X86InstrInfo.cpp revision 202878
1193323Sed//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed// This file contains the X86 implementation of the TargetInstrInfo class.
11193323Sed//
12193323Sed//===----------------------------------------------------------------------===//
13193323Sed
14193323Sed#include "X86InstrInfo.h"
15193323Sed#include "X86.h"
16193323Sed#include "X86GenInstrInfo.inc"
17193323Sed#include "X86InstrBuilder.h"
18193323Sed#include "X86MachineFunctionInfo.h"
19193323Sed#include "X86Subtarget.h"
20193323Sed#include "X86TargetMachine.h"
21193323Sed#include "llvm/DerivedTypes.h"
22198090Srdivacky#include "llvm/LLVMContext.h"
23193323Sed#include "llvm/ADT/STLExtras.h"
24193323Sed#include "llvm/CodeGen/MachineConstantPool.h"
25193323Sed#include "llvm/CodeGen/MachineFrameInfo.h"
26193323Sed#include "llvm/CodeGen/MachineInstrBuilder.h"
27193323Sed#include "llvm/CodeGen/MachineRegisterInfo.h"
28193323Sed#include "llvm/CodeGen/LiveVariables.h"
29199481Srdivacky#include "llvm/CodeGen/PseudoSourceValue.h"
30193323Sed#include "llvm/Support/CommandLine.h"
31202375Srdivacky#include "llvm/Support/Debug.h"
32198090Srdivacky#include "llvm/Support/ErrorHandling.h"
33198090Srdivacky#include "llvm/Support/raw_ostream.h"
34193323Sed#include "llvm/Target/TargetOptions.h"
35198090Srdivacky#include "llvm/MC/MCAsmInfo.h"
36199481Srdivacky
37199481Srdivacky#include <limits>
38199481Srdivacky
39193323Sedusing namespace llvm;
40193323Sed
41198090Srdivackystatic cl::opt<bool>
42198090SrdivackyNoFusing("disable-spill-fusing",
43198090Srdivacky         cl::desc("Disable fusing of spill code into instructions"));
44198090Srdivackystatic cl::opt<bool>
45198090SrdivackyPrintFailedFusing("print-failed-fuse-candidates",
46198090Srdivacky                  cl::desc("Print instructions that the allocator wants to"
47198090Srdivacky                           " fuse, but the X86 backend currently can't"),
48198090Srdivacky                  cl::Hidden);
49198090Srdivackystatic cl::opt<bool>
50198090SrdivackyReMatPICStubLoad("remat-pic-stub-load",
51198090Srdivacky                 cl::desc("Re-materialize load from stub in PIC mode"),
52198090Srdivacky                 cl::init(false), cl::Hidden);
53193323Sed
54193323SedX86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
55193323Sed  : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
56193323Sed    TM(tm), RI(tm, *this) {
57193323Sed  SmallVector<unsigned,16> AmbEntries;
58193323Sed  static const unsigned OpTbl2Addr[][2] = {
59193323Sed    { X86::ADC32ri,     X86::ADC32mi },
60193323Sed    { X86::ADC32ri8,    X86::ADC32mi8 },
61193323Sed    { X86::ADC32rr,     X86::ADC32mr },
62193323Sed    { X86::ADC64ri32,   X86::ADC64mi32 },
63193323Sed    { X86::ADC64ri8,    X86::ADC64mi8 },
64193323Sed    { X86::ADC64rr,     X86::ADC64mr },
65193323Sed    { X86::ADD16ri,     X86::ADD16mi },
66193323Sed    { X86::ADD16ri8,    X86::ADD16mi8 },
67193323Sed    { X86::ADD16rr,     X86::ADD16mr },
68193323Sed    { X86::ADD32ri,     X86::ADD32mi },
69193323Sed    { X86::ADD32ri8,    X86::ADD32mi8 },
70193323Sed    { X86::ADD32rr,     X86::ADD32mr },
71193323Sed    { X86::ADD64ri32,   X86::ADD64mi32 },
72193323Sed    { X86::ADD64ri8,    X86::ADD64mi8 },
73193323Sed    { X86::ADD64rr,     X86::ADD64mr },
74193323Sed    { X86::ADD8ri,      X86::ADD8mi },
75193323Sed    { X86::ADD8rr,      X86::ADD8mr },
76193323Sed    { X86::AND16ri,     X86::AND16mi },
77193323Sed    { X86::AND16ri8,    X86::AND16mi8 },
78193323Sed    { X86::AND16rr,     X86::AND16mr },
79193323Sed    { X86::AND32ri,     X86::AND32mi },
80193323Sed    { X86::AND32ri8,    X86::AND32mi8 },
81193323Sed    { X86::AND32rr,     X86::AND32mr },
82193323Sed    { X86::AND64ri32,   X86::AND64mi32 },
83193323Sed    { X86::AND64ri8,    X86::AND64mi8 },
84193323Sed    { X86::AND64rr,     X86::AND64mr },
85193323Sed    { X86::AND8ri,      X86::AND8mi },
86193323Sed    { X86::AND8rr,      X86::AND8mr },
87193323Sed    { X86::DEC16r,      X86::DEC16m },
88193323Sed    { X86::DEC32r,      X86::DEC32m },
89193323Sed    { X86::DEC64_16r,   X86::DEC64_16m },
90193323Sed    { X86::DEC64_32r,   X86::DEC64_32m },
91193323Sed    { X86::DEC64r,      X86::DEC64m },
92193323Sed    { X86::DEC8r,       X86::DEC8m },
93193323Sed    { X86::INC16r,      X86::INC16m },
94193323Sed    { X86::INC32r,      X86::INC32m },
95193323Sed    { X86::INC64_16r,   X86::INC64_16m },
96193323Sed    { X86::INC64_32r,   X86::INC64_32m },
97193323Sed    { X86::INC64r,      X86::INC64m },
98193323Sed    { X86::INC8r,       X86::INC8m },
99193323Sed    { X86::NEG16r,      X86::NEG16m },
100193323Sed    { X86::NEG32r,      X86::NEG32m },
101193323Sed    { X86::NEG64r,      X86::NEG64m },
102193323Sed    { X86::NEG8r,       X86::NEG8m },
103193323Sed    { X86::NOT16r,      X86::NOT16m },
104193323Sed    { X86::NOT32r,      X86::NOT32m },
105193323Sed    { X86::NOT64r,      X86::NOT64m },
106193323Sed    { X86::NOT8r,       X86::NOT8m },
107193323Sed    { X86::OR16ri,      X86::OR16mi },
108193323Sed    { X86::OR16ri8,     X86::OR16mi8 },
109193323Sed    { X86::OR16rr,      X86::OR16mr },
110193323Sed    { X86::OR32ri,      X86::OR32mi },
111193323Sed    { X86::OR32ri8,     X86::OR32mi8 },
112193323Sed    { X86::OR32rr,      X86::OR32mr },
113193323Sed    { X86::OR64ri32,    X86::OR64mi32 },
114193323Sed    { X86::OR64ri8,     X86::OR64mi8 },
115193323Sed    { X86::OR64rr,      X86::OR64mr },
116193323Sed    { X86::OR8ri,       X86::OR8mi },
117193323Sed    { X86::OR8rr,       X86::OR8mr },
118193323Sed    { X86::ROL16r1,     X86::ROL16m1 },
119193323Sed    { X86::ROL16rCL,    X86::ROL16mCL },
120193323Sed    { X86::ROL16ri,     X86::ROL16mi },
121193323Sed    { X86::ROL32r1,     X86::ROL32m1 },
122193323Sed    { X86::ROL32rCL,    X86::ROL32mCL },
123193323Sed    { X86::ROL32ri,     X86::ROL32mi },
124193323Sed    { X86::ROL64r1,     X86::ROL64m1 },
125193323Sed    { X86::ROL64rCL,    X86::ROL64mCL },
126193323Sed    { X86::ROL64ri,     X86::ROL64mi },
127193323Sed    { X86::ROL8r1,      X86::ROL8m1 },
128193323Sed    { X86::ROL8rCL,     X86::ROL8mCL },
129193323Sed    { X86::ROL8ri,      X86::ROL8mi },
130193323Sed    { X86::ROR16r1,     X86::ROR16m1 },
131193323Sed    { X86::ROR16rCL,    X86::ROR16mCL },
132193323Sed    { X86::ROR16ri,     X86::ROR16mi },
133193323Sed    { X86::ROR32r1,     X86::ROR32m1 },
134193323Sed    { X86::ROR32rCL,    X86::ROR32mCL },
135193323Sed    { X86::ROR32ri,     X86::ROR32mi },
136193323Sed    { X86::ROR64r1,     X86::ROR64m1 },
137193323Sed    { X86::ROR64rCL,    X86::ROR64mCL },
138193323Sed    { X86::ROR64ri,     X86::ROR64mi },
139193323Sed    { X86::ROR8r1,      X86::ROR8m1 },
140193323Sed    { X86::ROR8rCL,     X86::ROR8mCL },
141193323Sed    { X86::ROR8ri,      X86::ROR8mi },
142193323Sed    { X86::SAR16r1,     X86::SAR16m1 },
143193323Sed    { X86::SAR16rCL,    X86::SAR16mCL },
144193323Sed    { X86::SAR16ri,     X86::SAR16mi },
145193323Sed    { X86::SAR32r1,     X86::SAR32m1 },
146193323Sed    { X86::SAR32rCL,    X86::SAR32mCL },
147193323Sed    { X86::SAR32ri,     X86::SAR32mi },
148193323Sed    { X86::SAR64r1,     X86::SAR64m1 },
149193323Sed    { X86::SAR64rCL,    X86::SAR64mCL },
150193323Sed    { X86::SAR64ri,     X86::SAR64mi },
151193323Sed    { X86::SAR8r1,      X86::SAR8m1 },
152193323Sed    { X86::SAR8rCL,     X86::SAR8mCL },
153193323Sed    { X86::SAR8ri,      X86::SAR8mi },
154193323Sed    { X86::SBB32ri,     X86::SBB32mi },
155193323Sed    { X86::SBB32ri8,    X86::SBB32mi8 },
156193323Sed    { X86::SBB32rr,     X86::SBB32mr },
157193323Sed    { X86::SBB64ri32,   X86::SBB64mi32 },
158193323Sed    { X86::SBB64ri8,    X86::SBB64mi8 },
159193323Sed    { X86::SBB64rr,     X86::SBB64mr },
160193323Sed    { X86::SHL16rCL,    X86::SHL16mCL },
161193323Sed    { X86::SHL16ri,     X86::SHL16mi },
162193323Sed    { X86::SHL32rCL,    X86::SHL32mCL },
163193323Sed    { X86::SHL32ri,     X86::SHL32mi },
164193323Sed    { X86::SHL64rCL,    X86::SHL64mCL },
165193323Sed    { X86::SHL64ri,     X86::SHL64mi },
166193323Sed    { X86::SHL8rCL,     X86::SHL8mCL },
167193323Sed    { X86::SHL8ri,      X86::SHL8mi },
168193323Sed    { X86::SHLD16rrCL,  X86::SHLD16mrCL },
169193323Sed    { X86::SHLD16rri8,  X86::SHLD16mri8 },
170193323Sed    { X86::SHLD32rrCL,  X86::SHLD32mrCL },
171193323Sed    { X86::SHLD32rri8,  X86::SHLD32mri8 },
172193323Sed    { X86::SHLD64rrCL,  X86::SHLD64mrCL },
173193323Sed    { X86::SHLD64rri8,  X86::SHLD64mri8 },
174193323Sed    { X86::SHR16r1,     X86::SHR16m1 },
175193323Sed    { X86::SHR16rCL,    X86::SHR16mCL },
176193323Sed    { X86::SHR16ri,     X86::SHR16mi },
177193323Sed    { X86::SHR32r1,     X86::SHR32m1 },
178193323Sed    { X86::SHR32rCL,    X86::SHR32mCL },
179193323Sed    { X86::SHR32ri,     X86::SHR32mi },
180193323Sed    { X86::SHR64r1,     X86::SHR64m1 },
181193323Sed    { X86::SHR64rCL,    X86::SHR64mCL },
182193323Sed    { X86::SHR64ri,     X86::SHR64mi },
183193323Sed    { X86::SHR8r1,      X86::SHR8m1 },
184193323Sed    { X86::SHR8rCL,     X86::SHR8mCL },
185193323Sed    { X86::SHR8ri,      X86::SHR8mi },
186193323Sed    { X86::SHRD16rrCL,  X86::SHRD16mrCL },
187193323Sed    { X86::SHRD16rri8,  X86::SHRD16mri8 },
188193323Sed    { X86::SHRD32rrCL,  X86::SHRD32mrCL },
189193323Sed    { X86::SHRD32rri8,  X86::SHRD32mri8 },
190193323Sed    { X86::SHRD64rrCL,  X86::SHRD64mrCL },
191193323Sed    { X86::SHRD64rri8,  X86::SHRD64mri8 },
192193323Sed    { X86::SUB16ri,     X86::SUB16mi },
193193323Sed    { X86::SUB16ri8,    X86::SUB16mi8 },
194193323Sed    { X86::SUB16rr,     X86::SUB16mr },
195193323Sed    { X86::SUB32ri,     X86::SUB32mi },
196193323Sed    { X86::SUB32ri8,    X86::SUB32mi8 },
197193323Sed    { X86::SUB32rr,     X86::SUB32mr },
198193323Sed    { X86::SUB64ri32,   X86::SUB64mi32 },
199193323Sed    { X86::SUB64ri8,    X86::SUB64mi8 },
200193323Sed    { X86::SUB64rr,     X86::SUB64mr },
201193323Sed    { X86::SUB8ri,      X86::SUB8mi },
202193323Sed    { X86::SUB8rr,      X86::SUB8mr },
203193323Sed    { X86::XOR16ri,     X86::XOR16mi },
204193323Sed    { X86::XOR16ri8,    X86::XOR16mi8 },
205193323Sed    { X86::XOR16rr,     X86::XOR16mr },
206193323Sed    { X86::XOR32ri,     X86::XOR32mi },
207193323Sed    { X86::XOR32ri8,    X86::XOR32mi8 },
208193323Sed    { X86::XOR32rr,     X86::XOR32mr },
209193323Sed    { X86::XOR64ri32,   X86::XOR64mi32 },
210193323Sed    { X86::XOR64ri8,    X86::XOR64mi8 },
211193323Sed    { X86::XOR64rr,     X86::XOR64mr },
212193323Sed    { X86::XOR8ri,      X86::XOR8mi },
213193323Sed    { X86::XOR8rr,      X86::XOR8mr }
214193323Sed  };
215193323Sed
216193323Sed  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
217193323Sed    unsigned RegOp = OpTbl2Addr[i][0];
218193323Sed    unsigned MemOp = OpTbl2Addr[i][1];
219193323Sed    if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
220198090Srdivacky                                               std::make_pair(MemOp,0))).second)
221193323Sed      assert(false && "Duplicated entries?");
222198090Srdivacky    // Index 0, folded load and store, no alignment requirement.
223198090Srdivacky    unsigned AuxInfo = 0 | (1 << 4) | (1 << 5);
224193323Sed    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
225193323Sed                                                std::make_pair(RegOp,
226193323Sed                                                              AuxInfo))).second)
227193323Sed      AmbEntries.push_back(MemOp);
228193323Sed  }
229193323Sed
230193323Sed  // If the third value is 1, then it's folding either a load or a store.
231198090Srdivacky  static const unsigned OpTbl0[][4] = {
232198090Srdivacky    { X86::BT16ri8,     X86::BT16mi8, 1, 0 },
233198090Srdivacky    { X86::BT32ri8,     X86::BT32mi8, 1, 0 },
234198090Srdivacky    { X86::BT64ri8,     X86::BT64mi8, 1, 0 },
235198090Srdivacky    { X86::CALL32r,     X86::CALL32m, 1, 0 },
236198090Srdivacky    { X86::CALL64r,     X86::CALL64m, 1, 0 },
237198090Srdivacky    { X86::CMP16ri,     X86::CMP16mi, 1, 0 },
238198090Srdivacky    { X86::CMP16ri8,    X86::CMP16mi8, 1, 0 },
239198090Srdivacky    { X86::CMP16rr,     X86::CMP16mr, 1, 0 },
240198090Srdivacky    { X86::CMP32ri,     X86::CMP32mi, 1, 0 },
241198090Srdivacky    { X86::CMP32ri8,    X86::CMP32mi8, 1, 0 },
242198090Srdivacky    { X86::CMP32rr,     X86::CMP32mr, 1, 0 },
243198090Srdivacky    { X86::CMP64ri32,   X86::CMP64mi32, 1, 0 },
244198090Srdivacky    { X86::CMP64ri8,    X86::CMP64mi8, 1, 0 },
245198090Srdivacky    { X86::CMP64rr,     X86::CMP64mr, 1, 0 },
246198090Srdivacky    { X86::CMP8ri,      X86::CMP8mi, 1, 0 },
247198090Srdivacky    { X86::CMP8rr,      X86::CMP8mr, 1, 0 },
248198090Srdivacky    { X86::DIV16r,      X86::DIV16m, 1, 0 },
249198090Srdivacky    { X86::DIV32r,      X86::DIV32m, 1, 0 },
250198090Srdivacky    { X86::DIV64r,      X86::DIV64m, 1, 0 },
251198090Srdivacky    { X86::DIV8r,       X86::DIV8m, 1, 0 },
252198090Srdivacky    { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 },
253198090Srdivacky    { X86::FsMOVAPDrr,  X86::MOVSDmr, 0, 0 },
254198090Srdivacky    { X86::FsMOVAPSrr,  X86::MOVSSmr, 0, 0 },
255198090Srdivacky    { X86::IDIV16r,     X86::IDIV16m, 1, 0 },
256198090Srdivacky    { X86::IDIV32r,     X86::IDIV32m, 1, 0 },
257198090Srdivacky    { X86::IDIV64r,     X86::IDIV64m, 1, 0 },
258198090Srdivacky    { X86::IDIV8r,      X86::IDIV8m, 1, 0 },
259198090Srdivacky    { X86::IMUL16r,     X86::IMUL16m, 1, 0 },
260198090Srdivacky    { X86::IMUL32r,     X86::IMUL32m, 1, 0 },
261198090Srdivacky    { X86::IMUL64r,     X86::IMUL64m, 1, 0 },
262198090Srdivacky    { X86::IMUL8r,      X86::IMUL8m, 1, 0 },
263198090Srdivacky    { X86::JMP32r,      X86::JMP32m, 1, 0 },
264198090Srdivacky    { X86::JMP64r,      X86::JMP64m, 1, 0 },
265198090Srdivacky    { X86::MOV16ri,     X86::MOV16mi, 0, 0 },
266198090Srdivacky    { X86::MOV16rr,     X86::MOV16mr, 0, 0 },
267198090Srdivacky    { X86::MOV32ri,     X86::MOV32mi, 0, 0 },
268198090Srdivacky    { X86::MOV32rr,     X86::MOV32mr, 0, 0 },
269198090Srdivacky    { X86::MOV64ri32,   X86::MOV64mi32, 0, 0 },
270198090Srdivacky    { X86::MOV64rr,     X86::MOV64mr, 0, 0 },
271198090Srdivacky    { X86::MOV8ri,      X86::MOV8mi, 0, 0 },
272198090Srdivacky    { X86::MOV8rr,      X86::MOV8mr, 0, 0 },
273198090Srdivacky    { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 },
274198090Srdivacky    { X86::MOVAPDrr,    X86::MOVAPDmr, 0, 16 },
275198090Srdivacky    { X86::MOVAPSrr,    X86::MOVAPSmr, 0, 16 },
276198090Srdivacky    { X86::MOVDQArr,    X86::MOVDQAmr, 0, 16 },
277198090Srdivacky    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 },
278198090Srdivacky    { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 },
279198090Srdivacky    { X86::MOVPS2SSrr,  X86::MOVPS2SSmr, 0, 0 },
280198090Srdivacky    { X86::MOVSDrr,     X86::MOVSDmr, 0, 0 },
281198090Srdivacky    { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 },
282198090Srdivacky    { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0, 0 },
283198090Srdivacky    { X86::MOVSSrr,     X86::MOVSSmr, 0, 0 },
284198090Srdivacky    { X86::MOVUPDrr,    X86::MOVUPDmr, 0, 0 },
285198090Srdivacky    { X86::MOVUPSrr,    X86::MOVUPSmr, 0, 0 },
286198090Srdivacky    { X86::MUL16r,      X86::MUL16m, 1, 0 },
287198090Srdivacky    { X86::MUL32r,      X86::MUL32m, 1, 0 },
288198090Srdivacky    { X86::MUL64r,      X86::MUL64m, 1, 0 },
289198090Srdivacky    { X86::MUL8r,       X86::MUL8m, 1, 0 },
290198090Srdivacky    { X86::SETAEr,      X86::SETAEm, 0, 0 },
291198090Srdivacky    { X86::SETAr,       X86::SETAm, 0, 0 },
292198090Srdivacky    { X86::SETBEr,      X86::SETBEm, 0, 0 },
293198090Srdivacky    { X86::SETBr,       X86::SETBm, 0, 0 },
294198090Srdivacky    { X86::SETEr,       X86::SETEm, 0, 0 },
295198090Srdivacky    { X86::SETGEr,      X86::SETGEm, 0, 0 },
296198090Srdivacky    { X86::SETGr,       X86::SETGm, 0, 0 },
297198090Srdivacky    { X86::SETLEr,      X86::SETLEm, 0, 0 },
298198090Srdivacky    { X86::SETLr,       X86::SETLm, 0, 0 },
299198090Srdivacky    { X86::SETNEr,      X86::SETNEm, 0, 0 },
300198090Srdivacky    { X86::SETNOr,      X86::SETNOm, 0, 0 },
301198090Srdivacky    { X86::SETNPr,      X86::SETNPm, 0, 0 },
302198090Srdivacky    { X86::SETNSr,      X86::SETNSm, 0, 0 },
303198090Srdivacky    { X86::SETOr,       X86::SETOm, 0, 0 },
304198090Srdivacky    { X86::SETPr,       X86::SETPm, 0, 0 },
305198090Srdivacky    { X86::SETSr,       X86::SETSm, 0, 0 },
306198090Srdivacky    { X86::TAILJMPr,    X86::TAILJMPm, 1, 0 },
307198090Srdivacky    { X86::TEST16ri,    X86::TEST16mi, 1, 0 },
308198090Srdivacky    { X86::TEST32ri,    X86::TEST32mi, 1, 0 },
309198090Srdivacky    { X86::TEST64ri32,  X86::TEST64mi32, 1, 0 },
310198090Srdivacky    { X86::TEST8ri,     X86::TEST8mi, 1, 0 }
311193323Sed  };
312193323Sed
313193323Sed  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
314193323Sed    unsigned RegOp = OpTbl0[i][0];
315193323Sed    unsigned MemOp = OpTbl0[i][1];
316198090Srdivacky    unsigned Align = OpTbl0[i][3];
317193323Sed    if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
318198090Srdivacky                                           std::make_pair(MemOp,Align))).second)
319193323Sed      assert(false && "Duplicated entries?");
320193323Sed    unsigned FoldedLoad = OpTbl0[i][2];
321193323Sed    // Index 0, folded load or store.
322193323Sed    unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
323193323Sed    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
324193323Sed      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
325193323Sed                                     std::make_pair(RegOp, AuxInfo))).second)
326193323Sed        AmbEntries.push_back(MemOp);
327193323Sed  }
328193323Sed
329198090Srdivacky  static const unsigned OpTbl1[][3] = {
330198090Srdivacky    { X86::CMP16rr,         X86::CMP16rm, 0 },
331198090Srdivacky    { X86::CMP32rr,         X86::CMP32rm, 0 },
332198090Srdivacky    { X86::CMP64rr,         X86::CMP64rm, 0 },
333198090Srdivacky    { X86::CMP8rr,          X86::CMP8rm, 0 },
334198090Srdivacky    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm, 0 },
335198090Srdivacky    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm, 0 },
336198090Srdivacky    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm, 0 },
337198090Srdivacky    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm, 0 },
338198090Srdivacky    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm, 0 },
339198090Srdivacky    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm, 0 },
340198090Srdivacky    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm, 0 },
341198090Srdivacky    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm, 0 },
342198090Srdivacky    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm, 0 },
343198090Srdivacky    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm, 0 },
344198090Srdivacky    { X86::FsMOVAPDrr,      X86::MOVSDrm, 0 },
345198090Srdivacky    { X86::FsMOVAPSrr,      X86::MOVSSrm, 0 },
346198090Srdivacky    { X86::IMUL16rri,       X86::IMUL16rmi, 0 },
347198090Srdivacky    { X86::IMUL16rri8,      X86::IMUL16rmi8, 0 },
348198090Srdivacky    { X86::IMUL32rri,       X86::IMUL32rmi, 0 },
349198090Srdivacky    { X86::IMUL32rri8,      X86::IMUL32rmi8, 0 },
350198090Srdivacky    { X86::IMUL64rri32,     X86::IMUL64rmi32, 0 },
351198090Srdivacky    { X86::IMUL64rri8,      X86::IMUL64rmi8, 0 },
352198090Srdivacky    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm, 0 },
353198090Srdivacky    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm, 0 },
354198090Srdivacky    { X86::Int_COMISDrr,    X86::Int_COMISDrm, 0 },
355198090Srdivacky    { X86::Int_COMISSrr,    X86::Int_COMISSrm, 0 },
356198090Srdivacky    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm, 16 },
357198090Srdivacky    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm, 16 },
358198090Srdivacky    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm, 16 },
359198090Srdivacky    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm, 16 },
360198090Srdivacky    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm, 16 },
361198090Srdivacky    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm, 0 },
362198090Srdivacky    { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm, 0 },
363198090Srdivacky    { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm, 0 },
364198090Srdivacky    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm, 0 },
365198090Srdivacky    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
366198090Srdivacky    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm, 0 },
367198090Srdivacky    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
368198090Srdivacky    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm, 0 },
369198090Srdivacky    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm, 0 },
370198090Srdivacky    { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 },
371198090Srdivacky    { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm, 0 },
372198090Srdivacky    { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm, 16 },
373198090Srdivacky    { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm, 16 },
374198090Srdivacky    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
375198090Srdivacky    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
376198090Srdivacky    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
377198090Srdivacky    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
378198090Srdivacky    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm, 0 },
379198090Srdivacky    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm, 0 },
380198090Srdivacky    { X86::MOV16rr,         X86::MOV16rm, 0 },
381198090Srdivacky    { X86::MOV32rr,         X86::MOV32rm, 0 },
382198090Srdivacky    { X86::MOV64rr,         X86::MOV64rm, 0 },
383198090Srdivacky    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm, 0 },
384198090Srdivacky    { X86::MOV64toSDrr,     X86::MOV64toSDrm, 0 },
385198090Srdivacky    { X86::MOV8rr,          X86::MOV8rm, 0 },
386198090Srdivacky    { X86::MOVAPDrr,        X86::MOVAPDrm, 16 },
387198090Srdivacky    { X86::MOVAPSrr,        X86::MOVAPSrm, 16 },
388198090Srdivacky    { X86::MOVDDUPrr,       X86::MOVDDUPrm, 0 },
389198090Srdivacky    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm, 0 },
390198090Srdivacky    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm, 0 },
391198090Srdivacky    { X86::MOVDQArr,        X86::MOVDQArm, 16 },
392198090Srdivacky    { X86::MOVSD2PDrr,      X86::MOVSD2PDrm, 0 },
393198090Srdivacky    { X86::MOVSDrr,         X86::MOVSDrm, 0 },
394198090Srdivacky    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm, 16 },
395198090Srdivacky    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm, 16 },
396198090Srdivacky    { X86::MOVSS2PSrr,      X86::MOVSS2PSrm, 0 },
397198090Srdivacky    { X86::MOVSSrr,         X86::MOVSSrm, 0 },
398198090Srdivacky    { X86::MOVSX16rr8,      X86::MOVSX16rm8, 0 },
399198090Srdivacky    { X86::MOVSX32rr16,     X86::MOVSX32rm16, 0 },
400198090Srdivacky    { X86::MOVSX32rr8,      X86::MOVSX32rm8, 0 },
401198090Srdivacky    { X86::MOVSX64rr16,     X86::MOVSX64rm16, 0 },
402198090Srdivacky    { X86::MOVSX64rr32,     X86::MOVSX64rm32, 0 },
403198090Srdivacky    { X86::MOVSX64rr8,      X86::MOVSX64rm8, 0 },
404198090Srdivacky    { X86::MOVUPDrr,        X86::MOVUPDrm, 16 },
405202878Srdivacky    { X86::MOVUPSrr,        X86::MOVUPSrm, 0 },
406198090Srdivacky    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm, 0 },
407198090Srdivacky    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm, 0 },
408198090Srdivacky    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 },
409198090Srdivacky    { X86::MOVZX16rr8,      X86::MOVZX16rm8, 0 },
410198090Srdivacky    { X86::MOVZX32rr16,     X86::MOVZX32rm16, 0 },
411198090Srdivacky    { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
412198090Srdivacky    { X86::MOVZX32rr8,      X86::MOVZX32rm8, 0 },
413198090Srdivacky    { X86::MOVZX64rr16,     X86::MOVZX64rm16, 0 },
414198090Srdivacky    { X86::MOVZX64rr32,     X86::MOVZX64rm32, 0 },
415198090Srdivacky    { X86::MOVZX64rr8,      X86::MOVZX64rm8, 0 },
416198090Srdivacky    { X86::PSHUFDri,        X86::PSHUFDmi, 16 },
417198090Srdivacky    { X86::PSHUFHWri,       X86::PSHUFHWmi, 16 },
418198090Srdivacky    { X86::PSHUFLWri,       X86::PSHUFLWmi, 16 },
419198090Srdivacky    { X86::RCPPSr,          X86::RCPPSm, 16 },
420198090Srdivacky    { X86::RCPPSr_Int,      X86::RCPPSm_Int, 16 },
421198090Srdivacky    { X86::RSQRTPSr,        X86::RSQRTPSm, 16 },
422198090Srdivacky    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int, 16 },
423198090Srdivacky    { X86::RSQRTSSr,        X86::RSQRTSSm, 0 },
424198090Srdivacky    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int, 0 },
425198090Srdivacky    { X86::SQRTPDr,         X86::SQRTPDm, 16 },
426198090Srdivacky    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int, 16 },
427198090Srdivacky    { X86::SQRTPSr,         X86::SQRTPSm, 16 },
428198090Srdivacky    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int, 16 },
429198090Srdivacky    { X86::SQRTSDr,         X86::SQRTSDm, 0 },
430198090Srdivacky    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int, 0 },
431198090Srdivacky    { X86::SQRTSSr,         X86::SQRTSSm, 0 },
432198090Srdivacky    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int, 0 },
433198090Srdivacky    { X86::TEST16rr,        X86::TEST16rm, 0 },
434198090Srdivacky    { X86::TEST32rr,        X86::TEST32rm, 0 },
435198090Srdivacky    { X86::TEST64rr,        X86::TEST64rm, 0 },
436198090Srdivacky    { X86::TEST8rr,         X86::TEST8rm, 0 },
437193323Sed    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
438198090Srdivacky    { X86::UCOMISDrr,       X86::UCOMISDrm, 0 },
439198090Srdivacky    { X86::UCOMISSrr,       X86::UCOMISSrm, 0 }
440193323Sed  };
441193323Sed
442193323Sed  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
443193323Sed    unsigned RegOp = OpTbl1[i][0];
444193323Sed    unsigned MemOp = OpTbl1[i][1];
445198090Srdivacky    unsigned Align = OpTbl1[i][2];
446193323Sed    if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
447198090Srdivacky                                           std::make_pair(MemOp,Align))).second)
448193323Sed      assert(false && "Duplicated entries?");
449198090Srdivacky    // Index 1, folded load
450198090Srdivacky    unsigned AuxInfo = 1 | (1 << 4);
451193323Sed    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
452193323Sed      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
453193323Sed                                     std::make_pair(RegOp, AuxInfo))).second)
454193323Sed        AmbEntries.push_back(MemOp);
455193323Sed  }
456193323Sed
457198090Srdivacky  static const unsigned OpTbl2[][3] = {
458198090Srdivacky    { X86::ADC32rr,         X86::ADC32rm, 0 },
459198090Srdivacky    { X86::ADC64rr,         X86::ADC64rm, 0 },
460198090Srdivacky    { X86::ADD16rr,         X86::ADD16rm, 0 },
461198090Srdivacky    { X86::ADD32rr,         X86::ADD32rm, 0 },
462198090Srdivacky    { X86::ADD64rr,         X86::ADD64rm, 0 },
463198090Srdivacky    { X86::ADD8rr,          X86::ADD8rm, 0 },
464198090Srdivacky    { X86::ADDPDrr,         X86::ADDPDrm, 16 },
465198090Srdivacky    { X86::ADDPSrr,         X86::ADDPSrm, 16 },
466198090Srdivacky    { X86::ADDSDrr,         X86::ADDSDrm, 0 },
467198090Srdivacky    { X86::ADDSSrr,         X86::ADDSSrm, 0 },
468198090Srdivacky    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm, 16 },
469198090Srdivacky    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm, 16 },
470198090Srdivacky    { X86::AND16rr,         X86::AND16rm, 0 },
471198090Srdivacky    { X86::AND32rr,         X86::AND32rm, 0 },
472198090Srdivacky    { X86::AND64rr,         X86::AND64rm, 0 },
473198090Srdivacky    { X86::AND8rr,          X86::AND8rm, 0 },
474198090Srdivacky    { X86::ANDNPDrr,        X86::ANDNPDrm, 16 },
475198090Srdivacky    { X86::ANDNPSrr,        X86::ANDNPSrm, 16 },
476198090Srdivacky    { X86::ANDPDrr,         X86::ANDPDrm, 16 },
477198090Srdivacky    { X86::ANDPSrr,         X86::ANDPSrm, 16 },
478198090Srdivacky    { X86::CMOVA16rr,       X86::CMOVA16rm, 0 },
479198090Srdivacky    { X86::CMOVA32rr,       X86::CMOVA32rm, 0 },
480198090Srdivacky    { X86::CMOVA64rr,       X86::CMOVA64rm, 0 },
481198090Srdivacky    { X86::CMOVAE16rr,      X86::CMOVAE16rm, 0 },
482198090Srdivacky    { X86::CMOVAE32rr,      X86::CMOVAE32rm, 0 },
483198090Srdivacky    { X86::CMOVAE64rr,      X86::CMOVAE64rm, 0 },
484198090Srdivacky    { X86::CMOVB16rr,       X86::CMOVB16rm, 0 },
485198090Srdivacky    { X86::CMOVB32rr,       X86::CMOVB32rm, 0 },
486198090Srdivacky    { X86::CMOVB64rr,       X86::CMOVB64rm, 0 },
487198090Srdivacky    { X86::CMOVBE16rr,      X86::CMOVBE16rm, 0 },
488198090Srdivacky    { X86::CMOVBE32rr,      X86::CMOVBE32rm, 0 },
489198090Srdivacky    { X86::CMOVBE64rr,      X86::CMOVBE64rm, 0 },
490198090Srdivacky    { X86::CMOVE16rr,       X86::CMOVE16rm, 0 },
491198090Srdivacky    { X86::CMOVE32rr,       X86::CMOVE32rm, 0 },
492198090Srdivacky    { X86::CMOVE64rr,       X86::CMOVE64rm, 0 },
493198090Srdivacky    { X86::CMOVG16rr,       X86::CMOVG16rm, 0 },
494198090Srdivacky    { X86::CMOVG32rr,       X86::CMOVG32rm, 0 },
495198090Srdivacky    { X86::CMOVG64rr,       X86::CMOVG64rm, 0 },
496198090Srdivacky    { X86::CMOVGE16rr,      X86::CMOVGE16rm, 0 },
497198090Srdivacky    { X86::CMOVGE32rr,      X86::CMOVGE32rm, 0 },
498198090Srdivacky    { X86::CMOVGE64rr,      X86::CMOVGE64rm, 0 },
499198090Srdivacky    { X86::CMOVL16rr,       X86::CMOVL16rm, 0 },
500198090Srdivacky    { X86::CMOVL32rr,       X86::CMOVL32rm, 0 },
501198090Srdivacky    { X86::CMOVL64rr,       X86::CMOVL64rm, 0 },
502198090Srdivacky    { X86::CMOVLE16rr,      X86::CMOVLE16rm, 0 },
503198090Srdivacky    { X86::CMOVLE32rr,      X86::CMOVLE32rm, 0 },
504198090Srdivacky    { X86::CMOVLE64rr,      X86::CMOVLE64rm, 0 },
505198090Srdivacky    { X86::CMOVNE16rr,      X86::CMOVNE16rm, 0 },
506198090Srdivacky    { X86::CMOVNE32rr,      X86::CMOVNE32rm, 0 },
507198090Srdivacky    { X86::CMOVNE64rr,      X86::CMOVNE64rm, 0 },
508198090Srdivacky    { X86::CMOVNO16rr,      X86::CMOVNO16rm, 0 },
509198090Srdivacky    { X86::CMOVNO32rr,      X86::CMOVNO32rm, 0 },
510198090Srdivacky    { X86::CMOVNO64rr,      X86::CMOVNO64rm, 0 },
511198090Srdivacky    { X86::CMOVNP16rr,      X86::CMOVNP16rm, 0 },
512198090Srdivacky    { X86::CMOVNP32rr,      X86::CMOVNP32rm, 0 },
513198090Srdivacky    { X86::CMOVNP64rr,      X86::CMOVNP64rm, 0 },
514198090Srdivacky    { X86::CMOVNS16rr,      X86::CMOVNS16rm, 0 },
515198090Srdivacky    { X86::CMOVNS32rr,      X86::CMOVNS32rm, 0 },
516198090Srdivacky    { X86::CMOVNS64rr,      X86::CMOVNS64rm, 0 },
517198090Srdivacky    { X86::CMOVO16rr,       X86::CMOVO16rm, 0 },
518198090Srdivacky    { X86::CMOVO32rr,       X86::CMOVO32rm, 0 },
519198090Srdivacky    { X86::CMOVO64rr,       X86::CMOVO64rm, 0 },
520198090Srdivacky    { X86::CMOVP16rr,       X86::CMOVP16rm, 0 },
521198090Srdivacky    { X86::CMOVP32rr,       X86::CMOVP32rm, 0 },
522198090Srdivacky    { X86::CMOVP64rr,       X86::CMOVP64rm, 0 },
523198090Srdivacky    { X86::CMOVS16rr,       X86::CMOVS16rm, 0 },
524198090Srdivacky    { X86::CMOVS32rr,       X86::CMOVS32rm, 0 },
525198090Srdivacky    { X86::CMOVS64rr,       X86::CMOVS64rm, 0 },
526198090Srdivacky    { X86::CMPPDrri,        X86::CMPPDrmi, 16 },
527198090Srdivacky    { X86::CMPPSrri,        X86::CMPPSrmi, 16 },
528198090Srdivacky    { X86::CMPSDrr,         X86::CMPSDrm, 0 },
529198090Srdivacky    { X86::CMPSSrr,         X86::CMPSSrm, 0 },
530198090Srdivacky    { X86::DIVPDrr,         X86::DIVPDrm, 16 },
531198090Srdivacky    { X86::DIVPSrr,         X86::DIVPSrm, 16 },
532198090Srdivacky    { X86::DIVSDrr,         X86::DIVSDrm, 0 },
533198090Srdivacky    { X86::DIVSSrr,         X86::DIVSSrm, 0 },
534198090Srdivacky    { X86::FsANDNPDrr,      X86::FsANDNPDrm, 16 },
535198090Srdivacky    { X86::FsANDNPSrr,      X86::FsANDNPSrm, 16 },
536198090Srdivacky    { X86::FsANDPDrr,       X86::FsANDPDrm, 16 },
537198090Srdivacky    { X86::FsANDPSrr,       X86::FsANDPSrm, 16 },
538198090Srdivacky    { X86::FsORPDrr,        X86::FsORPDrm, 16 },
539198090Srdivacky    { X86::FsORPSrr,        X86::FsORPSrm, 16 },
540198090Srdivacky    { X86::FsXORPDrr,       X86::FsXORPDrm, 16 },
541198090Srdivacky    { X86::FsXORPSrr,       X86::FsXORPSrm, 16 },
542198090Srdivacky    { X86::HADDPDrr,        X86::HADDPDrm, 16 },
543198090Srdivacky    { X86::HADDPSrr,        X86::HADDPSrm, 16 },
544198090Srdivacky    { X86::HSUBPDrr,        X86::HSUBPDrm, 16 },
545198090Srdivacky    { X86::HSUBPSrr,        X86::HSUBPSrm, 16 },
546198090Srdivacky    { X86::IMUL16rr,        X86::IMUL16rm, 0 },
547198090Srdivacky    { X86::IMUL32rr,        X86::IMUL32rm, 0 },
548198090Srdivacky    { X86::IMUL64rr,        X86::IMUL64rm, 0 },
549198090Srdivacky    { X86::MAXPDrr,         X86::MAXPDrm, 16 },
550198090Srdivacky    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int, 16 },
551198090Srdivacky    { X86::MAXPSrr,         X86::MAXPSrm, 16 },
552198090Srdivacky    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int, 16 },
553198090Srdivacky    { X86::MAXSDrr,         X86::MAXSDrm, 0 },
554198090Srdivacky    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int, 0 },
555198090Srdivacky    { X86::MAXSSrr,         X86::MAXSSrm, 0 },
556198090Srdivacky    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int, 0 },
557198090Srdivacky    { X86::MINPDrr,         X86::MINPDrm, 16 },
558198090Srdivacky    { X86::MINPDrr_Int,     X86::MINPDrm_Int, 16 },
559198090Srdivacky    { X86::MINPSrr,         X86::MINPSrm, 16 },
560198090Srdivacky    { X86::MINPSrr_Int,     X86::MINPSrm_Int, 16 },
561198090Srdivacky    { X86::MINSDrr,         X86::MINSDrm, 0 },
562198090Srdivacky    { X86::MINSDrr_Int,     X86::MINSDrm_Int, 0 },
563198090Srdivacky    { X86::MINSSrr,         X86::MINSSrm, 0 },
564198090Srdivacky    { X86::MINSSrr_Int,     X86::MINSSrm_Int, 0 },
565198090Srdivacky    { X86::MULPDrr,         X86::MULPDrm, 16 },
566198090Srdivacky    { X86::MULPSrr,         X86::MULPSrm, 16 },
567198090Srdivacky    { X86::MULSDrr,         X86::MULSDrm, 0 },
568198090Srdivacky    { X86::MULSSrr,         X86::MULSSrm, 0 },
569198090Srdivacky    { X86::OR16rr,          X86::OR16rm, 0 },
570198090Srdivacky    { X86::OR32rr,          X86::OR32rm, 0 },
571198090Srdivacky    { X86::OR64rr,          X86::OR64rm, 0 },
572198090Srdivacky    { X86::OR8rr,           X86::OR8rm, 0 },
573198090Srdivacky    { X86::ORPDrr,          X86::ORPDrm, 16 },
574198090Srdivacky    { X86::ORPSrr,          X86::ORPSrm, 16 },
575198090Srdivacky    { X86::PACKSSDWrr,      X86::PACKSSDWrm, 16 },
576198090Srdivacky    { X86::PACKSSWBrr,      X86::PACKSSWBrm, 16 },
577198090Srdivacky    { X86::PACKUSWBrr,      X86::PACKUSWBrm, 16 },
578198090Srdivacky    { X86::PADDBrr,         X86::PADDBrm, 16 },
579198090Srdivacky    { X86::PADDDrr,         X86::PADDDrm, 16 },
580198090Srdivacky    { X86::PADDQrr,         X86::PADDQrm, 16 },
581198090Srdivacky    { X86::PADDSBrr,        X86::PADDSBrm, 16 },
582198090Srdivacky    { X86::PADDSWrr,        X86::PADDSWrm, 16 },
583198090Srdivacky    { X86::PADDWrr,         X86::PADDWrm, 16 },
584198090Srdivacky    { X86::PANDNrr,         X86::PANDNrm, 16 },
585198090Srdivacky    { X86::PANDrr,          X86::PANDrm, 16 },
586198090Srdivacky    { X86::PAVGBrr,         X86::PAVGBrm, 16 },
587198090Srdivacky    { X86::PAVGWrr,         X86::PAVGWrm, 16 },
588198090Srdivacky    { X86::PCMPEQBrr,       X86::PCMPEQBrm, 16 },
589198090Srdivacky    { X86::PCMPEQDrr,       X86::PCMPEQDrm, 16 },
590198090Srdivacky    { X86::PCMPEQWrr,       X86::PCMPEQWrm, 16 },
591198090Srdivacky    { X86::PCMPGTBrr,       X86::PCMPGTBrm, 16 },
592198090Srdivacky    { X86::PCMPGTDrr,       X86::PCMPGTDrm, 16 },
593198090Srdivacky    { X86::PCMPGTWrr,       X86::PCMPGTWrm, 16 },
594198090Srdivacky    { X86::PINSRWrri,       X86::PINSRWrmi, 16 },
595198090Srdivacky    { X86::PMADDWDrr,       X86::PMADDWDrm, 16 },
596198090Srdivacky    { X86::PMAXSWrr,        X86::PMAXSWrm, 16 },
597198090Srdivacky    { X86::PMAXUBrr,        X86::PMAXUBrm, 16 },
598198090Srdivacky    { X86::PMINSWrr,        X86::PMINSWrm, 16 },
599198090Srdivacky    { X86::PMINUBrr,        X86::PMINUBrm, 16 },
600198090Srdivacky    { X86::PMULDQrr,        X86::PMULDQrm, 16 },
601198090Srdivacky    { X86::PMULHUWrr,       X86::PMULHUWrm, 16 },
602198090Srdivacky    { X86::PMULHWrr,        X86::PMULHWrm, 16 },
603198090Srdivacky    { X86::PMULLDrr,        X86::PMULLDrm, 16 },
604198090Srdivacky    { X86::PMULLDrr_int,    X86::PMULLDrm_int, 16 },
605198090Srdivacky    { X86::PMULLWrr,        X86::PMULLWrm, 16 },
606198090Srdivacky    { X86::PMULUDQrr,       X86::PMULUDQrm, 16 },
607198090Srdivacky    { X86::PORrr,           X86::PORrm, 16 },
608198090Srdivacky    { X86::PSADBWrr,        X86::PSADBWrm, 16 },
609198090Srdivacky    { X86::PSLLDrr,         X86::PSLLDrm, 16 },
610198090Srdivacky    { X86::PSLLQrr,         X86::PSLLQrm, 16 },
611198090Srdivacky    { X86::PSLLWrr,         X86::PSLLWrm, 16 },
612198090Srdivacky    { X86::PSRADrr,         X86::PSRADrm, 16 },
613198090Srdivacky    { X86::PSRAWrr,         X86::PSRAWrm, 16 },
614198090Srdivacky    { X86::PSRLDrr,         X86::PSRLDrm, 16 },
615198090Srdivacky    { X86::PSRLQrr,         X86::PSRLQrm, 16 },
616198090Srdivacky    { X86::PSRLWrr,         X86::PSRLWrm, 16 },
617198090Srdivacky    { X86::PSUBBrr,         X86::PSUBBrm, 16 },
618198090Srdivacky    { X86::PSUBDrr,         X86::PSUBDrm, 16 },
619198090Srdivacky    { X86::PSUBSBrr,        X86::PSUBSBrm, 16 },
620198090Srdivacky    { X86::PSUBSWrr,        X86::PSUBSWrm, 16 },
621198090Srdivacky    { X86::PSUBWrr,         X86::PSUBWrm, 16 },
622198090Srdivacky    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm, 16 },
623198090Srdivacky    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm, 16 },
624198090Srdivacky    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm, 16 },
625198090Srdivacky    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm, 16 },
626198090Srdivacky    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm, 16 },
627198090Srdivacky    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm, 16 },
628198090Srdivacky    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm, 16 },
629198090Srdivacky    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm, 16 },
630198090Srdivacky    { X86::PXORrr,          X86::PXORrm, 16 },
631198090Srdivacky    { X86::SBB32rr,         X86::SBB32rm, 0 },
632198090Srdivacky    { X86::SBB64rr,         X86::SBB64rm, 0 },
633198090Srdivacky    { X86::SHUFPDrri,       X86::SHUFPDrmi, 16 },
634198090Srdivacky    { X86::SHUFPSrri,       X86::SHUFPSrmi, 16 },
635198090Srdivacky    { X86::SUB16rr,         X86::SUB16rm, 0 },
636198090Srdivacky    { X86::SUB32rr,         X86::SUB32rm, 0 },
637198090Srdivacky    { X86::SUB64rr,         X86::SUB64rm, 0 },
638198090Srdivacky    { X86::SUB8rr,          X86::SUB8rm, 0 },
639198090Srdivacky    { X86::SUBPDrr,         X86::SUBPDrm, 16 },
640198090Srdivacky    { X86::SUBPSrr,         X86::SUBPSrm, 16 },
641198090Srdivacky    { X86::SUBSDrr,         X86::SUBSDrm, 0 },
642198090Srdivacky    { X86::SUBSSrr,         X86::SUBSSrm, 0 },
643193323Sed    // FIXME: TEST*rr -> swapped operand of TEST*mr.
644198090Srdivacky    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm, 16 },
645198090Srdivacky    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm, 16 },
646198090Srdivacky    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm, 16 },
647198090Srdivacky    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm, 16 },
648198090Srdivacky    { X86::XOR16rr,         X86::XOR16rm, 0 },
649198090Srdivacky    { X86::XOR32rr,         X86::XOR32rm, 0 },
650198090Srdivacky    { X86::XOR64rr,         X86::XOR64rm, 0 },
651198090Srdivacky    { X86::XOR8rr,          X86::XOR8rm, 0 },
652198090Srdivacky    { X86::XORPDrr,         X86::XORPDrm, 16 },
653198090Srdivacky    { X86::XORPSrr,         X86::XORPSrm, 16 }
654193323Sed  };
655193323Sed
656193323Sed  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
657193323Sed    unsigned RegOp = OpTbl2[i][0];
658193323Sed    unsigned MemOp = OpTbl2[i][1];
659198090Srdivacky    unsigned Align = OpTbl2[i][2];
660193323Sed    if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
661198090Srdivacky                                           std::make_pair(MemOp,Align))).second)
662193323Sed      assert(false && "Duplicated entries?");
663198090Srdivacky    // Index 2, folded load
664198090Srdivacky    unsigned AuxInfo = 2 | (1 << 4);
665193323Sed    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
666193323Sed                                   std::make_pair(RegOp, AuxInfo))).second)
667193323Sed      AmbEntries.push_back(MemOp);
668193323Sed  }
669193323Sed
670193323Sed  // Remove ambiguous entries.
671193323Sed  assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
672193323Sed}
673193323Sed
674193323Sedbool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
675193323Sed                               unsigned &SrcReg, unsigned &DstReg,
676193323Sed                               unsigned &SrcSubIdx, unsigned &DstSubIdx) const {
677193323Sed  switch (MI.getOpcode()) {
678193323Sed  default:
679193323Sed    return false;
680193323Sed  case X86::MOV8rr:
681193323Sed  case X86::MOV8rr_NOREX:
682193323Sed  case X86::MOV16rr:
683193323Sed  case X86::MOV32rr:
684193323Sed  case X86::MOV64rr:
685193323Sed  case X86::MOVSSrr:
686193323Sed  case X86::MOVSDrr:
687193323Sed
688193323Sed  // FP Stack register class copies
689193323Sed  case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
690193323Sed  case X86::MOV_Fp3264: case X86::MOV_Fp3280:
691193323Sed  case X86::MOV_Fp6432: case X86::MOV_Fp8032:
692193323Sed
693193323Sed  case X86::FsMOVAPSrr:
694193323Sed  case X86::FsMOVAPDrr:
695193323Sed  case X86::MOVAPSrr:
696193323Sed  case X86::MOVAPDrr:
697193323Sed  case X86::MOVDQArr:
698193323Sed  case X86::MOVSS2PSrr:
699193323Sed  case X86::MOVSD2PDrr:
700193323Sed  case X86::MOVPS2SSrr:
701193323Sed  case X86::MOVPD2SDrr:
702193323Sed  case X86::MMX_MOVQ64rr:
703193323Sed    assert(MI.getNumOperands() >= 2 &&
704193323Sed           MI.getOperand(0).isReg() &&
705193323Sed           MI.getOperand(1).isReg() &&
706193323Sed           "invalid register-register move instruction");
707193323Sed    SrcReg = MI.getOperand(1).getReg();
708193323Sed    DstReg = MI.getOperand(0).getReg();
709193323Sed    SrcSubIdx = MI.getOperand(1).getSubReg();
710193323Sed    DstSubIdx = MI.getOperand(0).getSubReg();
711193323Sed    return true;
712193323Sed  }
713193323Sed}
714193323Sed
715202375Srdivackybool
716202375SrdivackyX86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
717202375Srdivacky                                    unsigned &SrcReg, unsigned &DstReg,
718202375Srdivacky                                    unsigned &SubIdx) const {
719202375Srdivacky  switch (MI.getOpcode()) {
720202375Srdivacky  default: break;
721202375Srdivacky  case X86::MOVSX16rr8:
722202375Srdivacky  case X86::MOVZX16rr8:
723202375Srdivacky  case X86::MOVSX32rr8:
724202375Srdivacky  case X86::MOVZX32rr8:
725202375Srdivacky  case X86::MOVSX64rr8:
726202375Srdivacky  case X86::MOVZX64rr8:
727202375Srdivacky    if (!TM.getSubtarget<X86Subtarget>().is64Bit())
728202375Srdivacky      // It's not always legal to reference the low 8-bit of the larger
729202375Srdivacky      // register in 32-bit mode.
730202375Srdivacky      return false;
731202375Srdivacky  case X86::MOVSX32rr16:
732202375Srdivacky  case X86::MOVZX32rr16:
733202375Srdivacky  case X86::MOVSX64rr16:
734202375Srdivacky  case X86::MOVZX64rr16:
735202375Srdivacky  case X86::MOVSX64rr32:
736202375Srdivacky  case X86::MOVZX64rr32: {
737202375Srdivacky    if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
738202375Srdivacky      // Be conservative.
739202375Srdivacky      return false;
740202375Srdivacky    SrcReg = MI.getOperand(1).getReg();
741202375Srdivacky    DstReg = MI.getOperand(0).getReg();
742202375Srdivacky    switch (MI.getOpcode()) {
743202375Srdivacky    default:
744202375Srdivacky      llvm_unreachable(0);
745202375Srdivacky      break;
746202375Srdivacky    case X86::MOVSX16rr8:
747202375Srdivacky    case X86::MOVZX16rr8:
748202375Srdivacky    case X86::MOVSX32rr8:
749202375Srdivacky    case X86::MOVZX32rr8:
750202375Srdivacky    case X86::MOVSX64rr8:
751202375Srdivacky    case X86::MOVZX64rr8:
752202375Srdivacky      SubIdx = 1;
753202375Srdivacky      break;
754202375Srdivacky    case X86::MOVSX32rr16:
755202375Srdivacky    case X86::MOVZX32rr16:
756202375Srdivacky    case X86::MOVSX64rr16:
757202375Srdivacky    case X86::MOVZX64rr16:
758202375Srdivacky      SubIdx = 3;
759202375Srdivacky      break;
760202375Srdivacky    case X86::MOVSX64rr32:
761202375Srdivacky    case X86::MOVZX64rr32:
762202375Srdivacky      SubIdx = 4;
763202375Srdivacky      break;
764202375Srdivacky    }
765202375Srdivacky    return true;
766202375Srdivacky  }
767202375Srdivacky  }
768202375Srdivacky  return false;
769202375Srdivacky}
770202375Srdivacky
771199481Srdivacky/// isFrameOperand - Return true and the FrameIndex if the specified
772199481Srdivacky/// operand and follow operands form a reference to the stack frame.
773199481Srdivackybool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
774199481Srdivacky                                  int &FrameIndex) const {
775199481Srdivacky  if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
776199481Srdivacky      MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
777199481Srdivacky      MI->getOperand(Op+1).getImm() == 1 &&
778199481Srdivacky      MI->getOperand(Op+2).getReg() == 0 &&
779199481Srdivacky      MI->getOperand(Op+3).getImm() == 0) {
780199481Srdivacky    FrameIndex = MI->getOperand(Op).getIndex();
781199481Srdivacky    return true;
782199481Srdivacky  }
783199481Srdivacky  return false;
784199481Srdivacky}
785199481Srdivacky
786199481Srdivackystatic bool isFrameLoadOpcode(int Opcode) {
787199481Srdivacky  switch (Opcode) {
788193323Sed  default: break;
789193323Sed  case X86::MOV8rm:
790193323Sed  case X86::MOV16rm:
791193323Sed  case X86::MOV32rm:
792193323Sed  case X86::MOV64rm:
793193323Sed  case X86::LD_Fp64m:
794193323Sed  case X86::MOVSSrm:
795193323Sed  case X86::MOVSDrm:
796193323Sed  case X86::MOVAPSrm:
797193323Sed  case X86::MOVAPDrm:
798193323Sed  case X86::MOVDQArm:
799193323Sed  case X86::MMX_MOVD64rm:
800193323Sed  case X86::MMX_MOVQ64rm:
801199481Srdivacky    return true;
802193323Sed    break;
803193323Sed  }
804199481Srdivacky  return false;
805193323Sed}
806193323Sed
807199481Srdivackystatic bool isFrameStoreOpcode(int Opcode) {
808199481Srdivacky  switch (Opcode) {
809193323Sed  default: break;
810193323Sed  case X86::MOV8mr:
811193323Sed  case X86::MOV16mr:
812193323Sed  case X86::MOV32mr:
813193323Sed  case X86::MOV64mr:
814193323Sed  case X86::ST_FpP64m:
815193323Sed  case X86::MOVSSmr:
816193323Sed  case X86::MOVSDmr:
817193323Sed  case X86::MOVAPSmr:
818193323Sed  case X86::MOVAPDmr:
819193323Sed  case X86::MOVDQAmr:
820193323Sed  case X86::MMX_MOVD64mr:
821193323Sed  case X86::MMX_MOVQ64mr:
822193323Sed  case X86::MMX_MOVNTQmr:
823199481Srdivacky    return true;
824199481Srdivacky  }
825199481Srdivacky  return false;
826199481Srdivacky}
827199481Srdivacky
828199481Srdivackyunsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
829199481Srdivacky                                           int &FrameIndex) const {
830199481Srdivacky  if (isFrameLoadOpcode(MI->getOpcode()))
831199481Srdivacky    if (isFrameOperand(MI, 1, FrameIndex))
832199481Srdivacky      return MI->getOperand(0).getReg();
833199481Srdivacky  return 0;
834199481Srdivacky}
835199481Srdivacky
836199481Srdivackyunsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
837199481Srdivacky                                                 int &FrameIndex) const {
838199481Srdivacky  if (isFrameLoadOpcode(MI->getOpcode())) {
839199481Srdivacky    unsigned Reg;
840199481Srdivacky    if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
841199481Srdivacky      return Reg;
842199481Srdivacky    // Check for post-frame index elimination operations
843200581Srdivacky    const MachineMemOperand *Dummy;
844200581Srdivacky    return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
845199481Srdivacky  }
846199481Srdivacky  return 0;
847199481Srdivacky}
848199481Srdivacky
849199481Srdivackybool X86InstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
850200581Srdivacky                                        const MachineMemOperand *&MMO,
851199481Srdivacky                                        int &FrameIndex) const {
852199481Srdivacky  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
853199481Srdivacky         oe = MI->memoperands_end();
854199481Srdivacky       o != oe;
855199481Srdivacky       ++o) {
856199481Srdivacky    if ((*o)->isLoad() && (*o)->getValue())
857199481Srdivacky      if (const FixedStackPseudoSourceValue *Value =
858199481Srdivacky          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
859199481Srdivacky        FrameIndex = Value->getFrameIndex();
860200581Srdivacky        MMO = *o;
861199481Srdivacky        return true;
862199481Srdivacky      }
863199481Srdivacky  }
864199481Srdivacky  return false;
865199481Srdivacky}
866199481Srdivacky
867199481Srdivackyunsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
868199481Srdivacky                                          int &FrameIndex) const {
869199481Srdivacky  if (isFrameStoreOpcode(MI->getOpcode()))
870199481Srdivacky    if (isFrameOperand(MI, 0, FrameIndex))
871193323Sed      return MI->getOperand(X86AddrNumOperands).getReg();
872199481Srdivacky  return 0;
873199481Srdivacky}
874199481Srdivacky
875199481Srdivackyunsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
876199481Srdivacky                                                int &FrameIndex) const {
877199481Srdivacky  if (isFrameStoreOpcode(MI->getOpcode())) {
878199481Srdivacky    unsigned Reg;
879199481Srdivacky    if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
880199481Srdivacky      return Reg;
881199481Srdivacky    // Check for post-frame index elimination operations
882200581Srdivacky    const MachineMemOperand *Dummy;
883200581Srdivacky    return hasStoreToStackSlot(MI, Dummy, FrameIndex);
884193323Sed  }
885193323Sed  return 0;
886193323Sed}
887193323Sed
888199481Srdivackybool X86InstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
889200581Srdivacky                                       const MachineMemOperand *&MMO,
890199481Srdivacky                                       int &FrameIndex) const {
891199481Srdivacky  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
892199481Srdivacky         oe = MI->memoperands_end();
893199481Srdivacky       o != oe;
894199481Srdivacky       ++o) {
895199481Srdivacky    if ((*o)->isStore() && (*o)->getValue())
896199481Srdivacky      if (const FixedStackPseudoSourceValue *Value =
897199481Srdivacky          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
898199481Srdivacky        FrameIndex = Value->getFrameIndex();
899200581Srdivacky        MMO = *o;
900199481Srdivacky        return true;
901199481Srdivacky      }
902199481Srdivacky  }
903199481Srdivacky  return false;
904199481Srdivacky}
905199481Srdivacky
906193323Sed/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
907193323Sed/// X86::MOVPC32r.
908193323Sedstatic bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
909193323Sed  bool isPICBase = false;
910193323Sed  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
911193323Sed         E = MRI.def_end(); I != E; ++I) {
912193323Sed    MachineInstr *DefMI = I.getOperand().getParent();
913193323Sed    if (DefMI->getOpcode() != X86::MOVPC32r)
914193323Sed      return false;
915193323Sed    assert(!isPICBase && "More than one PIC base?");
916193323Sed    isPICBase = true;
917193323Sed  }
918193323Sed  return isPICBase;
919193323Sed}
920193323Sed
921193323Sedbool
922198090SrdivackyX86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
923198090Srdivacky                                                AliasAnalysis *AA) const {
924193323Sed  switch (MI->getOpcode()) {
925193323Sed  default: break;
926193323Sed    case X86::MOV8rm:
927193323Sed    case X86::MOV16rm:
928193323Sed    case X86::MOV32rm:
929193323Sed    case X86::MOV64rm:
930193323Sed    case X86::LD_Fp64m:
931193323Sed    case X86::MOVSSrm:
932193323Sed    case X86::MOVSDrm:
933193323Sed    case X86::MOVAPSrm:
934199481Srdivacky    case X86::MOVUPSrm:
935199481Srdivacky    case X86::MOVUPSrm_Int:
936193323Sed    case X86::MOVAPDrm:
937193323Sed    case X86::MOVDQArm:
938193323Sed    case X86::MMX_MOVD64rm:
939199481Srdivacky    case X86::MMX_MOVQ64rm:
940199481Srdivacky    case X86::FsMOVAPSrm:
941199481Srdivacky    case X86::FsMOVAPDrm: {
942193323Sed      // Loads from constant pools are trivially rematerializable.
943193323Sed      if (MI->getOperand(1).isReg() &&
944193323Sed          MI->getOperand(2).isImm() &&
945193323Sed          MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
946198090Srdivacky          MI->isInvariantLoad(AA)) {
947193323Sed        unsigned BaseReg = MI->getOperand(1).getReg();
948195098Sed        if (BaseReg == 0 || BaseReg == X86::RIP)
949193323Sed          return true;
950193323Sed        // Allow re-materialization of PIC load.
951193323Sed        if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
952193323Sed          return false;
953193323Sed        const MachineFunction &MF = *MI->getParent()->getParent();
954193323Sed        const MachineRegisterInfo &MRI = MF.getRegInfo();
955193323Sed        bool isPICBase = false;
956193323Sed        for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
957193323Sed               E = MRI.def_end(); I != E; ++I) {
958193323Sed          MachineInstr *DefMI = I.getOperand().getParent();
959193323Sed          if (DefMI->getOpcode() != X86::MOVPC32r)
960193323Sed            return false;
961193323Sed          assert(!isPICBase && "More than one PIC base?");
962193323Sed          isPICBase = true;
963193323Sed        }
964193323Sed        return isPICBase;
965193323Sed      }
966193323Sed      return false;
967193323Sed    }
968193323Sed
969193323Sed     case X86::LEA32r:
970193323Sed     case X86::LEA64r: {
971193323Sed       if (MI->getOperand(2).isImm() &&
972193323Sed           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
973193323Sed           !MI->getOperand(4).isReg()) {
974193323Sed         // lea fi#, lea GV, etc. are all rematerializable.
975193323Sed         if (!MI->getOperand(1).isReg())
976193323Sed           return true;
977193323Sed         unsigned BaseReg = MI->getOperand(1).getReg();
978193323Sed         if (BaseReg == 0)
979193323Sed           return true;
980193323Sed         // Allow re-materialization of lea PICBase + x.
981193323Sed         const MachineFunction &MF = *MI->getParent()->getParent();
982193323Sed         const MachineRegisterInfo &MRI = MF.getRegInfo();
983193323Sed         return regIsPICBase(BaseReg, MRI);
984193323Sed       }
985193323Sed       return false;
986193323Sed     }
987193323Sed  }
988193323Sed
989193323Sed  // All other instructions marked M_REMATERIALIZABLE are always trivially
990193323Sed  // rematerializable.
991193323Sed  return true;
992193323Sed}
993193323Sed
994193323Sed/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
995193323Sed/// would clobber the EFLAGS condition register. Note the result may be
996193323Sed/// conservative. If it cannot definitely determine the safety after visiting
997198090Srdivacky/// a few instructions in each direction it assumes it's not safe.
998193323Sedstatic bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
999193323Sed                                  MachineBasicBlock::iterator I) {
1000193323Sed  // It's always safe to clobber EFLAGS at the end of a block.
1001193323Sed  if (I == MBB.end())
1002193323Sed    return true;
1003193323Sed
1004193323Sed  // For compile time consideration, if we are not able to determine the
1005198090Srdivacky  // safety after visiting 4 instructions in each direction, we will assume
1006198090Srdivacky  // it's not safe.
1007198090Srdivacky  MachineBasicBlock::iterator Iter = I;
1008198090Srdivacky  for (unsigned i = 0; i < 4; ++i) {
1009193323Sed    bool SeenDef = false;
1010198090Srdivacky    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1011198090Srdivacky      MachineOperand &MO = Iter->getOperand(j);
1012193323Sed      if (!MO.isReg())
1013193323Sed        continue;
1014193323Sed      if (MO.getReg() == X86::EFLAGS) {
1015193323Sed        if (MO.isUse())
1016193323Sed          return false;
1017193323Sed        SeenDef = true;
1018193323Sed      }
1019193323Sed    }
1020193323Sed
1021193323Sed    if (SeenDef)
1022193323Sed      // This instruction defines EFLAGS, no need to look any further.
1023193323Sed      return true;
1024198090Srdivacky    ++Iter;
1025193323Sed
1026193323Sed    // If we make it to the end of the block, it's safe to clobber EFLAGS.
1027198090Srdivacky    if (Iter == MBB.end())
1028193323Sed      return true;
1029193323Sed  }
1030193323Sed
1031198090Srdivacky  Iter = I;
1032198090Srdivacky  for (unsigned i = 0; i < 4; ++i) {
1033198090Srdivacky    // If we make it to the beginning of the block, it's safe to clobber
1034198090Srdivacky    // EFLAGS iff EFLAGS is not live-in.
1035198090Srdivacky    if (Iter == MBB.begin())
1036198090Srdivacky      return !MBB.isLiveIn(X86::EFLAGS);
1037198090Srdivacky
1038198090Srdivacky    --Iter;
1039198090Srdivacky    bool SawKill = false;
1040198090Srdivacky    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1041198090Srdivacky      MachineOperand &MO = Iter->getOperand(j);
1042198090Srdivacky      if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
1043198090Srdivacky        if (MO.isDef()) return MO.isDead();
1044198090Srdivacky        if (MO.isKill()) SawKill = true;
1045198090Srdivacky      }
1046198090Srdivacky    }
1047198090Srdivacky
1048198090Srdivacky    if (SawKill)
1049198090Srdivacky      // This instruction kills EFLAGS and doesn't redefine it, so
1050198090Srdivacky      // there's no need to look further.
1051198090Srdivacky      return true;
1052198090Srdivacky  }
1053198090Srdivacky
1054193323Sed  // Conservative answer.
1055193323Sed  return false;
1056193323Sed}
1057193323Sed
1058193323Sedvoid X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1059193323Sed                                 MachineBasicBlock::iterator I,
1060198090Srdivacky                                 unsigned DestReg, unsigned SubIdx,
1061199481Srdivacky                                 const MachineInstr *Orig,
1062199481Srdivacky                                 const TargetRegisterInfo *TRI) const {
1063193323Sed  DebugLoc DL = DebugLoc::getUnknownLoc();
1064193323Sed  if (I != MBB.end()) DL = I->getDebugLoc();
1065193323Sed
1066193323Sed  if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
1067199481Srdivacky    DestReg = TRI->getSubReg(DestReg, SubIdx);
1068193323Sed    SubIdx = 0;
1069193323Sed  }
1070193323Sed
1071193323Sed  // MOV32r0 etc. are implemented with xor which clobbers condition code.
1072193323Sed  // Re-materialize them as movri instructions to avoid side effects.
1073198090Srdivacky  bool Clone = true;
1074198090Srdivacky  unsigned Opc = Orig->getOpcode();
1075198090Srdivacky  switch (Opc) {
1076193323Sed  default: break;
1077193323Sed  case X86::MOV8r0:
1078202375Srdivacky  case X86::MOV16r0:
1079202375Srdivacky  case X86::MOV32r0:
1080202375Srdivacky  case X86::MOV64r0: {
1081193323Sed    if (!isSafeToClobberEFLAGS(MBB, I)) {
1082198090Srdivacky      switch (Opc) {
1083193323Sed      default: break;
1084193323Sed      case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
1085202375Srdivacky      case X86::MOV16r0: Opc = X86::MOV16ri; break;
1086193323Sed      case X86::MOV32r0: Opc = X86::MOV32ri; break;
1087202375Srdivacky      case X86::MOV64r0: Opc = X86::MOV64ri; break;
1088193323Sed      }
1089198090Srdivacky      Clone = false;
1090193323Sed    }
1091193323Sed    break;
1092193323Sed  }
1093193323Sed  }
1094193323Sed
1095198090Srdivacky  if (Clone) {
1096193323Sed    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1097193323Sed    MI->getOperand(0).setReg(DestReg);
1098193323Sed    MBB.insert(I, MI);
1099198090Srdivacky  } else {
1100198090Srdivacky    BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0);
1101193323Sed  }
1102193323Sed
1103198090Srdivacky  MachineInstr *NewMI = prior(I);
1104198090Srdivacky  NewMI->getOperand(0).setSubReg(SubIdx);
1105193323Sed}
1106193323Sed
1107193323Sed/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1108193323Sed/// is not marked dead.
1109193323Sedstatic bool hasLiveCondCodeDef(MachineInstr *MI) {
1110193323Sed  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1111193323Sed    MachineOperand &MO = MI->getOperand(i);
1112193323Sed    if (MO.isReg() && MO.isDef() &&
1113193323Sed        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1114193323Sed      return true;
1115193323Sed    }
1116193323Sed  }
1117193323Sed  return false;
1118193323Sed}
1119193323Sed
1120200581Srdivacky/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
1121200581Srdivacky/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1122200581Srdivacky/// to a 32-bit superregister and then truncating back down to a 16-bit
1123200581Srdivacky/// subregister.
1124200581SrdivackyMachineInstr *
1125200581SrdivackyX86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1126200581Srdivacky                                           MachineFunction::iterator &MFI,
1127200581Srdivacky                                           MachineBasicBlock::iterator &MBBI,
1128200581Srdivacky                                           LiveVariables *LV) const {
1129200581Srdivacky  MachineInstr *MI = MBBI;
1130200581Srdivacky  unsigned Dest = MI->getOperand(0).getReg();
1131200581Srdivacky  unsigned Src = MI->getOperand(1).getReg();
1132200581Srdivacky  bool isDead = MI->getOperand(0).isDead();
1133200581Srdivacky  bool isKill = MI->getOperand(1).isKill();
1134200581Srdivacky
1135200581Srdivacky  unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1136200581Srdivacky    ? X86::LEA64_32r : X86::LEA32r;
1137200581Srdivacky  MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1138200581Srdivacky  unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1139200581Srdivacky  unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1140200581Srdivacky
1141200581Srdivacky  // Build and insert into an implicit UNDEF value. This is OK because
1142200581Srdivacky  // well be shifting and then extracting the lower 16-bits.
1143200581Srdivacky  // This has the potential to cause partial register stall. e.g.
1144200581Srdivacky  //   movw    (%rbp,%rcx,2), %dx
1145200581Srdivacky  //   leal    -65(%rdx), %esi
1146200581Srdivacky  // But testing has shown this *does* help performance in 64-bit mode (at
1147200581Srdivacky  // least on modern x86 machines).
1148200581Srdivacky  BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1149200581Srdivacky  MachineInstr *InsMI =
1150200581Srdivacky    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg)
1151200581Srdivacky    .addReg(leaInReg)
1152200581Srdivacky    .addReg(Src, getKillRegState(isKill))
1153200581Srdivacky    .addImm(X86::SUBREG_16BIT);
1154200581Srdivacky
1155200581Srdivacky  MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
1156200581Srdivacky                                    get(Opc), leaOutReg);
1157200581Srdivacky  switch (MIOpc) {
1158200581Srdivacky  default:
1159200581Srdivacky    llvm_unreachable(0);
1160200581Srdivacky    break;
1161200581Srdivacky  case X86::SHL16ri: {
1162200581Srdivacky    unsigned ShAmt = MI->getOperand(2).getImm();
1163200581Srdivacky    MIB.addReg(0).addImm(1 << ShAmt)
1164200581Srdivacky       .addReg(leaInReg, RegState::Kill).addImm(0);
1165200581Srdivacky    break;
1166200581Srdivacky  }
1167200581Srdivacky  case X86::INC16r:
1168200581Srdivacky  case X86::INC64_16r:
1169200581Srdivacky    addLeaRegOffset(MIB, leaInReg, true, 1);
1170200581Srdivacky    break;
1171200581Srdivacky  case X86::DEC16r:
1172200581Srdivacky  case X86::DEC64_16r:
1173200581Srdivacky    addLeaRegOffset(MIB, leaInReg, true, -1);
1174200581Srdivacky    break;
1175200581Srdivacky  case X86::ADD16ri:
1176200581Srdivacky  case X86::ADD16ri8:
1177200581Srdivacky    addLeaRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
1178200581Srdivacky    break;
1179200581Srdivacky  case X86::ADD16rr: {
1180200581Srdivacky    unsigned Src2 = MI->getOperand(2).getReg();
1181200581Srdivacky    bool isKill2 = MI->getOperand(2).isKill();
1182200581Srdivacky    unsigned leaInReg2 = 0;
1183200581Srdivacky    MachineInstr *InsMI2 = 0;
1184200581Srdivacky    if (Src == Src2) {
1185200581Srdivacky      // ADD16rr %reg1028<kill>, %reg1028
1186200581Srdivacky      // just a single insert_subreg.
1187200581Srdivacky      addRegReg(MIB, leaInReg, true, leaInReg, false);
1188200581Srdivacky    } else {
1189200581Srdivacky      leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1190200581Srdivacky      // Build and insert into an implicit UNDEF value. This is OK because
1191200581Srdivacky      // well be shifting and then extracting the lower 16-bits.
1192200581Srdivacky      BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2);
1193200581Srdivacky      InsMI2 =
1194200581Srdivacky        BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg2)
1195200581Srdivacky        .addReg(leaInReg2)
1196200581Srdivacky        .addReg(Src2, getKillRegState(isKill2))
1197200581Srdivacky        .addImm(X86::SUBREG_16BIT);
1198200581Srdivacky      addRegReg(MIB, leaInReg, true, leaInReg2, true);
1199200581Srdivacky    }
1200200581Srdivacky    if (LV && isKill2 && InsMI2)
1201200581Srdivacky      LV->replaceKillInstruction(Src2, MI, InsMI2);
1202200581Srdivacky    break;
1203200581Srdivacky  }
1204200581Srdivacky  }
1205200581Srdivacky
1206200581Srdivacky  MachineInstr *NewMI = MIB;
1207200581Srdivacky  MachineInstr *ExtMI =
1208200581Srdivacky    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::EXTRACT_SUBREG))
1209200581Srdivacky    .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1210200581Srdivacky    .addReg(leaOutReg, RegState::Kill)
1211200581Srdivacky    .addImm(X86::SUBREG_16BIT);
1212200581Srdivacky
1213200581Srdivacky  if (LV) {
1214200581Srdivacky    // Update live variables
1215200581Srdivacky    LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1216200581Srdivacky    LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1217200581Srdivacky    if (isKill)
1218200581Srdivacky      LV->replaceKillInstruction(Src, MI, InsMI);
1219200581Srdivacky    if (isDead)
1220200581Srdivacky      LV->replaceKillInstruction(Dest, MI, ExtMI);
1221200581Srdivacky  }
1222200581Srdivacky
1223200581Srdivacky  return ExtMI;
1224200581Srdivacky}
1225200581Srdivacky
1226193323Sed/// convertToThreeAddress - This method must be implemented by targets that
1227193323Sed/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
1228193323Sed/// may be able to convert a two-address instruction into a true
1229193323Sed/// three-address instruction on demand.  This allows the X86 target (for
1230193323Sed/// example) to convert ADD and SHL instructions into LEA instructions if they
1231193323Sed/// would require register copies due to two-addressness.
1232193323Sed///
1233193323Sed/// This method returns a null pointer if the transformation cannot be
1234193323Sed/// performed, otherwise it returns the new instruction.
1235193323Sed///
1236193323SedMachineInstr *
1237193323SedX86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1238193323Sed                                    MachineBasicBlock::iterator &MBBI,
1239193323Sed                                    LiveVariables *LV) const {
1240193323Sed  MachineInstr *MI = MBBI;
1241193323Sed  MachineFunction &MF = *MI->getParent()->getParent();
1242193323Sed  // All instructions input are two-addr instructions.  Get the known operands.
1243193323Sed  unsigned Dest = MI->getOperand(0).getReg();
1244193323Sed  unsigned Src = MI->getOperand(1).getReg();
1245193323Sed  bool isDead = MI->getOperand(0).isDead();
1246193323Sed  bool isKill = MI->getOperand(1).isKill();
1247193323Sed
1248193323Sed  MachineInstr *NewMI = NULL;
1249193323Sed  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
1250193323Sed  // we have better subtarget support, enable the 16-bit LEA generation here.
1251200581Srdivacky  // 16-bit LEA is also slow on Core2.
1252193323Sed  bool DisableLEA16 = true;
1253200581Srdivacky  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1254193323Sed
1255193323Sed  unsigned MIOpc = MI->getOpcode();
1256193323Sed  switch (MIOpc) {
1257193323Sed  case X86::SHUFPSrri: {
1258193323Sed    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1259193323Sed    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1260193323Sed
1261193323Sed    unsigned B = MI->getOperand(1).getReg();
1262193323Sed    unsigned C = MI->getOperand(2).getReg();
1263193323Sed    if (B != C) return 0;
1264193323Sed    unsigned A = MI->getOperand(0).getReg();
1265193323Sed    unsigned M = MI->getOperand(3).getImm();
1266193323Sed    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1267193323Sed      .addReg(A, RegState::Define | getDeadRegState(isDead))
1268193323Sed      .addReg(B, getKillRegState(isKill)).addImm(M);
1269193323Sed    break;
1270193323Sed  }
1271193323Sed  case X86::SHL64ri: {
1272193323Sed    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1273193323Sed    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1274193323Sed    // the flags produced by a shift yet, so this is safe.
1275193323Sed    unsigned ShAmt = MI->getOperand(2).getImm();
1276193323Sed    if (ShAmt == 0 || ShAmt >= 4) return 0;
1277193323Sed
1278193323Sed    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1279193323Sed      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1280193323Sed      .addReg(0).addImm(1 << ShAmt)
1281193323Sed      .addReg(Src, getKillRegState(isKill))
1282193323Sed      .addImm(0);
1283193323Sed    break;
1284193323Sed  }
1285193323Sed  case X86::SHL32ri: {
1286193323Sed    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1287193323Sed    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1288193323Sed    // the flags produced by a shift yet, so this is safe.
1289193323Sed    unsigned ShAmt = MI->getOperand(2).getImm();
1290193323Sed    if (ShAmt == 0 || ShAmt >= 4) return 0;
1291193323Sed
1292200581Srdivacky    unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1293193323Sed    NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
1294193323Sed      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1295193323Sed      .addReg(0).addImm(1 << ShAmt)
1296193323Sed      .addReg(Src, getKillRegState(isKill)).addImm(0);
1297193323Sed    break;
1298193323Sed  }
1299193323Sed  case X86::SHL16ri: {
1300193323Sed    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1301193323Sed    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1302193323Sed    // the flags produced by a shift yet, so this is safe.
1303193323Sed    unsigned ShAmt = MI->getOperand(2).getImm();
1304193323Sed    if (ShAmt == 0 || ShAmt >= 4) return 0;
1305193323Sed
1306200581Srdivacky    if (DisableLEA16)
1307200581Srdivacky      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1308200581Srdivacky    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1309200581Srdivacky      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1310200581Srdivacky      .addReg(0).addImm(1 << ShAmt)
1311200581Srdivacky      .addReg(Src, getKillRegState(isKill))
1312200581Srdivacky      .addImm(0);
1313193323Sed    break;
1314193323Sed  }
1315193323Sed  default: {
1316193323Sed    // The following opcodes also sets the condition code register(s). Only
1317193323Sed    // convert them to equivalent lea if the condition code register def's
1318193323Sed    // are dead!
1319193323Sed    if (hasLiveCondCodeDef(MI))
1320193323Sed      return 0;
1321193323Sed
1322193323Sed    switch (MIOpc) {
1323193323Sed    default: return 0;
1324193323Sed    case X86::INC64r:
1325193323Sed    case X86::INC32r:
1326193323Sed    case X86::INC64_32r: {
1327193323Sed      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1328193323Sed      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1329193323Sed        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1330193323Sed      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1331193323Sed                              .addReg(Dest, RegState::Define |
1332193323Sed                                      getDeadRegState(isDead)),
1333193323Sed                              Src, isKill, 1);
1334193323Sed      break;
1335193323Sed    }
1336193323Sed    case X86::INC16r:
1337193323Sed    case X86::INC64_16r:
1338200581Srdivacky      if (DisableLEA16)
1339200581Srdivacky        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1340193323Sed      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1341193323Sed      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1342193323Sed                           .addReg(Dest, RegState::Define |
1343193323Sed                                   getDeadRegState(isDead)),
1344193323Sed                           Src, isKill, 1);
1345193323Sed      break;
1346193323Sed    case X86::DEC64r:
1347193323Sed    case X86::DEC32r:
1348193323Sed    case X86::DEC64_32r: {
1349193323Sed      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1350193323Sed      unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1351193323Sed        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1352193323Sed      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1353193323Sed                              .addReg(Dest, RegState::Define |
1354193323Sed                                      getDeadRegState(isDead)),
1355193323Sed                              Src, isKill, -1);
1356193323Sed      break;
1357193323Sed    }
1358193323Sed    case X86::DEC16r:
1359193323Sed    case X86::DEC64_16r:
1360200581Srdivacky      if (DisableLEA16)
1361200581Srdivacky        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1362193323Sed      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1363193323Sed      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1364193323Sed                           .addReg(Dest, RegState::Define |
1365193323Sed                                   getDeadRegState(isDead)),
1366193323Sed                           Src, isKill, -1);
1367193323Sed      break;
1368193323Sed    case X86::ADD64rr:
1369193323Sed    case X86::ADD32rr: {
1370193323Sed      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1371193323Sed      unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1372193323Sed        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1373193323Sed      unsigned Src2 = MI->getOperand(2).getReg();
1374193323Sed      bool isKill2 = MI->getOperand(2).isKill();
1375193323Sed      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1376193323Sed                        .addReg(Dest, RegState::Define |
1377193323Sed                                getDeadRegState(isDead)),
1378193323Sed                        Src, isKill, Src2, isKill2);
1379193323Sed      if (LV && isKill2)
1380193323Sed        LV->replaceKillInstruction(Src2, MI, NewMI);
1381193323Sed      break;
1382193323Sed    }
1383193323Sed    case X86::ADD16rr: {
1384200581Srdivacky      if (DisableLEA16)
1385200581Srdivacky        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1386193323Sed      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1387193323Sed      unsigned Src2 = MI->getOperand(2).getReg();
1388193323Sed      bool isKill2 = MI->getOperand(2).isKill();
1389193323Sed      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1390193323Sed                        .addReg(Dest, RegState::Define |
1391193323Sed                                getDeadRegState(isDead)),
1392193323Sed                        Src, isKill, Src2, isKill2);
1393193323Sed      if (LV && isKill2)
1394193323Sed        LV->replaceKillInstruction(Src2, MI, NewMI);
1395193323Sed      break;
1396193323Sed    }
1397193323Sed    case X86::ADD64ri32:
1398193323Sed    case X86::ADD64ri8:
1399193323Sed      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1400200581Srdivacky      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1401200581Srdivacky                              .addReg(Dest, RegState::Define |
1402200581Srdivacky                                      getDeadRegState(isDead)),
1403200581Srdivacky                              Src, isKill, MI->getOperand(2).getImm());
1404193323Sed      break;
1405193323Sed    case X86::ADD32ri:
1406200581Srdivacky    case X86::ADD32ri8: {
1407193323Sed      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1408200581Srdivacky      unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1409200581Srdivacky      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1410200581Srdivacky                              .addReg(Dest, RegState::Define |
1411200581Srdivacky                                      getDeadRegState(isDead)),
1412193323Sed                                Src, isKill, MI->getOperand(2).getImm());
1413193323Sed      break;
1414200581Srdivacky    }
1415193323Sed    case X86::ADD16ri:
1416193323Sed    case X86::ADD16ri8:
1417200581Srdivacky      if (DisableLEA16)
1418200581Srdivacky        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1419193323Sed      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1420200581Srdivacky      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1421200581Srdivacky                              .addReg(Dest, RegState::Define |
1422200581Srdivacky                                      getDeadRegState(isDead)),
1423200581Srdivacky                              Src, isKill, MI->getOperand(2).getImm());
1424193323Sed      break;
1425193323Sed    }
1426193323Sed  }
1427193323Sed  }
1428193323Sed
1429193323Sed  if (!NewMI) return 0;
1430193323Sed
1431193323Sed  if (LV) {  // Update live variables
1432193323Sed    if (isKill)
1433193323Sed      LV->replaceKillInstruction(Src, MI, NewMI);
1434193323Sed    if (isDead)
1435193323Sed      LV->replaceKillInstruction(Dest, MI, NewMI);
1436193323Sed  }
1437193323Sed
1438193323Sed  MFI->insert(MBBI, NewMI);          // Insert the new inst
1439193323Sed  return NewMI;
1440193323Sed}
1441193323Sed
1442193323Sed/// commuteInstruction - We have a few instructions that must be hacked on to
1443193323Sed/// commute them.
1444193323Sed///
1445193323SedMachineInstr *
1446193323SedX86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1447193323Sed  switch (MI->getOpcode()) {
1448193323Sed  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1449193323Sed  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1450193323Sed  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1451193323Sed  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1452193323Sed  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1453193323Sed  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1454193323Sed    unsigned Opc;
1455193323Sed    unsigned Size;
1456193323Sed    switch (MI->getOpcode()) {
1457198090Srdivacky    default: llvm_unreachable("Unreachable!");
1458193323Sed    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1459193323Sed    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1460193323Sed    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1461193323Sed    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1462193323Sed    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1463193323Sed    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1464193323Sed    }
1465193323Sed    unsigned Amt = MI->getOperand(3).getImm();
1466193323Sed    if (NewMI) {
1467193323Sed      MachineFunction &MF = *MI->getParent()->getParent();
1468193323Sed      MI = MF.CloneMachineInstr(MI);
1469193323Sed      NewMI = false;
1470193323Sed    }
1471193323Sed    MI->setDesc(get(Opc));
1472193323Sed    MI->getOperand(3).setImm(Size-Amt);
1473193323Sed    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1474193323Sed  }
1475193323Sed  case X86::CMOVB16rr:
1476193323Sed  case X86::CMOVB32rr:
1477193323Sed  case X86::CMOVB64rr:
1478193323Sed  case X86::CMOVAE16rr:
1479193323Sed  case X86::CMOVAE32rr:
1480193323Sed  case X86::CMOVAE64rr:
1481193323Sed  case X86::CMOVE16rr:
1482193323Sed  case X86::CMOVE32rr:
1483193323Sed  case X86::CMOVE64rr:
1484193323Sed  case X86::CMOVNE16rr:
1485193323Sed  case X86::CMOVNE32rr:
1486193323Sed  case X86::CMOVNE64rr:
1487193323Sed  case X86::CMOVBE16rr:
1488193323Sed  case X86::CMOVBE32rr:
1489193323Sed  case X86::CMOVBE64rr:
1490193323Sed  case X86::CMOVA16rr:
1491193323Sed  case X86::CMOVA32rr:
1492193323Sed  case X86::CMOVA64rr:
1493193323Sed  case X86::CMOVL16rr:
1494193323Sed  case X86::CMOVL32rr:
1495193323Sed  case X86::CMOVL64rr:
1496193323Sed  case X86::CMOVGE16rr:
1497193323Sed  case X86::CMOVGE32rr:
1498193323Sed  case X86::CMOVGE64rr:
1499193323Sed  case X86::CMOVLE16rr:
1500193323Sed  case X86::CMOVLE32rr:
1501193323Sed  case X86::CMOVLE64rr:
1502193323Sed  case X86::CMOVG16rr:
1503193323Sed  case X86::CMOVG32rr:
1504193323Sed  case X86::CMOVG64rr:
1505193323Sed  case X86::CMOVS16rr:
1506193323Sed  case X86::CMOVS32rr:
1507193323Sed  case X86::CMOVS64rr:
1508193323Sed  case X86::CMOVNS16rr:
1509193323Sed  case X86::CMOVNS32rr:
1510193323Sed  case X86::CMOVNS64rr:
1511193323Sed  case X86::CMOVP16rr:
1512193323Sed  case X86::CMOVP32rr:
1513193323Sed  case X86::CMOVP64rr:
1514193323Sed  case X86::CMOVNP16rr:
1515193323Sed  case X86::CMOVNP32rr:
1516193323Sed  case X86::CMOVNP64rr:
1517193323Sed  case X86::CMOVO16rr:
1518193323Sed  case X86::CMOVO32rr:
1519193323Sed  case X86::CMOVO64rr:
1520193323Sed  case X86::CMOVNO16rr:
1521193323Sed  case X86::CMOVNO32rr:
1522193323Sed  case X86::CMOVNO64rr: {
1523193323Sed    unsigned Opc = 0;
1524193323Sed    switch (MI->getOpcode()) {
1525193323Sed    default: break;
1526193323Sed    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
1527193323Sed    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
1528193323Sed    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
1529193323Sed    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1530193323Sed    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1531193323Sed    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1532193323Sed    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
1533193323Sed    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
1534193323Sed    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
1535193323Sed    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1536193323Sed    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1537193323Sed    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1538193323Sed    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1539193323Sed    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1540193323Sed    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1541193323Sed    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
1542193323Sed    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
1543193323Sed    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
1544193323Sed    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
1545193323Sed    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
1546193323Sed    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
1547193323Sed    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1548193323Sed    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1549193323Sed    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1550193323Sed    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1551193323Sed    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1552193323Sed    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1553193323Sed    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
1554193323Sed    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
1555193323Sed    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
1556193323Sed    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
1557193323Sed    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
1558193323Sed    case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
1559193323Sed    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1560193323Sed    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1561193323Sed    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1562193323Sed    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
1563193323Sed    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
1564193323Sed    case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
1565193323Sed    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1566193323Sed    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1567193323Sed    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1568193323Sed    case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
1569193323Sed    case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
1570193323Sed    case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
1571193323Sed    case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1572193323Sed    case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1573193323Sed    case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
1574193323Sed    }
1575193323Sed    if (NewMI) {
1576193323Sed      MachineFunction &MF = *MI->getParent()->getParent();
1577193323Sed      MI = MF.CloneMachineInstr(MI);
1578193323Sed      NewMI = false;
1579193323Sed    }
1580193323Sed    MI->setDesc(get(Opc));
1581193323Sed    // Fallthrough intended.
1582193323Sed  }
1583193323Sed  default:
1584193323Sed    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1585193323Sed  }
1586193323Sed}
1587193323Sed
1588193323Sedstatic X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1589193323Sed  switch (BrOpc) {
1590193323Sed  default: return X86::COND_INVALID;
1591193323Sed  case X86::JE:  return X86::COND_E;
1592193323Sed  case X86::JNE: return X86::COND_NE;
1593193323Sed  case X86::JL:  return X86::COND_L;
1594193323Sed  case X86::JLE: return X86::COND_LE;
1595193323Sed  case X86::JG:  return X86::COND_G;
1596193323Sed  case X86::JGE: return X86::COND_GE;
1597193323Sed  case X86::JB:  return X86::COND_B;
1598193323Sed  case X86::JBE: return X86::COND_BE;
1599193323Sed  case X86::JA:  return X86::COND_A;
1600193323Sed  case X86::JAE: return X86::COND_AE;
1601193323Sed  case X86::JS:  return X86::COND_S;
1602193323Sed  case X86::JNS: return X86::COND_NS;
1603193323Sed  case X86::JP:  return X86::COND_P;
1604193323Sed  case X86::JNP: return X86::COND_NP;
1605193323Sed  case X86::JO:  return X86::COND_O;
1606193323Sed  case X86::JNO: return X86::COND_NO;
1607193323Sed  }
1608193323Sed}
1609193323Sed
1610193323Sedunsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1611193323Sed  switch (CC) {
1612198090Srdivacky  default: llvm_unreachable("Illegal condition code!");
1613193323Sed  case X86::COND_E:  return X86::JE;
1614193323Sed  case X86::COND_NE: return X86::JNE;
1615193323Sed  case X86::COND_L:  return X86::JL;
1616193323Sed  case X86::COND_LE: return X86::JLE;
1617193323Sed  case X86::COND_G:  return X86::JG;
1618193323Sed  case X86::COND_GE: return X86::JGE;
1619193323Sed  case X86::COND_B:  return X86::JB;
1620193323Sed  case X86::COND_BE: return X86::JBE;
1621193323Sed  case X86::COND_A:  return X86::JA;
1622193323Sed  case X86::COND_AE: return X86::JAE;
1623193323Sed  case X86::COND_S:  return X86::JS;
1624193323Sed  case X86::COND_NS: return X86::JNS;
1625193323Sed  case X86::COND_P:  return X86::JP;
1626193323Sed  case X86::COND_NP: return X86::JNP;
1627193323Sed  case X86::COND_O:  return X86::JO;
1628193323Sed  case X86::COND_NO: return X86::JNO;
1629193323Sed  }
1630193323Sed}
1631193323Sed
1632193323Sed/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1633193323Sed/// e.g. turning COND_E to COND_NE.
1634193323SedX86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1635193323Sed  switch (CC) {
1636198090Srdivacky  default: llvm_unreachable("Illegal condition code!");
1637193323Sed  case X86::COND_E:  return X86::COND_NE;
1638193323Sed  case X86::COND_NE: return X86::COND_E;
1639193323Sed  case X86::COND_L:  return X86::COND_GE;
1640193323Sed  case X86::COND_LE: return X86::COND_G;
1641193323Sed  case X86::COND_G:  return X86::COND_LE;
1642193323Sed  case X86::COND_GE: return X86::COND_L;
1643193323Sed  case X86::COND_B:  return X86::COND_AE;
1644193323Sed  case X86::COND_BE: return X86::COND_A;
1645193323Sed  case X86::COND_A:  return X86::COND_BE;
1646193323Sed  case X86::COND_AE: return X86::COND_B;
1647193323Sed  case X86::COND_S:  return X86::COND_NS;
1648193323Sed  case X86::COND_NS: return X86::COND_S;
1649193323Sed  case X86::COND_P:  return X86::COND_NP;
1650193323Sed  case X86::COND_NP: return X86::COND_P;
1651193323Sed  case X86::COND_O:  return X86::COND_NO;
1652193323Sed  case X86::COND_NO: return X86::COND_O;
1653193323Sed  }
1654193323Sed}
1655193323Sed
1656193323Sedbool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1657193323Sed  const TargetInstrDesc &TID = MI->getDesc();
1658193323Sed  if (!TID.isTerminator()) return false;
1659193323Sed
1660193323Sed  // Conditional branch is a special case.
1661193323Sed  if (TID.isBranch() && !TID.isBarrier())
1662193323Sed    return true;
1663193323Sed  if (!TID.isPredicable())
1664193323Sed    return true;
1665193323Sed  return !isPredicated(MI);
1666193323Sed}
1667193323Sed
1668193323Sed// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1669193323Sedstatic bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1670193323Sed                                               const X86InstrInfo &TII) {
1671193323Sed  if (MI->getOpcode() == X86::FP_REG_KILL)
1672193323Sed    return false;
1673193323Sed  return TII.isUnpredicatedTerminator(MI);
1674193323Sed}
1675193323Sed
1676193323Sedbool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1677193323Sed                                 MachineBasicBlock *&TBB,
1678193323Sed                                 MachineBasicBlock *&FBB,
1679193323Sed                                 SmallVectorImpl<MachineOperand> &Cond,
1680193323Sed                                 bool AllowModify) const {
1681193323Sed  // Start from the bottom of the block and work up, examining the
1682193323Sed  // terminator instructions.
1683193323Sed  MachineBasicBlock::iterator I = MBB.end();
1684193323Sed  while (I != MBB.begin()) {
1685193323Sed    --I;
1686200581Srdivacky
1687200581Srdivacky    // Working from the bottom, when we see a non-terminator instruction, we're
1688200581Srdivacky    // done.
1689193323Sed    if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1690193323Sed      break;
1691200581Srdivacky
1692200581Srdivacky    // A terminator that isn't a branch can't easily be handled by this
1693200581Srdivacky    // analysis.
1694193323Sed    if (!I->getDesc().isBranch())
1695193323Sed      return true;
1696200581Srdivacky
1697193323Sed    // Handle unconditional branches.
1698193323Sed    if (I->getOpcode() == X86::JMP) {
1699193323Sed      if (!AllowModify) {
1700193323Sed        TBB = I->getOperand(0).getMBB();
1701193323Sed        continue;
1702193323Sed      }
1703193323Sed
1704193323Sed      // If the block has any instructions after a JMP, delete them.
1705200581Srdivacky      while (llvm::next(I) != MBB.end())
1706200581Srdivacky        llvm::next(I)->eraseFromParent();
1707200581Srdivacky
1708193323Sed      Cond.clear();
1709193323Sed      FBB = 0;
1710200581Srdivacky
1711193323Sed      // Delete the JMP if it's equivalent to a fall-through.
1712193323Sed      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1713193323Sed        TBB = 0;
1714193323Sed        I->eraseFromParent();
1715193323Sed        I = MBB.end();
1716193323Sed        continue;
1717193323Sed      }
1718200581Srdivacky
1719193323Sed      // TBB is used to indicate the unconditinal destination.
1720193323Sed      TBB = I->getOperand(0).getMBB();
1721193323Sed      continue;
1722193323Sed    }
1723200581Srdivacky
1724193323Sed    // Handle conditional branches.
1725193323Sed    X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
1726193323Sed    if (BranchCode == X86::COND_INVALID)
1727193323Sed      return true;  // Can't handle indirect branch.
1728200581Srdivacky
1729193323Sed    // Working from the bottom, handle the first conditional branch.
1730193323Sed    if (Cond.empty()) {
1731193323Sed      FBB = TBB;
1732193323Sed      TBB = I->getOperand(0).getMBB();
1733193323Sed      Cond.push_back(MachineOperand::CreateImm(BranchCode));
1734193323Sed      continue;
1735193323Sed    }
1736200581Srdivacky
1737200581Srdivacky    // Handle subsequent conditional branches. Only handle the case where all
1738200581Srdivacky    // conditional branches branch to the same destination and their condition
1739200581Srdivacky    // opcodes fit one of the special multi-branch idioms.
1740193323Sed    assert(Cond.size() == 1);
1741193323Sed    assert(TBB);
1742200581Srdivacky
1743200581Srdivacky    // Only handle the case where all conditional branches branch to the same
1744200581Srdivacky    // destination.
1745193323Sed    if (TBB != I->getOperand(0).getMBB())
1746193323Sed      return true;
1747200581Srdivacky
1748200581Srdivacky    // If the conditions are the same, we can leave them alone.
1749193323Sed    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1750193323Sed    if (OldBranchCode == BranchCode)
1751193323Sed      continue;
1752200581Srdivacky
1753200581Srdivacky    // If they differ, see if they fit one of the known patterns. Theoretically,
1754200581Srdivacky    // we could handle more patterns here, but we shouldn't expect to see them
1755200581Srdivacky    // if instruction selection has done a reasonable job.
1756193323Sed    if ((OldBranchCode == X86::COND_NP &&
1757193323Sed         BranchCode == X86::COND_E) ||
1758193323Sed        (OldBranchCode == X86::COND_E &&
1759193323Sed         BranchCode == X86::COND_NP))
1760193323Sed      BranchCode = X86::COND_NP_OR_E;
1761193323Sed    else if ((OldBranchCode == X86::COND_P &&
1762193323Sed              BranchCode == X86::COND_NE) ||
1763193323Sed             (OldBranchCode == X86::COND_NE &&
1764193323Sed              BranchCode == X86::COND_P))
1765193323Sed      BranchCode = X86::COND_NE_OR_P;
1766193323Sed    else
1767193323Sed      return true;
1768200581Srdivacky
1769193323Sed    // Update the MachineOperand.
1770193323Sed    Cond[0].setImm(BranchCode);
1771193323Sed  }
1772193323Sed
1773193323Sed  return false;
1774193323Sed}
1775193323Sed
1776193323Sedunsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1777193323Sed  MachineBasicBlock::iterator I = MBB.end();
1778193323Sed  unsigned Count = 0;
1779193323Sed
1780193323Sed  while (I != MBB.begin()) {
1781193323Sed    --I;
1782193323Sed    if (I->getOpcode() != X86::JMP &&
1783193323Sed        GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1784193323Sed      break;
1785193323Sed    // Remove the branch.
1786193323Sed    I->eraseFromParent();
1787193323Sed    I = MBB.end();
1788193323Sed    ++Count;
1789193323Sed  }
1790193323Sed
1791193323Sed  return Count;
1792193323Sed}
1793193323Sed
1794193323Sedunsigned
1795193323SedX86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1796193323Sed                           MachineBasicBlock *FBB,
1797193323Sed                           const SmallVectorImpl<MachineOperand> &Cond) const {
1798193323Sed  // FIXME this should probably have a DebugLoc operand
1799193323Sed  DebugLoc dl = DebugLoc::getUnknownLoc();
1800193323Sed  // Shouldn't be a fall through.
1801193323Sed  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1802193323Sed  assert((Cond.size() == 1 || Cond.size() == 0) &&
1803193323Sed         "X86 branch conditions have one component!");
1804193323Sed
1805193323Sed  if (Cond.empty()) {
1806193323Sed    // Unconditional branch?
1807193323Sed    assert(!FBB && "Unconditional branch with multiple successors!");
1808193323Sed    BuildMI(&MBB, dl, get(X86::JMP)).addMBB(TBB);
1809193323Sed    return 1;
1810193323Sed  }
1811193323Sed
1812193323Sed  // Conditional branch.
1813193323Sed  unsigned Count = 0;
1814193323Sed  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1815193323Sed  switch (CC) {
1816193323Sed  case X86::COND_NP_OR_E:
1817193323Sed    // Synthesize NP_OR_E with two branches.
1818193323Sed    BuildMI(&MBB, dl, get(X86::JNP)).addMBB(TBB);
1819193323Sed    ++Count;
1820193323Sed    BuildMI(&MBB, dl, get(X86::JE)).addMBB(TBB);
1821193323Sed    ++Count;
1822193323Sed    break;
1823193323Sed  case X86::COND_NE_OR_P:
1824193323Sed    // Synthesize NE_OR_P with two branches.
1825193323Sed    BuildMI(&MBB, dl, get(X86::JNE)).addMBB(TBB);
1826193323Sed    ++Count;
1827193323Sed    BuildMI(&MBB, dl, get(X86::JP)).addMBB(TBB);
1828193323Sed    ++Count;
1829193323Sed    break;
1830193323Sed  default: {
1831193323Sed    unsigned Opc = GetCondBranchFromCond(CC);
1832193323Sed    BuildMI(&MBB, dl, get(Opc)).addMBB(TBB);
1833193323Sed    ++Count;
1834193323Sed  }
1835193323Sed  }
1836193323Sed  if (FBB) {
1837193323Sed    // Two-way Conditional branch. Insert the second branch.
1838193323Sed    BuildMI(&MBB, dl, get(X86::JMP)).addMBB(FBB);
1839193323Sed    ++Count;
1840193323Sed  }
1841193323Sed  return Count;
1842193323Sed}
1843193323Sed
1844193323Sed/// isHReg - Test if the given register is a physical h register.
1845193323Sedstatic bool isHReg(unsigned Reg) {
1846193323Sed  return X86::GR8_ABCD_HRegClass.contains(Reg);
1847193323Sed}
1848193323Sed
1849193323Sedbool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
1850193323Sed                                MachineBasicBlock::iterator MI,
1851193323Sed                                unsigned DestReg, unsigned SrcReg,
1852193323Sed                                const TargetRegisterClass *DestRC,
1853193323Sed                                const TargetRegisterClass *SrcRC) const {
1854193323Sed  DebugLoc DL = DebugLoc::getUnknownLoc();
1855193323Sed  if (MI != MBB.end()) DL = MI->getDebugLoc();
1856193323Sed
1857193323Sed  // Determine if DstRC and SrcRC have a common superclass in common.
1858193323Sed  const TargetRegisterClass *CommonRC = DestRC;
1859193323Sed  if (DestRC == SrcRC)
1860193323Sed    /* Source and destination have the same register class. */;
1861193323Sed  else if (CommonRC->hasSuperClass(SrcRC))
1862193323Sed    CommonRC = SrcRC;
1863198090Srdivacky  else if (!DestRC->hasSubClass(SrcRC)) {
1864198090Srdivacky    // Neither of GR64_NOREX or GR64_NOSP is a superclass of the other,
1865198090Srdivacky    // but we want to copy then as GR64. Similarly, for GR32_NOREX and
1866198090Srdivacky    // GR32_NOSP, copy as GR32.
1867198090Srdivacky    if (SrcRC->hasSuperClass(&X86::GR64RegClass) &&
1868198090Srdivacky        DestRC->hasSuperClass(&X86::GR64RegClass))
1869198090Srdivacky      CommonRC = &X86::GR64RegClass;
1870198090Srdivacky    else if (SrcRC->hasSuperClass(&X86::GR32RegClass) &&
1871198090Srdivacky             DestRC->hasSuperClass(&X86::GR32RegClass))
1872198090Srdivacky      CommonRC = &X86::GR32RegClass;
1873198090Srdivacky    else
1874198090Srdivacky      CommonRC = 0;
1875198090Srdivacky  }
1876193323Sed
1877193323Sed  if (CommonRC) {
1878193323Sed    unsigned Opc;
1879198090Srdivacky    if (CommonRC == &X86::GR64RegClass || CommonRC == &X86::GR64_NOSPRegClass) {
1880193323Sed      Opc = X86::MOV64rr;
1881198090Srdivacky    } else if (CommonRC == &X86::GR32RegClass ||
1882198090Srdivacky               CommonRC == &X86::GR32_NOSPRegClass) {
1883193323Sed      Opc = X86::MOV32rr;
1884193323Sed    } else if (CommonRC == &X86::GR16RegClass) {
1885193323Sed      Opc = X86::MOV16rr;
1886193323Sed    } else if (CommonRC == &X86::GR8RegClass) {
1887193323Sed      // Copying to or from a physical H register on x86-64 requires a NOREX
1888193323Sed      // move.  Otherwise use a normal move.
1889193323Sed      if ((isHReg(DestReg) || isHReg(SrcReg)) &&
1890193323Sed          TM.getSubtarget<X86Subtarget>().is64Bit())
1891193323Sed        Opc = X86::MOV8rr_NOREX;
1892193323Sed      else
1893193323Sed        Opc = X86::MOV8rr;
1894193323Sed    } else if (CommonRC == &X86::GR64_ABCDRegClass) {
1895193323Sed      Opc = X86::MOV64rr;
1896193323Sed    } else if (CommonRC == &X86::GR32_ABCDRegClass) {
1897193323Sed      Opc = X86::MOV32rr;
1898193323Sed    } else if (CommonRC == &X86::GR16_ABCDRegClass) {
1899193323Sed      Opc = X86::MOV16rr;
1900193323Sed    } else if (CommonRC == &X86::GR8_ABCD_LRegClass) {
1901193323Sed      Opc = X86::MOV8rr;
1902193323Sed    } else if (CommonRC == &X86::GR8_ABCD_HRegClass) {
1903193323Sed      if (TM.getSubtarget<X86Subtarget>().is64Bit())
1904193323Sed        Opc = X86::MOV8rr_NOREX;
1905193323Sed      else
1906193323Sed        Opc = X86::MOV8rr;
1907198090Srdivacky    } else if (CommonRC == &X86::GR64_NOREXRegClass ||
1908198090Srdivacky               CommonRC == &X86::GR64_NOREX_NOSPRegClass) {
1909193323Sed      Opc = X86::MOV64rr;
1910193323Sed    } else if (CommonRC == &X86::GR32_NOREXRegClass) {
1911193323Sed      Opc = X86::MOV32rr;
1912193323Sed    } else if (CommonRC == &X86::GR16_NOREXRegClass) {
1913193323Sed      Opc = X86::MOV16rr;
1914193323Sed    } else if (CommonRC == &X86::GR8_NOREXRegClass) {
1915193323Sed      Opc = X86::MOV8rr;
1916193323Sed    } else if (CommonRC == &X86::RFP32RegClass) {
1917193323Sed      Opc = X86::MOV_Fp3232;
1918193323Sed    } else if (CommonRC == &X86::RFP64RegClass || CommonRC == &X86::RSTRegClass) {
1919193323Sed      Opc = X86::MOV_Fp6464;
1920193323Sed    } else if (CommonRC == &X86::RFP80RegClass) {
1921193323Sed      Opc = X86::MOV_Fp8080;
1922193323Sed    } else if (CommonRC == &X86::FR32RegClass) {
1923193323Sed      Opc = X86::FsMOVAPSrr;
1924193323Sed    } else if (CommonRC == &X86::FR64RegClass) {
1925193323Sed      Opc = X86::FsMOVAPDrr;
1926193323Sed    } else if (CommonRC == &X86::VR128RegClass) {
1927193323Sed      Opc = X86::MOVAPSrr;
1928193323Sed    } else if (CommonRC == &X86::VR64RegClass) {
1929193323Sed      Opc = X86::MMX_MOVQ64rr;
1930193323Sed    } else {
1931193323Sed      return false;
1932193323Sed    }
1933193323Sed    BuildMI(MBB, MI, DL, get(Opc), DestReg).addReg(SrcReg);
1934193323Sed    return true;
1935193323Sed  }
1936198090Srdivacky
1937193323Sed  // Moving EFLAGS to / from another register requires a push and a pop.
1938193323Sed  if (SrcRC == &X86::CCRRegClass) {
1939193323Sed    if (SrcReg != X86::EFLAGS)
1940193323Sed      return false;
1941198090Srdivacky    if (DestRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) {
1942201360Srdivacky      BuildMI(MBB, MI, DL, get(X86::PUSHFQ64));
1943193323Sed      BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
1944193323Sed      return true;
1945198090Srdivacky    } else if (DestRC == &X86::GR32RegClass ||
1946198090Srdivacky               DestRC == &X86::GR32_NOSPRegClass) {
1947193323Sed      BuildMI(MBB, MI, DL, get(X86::PUSHFD));
1948193323Sed      BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
1949193323Sed      return true;
1950193323Sed    }
1951193323Sed  } else if (DestRC == &X86::CCRRegClass) {
1952193323Sed    if (DestReg != X86::EFLAGS)
1953193323Sed      return false;
1954198090Srdivacky    if (SrcRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) {
1955193323Sed      BuildMI(MBB, MI, DL, get(X86::PUSH64r)).addReg(SrcReg);
1956193323Sed      BuildMI(MBB, MI, DL, get(X86::POPFQ));
1957193323Sed      return true;
1958198090Srdivacky    } else if (SrcRC == &X86::GR32RegClass ||
1959198090Srdivacky               DestRC == &X86::GR32_NOSPRegClass) {
1960193323Sed      BuildMI(MBB, MI, DL, get(X86::PUSH32r)).addReg(SrcReg);
1961193323Sed      BuildMI(MBB, MI, DL, get(X86::POPFD));
1962193323Sed      return true;
1963193323Sed    }
1964193323Sed  }
1965193323Sed
1966193323Sed  // Moving from ST(0) turns into FpGET_ST0_32 etc.
1967193323Sed  if (SrcRC == &X86::RSTRegClass) {
1968193323Sed    // Copying from ST(0)/ST(1).
1969193323Sed    if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1970193323Sed      // Can only copy from ST(0)/ST(1) right now
1971193323Sed      return false;
1972193323Sed    bool isST0 = SrcReg == X86::ST0;
1973193323Sed    unsigned Opc;
1974193323Sed    if (DestRC == &X86::RFP32RegClass)
1975193323Sed      Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
1976193323Sed    else if (DestRC == &X86::RFP64RegClass)
1977193323Sed      Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
1978193323Sed    else {
1979193323Sed      if (DestRC != &X86::RFP80RegClass)
1980193323Sed        return false;
1981193323Sed      Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
1982193323Sed    }
1983193323Sed    BuildMI(MBB, MI, DL, get(Opc), DestReg);
1984193323Sed    return true;
1985193323Sed  }
1986193323Sed
1987193323Sed  // Moving to ST(0) turns into FpSET_ST0_32 etc.
1988193323Sed  if (DestRC == &X86::RSTRegClass) {
1989193323Sed    // Copying to ST(0) / ST(1).
1990193323Sed    if (DestReg != X86::ST0 && DestReg != X86::ST1)
1991193323Sed      // Can only copy to TOS right now
1992193323Sed      return false;
1993193323Sed    bool isST0 = DestReg == X86::ST0;
1994193323Sed    unsigned Opc;
1995193323Sed    if (SrcRC == &X86::RFP32RegClass)
1996193323Sed      Opc = isST0 ? X86::FpSET_ST0_32 : X86::FpSET_ST1_32;
1997193323Sed    else if (SrcRC == &X86::RFP64RegClass)
1998193323Sed      Opc = isST0 ? X86::FpSET_ST0_64 : X86::FpSET_ST1_64;
1999193323Sed    else {
2000193323Sed      if (SrcRC != &X86::RFP80RegClass)
2001193323Sed        return false;
2002193323Sed      Opc = isST0 ? X86::FpSET_ST0_80 : X86::FpSET_ST1_80;
2003193323Sed    }
2004193323Sed    BuildMI(MBB, MI, DL, get(Opc)).addReg(SrcReg);
2005193323Sed    return true;
2006193323Sed  }
2007193323Sed
2008193323Sed  // Not yet supported!
2009193323Sed  return false;
2010193323Sed}
2011193323Sed
2012193323Sedstatic unsigned getStoreRegOpcode(unsigned SrcReg,
2013193323Sed                                  const TargetRegisterClass *RC,
2014193323Sed                                  bool isStackAligned,
2015193323Sed                                  TargetMachine &TM) {
2016193323Sed  unsigned Opc = 0;
2017198090Srdivacky  if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) {
2018193323Sed    Opc = X86::MOV64mr;
2019198090Srdivacky  } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) {
2020193323Sed    Opc = X86::MOV32mr;
2021193323Sed  } else if (RC == &X86::GR16RegClass) {
2022193323Sed    Opc = X86::MOV16mr;
2023193323Sed  } else if (RC == &X86::GR8RegClass) {
2024193323Sed    // Copying to or from a physical H register on x86-64 requires a NOREX
2025193323Sed    // move.  Otherwise use a normal move.
2026193323Sed    if (isHReg(SrcReg) &&
2027193323Sed        TM.getSubtarget<X86Subtarget>().is64Bit())
2028193323Sed      Opc = X86::MOV8mr_NOREX;
2029193323Sed    else
2030193323Sed      Opc = X86::MOV8mr;
2031193323Sed  } else if (RC == &X86::GR64_ABCDRegClass) {
2032193323Sed    Opc = X86::MOV64mr;
2033193323Sed  } else if (RC == &X86::GR32_ABCDRegClass) {
2034193323Sed    Opc = X86::MOV32mr;
2035193323Sed  } else if (RC == &X86::GR16_ABCDRegClass) {
2036193323Sed    Opc = X86::MOV16mr;
2037193323Sed  } else if (RC == &X86::GR8_ABCD_LRegClass) {
2038193323Sed    Opc = X86::MOV8mr;
2039193323Sed  } else if (RC == &X86::GR8_ABCD_HRegClass) {
2040193323Sed    if (TM.getSubtarget<X86Subtarget>().is64Bit())
2041193323Sed      Opc = X86::MOV8mr_NOREX;
2042193323Sed    else
2043193323Sed      Opc = X86::MOV8mr;
2044198090Srdivacky  } else if (RC == &X86::GR64_NOREXRegClass ||
2045198090Srdivacky             RC == &X86::GR64_NOREX_NOSPRegClass) {
2046193323Sed    Opc = X86::MOV64mr;
2047193323Sed  } else if (RC == &X86::GR32_NOREXRegClass) {
2048193323Sed    Opc = X86::MOV32mr;
2049193323Sed  } else if (RC == &X86::GR16_NOREXRegClass) {
2050193323Sed    Opc = X86::MOV16mr;
2051193323Sed  } else if (RC == &X86::GR8_NOREXRegClass) {
2052193323Sed    Opc = X86::MOV8mr;
2053193323Sed  } else if (RC == &X86::RFP80RegClass) {
2054193323Sed    Opc = X86::ST_FpP80m;   // pops
2055193323Sed  } else if (RC == &X86::RFP64RegClass) {
2056193323Sed    Opc = X86::ST_Fp64m;
2057193323Sed  } else if (RC == &X86::RFP32RegClass) {
2058193323Sed    Opc = X86::ST_Fp32m;
2059193323Sed  } else if (RC == &X86::FR32RegClass) {
2060193323Sed    Opc = X86::MOVSSmr;
2061193323Sed  } else if (RC == &X86::FR64RegClass) {
2062193323Sed    Opc = X86::MOVSDmr;
2063193323Sed  } else if (RC == &X86::VR128RegClass) {
2064193323Sed    // If stack is realigned we can use aligned stores.
2065193323Sed    Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
2066193323Sed  } else if (RC == &X86::VR64RegClass) {
2067193323Sed    Opc = X86::MMX_MOVQ64mr;
2068193323Sed  } else {
2069198090Srdivacky    llvm_unreachable("Unknown regclass");
2070193323Sed  }
2071193323Sed
2072193323Sed  return Opc;
2073193323Sed}
2074193323Sed
2075193323Sedvoid X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
2076193323Sed                                       MachineBasicBlock::iterator MI,
2077193323Sed                                       unsigned SrcReg, bool isKill, int FrameIdx,
2078193323Sed                                       const TargetRegisterClass *RC) const {
2079193323Sed  const MachineFunction &MF = *MBB.getParent();
2080202878Srdivacky  bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
2081193323Sed  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2082193323Sed  DebugLoc DL = DebugLoc::getUnknownLoc();
2083193323Sed  if (MI != MBB.end()) DL = MI->getDebugLoc();
2084193323Sed  addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
2085193323Sed    .addReg(SrcReg, getKillRegState(isKill));
2086193323Sed}
2087193323Sed
2088193323Sedvoid X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
2089193323Sed                                  bool isKill,
2090193323Sed                                  SmallVectorImpl<MachineOperand> &Addr,
2091193323Sed                                  const TargetRegisterClass *RC,
2092198090Srdivacky                                  MachineInstr::mmo_iterator MMOBegin,
2093198090Srdivacky                                  MachineInstr::mmo_iterator MMOEnd,
2094193323Sed                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
2095199481Srdivacky  bool isAligned = (*MMOBegin)->getAlignment() >= 16;
2096193323Sed  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2097193323Sed  DebugLoc DL = DebugLoc::getUnknownLoc();
2098193323Sed  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
2099193323Sed  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2100193323Sed    MIB.addOperand(Addr[i]);
2101193323Sed  MIB.addReg(SrcReg, getKillRegState(isKill));
2102198090Srdivacky  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2103193323Sed  NewMIs.push_back(MIB);
2104193323Sed}
2105193323Sed
2106193323Sedstatic unsigned getLoadRegOpcode(unsigned DestReg,
2107193323Sed                                 const TargetRegisterClass *RC,
2108193323Sed                                 bool isStackAligned,
2109193323Sed                                 const TargetMachine &TM) {
2110193323Sed  unsigned Opc = 0;
2111198090Srdivacky  if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) {
2112193323Sed    Opc = X86::MOV64rm;
2113198090Srdivacky  } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) {
2114193323Sed    Opc = X86::MOV32rm;
2115193323Sed  } else if (RC == &X86::GR16RegClass) {
2116193323Sed    Opc = X86::MOV16rm;
2117193323Sed  } else if (RC == &X86::GR8RegClass) {
2118193323Sed    // Copying to or from a physical H register on x86-64 requires a NOREX
2119193323Sed    // move.  Otherwise use a normal move.
2120193323Sed    if (isHReg(DestReg) &&
2121193323Sed        TM.getSubtarget<X86Subtarget>().is64Bit())
2122193323Sed      Opc = X86::MOV8rm_NOREX;
2123193323Sed    else
2124193323Sed      Opc = X86::MOV8rm;
2125193323Sed  } else if (RC == &X86::GR64_ABCDRegClass) {
2126193323Sed    Opc = X86::MOV64rm;
2127193323Sed  } else if (RC == &X86::GR32_ABCDRegClass) {
2128193323Sed    Opc = X86::MOV32rm;
2129193323Sed  } else if (RC == &X86::GR16_ABCDRegClass) {
2130193323Sed    Opc = X86::MOV16rm;
2131193323Sed  } else if (RC == &X86::GR8_ABCD_LRegClass) {
2132193323Sed    Opc = X86::MOV8rm;
2133193323Sed  } else if (RC == &X86::GR8_ABCD_HRegClass) {
2134193323Sed    if (TM.getSubtarget<X86Subtarget>().is64Bit())
2135193323Sed      Opc = X86::MOV8rm_NOREX;
2136193323Sed    else
2137193323Sed      Opc = X86::MOV8rm;
2138198090Srdivacky  } else if (RC == &X86::GR64_NOREXRegClass ||
2139198090Srdivacky             RC == &X86::GR64_NOREX_NOSPRegClass) {
2140193323Sed    Opc = X86::MOV64rm;
2141193323Sed  } else if (RC == &X86::GR32_NOREXRegClass) {
2142193323Sed    Opc = X86::MOV32rm;
2143193323Sed  } else if (RC == &X86::GR16_NOREXRegClass) {
2144193323Sed    Opc = X86::MOV16rm;
2145193323Sed  } else if (RC == &X86::GR8_NOREXRegClass) {
2146193323Sed    Opc = X86::MOV8rm;
2147193323Sed  } else if (RC == &X86::RFP80RegClass) {
2148193323Sed    Opc = X86::LD_Fp80m;
2149193323Sed  } else if (RC == &X86::RFP64RegClass) {
2150193323Sed    Opc = X86::LD_Fp64m;
2151193323Sed  } else if (RC == &X86::RFP32RegClass) {
2152193323Sed    Opc = X86::LD_Fp32m;
2153193323Sed  } else if (RC == &X86::FR32RegClass) {
2154193323Sed    Opc = X86::MOVSSrm;
2155193323Sed  } else if (RC == &X86::FR64RegClass) {
2156193323Sed    Opc = X86::MOVSDrm;
2157193323Sed  } else if (RC == &X86::VR128RegClass) {
2158193323Sed    // If stack is realigned we can use aligned loads.
2159193323Sed    Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
2160193323Sed  } else if (RC == &X86::VR64RegClass) {
2161193323Sed    Opc = X86::MMX_MOVQ64rm;
2162193323Sed  } else {
2163198090Srdivacky    llvm_unreachable("Unknown regclass");
2164193323Sed  }
2165193323Sed
2166193323Sed  return Opc;
2167193323Sed}
2168193323Sed
2169193323Sedvoid X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
2170193323Sed                                        MachineBasicBlock::iterator MI,
2171193323Sed                                        unsigned DestReg, int FrameIdx,
2172193323Sed                                        const TargetRegisterClass *RC) const{
2173193323Sed  const MachineFunction &MF = *MBB.getParent();
2174202878Srdivacky  bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
2175193323Sed  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2176193323Sed  DebugLoc DL = DebugLoc::getUnknownLoc();
2177193323Sed  if (MI != MBB.end()) DL = MI->getDebugLoc();
2178193323Sed  addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
2179193323Sed}
2180193323Sed
2181193323Sedvoid X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
2182193323Sed                                 SmallVectorImpl<MachineOperand> &Addr,
2183193323Sed                                 const TargetRegisterClass *RC,
2184198090Srdivacky                                 MachineInstr::mmo_iterator MMOBegin,
2185198090Srdivacky                                 MachineInstr::mmo_iterator MMOEnd,
2186193323Sed                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2187199481Srdivacky  bool isAligned = (*MMOBegin)->getAlignment() >= 16;
2188193323Sed  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2189193323Sed  DebugLoc DL = DebugLoc::getUnknownLoc();
2190193323Sed  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
2191193323Sed  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2192193323Sed    MIB.addOperand(Addr[i]);
2193198090Srdivacky  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2194193323Sed  NewMIs.push_back(MIB);
2195193323Sed}
2196193323Sed
2197193323Sedbool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
2198193323Sed                                             MachineBasicBlock::iterator MI,
2199193323Sed                                const std::vector<CalleeSavedInfo> &CSI) const {
2200193323Sed  if (CSI.empty())
2201193323Sed    return false;
2202193323Sed
2203202878Srdivacky  DebugLoc DL = MBB.findDebugLoc(MI);
2204193323Sed
2205193323Sed  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2206198090Srdivacky  bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
2207193323Sed  unsigned SlotSize = is64Bit ? 8 : 4;
2208193323Sed
2209193323Sed  MachineFunction &MF = *MBB.getParent();
2210198090Srdivacky  unsigned FPReg = RI.getFrameRegister(MF);
2211193323Sed  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2212193574Sed  unsigned CalleeFrameSize = 0;
2213193323Sed
2214193323Sed  unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
2215193323Sed  for (unsigned i = CSI.size(); i != 0; --i) {
2216193323Sed    unsigned Reg = CSI[i-1].getReg();
2217193574Sed    const TargetRegisterClass *RegClass = CSI[i-1].getRegClass();
2218193323Sed    // Add the callee-saved register as live-in. It's killed at the spill.
2219193323Sed    MBB.addLiveIn(Reg);
2220198090Srdivacky    if (Reg == FPReg)
2221198090Srdivacky      // X86RegisterInfo::emitPrologue will handle spilling of frame register.
2222198090Srdivacky      continue;
2223198090Srdivacky    if (RegClass != &X86::VR128RegClass && !isWin64) {
2224193574Sed      CalleeFrameSize += SlotSize;
2225198090Srdivacky      BuildMI(MBB, MI, DL, get(Opc)).addReg(Reg, RegState::Kill);
2226193574Sed    } else {
2227193574Sed      storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(), RegClass);
2228193574Sed    }
2229193323Sed  }
2230193574Sed
2231193574Sed  X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
2232193323Sed  return true;
2233193323Sed}
2234193323Sed
2235193323Sedbool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
2236193323Sed                                               MachineBasicBlock::iterator MI,
2237193323Sed                                const std::vector<CalleeSavedInfo> &CSI) const {
2238193323Sed  if (CSI.empty())
2239193323Sed    return false;
2240193323Sed
2241202878Srdivacky  DebugLoc DL = MBB.findDebugLoc(MI);
2242193323Sed
2243198090Srdivacky  MachineFunction &MF = *MBB.getParent();
2244198090Srdivacky  unsigned FPReg = RI.getFrameRegister(MF);
2245193323Sed  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2246198090Srdivacky  bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
2247193323Sed  unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
2248193323Sed  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2249193323Sed    unsigned Reg = CSI[i].getReg();
2250198090Srdivacky    if (Reg == FPReg)
2251198090Srdivacky      // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
2252198090Srdivacky      continue;
2253193574Sed    const TargetRegisterClass *RegClass = CSI[i].getRegClass();
2254198090Srdivacky    if (RegClass != &X86::VR128RegClass && !isWin64) {
2255193574Sed      BuildMI(MBB, MI, DL, get(Opc), Reg);
2256193574Sed    } else {
2257193574Sed      loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RegClass);
2258193574Sed    }
2259193323Sed  }
2260193323Sed  return true;
2261193323Sed}
2262193323Sed
2263193323Sedstatic MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
2264193323Sed                                     const SmallVectorImpl<MachineOperand> &MOs,
2265193323Sed                                     MachineInstr *MI,
2266193323Sed                                     const TargetInstrInfo &TII) {
2267193323Sed  // Create the base instruction with the memory operand as the first part.
2268193323Sed  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2269193323Sed                                              MI->getDebugLoc(), true);
2270193323Sed  MachineInstrBuilder MIB(NewMI);
2271193323Sed  unsigned NumAddrOps = MOs.size();
2272193323Sed  for (unsigned i = 0; i != NumAddrOps; ++i)
2273193323Sed    MIB.addOperand(MOs[i]);
2274193323Sed  if (NumAddrOps < 4)  // FrameIndex only
2275193323Sed    addOffset(MIB, 0);
2276193323Sed
2277193323Sed  // Loop over the rest of the ri operands, converting them over.
2278193323Sed  unsigned NumOps = MI->getDesc().getNumOperands()-2;
2279193323Sed  for (unsigned i = 0; i != NumOps; ++i) {
2280193323Sed    MachineOperand &MO = MI->getOperand(i+2);
2281193323Sed    MIB.addOperand(MO);
2282193323Sed  }
2283193323Sed  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2284193323Sed    MachineOperand &MO = MI->getOperand(i);
2285193323Sed    MIB.addOperand(MO);
2286193323Sed  }
2287193323Sed  return MIB;
2288193323Sed}
2289193323Sed
2290193323Sedstatic MachineInstr *FuseInst(MachineFunction &MF,
2291193323Sed                              unsigned Opcode, unsigned OpNo,
2292193323Sed                              const SmallVectorImpl<MachineOperand> &MOs,
2293193323Sed                              MachineInstr *MI, const TargetInstrInfo &TII) {
2294193323Sed  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2295193323Sed                                              MI->getDebugLoc(), true);
2296193323Sed  MachineInstrBuilder MIB(NewMI);
2297193323Sed
2298193323Sed  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2299193323Sed    MachineOperand &MO = MI->getOperand(i);
2300193323Sed    if (i == OpNo) {
2301193323Sed      assert(MO.isReg() && "Expected to fold into reg operand!");
2302193323Sed      unsigned NumAddrOps = MOs.size();
2303193323Sed      for (unsigned i = 0; i != NumAddrOps; ++i)
2304193323Sed        MIB.addOperand(MOs[i]);
2305193323Sed      if (NumAddrOps < 4)  // FrameIndex only
2306193323Sed        addOffset(MIB, 0);
2307193323Sed    } else {
2308193323Sed      MIB.addOperand(MO);
2309193323Sed    }
2310193323Sed  }
2311193323Sed  return MIB;
2312193323Sed}
2313193323Sed
2314193323Sedstatic MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
2315193323Sed                                const SmallVectorImpl<MachineOperand> &MOs,
2316193323Sed                                MachineInstr *MI) {
2317193323Sed  MachineFunction &MF = *MI->getParent()->getParent();
2318193323Sed  MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
2319193323Sed
2320193323Sed  unsigned NumAddrOps = MOs.size();
2321193323Sed  for (unsigned i = 0; i != NumAddrOps; ++i)
2322193323Sed    MIB.addOperand(MOs[i]);
2323193323Sed  if (NumAddrOps < 4)  // FrameIndex only
2324193323Sed    addOffset(MIB, 0);
2325193323Sed  return MIB.addImm(0);
2326193323Sed}
2327193323Sed
2328193323SedMachineInstr*
2329193323SedX86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2330193323Sed                                    MachineInstr *MI, unsigned i,
2331198090Srdivacky                                    const SmallVectorImpl<MachineOperand> &MOs,
2332198090Srdivacky                                    unsigned Size, unsigned Align) const {
2333198090Srdivacky  const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
2334193323Sed  bool isTwoAddrFold = false;
2335193323Sed  unsigned NumOps = MI->getDesc().getNumOperands();
2336193323Sed  bool isTwoAddr = NumOps > 1 &&
2337193323Sed    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2338193323Sed
2339193323Sed  MachineInstr *NewMI = NULL;
2340193323Sed  // Folding a memory location into the two-address part of a two-address
2341193323Sed  // instruction is different than folding it other places.  It requires
2342193323Sed  // replacing the *two* registers with the memory location.
2343193323Sed  if (isTwoAddr && NumOps >= 2 && i < 2 &&
2344193323Sed      MI->getOperand(0).isReg() &&
2345193323Sed      MI->getOperand(1).isReg() &&
2346193323Sed      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2347193323Sed    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2348193323Sed    isTwoAddrFold = true;
2349193323Sed  } else if (i == 0) { // If operand 0
2350202375Srdivacky    if (MI->getOpcode() == X86::MOV64r0)
2351202375Srdivacky      NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2352202375Srdivacky    else if (MI->getOpcode() == X86::MOV32r0)
2353193323Sed      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2354202375Srdivacky    else if (MI->getOpcode() == X86::MOV16r0)
2355202375Srdivacky      NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2356193323Sed    else if (MI->getOpcode() == X86::MOV8r0)
2357193323Sed      NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
2358193323Sed    if (NewMI)
2359193323Sed      return NewMI;
2360193323Sed
2361193323Sed    OpcodeTablePtr = &RegOp2MemOpTable0;
2362193323Sed  } else if (i == 1) {
2363193323Sed    OpcodeTablePtr = &RegOp2MemOpTable1;
2364193323Sed  } else if (i == 2) {
2365193323Sed    OpcodeTablePtr = &RegOp2MemOpTable2;
2366193323Sed  }
2367193323Sed
2368193323Sed  // If table selected...
2369193323Sed  if (OpcodeTablePtr) {
2370193323Sed    // Find the Opcode to fuse
2371199481Srdivacky    DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2372193323Sed      OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2373193323Sed    if (I != OpcodeTablePtr->end()) {
2374198090Srdivacky      unsigned Opcode = I->second.first;
2375198090Srdivacky      unsigned MinAlign = I->second.second;
2376198090Srdivacky      if (Align < MinAlign)
2377198090Srdivacky        return NULL;
2378198090Srdivacky      bool NarrowToMOV32rm = false;
2379198090Srdivacky      if (Size) {
2380198090Srdivacky        unsigned RCSize =  MI->getDesc().OpInfo[i].getRegClass(&RI)->getSize();
2381198090Srdivacky        if (Size < RCSize) {
2382198090Srdivacky          // Check if it's safe to fold the load. If the size of the object is
2383198090Srdivacky          // narrower than the load width, then it's not.
2384198090Srdivacky          if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
2385198090Srdivacky            return NULL;
2386198090Srdivacky          // If this is a 64-bit load, but the spill slot is 32, then we can do
2387198090Srdivacky          // a 32-bit load which is implicitly zero-extended. This likely is due
2388198090Srdivacky          // to liveintervalanalysis remat'ing a load from stack slot.
2389198090Srdivacky          if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
2390198090Srdivacky            return NULL;
2391198090Srdivacky          Opcode = X86::MOV32rm;
2392198090Srdivacky          NarrowToMOV32rm = true;
2393198090Srdivacky        }
2394198090Srdivacky      }
2395198090Srdivacky
2396193323Sed      if (isTwoAddrFold)
2397198090Srdivacky        NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
2398193323Sed      else
2399198090Srdivacky        NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
2400198090Srdivacky
2401198090Srdivacky      if (NarrowToMOV32rm) {
2402198090Srdivacky        // If this is the special case where we use a MOV32rm to load a 32-bit
2403198090Srdivacky        // value and zero-extend the top bits. Change the destination register
2404198090Srdivacky        // to a 32-bit one.
2405198090Srdivacky        unsigned DstReg = NewMI->getOperand(0).getReg();
2406198090Srdivacky        if (TargetRegisterInfo::isPhysicalRegister(DstReg))
2407198090Srdivacky          NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
2408198090Srdivacky                                                   4/*x86_subreg_32bit*/));
2409198090Srdivacky        else
2410198090Srdivacky          NewMI->getOperand(0).setSubReg(4/*x86_subreg_32bit*/);
2411198090Srdivacky      }
2412193323Sed      return NewMI;
2413193323Sed    }
2414193323Sed  }
2415193323Sed
2416193323Sed  // No fusion
2417193323Sed  if (PrintFailedFusing)
2418202375Srdivacky    dbgs() << "We failed to fuse operand " << i << " in " << *MI;
2419193323Sed  return NULL;
2420193323Sed}
2421193323Sed
2422193323Sed
2423193323SedMachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2424193323Sed                                                  MachineInstr *MI,
2425198090Srdivacky                                           const SmallVectorImpl<unsigned> &Ops,
2426193323Sed                                                  int FrameIndex) const {
2427193323Sed  // Check switch flag
2428193323Sed  if (NoFusing) return NULL;
2429193323Sed
2430201360Srdivacky  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2431201360Srdivacky    switch (MI->getOpcode()) {
2432201360Srdivacky    case X86::CVTSD2SSrr:
2433201360Srdivacky    case X86::Int_CVTSD2SSrr:
2434201360Srdivacky    case X86::CVTSS2SDrr:
2435201360Srdivacky    case X86::Int_CVTSS2SDrr:
2436201360Srdivacky    case X86::RCPSSr:
2437201360Srdivacky    case X86::RCPSSr_Int:
2438201360Srdivacky    case X86::ROUNDSDr_Int:
2439201360Srdivacky    case X86::ROUNDSSr_Int:
2440201360Srdivacky    case X86::RSQRTSSr:
2441201360Srdivacky    case X86::RSQRTSSr_Int:
2442201360Srdivacky    case X86::SQRTSSr:
2443201360Srdivacky    case X86::SQRTSSr_Int:
2444201360Srdivacky      return 0;
2445201360Srdivacky    }
2446201360Srdivacky
2447193323Sed  const MachineFrameInfo *MFI = MF.getFrameInfo();
2448198090Srdivacky  unsigned Size = MFI->getObjectSize(FrameIndex);
2449193323Sed  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2450193323Sed  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2451193323Sed    unsigned NewOpc = 0;
2452198090Srdivacky    unsigned RCSize = 0;
2453193323Sed    switch (MI->getOpcode()) {
2454193323Sed    default: return NULL;
2455198090Srdivacky    case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
2456198090Srdivacky    case X86::TEST16rr: NewOpc = X86::CMP16ri; RCSize = 2; break;
2457198090Srdivacky    case X86::TEST32rr: NewOpc = X86::CMP32ri; RCSize = 4; break;
2458198090Srdivacky    case X86::TEST64rr: NewOpc = X86::CMP64ri32; RCSize = 8; break;
2459193323Sed    }
2460198090Srdivacky    // Check if it's safe to fold the load. If the size of the object is
2461198090Srdivacky    // narrower than the load width, then it's not.
2462198090Srdivacky    if (Size < RCSize)
2463198090Srdivacky      return NULL;
2464193323Sed    // Change to CMPXXri r, 0 first.
2465193323Sed    MI->setDesc(get(NewOpc));
2466193323Sed    MI->getOperand(1).ChangeToImmediate(0);
2467193323Sed  } else if (Ops.size() != 1)
2468193323Sed    return NULL;
2469193323Sed
2470193323Sed  SmallVector<MachineOperand,4> MOs;
2471193323Sed  MOs.push_back(MachineOperand::CreateFI(FrameIndex));
2472198090Srdivacky  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
2473193323Sed}
2474193323Sed
2475193323SedMachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2476193323Sed                                                  MachineInstr *MI,
2477198090Srdivacky                                           const SmallVectorImpl<unsigned> &Ops,
2478193323Sed                                                  MachineInstr *LoadMI) const {
2479193323Sed  // Check switch flag
2480193323Sed  if (NoFusing) return NULL;
2481193323Sed
2482201360Srdivacky  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2483201360Srdivacky    switch (MI->getOpcode()) {
2484201360Srdivacky    case X86::CVTSD2SSrr:
2485201360Srdivacky    case X86::Int_CVTSD2SSrr:
2486201360Srdivacky    case X86::CVTSS2SDrr:
2487201360Srdivacky    case X86::Int_CVTSS2SDrr:
2488201360Srdivacky    case X86::RCPSSr:
2489201360Srdivacky    case X86::RCPSSr_Int:
2490201360Srdivacky    case X86::ROUNDSDr_Int:
2491201360Srdivacky    case X86::ROUNDSSr_Int:
2492201360Srdivacky    case X86::RSQRTSSr:
2493201360Srdivacky    case X86::RSQRTSSr_Int:
2494201360Srdivacky    case X86::SQRTSSr:
2495201360Srdivacky    case X86::SQRTSSr_Int:
2496201360Srdivacky      return 0;
2497201360Srdivacky    }
2498201360Srdivacky
2499193323Sed  // Determine the alignment of the load.
2500193323Sed  unsigned Alignment = 0;
2501193323Sed  if (LoadMI->hasOneMemOperand())
2502198090Srdivacky    Alignment = (*LoadMI->memoperands_begin())->getAlignment();
2503198090Srdivacky  else
2504198090Srdivacky    switch (LoadMI->getOpcode()) {
2505198090Srdivacky    case X86::V_SET0:
2506198090Srdivacky    case X86::V_SETALLONES:
2507198090Srdivacky      Alignment = 16;
2508198090Srdivacky      break;
2509198090Srdivacky    case X86::FsFLD0SD:
2510198090Srdivacky      Alignment = 8;
2511198090Srdivacky      break;
2512198090Srdivacky    case X86::FsFLD0SS:
2513198090Srdivacky      Alignment = 4;
2514198090Srdivacky      break;
2515198090Srdivacky    default:
2516198090Srdivacky      llvm_unreachable("Don't know how to fold this instruction!");
2517193323Sed    }
2518193323Sed  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2519193323Sed    unsigned NewOpc = 0;
2520193323Sed    switch (MI->getOpcode()) {
2521193323Sed    default: return NULL;
2522193323Sed    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
2523193323Sed    case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2524193323Sed    case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2525193323Sed    case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2526193323Sed    }
2527193323Sed    // Change to CMPXXri r, 0 first.
2528193323Sed    MI->setDesc(get(NewOpc));
2529193323Sed    MI->getOperand(1).ChangeToImmediate(0);
2530193323Sed  } else if (Ops.size() != 1)
2531193323Sed    return NULL;
2532193323Sed
2533193323Sed  SmallVector<MachineOperand,X86AddrNumOperands> MOs;
2534198090Srdivacky  switch (LoadMI->getOpcode()) {
2535198090Srdivacky  case X86::V_SET0:
2536198090Srdivacky  case X86::V_SETALLONES:
2537198090Srdivacky  case X86::FsFLD0SD:
2538198090Srdivacky  case X86::FsFLD0SS: {
2539193323Sed    // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
2540193323Sed    // Create a constant-pool entry and operands to load from it.
2541193323Sed
2542193323Sed    // x86-32 PIC requires a PIC base register for constant pools.
2543193323Sed    unsigned PICBase = 0;
2544198090Srdivacky    if (TM.getRelocationModel() == Reloc::PIC_) {
2545198090Srdivacky      if (TM.getSubtarget<X86Subtarget>().is64Bit())
2546198090Srdivacky        PICBase = X86::RIP;
2547198090Srdivacky      else
2548198090Srdivacky        // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2549198090Srdivacky        // This doesn't work for several reasons.
2550198090Srdivacky        // 1. GlobalBaseReg may have been spilled.
2551198090Srdivacky        // 2. It may not be live at MI.
2552198090Srdivacky        return NULL;
2553198090Srdivacky    }
2554193323Sed
2555198090Srdivacky    // Create a constant-pool entry.
2556193323Sed    MachineConstantPool &MCP = *MF.getConstantPool();
2557198090Srdivacky    const Type *Ty;
2558198090Srdivacky    if (LoadMI->getOpcode() == X86::FsFLD0SS)
2559198090Srdivacky      Ty = Type::getFloatTy(MF.getFunction()->getContext());
2560198090Srdivacky    else if (LoadMI->getOpcode() == X86::FsFLD0SD)
2561198090Srdivacky      Ty = Type::getDoubleTy(MF.getFunction()->getContext());
2562198090Srdivacky    else
2563198090Srdivacky      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
2564198090Srdivacky    Constant *C = LoadMI->getOpcode() == X86::V_SETALLONES ?
2565198090Srdivacky                    Constant::getAllOnesValue(Ty) :
2566198090Srdivacky                    Constant::getNullValue(Ty);
2567198090Srdivacky    unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
2568193323Sed
2569193323Sed    // Create operands to load from the constant pool entry.
2570193323Sed    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2571193323Sed    MOs.push_back(MachineOperand::CreateImm(1));
2572193323Sed    MOs.push_back(MachineOperand::CreateReg(0, false));
2573193323Sed    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
2574193323Sed    MOs.push_back(MachineOperand::CreateReg(0, false));
2575198090Srdivacky    break;
2576198090Srdivacky  }
2577198090Srdivacky  default: {
2578193323Sed    // Folding a normal load. Just copy the load's address operands.
2579193323Sed    unsigned NumOps = LoadMI->getDesc().getNumOperands();
2580193323Sed    for (unsigned i = NumOps - X86AddrNumOperands; i != NumOps; ++i)
2581193323Sed      MOs.push_back(LoadMI->getOperand(i));
2582198090Srdivacky    break;
2583193323Sed  }
2584198090Srdivacky  }
2585198090Srdivacky  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
2586193323Sed}
2587193323Sed
2588193323Sed
2589193323Sedbool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2590193323Sed                                  const SmallVectorImpl<unsigned> &Ops) const {
2591193323Sed  // Check switch flag
2592193323Sed  if (NoFusing) return 0;
2593193323Sed
2594193323Sed  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2595193323Sed    switch (MI->getOpcode()) {
2596193323Sed    default: return false;
2597193323Sed    case X86::TEST8rr:
2598193323Sed    case X86::TEST16rr:
2599193323Sed    case X86::TEST32rr:
2600193323Sed    case X86::TEST64rr:
2601193323Sed      return true;
2602193323Sed    }
2603193323Sed  }
2604193323Sed
2605193323Sed  if (Ops.size() != 1)
2606193323Sed    return false;
2607193323Sed
2608193323Sed  unsigned OpNum = Ops[0];
2609193323Sed  unsigned Opc = MI->getOpcode();
2610193323Sed  unsigned NumOps = MI->getDesc().getNumOperands();
2611193323Sed  bool isTwoAddr = NumOps > 1 &&
2612193323Sed    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2613193323Sed
2614193323Sed  // Folding a memory location into the two-address part of a two-address
2615193323Sed  // instruction is different than folding it other places.  It requires
2616193323Sed  // replacing the *two* registers with the memory location.
2617198090Srdivacky  const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
2618193323Sed  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2619193323Sed    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2620193323Sed  } else if (OpNum == 0) { // If operand 0
2621193323Sed    switch (Opc) {
2622198090Srdivacky    case X86::MOV8r0:
2623202375Srdivacky    case X86::MOV16r0:
2624193323Sed    case X86::MOV32r0:
2625202375Srdivacky    case X86::MOV64r0:
2626193323Sed      return true;
2627193323Sed    default: break;
2628193323Sed    }
2629193323Sed    OpcodeTablePtr = &RegOp2MemOpTable0;
2630193323Sed  } else if (OpNum == 1) {
2631193323Sed    OpcodeTablePtr = &RegOp2MemOpTable1;
2632193323Sed  } else if (OpNum == 2) {
2633193323Sed    OpcodeTablePtr = &RegOp2MemOpTable2;
2634193323Sed  }
2635193323Sed
2636193323Sed  if (OpcodeTablePtr) {
2637193323Sed    // Find the Opcode to fuse
2638199481Srdivacky    DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2639193323Sed      OpcodeTablePtr->find((unsigned*)Opc);
2640193323Sed    if (I != OpcodeTablePtr->end())
2641193323Sed      return true;
2642193323Sed  }
2643193323Sed  return false;
2644193323Sed}
2645193323Sed
2646193323Sedbool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2647193323Sed                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2648193323Sed                                SmallVectorImpl<MachineInstr*> &NewMIs) const {
2649199481Srdivacky  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2650193323Sed    MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2651193323Sed  if (I == MemOp2RegOpTable.end())
2652193323Sed    return false;
2653193323Sed  unsigned Opc = I->second.first;
2654193323Sed  unsigned Index = I->second.second & 0xf;
2655193323Sed  bool FoldedLoad = I->second.second & (1 << 4);
2656193323Sed  bool FoldedStore = I->second.second & (1 << 5);
2657193323Sed  if (UnfoldLoad && !FoldedLoad)
2658193323Sed    return false;
2659193323Sed  UnfoldLoad &= FoldedLoad;
2660193323Sed  if (UnfoldStore && !FoldedStore)
2661193323Sed    return false;
2662193323Sed  UnfoldStore &= FoldedStore;
2663193323Sed
2664193323Sed  const TargetInstrDesc &TID = get(Opc);
2665193323Sed  const TargetOperandInfo &TOI = TID.OpInfo[Index];
2666198090Srdivacky  const TargetRegisterClass *RC = TOI.getRegClass(&RI);
2667193323Sed  SmallVector<MachineOperand, X86AddrNumOperands> AddrOps;
2668193323Sed  SmallVector<MachineOperand,2> BeforeOps;
2669193323Sed  SmallVector<MachineOperand,2> AfterOps;
2670193323Sed  SmallVector<MachineOperand,4> ImpOps;
2671193323Sed  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2672193323Sed    MachineOperand &Op = MI->getOperand(i);
2673193323Sed    if (i >= Index && i < Index + X86AddrNumOperands)
2674193323Sed      AddrOps.push_back(Op);
2675193323Sed    else if (Op.isReg() && Op.isImplicit())
2676193323Sed      ImpOps.push_back(Op);
2677193323Sed    else if (i < Index)
2678193323Sed      BeforeOps.push_back(Op);
2679193323Sed    else if (i > Index)
2680193323Sed      AfterOps.push_back(Op);
2681193323Sed  }
2682193323Sed
2683193323Sed  // Emit the load instruction.
2684193323Sed  if (UnfoldLoad) {
2685198090Srdivacky    std::pair<MachineInstr::mmo_iterator,
2686198090Srdivacky              MachineInstr::mmo_iterator> MMOs =
2687198090Srdivacky      MF.extractLoadMemRefs(MI->memoperands_begin(),
2688198090Srdivacky                            MI->memoperands_end());
2689198090Srdivacky    loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
2690193323Sed    if (UnfoldStore) {
2691193323Sed      // Address operands cannot be marked isKill.
2692193323Sed      for (unsigned i = 1; i != 1 + X86AddrNumOperands; ++i) {
2693193323Sed        MachineOperand &MO = NewMIs[0]->getOperand(i);
2694193323Sed        if (MO.isReg())
2695193323Sed          MO.setIsKill(false);
2696193323Sed      }
2697193323Sed    }
2698193323Sed  }
2699193323Sed
2700193323Sed  // Emit the data processing instruction.
2701193323Sed  MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
2702193323Sed  MachineInstrBuilder MIB(DataMI);
2703193323Sed
2704193323Sed  if (FoldedStore)
2705193323Sed    MIB.addReg(Reg, RegState::Define);
2706193323Sed  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2707193323Sed    MIB.addOperand(BeforeOps[i]);
2708193323Sed  if (FoldedLoad)
2709193323Sed    MIB.addReg(Reg);
2710193323Sed  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2711193323Sed    MIB.addOperand(AfterOps[i]);
2712193323Sed  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2713193323Sed    MachineOperand &MO = ImpOps[i];
2714193323Sed    MIB.addReg(MO.getReg(),
2715193323Sed               getDefRegState(MO.isDef()) |
2716193323Sed               RegState::Implicit |
2717193323Sed               getKillRegState(MO.isKill()) |
2718195340Sed               getDeadRegState(MO.isDead()) |
2719195340Sed               getUndefRegState(MO.isUndef()));
2720193323Sed  }
2721193323Sed  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2722193323Sed  unsigned NewOpc = 0;
2723193323Sed  switch (DataMI->getOpcode()) {
2724193323Sed  default: break;
2725193323Sed  case X86::CMP64ri32:
2726193323Sed  case X86::CMP32ri:
2727193323Sed  case X86::CMP16ri:
2728193323Sed  case X86::CMP8ri: {
2729193323Sed    MachineOperand &MO0 = DataMI->getOperand(0);
2730193323Sed    MachineOperand &MO1 = DataMI->getOperand(1);
2731193323Sed    if (MO1.getImm() == 0) {
2732193323Sed      switch (DataMI->getOpcode()) {
2733193323Sed      default: break;
2734193323Sed      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2735193323Sed      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
2736193323Sed      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
2737193323Sed      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
2738193323Sed      }
2739193323Sed      DataMI->setDesc(get(NewOpc));
2740193323Sed      MO1.ChangeToRegister(MO0.getReg(), false);
2741193323Sed    }
2742193323Sed  }
2743193323Sed  }
2744193323Sed  NewMIs.push_back(DataMI);
2745193323Sed
2746193323Sed  // Emit the store instruction.
2747193323Sed  if (UnfoldStore) {
2748198090Srdivacky    const TargetRegisterClass *DstRC = TID.OpInfo[0].getRegClass(&RI);
2749198090Srdivacky    std::pair<MachineInstr::mmo_iterator,
2750198090Srdivacky              MachineInstr::mmo_iterator> MMOs =
2751198090Srdivacky      MF.extractStoreMemRefs(MI->memoperands_begin(),
2752198090Srdivacky                             MI->memoperands_end());
2753198090Srdivacky    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
2754193323Sed  }
2755193323Sed
2756193323Sed  return true;
2757193323Sed}
2758193323Sed
2759193323Sedbool
2760193323SedX86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2761193323Sed                                  SmallVectorImpl<SDNode*> &NewNodes) const {
2762193323Sed  if (!N->isMachineOpcode())
2763193323Sed    return false;
2764193323Sed
2765199481Srdivacky  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2766193323Sed    MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
2767193323Sed  if (I == MemOp2RegOpTable.end())
2768193323Sed    return false;
2769193323Sed  unsigned Opc = I->second.first;
2770193323Sed  unsigned Index = I->second.second & 0xf;
2771193323Sed  bool FoldedLoad = I->second.second & (1 << 4);
2772193323Sed  bool FoldedStore = I->second.second & (1 << 5);
2773193323Sed  const TargetInstrDesc &TID = get(Opc);
2774198090Srdivacky  const TargetRegisterClass *RC = TID.OpInfo[Index].getRegClass(&RI);
2775193323Sed  unsigned NumDefs = TID.NumDefs;
2776193323Sed  std::vector<SDValue> AddrOps;
2777193323Sed  std::vector<SDValue> BeforeOps;
2778193323Sed  std::vector<SDValue> AfterOps;
2779193323Sed  DebugLoc dl = N->getDebugLoc();
2780193323Sed  unsigned NumOps = N->getNumOperands();
2781193323Sed  for (unsigned i = 0; i != NumOps-1; ++i) {
2782193323Sed    SDValue Op = N->getOperand(i);
2783193323Sed    if (i >= Index-NumDefs && i < Index-NumDefs + X86AddrNumOperands)
2784193323Sed      AddrOps.push_back(Op);
2785193323Sed    else if (i < Index-NumDefs)
2786193323Sed      BeforeOps.push_back(Op);
2787193323Sed    else if (i > Index-NumDefs)
2788193323Sed      AfterOps.push_back(Op);
2789193323Sed  }
2790193323Sed  SDValue Chain = N->getOperand(NumOps-1);
2791193323Sed  AddrOps.push_back(Chain);
2792193323Sed
2793193323Sed  // Emit the load instruction.
2794193323Sed  SDNode *Load = 0;
2795198090Srdivacky  MachineFunction &MF = DAG.getMachineFunction();
2796193323Sed  if (FoldedLoad) {
2797198090Srdivacky    EVT VT = *RC->vt_begin();
2798199481Srdivacky    std::pair<MachineInstr::mmo_iterator,
2799199481Srdivacky              MachineInstr::mmo_iterator> MMOs =
2800199481Srdivacky      MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2801199481Srdivacky                            cast<MachineSDNode>(N)->memoperands_end());
2802199481Srdivacky    bool isAligned = (*MMOs.first)->getAlignment() >= 16;
2803198090Srdivacky    Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
2804198090Srdivacky                              VT, MVT::Other, &AddrOps[0], AddrOps.size());
2805193323Sed    NewNodes.push_back(Load);
2806198090Srdivacky
2807198090Srdivacky    // Preserve memory reference information.
2808198090Srdivacky    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
2809193323Sed  }
2810193323Sed
2811193323Sed  // Emit the data processing instruction.
2812198090Srdivacky  std::vector<EVT> VTs;
2813193323Sed  const TargetRegisterClass *DstRC = 0;
2814193323Sed  if (TID.getNumDefs() > 0) {
2815198090Srdivacky    DstRC = TID.OpInfo[0].getRegClass(&RI);
2816193323Sed    VTs.push_back(*DstRC->vt_begin());
2817193323Sed  }
2818193323Sed  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2819198090Srdivacky    EVT VT = N->getValueType(i);
2820193323Sed    if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
2821193323Sed      VTs.push_back(VT);
2822193323Sed  }
2823193323Sed  if (Load)
2824193323Sed    BeforeOps.push_back(SDValue(Load, 0));
2825193323Sed  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2826198090Srdivacky  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
2827198090Srdivacky                                      BeforeOps.size());
2828193323Sed  NewNodes.push_back(NewNode);
2829193323Sed
2830193323Sed  // Emit the store instruction.
2831193323Sed  if (FoldedStore) {
2832193323Sed    AddrOps.pop_back();
2833193323Sed    AddrOps.push_back(SDValue(NewNode, 0));
2834193323Sed    AddrOps.push_back(Chain);
2835199481Srdivacky    std::pair<MachineInstr::mmo_iterator,
2836199481Srdivacky              MachineInstr::mmo_iterator> MMOs =
2837199481Srdivacky      MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2838199481Srdivacky                             cast<MachineSDNode>(N)->memoperands_end());
2839199481Srdivacky    bool isAligned = (*MMOs.first)->getAlignment() >= 16;
2840198090Srdivacky    SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
2841198090Srdivacky                                                         isAligned, TM),
2842198090Srdivacky                                       dl, MVT::Other,
2843198090Srdivacky                                       &AddrOps[0], AddrOps.size());
2844193323Sed    NewNodes.push_back(Store);
2845198090Srdivacky
2846198090Srdivacky    // Preserve memory reference information.
2847198090Srdivacky    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
2848193323Sed  }
2849193323Sed
2850193323Sed  return true;
2851193323Sed}
2852193323Sed
2853193323Sedunsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2854198892Srdivacky                                      bool UnfoldLoad, bool UnfoldStore,
2855198892Srdivacky                                      unsigned *LoadRegIndex) const {
2856199481Srdivacky  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2857193323Sed    MemOp2RegOpTable.find((unsigned*)Opc);
2858193323Sed  if (I == MemOp2RegOpTable.end())
2859193323Sed    return 0;
2860193323Sed  bool FoldedLoad = I->second.second & (1 << 4);
2861193323Sed  bool FoldedStore = I->second.second & (1 << 5);
2862193323Sed  if (UnfoldLoad && !FoldedLoad)
2863193323Sed    return 0;
2864193323Sed  if (UnfoldStore && !FoldedStore)
2865193323Sed    return 0;
2866198892Srdivacky  if (LoadRegIndex)
2867198892Srdivacky    *LoadRegIndex = I->second.second & 0xf;
2868193323Sed  return I->second.first;
2869193323Sed}
2870193323Sed
2871202878Srdivackybool
2872202878SrdivackyX86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
2873202878Srdivacky                                     int64_t &Offset1, int64_t &Offset2) const {
2874202878Srdivacky  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
2875202878Srdivacky    return false;
2876202878Srdivacky  unsigned Opc1 = Load1->getMachineOpcode();
2877202878Srdivacky  unsigned Opc2 = Load2->getMachineOpcode();
2878202878Srdivacky  switch (Opc1) {
2879202878Srdivacky  default: return false;
2880202878Srdivacky  case X86::MOV8rm:
2881202878Srdivacky  case X86::MOV16rm:
2882202878Srdivacky  case X86::MOV32rm:
2883202878Srdivacky  case X86::MOV64rm:
2884202878Srdivacky  case X86::LD_Fp32m:
2885202878Srdivacky  case X86::LD_Fp64m:
2886202878Srdivacky  case X86::LD_Fp80m:
2887202878Srdivacky  case X86::MOVSSrm:
2888202878Srdivacky  case X86::MOVSDrm:
2889202878Srdivacky  case X86::MMX_MOVD64rm:
2890202878Srdivacky  case X86::MMX_MOVQ64rm:
2891202878Srdivacky  case X86::FsMOVAPSrm:
2892202878Srdivacky  case X86::FsMOVAPDrm:
2893202878Srdivacky  case X86::MOVAPSrm:
2894202878Srdivacky  case X86::MOVUPSrm:
2895202878Srdivacky  case X86::MOVUPSrm_Int:
2896202878Srdivacky  case X86::MOVAPDrm:
2897202878Srdivacky  case X86::MOVDQArm:
2898202878Srdivacky  case X86::MOVDQUrm:
2899202878Srdivacky  case X86::MOVDQUrm_Int:
2900202878Srdivacky    break;
2901202878Srdivacky  }
2902202878Srdivacky  switch (Opc2) {
2903202878Srdivacky  default: return false;
2904202878Srdivacky  case X86::MOV8rm:
2905202878Srdivacky  case X86::MOV16rm:
2906202878Srdivacky  case X86::MOV32rm:
2907202878Srdivacky  case X86::MOV64rm:
2908202878Srdivacky  case X86::LD_Fp32m:
2909202878Srdivacky  case X86::LD_Fp64m:
2910202878Srdivacky  case X86::LD_Fp80m:
2911202878Srdivacky  case X86::MOVSSrm:
2912202878Srdivacky  case X86::MOVSDrm:
2913202878Srdivacky  case X86::MMX_MOVD64rm:
2914202878Srdivacky  case X86::MMX_MOVQ64rm:
2915202878Srdivacky  case X86::FsMOVAPSrm:
2916202878Srdivacky  case X86::FsMOVAPDrm:
2917202878Srdivacky  case X86::MOVAPSrm:
2918202878Srdivacky  case X86::MOVUPSrm:
2919202878Srdivacky  case X86::MOVUPSrm_Int:
2920202878Srdivacky  case X86::MOVAPDrm:
2921202878Srdivacky  case X86::MOVDQArm:
2922202878Srdivacky  case X86::MOVDQUrm:
2923202878Srdivacky  case X86::MOVDQUrm_Int:
2924202878Srdivacky    break;
2925202878Srdivacky  }
2926202878Srdivacky
2927202878Srdivacky  // Check if chain operands and base addresses match.
2928202878Srdivacky  if (Load1->getOperand(0) != Load2->getOperand(0) ||
2929202878Srdivacky      Load1->getOperand(5) != Load2->getOperand(5))
2930202878Srdivacky    return false;
2931202878Srdivacky  // Segment operands should match as well.
2932202878Srdivacky  if (Load1->getOperand(4) != Load2->getOperand(4))
2933202878Srdivacky    return false;
2934202878Srdivacky  // Scale should be 1, Index should be Reg0.
2935202878Srdivacky  if (Load1->getOperand(1) == Load2->getOperand(1) &&
2936202878Srdivacky      Load1->getOperand(2) == Load2->getOperand(2)) {
2937202878Srdivacky    if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
2938202878Srdivacky      return false;
2939202878Srdivacky    SDValue Op2 = Load1->getOperand(2);
2940202878Srdivacky    if (!isa<RegisterSDNode>(Op2) ||
2941202878Srdivacky        cast<RegisterSDNode>(Op2)->getReg() != 0)
2942202878Srdivacky      return 0;
2943202878Srdivacky
2944202878Srdivacky    // Now let's examine the displacements.
2945202878Srdivacky    if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
2946202878Srdivacky        isa<ConstantSDNode>(Load2->getOperand(3))) {
2947202878Srdivacky      Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
2948202878Srdivacky      Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
2949202878Srdivacky      return true;
2950202878Srdivacky    }
2951202878Srdivacky  }
2952202878Srdivacky  return false;
2953202878Srdivacky}
2954202878Srdivacky
2955202878Srdivackybool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
2956202878Srdivacky                                           int64_t Offset1, int64_t Offset2,
2957202878Srdivacky                                           unsigned NumLoads) const {
2958202878Srdivacky  assert(Offset2 > Offset1);
2959202878Srdivacky  if ((Offset2 - Offset1) / 8 > 64)
2960202878Srdivacky    return false;
2961202878Srdivacky
2962202878Srdivacky  unsigned Opc1 = Load1->getMachineOpcode();
2963202878Srdivacky  unsigned Opc2 = Load2->getMachineOpcode();
2964202878Srdivacky  if (Opc1 != Opc2)
2965202878Srdivacky    return false;  // FIXME: overly conservative?
2966202878Srdivacky
2967202878Srdivacky  switch (Opc1) {
2968202878Srdivacky  default: break;
2969202878Srdivacky  case X86::LD_Fp32m:
2970202878Srdivacky  case X86::LD_Fp64m:
2971202878Srdivacky  case X86::LD_Fp80m:
2972202878Srdivacky  case X86::MMX_MOVD64rm:
2973202878Srdivacky  case X86::MMX_MOVQ64rm:
2974202878Srdivacky    return false;
2975202878Srdivacky  }
2976202878Srdivacky
2977202878Srdivacky  EVT VT = Load1->getValueType(0);
2978202878Srdivacky  switch (VT.getSimpleVT().SimpleTy) {
2979202878Srdivacky  default: {
2980202878Srdivacky    // XMM registers. In 64-bit mode we can be a bit more aggressive since we
2981202878Srdivacky    // have 16 of them to play with.
2982202878Srdivacky    if (TM.getSubtargetImpl()->is64Bit()) {
2983202878Srdivacky      if (NumLoads >= 3)
2984202878Srdivacky        return false;
2985202878Srdivacky    } else if (NumLoads)
2986202878Srdivacky      return false;
2987202878Srdivacky    break;
2988202878Srdivacky  }
2989202878Srdivacky  case MVT::i8:
2990202878Srdivacky  case MVT::i16:
2991202878Srdivacky  case MVT::i32:
2992202878Srdivacky  case MVT::i64:
2993202878Srdivacky  case MVT::f32:
2994202878Srdivacky  case MVT::f64:
2995202878Srdivacky    if (NumLoads)
2996202878Srdivacky      return false;
2997202878Srdivacky  }
2998202878Srdivacky
2999202878Srdivacky  return true;
3000202878Srdivacky}
3001202878Srdivacky
3002202878Srdivacky
3003193323Sedbool X86InstrInfo::
3004193323SedReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
3005193323Sed  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
3006193323Sed  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
3007193323Sed  if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
3008193323Sed    return true;
3009193323Sed  Cond[0].setImm(GetOppositeBranchCondition(CC));
3010193323Sed  return false;
3011193323Sed}
3012193323Sed
3013193323Sedbool X86InstrInfo::
3014193323SedisSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
3015193323Sed  // FIXME: Return false for x87 stack register classes for now. We can't
3016193323Sed  // allow any loads of these registers before FpGet_ST0_80.
3017193323Sed  return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
3018193323Sed           RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
3019193323Sed}
3020193323Sed
3021193323Sedunsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
3022193323Sed  switch (Desc->TSFlags & X86II::ImmMask) {
3023193323Sed  case X86II::Imm8:   return 1;
3024193323Sed  case X86II::Imm16:  return 2;
3025193323Sed  case X86II::Imm32:  return 4;
3026193323Sed  case X86II::Imm64:  return 8;
3027198090Srdivacky  default: llvm_unreachable("Immediate size not set!");
3028193323Sed    return 0;
3029193323Sed  }
3030193323Sed}
3031193323Sed
3032193323Sed/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
3033193323Sed/// e.g. r8, xmm8, etc.
3034193323Sedbool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
3035193323Sed  if (!MO.isReg()) return false;
3036193323Sed  switch (MO.getReg()) {
3037193323Sed  default: break;
3038193323Sed  case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
3039193323Sed  case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
3040193323Sed  case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
3041193323Sed  case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
3042193323Sed  case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
3043193323Sed  case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
3044193323Sed  case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
3045193323Sed  case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
3046193323Sed  case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
3047193323Sed  case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
3048193323Sed    return true;
3049193323Sed  }
3050193323Sed  return false;
3051193323Sed}
3052193323Sed
3053193323Sed
3054193323Sed/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
3055193323Sed/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
3056193323Sed/// size, and 3) use of X86-64 extended registers.
3057193323Sedunsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
3058193323Sed  unsigned REX = 0;
3059193323Sed  const TargetInstrDesc &Desc = MI.getDesc();
3060193323Sed
3061193323Sed  // Pseudo instructions do not need REX prefix byte.
3062193323Sed  if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
3063193323Sed    return 0;
3064193323Sed  if (Desc.TSFlags & X86II::REX_W)
3065193323Sed    REX |= 1 << 3;
3066193323Sed
3067193323Sed  unsigned NumOps = Desc.getNumOperands();
3068193323Sed  if (NumOps) {
3069193323Sed    bool isTwoAddr = NumOps > 1 &&
3070193323Sed      Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
3071193323Sed
3072193323Sed    // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
3073193323Sed    unsigned i = isTwoAddr ? 1 : 0;
3074193323Sed    for (unsigned e = NumOps; i != e; ++i) {
3075193323Sed      const MachineOperand& MO = MI.getOperand(i);
3076193323Sed      if (MO.isReg()) {
3077193323Sed        unsigned Reg = MO.getReg();
3078193323Sed        if (isX86_64NonExtLowByteReg(Reg))
3079193323Sed          REX |= 0x40;
3080193323Sed      }
3081193323Sed    }
3082193323Sed
3083193323Sed    switch (Desc.TSFlags & X86II::FormMask) {
3084193323Sed    case X86II::MRMInitReg:
3085193323Sed      if (isX86_64ExtendedReg(MI.getOperand(0)))
3086193323Sed        REX |= (1 << 0) | (1 << 2);
3087193323Sed      break;
3088193323Sed    case X86II::MRMSrcReg: {
3089193323Sed      if (isX86_64ExtendedReg(MI.getOperand(0)))
3090193323Sed        REX |= 1 << 2;
3091193323Sed      i = isTwoAddr ? 2 : 1;
3092193323Sed      for (unsigned e = NumOps; i != e; ++i) {
3093193323Sed        const MachineOperand& MO = MI.getOperand(i);
3094193323Sed        if (isX86_64ExtendedReg(MO))
3095193323Sed          REX |= 1 << 0;
3096193323Sed      }
3097193323Sed      break;
3098193323Sed    }
3099193323Sed    case X86II::MRMSrcMem: {
3100193323Sed      if (isX86_64ExtendedReg(MI.getOperand(0)))
3101193323Sed        REX |= 1 << 2;
3102193323Sed      unsigned Bit = 0;
3103193323Sed      i = isTwoAddr ? 2 : 1;
3104193323Sed      for (; i != NumOps; ++i) {
3105193323Sed        const MachineOperand& MO = MI.getOperand(i);
3106193323Sed        if (MO.isReg()) {
3107193323Sed          if (isX86_64ExtendedReg(MO))
3108193323Sed            REX |= 1 << Bit;
3109193323Sed          Bit++;
3110193323Sed        }
3111193323Sed      }
3112193323Sed      break;
3113193323Sed    }
3114193323Sed    case X86II::MRM0m: case X86II::MRM1m:
3115193323Sed    case X86II::MRM2m: case X86II::MRM3m:
3116193323Sed    case X86II::MRM4m: case X86II::MRM5m:
3117193323Sed    case X86II::MRM6m: case X86II::MRM7m:
3118193323Sed    case X86II::MRMDestMem: {
3119193323Sed      unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
3120193323Sed      i = isTwoAddr ? 1 : 0;
3121193323Sed      if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
3122193323Sed        REX |= 1 << 2;
3123193323Sed      unsigned Bit = 0;
3124193323Sed      for (; i != e; ++i) {
3125193323Sed        const MachineOperand& MO = MI.getOperand(i);
3126193323Sed        if (MO.isReg()) {
3127193323Sed          if (isX86_64ExtendedReg(MO))
3128193323Sed            REX |= 1 << Bit;
3129193323Sed          Bit++;
3130193323Sed        }
3131193323Sed      }
3132193323Sed      break;
3133193323Sed    }
3134193323Sed    default: {
3135193323Sed      if (isX86_64ExtendedReg(MI.getOperand(0)))
3136193323Sed        REX |= 1 << 0;
3137193323Sed      i = isTwoAddr ? 2 : 1;
3138193323Sed      for (unsigned e = NumOps; i != e; ++i) {
3139193323Sed        const MachineOperand& MO = MI.getOperand(i);
3140193323Sed        if (isX86_64ExtendedReg(MO))
3141193323Sed          REX |= 1 << 2;
3142193323Sed      }
3143193323Sed      break;
3144193323Sed    }
3145193323Sed    }
3146193323Sed  }
3147193323Sed  return REX;
3148193323Sed}
3149193323Sed
3150193323Sed/// sizePCRelativeBlockAddress - This method returns the size of a PC
3151193323Sed/// relative block address instruction
3152193323Sed///
3153193323Sedstatic unsigned sizePCRelativeBlockAddress() {
3154193323Sed  return 4;
3155193323Sed}
3156193323Sed
3157193323Sed/// sizeGlobalAddress - Give the size of the emission of this global address
3158193323Sed///
3159193323Sedstatic unsigned sizeGlobalAddress(bool dword) {
3160193323Sed  return dword ? 8 : 4;
3161193323Sed}
3162193323Sed
3163193323Sed/// sizeConstPoolAddress - Give the size of the emission of this constant
3164193323Sed/// pool address
3165193323Sed///
3166193323Sedstatic unsigned sizeConstPoolAddress(bool dword) {
3167193323Sed  return dword ? 8 : 4;
3168193323Sed}
3169193323Sed
3170193323Sed/// sizeExternalSymbolAddress - Give the size of the emission of this external
3171193323Sed/// symbol
3172193323Sed///
3173193323Sedstatic unsigned sizeExternalSymbolAddress(bool dword) {
3174193323Sed  return dword ? 8 : 4;
3175193323Sed}
3176193323Sed
3177193323Sed/// sizeJumpTableAddress - Give the size of the emission of this jump
3178193323Sed/// table address
3179193323Sed///
3180193323Sedstatic unsigned sizeJumpTableAddress(bool dword) {
3181193323Sed  return dword ? 8 : 4;
3182193323Sed}
3183193323Sed
3184193323Sedstatic unsigned sizeConstant(unsigned Size) {
3185193323Sed  return Size;
3186193323Sed}
3187193323Sed
3188193323Sedstatic unsigned sizeRegModRMByte(){
3189193323Sed  return 1;
3190193323Sed}
3191193323Sed
3192193323Sedstatic unsigned sizeSIBByte(){
3193193323Sed  return 1;
3194193323Sed}
3195193323Sed
3196193323Sedstatic unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
3197193323Sed  unsigned FinalSize = 0;
3198193323Sed  // If this is a simple integer displacement that doesn't require a relocation.
3199193323Sed  if (!RelocOp) {
3200193323Sed    FinalSize += sizeConstant(4);
3201193323Sed    return FinalSize;
3202193323Sed  }
3203193323Sed
3204193323Sed  // Otherwise, this is something that requires a relocation.
3205193323Sed  if (RelocOp->isGlobal()) {
3206193323Sed    FinalSize += sizeGlobalAddress(false);
3207193323Sed  } else if (RelocOp->isCPI()) {
3208193323Sed    FinalSize += sizeConstPoolAddress(false);
3209193323Sed  } else if (RelocOp->isJTI()) {
3210193323Sed    FinalSize += sizeJumpTableAddress(false);
3211193323Sed  } else {
3212198090Srdivacky    llvm_unreachable("Unknown value to relocate!");
3213193323Sed  }
3214193323Sed  return FinalSize;
3215193323Sed}
3216193323Sed
3217193323Sedstatic unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
3218193323Sed                                    bool IsPIC, bool Is64BitMode) {
3219193323Sed  const MachineOperand &Op3 = MI.getOperand(Op+3);
3220193323Sed  int DispVal = 0;
3221193323Sed  const MachineOperand *DispForReloc = 0;
3222193323Sed  unsigned FinalSize = 0;
3223193323Sed
3224193323Sed  // Figure out what sort of displacement we have to handle here.
3225193323Sed  if (Op3.isGlobal()) {
3226193323Sed    DispForReloc = &Op3;
3227193323Sed  } else if (Op3.isCPI()) {
3228193323Sed    if (Is64BitMode || IsPIC) {
3229193323Sed      DispForReloc = &Op3;
3230193323Sed    } else {
3231193323Sed      DispVal = 1;
3232193323Sed    }
3233193323Sed  } else if (Op3.isJTI()) {
3234193323Sed    if (Is64BitMode || IsPIC) {
3235193323Sed      DispForReloc = &Op3;
3236193323Sed    } else {
3237193323Sed      DispVal = 1;
3238193323Sed    }
3239193323Sed  } else {
3240193323Sed    DispVal = 1;
3241193323Sed  }
3242193323Sed
3243193323Sed  const MachineOperand &Base     = MI.getOperand(Op);
3244193323Sed  const MachineOperand &IndexReg = MI.getOperand(Op+2);
3245193323Sed
3246193323Sed  unsigned BaseReg = Base.getReg();
3247193323Sed
3248193323Sed  // Is a SIB byte needed?
3249193323Sed  if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
3250193323Sed      IndexReg.getReg() == 0 &&
3251193323Sed      (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
3252193323Sed    if (BaseReg == 0) {  // Just a displacement?
3253193323Sed      // Emit special case [disp32] encoding
3254193323Sed      ++FinalSize;
3255193323Sed      FinalSize += getDisplacementFieldSize(DispForReloc);
3256193323Sed    } else {
3257193323Sed      unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
3258193323Sed      if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
3259193323Sed        // Emit simple indirect register encoding... [EAX] f.e.
3260193323Sed        ++FinalSize;
3261193323Sed      // Be pessimistic and assume it's a disp32, not a disp8
3262193323Sed      } else {
3263193323Sed        // Emit the most general non-SIB encoding: [REG+disp32]
3264193323Sed        ++FinalSize;
3265193323Sed        FinalSize += getDisplacementFieldSize(DispForReloc);
3266193323Sed      }
3267193323Sed    }
3268193323Sed
3269193323Sed  } else {  // We need a SIB byte, so start by outputting the ModR/M byte first
3270193323Sed    assert(IndexReg.getReg() != X86::ESP &&
3271193323Sed           IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
3272193323Sed
3273193323Sed    bool ForceDisp32 = false;
3274193323Sed    if (BaseReg == 0 || DispForReloc) {
3275193323Sed      // Emit the normal disp32 encoding.
3276193323Sed      ++FinalSize;
3277193323Sed      ForceDisp32 = true;
3278193323Sed    } else {
3279193323Sed      ++FinalSize;
3280193323Sed    }
3281193323Sed
3282193323Sed    FinalSize += sizeSIBByte();
3283193323Sed
3284193323Sed    // Do we need to output a displacement?
3285193323Sed    if (DispVal != 0 || ForceDisp32) {
3286193323Sed      FinalSize += getDisplacementFieldSize(DispForReloc);
3287193323Sed    }
3288193323Sed  }
3289193323Sed  return FinalSize;
3290193323Sed}
3291193323Sed
3292193323Sed
3293193323Sedstatic unsigned GetInstSizeWithDesc(const MachineInstr &MI,
3294193323Sed                                    const TargetInstrDesc *Desc,
3295193323Sed                                    bool IsPIC, bool Is64BitMode) {
3296193323Sed
3297193323Sed  unsigned Opcode = Desc->Opcode;
3298193323Sed  unsigned FinalSize = 0;
3299193323Sed
3300193323Sed  // Emit the lock opcode prefix as needed.
3301193323Sed  if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
3302193323Sed
3303193323Sed  // Emit segment override opcode prefix as needed.
3304193323Sed  switch (Desc->TSFlags & X86II::SegOvrMask) {
3305193323Sed  case X86II::FS:
3306193323Sed  case X86II::GS:
3307193323Sed   ++FinalSize;
3308193323Sed   break;
3309198090Srdivacky  default: llvm_unreachable("Invalid segment!");
3310193323Sed  case 0: break;  // No segment override!
3311193323Sed  }
3312193323Sed
3313193323Sed  // Emit the repeat opcode prefix as needed.
3314193323Sed  if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
3315193323Sed
3316193323Sed  // Emit the operand size opcode prefix as needed.
3317193323Sed  if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
3318193323Sed
3319193323Sed  // Emit the address size opcode prefix as needed.
3320193323Sed  if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
3321193323Sed
3322193323Sed  bool Need0FPrefix = false;
3323193323Sed  switch (Desc->TSFlags & X86II::Op0Mask) {
3324193323Sed  case X86II::TB:  // Two-byte opcode prefix
3325193323Sed  case X86II::T8:  // 0F 38
3326193323Sed  case X86II::TA:  // 0F 3A
3327193323Sed    Need0FPrefix = true;
3328193323Sed    break;
3329198090Srdivacky  case X86II::TF: // F2 0F 38
3330198090Srdivacky    ++FinalSize;
3331198090Srdivacky    Need0FPrefix = true;
3332198090Srdivacky    break;
3333193323Sed  case X86II::REP: break; // already handled.
3334193323Sed  case X86II::XS:   // F3 0F
3335193323Sed    ++FinalSize;
3336193323Sed    Need0FPrefix = true;
3337193323Sed    break;
3338193323Sed  case X86II::XD:   // F2 0F
3339193323Sed    ++FinalSize;
3340193323Sed    Need0FPrefix = true;
3341193323Sed    break;
3342193323Sed  case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
3343193323Sed  case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
3344193323Sed    ++FinalSize;
3345193323Sed    break; // Two-byte opcode prefix
3346198090Srdivacky  default: llvm_unreachable("Invalid prefix!");
3347193323Sed  case 0: break;  // No prefix!
3348193323Sed  }
3349193323Sed
3350193323Sed  if (Is64BitMode) {
3351193323Sed    // REX prefix
3352193323Sed    unsigned REX = X86InstrInfo::determineREX(MI);
3353193323Sed    if (REX)
3354193323Sed      ++FinalSize;
3355193323Sed  }
3356193323Sed
3357193323Sed  // 0x0F escape code must be emitted just before the opcode.
3358193323Sed  if (Need0FPrefix)
3359193323Sed    ++FinalSize;
3360193323Sed
3361193323Sed  switch (Desc->TSFlags & X86II::Op0Mask) {
3362193323Sed  case X86II::T8:  // 0F 38
3363193323Sed    ++FinalSize;
3364193323Sed    break;
3365193323Sed  case X86II::TA:  // 0F 3A
3366193323Sed    ++FinalSize;
3367193323Sed    break;
3368198090Srdivacky  case X86II::TF: // F2 0F 38
3369198090Srdivacky    ++FinalSize;
3370198090Srdivacky    break;
3371193323Sed  }
3372193323Sed
3373193323Sed  // If this is a two-address instruction, skip one of the register operands.
3374193323Sed  unsigned NumOps = Desc->getNumOperands();
3375193323Sed  unsigned CurOp = 0;
3376193323Sed  if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
3377193323Sed    CurOp++;
3378193323Sed  else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
3379193323Sed    // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
3380193323Sed    --NumOps;
3381193323Sed
3382193323Sed  switch (Desc->TSFlags & X86II::FormMask) {
3383198090Srdivacky  default: llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
3384193323Sed  case X86II::Pseudo:
3385193323Sed    // Remember the current PC offset, this is the PIC relocation
3386193323Sed    // base address.
3387193323Sed    switch (Opcode) {
3388193323Sed    default:
3389193323Sed      break;
3390193323Sed    case TargetInstrInfo::INLINEASM: {
3391193323Sed      const MachineFunction *MF = MI.getParent()->getParent();
3392198090Srdivacky      const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
3393198090Srdivacky      FinalSize += TII.getInlineAsmLength(MI.getOperand(0).getSymbolName(),
3394198090Srdivacky                                          *MF->getTarget().getMCAsmInfo());
3395193323Sed      break;
3396193323Sed    }
3397193323Sed    case TargetInstrInfo::DBG_LABEL:
3398193323Sed    case TargetInstrInfo::EH_LABEL:
3399193323Sed      break;
3400193323Sed    case TargetInstrInfo::IMPLICIT_DEF:
3401198090Srdivacky    case TargetInstrInfo::KILL:
3402193323Sed    case X86::FP_REG_KILL:
3403193323Sed      break;
3404193323Sed    case X86::MOVPC32r: {
3405193323Sed      // This emits the "call" portion of this pseudo instruction.
3406193323Sed      ++FinalSize;
3407193323Sed      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3408193323Sed      break;
3409193323Sed    }
3410193323Sed    }
3411193323Sed    CurOp = NumOps;
3412193323Sed    break;
3413193323Sed  case X86II::RawFrm:
3414193323Sed    ++FinalSize;
3415193323Sed
3416193323Sed    if (CurOp != NumOps) {
3417193323Sed      const MachineOperand &MO = MI.getOperand(CurOp++);
3418193323Sed      if (MO.isMBB()) {
3419193323Sed        FinalSize += sizePCRelativeBlockAddress();
3420193323Sed      } else if (MO.isGlobal()) {
3421193323Sed        FinalSize += sizeGlobalAddress(false);
3422193323Sed      } else if (MO.isSymbol()) {
3423193323Sed        FinalSize += sizeExternalSymbolAddress(false);
3424193323Sed      } else if (MO.isImm()) {
3425193323Sed        FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3426193323Sed      } else {
3427198090Srdivacky        llvm_unreachable("Unknown RawFrm operand!");
3428193323Sed      }
3429193323Sed    }
3430193323Sed    break;
3431193323Sed
3432193323Sed  case X86II::AddRegFrm:
3433193323Sed    ++FinalSize;
3434193323Sed    ++CurOp;
3435193323Sed
3436193323Sed    if (CurOp != NumOps) {
3437193323Sed      const MachineOperand &MO1 = MI.getOperand(CurOp++);
3438193323Sed      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
3439193323Sed      if (MO1.isImm())
3440193323Sed        FinalSize += sizeConstant(Size);
3441193323Sed      else {
3442193323Sed        bool dword = false;
3443193323Sed        if (Opcode == X86::MOV64ri)
3444193323Sed          dword = true;
3445193323Sed        if (MO1.isGlobal()) {
3446193323Sed          FinalSize += sizeGlobalAddress(dword);
3447193323Sed        } else if (MO1.isSymbol())
3448193323Sed          FinalSize += sizeExternalSymbolAddress(dword);
3449193323Sed        else if (MO1.isCPI())
3450193323Sed          FinalSize += sizeConstPoolAddress(dword);
3451193323Sed        else if (MO1.isJTI())
3452193323Sed          FinalSize += sizeJumpTableAddress(dword);
3453193323Sed      }
3454193323Sed    }
3455193323Sed    break;
3456193323Sed
3457193323Sed  case X86II::MRMDestReg: {
3458193323Sed    ++FinalSize;
3459193323Sed    FinalSize += sizeRegModRMByte();
3460193323Sed    CurOp += 2;
3461193323Sed    if (CurOp != NumOps) {
3462193323Sed      ++CurOp;
3463193323Sed      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3464193323Sed    }
3465193323Sed    break;
3466193323Sed  }
3467193323Sed  case X86II::MRMDestMem: {
3468193323Sed    ++FinalSize;
3469193323Sed    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3470193323Sed    CurOp +=  X86AddrNumOperands + 1;
3471193323Sed    if (CurOp != NumOps) {
3472193323Sed      ++CurOp;
3473193323Sed      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3474193323Sed    }
3475193323Sed    break;
3476193323Sed  }
3477193323Sed
3478193323Sed  case X86II::MRMSrcReg:
3479193323Sed    ++FinalSize;
3480193323Sed    FinalSize += sizeRegModRMByte();
3481193323Sed    CurOp += 2;
3482193323Sed    if (CurOp != NumOps) {
3483193323Sed      ++CurOp;
3484193323Sed      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3485193323Sed    }
3486193323Sed    break;
3487193323Sed
3488193323Sed  case X86II::MRMSrcMem: {
3489193323Sed    int AddrOperands;
3490193323Sed    if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
3491193323Sed        Opcode == X86::LEA16r || Opcode == X86::LEA32r)
3492193323Sed      AddrOperands = X86AddrNumOperands - 1; // No segment register
3493193323Sed    else
3494193323Sed      AddrOperands = X86AddrNumOperands;
3495193323Sed
3496193323Sed    ++FinalSize;
3497193323Sed    FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
3498193323Sed    CurOp += AddrOperands + 1;
3499193323Sed    if (CurOp != NumOps) {
3500193323Sed      ++CurOp;
3501193323Sed      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3502193323Sed    }
3503193323Sed    break;
3504193323Sed  }
3505193323Sed
3506193323Sed  case X86II::MRM0r: case X86II::MRM1r:
3507193323Sed  case X86II::MRM2r: case X86II::MRM3r:
3508193323Sed  case X86II::MRM4r: case X86II::MRM5r:
3509193323Sed  case X86II::MRM6r: case X86II::MRM7r:
3510193323Sed    ++FinalSize;
3511193323Sed    if (Desc->getOpcode() == X86::LFENCE ||
3512193323Sed        Desc->getOpcode() == X86::MFENCE) {
3513193323Sed      // Special handling of lfence and mfence;
3514193323Sed      FinalSize += sizeRegModRMByte();
3515193323Sed    } else if (Desc->getOpcode() == X86::MONITOR ||
3516193323Sed               Desc->getOpcode() == X86::MWAIT) {
3517193323Sed      // Special handling of monitor and mwait.
3518193323Sed      FinalSize += sizeRegModRMByte() + 1; // +1 for the opcode.
3519193323Sed    } else {
3520193323Sed      ++CurOp;
3521193323Sed      FinalSize += sizeRegModRMByte();
3522193323Sed    }
3523193323Sed
3524193323Sed    if (CurOp != NumOps) {
3525193323Sed      const MachineOperand &MO1 = MI.getOperand(CurOp++);
3526193323Sed      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
3527193323Sed      if (MO1.isImm())
3528193323Sed        FinalSize += sizeConstant(Size);
3529193323Sed      else {
3530193323Sed        bool dword = false;
3531193323Sed        if (Opcode == X86::MOV64ri32)
3532193323Sed          dword = true;
3533193323Sed        if (MO1.isGlobal()) {
3534193323Sed          FinalSize += sizeGlobalAddress(dword);
3535193323Sed        } else if (MO1.isSymbol())
3536193323Sed          FinalSize += sizeExternalSymbolAddress(dword);
3537193323Sed        else if (MO1.isCPI())
3538193323Sed          FinalSize += sizeConstPoolAddress(dword);
3539193323Sed        else if (MO1.isJTI())
3540193323Sed          FinalSize += sizeJumpTableAddress(dword);
3541193323Sed      }
3542193323Sed    }
3543193323Sed    break;
3544193323Sed
3545193323Sed  case X86II::MRM0m: case X86II::MRM1m:
3546193323Sed  case X86II::MRM2m: case X86II::MRM3m:
3547193323Sed  case X86II::MRM4m: case X86II::MRM5m:
3548193323Sed  case X86II::MRM6m: case X86II::MRM7m: {
3549193323Sed
3550193323Sed    ++FinalSize;
3551193323Sed    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3552193323Sed    CurOp += X86AddrNumOperands;
3553193323Sed
3554193323Sed    if (CurOp != NumOps) {
3555193323Sed      const MachineOperand &MO = MI.getOperand(CurOp++);
3556193323Sed      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
3557193323Sed      if (MO.isImm())
3558193323Sed        FinalSize += sizeConstant(Size);
3559193323Sed      else {
3560193323Sed        bool dword = false;
3561193323Sed        if (Opcode == X86::MOV64mi32)
3562193323Sed          dword = true;
3563193323Sed        if (MO.isGlobal()) {
3564193323Sed          FinalSize += sizeGlobalAddress(dword);
3565193323Sed        } else if (MO.isSymbol())
3566193323Sed          FinalSize += sizeExternalSymbolAddress(dword);
3567193323Sed        else if (MO.isCPI())
3568193323Sed          FinalSize += sizeConstPoolAddress(dword);
3569193323Sed        else if (MO.isJTI())
3570193323Sed          FinalSize += sizeJumpTableAddress(dword);
3571193323Sed      }
3572193323Sed    }
3573193323Sed    break;
3574193323Sed  }
3575193323Sed
3576193323Sed  case X86II::MRMInitReg:
3577193323Sed    ++FinalSize;
3578193323Sed    // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3579193323Sed    FinalSize += sizeRegModRMByte();
3580193323Sed    ++CurOp;
3581193323Sed    break;
3582193323Sed  }
3583193323Sed
3584193323Sed  if (!Desc->isVariadic() && CurOp != NumOps) {
3585198090Srdivacky    std::string msg;
3586198090Srdivacky    raw_string_ostream Msg(msg);
3587198090Srdivacky    Msg << "Cannot determine size: " << MI;
3588198090Srdivacky    llvm_report_error(Msg.str());
3589193323Sed  }
3590193323Sed
3591193323Sed
3592193323Sed  return FinalSize;
3593193323Sed}
3594193323Sed
3595193323Sed
3596193323Sedunsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
3597193323Sed  const TargetInstrDesc &Desc = MI->getDesc();
3598198090Srdivacky  bool IsPIC = TM.getRelocationModel() == Reloc::PIC_;
3599193323Sed  bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
3600193323Sed  unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
3601195098Sed  if (Desc.getOpcode() == X86::MOVPC32r)
3602193323Sed    Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
3603193323Sed  return Size;
3604193323Sed}
3605193323Sed
3606193323Sed/// getGlobalBaseReg - Return a virtual register initialized with the
3607193323Sed/// the global base register value. Output instructions required to
3608193323Sed/// initialize the register in the function entry block, if necessary.
3609193323Sed///
3610193323Sedunsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3611193323Sed  assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3612193323Sed         "X86-64 PIC uses RIP relative addressing");
3613193323Sed
3614193323Sed  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3615193323Sed  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3616193323Sed  if (GlobalBaseReg != 0)
3617193323Sed    return GlobalBaseReg;
3618193323Sed
3619193323Sed  // Insert the set of GlobalBaseReg into the first MBB of the function
3620193323Sed  MachineBasicBlock &FirstMBB = MF->front();
3621193323Sed  MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3622193323Sed  DebugLoc DL = DebugLoc::getUnknownLoc();
3623193323Sed  if (MBBI != FirstMBB.end()) DL = MBBI->getDebugLoc();
3624193323Sed  MachineRegisterInfo &RegInfo = MF->getRegInfo();
3625193323Sed  unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3626193323Sed
3627193323Sed  const TargetInstrInfo *TII = TM.getInstrInfo();
3628193323Sed  // Operand of MovePCtoStack is completely ignored by asm printer. It's
3629193323Sed  // only used in JIT code emission as displacement to pc.
3630195098Sed  BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
3631193323Sed
3632193323Sed  // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3633195098Sed  // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
3634198090Srdivacky  if (TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
3635195098Sed    GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3636195098Sed    // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
3637193323Sed    BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
3638198090Srdivacky      .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
3639195098Sed                                    X86II::MO_GOT_ABSOLUTE_ADDRESS);
3640193323Sed  } else {
3641193323Sed    GlobalBaseReg = PC;
3642193323Sed  }
3643193323Sed
3644193323Sed  X86FI->setGlobalBaseReg(GlobalBaseReg);
3645193323Sed  return GlobalBaseReg;
3646193323Sed}
3647