivacky/// register?  e.g. r8, xmm8, xmm13, etc.
3049203954Srdivackybool X86InstrInfo::isX86_64ExtendedReg(unsigned RegNo) {
3050203954Srdivacky  switch (RegNo) {
3051193323Sed  default: break;
3052193323Sed  case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
3053193323Sed  case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
3054193323Sed  case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
3055193323Sed  case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
3056193323Sed  case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
3057193323Sed  case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
3058193323Sed  case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
3059193323Sed  case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
3060193323Sed  case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
3061193323Sed  case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
3062193323Sed    return true;
3063193323Sed  }
3064193323Sed  return false;
3065193323Sed}
3066193323Sed
3067193323Sed
3068193323Sed/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
3069193323Sed/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
3070193323Sed/// size, and 3) use of X86-64 extended registers.
3071193323Sedunsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
3072193323Sed  unsigned REX = 0;
3073193323Sed  const TargetInstrDesc &Desc = MI.getDesc();
3074193323Sed
3075193323Sed  // Pseudo instructions do not need REX prefix byte.
3076193323Sed  if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
3077193323Sed    return 0;
3078193323Sed  if (Desc.TSFlags & X86II::REX_W)
3079193323Sed    REX |= 1 << 3;
3080193323Sed
3081193323Sed  unsigned NumOps = Desc.getNumOperands();
3082193323Sed  if (NumOps) {
3083193323Sed    bool isTwoAddr = NumOps > 1 &&
3084193323Sed      Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
3085193323Sed
3086193323Sed    // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
3087193323Sed    unsigned i = isTwoAddr ? 1 : 0;
3088193323Sed    for (unsigned e = NumOps; i != e; ++i) {
3089193323Sed      const MachineOperand& MO = MI.getOperand(i);
3090193323Sed      if (MO.isReg()) {
3091193323Sed        unsigned Reg = MO.getReg();
3092193323Sed        if (isX86_64NonExtLowByteReg(Reg))
3093193323Sed          REX |= 0x40;
3094193323Sed      }
3095193323Sed    }
3096193323Sed
3097193323Sed    switch (Desc.TSFlags & X86II::FormMask) {
3098193323Sed    case X86II::MRMInitReg:
3099193323Sed      if (isX86_64ExtendedReg(MI.getOperand(0)))
3100193323Sed        REX |= (1 << 0) | (1 << 2);
3101193323Sed      break;
3102193323Sed    case X86II::MRMSrcReg: {
3103193323Sed      if (isX86_64ExtendedReg(MI.getOperand(0)))
3104193323Sed        REX |= 1 << 2;
3105193323Sed      i = isTwoAddr ? 2 : 1;
3106193323Sed      for (unsigned e = NumOps; i != e; ++i) {
3107193323Sed        const MachineOperand& MO = MI.getOperand(i);
3108193323Sed        if (isX86_64ExtendedReg(MO))
3109193323Sed          REX |= 1 << 0;
3110193323Sed      }
3111193323Sed      break;
3112193323Sed    }
3113193323Sed    case X86II::MRMSrcMem: {
3114193323Sed      if (isX86_64ExtendedReg(MI.getOperand(0)))
3115193323Sed        REX |= 1 << 2;
3116193323Sed      unsigned Bit = 0;
3117193323Sed      i = isTwoAddr ? 2 : 1;
3118193323Sed      for (; i != NumOps; ++i) {
3119193323Sed        const MachineOperand& MO = MI.getOperand(i);
3120193323Sed        if (MO.isReg()) {
3121193323Sed          if (isX86_64ExtendedReg(MO))
3122193323Sed            REX |= 1 << Bit;
3123193323Sed          Bit++;
3124193323Sed        }
3125193323Sed      }
3126193323Sed      break;
3127193323Sed    }
3128193323Sed    case X86II::MRM0m: case X86II::MRM1m:
3129193323Sed    case X86II::MRM2m: case X86II::MRM3m:
3130193323Sed    case X86II::MRM4m: case X86II::MRM5m:
3131193323Sed    case X86II::MRM6m: case X86II::MRM7m:
3132193323Sed    case X86II::MRMDestMem: {
3133193323Sed      unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
3134193323Sed      i = isTwoAddr ? 1 : 0;
3135193323Sed      if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
3136193323Sed        REX |= 1 << 2;
3137193323Sed      unsigned Bit = 0;
3138193323Sed      for (; i != e; ++i) {
3139193323Sed        const MachineOperand& MO = MI.getOperand(i);
3140193323Sed        if (MO.isReg()) {
3141193323Sed          if (isX86_64ExtendedReg(MO))
3142193323Sed            REX |= 1 << Bit;
3143193323Sed          Bit++;
3144193323Sed        }
3145193323Sed      }
3146193323Sed      break;
3147193323Sed    }
3148193323Sed    default: {
3149193323Sed      if (isX86_64ExtendedReg(MI.getOperand(0)))
3150193323Sed        REX |= 1 << 0;
3151193323Sed      i = isTwoAddr ? 2 : 1;
3152193323Sed      for (unsigned e = NumOps; i != e; ++i) {
3153193323Sed        const MachineOperand& MO = MI.getOperand(i);
3154193323Sed        if (isX86_64ExtendedReg(MO))
3155193323Sed          REX |= 1 << 2;
3156193323Sed      }
3157193323Sed      break;
3158193323Sed    }
3159193323Sed    }
3160193323Sed  }
3161193323Sed  return REX;
3162193323Sed}
3163193323Sed
3164193323Sed/// sizePCRelativeBlockAddress - This method returns the size of a PC
3165193323Sed/// relative block address instruction
3166193323Sed///
3167193323Sedstatic unsigned sizePCRelativeBlockAddress() {
3168193323Sed  return 4;
3169193323Sed}
3170193323Sed
3171193323Sed/// sizeGlobalAddress - Give the size of the emission of this global address
3172193323Sed///
3173193323Sedstatic unsigned sizeGlobalAddress(bool dword) {
3174193323Sed  return dword ? 8 : 4;
3175193323Sed}
3176193323Sed
3177193323Sed/// sizeConstPoolAddress - Give the size of the emission of this constant
3178193323Sed/// pool address
3179193323Sed///
3180193323Sedstatic unsigned sizeConstPoolAddress(bool dword) {
3181193323Sed  return dword ? 8 : 4;
3182193323Sed}
3183193323Sed
3184193323Sed/// sizeExternalSymbolAddress - Give the size of the emission of this external
3185193323Sed/// symbol
3186193323Sed///
3187193323Sedstatic unsigned sizeExternalSymbolAddress(bool dword) {
3188193323Sed  return dword ? 8 : 4;
3189193323Sed}
3190193323Sed
3191193323Sed/// sizeJumpTableAddress - Give the size of the emission of this jump
3192193323Sed/// table address
3193193323Sed///
3194193323Sedstatic unsigned sizeJumpTableAddress(bool dword) {
3195193323Sed  return dword ? 8 : 4;
3196193323Sed}
3197193323Sed
3198193323Sedstatic unsigned sizeConstant(unsigned Size) {
3199193323Sed  return Size;
3200193323Sed}
3201193323Sed
3202193323Sedstatic unsigned sizeRegModRMByte(){
3203193323Sed  return 1;
3204193323Sed}
3205193323Sed
3206193323Sedstatic unsigned sizeSIBByte(){
3207193323Sed  return 1;
3208193323Sed}
3209193323Sed
3210193323Sedstatic unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
3211193323Sed  unsigned FinalSize = 0;
3212193323Sed  // If this is a simple integer displacement that doesn't require a relocation.
3213193323Sed  if (!RelocOp) {
3214193323Sed    FinalSize += sizeConstant(4);
3215193323Sed    return FinalSize;
3216193323Sed  }
3217193323Sed
3218193323Sed  // Otherwise, this is something that requires a relocation.
3219193323Sed  if (RelocOp->isGlobal()) {
3220193323Sed    FinalSize += sizeGlobalAddress(false);
3221193323Sed  } else if (RelocOp->isCPI()) {
3222193323Sed    FinalSize += sizeConstPoolAddress(false);
3223193323Sed  } else if (RelocOp->isJTI()) {
3224193323Sed    FinalSize += sizeJumpTableAddress(false);
3225193323Sed  } else {
3226198090Srdivacky    llvm_unreachable("Unknown value to relocate!");
3227193323Sed  }
3228193323Sed  return FinalSize;
3229193323Sed}
3230193323Sed
3231193323Sedstatic unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
3232193323Sed                                    bool IsPIC, bool Is64BitMode) {
3233193323Sed  const MachineOperand &Op3 = MI.getOperand(Op+3);
3234193323Sed  int DispVal = 0;
3235193323Sed  const MachineOperand *DispForReloc = 0;
3236193323Sed  unsigned FinalSize = 0;
3237193323Sed
3238193323Sed  // Figure out what sort of displacement we have to handle here.
3239193323Sed  if (Op3.isGlobal()) {
3240193323Sed    DispForReloc = &Op3;
3241193323Sed  } else if (Op3.isCPI()) {
3242193323Sed    if (Is64BitMode || IsPIC) {
3243193323Sed      DispForReloc = &Op3;
3244193323Sed    } else {
3245193323Sed      DispVal = 1;
3246193323Sed    }
3247193323Sed  } else if (Op3.isJTI()) {
3248193323Sed    if (Is64BitMode || IsPIC) {
3249193323Sed      DispForReloc = &Op3;
3250193323Sed    } else {
3251193323Sed      DispVal = 1;
3252193323Sed    }
3253193323Sed  } else {
3254193323Sed    DispVal = 1;
3255193323Sed  }
3256193323Sed
3257193323Sed  const MachineOperand &Base     = MI.getOperand(Op);
3258193323Sed  const MachineOperand &IndexReg = MI.getOperand(Op+2);
3259193323Sed
3260193323Sed  unsigned BaseReg = Base.getReg();
3261193323Sed
3262193323Sed  // Is a SIB byte needed?
3263193323Sed  if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
3264193323Sed      IndexReg.getReg() == 0 &&
3265193323Sed      (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
3266193323Sed    if (BaseReg == 0) {  // Just a displacement?
3267193323Sed      // Emit special case [disp32] encoding
3268193323Sed      ++FinalSize;
3269193323Sed      FinalSize += getDisplacementFieldSize(DispForReloc);
3270193323Sed    } else {
3271193323Sed      unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
3272193323Sed      if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
3273193323Sed        // Emit simple indirect register encoding... [EAX] f.e.
3274193323Sed        ++FinalSize;
3275193323Sed      // Be pessimistic and assume it's a disp32, not a disp8
3276193323Sed      } else {
3277193323Sed        // Emit the most general non-SIB encoding: [REG+disp32]
3278193323Sed        ++FinalSize;
3279193323Sed        FinalSize += getDisplacementFieldSize(DispForReloc);
3280193323Sed      }
3281193323Sed    }
3282193323Sed
3283193323Sed  } else {  // We need a SIB byte, so start by outputting the ModR/M byte first
3284193323Sed    assert(IndexReg.getReg() != X86::ESP &&
3285193323Sed           IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
3286193323Sed
3287193323Sed    bool ForceDisp32 = false;
3288193323Sed    if (BaseReg == 0 || DispForReloc) {
3289193323Sed      // Emit the normal disp32 encoding.
3290193323Sed      ++FinalSize;
3291193323Sed      ForceDisp32 = true;
3292193323Sed    } else {
3293193323Sed      ++FinalSize;
3294193323Sed    }
3295193323Sed
3296193323Sed    FinalSize += sizeSIBByte();
3297193323Sed
3298193323Sed    // Do we need to output a displacement?
3299193323Sed    if (DispVal != 0 || ForceDisp32) {
3300193323Sed      FinalSize += getDisplacementFieldSize(DispForReloc);
3301193323Sed    }
3302193323Sed  }
3303193323Sed  return FinalSize;
3304193323Sed}
3305193323Sed
3306193323Sed
3307193323Sedstatic unsigned GetInstSizeWithDesc(const MachineInstr &MI,
3308193323Sed                                    const TargetInstrDesc *Desc,
3309193323Sed                                    bool IsPIC, bool Is64BitMode) {
3310193323Sed
3311193323Sed  unsigned Opcode = Desc->Opcode;
3312193323Sed  unsigned FinalSize = 0;
3313193323Sed
3314193323Sed  // Emit the lock opcode prefix as needed.
3315193323Sed  if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
3316193323Sed
3317193323Sed  // Emit segment override opcode prefix as needed.
3318193323Sed  switch (Desc->TSFlags & X86II::SegOvrMask) {
3319193323Sed  case X86II::FS:
3320193323Sed  case X86II::GS:
3321193323Sed   ++FinalSize;
3322193323Sed   break;
3323198090Srdivacky  default: llvm_unreachable("Invalid segment!");
3324193323Sed  case 0: break;  // No segment override!
3325193323Sed  }
3326193323Sed
3327193323Sed  // Emit the repeat opcode prefix as needed.
3328193323Sed  if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
3329193323Sed
3330193323Sed  // Emit the operand size opcode prefix as needed.
3331193323Sed  if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
3332193323Sed
3333193323Sed  // Emit the address size opcode prefix as needed.
3334193323Sed  if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
3335193323Sed
3336193323Sed  bool Need0FPrefix = false;
3337193323Sed  switch (Desc->TSFlags & X86II::Op0Mask) {
3338193323Sed  case X86II::TB:  // Two-byte opcode prefix
3339193323Sed  case X86II::T8:  // 0F 38
3340193323Sed  case X86II::TA:  // 0F 3A
3341193323Sed    Need0FPrefix = true;
3342193323Sed    break;
3343198090Srdivacky  case X86II::TF: // F2 0F 38
3344198090Srdivacky    ++FinalSize;
3345198090Srdivacky    Need0FPrefix = true;
3346198090Srdivacky    break;
3347193323Sed  case X86II::REP: break; // already handled.
3348193323Sed  case X86II::XS:   // F3 0F
3349193323Sed    ++FinalSize;
3350193323Sed    Need0FPrefix = true;
3351193323Sed    break;
3352193323Sed  case X86II::XD:   // F2 0F
3353193323Sed    ++FinalSize;
3354193323Sed    Need0FPrefix = true;
3355193323Sed    break;
3356193323Sed  case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
3357193323Sed  case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
3358193323Sed    ++FinalSize;
3359193323Sed    break; // Two-byte opcode prefix
3360198090Srdivacky  default: llvm_unreachable("Invalid prefix!");
3361193323Sed  case 0: break;  // No prefix!
3362193323Sed  }
3363193323Sed
3364193323Sed  if (Is64BitMode) {
3365193323Sed    // REX prefix
3366193323Sed    unsigned REX = X86InstrInfo::determineREX(MI);
3367193323Sed    if (REX)
3368193323Sed      ++FinalSize;
3369193323Sed  }
3370193323Sed
3371193323Sed  // 0x0F escape code must be emitted just before the opcode.
3372193323Sed  if (Need0FPrefix)
3373193323Sed    ++FinalSize;
3374193323Sed
3375193323Sed  switch (Desc->TSFlags & X86II::Op0Mask) {
3376193323Sed  case X86II::T8:  // 0F 38
3377193323Sed    ++FinalSize;
3378193323Sed    break;
3379193323Sed  case X86II::TA:  // 0F 3A
3380193323Sed    ++FinalSize;
3381193323Sed    break;
3382198090Srdivacky  case X86II::TF: // F2 0F 38
3383198090Srdivacky    ++FinalSize;
3384198090Srdivacky    break;
3385193323Sed  }
3386193323Sed
3387193323Sed  // If this is a two-address instruction, skip one of the register operands.
3388193323Sed  unsigned NumOps = Desc->getNumOperands();
3389193323Sed  unsigned CurOp = 0;
3390193323Sed  if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
3391193323Sed    CurOp++;
3392193323Sed  else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
3393193323Sed    // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
3394193323Sed    --NumOps;
3395193323Sed
3396193323Sed  switch (Desc->TSFlags & X86II::FormMask) {
3397198090Srdivacky  default: llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
3398193323Sed  case X86II::Pseudo:
3399193323Sed    // Remember the current PC offset, this is the PIC relocation
3400193323Sed    // base address.
3401193323Sed    switch (Opcode) {
3402193323Sed    default:
3403193323Sed      break;
3404203954Srdivacky    case TargetOpcode::INLINEASM: {
3405193323Sed      const MachineFunction *MF = MI.getParent()->getParent();
3406198090Srdivacky      const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
3407198090Srdivacky      FinalSize += TII.getInlineAsmLength(MI.getOperand(0).getSymbolName(),
3408198090Srdivacky                                          *MF->getTarget().getMCAsmInfo());
3409193323Sed      break;
3410193323Sed    }
3411203954Srdivacky    case TargetOpcode::DBG_LABEL:
3412203954Srdivacky    case TargetOpcode::EH_LABEL:
3413193323Sed      break;
3414203954Srdivacky    case TargetOpcode::IMPLICIT_DEF:
3415203954Srdivacky    case TargetOpcode::KILL:
3416193323Sed    case X86::FP_REG_KILL:
3417193323Sed      break;
3418193323Sed    case X86::MOVPC32r: {
3419193323Sed      // This emits the "call" portion of this pseudo instruction.
3420193323Sed      ++FinalSize;
3421203954Srdivacky      FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
3422193323Sed      break;
3423193323Sed    }
3424193323Sed    }
3425193323Sed    CurOp = NumOps;
3426193323Sed    break;
3427193323Sed  case X86II::RawFrm:
3428193323Sed    ++FinalSize;
3429193323Sed
3430193323Sed    if (CurOp != NumOps) {
3431193323Sed      const MachineOperand &MO = MI.getOperand(CurOp++);
3432193323Sed      if (MO.isMBB()) {
3433193323Sed        FinalSize += sizePCRelativeBlockAddress();
3434193323Sed      } else if (MO.isGlobal()) {
3435193323Sed        FinalSize += sizeGlobalAddress(false);
3436193323Sed      } else if (MO.isSymbol()) {
3437193323Sed        FinalSize += sizeExternalSymbolAddress(false);
3438193323Sed      } else if (MO.isImm()) {
3439203954Srdivacky        FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
3440193323Sed      } else {
3441198090Srdivacky        llvm_unreachable("Unknown RawFrm operand!");
3442193323Sed      }
3443193323Sed    }
3444193323Sed    break;
3445193323Sed
3446193323Sed  case X86II::AddRegFrm:
3447193323Sed    ++FinalSize;
3448193323Sed    ++CurOp;
3449193323Sed
3450193323Sed    if (CurOp != NumOps) {
3451193323Sed      const MachineOperand &MO1 = MI.getOperand(CurOp++);
3452203954Srdivacky      unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
3453193323Sed      if (MO1.isImm())
3454193323Sed        FinalSize += sizeConstant(Size);
3455193323Sed      else {
3456193323Sed        bool dword = false;
3457193323Sed        if (Opcode == X86::MOV64ri)
3458193323Sed          dword = true;
3459193323Sed        if (MO1.isGlobal()) {
3460193323Sed          FinalSize += sizeGlobalAddress(dword);
3461193323Sed        } else if (MO1.isSymbol())
3462193323Sed          FinalSize += sizeExternalSymbolAddress(dword);
3463193323Sed        else if (MO1.isCPI())
3464193323Sed          FinalSize += sizeConstPoolAddress(dword);
3465193323Sed        else if (MO1.isJTI())
3466193323Sed          FinalSize += sizeJumpTableAddress(dword);
3467193323Sed      }
3468193323Sed    }
3469193323Sed    break;
3470193323Sed
3471193323Sed  case X86II::MRMDestReg: {
3472193323Sed    ++FinalSize;
3473193323Sed    FinalSize += sizeRegModRMByte();
3474193323Sed    CurOp += 2;
3475193323Sed    if (CurOp != NumOps) {
3476193323Sed      ++CurOp;
3477203954Srdivacky      FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
3478193323Sed    }
3479193323Sed    break;
3480193323Sed  }
3481193323Sed  case X86II::MRMDestMem: {
3482193323Sed    ++FinalSize;
3483193323Sed    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3484193323Sed    CurOp +=  X86AddrNumOperands + 1;
3485193323Sed    if (CurOp != NumOps) {
3486193323Sed      ++CurOp;
3487203954Srdivacky      FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
3488193323Sed    }
3489193323Sed    break;
3490193323Sed  }
3491193323Sed
3492193323Sed  case X86II::MRMSrcReg:
3493193323Sed    ++FinalSize;
3494193323Sed    FinalSize += sizeRegModRMByte();
3495193323Sed    CurOp += 2;
3496193323Sed    if (CurOp != NumOps) {
3497193323Sed      ++CurOp;
3498203954Srdivacky      FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
3499193323Sed    }
3500193323Sed    break;
3501193323Sed
3502193323Sed  case X86II::MRMSrcMem: {
3503193323Sed    int AddrOperands;
3504193323Sed    if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
3505193323Sed        Opcode == X86::LEA16r || Opcode == X86::LEA32r)
3506193323Sed      AddrOperands = X86AddrNumOperands - 1; // No segment register
3507193323Sed    else
3508193323Sed      AddrOperands = X86AddrNumOperands;
3509193323Sed
3510193323Sed    ++FinalSize;
3511193323Sed    FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
3512193323Sed    CurOp += AddrOperands + 1;
3513193323Sed    if (CurOp != NumOps) {
3514193323Sed      ++CurOp;
3515203954Srdivacky      FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
3516193323Sed    }
3517193323Sed    break;
3518193323Sed  }
3519193323Sed
3520193323Sed  case X86II::MRM0r: case X86II::MRM1r:
3521193323Sed  case X86II::MRM2r: case X86II::MRM3r:
3522193323Sed  case X86II::MRM4r: case X86II::MRM5r:
3523193323Sed  case X86II::MRM6r: case X86II::MRM7r:
3524193323Sed    ++FinalSize;
3525193323Sed    if (Desc->getOpcode() == X86::LFENCE ||
3526193323Sed        Desc->getOpcode() == X86::MFENCE) {
3527193323Sed      // Special handling of lfence and mfence;
3528193323Sed      FinalSize += sizeRegModRMByte();
3529193323Sed    } else if (Desc->getOpcode() == X86::MONITOR ||
3530193323Sed               Desc->getOpcode() == X86::MWAIT) {
3531193323Sed      // Special handling of monitor and mwait.
3532193323Sed      FinalSize += sizeRegModRMByte() + 1; // +1 for the opcode.
3533193323Sed    } else {
3534193323Sed      ++CurOp;
3535193323Sed      FinalSize += sizeRegModRMByte();
3536193323Sed    }
3537193323Sed
3538193323Sed    if (CurOp != NumOps) {
3539193323Sed      const MachineOperand &MO1 = MI.getOperand(CurOp++);
3540203954Srdivacky      unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
3541193323Sed      if (MO1.isImm())
3542193323Sed        FinalSize += sizeConstant(Size);
3543193323Sed      else {
3544193323Sed        bool dword = false;
3545193323Sed        if (Opcode == X86::MOV64ri32)
3546193323Sed          dword = true;
3547193323Sed        if (MO1.isGlobal()) {
3548193323Sed          FinalSize += sizeGlobalAddress(dword);
3549193323Sed        } else if (MO1.isSymbol())
3550193323Sed          FinalSize += sizeExternalSymbolAddress(dword);
3551193323Sed        else if (MO1.isCPI())
3552193323Sed          FinalSize += sizeConstPoolAddress(dword);
3553193323Sed        else if (MO1.isJTI())
3554193323Sed          FinalSize += sizeJumpTableAddress(dword);
3555193323Sed      }
3556193323Sed    }
3557193323Sed    break;
3558193323Sed
3559193323Sed  case X86II::MRM0m: case X86II::MRM1m:
3560193323Sed  case X86II::MRM2m: case X86II::MRM3m:
3561193323Sed  case X86II::MRM4m: case X86II::MRM5m:
3562193323Sed  case X86II::MRM6m: case X86II::MRM7m: {
3563193323Sed
3564193323Sed    ++FinalSize;
3565193323Sed    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3566193323Sed    CurOp += X86AddrNumOperands;
3567193323Sed
3568193323Sed    if (CurOp != NumOps) {
3569193323Sed      const MachineOperand &MO = MI.getOperand(CurOp++);
3570203954Srdivacky      unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
3571193323Sed      if (MO.isImm())
3572193323Sed        FinalSize += sizeConstant(Size);
3573193323Sed      else {
3574193323Sed        bool dword = false;
3575193323Sed        if (Opcode == X86::MOV64mi32)
3576193323Sed          dword = true;
3577193323Sed        if (MO.isGlobal()) {
3578193323Sed          FinalSize += sizeGlobalAddress(dword);
3579193323Sed        } else if (MO.isSymbol())
3580193323Sed          FinalSize += sizeExternalSymbolAddress(dword);
3581193323Sed        else if (MO.isCPI())
3582193323Sed          FinalSize += sizeConstPoolAddress(dword);
3583193323Sed        else if (MO.isJTI())
3584193323Sed          FinalSize += sizeJumpTableAddress(dword);
3585193323Sed      }
3586193323Sed    }
3587193323Sed    break;
3588203954Srdivacky
3589203954Srdivacky  case X86II::MRM_C1:
3590203954Srdivacky  case X86II::MRM_C8:
3591203954Srdivacky  case X86II::MRM_C9:
3592203954Srdivacky  case X86II::MRM_E8:
3593203954Srdivacky  case X86II::MRM_F0:
3594203954Srdivacky    FinalSize += 2;
3595203954Srdivacky    break;
3596193323Sed  }
3597193323Sed
3598193323Sed  case X86II::MRMInitReg:
3599193323Sed    ++FinalSize;
3600193323Sed    // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3601193323Sed    FinalSize += sizeRegModRMByte();
3602193323Sed    ++CurOp;
3603193323Sed    break;
3604193323Sed  }
3605193323Sed
3606193323Sed  if (!Desc->isVariadic() && CurOp != NumOps) {
3607198090Srdivacky    std::string msg;
3608198090Srdivacky    raw_string_ostream Msg(msg);
3609198090Srdivacky    Msg << "Cannot determine size: " << MI;
3610198090Srdivacky    llvm_report_error(Msg.str());
3611193323Sed  }
3612193323Sed
3613193323Sed
3614193323Sed  return FinalSize;
3615193323Sed}
3616193323Sed
3617193323Sed
3618193323Sedunsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
3619193323Sed  const TargetInstrDesc &Desc = MI->getDesc();
3620198090Srdivacky  bool IsPIC = TM.getRelocationModel() == Reloc::PIC_;
3621193323Sed  bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
3622193323Sed  unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
3623195098Sed  if (Desc.getOpcode() == X86::MOVPC32r)
3624193323Sed    Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
3625193323Sed  return Size;
3626193323Sed}
3627193323Sed
3628193323Sed/// getGlobalBaseReg - Return a virtual register initialized with the
3629193323Sed/// the global base register value. Output instructions required to
3630193323Sed/// initialize the register in the function entry block, if necessary.
3631193323Sed///
3632193323Sedunsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3633193323Sed  assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3634193323Sed         "X86-64 PIC uses RIP relative addressing");
3635193323Sed
3636193323Sed  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3637193323Sed  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3638193323Sed  if (GlobalBaseReg != 0)
3639193323Sed    return GlobalBaseReg;
3640193323Sed
3641193323Sed  // Insert the set of GlobalBaseReg into the first MBB of the function
3642193323Sed  MachineBasicBlock &FirstMBB = MF->front();
3643193323Sed  MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3644203954Srdivacky  DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
3645193323Sed  MachineRegisterInfo &RegInfo = MF->getRegInfo();
3646193323Sed  unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3647193323Sed
3648193323Sed  const TargetInstrInfo *TII = TM.getInstrInfo();
3649193323Sed  // Operand of MovePCtoStack is completely ignored by asm printer. It's
3650193323Sed  // only used in JIT code emission as displacement to pc.
3651195098Sed  BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
3652193323Sed
3653193323Sed  // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3654195098Sed  // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
3655198090Srdivacky  if (TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
3656195098Sed    GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3657195098Sed    // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
3658193323Sed    BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
3659198090Srdivacky      .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
3660195098Sed                                    X86II::MO_GOT_ABSOLUTE_ADDRESS);
3661193323Sed  } else {
3662193323Sed    GlobalBaseReg = PC;
3663193323Sed  }
3664193323Sed
3665193323Sed  X86FI->setGlobalBaseReg(GlobalBaseReg);
3666193323Sed  return GlobalBaseReg;
3667193323Sed}
3668206083Srdivacky
3669206083Srdivacky// These are the replaceable SSE instructions. Some of these have Int variants
3670206083Srdivacky// that we don't include here. We don't want to replace instructions selected
3671206083Srdivacky// by intrinsics.
3672206083Srdivackystatic const unsigned ReplaceableInstrs[][3] = {
3673206083Srdivacky  //PackedInt       PackedSingle     PackedDouble
3674206083Srdivacky  { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
3675206083Srdivacky  { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
3676206083Srdivacky  { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
3677206083Srdivacky  { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
3678206083Srdivacky  { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
3679206083Srdivacky  { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
3680206083Srdivacky  { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
3681206083Srdivacky  { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
3682206083Srdivacky  { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
3683206083Srdivacky  { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
3684206083Srdivacky  { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
3685206083Srdivacky  { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
3686206083Srdivacky  { X86::V_SET0PS,   X86::V_SET0PD,  X86::V_SET0PI  },
3687206083Srdivacky  { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
3688206083Srdivacky  { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
3689206083Srdivacky};
3690206083Srdivacky
3691206083Srdivacky// FIXME: Some shuffle and unpack instructions have equivalents in different
3692206083Srdivacky// domains, but they require a bit more work than just switching opcodes.
3693206083Srdivacky
3694206083Srdivackystatic const unsigned *lookup(unsigned opcode, unsigned domain) {
3695206083Srdivacky  for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
3696206083Srdivacky    if (ReplaceableInstrs[i][domain-1] == opcode)
3697206083Srdivacky      return ReplaceableInstrs[i];
3698206083Srdivacky  return 0;
3699206083Srdivacky}
3700206083Srdivacky
3701206083Srdivackystd::pair<uint16_t, uint16_t>
3702206083SrdivackyX86InstrInfo::GetSSEDomain(const MachineInstr *MI) const {
3703206083Srdivacky  uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
3704206083Srdivacky  return std::make_pair(domain,
3705206083Srdivacky                        domain && lookup(MI->getOpcode(), domain) ? 0xe : 0);
3706206083Srdivacky}
3707206083Srdivacky
3708206083Srdivackyvoid X86InstrInfo::SetSSEDomain(MachineInstr *MI, unsigned Domain) const {
3709206083Srdivacky  assert(Domain>0 && Domain<4 && "Invalid execution domain");
3710206083Srdivacky  uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
3711206083Srdivacky  assert(dom && "Not an SSE instruction");
3712206083Srdivacky  const unsigned *table = lookup(MI->getOpcode(), dom);
3713206083Srdivacky  assert(table && "Cannot change domain");
3714206083Srdivacky  MI->setDesc(get(table[Domain-1]));
3715206083Srdivacky}
3716