X86InstrInfo.cpp revision 193323
1//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/LiveVariables.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Target/TargetOptions.h"
30#include "llvm/Target/TargetAsmInfo.h"
31
32using namespace llvm;
33
34namespace {
35  cl::opt<bool>
36  NoFusing("disable-spill-fusing",
37           cl::desc("Disable fusing of spill code into instructions"));
38  cl::opt<bool>
39  PrintFailedFusing("print-failed-fuse-candidates",
40                    cl::desc("Print instructions that the allocator wants to"
41                             " fuse, but the X86 backend currently can't"),
42                    cl::Hidden);
43  cl::opt<bool>
44  ReMatPICStubLoad("remat-pic-stub-load",
45                   cl::desc("Re-materialize load from stub in PIC mode"),
46                   cl::init(false), cl::Hidden);
47}
48
49X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
50  : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
51    TM(tm), RI(tm, *this) {
52  SmallVector<unsigned,16> AmbEntries;
53  static const unsigned OpTbl2Addr[][2] = {
54    { X86::ADC32ri,     X86::ADC32mi },
55    { X86::ADC32ri8,    X86::ADC32mi8 },
56    { X86::ADC32rr,     X86::ADC32mr },
57    { X86::ADC64ri32,   X86::ADC64mi32 },
58    { X86::ADC64ri8,    X86::ADC64mi8 },
59    { X86::ADC64rr,     X86::ADC64mr },
60    { X86::ADD16ri,     X86::ADD16mi },
61    { X86::ADD16ri8,    X86::ADD16mi8 },
62    { X86::ADD16rr,     X86::ADD16mr },
63    { X86::ADD32ri,     X86::ADD32mi },
64    { X86::ADD32ri8,    X86::ADD32mi8 },
65    { X86::ADD32rr,     X86::ADD32mr },
66    { X86::ADD64ri32,   X86::ADD64mi32 },
67    { X86::ADD64ri8,    X86::ADD64mi8 },
68    { X86::ADD64rr,     X86::ADD64mr },
69    { X86::ADD8ri,      X86::ADD8mi },
70    { X86::ADD8rr,      X86::ADD8mr },
71    { X86::AND16ri,     X86::AND16mi },
72    { X86::AND16ri8,    X86::AND16mi8 },
73    { X86::AND16rr,     X86::AND16mr },
74    { X86::AND32ri,     X86::AND32mi },
75    { X86::AND32ri8,    X86::AND32mi8 },
76    { X86::AND32rr,     X86::AND32mr },
77    { X86::AND64ri32,   X86::AND64mi32 },
78    { X86::AND64ri8,    X86::AND64mi8 },
79    { X86::AND64rr,     X86::AND64mr },
80    { X86::AND8ri,      X86::AND8mi },
81    { X86::AND8rr,      X86::AND8mr },
82    { X86::DEC16r,      X86::DEC16m },
83    { X86::DEC32r,      X86::DEC32m },
84    { X86::DEC64_16r,   X86::DEC64_16m },
85    { X86::DEC64_32r,   X86::DEC64_32m },
86    { X86::DEC64r,      X86::DEC64m },
87    { X86::DEC8r,       X86::DEC8m },
88    { X86::INC16r,      X86::INC16m },
89    { X86::INC32r,      X86::INC32m },
90    { X86::INC64_16r,   X86::INC64_16m },
91    { X86::INC64_32r,   X86::INC64_32m },
92    { X86::INC64r,      X86::INC64m },
93    { X86::INC8r,       X86::INC8m },
94    { X86::NEG16r,      X86::NEG16m },
95    { X86::NEG32r,      X86::NEG32m },
96    { X86::NEG64r,      X86::NEG64m },
97    { X86::NEG8r,       X86::NEG8m },
98    { X86::NOT16r,      X86::NOT16m },
99    { X86::NOT32r,      X86::NOT32m },
100    { X86::NOT64r,      X86::NOT64m },
101    { X86::NOT8r,       X86::NOT8m },
102    { X86::OR16ri,      X86::OR16mi },
103    { X86::OR16ri8,     X86::OR16mi8 },
104    { X86::OR16rr,      X86::OR16mr },
105    { X86::OR32ri,      X86::OR32mi },
106    { X86::OR32ri8,     X86::OR32mi8 },
107    { X86::OR32rr,      X86::OR32mr },
108    { X86::OR64ri32,    X86::OR64mi32 },
109    { X86::OR64ri8,     X86::OR64mi8 },
110    { X86::OR64rr,      X86::OR64mr },
111    { X86::OR8ri,       X86::OR8mi },
112    { X86::OR8rr,       X86::OR8mr },
113    { X86::ROL16r1,     X86::ROL16m1 },
114    { X86::ROL16rCL,    X86::ROL16mCL },
115    { X86::ROL16ri,     X86::ROL16mi },
116    { X86::ROL32r1,     X86::ROL32m1 },
117    { X86::ROL32rCL,    X86::ROL32mCL },
118    { X86::ROL32ri,     X86::ROL32mi },
119    { X86::ROL64r1,     X86::ROL64m1 },
120    { X86::ROL64rCL,    X86::ROL64mCL },
121    { X86::ROL64ri,     X86::ROL64mi },
122    { X86::ROL8r1,      X86::ROL8m1 },
123    { X86::ROL8rCL,     X86::ROL8mCL },
124    { X86::ROL8ri,      X86::ROL8mi },
125    { X86::ROR16r1,     X86::ROR16m1 },
126    { X86::ROR16rCL,    X86::ROR16mCL },
127    { X86::ROR16ri,     X86::ROR16mi },
128    { X86::ROR32r1,     X86::ROR32m1 },
129    { X86::ROR32rCL,    X86::ROR32mCL },
130    { X86::ROR32ri,     X86::ROR32mi },
131    { X86::ROR64r1,     X86::ROR64m1 },
132    { X86::ROR64rCL,    X86::ROR64mCL },
133    { X86::ROR64ri,     X86::ROR64mi },
134    { X86::ROR8r1,      X86::ROR8m1 },
135    { X86::ROR8rCL,     X86::ROR8mCL },
136    { X86::ROR8ri,      X86::ROR8mi },
137    { X86::SAR16r1,     X86::SAR16m1 },
138    { X86::SAR16rCL,    X86::SAR16mCL },
139    { X86::SAR16ri,     X86::SAR16mi },
140    { X86::SAR32r1,     X86::SAR32m1 },
141    { X86::SAR32rCL,    X86::SAR32mCL },
142    { X86::SAR32ri,     X86::SAR32mi },
143    { X86::SAR64r1,     X86::SAR64m1 },
144    { X86::SAR64rCL,    X86::SAR64mCL },
145    { X86::SAR64ri,     X86::SAR64mi },
146    { X86::SAR8r1,      X86::SAR8m1 },
147    { X86::SAR8rCL,     X86::SAR8mCL },
148    { X86::SAR8ri,      X86::SAR8mi },
149    { X86::SBB32ri,     X86::SBB32mi },
150    { X86::SBB32ri8,    X86::SBB32mi8 },
151    { X86::SBB32rr,     X86::SBB32mr },
152    { X86::SBB64ri32,   X86::SBB64mi32 },
153    { X86::SBB64ri8,    X86::SBB64mi8 },
154    { X86::SBB64rr,     X86::SBB64mr },
155    { X86::SHL16rCL,    X86::SHL16mCL },
156    { X86::SHL16ri,     X86::SHL16mi },
157    { X86::SHL32rCL,    X86::SHL32mCL },
158    { X86::SHL32ri,     X86::SHL32mi },
159    { X86::SHL64rCL,    X86::SHL64mCL },
160    { X86::SHL64ri,     X86::SHL64mi },
161    { X86::SHL8rCL,     X86::SHL8mCL },
162    { X86::SHL8ri,      X86::SHL8mi },
163    { X86::SHLD16rrCL,  X86::SHLD16mrCL },
164    { X86::SHLD16rri8,  X86::SHLD16mri8 },
165    { X86::SHLD32rrCL,  X86::SHLD32mrCL },
166    { X86::SHLD32rri8,  X86::SHLD32mri8 },
167    { X86::SHLD64rrCL,  X86::SHLD64mrCL },
168    { X86::SHLD64rri8,  X86::SHLD64mri8 },
169    { X86::SHR16r1,     X86::SHR16m1 },
170    { X86::SHR16rCL,    X86::SHR16mCL },
171    { X86::SHR16ri,     X86::SHR16mi },
172    { X86::SHR32r1,     X86::SHR32m1 },
173    { X86::SHR32rCL,    X86::SHR32mCL },
174    { X86::SHR32ri,     X86::SHR32mi },
175    { X86::SHR64r1,     X86::SHR64m1 },
176    { X86::SHR64rCL,    X86::SHR64mCL },
177    { X86::SHR64ri,     X86::SHR64mi },
178    { X86::SHR8r1,      X86::SHR8m1 },
179    { X86::SHR8rCL,     X86::SHR8mCL },
180    { X86::SHR8ri,      X86::SHR8mi },
181    { X86::SHRD16rrCL,  X86::SHRD16mrCL },
182    { X86::SHRD16rri8,  X86::SHRD16mri8 },
183    { X86::SHRD32rrCL,  X86::SHRD32mrCL },
184    { X86::SHRD32rri8,  X86::SHRD32mri8 },
185    { X86::SHRD64rrCL,  X86::SHRD64mrCL },
186    { X86::SHRD64rri8,  X86::SHRD64mri8 },
187    { X86::SUB16ri,     X86::SUB16mi },
188    { X86::SUB16ri8,    X86::SUB16mi8 },
189    { X86::SUB16rr,     X86::SUB16mr },
190    { X86::SUB32ri,     X86::SUB32mi },
191    { X86::SUB32ri8,    X86::SUB32mi8 },
192    { X86::SUB32rr,     X86::SUB32mr },
193    { X86::SUB64ri32,   X86::SUB64mi32 },
194    { X86::SUB64ri8,    X86::SUB64mi8 },
195    { X86::SUB64rr,     X86::SUB64mr },
196    { X86::SUB8ri,      X86::SUB8mi },
197    { X86::SUB8rr,      X86::SUB8mr },
198    { X86::XOR16ri,     X86::XOR16mi },
199    { X86::XOR16ri8,    X86::XOR16mi8 },
200    { X86::XOR16rr,     X86::XOR16mr },
201    { X86::XOR32ri,     X86::XOR32mi },
202    { X86::XOR32ri8,    X86::XOR32mi8 },
203    { X86::XOR32rr,     X86::XOR32mr },
204    { X86::XOR64ri32,   X86::XOR64mi32 },
205    { X86::XOR64ri8,    X86::XOR64mi8 },
206    { X86::XOR64rr,     X86::XOR64mr },
207    { X86::XOR8ri,      X86::XOR8mi },
208    { X86::XOR8rr,      X86::XOR8mr }
209  };
210
211  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
212    unsigned RegOp = OpTbl2Addr[i][0];
213    unsigned MemOp = OpTbl2Addr[i][1];
214    if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
215                                                     MemOp)).second)
216      assert(false && "Duplicated entries?");
217    unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
218    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
219                                                std::make_pair(RegOp,
220                                                              AuxInfo))).second)
221      AmbEntries.push_back(MemOp);
222  }
223
224  // If the third value is 1, then it's folding either a load or a store.
225  static const unsigned OpTbl0[][3] = {
226    { X86::BT16ri8,     X86::BT16mi8, 1 },
227    { X86::BT32ri8,     X86::BT32mi8, 1 },
228    { X86::BT64ri8,     X86::BT64mi8, 1 },
229    { X86::CALL32r,     X86::CALL32m, 1 },
230    { X86::CALL64r,     X86::CALL64m, 1 },
231    { X86::CMP16ri,     X86::CMP16mi, 1 },
232    { X86::CMP16ri8,    X86::CMP16mi8, 1 },
233    { X86::CMP16rr,     X86::CMP16mr, 1 },
234    { X86::CMP32ri,     X86::CMP32mi, 1 },
235    { X86::CMP32ri8,    X86::CMP32mi8, 1 },
236    { X86::CMP32rr,     X86::CMP32mr, 1 },
237    { X86::CMP64ri32,   X86::CMP64mi32, 1 },
238    { X86::CMP64ri8,    X86::CMP64mi8, 1 },
239    { X86::CMP64rr,     X86::CMP64mr, 1 },
240    { X86::CMP8ri,      X86::CMP8mi, 1 },
241    { X86::CMP8rr,      X86::CMP8mr, 1 },
242    { X86::DIV16r,      X86::DIV16m, 1 },
243    { X86::DIV32r,      X86::DIV32m, 1 },
244    { X86::DIV64r,      X86::DIV64m, 1 },
245    { X86::DIV8r,       X86::DIV8m, 1 },
246    { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
247    { X86::FsMOVAPDrr,  X86::MOVSDmr, 0 },
248    { X86::FsMOVAPSrr,  X86::MOVSSmr, 0 },
249    { X86::IDIV16r,     X86::IDIV16m, 1 },
250    { X86::IDIV32r,     X86::IDIV32m, 1 },
251    { X86::IDIV64r,     X86::IDIV64m, 1 },
252    { X86::IDIV8r,      X86::IDIV8m, 1 },
253    { X86::IMUL16r,     X86::IMUL16m, 1 },
254    { X86::IMUL32r,     X86::IMUL32m, 1 },
255    { X86::IMUL64r,     X86::IMUL64m, 1 },
256    { X86::IMUL8r,      X86::IMUL8m, 1 },
257    { X86::JMP32r,      X86::JMP32m, 1 },
258    { X86::JMP64r,      X86::JMP64m, 1 },
259    { X86::MOV16ri,     X86::MOV16mi, 0 },
260    { X86::MOV16rr,     X86::MOV16mr, 0 },
261    { X86::MOV32ri,     X86::MOV32mi, 0 },
262    { X86::MOV32rr,     X86::MOV32mr, 0 },
263    { X86::MOV64ri32,   X86::MOV64mi32, 0 },
264    { X86::MOV64rr,     X86::MOV64mr, 0 },
265    { X86::MOV8ri,      X86::MOV8mi, 0 },
266    { X86::MOV8rr,      X86::MOV8mr, 0 },
267    { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0 },
268    { X86::MOVAPDrr,    X86::MOVAPDmr, 0 },
269    { X86::MOVAPSrr,    X86::MOVAPSmr, 0 },
270    { X86::MOVDQArr,    X86::MOVDQAmr, 0 },
271    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
272    { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
273    { X86::MOVPS2SSrr,  X86::MOVPS2SSmr, 0 },
274    { X86::MOVSDrr,     X86::MOVSDmr, 0 },
275    { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
276    { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0 },
277    { X86::MOVSSrr,     X86::MOVSSmr, 0 },
278    { X86::MOVUPDrr,    X86::MOVUPDmr, 0 },
279    { X86::MOVUPSrr,    X86::MOVUPSmr, 0 },
280    { X86::MUL16r,      X86::MUL16m, 1 },
281    { X86::MUL32r,      X86::MUL32m, 1 },
282    { X86::MUL64r,      X86::MUL64m, 1 },
283    { X86::MUL8r,       X86::MUL8m, 1 },
284    { X86::SETAEr,      X86::SETAEm, 0 },
285    { X86::SETAr,       X86::SETAm, 0 },
286    { X86::SETBEr,      X86::SETBEm, 0 },
287    { X86::SETBr,       X86::SETBm, 0 },
288    { X86::SETEr,       X86::SETEm, 0 },
289    { X86::SETGEr,      X86::SETGEm, 0 },
290    { X86::SETGr,       X86::SETGm, 0 },
291    { X86::SETLEr,      X86::SETLEm, 0 },
292    { X86::SETLr,       X86::SETLm, 0 },
293    { X86::SETNEr,      X86::SETNEm, 0 },
294    { X86::SETNOr,      X86::SETNOm, 0 },
295    { X86::SETNPr,      X86::SETNPm, 0 },
296    { X86::SETNSr,      X86::SETNSm, 0 },
297    { X86::SETOr,       X86::SETOm, 0 },
298    { X86::SETPr,       X86::SETPm, 0 },
299    { X86::SETSr,       X86::SETSm, 0 },
300    { X86::TAILJMPr,    X86::TAILJMPm, 1 },
301    { X86::TEST16ri,    X86::TEST16mi, 1 },
302    { X86::TEST32ri,    X86::TEST32mi, 1 },
303    { X86::TEST64ri32,  X86::TEST64mi32, 1 },
304    { X86::TEST8ri,     X86::TEST8mi, 1 }
305  };
306
307  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
308    unsigned RegOp = OpTbl0[i][0];
309    unsigned MemOp = OpTbl0[i][1];
310    if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
311                                                 MemOp)).second)
312      assert(false && "Duplicated entries?");
313    unsigned FoldedLoad = OpTbl0[i][2];
314    // Index 0, folded load or store.
315    unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
316    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
317      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
318                                     std::make_pair(RegOp, AuxInfo))).second)
319        AmbEntries.push_back(MemOp);
320  }
321
322  static const unsigned OpTbl1[][2] = {
323    { X86::CMP16rr,         X86::CMP16rm },
324    { X86::CMP32rr,         X86::CMP32rm },
325    { X86::CMP64rr,         X86::CMP64rm },
326    { X86::CMP8rr,          X86::CMP8rm },
327    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm },
328    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm },
329    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm },
330    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm },
331    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm },
332    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm },
333    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm },
334    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm },
335    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm },
336    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm },
337    { X86::FsMOVAPDrr,      X86::MOVSDrm },
338    { X86::FsMOVAPSrr,      X86::MOVSSrm },
339    { X86::IMUL16rri,       X86::IMUL16rmi },
340    { X86::IMUL16rri8,      X86::IMUL16rmi8 },
341    { X86::IMUL32rri,       X86::IMUL32rmi },
342    { X86::IMUL32rri8,      X86::IMUL32rmi8 },
343    { X86::IMUL64rri32,     X86::IMUL64rmi32 },
344    { X86::IMUL64rri8,      X86::IMUL64rmi8 },
345    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm },
346    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm },
347    { X86::Int_COMISDrr,    X86::Int_COMISDrm },
348    { X86::Int_COMISSrr,    X86::Int_COMISSrm },
349    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm },
350    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm },
351    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm },
352    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm },
353    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm },
354    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm },
355    { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
356    { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm },
357    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm },
358    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
359    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm },
360    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
361    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm },
362    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm },
363    { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
364    { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm },
365    { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
366    { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
367    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
368    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
369    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
370    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
371    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm },
372    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm },
373    { X86::MOV16rr,         X86::MOV16rm },
374    { X86::MOV32rr,         X86::MOV32rm },
375    { X86::MOV64rr,         X86::MOV64rm },
376    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm },
377    { X86::MOV64toSDrr,     X86::MOV64toSDrm },
378    { X86::MOV8rr,          X86::MOV8rm },
379    { X86::MOVAPDrr,        X86::MOVAPDrm },
380    { X86::MOVAPSrr,        X86::MOVAPSrm },
381    { X86::MOVDDUPrr,       X86::MOVDDUPrm },
382    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm },
383    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm },
384    { X86::MOVDQArr,        X86::MOVDQArm },
385    { X86::MOVSD2PDrr,      X86::MOVSD2PDrm },
386    { X86::MOVSDrr,         X86::MOVSDrm },
387    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm },
388    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm },
389    { X86::MOVSS2PSrr,      X86::MOVSS2PSrm },
390    { X86::MOVSSrr,         X86::MOVSSrm },
391    { X86::MOVSX16rr8,      X86::MOVSX16rm8 },
392    { X86::MOVSX32rr16,     X86::MOVSX32rm16 },
393    { X86::MOVSX32rr8,      X86::MOVSX32rm8 },
394    { X86::MOVSX64rr16,     X86::MOVSX64rm16 },
395    { X86::MOVSX64rr32,     X86::MOVSX64rm32 },
396    { X86::MOVSX64rr8,      X86::MOVSX64rm8 },
397    { X86::MOVUPDrr,        X86::MOVUPDrm },
398    { X86::MOVUPSrr,        X86::MOVUPSrm },
399    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm },
400    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm },
401    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
402    { X86::MOVZX16rr8,      X86::MOVZX16rm8 },
403    { X86::MOVZX32rr16,     X86::MOVZX32rm16 },
404    { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8 },
405    { X86::MOVZX32rr8,      X86::MOVZX32rm8 },
406    { X86::MOVZX64rr16,     X86::MOVZX64rm16 },
407    { X86::MOVZX64rr32,     X86::MOVZX64rm32 },
408    { X86::MOVZX64rr8,      X86::MOVZX64rm8 },
409    { X86::PSHUFDri,        X86::PSHUFDmi },
410    { X86::PSHUFHWri,       X86::PSHUFHWmi },
411    { X86::PSHUFLWri,       X86::PSHUFLWmi },
412    { X86::RCPPSr,          X86::RCPPSm },
413    { X86::RCPPSr_Int,      X86::RCPPSm_Int },
414    { X86::RSQRTPSr,        X86::RSQRTPSm },
415    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int },
416    { X86::RSQRTSSr,        X86::RSQRTSSm },
417    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int },
418    { X86::SQRTPDr,         X86::SQRTPDm },
419    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int },
420    { X86::SQRTPSr,         X86::SQRTPSm },
421    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int },
422    { X86::SQRTSDr,         X86::SQRTSDm },
423    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int },
424    { X86::SQRTSSr,         X86::SQRTSSm },
425    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int },
426    { X86::TEST16rr,        X86::TEST16rm },
427    { X86::TEST32rr,        X86::TEST32rm },
428    { X86::TEST64rr,        X86::TEST64rm },
429    { X86::TEST8rr,         X86::TEST8rm },
430    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
431    { X86::UCOMISDrr,       X86::UCOMISDrm },
432    { X86::UCOMISSrr,       X86::UCOMISSrm }
433  };
434
435  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
436    unsigned RegOp = OpTbl1[i][0];
437    unsigned MemOp = OpTbl1[i][1];
438    if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
439                                                 MemOp)).second)
440      assert(false && "Duplicated entries?");
441    unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
442    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
443      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
444                                     std::make_pair(RegOp, AuxInfo))).second)
445        AmbEntries.push_back(MemOp);
446  }
447
448  static const unsigned OpTbl2[][2] = {
449    { X86::ADC32rr,         X86::ADC32rm },
450    { X86::ADC64rr,         X86::ADC64rm },
451    { X86::ADD16rr,         X86::ADD16rm },
452    { X86::ADD32rr,         X86::ADD32rm },
453    { X86::ADD64rr,         X86::ADD64rm },
454    { X86::ADD8rr,          X86::ADD8rm },
455    { X86::ADDPDrr,         X86::ADDPDrm },
456    { X86::ADDPSrr,         X86::ADDPSrm },
457    { X86::ADDSDrr,         X86::ADDSDrm },
458    { X86::ADDSSrr,         X86::ADDSSrm },
459    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm },
460    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm },
461    { X86::AND16rr,         X86::AND16rm },
462    { X86::AND32rr,         X86::AND32rm },
463    { X86::AND64rr,         X86::AND64rm },
464    { X86::AND8rr,          X86::AND8rm },
465    { X86::ANDNPDrr,        X86::ANDNPDrm },
466    { X86::ANDNPSrr,        X86::ANDNPSrm },
467    { X86::ANDPDrr,         X86::ANDPDrm },
468    { X86::ANDPSrr,         X86::ANDPSrm },
469    { X86::CMOVA16rr,       X86::CMOVA16rm },
470    { X86::CMOVA32rr,       X86::CMOVA32rm },
471    { X86::CMOVA64rr,       X86::CMOVA64rm },
472    { X86::CMOVAE16rr,      X86::CMOVAE16rm },
473    { X86::CMOVAE32rr,      X86::CMOVAE32rm },
474    { X86::CMOVAE64rr,      X86::CMOVAE64rm },
475    { X86::CMOVB16rr,       X86::CMOVB16rm },
476    { X86::CMOVB32rr,       X86::CMOVB32rm },
477    { X86::CMOVB64rr,       X86::CMOVB64rm },
478    { X86::CMOVBE16rr,      X86::CMOVBE16rm },
479    { X86::CMOVBE32rr,      X86::CMOVBE32rm },
480    { X86::CMOVBE64rr,      X86::CMOVBE64rm },
481    { X86::CMOVE16rr,       X86::CMOVE16rm },
482    { X86::CMOVE32rr,       X86::CMOVE32rm },
483    { X86::CMOVE64rr,       X86::CMOVE64rm },
484    { X86::CMOVG16rr,       X86::CMOVG16rm },
485    { X86::CMOVG32rr,       X86::CMOVG32rm },
486    { X86::CMOVG64rr,       X86::CMOVG64rm },
487    { X86::CMOVGE16rr,      X86::CMOVGE16rm },
488    { X86::CMOVGE32rr,      X86::CMOVGE32rm },
489    { X86::CMOVGE64rr,      X86::CMOVGE64rm },
490    { X86::CMOVL16rr,       X86::CMOVL16rm },
491    { X86::CMOVL32rr,       X86::CMOVL32rm },
492    { X86::CMOVL64rr,       X86::CMOVL64rm },
493    { X86::CMOVLE16rr,      X86::CMOVLE16rm },
494    { X86::CMOVLE32rr,      X86::CMOVLE32rm },
495    { X86::CMOVLE64rr,      X86::CMOVLE64rm },
496    { X86::CMOVNE16rr,      X86::CMOVNE16rm },
497    { X86::CMOVNE32rr,      X86::CMOVNE32rm },
498    { X86::CMOVNE64rr,      X86::CMOVNE64rm },
499    { X86::CMOVNO16rr,      X86::CMOVNO16rm },
500    { X86::CMOVNO32rr,      X86::CMOVNO32rm },
501    { X86::CMOVNO64rr,      X86::CMOVNO64rm },
502    { X86::CMOVNP16rr,      X86::CMOVNP16rm },
503    { X86::CMOVNP32rr,      X86::CMOVNP32rm },
504    { X86::CMOVNP64rr,      X86::CMOVNP64rm },
505    { X86::CMOVNS16rr,      X86::CMOVNS16rm },
506    { X86::CMOVNS32rr,      X86::CMOVNS32rm },
507    { X86::CMOVNS64rr,      X86::CMOVNS64rm },
508    { X86::CMOVO16rr,       X86::CMOVO16rm },
509    { X86::CMOVO32rr,       X86::CMOVO32rm },
510    { X86::CMOVO64rr,       X86::CMOVO64rm },
511    { X86::CMOVP16rr,       X86::CMOVP16rm },
512    { X86::CMOVP32rr,       X86::CMOVP32rm },
513    { X86::CMOVP64rr,       X86::CMOVP64rm },
514    { X86::CMOVS16rr,       X86::CMOVS16rm },
515    { X86::CMOVS32rr,       X86::CMOVS32rm },
516    { X86::CMOVS64rr,       X86::CMOVS64rm },
517    { X86::CMPPDrri,        X86::CMPPDrmi },
518    { X86::CMPPSrri,        X86::CMPPSrmi },
519    { X86::CMPSDrr,         X86::CMPSDrm },
520    { X86::CMPSSrr,         X86::CMPSSrm },
521    { X86::DIVPDrr,         X86::DIVPDrm },
522    { X86::DIVPSrr,         X86::DIVPSrm },
523    { X86::DIVSDrr,         X86::DIVSDrm },
524    { X86::DIVSSrr,         X86::DIVSSrm },
525    { X86::FsANDNPDrr,      X86::FsANDNPDrm },
526    { X86::FsANDNPSrr,      X86::FsANDNPSrm },
527    { X86::FsANDPDrr,       X86::FsANDPDrm },
528    { X86::FsANDPSrr,       X86::FsANDPSrm },
529    { X86::FsORPDrr,        X86::FsORPDrm },
530    { X86::FsORPSrr,        X86::FsORPSrm },
531    { X86::FsXORPDrr,       X86::FsXORPDrm },
532    { X86::FsXORPSrr,       X86::FsXORPSrm },
533    { X86::HADDPDrr,        X86::HADDPDrm },
534    { X86::HADDPSrr,        X86::HADDPSrm },
535    { X86::HSUBPDrr,        X86::HSUBPDrm },
536    { X86::HSUBPSrr,        X86::HSUBPSrm },
537    { X86::IMUL16rr,        X86::IMUL16rm },
538    { X86::IMUL32rr,        X86::IMUL32rm },
539    { X86::IMUL64rr,        X86::IMUL64rm },
540    { X86::MAXPDrr,         X86::MAXPDrm },
541    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int },
542    { X86::MAXPSrr,         X86::MAXPSrm },
543    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int },
544    { X86::MAXSDrr,         X86::MAXSDrm },
545    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int },
546    { X86::MAXSSrr,         X86::MAXSSrm },
547    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int },
548    { X86::MINPDrr,         X86::MINPDrm },
549    { X86::MINPDrr_Int,     X86::MINPDrm_Int },
550    { X86::MINPSrr,         X86::MINPSrm },
551    { X86::MINPSrr_Int,     X86::MINPSrm_Int },
552    { X86::MINSDrr,         X86::MINSDrm },
553    { X86::MINSDrr_Int,     X86::MINSDrm_Int },
554    { X86::MINSSrr,         X86::MINSSrm },
555    { X86::MINSSrr_Int,     X86::MINSSrm_Int },
556    { X86::MULPDrr,         X86::MULPDrm },
557    { X86::MULPSrr,         X86::MULPSrm },
558    { X86::MULSDrr,         X86::MULSDrm },
559    { X86::MULSSrr,         X86::MULSSrm },
560    { X86::OR16rr,          X86::OR16rm },
561    { X86::OR32rr,          X86::OR32rm },
562    { X86::OR64rr,          X86::OR64rm },
563    { X86::OR8rr,           X86::OR8rm },
564    { X86::ORPDrr,          X86::ORPDrm },
565    { X86::ORPSrr,          X86::ORPSrm },
566    { X86::PACKSSDWrr,      X86::PACKSSDWrm },
567    { X86::PACKSSWBrr,      X86::PACKSSWBrm },
568    { X86::PACKUSWBrr,      X86::PACKUSWBrm },
569    { X86::PADDBrr,         X86::PADDBrm },
570    { X86::PADDDrr,         X86::PADDDrm },
571    { X86::PADDQrr,         X86::PADDQrm },
572    { X86::PADDSBrr,        X86::PADDSBrm },
573    { X86::PADDSWrr,        X86::PADDSWrm },
574    { X86::PADDWrr,         X86::PADDWrm },
575    { X86::PANDNrr,         X86::PANDNrm },
576    { X86::PANDrr,          X86::PANDrm },
577    { X86::PAVGBrr,         X86::PAVGBrm },
578    { X86::PAVGWrr,         X86::PAVGWrm },
579    { X86::PCMPEQBrr,       X86::PCMPEQBrm },
580    { X86::PCMPEQDrr,       X86::PCMPEQDrm },
581    { X86::PCMPEQWrr,       X86::PCMPEQWrm },
582    { X86::PCMPGTBrr,       X86::PCMPGTBrm },
583    { X86::PCMPGTDrr,       X86::PCMPGTDrm },
584    { X86::PCMPGTWrr,       X86::PCMPGTWrm },
585    { X86::PINSRWrri,       X86::PINSRWrmi },
586    { X86::PMADDWDrr,       X86::PMADDWDrm },
587    { X86::PMAXSWrr,        X86::PMAXSWrm },
588    { X86::PMAXUBrr,        X86::PMAXUBrm },
589    { X86::PMINSWrr,        X86::PMINSWrm },
590    { X86::PMINUBrr,        X86::PMINUBrm },
591    { X86::PMULDQrr,        X86::PMULDQrm },
592    { X86::PMULHUWrr,       X86::PMULHUWrm },
593    { X86::PMULHWrr,        X86::PMULHWrm },
594    { X86::PMULLDrr,        X86::PMULLDrm },
595    { X86::PMULLDrr_int,    X86::PMULLDrm_int },
596    { X86::PMULLWrr,        X86::PMULLWrm },
597    { X86::PMULUDQrr,       X86::PMULUDQrm },
598    { X86::PORrr,           X86::PORrm },
599    { X86::PSADBWrr,        X86::PSADBWrm },
600    { X86::PSLLDrr,         X86::PSLLDrm },
601    { X86::PSLLQrr,         X86::PSLLQrm },
602    { X86::PSLLWrr,         X86::PSLLWrm },
603    { X86::PSRADrr,         X86::PSRADrm },
604    { X86::PSRAWrr,         X86::PSRAWrm },
605    { X86::PSRLDrr,         X86::PSRLDrm },
606    { X86::PSRLQrr,         X86::PSRLQrm },
607    { X86::PSRLWrr,         X86::PSRLWrm },
608    { X86::PSUBBrr,         X86::PSUBBrm },
609    { X86::PSUBDrr,         X86::PSUBDrm },
610    { X86::PSUBSBrr,        X86::PSUBSBrm },
611    { X86::PSUBSWrr,        X86::PSUBSWrm },
612    { X86::PSUBWrr,         X86::PSUBWrm },
613    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm },
614    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm },
615    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm },
616    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm },
617    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm },
618    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm },
619    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm },
620    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm },
621    { X86::PXORrr,          X86::PXORrm },
622    { X86::SBB32rr,         X86::SBB32rm },
623    { X86::SBB64rr,         X86::SBB64rm },
624    { X86::SHUFPDrri,       X86::SHUFPDrmi },
625    { X86::SHUFPSrri,       X86::SHUFPSrmi },
626    { X86::SUB16rr,         X86::SUB16rm },
627    { X86::SUB32rr,         X86::SUB32rm },
628    { X86::SUB64rr,         X86::SUB64rm },
629    { X86::SUB8rr,          X86::SUB8rm },
630    { X86::SUBPDrr,         X86::SUBPDrm },
631    { X86::SUBPSrr,         X86::SUBPSrm },
632    { X86::SUBSDrr,         X86::SUBSDrm },
633    { X86::SUBSSrr,         X86::SUBSSrm },
634    // FIXME: TEST*rr -> swapped operand of TEST*mr.
635    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm },
636    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm },
637    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm },
638    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm },
639    { X86::XOR16rr,         X86::XOR16rm },
640    { X86::XOR32rr,         X86::XOR32rm },
641    { X86::XOR64rr,         X86::XOR64rm },
642    { X86::XOR8rr,          X86::XOR8rm },
643    { X86::XORPDrr,         X86::XORPDrm },
644    { X86::XORPSrr,         X86::XORPSrm }
645  };
646
647  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
648    unsigned RegOp = OpTbl2[i][0];
649    unsigned MemOp = OpTbl2[i][1];
650    if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
651                                                 MemOp)).second)
652      assert(false && "Duplicated entries?");
653    unsigned AuxInfo = 2 | (1 << 4); // Index 2, folded load
654    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
655                                   std::make_pair(RegOp, AuxInfo))).second)
656      AmbEntries.push_back(MemOp);
657  }
658
659  // Remove ambiguous entries.
660  assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
661}
662
663bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
664                               unsigned &SrcReg, unsigned &DstReg,
665                               unsigned &SrcSubIdx, unsigned &DstSubIdx) const {
666  switch (MI.getOpcode()) {
667  default:
668    return false;
669  case X86::MOV8rr:
670  case X86::MOV8rr_NOREX:
671  case X86::MOV16rr:
672  case X86::MOV32rr:
673  case X86::MOV64rr:
674  case X86::MOVSSrr:
675  case X86::MOVSDrr:
676
677  // FP Stack register class copies
678  case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
679  case X86::MOV_Fp3264: case X86::MOV_Fp3280:
680  case X86::MOV_Fp6432: case X86::MOV_Fp8032:
681
682  case X86::FsMOVAPSrr:
683  case X86::FsMOVAPDrr:
684  case X86::MOVAPSrr:
685  case X86::MOVAPDrr:
686  case X86::MOVDQArr:
687  case X86::MOVSS2PSrr:
688  case X86::MOVSD2PDrr:
689  case X86::MOVPS2SSrr:
690  case X86::MOVPD2SDrr:
691  case X86::MMX_MOVQ64rr:
692    assert(MI.getNumOperands() >= 2 &&
693           MI.getOperand(0).isReg() &&
694           MI.getOperand(1).isReg() &&
695           "invalid register-register move instruction");
696    SrcReg = MI.getOperand(1).getReg();
697    DstReg = MI.getOperand(0).getReg();
698    SrcSubIdx = MI.getOperand(1).getSubReg();
699    DstSubIdx = MI.getOperand(0).getSubReg();
700    return true;
701  }
702}
703
704unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
705                                           int &FrameIndex) const {
706  switch (MI->getOpcode()) {
707  default: break;
708  case X86::MOV8rm:
709  case X86::MOV16rm:
710  case X86::MOV32rm:
711  case X86::MOV64rm:
712  case X86::LD_Fp64m:
713  case X86::MOVSSrm:
714  case X86::MOVSDrm:
715  case X86::MOVAPSrm:
716  case X86::MOVAPDrm:
717  case X86::MOVDQArm:
718  case X86::MMX_MOVD64rm:
719  case X86::MMX_MOVQ64rm:
720    if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
721        MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
722        MI->getOperand(2).getImm() == 1 &&
723        MI->getOperand(3).getReg() == 0 &&
724        MI->getOperand(4).getImm() == 0) {
725      FrameIndex = MI->getOperand(1).getIndex();
726      return MI->getOperand(0).getReg();
727    }
728    break;
729  }
730  return 0;
731}
732
733unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
734                                          int &FrameIndex) const {
735  switch (MI->getOpcode()) {
736  default: break;
737  case X86::MOV8mr:
738  case X86::MOV16mr:
739  case X86::MOV32mr:
740  case X86::MOV64mr:
741  case X86::ST_FpP64m:
742  case X86::MOVSSmr:
743  case X86::MOVSDmr:
744  case X86::MOVAPSmr:
745  case X86::MOVAPDmr:
746  case X86::MOVDQAmr:
747  case X86::MMX_MOVD64mr:
748  case X86::MMX_MOVQ64mr:
749  case X86::MMX_MOVNTQmr:
750    if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
751        MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
752        MI->getOperand(1).getImm() == 1 &&
753        MI->getOperand(2).getReg() == 0 &&
754        MI->getOperand(3).getImm() == 0) {
755      FrameIndex = MI->getOperand(0).getIndex();
756      return MI->getOperand(X86AddrNumOperands).getReg();
757    }
758    break;
759  }
760  return 0;
761}
762
763
764/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
765/// X86::MOVPC32r.
766static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
767  bool isPICBase = false;
768  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
769         E = MRI.def_end(); I != E; ++I) {
770    MachineInstr *DefMI = I.getOperand().getParent();
771    if (DefMI->getOpcode() != X86::MOVPC32r)
772      return false;
773    assert(!isPICBase && "More than one PIC base?");
774    isPICBase = true;
775  }
776  return isPICBase;
777}
778
779/// isGVStub - Return true if the GV requires an extra load to get the
780/// real address.
781static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
782  return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
783}
784
785bool
786X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
787  switch (MI->getOpcode()) {
788  default: break;
789    case X86::MOV8rm:
790    case X86::MOV16rm:
791    case X86::MOV32rm:
792    case X86::MOV64rm:
793    case X86::LD_Fp64m:
794    case X86::MOVSSrm:
795    case X86::MOVSDrm:
796    case X86::MOVAPSrm:
797    case X86::MOVAPDrm:
798    case X86::MOVDQArm:
799    case X86::MMX_MOVD64rm:
800    case X86::MMX_MOVQ64rm: {
801      // Loads from constant pools are trivially rematerializable.
802      if (MI->getOperand(1).isReg() &&
803          MI->getOperand(2).isImm() &&
804          MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
805          (MI->getOperand(4).isCPI() ||
806           (MI->getOperand(4).isGlobal() &&
807            isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
808        unsigned BaseReg = MI->getOperand(1).getReg();
809        if (BaseReg == 0)
810          return true;
811        // Allow re-materialization of PIC load.
812        if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
813          return false;
814        const MachineFunction &MF = *MI->getParent()->getParent();
815        const MachineRegisterInfo &MRI = MF.getRegInfo();
816        bool isPICBase = false;
817        for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
818               E = MRI.def_end(); I != E; ++I) {
819          MachineInstr *DefMI = I.getOperand().getParent();
820          if (DefMI->getOpcode() != X86::MOVPC32r)
821            return false;
822          assert(!isPICBase && "More than one PIC base?");
823          isPICBase = true;
824        }
825        return isPICBase;
826      }
827      return false;
828    }
829
830     case X86::LEA32r:
831     case X86::LEA64r: {
832       if (MI->getOperand(2).isImm() &&
833           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
834           !MI->getOperand(4).isReg()) {
835         // lea fi#, lea GV, etc. are all rematerializable.
836         if (!MI->getOperand(1).isReg())
837           return true;
838         unsigned BaseReg = MI->getOperand(1).getReg();
839         if (BaseReg == 0)
840           return true;
841         // Allow re-materialization of lea PICBase + x.
842         const MachineFunction &MF = *MI->getParent()->getParent();
843         const MachineRegisterInfo &MRI = MF.getRegInfo();
844         return regIsPICBase(BaseReg, MRI);
845       }
846       return false;
847     }
848  }
849
850  // All other instructions marked M_REMATERIALIZABLE are always trivially
851  // rematerializable.
852  return true;
853}
854
855/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
856/// would clobber the EFLAGS condition register. Note the result may be
857/// conservative. If it cannot definitely determine the safety after visiting
858/// two instructions it assumes it's not safe.
859static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
860                                  MachineBasicBlock::iterator I) {
861  // It's always safe to clobber EFLAGS at the end of a block.
862  if (I == MBB.end())
863    return true;
864
865  // For compile time consideration, if we are not able to determine the
866  // safety after visiting 2 instructions, we will assume it's not safe.
867  for (unsigned i = 0; i < 2; ++i) {
868    bool SeenDef = false;
869    for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
870      MachineOperand &MO = I->getOperand(j);
871      if (!MO.isReg())
872        continue;
873      if (MO.getReg() == X86::EFLAGS) {
874        if (MO.isUse())
875          return false;
876        SeenDef = true;
877      }
878    }
879
880    if (SeenDef)
881      // This instruction defines EFLAGS, no need to look any further.
882      return true;
883    ++I;
884
885    // If we make it to the end of the block, it's safe to clobber EFLAGS.
886    if (I == MBB.end())
887      return true;
888  }
889
890  // Conservative answer.
891  return false;
892}
893
894void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
895                                 MachineBasicBlock::iterator I,
896                                 unsigned DestReg,
897                                 const MachineInstr *Orig) const {
898  DebugLoc DL = DebugLoc::getUnknownLoc();
899  if (I != MBB.end()) DL = I->getDebugLoc();
900
901  unsigned SubIdx = Orig->getOperand(0).isReg()
902    ? Orig->getOperand(0).getSubReg() : 0;
903  bool ChangeSubIdx = SubIdx != 0;
904  if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
905    DestReg = RI.getSubReg(DestReg, SubIdx);
906    SubIdx = 0;
907  }
908
909  // MOV32r0 etc. are implemented with xor which clobbers condition code.
910  // Re-materialize them as movri instructions to avoid side effects.
911  bool Emitted = false;
912  switch (Orig->getOpcode()) {
913  default: break;
914  case X86::MOV8r0:
915  case X86::MOV16r0:
916  case X86::MOV32r0:
917  case X86::MOV64r0: {
918    if (!isSafeToClobberEFLAGS(MBB, I)) {
919      unsigned Opc = 0;
920      switch (Orig->getOpcode()) {
921      default: break;
922      case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
923      case X86::MOV16r0: Opc = X86::MOV16ri; break;
924      case X86::MOV32r0: Opc = X86::MOV32ri; break;
925      case X86::MOV64r0: Opc = X86::MOV64ri32; break;
926      }
927      BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0);
928      Emitted = true;
929    }
930    break;
931  }
932  }
933
934  if (!Emitted) {
935    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
936    MI->getOperand(0).setReg(DestReg);
937    MBB.insert(I, MI);
938  }
939
940  if (ChangeSubIdx) {
941    MachineInstr *NewMI = prior(I);
942    NewMI->getOperand(0).setSubReg(SubIdx);
943  }
944}
945
946/// isInvariantLoad - Return true if the specified instruction (which is marked
947/// mayLoad) is loading from a location whose value is invariant across the
948/// function.  For example, loading a value from the constant pool or from
949/// from the argument area of a function if it does not change.  This should
950/// only return true of *all* loads the instruction does are invariant (if it
951/// does multiple loads).
952bool X86InstrInfo::isInvariantLoad(const MachineInstr *MI) const {
953  // This code cares about loads from three cases: constant pool entries,
954  // invariant argument slots, and global stubs.  In order to handle these cases
955  // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
956  // operand and base our analysis on it.  This is safe because the address of
957  // none of these three cases is ever used as anything other than a load base
958  // and X86 doesn't have any instructions that load from multiple places.
959
960  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
961    const MachineOperand &MO = MI->getOperand(i);
962    // Loads from constant pools are trivially invariant.
963    if (MO.isCPI())
964      return true;
965
966    if (MO.isGlobal())
967      return isGVStub(MO.getGlobal(), TM);
968
969    // If this is a load from an invariant stack slot, the load is a constant.
970    if (MO.isFI()) {
971      const MachineFrameInfo &MFI =
972        *MI->getParent()->getParent()->getFrameInfo();
973      int Idx = MO.getIndex();
974      return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
975    }
976  }
977
978  // All other instances of these instructions are presumed to have other
979  // issues.
980  return false;
981}
982
983/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
984/// is not marked dead.
985static bool hasLiveCondCodeDef(MachineInstr *MI) {
986  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
987    MachineOperand &MO = MI->getOperand(i);
988    if (MO.isReg() && MO.isDef() &&
989        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
990      return true;
991    }
992  }
993  return false;
994}
995
996/// convertToThreeAddress - This method must be implemented by targets that
997/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
998/// may be able to convert a two-address instruction into a true
999/// three-address instruction on demand.  This allows the X86 target (for
1000/// example) to convert ADD and SHL instructions into LEA instructions if they
1001/// would require register copies due to two-addressness.
1002///
1003/// This method returns a null pointer if the transformation cannot be
1004/// performed, otherwise it returns the new instruction.
1005///
1006MachineInstr *
1007X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1008                                    MachineBasicBlock::iterator &MBBI,
1009                                    LiveVariables *LV) const {
1010  MachineInstr *MI = MBBI;
1011  MachineFunction &MF = *MI->getParent()->getParent();
1012  // All instructions input are two-addr instructions.  Get the known operands.
1013  unsigned Dest = MI->getOperand(0).getReg();
1014  unsigned Src = MI->getOperand(1).getReg();
1015  bool isDead = MI->getOperand(0).isDead();
1016  bool isKill = MI->getOperand(1).isKill();
1017
1018  MachineInstr *NewMI = NULL;
1019  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
1020  // we have better subtarget support, enable the 16-bit LEA generation here.
1021  bool DisableLEA16 = true;
1022
1023  unsigned MIOpc = MI->getOpcode();
1024  switch (MIOpc) {
1025  case X86::SHUFPSrri: {
1026    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1027    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1028
1029    unsigned B = MI->getOperand(1).getReg();
1030    unsigned C = MI->getOperand(2).getReg();
1031    if (B != C) return 0;
1032    unsigned A = MI->getOperand(0).getReg();
1033    unsigned M = MI->getOperand(3).getImm();
1034    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1035      .addReg(A, RegState::Define | getDeadRegState(isDead))
1036      .addReg(B, getKillRegState(isKill)).addImm(M);
1037    break;
1038  }
1039  case X86::SHL64ri: {
1040    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1041    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1042    // the flags produced by a shift yet, so this is safe.
1043    unsigned ShAmt = MI->getOperand(2).getImm();
1044    if (ShAmt == 0 || ShAmt >= 4) return 0;
1045
1046    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1047      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1048      .addReg(0).addImm(1 << ShAmt)
1049      .addReg(Src, getKillRegState(isKill))
1050      .addImm(0);
1051    break;
1052  }
1053  case X86::SHL32ri: {
1054    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1055    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1056    // the flags produced by a shift yet, so this is safe.
1057    unsigned ShAmt = MI->getOperand(2).getImm();
1058    if (ShAmt == 0 || ShAmt >= 4) return 0;
1059
1060    unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1061      X86::LEA64_32r : X86::LEA32r;
1062    NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
1063      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1064      .addReg(0).addImm(1 << ShAmt)
1065      .addReg(Src, getKillRegState(isKill)).addImm(0);
1066    break;
1067  }
1068  case X86::SHL16ri: {
1069    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1070    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1071    // the flags produced by a shift yet, so this is safe.
1072    unsigned ShAmt = MI->getOperand(2).getImm();
1073    if (ShAmt == 0 || ShAmt >= 4) return 0;
1074
1075    if (DisableLEA16) {
1076      // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
1077      MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1078      unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1079        ? X86::LEA64_32r : X86::LEA32r;
1080      unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1081      unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1082
1083      // Build and insert into an implicit UNDEF value. This is OK because
1084      // well be shifting and then extracting the lower 16-bits.
1085      BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1086      MachineInstr *InsMI =
1087        BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg)
1088        .addReg(leaInReg)
1089        .addReg(Src, getKillRegState(isKill))
1090        .addImm(X86::SUBREG_16BIT);
1091
1092      NewMI = BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(Opc), leaOutReg)
1093        .addReg(0).addImm(1 << ShAmt)
1094        .addReg(leaInReg, RegState::Kill)
1095        .addImm(0);
1096
1097      MachineInstr *ExtMI =
1098        BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::EXTRACT_SUBREG))
1099        .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1100        .addReg(leaOutReg, RegState::Kill)
1101        .addImm(X86::SUBREG_16BIT);
1102
1103      if (LV) {
1104        // Update live variables
1105        LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1106        LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1107        if (isKill)
1108          LV->replaceKillInstruction(Src, MI, InsMI);
1109        if (isDead)
1110          LV->replaceKillInstruction(Dest, MI, ExtMI);
1111      }
1112      return ExtMI;
1113    } else {
1114      NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1115        .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1116        .addReg(0).addImm(1 << ShAmt)
1117        .addReg(Src, getKillRegState(isKill))
1118        .addImm(0);
1119    }
1120    break;
1121  }
1122  default: {
1123    // The following opcodes also sets the condition code register(s). Only
1124    // convert them to equivalent lea if the condition code register def's
1125    // are dead!
1126    if (hasLiveCondCodeDef(MI))
1127      return 0;
1128
1129    bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1130    switch (MIOpc) {
1131    default: return 0;
1132    case X86::INC64r:
1133    case X86::INC32r:
1134    case X86::INC64_32r: {
1135      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1136      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1137        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1138      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1139                              .addReg(Dest, RegState::Define |
1140                                      getDeadRegState(isDead)),
1141                              Src, isKill, 1);
1142      break;
1143    }
1144    case X86::INC16r:
1145    case X86::INC64_16r:
1146      if (DisableLEA16) return 0;
1147      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1148      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1149                           .addReg(Dest, RegState::Define |
1150                                   getDeadRegState(isDead)),
1151                           Src, isKill, 1);
1152      break;
1153    case X86::DEC64r:
1154    case X86::DEC32r:
1155    case X86::DEC64_32r: {
1156      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1157      unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1158        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1159      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1160                              .addReg(Dest, RegState::Define |
1161                                      getDeadRegState(isDead)),
1162                              Src, isKill, -1);
1163      break;
1164    }
1165    case X86::DEC16r:
1166    case X86::DEC64_16r:
1167      if (DisableLEA16) return 0;
1168      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1169      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1170                           .addReg(Dest, RegState::Define |
1171                                   getDeadRegState(isDead)),
1172                           Src, isKill, -1);
1173      break;
1174    case X86::ADD64rr:
1175    case X86::ADD32rr: {
1176      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1177      unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1178        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1179      unsigned Src2 = MI->getOperand(2).getReg();
1180      bool isKill2 = MI->getOperand(2).isKill();
1181      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1182                        .addReg(Dest, RegState::Define |
1183                                getDeadRegState(isDead)),
1184                        Src, isKill, Src2, isKill2);
1185      if (LV && isKill2)
1186        LV->replaceKillInstruction(Src2, MI, NewMI);
1187      break;
1188    }
1189    case X86::ADD16rr: {
1190      if (DisableLEA16) return 0;
1191      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1192      unsigned Src2 = MI->getOperand(2).getReg();
1193      bool isKill2 = MI->getOperand(2).isKill();
1194      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1195                        .addReg(Dest, RegState::Define |
1196                                getDeadRegState(isDead)),
1197                        Src, isKill, Src2, isKill2);
1198      if (LV && isKill2)
1199        LV->replaceKillInstruction(Src2, MI, NewMI);
1200      break;
1201    }
1202    case X86::ADD64ri32:
1203    case X86::ADD64ri8:
1204      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1205      if (MI->getOperand(2).isImm())
1206        NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1207                                .addReg(Dest, RegState::Define |
1208                                        getDeadRegState(isDead)),
1209                                Src, isKill, MI->getOperand(2).getImm());
1210      break;
1211    case X86::ADD32ri:
1212    case X86::ADD32ri8:
1213      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1214      if (MI->getOperand(2).isImm()) {
1215        unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1216        NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1217                                .addReg(Dest, RegState::Define |
1218                                        getDeadRegState(isDead)),
1219                                Src, isKill, MI->getOperand(2).getImm());
1220      }
1221      break;
1222    case X86::ADD16ri:
1223    case X86::ADD16ri8:
1224      if (DisableLEA16) return 0;
1225      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1226      if (MI->getOperand(2).isImm())
1227        NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1228                             .addReg(Dest, RegState::Define |
1229                                     getDeadRegState(isDead)),
1230                             Src, isKill, MI->getOperand(2).getImm());
1231      break;
1232    case X86::SHL16ri:
1233      if (DisableLEA16) return 0;
1234    case X86::SHL32ri:
1235    case X86::SHL64ri: {
1236      assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
1237             "Unknown shl instruction!");
1238      unsigned ShAmt = MI->getOperand(2).getImm();
1239      if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1240        X86AddressMode AM;
1241        AM.Scale = 1 << ShAmt;
1242        AM.IndexReg = Src;
1243        unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
1244          : (MIOpc == X86::SHL32ri
1245             ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
1246        NewMI = addFullAddress(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1247                               .addReg(Dest, RegState::Define |
1248                                       getDeadRegState(isDead)), AM);
1249        if (isKill)
1250          NewMI->getOperand(3).setIsKill(true);
1251      }
1252      break;
1253    }
1254    }
1255  }
1256  }
1257
1258  if (!NewMI) return 0;
1259
1260  if (LV) {  // Update live variables
1261    if (isKill)
1262      LV->replaceKillInstruction(Src, MI, NewMI);
1263    if (isDead)
1264      LV->replaceKillInstruction(Dest, MI, NewMI);
1265  }
1266
1267  MFI->insert(MBBI, NewMI);          // Insert the new inst
1268  return NewMI;
1269}
1270
1271/// commuteInstruction - We have a few instructions that must be hacked on to
1272/// commute them.
1273///
1274MachineInstr *
1275X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1276  switch (MI->getOpcode()) {
1277  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1278  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1279  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1280  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1281  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1282  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1283    unsigned Opc;
1284    unsigned Size;
1285    switch (MI->getOpcode()) {
1286    default: assert(0 && "Unreachable!");
1287    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1288    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1289    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1290    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1291    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1292    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1293    }
1294    unsigned Amt = MI->getOperand(3).getImm();
1295    if (NewMI) {
1296      MachineFunction &MF = *MI->getParent()->getParent();
1297      MI = MF.CloneMachineInstr(MI);
1298      NewMI = false;
1299    }
1300    MI->setDesc(get(Opc));
1301    MI->getOperand(3).setImm(Size-Amt);
1302    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1303  }
1304  case X86::CMOVB16rr:
1305  case X86::CMOVB32rr:
1306  case X86::CMOVB64rr:
1307  case X86::CMOVAE16rr:
1308  case X86::CMOVAE32rr:
1309  case X86::CMOVAE64rr:
1310  case X86::CMOVE16rr:
1311  case X86::CMOVE32rr:
1312  case X86::CMOVE64rr:
1313  case X86::CMOVNE16rr:
1314  case X86::CMOVNE32rr:
1315  case X86::CMOVNE64rr:
1316  case X86::CMOVBE16rr:
1317  case X86::CMOVBE32rr:
1318  case X86::CMOVBE64rr:
1319  case X86::CMOVA16rr:
1320  case X86::CMOVA32rr:
1321  case X86::CMOVA64rr:
1322  case X86::CMOVL16rr:
1323  case X86::CMOVL32rr:
1324  case X86::CMOVL64rr:
1325  case X86::CMOVGE16rr:
1326  case X86::CMOVGE32rr:
1327  case X86::CMOVGE64rr:
1328  case X86::CMOVLE16rr:
1329  case X86::CMOVLE32rr:
1330  case X86::CMOVLE64rr:
1331  case X86::CMOVG16rr:
1332  case X86::CMOVG32rr:
1333  case X86::CMOVG64rr:
1334  case X86::CMOVS16rr:
1335  case X86::CMOVS32rr:
1336  case X86::CMOVS64rr:
1337  case X86::CMOVNS16rr:
1338  case X86::CMOVNS32rr:
1339  case X86::CMOVNS64rr:
1340  case X86::CMOVP16rr:
1341  case X86::CMOVP32rr:
1342  case X86::CMOVP64rr:
1343  case X86::CMOVNP16rr:
1344  case X86::CMOVNP32rr:
1345  case X86::CMOVNP64rr:
1346  case X86::CMOVO16rr:
1347  case X86::CMOVO32rr:
1348  case X86::CMOVO64rr:
1349  case X86::CMOVNO16rr:
1350  case X86::CMOVNO32rr:
1351  case X86::CMOVNO64rr: {
1352    unsigned Opc = 0;
1353    switch (MI->getOpcode()) {
1354    default: break;
1355    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
1356    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
1357    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
1358    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1359    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1360    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1361    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
1362    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
1363    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
1364    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1365    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1366    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1367    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1368    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1369    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1370    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
1371    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
1372    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
1373    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
1374    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
1375    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
1376    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1377    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1378    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1379    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1380    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1381    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1382    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
1383    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
1384    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
1385    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
1386    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
1387    case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
1388    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1389    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1390    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1391    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
1392    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
1393    case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
1394    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1395    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1396    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1397    case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
1398    case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
1399    case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
1400    case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1401    case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1402    case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
1403    }
1404    if (NewMI) {
1405      MachineFunction &MF = *MI->getParent()->getParent();
1406      MI = MF.CloneMachineInstr(MI);
1407      NewMI = false;
1408    }
1409    MI->setDesc(get(Opc));
1410    // Fallthrough intended.
1411  }
1412  default:
1413    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1414  }
1415}
1416
1417static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1418  switch (BrOpc) {
1419  default: return X86::COND_INVALID;
1420  case X86::JE:  return X86::COND_E;
1421  case X86::JNE: return X86::COND_NE;
1422  case X86::JL:  return X86::COND_L;
1423  case X86::JLE: return X86::COND_LE;
1424  case X86::JG:  return X86::COND_G;
1425  case X86::JGE: return X86::COND_GE;
1426  case X86::JB:  return X86::COND_B;
1427  case X86::JBE: return X86::COND_BE;
1428  case X86::JA:  return X86::COND_A;
1429  case X86::JAE: return X86::COND_AE;
1430  case X86::JS:  return X86::COND_S;
1431  case X86::JNS: return X86::COND_NS;
1432  case X86::JP:  return X86::COND_P;
1433  case X86::JNP: return X86::COND_NP;
1434  case X86::JO:  return X86::COND_O;
1435  case X86::JNO: return X86::COND_NO;
1436  }
1437}
1438
1439unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1440  switch (CC) {
1441  default: assert(0 && "Illegal condition code!");
1442  case X86::COND_E:  return X86::JE;
1443  case X86::COND_NE: return X86::JNE;
1444  case X86::COND_L:  return X86::JL;
1445  case X86::COND_LE: return X86::JLE;
1446  case X86::COND_G:  return X86::JG;
1447  case X86::COND_GE: return X86::JGE;
1448  case X86::COND_B:  return X86::JB;
1449  case X86::COND_BE: return X86::JBE;
1450  case X86::COND_A:  return X86::JA;
1451  case X86::COND_AE: return X86::JAE;
1452  case X86::COND_S:  return X86::JS;
1453  case X86::COND_NS: return X86::JNS;
1454  case X86::COND_P:  return X86::JP;
1455  case X86::COND_NP: return X86::JNP;
1456  case X86::COND_O:  return X86::JO;
1457  case X86::COND_NO: return X86::JNO;
1458  }
1459}
1460
1461/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1462/// e.g. turning COND_E to COND_NE.
1463X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1464  switch (CC) {
1465  default: assert(0 && "Illegal condition code!");
1466  case X86::COND_E:  return X86::COND_NE;
1467  case X86::COND_NE: return X86::COND_E;
1468  case X86::COND_L:  return X86::COND_GE;
1469  case X86::COND_LE: return X86::COND_G;
1470  case X86::COND_G:  return X86::COND_LE;
1471  case X86::COND_GE: return X86::COND_L;
1472  case X86::COND_B:  return X86::COND_AE;
1473  case X86::COND_BE: return X86::COND_A;
1474  case X86::COND_A:  return X86::COND_BE;
1475  case X86::COND_AE: return X86::COND_B;
1476  case X86::COND_S:  return X86::COND_NS;
1477  case X86::COND_NS: return X86::COND_S;
1478  case X86::COND_P:  return X86::COND_NP;
1479  case X86::COND_NP: return X86::COND_P;
1480  case X86::COND_O:  return X86::COND_NO;
1481  case X86::COND_NO: return X86::COND_O;
1482  }
1483}
1484
1485bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1486  const TargetInstrDesc &TID = MI->getDesc();
1487  if (!TID.isTerminator()) return false;
1488
1489  // Conditional branch is a special case.
1490  if (TID.isBranch() && !TID.isBarrier())
1491    return true;
1492  if (!TID.isPredicable())
1493    return true;
1494  return !isPredicated(MI);
1495}
1496
1497// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1498static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1499                                               const X86InstrInfo &TII) {
1500  if (MI->getOpcode() == X86::FP_REG_KILL)
1501    return false;
1502  return TII.isUnpredicatedTerminator(MI);
1503}
1504
1505bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1506                                 MachineBasicBlock *&TBB,
1507                                 MachineBasicBlock *&FBB,
1508                                 SmallVectorImpl<MachineOperand> &Cond,
1509                                 bool AllowModify) const {
1510  // Start from the bottom of the block and work up, examining the
1511  // terminator instructions.
1512  MachineBasicBlock::iterator I = MBB.end();
1513  while (I != MBB.begin()) {
1514    --I;
1515    // Working from the bottom, when we see a non-terminator
1516    // instruction, we're done.
1517    if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1518      break;
1519    // A terminator that isn't a branch can't easily be handled
1520    // by this analysis.
1521    if (!I->getDesc().isBranch())
1522      return true;
1523    // Handle unconditional branches.
1524    if (I->getOpcode() == X86::JMP) {
1525      if (!AllowModify) {
1526        TBB = I->getOperand(0).getMBB();
1527        continue;
1528      }
1529
1530      // If the block has any instructions after a JMP, delete them.
1531      while (next(I) != MBB.end())
1532        next(I)->eraseFromParent();
1533      Cond.clear();
1534      FBB = 0;
1535      // Delete the JMP if it's equivalent to a fall-through.
1536      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1537        TBB = 0;
1538        I->eraseFromParent();
1539        I = MBB.end();
1540        continue;
1541      }
1542      // TBB is used to indicate the unconditinal destination.
1543      TBB = I->getOperand(0).getMBB();
1544      continue;
1545    }
1546    // Handle conditional branches.
1547    X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
1548    if (BranchCode == X86::COND_INVALID)
1549      return true;  // Can't handle indirect branch.
1550    // Working from the bottom, handle the first conditional branch.
1551    if (Cond.empty()) {
1552      FBB = TBB;
1553      TBB = I->getOperand(0).getMBB();
1554      Cond.push_back(MachineOperand::CreateImm(BranchCode));
1555      continue;
1556    }
1557    // Handle subsequent conditional branches. Only handle the case
1558    // where all conditional branches branch to the same destination
1559    // and their condition opcodes fit one of the special
1560    // multi-branch idioms.
1561    assert(Cond.size() == 1);
1562    assert(TBB);
1563    // Only handle the case where all conditional branches branch to
1564    // the same destination.
1565    if (TBB != I->getOperand(0).getMBB())
1566      return true;
1567    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1568    // If the conditions are the same, we can leave them alone.
1569    if (OldBranchCode == BranchCode)
1570      continue;
1571    // If they differ, see if they fit one of the known patterns.
1572    // Theoretically we could handle more patterns here, but
1573    // we shouldn't expect to see them if instruction selection
1574    // has done a reasonable job.
1575    if ((OldBranchCode == X86::COND_NP &&
1576         BranchCode == X86::COND_E) ||
1577        (OldBranchCode == X86::COND_E &&
1578         BranchCode == X86::COND_NP))
1579      BranchCode = X86::COND_NP_OR_E;
1580    else if ((OldBranchCode == X86::COND_P &&
1581              BranchCode == X86::COND_NE) ||
1582             (OldBranchCode == X86::COND_NE &&
1583              BranchCode == X86::COND_P))
1584      BranchCode = X86::COND_NE_OR_P;
1585    else
1586      return true;
1587    // Update the MachineOperand.
1588    Cond[0].setImm(BranchCode);
1589  }
1590
1591  return false;
1592}
1593
1594unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1595  MachineBasicBlock::iterator I = MBB.end();
1596  unsigned Count = 0;
1597
1598  while (I != MBB.begin()) {
1599    --I;
1600    if (I->getOpcode() != X86::JMP &&
1601        GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1602      break;
1603    // Remove the branch.
1604    I->eraseFromParent();
1605    I = MBB.end();
1606    ++Count;
1607  }
1608
1609  return Count;
1610}
1611
1612unsigned
1613X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1614                           MachineBasicBlock *FBB,
1615                           const SmallVectorImpl<MachineOperand> &Cond) const {
1616  // FIXME this should probably have a DebugLoc operand
1617  DebugLoc dl = DebugLoc::getUnknownLoc();
1618  // Shouldn't be a fall through.
1619  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1620  assert((Cond.size() == 1 || Cond.size() == 0) &&
1621         "X86 branch conditions have one component!");
1622
1623  if (Cond.empty()) {
1624    // Unconditional branch?
1625    assert(!FBB && "Unconditional branch with multiple successors!");
1626    BuildMI(&MBB, dl, get(X86::JMP)).addMBB(TBB);
1627    return 1;
1628  }
1629
1630  // Conditional branch.
1631  unsigned Count = 0;
1632  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1633  switch (CC) {
1634  case X86::COND_NP_OR_E:
1635    // Synthesize NP_OR_E with two branches.
1636    BuildMI(&MBB, dl, get(X86::JNP)).addMBB(TBB);
1637    ++Count;
1638    BuildMI(&MBB, dl, get(X86::JE)).addMBB(TBB);
1639    ++Count;
1640    break;
1641  case X86::COND_NE_OR_P:
1642    // Synthesize NE_OR_P with two branches.
1643    BuildMI(&MBB, dl, get(X86::JNE)).addMBB(TBB);
1644    ++Count;
1645    BuildMI(&MBB, dl, get(X86::JP)).addMBB(TBB);
1646    ++Count;
1647    break;
1648  default: {
1649    unsigned Opc = GetCondBranchFromCond(CC);
1650    BuildMI(&MBB, dl, get(Opc)).addMBB(TBB);
1651    ++Count;
1652  }
1653  }
1654  if (FBB) {
1655    // Two-way Conditional branch. Insert the second branch.
1656    BuildMI(&MBB, dl, get(X86::JMP)).addMBB(FBB);
1657    ++Count;
1658  }
1659  return Count;
1660}
1661
1662/// isHReg - Test if the given register is a physical h register.
1663static bool isHReg(unsigned Reg) {
1664  return X86::GR8_ABCD_HRegClass.contains(Reg);
1665}
1666
1667bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
1668                                MachineBasicBlock::iterator MI,
1669                                unsigned DestReg, unsigned SrcReg,
1670                                const TargetRegisterClass *DestRC,
1671                                const TargetRegisterClass *SrcRC) const {
1672  DebugLoc DL = DebugLoc::getUnknownLoc();
1673  if (MI != MBB.end()) DL = MI->getDebugLoc();
1674
1675  // Determine if DstRC and SrcRC have a common superclass in common.
1676  const TargetRegisterClass *CommonRC = DestRC;
1677  if (DestRC == SrcRC)
1678    /* Source and destination have the same register class. */;
1679  else if (CommonRC->hasSuperClass(SrcRC))
1680    CommonRC = SrcRC;
1681  else if (!DestRC->hasSubClass(SrcRC))
1682    CommonRC = 0;
1683
1684  if (CommonRC) {
1685    unsigned Opc;
1686    if (CommonRC == &X86::GR64RegClass) {
1687      Opc = X86::MOV64rr;
1688    } else if (CommonRC == &X86::GR32RegClass) {
1689      Opc = X86::MOV32rr;
1690    } else if (CommonRC == &X86::GR16RegClass) {
1691      Opc = X86::MOV16rr;
1692    } else if (CommonRC == &X86::GR8RegClass) {
1693      // Copying to or from a physical H register on x86-64 requires a NOREX
1694      // move.  Otherwise use a normal move.
1695      if ((isHReg(DestReg) || isHReg(SrcReg)) &&
1696          TM.getSubtarget<X86Subtarget>().is64Bit())
1697        Opc = X86::MOV8rr_NOREX;
1698      else
1699        Opc = X86::MOV8rr;
1700    } else if (CommonRC == &X86::GR64_ABCDRegClass) {
1701      Opc = X86::MOV64rr;
1702    } else if (CommonRC == &X86::GR32_ABCDRegClass) {
1703      Opc = X86::MOV32rr;
1704    } else if (CommonRC == &X86::GR16_ABCDRegClass) {
1705      Opc = X86::MOV16rr;
1706    } else if (CommonRC == &X86::GR8_ABCD_LRegClass) {
1707      Opc = X86::MOV8rr;
1708    } else if (CommonRC == &X86::GR8_ABCD_HRegClass) {
1709      if (TM.getSubtarget<X86Subtarget>().is64Bit())
1710        Opc = X86::MOV8rr_NOREX;
1711      else
1712        Opc = X86::MOV8rr;
1713    } else if (CommonRC == &X86::GR64_NOREXRegClass) {
1714      Opc = X86::MOV64rr;
1715    } else if (CommonRC == &X86::GR32_NOREXRegClass) {
1716      Opc = X86::MOV32rr;
1717    } else if (CommonRC == &X86::GR16_NOREXRegClass) {
1718      Opc = X86::MOV16rr;
1719    } else if (CommonRC == &X86::GR8_NOREXRegClass) {
1720      Opc = X86::MOV8rr;
1721    } else if (CommonRC == &X86::RFP32RegClass) {
1722      Opc = X86::MOV_Fp3232;
1723    } else if (CommonRC == &X86::RFP64RegClass || CommonRC == &X86::RSTRegClass) {
1724      Opc = X86::MOV_Fp6464;
1725    } else if (CommonRC == &X86::RFP80RegClass) {
1726      Opc = X86::MOV_Fp8080;
1727    } else if (CommonRC == &X86::FR32RegClass) {
1728      Opc = X86::FsMOVAPSrr;
1729    } else if (CommonRC == &X86::FR64RegClass) {
1730      Opc = X86::FsMOVAPDrr;
1731    } else if (CommonRC == &X86::VR128RegClass) {
1732      Opc = X86::MOVAPSrr;
1733    } else if (CommonRC == &X86::VR64RegClass) {
1734      Opc = X86::MMX_MOVQ64rr;
1735    } else {
1736      return false;
1737    }
1738    BuildMI(MBB, MI, DL, get(Opc), DestReg).addReg(SrcReg);
1739    return true;
1740  }
1741
1742  // Moving EFLAGS to / from another register requires a push and a pop.
1743  if (SrcRC == &X86::CCRRegClass) {
1744    if (SrcReg != X86::EFLAGS)
1745      return false;
1746    if (DestRC == &X86::GR64RegClass) {
1747      BuildMI(MBB, MI, DL, get(X86::PUSHFQ));
1748      BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
1749      return true;
1750    } else if (DestRC == &X86::GR32RegClass) {
1751      BuildMI(MBB, MI, DL, get(X86::PUSHFD));
1752      BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
1753      return true;
1754    }
1755  } else if (DestRC == &X86::CCRRegClass) {
1756    if (DestReg != X86::EFLAGS)
1757      return false;
1758    if (SrcRC == &X86::GR64RegClass) {
1759      BuildMI(MBB, MI, DL, get(X86::PUSH64r)).addReg(SrcReg);
1760      BuildMI(MBB, MI, DL, get(X86::POPFQ));
1761      return true;
1762    } else if (SrcRC == &X86::GR32RegClass) {
1763      BuildMI(MBB, MI, DL, get(X86::PUSH32r)).addReg(SrcReg);
1764      BuildMI(MBB, MI, DL, get(X86::POPFD));
1765      return true;
1766    }
1767  }
1768
1769  // Moving from ST(0) turns into FpGET_ST0_32 etc.
1770  if (SrcRC == &X86::RSTRegClass) {
1771    // Copying from ST(0)/ST(1).
1772    if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1773      // Can only copy from ST(0)/ST(1) right now
1774      return false;
1775    bool isST0 = SrcReg == X86::ST0;
1776    unsigned Opc;
1777    if (DestRC == &X86::RFP32RegClass)
1778      Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
1779    else if (DestRC == &X86::RFP64RegClass)
1780      Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
1781    else {
1782      if (DestRC != &X86::RFP80RegClass)
1783        return false;
1784      Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
1785    }
1786    BuildMI(MBB, MI, DL, get(Opc), DestReg);
1787    return true;
1788  }
1789
1790  // Moving to ST(0) turns into FpSET_ST0_32 etc.
1791  if (DestRC == &X86::RSTRegClass) {
1792    // Copying to ST(0) / ST(1).
1793    if (DestReg != X86::ST0 && DestReg != X86::ST1)
1794      // Can only copy to TOS right now
1795      return false;
1796    bool isST0 = DestReg == X86::ST0;
1797    unsigned Opc;
1798    if (SrcRC == &X86::RFP32RegClass)
1799      Opc = isST0 ? X86::FpSET_ST0_32 : X86::FpSET_ST1_32;
1800    else if (SrcRC == &X86::RFP64RegClass)
1801      Opc = isST0 ? X86::FpSET_ST0_64 : X86::FpSET_ST1_64;
1802    else {
1803      if (SrcRC != &X86::RFP80RegClass)
1804        return false;
1805      Opc = isST0 ? X86::FpSET_ST0_80 : X86::FpSET_ST1_80;
1806    }
1807    BuildMI(MBB, MI, DL, get(Opc)).addReg(SrcReg);
1808    return true;
1809  }
1810
1811  // Not yet supported!
1812  return false;
1813}
1814
1815static unsigned getStoreRegOpcode(unsigned SrcReg,
1816                                  const TargetRegisterClass *RC,
1817                                  bool isStackAligned,
1818                                  TargetMachine &TM) {
1819  unsigned Opc = 0;
1820  if (RC == &X86::GR64RegClass) {
1821    Opc = X86::MOV64mr;
1822  } else if (RC == &X86::GR32RegClass) {
1823    Opc = X86::MOV32mr;
1824  } else if (RC == &X86::GR16RegClass) {
1825    Opc = X86::MOV16mr;
1826  } else if (RC == &X86::GR8RegClass) {
1827    // Copying to or from a physical H register on x86-64 requires a NOREX
1828    // move.  Otherwise use a normal move.
1829    if (isHReg(SrcReg) &&
1830        TM.getSubtarget<X86Subtarget>().is64Bit())
1831      Opc = X86::MOV8mr_NOREX;
1832    else
1833      Opc = X86::MOV8mr;
1834  } else if (RC == &X86::GR64_ABCDRegClass) {
1835    Opc = X86::MOV64mr;
1836  } else if (RC == &X86::GR32_ABCDRegClass) {
1837    Opc = X86::MOV32mr;
1838  } else if (RC == &X86::GR16_ABCDRegClass) {
1839    Opc = X86::MOV16mr;
1840  } else if (RC == &X86::GR8_ABCD_LRegClass) {
1841    Opc = X86::MOV8mr;
1842  } else if (RC == &X86::GR8_ABCD_HRegClass) {
1843    if (TM.getSubtarget<X86Subtarget>().is64Bit())
1844      Opc = X86::MOV8mr_NOREX;
1845    else
1846      Opc = X86::MOV8mr;
1847  } else if (RC == &X86::GR64_NOREXRegClass) {
1848    Opc = X86::MOV64mr;
1849  } else if (RC == &X86::GR32_NOREXRegClass) {
1850    Opc = X86::MOV32mr;
1851  } else if (RC == &X86::GR16_NOREXRegClass) {
1852    Opc = X86::MOV16mr;
1853  } else if (RC == &X86::GR8_NOREXRegClass) {
1854    Opc = X86::MOV8mr;
1855  } else if (RC == &X86::RFP80RegClass) {
1856    Opc = X86::ST_FpP80m;   // pops
1857  } else if (RC == &X86::RFP64RegClass) {
1858    Opc = X86::ST_Fp64m;
1859  } else if (RC == &X86::RFP32RegClass) {
1860    Opc = X86::ST_Fp32m;
1861  } else if (RC == &X86::FR32RegClass) {
1862    Opc = X86::MOVSSmr;
1863  } else if (RC == &X86::FR64RegClass) {
1864    Opc = X86::MOVSDmr;
1865  } else if (RC == &X86::VR128RegClass) {
1866    // If stack is realigned we can use aligned stores.
1867    Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
1868  } else if (RC == &X86::VR64RegClass) {
1869    Opc = X86::MMX_MOVQ64mr;
1870  } else {
1871    assert(0 && "Unknown regclass");
1872    abort();
1873  }
1874
1875  return Opc;
1876}
1877
1878void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1879                                       MachineBasicBlock::iterator MI,
1880                                       unsigned SrcReg, bool isKill, int FrameIdx,
1881                                       const TargetRegisterClass *RC) const {
1882  const MachineFunction &MF = *MBB.getParent();
1883  bool isAligned = (RI.getStackAlignment() >= 16) ||
1884    RI.needsStackRealignment(MF);
1885  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
1886  DebugLoc DL = DebugLoc::getUnknownLoc();
1887  if (MI != MBB.end()) DL = MI->getDebugLoc();
1888  addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
1889    .addReg(SrcReg, getKillRegState(isKill));
1890}
1891
1892void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1893                                  bool isKill,
1894                                  SmallVectorImpl<MachineOperand> &Addr,
1895                                  const TargetRegisterClass *RC,
1896                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
1897  bool isAligned = (RI.getStackAlignment() >= 16) ||
1898    RI.needsStackRealignment(MF);
1899  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
1900  DebugLoc DL = DebugLoc::getUnknownLoc();
1901  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
1902  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1903    MIB.addOperand(Addr[i]);
1904  MIB.addReg(SrcReg, getKillRegState(isKill));
1905  NewMIs.push_back(MIB);
1906}
1907
1908static unsigned getLoadRegOpcode(unsigned DestReg,
1909                                 const TargetRegisterClass *RC,
1910                                 bool isStackAligned,
1911                                 const TargetMachine &TM) {
1912  unsigned Opc = 0;
1913  if (RC == &X86::GR64RegClass) {
1914    Opc = X86::MOV64rm;
1915  } else if (RC == &X86::GR32RegClass) {
1916    Opc = X86::MOV32rm;
1917  } else if (RC == &X86::GR16RegClass) {
1918    Opc = X86::MOV16rm;
1919  } else if (RC == &X86::GR8RegClass) {
1920    // Copying to or from a physical H register on x86-64 requires a NOREX
1921    // move.  Otherwise use a normal move.
1922    if (isHReg(DestReg) &&
1923        TM.getSubtarget<X86Subtarget>().is64Bit())
1924      Opc = X86::MOV8rm_NOREX;
1925    else
1926      Opc = X86::MOV8rm;
1927  } else if (RC == &X86::GR64_ABCDRegClass) {
1928    Opc = X86::MOV64rm;
1929  } else if (RC == &X86::GR32_ABCDRegClass) {
1930    Opc = X86::MOV32rm;
1931  } else if (RC == &X86::GR16_ABCDRegClass) {
1932    Opc = X86::MOV16rm;
1933  } else if (RC == &X86::GR8_ABCD_LRegClass) {
1934    Opc = X86::MOV8rm;
1935  } else if (RC == &X86::GR8_ABCD_HRegClass) {
1936    if (TM.getSubtarget<X86Subtarget>().is64Bit())
1937      Opc = X86::MOV8rm_NOREX;
1938    else
1939      Opc = X86::MOV8rm;
1940  } else if (RC == &X86::GR64_NOREXRegClass) {
1941    Opc = X86::MOV64rm;
1942  } else if (RC == &X86::GR32_NOREXRegClass) {
1943    Opc = X86::MOV32rm;
1944  } else if (RC == &X86::GR16_NOREXRegClass) {
1945    Opc = X86::MOV16rm;
1946  } else if (RC == &X86::GR8_NOREXRegClass) {
1947    Opc = X86::MOV8rm;
1948  } else if (RC == &X86::RFP80RegClass) {
1949    Opc = X86::LD_Fp80m;
1950  } else if (RC == &X86::RFP64RegClass) {
1951    Opc = X86::LD_Fp64m;
1952  } else if (RC == &X86::RFP32RegClass) {
1953    Opc = X86::LD_Fp32m;
1954  } else if (RC == &X86::FR32RegClass) {
1955    Opc = X86::MOVSSrm;
1956  } else if (RC == &X86::FR64RegClass) {
1957    Opc = X86::MOVSDrm;
1958  } else if (RC == &X86::VR128RegClass) {
1959    // If stack is realigned we can use aligned loads.
1960    Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
1961  } else if (RC == &X86::VR64RegClass) {
1962    Opc = X86::MMX_MOVQ64rm;
1963  } else {
1964    assert(0 && "Unknown regclass");
1965    abort();
1966  }
1967
1968  return Opc;
1969}
1970
1971void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1972                                        MachineBasicBlock::iterator MI,
1973                                        unsigned DestReg, int FrameIdx,
1974                                        const TargetRegisterClass *RC) const{
1975  const MachineFunction &MF = *MBB.getParent();
1976  bool isAligned = (RI.getStackAlignment() >= 16) ||
1977    RI.needsStackRealignment(MF);
1978  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
1979  DebugLoc DL = DebugLoc::getUnknownLoc();
1980  if (MI != MBB.end()) DL = MI->getDebugLoc();
1981  addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
1982}
1983
1984void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
1985                                 SmallVectorImpl<MachineOperand> &Addr,
1986                                 const TargetRegisterClass *RC,
1987                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1988  bool isAligned = (RI.getStackAlignment() >= 16) ||
1989    RI.needsStackRealignment(MF);
1990  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
1991  DebugLoc DL = DebugLoc::getUnknownLoc();
1992  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
1993  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1994    MIB.addOperand(Addr[i]);
1995  NewMIs.push_back(MIB);
1996}
1997
1998bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1999                                             MachineBasicBlock::iterator MI,
2000                                const std::vector<CalleeSavedInfo> &CSI) const {
2001  if (CSI.empty())
2002    return false;
2003
2004  DebugLoc DL = DebugLoc::getUnknownLoc();
2005  if (MI != MBB.end()) DL = MI->getDebugLoc();
2006
2007  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2008  unsigned SlotSize = is64Bit ? 8 : 4;
2009
2010  MachineFunction &MF = *MBB.getParent();
2011  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2012  X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
2013
2014  unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
2015  for (unsigned i = CSI.size(); i != 0; --i) {
2016    unsigned Reg = CSI[i-1].getReg();
2017    // Add the callee-saved register as live-in. It's killed at the spill.
2018    MBB.addLiveIn(Reg);
2019    BuildMI(MBB, MI, DL, get(Opc))
2020      .addReg(Reg, RegState::Kill);
2021  }
2022  return true;
2023}
2024
2025bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
2026                                               MachineBasicBlock::iterator MI,
2027                                const std::vector<CalleeSavedInfo> &CSI) const {
2028  if (CSI.empty())
2029    return false;
2030
2031  DebugLoc DL = DebugLoc::getUnknownLoc();
2032  if (MI != MBB.end()) DL = MI->getDebugLoc();
2033
2034  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2035
2036  unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
2037  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2038    unsigned Reg = CSI[i].getReg();
2039    BuildMI(MBB, MI, DL, get(Opc), Reg);
2040  }
2041  return true;
2042}
2043
2044static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
2045                                     const SmallVectorImpl<MachineOperand> &MOs,
2046                                     MachineInstr *MI,
2047                                     const TargetInstrInfo &TII) {
2048  // Create the base instruction with the memory operand as the first part.
2049  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2050                                              MI->getDebugLoc(), true);
2051  MachineInstrBuilder MIB(NewMI);
2052  unsigned NumAddrOps = MOs.size();
2053  for (unsigned i = 0; i != NumAddrOps; ++i)
2054    MIB.addOperand(MOs[i]);
2055  if (NumAddrOps < 4)  // FrameIndex only
2056    addOffset(MIB, 0);
2057
2058  // Loop over the rest of the ri operands, converting them over.
2059  unsigned NumOps = MI->getDesc().getNumOperands()-2;
2060  for (unsigned i = 0; i != NumOps; ++i) {
2061    MachineOperand &MO = MI->getOperand(i+2);
2062    MIB.addOperand(MO);
2063  }
2064  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2065    MachineOperand &MO = MI->getOperand(i);
2066    MIB.addOperand(MO);
2067  }
2068  return MIB;
2069}
2070
2071static MachineInstr *FuseInst(MachineFunction &MF,
2072                              unsigned Opcode, unsigned OpNo,
2073                              const SmallVectorImpl<MachineOperand> &MOs,
2074                              MachineInstr *MI, const TargetInstrInfo &TII) {
2075  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2076                                              MI->getDebugLoc(), true);
2077  MachineInstrBuilder MIB(NewMI);
2078
2079  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2080    MachineOperand &MO = MI->getOperand(i);
2081    if (i == OpNo) {
2082      assert(MO.isReg() && "Expected to fold into reg operand!");
2083      unsigned NumAddrOps = MOs.size();
2084      for (unsigned i = 0; i != NumAddrOps; ++i)
2085        MIB.addOperand(MOs[i]);
2086      if (NumAddrOps < 4)  // FrameIndex only
2087        addOffset(MIB, 0);
2088    } else {
2089      MIB.addOperand(MO);
2090    }
2091  }
2092  return MIB;
2093}
2094
2095static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
2096                                const SmallVectorImpl<MachineOperand> &MOs,
2097                                MachineInstr *MI) {
2098  MachineFunction &MF = *MI->getParent()->getParent();
2099  MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
2100
2101  unsigned NumAddrOps = MOs.size();
2102  for (unsigned i = 0; i != NumAddrOps; ++i)
2103    MIB.addOperand(MOs[i]);
2104  if (NumAddrOps < 4)  // FrameIndex only
2105    addOffset(MIB, 0);
2106  return MIB.addImm(0);
2107}
2108
2109MachineInstr*
2110X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2111                                    MachineInstr *MI, unsigned i,
2112                                    const SmallVectorImpl<MachineOperand> &MOs) const{
2113  const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2114  bool isTwoAddrFold = false;
2115  unsigned NumOps = MI->getDesc().getNumOperands();
2116  bool isTwoAddr = NumOps > 1 &&
2117    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2118
2119  MachineInstr *NewMI = NULL;
2120  // Folding a memory location into the two-address part of a two-address
2121  // instruction is different than folding it other places.  It requires
2122  // replacing the *two* registers with the memory location.
2123  if (isTwoAddr && NumOps >= 2 && i < 2 &&
2124      MI->getOperand(0).isReg() &&
2125      MI->getOperand(1).isReg() &&
2126      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2127    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2128    isTwoAddrFold = true;
2129  } else if (i == 0) { // If operand 0
2130    if (MI->getOpcode() == X86::MOV16r0)
2131      NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2132    else if (MI->getOpcode() == X86::MOV32r0)
2133      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2134    else if (MI->getOpcode() == X86::MOV64r0)
2135      NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2136    else if (MI->getOpcode() == X86::MOV8r0)
2137      NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
2138    if (NewMI)
2139      return NewMI;
2140
2141    OpcodeTablePtr = &RegOp2MemOpTable0;
2142  } else if (i == 1) {
2143    OpcodeTablePtr = &RegOp2MemOpTable1;
2144  } else if (i == 2) {
2145    OpcodeTablePtr = &RegOp2MemOpTable2;
2146  }
2147
2148  // If table selected...
2149  if (OpcodeTablePtr) {
2150    // Find the Opcode to fuse
2151    DenseMap<unsigned*, unsigned>::iterator I =
2152      OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2153    if (I != OpcodeTablePtr->end()) {
2154      if (isTwoAddrFold)
2155        NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
2156      else
2157        NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
2158      return NewMI;
2159    }
2160  }
2161
2162  // No fusion
2163  if (PrintFailedFusing)
2164    cerr << "We failed to fuse operand " << i << " in " << *MI;
2165  return NULL;
2166}
2167
2168
2169MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2170                                                  MachineInstr *MI,
2171                                                  const SmallVectorImpl<unsigned> &Ops,
2172                                                  int FrameIndex) const {
2173  // Check switch flag
2174  if (NoFusing) return NULL;
2175
2176  const MachineFrameInfo *MFI = MF.getFrameInfo();
2177  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2178  // FIXME: Move alignment requirement into tables?
2179  if (Alignment < 16) {
2180    switch (MI->getOpcode()) {
2181    default: break;
2182    // Not always safe to fold movsd into these instructions since their load
2183    // folding variants expects the address to be 16 byte aligned.
2184    case X86::FsANDNPDrr:
2185    case X86::FsANDNPSrr:
2186    case X86::FsANDPDrr:
2187    case X86::FsANDPSrr:
2188    case X86::FsORPDrr:
2189    case X86::FsORPSrr:
2190    case X86::FsXORPDrr:
2191    case X86::FsXORPSrr:
2192      return NULL;
2193    }
2194  }
2195
2196  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2197    unsigned NewOpc = 0;
2198    switch (MI->getOpcode()) {
2199    default: return NULL;
2200    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
2201    case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2202    case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2203    case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2204    }
2205    // Change to CMPXXri r, 0 first.
2206    MI->setDesc(get(NewOpc));
2207    MI->getOperand(1).ChangeToImmediate(0);
2208  } else if (Ops.size() != 1)
2209    return NULL;
2210
2211  SmallVector<MachineOperand,4> MOs;
2212  MOs.push_back(MachineOperand::CreateFI(FrameIndex));
2213  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
2214}
2215
2216MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2217                                                  MachineInstr *MI,
2218                                            const SmallVectorImpl<unsigned> &Ops,
2219                                                  MachineInstr *LoadMI) const {
2220  // Check switch flag
2221  if (NoFusing) return NULL;
2222
2223  // Determine the alignment of the load.
2224  unsigned Alignment = 0;
2225  if (LoadMI->hasOneMemOperand())
2226    Alignment = LoadMI->memoperands_begin()->getAlignment();
2227
2228  // FIXME: Move alignment requirement into tables?
2229  if (Alignment < 16) {
2230    switch (MI->getOpcode()) {
2231    default: break;
2232    // Not always safe to fold movsd into these instructions since their load
2233    // folding variants expects the address to be 16 byte aligned.
2234    case X86::FsANDNPDrr:
2235    case X86::FsANDNPSrr:
2236    case X86::FsANDPDrr:
2237    case X86::FsANDPSrr:
2238    case X86::FsORPDrr:
2239    case X86::FsORPSrr:
2240    case X86::FsXORPDrr:
2241    case X86::FsXORPSrr:
2242      return NULL;
2243    }
2244  }
2245
2246  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2247    unsigned NewOpc = 0;
2248    switch (MI->getOpcode()) {
2249    default: return NULL;
2250    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
2251    case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2252    case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2253    case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2254    }
2255    // Change to CMPXXri r, 0 first.
2256    MI->setDesc(get(NewOpc));
2257    MI->getOperand(1).ChangeToImmediate(0);
2258  } else if (Ops.size() != 1)
2259    return NULL;
2260
2261  SmallVector<MachineOperand,X86AddrNumOperands> MOs;
2262  if (LoadMI->getOpcode() == X86::V_SET0 ||
2263      LoadMI->getOpcode() == X86::V_SETALLONES) {
2264    // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
2265    // Create a constant-pool entry and operands to load from it.
2266
2267    // x86-32 PIC requires a PIC base register for constant pools.
2268    unsigned PICBase = 0;
2269    if (TM.getRelocationModel() == Reloc::PIC_ &&
2270        !TM.getSubtarget<X86Subtarget>().is64Bit())
2271      // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2272      // This doesn't work for several reasons.
2273      // 1. GlobalBaseReg may have been spilled.
2274      // 2. It may not be live at MI.
2275      return false;
2276
2277    // Create a v4i32 constant-pool entry.
2278    MachineConstantPool &MCP = *MF.getConstantPool();
2279    const VectorType *Ty = VectorType::get(Type::Int32Ty, 4);
2280    Constant *C = LoadMI->getOpcode() == X86::V_SET0 ?
2281                    ConstantVector::getNullValue(Ty) :
2282                    ConstantVector::getAllOnesValue(Ty);
2283    unsigned CPI = MCP.getConstantPoolIndex(C, 16);
2284
2285    // Create operands to load from the constant pool entry.
2286    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2287    MOs.push_back(MachineOperand::CreateImm(1));
2288    MOs.push_back(MachineOperand::CreateReg(0, false));
2289    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
2290    MOs.push_back(MachineOperand::CreateReg(0, false));
2291  } else {
2292    // Folding a normal load. Just copy the load's address operands.
2293    unsigned NumOps = LoadMI->getDesc().getNumOperands();
2294    for (unsigned i = NumOps - X86AddrNumOperands; i != NumOps; ++i)
2295      MOs.push_back(LoadMI->getOperand(i));
2296  }
2297  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
2298}
2299
2300
2301bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2302                                  const SmallVectorImpl<unsigned> &Ops) const {
2303  // Check switch flag
2304  if (NoFusing) return 0;
2305
2306  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2307    switch (MI->getOpcode()) {
2308    default: return false;
2309    case X86::TEST8rr:
2310    case X86::TEST16rr:
2311    case X86::TEST32rr:
2312    case X86::TEST64rr:
2313      return true;
2314    }
2315  }
2316
2317  if (Ops.size() != 1)
2318    return false;
2319
2320  unsigned OpNum = Ops[0];
2321  unsigned Opc = MI->getOpcode();
2322  unsigned NumOps = MI->getDesc().getNumOperands();
2323  bool isTwoAddr = NumOps > 1 &&
2324    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2325
2326  // Folding a memory location into the two-address part of a two-address
2327  // instruction is different than folding it other places.  It requires
2328  // replacing the *two* registers with the memory location.
2329  const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2330  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2331    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2332  } else if (OpNum == 0) { // If operand 0
2333    switch (Opc) {
2334    case X86::MOV16r0:
2335    case X86::MOV32r0:
2336    case X86::MOV64r0:
2337    case X86::MOV8r0:
2338      return true;
2339    default: break;
2340    }
2341    OpcodeTablePtr = &RegOp2MemOpTable0;
2342  } else if (OpNum == 1) {
2343    OpcodeTablePtr = &RegOp2MemOpTable1;
2344  } else if (OpNum == 2) {
2345    OpcodeTablePtr = &RegOp2MemOpTable2;
2346  }
2347
2348  if (OpcodeTablePtr) {
2349    // Find the Opcode to fuse
2350    DenseMap<unsigned*, unsigned>::iterator I =
2351      OpcodeTablePtr->find((unsigned*)Opc);
2352    if (I != OpcodeTablePtr->end())
2353      return true;
2354  }
2355  return false;
2356}
2357
2358bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2359                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2360                                SmallVectorImpl<MachineInstr*> &NewMIs) const {
2361  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2362    MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2363  if (I == MemOp2RegOpTable.end())
2364    return false;
2365  DebugLoc dl = MI->getDebugLoc();
2366  unsigned Opc = I->second.first;
2367  unsigned Index = I->second.second & 0xf;
2368  bool FoldedLoad = I->second.second & (1 << 4);
2369  bool FoldedStore = I->second.second & (1 << 5);
2370  if (UnfoldLoad && !FoldedLoad)
2371    return false;
2372  UnfoldLoad &= FoldedLoad;
2373  if (UnfoldStore && !FoldedStore)
2374    return false;
2375  UnfoldStore &= FoldedStore;
2376
2377  const TargetInstrDesc &TID = get(Opc);
2378  const TargetOperandInfo &TOI = TID.OpInfo[Index];
2379  const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
2380    ? RI.getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2381  SmallVector<MachineOperand, X86AddrNumOperands> AddrOps;
2382  SmallVector<MachineOperand,2> BeforeOps;
2383  SmallVector<MachineOperand,2> AfterOps;
2384  SmallVector<MachineOperand,4> ImpOps;
2385  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2386    MachineOperand &Op = MI->getOperand(i);
2387    if (i >= Index && i < Index + X86AddrNumOperands)
2388      AddrOps.push_back(Op);
2389    else if (Op.isReg() && Op.isImplicit())
2390      ImpOps.push_back(Op);
2391    else if (i < Index)
2392      BeforeOps.push_back(Op);
2393    else if (i > Index)
2394      AfterOps.push_back(Op);
2395  }
2396
2397  // Emit the load instruction.
2398  if (UnfoldLoad) {
2399    loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2400    if (UnfoldStore) {
2401      // Address operands cannot be marked isKill.
2402      for (unsigned i = 1; i != 1 + X86AddrNumOperands; ++i) {
2403        MachineOperand &MO = NewMIs[0]->getOperand(i);
2404        if (MO.isReg())
2405          MO.setIsKill(false);
2406      }
2407    }
2408  }
2409
2410  // Emit the data processing instruction.
2411  MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
2412  MachineInstrBuilder MIB(DataMI);
2413
2414  if (FoldedStore)
2415    MIB.addReg(Reg, RegState::Define);
2416  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2417    MIB.addOperand(BeforeOps[i]);
2418  if (FoldedLoad)
2419    MIB.addReg(Reg);
2420  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2421    MIB.addOperand(AfterOps[i]);
2422  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2423    MachineOperand &MO = ImpOps[i];
2424    MIB.addReg(MO.getReg(),
2425               getDefRegState(MO.isDef()) |
2426               RegState::Implicit |
2427               getKillRegState(MO.isKill()) |
2428               getDeadRegState(MO.isDead()));
2429  }
2430  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2431  unsigned NewOpc = 0;
2432  switch (DataMI->getOpcode()) {
2433  default: break;
2434  case X86::CMP64ri32:
2435  case X86::CMP32ri:
2436  case X86::CMP16ri:
2437  case X86::CMP8ri: {
2438    MachineOperand &MO0 = DataMI->getOperand(0);
2439    MachineOperand &MO1 = DataMI->getOperand(1);
2440    if (MO1.getImm() == 0) {
2441      switch (DataMI->getOpcode()) {
2442      default: break;
2443      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2444      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
2445      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
2446      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
2447      }
2448      DataMI->setDesc(get(NewOpc));
2449      MO1.ChangeToRegister(MO0.getReg(), false);
2450    }
2451  }
2452  }
2453  NewMIs.push_back(DataMI);
2454
2455  // Emit the store instruction.
2456  if (UnfoldStore) {
2457    const TargetOperandInfo &DstTOI = TID.OpInfo[0];
2458    const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
2459      ? RI.getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2460    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2461  }
2462
2463  return true;
2464}
2465
2466bool
2467X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2468                                  SmallVectorImpl<SDNode*> &NewNodes) const {
2469  if (!N->isMachineOpcode())
2470    return false;
2471
2472  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2473    MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
2474  if (I == MemOp2RegOpTable.end())
2475    return false;
2476  unsigned Opc = I->second.first;
2477  unsigned Index = I->second.second & 0xf;
2478  bool FoldedLoad = I->second.second & (1 << 4);
2479  bool FoldedStore = I->second.second & (1 << 5);
2480  const TargetInstrDesc &TID = get(Opc);
2481  const TargetOperandInfo &TOI = TID.OpInfo[Index];
2482  const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
2483    ? RI.getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2484  unsigned NumDefs = TID.NumDefs;
2485  std::vector<SDValue> AddrOps;
2486  std::vector<SDValue> BeforeOps;
2487  std::vector<SDValue> AfterOps;
2488  DebugLoc dl = N->getDebugLoc();
2489  unsigned NumOps = N->getNumOperands();
2490  for (unsigned i = 0; i != NumOps-1; ++i) {
2491    SDValue Op = N->getOperand(i);
2492    if (i >= Index-NumDefs && i < Index-NumDefs + X86AddrNumOperands)
2493      AddrOps.push_back(Op);
2494    else if (i < Index-NumDefs)
2495      BeforeOps.push_back(Op);
2496    else if (i > Index-NumDefs)
2497      AfterOps.push_back(Op);
2498  }
2499  SDValue Chain = N->getOperand(NumOps-1);
2500  AddrOps.push_back(Chain);
2501
2502  // Emit the load instruction.
2503  SDNode *Load = 0;
2504  const MachineFunction &MF = DAG.getMachineFunction();
2505  if (FoldedLoad) {
2506    MVT VT = *RC->vt_begin();
2507    bool isAligned = (RI.getStackAlignment() >= 16) ||
2508      RI.needsStackRealignment(MF);
2509    Load = DAG.getTargetNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
2510                             VT, MVT::Other, &AddrOps[0], AddrOps.size());
2511    NewNodes.push_back(Load);
2512  }
2513
2514  // Emit the data processing instruction.
2515  std::vector<MVT> VTs;
2516  const TargetRegisterClass *DstRC = 0;
2517  if (TID.getNumDefs() > 0) {
2518    const TargetOperandInfo &DstTOI = TID.OpInfo[0];
2519    DstRC = DstTOI.isLookupPtrRegClass()
2520      ? RI.getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2521    VTs.push_back(*DstRC->vt_begin());
2522  }
2523  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2524    MVT VT = N->getValueType(i);
2525    if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
2526      VTs.push_back(VT);
2527  }
2528  if (Load)
2529    BeforeOps.push_back(SDValue(Load, 0));
2530  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2531  SDNode *NewNode= DAG.getTargetNode(Opc, dl, VTs, &BeforeOps[0],
2532                                     BeforeOps.size());
2533  NewNodes.push_back(NewNode);
2534
2535  // Emit the store instruction.
2536  if (FoldedStore) {
2537    AddrOps.pop_back();
2538    AddrOps.push_back(SDValue(NewNode, 0));
2539    AddrOps.push_back(Chain);
2540    bool isAligned = (RI.getStackAlignment() >= 16) ||
2541      RI.needsStackRealignment(MF);
2542    SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(0, DstRC,
2543                                                        isAligned, TM),
2544                                      dl, MVT::Other,
2545                                      &AddrOps[0], AddrOps.size());
2546    NewNodes.push_back(Store);
2547  }
2548
2549  return true;
2550}
2551
2552unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2553                                      bool UnfoldLoad, bool UnfoldStore) const {
2554  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2555    MemOp2RegOpTable.find((unsigned*)Opc);
2556  if (I == MemOp2RegOpTable.end())
2557    return 0;
2558  bool FoldedLoad = I->second.second & (1 << 4);
2559  bool FoldedStore = I->second.second & (1 << 5);
2560  if (UnfoldLoad && !FoldedLoad)
2561    return 0;
2562  if (UnfoldStore && !FoldedStore)
2563    return 0;
2564  return I->second.first;
2565}
2566
2567bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
2568  if (MBB.empty()) return false;
2569
2570  switch (MBB.back().getOpcode()) {
2571  case X86::TCRETURNri:
2572  case X86::TCRETURNdi:
2573  case X86::RET:     // Return.
2574  case X86::RETI:
2575  case X86::TAILJMPd:
2576  case X86::TAILJMPr:
2577  case X86::TAILJMPm:
2578  case X86::JMP:     // Uncond branch.
2579  case X86::JMP32r:  // Indirect branch.
2580  case X86::JMP64r:  // Indirect branch (64-bit).
2581  case X86::JMP32m:  // Indirect branch through mem.
2582  case X86::JMP64m:  // Indirect branch through mem (64-bit).
2583    return true;
2584  default: return false;
2585  }
2586}
2587
2588bool X86InstrInfo::
2589ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
2590  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2591  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
2592  if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2593    return true;
2594  Cond[0].setImm(GetOppositeBranchCondition(CC));
2595  return false;
2596}
2597
2598bool X86InstrInfo::
2599isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
2600  // FIXME: Return false for x87 stack register classes for now. We can't
2601  // allow any loads of these registers before FpGet_ST0_80.
2602  return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2603           RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
2604}
2605
2606unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2607  switch (Desc->TSFlags & X86II::ImmMask) {
2608  case X86II::Imm8:   return 1;
2609  case X86II::Imm16:  return 2;
2610  case X86II::Imm32:  return 4;
2611  case X86II::Imm64:  return 8;
2612  default: assert(0 && "Immediate size not set!");
2613    return 0;
2614  }
2615}
2616
2617/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2618/// e.g. r8, xmm8, etc.
2619bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
2620  if (!MO.isReg()) return false;
2621  switch (MO.getReg()) {
2622  default: break;
2623  case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
2624  case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
2625  case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
2626  case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
2627  case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
2628  case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
2629  case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
2630  case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
2631  case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
2632  case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2633    return true;
2634  }
2635  return false;
2636}
2637
2638
2639/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2640/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2641/// size, and 3) use of X86-64 extended registers.
2642unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2643  unsigned REX = 0;
2644  const TargetInstrDesc &Desc = MI.getDesc();
2645
2646  // Pseudo instructions do not need REX prefix byte.
2647  if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2648    return 0;
2649  if (Desc.TSFlags & X86II::REX_W)
2650    REX |= 1 << 3;
2651
2652  unsigned NumOps = Desc.getNumOperands();
2653  if (NumOps) {
2654    bool isTwoAddr = NumOps > 1 &&
2655      Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2656
2657    // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2658    unsigned i = isTwoAddr ? 1 : 0;
2659    for (unsigned e = NumOps; i != e; ++i) {
2660      const MachineOperand& MO = MI.getOperand(i);
2661      if (MO.isReg()) {
2662        unsigned Reg = MO.getReg();
2663        if (isX86_64NonExtLowByteReg(Reg))
2664          REX |= 0x40;
2665      }
2666    }
2667
2668    switch (Desc.TSFlags & X86II::FormMask) {
2669    case X86II::MRMInitReg:
2670      if (isX86_64ExtendedReg(MI.getOperand(0)))
2671        REX |= (1 << 0) | (1 << 2);
2672      break;
2673    case X86II::MRMSrcReg: {
2674      if (isX86_64ExtendedReg(MI.getOperand(0)))
2675        REX |= 1 << 2;
2676      i = isTwoAddr ? 2 : 1;
2677      for (unsigned e = NumOps; i != e; ++i) {
2678        const MachineOperand& MO = MI.getOperand(i);
2679        if (isX86_64ExtendedReg(MO))
2680          REX |= 1 << 0;
2681      }
2682      break;
2683    }
2684    case X86II::MRMSrcMem: {
2685      if (isX86_64ExtendedReg(MI.getOperand(0)))
2686        REX |= 1 << 2;
2687      unsigned Bit = 0;
2688      i = isTwoAddr ? 2 : 1;
2689      for (; i != NumOps; ++i) {
2690        const MachineOperand& MO = MI.getOperand(i);
2691        if (MO.isReg()) {
2692          if (isX86_64ExtendedReg(MO))
2693            REX |= 1 << Bit;
2694          Bit++;
2695        }
2696      }
2697      break;
2698    }
2699    case X86II::MRM0m: case X86II::MRM1m:
2700    case X86II::MRM2m: case X86II::MRM3m:
2701    case X86II::MRM4m: case X86II::MRM5m:
2702    case X86II::MRM6m: case X86II::MRM7m:
2703    case X86II::MRMDestMem: {
2704      unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
2705      i = isTwoAddr ? 1 : 0;
2706      if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2707        REX |= 1 << 2;
2708      unsigned Bit = 0;
2709      for (; i != e; ++i) {
2710        const MachineOperand& MO = MI.getOperand(i);
2711        if (MO.isReg()) {
2712          if (isX86_64ExtendedReg(MO))
2713            REX |= 1 << Bit;
2714          Bit++;
2715        }
2716      }
2717      break;
2718    }
2719    default: {
2720      if (isX86_64ExtendedReg(MI.getOperand(0)))
2721        REX |= 1 << 0;
2722      i = isTwoAddr ? 2 : 1;
2723      for (unsigned e = NumOps; i != e; ++i) {
2724        const MachineOperand& MO = MI.getOperand(i);
2725        if (isX86_64ExtendedReg(MO))
2726          REX |= 1 << 2;
2727      }
2728      break;
2729    }
2730    }
2731  }
2732  return REX;
2733}
2734
2735/// sizePCRelativeBlockAddress - This method returns the size of a PC
2736/// relative block address instruction
2737///
2738static unsigned sizePCRelativeBlockAddress() {
2739  return 4;
2740}
2741
2742/// sizeGlobalAddress - Give the size of the emission of this global address
2743///
2744static unsigned sizeGlobalAddress(bool dword) {
2745  return dword ? 8 : 4;
2746}
2747
2748/// sizeConstPoolAddress - Give the size of the emission of this constant
2749/// pool address
2750///
2751static unsigned sizeConstPoolAddress(bool dword) {
2752  return dword ? 8 : 4;
2753}
2754
2755/// sizeExternalSymbolAddress - Give the size of the emission of this external
2756/// symbol
2757///
2758static unsigned sizeExternalSymbolAddress(bool dword) {
2759  return dword ? 8 : 4;
2760}
2761
2762/// sizeJumpTableAddress - Give the size of the emission of this jump
2763/// table address
2764///
2765static unsigned sizeJumpTableAddress(bool dword) {
2766  return dword ? 8 : 4;
2767}
2768
2769static unsigned sizeConstant(unsigned Size) {
2770  return Size;
2771}
2772
2773static unsigned sizeRegModRMByte(){
2774  return 1;
2775}
2776
2777static unsigned sizeSIBByte(){
2778  return 1;
2779}
2780
2781static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2782  unsigned FinalSize = 0;
2783  // If this is a simple integer displacement that doesn't require a relocation.
2784  if (!RelocOp) {
2785    FinalSize += sizeConstant(4);
2786    return FinalSize;
2787  }
2788
2789  // Otherwise, this is something that requires a relocation.
2790  if (RelocOp->isGlobal()) {
2791    FinalSize += sizeGlobalAddress(false);
2792  } else if (RelocOp->isCPI()) {
2793    FinalSize += sizeConstPoolAddress(false);
2794  } else if (RelocOp->isJTI()) {
2795    FinalSize += sizeJumpTableAddress(false);
2796  } else {
2797    assert(0 && "Unknown value to relocate!");
2798  }
2799  return FinalSize;
2800}
2801
2802static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2803                                    bool IsPIC, bool Is64BitMode) {
2804  const MachineOperand &Op3 = MI.getOperand(Op+3);
2805  int DispVal = 0;
2806  const MachineOperand *DispForReloc = 0;
2807  unsigned FinalSize = 0;
2808
2809  // Figure out what sort of displacement we have to handle here.
2810  if (Op3.isGlobal()) {
2811    DispForReloc = &Op3;
2812  } else if (Op3.isCPI()) {
2813    if (Is64BitMode || IsPIC) {
2814      DispForReloc = &Op3;
2815    } else {
2816      DispVal = 1;
2817    }
2818  } else if (Op3.isJTI()) {
2819    if (Is64BitMode || IsPIC) {
2820      DispForReloc = &Op3;
2821    } else {
2822      DispVal = 1;
2823    }
2824  } else {
2825    DispVal = 1;
2826  }
2827
2828  const MachineOperand &Base     = MI.getOperand(Op);
2829  const MachineOperand &IndexReg = MI.getOperand(Op+2);
2830
2831  unsigned BaseReg = Base.getReg();
2832
2833  // Is a SIB byte needed?
2834  if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
2835      IndexReg.getReg() == 0 &&
2836      (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2837    if (BaseReg == 0) {  // Just a displacement?
2838      // Emit special case [disp32] encoding
2839      ++FinalSize;
2840      FinalSize += getDisplacementFieldSize(DispForReloc);
2841    } else {
2842      unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2843      if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2844        // Emit simple indirect register encoding... [EAX] f.e.
2845        ++FinalSize;
2846      // Be pessimistic and assume it's a disp32, not a disp8
2847      } else {
2848        // Emit the most general non-SIB encoding: [REG+disp32]
2849        ++FinalSize;
2850        FinalSize += getDisplacementFieldSize(DispForReloc);
2851      }
2852    }
2853
2854  } else {  // We need a SIB byte, so start by outputting the ModR/M byte first
2855    assert(IndexReg.getReg() != X86::ESP &&
2856           IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2857
2858    bool ForceDisp32 = false;
2859    if (BaseReg == 0 || DispForReloc) {
2860      // Emit the normal disp32 encoding.
2861      ++FinalSize;
2862      ForceDisp32 = true;
2863    } else {
2864      ++FinalSize;
2865    }
2866
2867    FinalSize += sizeSIBByte();
2868
2869    // Do we need to output a displacement?
2870    if (DispVal != 0 || ForceDisp32) {
2871      FinalSize += getDisplacementFieldSize(DispForReloc);
2872    }
2873  }
2874  return FinalSize;
2875}
2876
2877
2878static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2879                                    const TargetInstrDesc *Desc,
2880                                    bool IsPIC, bool Is64BitMode) {
2881
2882  unsigned Opcode = Desc->Opcode;
2883  unsigned FinalSize = 0;
2884
2885  // Emit the lock opcode prefix as needed.
2886  if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2887
2888  // Emit segment override opcode prefix as needed.
2889  switch (Desc->TSFlags & X86II::SegOvrMask) {
2890  case X86II::FS:
2891  case X86II::GS:
2892   ++FinalSize;
2893   break;
2894  default: assert(0 && "Invalid segment!");
2895  case 0: break;  // No segment override!
2896  }
2897
2898  // Emit the repeat opcode prefix as needed.
2899  if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2900
2901  // Emit the operand size opcode prefix as needed.
2902  if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2903
2904  // Emit the address size opcode prefix as needed.
2905  if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2906
2907  bool Need0FPrefix = false;
2908  switch (Desc->TSFlags & X86II::Op0Mask) {
2909  case X86II::TB:  // Two-byte opcode prefix
2910  case X86II::T8:  // 0F 38
2911  case X86II::TA:  // 0F 3A
2912    Need0FPrefix = true;
2913    break;
2914  case X86II::REP: break; // already handled.
2915  case X86II::XS:   // F3 0F
2916    ++FinalSize;
2917    Need0FPrefix = true;
2918    break;
2919  case X86II::XD:   // F2 0F
2920    ++FinalSize;
2921    Need0FPrefix = true;
2922    break;
2923  case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2924  case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2925    ++FinalSize;
2926    break; // Two-byte opcode prefix
2927  default: assert(0 && "Invalid prefix!");
2928  case 0: break;  // No prefix!
2929  }
2930
2931  if (Is64BitMode) {
2932    // REX prefix
2933    unsigned REX = X86InstrInfo::determineREX(MI);
2934    if (REX)
2935      ++FinalSize;
2936  }
2937
2938  // 0x0F escape code must be emitted just before the opcode.
2939  if (Need0FPrefix)
2940    ++FinalSize;
2941
2942  switch (Desc->TSFlags & X86II::Op0Mask) {
2943  case X86II::T8:  // 0F 38
2944    ++FinalSize;
2945    break;
2946  case X86II::TA:  // 0F 3A
2947    ++FinalSize;
2948    break;
2949  }
2950
2951  // If this is a two-address instruction, skip one of the register operands.
2952  unsigned NumOps = Desc->getNumOperands();
2953  unsigned CurOp = 0;
2954  if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2955    CurOp++;
2956  else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
2957    // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
2958    --NumOps;
2959
2960  switch (Desc->TSFlags & X86II::FormMask) {
2961  default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2962  case X86II::Pseudo:
2963    // Remember the current PC offset, this is the PIC relocation
2964    // base address.
2965    switch (Opcode) {
2966    default:
2967      break;
2968    case TargetInstrInfo::INLINEASM: {
2969      const MachineFunction *MF = MI.getParent()->getParent();
2970      const char *AsmStr = MI.getOperand(0).getSymbolName();
2971      const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2972      FinalSize += AI->getInlineAsmLength(AsmStr);
2973      break;
2974    }
2975    case TargetInstrInfo::DBG_LABEL:
2976    case TargetInstrInfo::EH_LABEL:
2977      break;
2978    case TargetInstrInfo::IMPLICIT_DEF:
2979    case TargetInstrInfo::DECLARE:
2980    case X86::DWARF_LOC:
2981    case X86::FP_REG_KILL:
2982      break;
2983    case X86::MOVPC32r: {
2984      // This emits the "call" portion of this pseudo instruction.
2985      ++FinalSize;
2986      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2987      break;
2988    }
2989    }
2990    CurOp = NumOps;
2991    break;
2992  case X86II::RawFrm:
2993    ++FinalSize;
2994
2995    if (CurOp != NumOps) {
2996      const MachineOperand &MO = MI.getOperand(CurOp++);
2997      if (MO.isMBB()) {
2998        FinalSize += sizePCRelativeBlockAddress();
2999      } else if (MO.isGlobal()) {
3000        FinalSize += sizeGlobalAddress(false);
3001      } else if (MO.isSymbol()) {
3002        FinalSize += sizeExternalSymbolAddress(false);
3003      } else if (MO.isImm()) {
3004        FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3005      } else {
3006        assert(0 && "Unknown RawFrm operand!");
3007      }
3008    }
3009    break;
3010
3011  case X86II::AddRegFrm:
3012    ++FinalSize;
3013    ++CurOp;
3014
3015    if (CurOp != NumOps) {
3016      const MachineOperand &MO1 = MI.getOperand(CurOp++);
3017      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
3018      if (MO1.isImm())
3019        FinalSize += sizeConstant(Size);
3020      else {
3021        bool dword = false;
3022        if (Opcode == X86::MOV64ri)
3023          dword = true;
3024        if (MO1.isGlobal()) {
3025          FinalSize += sizeGlobalAddress(dword);
3026        } else if (MO1.isSymbol())
3027          FinalSize += sizeExternalSymbolAddress(dword);
3028        else if (MO1.isCPI())
3029          FinalSize += sizeConstPoolAddress(dword);
3030        else if (MO1.isJTI())
3031          FinalSize += sizeJumpTableAddress(dword);
3032      }
3033    }
3034    break;
3035
3036  case X86II::MRMDestReg: {
3037    ++FinalSize;
3038    FinalSize += sizeRegModRMByte();
3039    CurOp += 2;
3040    if (CurOp != NumOps) {
3041      ++CurOp;
3042      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3043    }
3044    break;
3045  }
3046  case X86II::MRMDestMem: {
3047    ++FinalSize;
3048    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3049    CurOp +=  X86AddrNumOperands + 1;
3050    if (CurOp != NumOps) {
3051      ++CurOp;
3052      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3053    }
3054    break;
3055  }
3056
3057  case X86II::MRMSrcReg:
3058    ++FinalSize;
3059    FinalSize += sizeRegModRMByte();
3060    CurOp += 2;
3061    if (CurOp != NumOps) {
3062      ++CurOp;
3063      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3064    }
3065    break;
3066
3067  case X86II::MRMSrcMem: {
3068    int AddrOperands;
3069    if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
3070        Opcode == X86::LEA16r || Opcode == X86::LEA32r)
3071      AddrOperands = X86AddrNumOperands - 1; // No segment register
3072    else
3073      AddrOperands = X86AddrNumOperands;
3074
3075    ++FinalSize;
3076    FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
3077    CurOp += AddrOperands + 1;
3078    if (CurOp != NumOps) {
3079      ++CurOp;
3080      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3081    }
3082    break;
3083  }
3084
3085  case X86II::MRM0r: case X86II::MRM1r:
3086  case X86II::MRM2r: case X86II::MRM3r:
3087  case X86II::MRM4r: case X86II::MRM5r:
3088  case X86II::MRM6r: case X86II::MRM7r:
3089    ++FinalSize;
3090    if (Desc->getOpcode() == X86::LFENCE ||
3091        Desc->getOpcode() == X86::MFENCE) {
3092      // Special handling of lfence and mfence;
3093      FinalSize += sizeRegModRMByte();
3094    } else if (Desc->getOpcode() == X86::MONITOR ||
3095               Desc->getOpcode() == X86::MWAIT) {
3096      // Special handling of monitor and mwait.
3097      FinalSize += sizeRegModRMByte() + 1; // +1 for the opcode.
3098    } else {
3099      ++CurOp;
3100      FinalSize += sizeRegModRMByte();
3101    }
3102
3103    if (CurOp != NumOps) {
3104      const MachineOperand &MO1 = MI.getOperand(CurOp++);
3105      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
3106      if (MO1.isImm())
3107        FinalSize += sizeConstant(Size);
3108      else {
3109        bool dword = false;
3110        if (Opcode == X86::MOV64ri32)
3111          dword = true;
3112        if (MO1.isGlobal()) {
3113          FinalSize += sizeGlobalAddress(dword);
3114        } else if (MO1.isSymbol())
3115          FinalSize += sizeExternalSymbolAddress(dword);
3116        else if (MO1.isCPI())
3117          FinalSize += sizeConstPoolAddress(dword);
3118        else if (MO1.isJTI())
3119          FinalSize += sizeJumpTableAddress(dword);
3120      }
3121    }
3122    break;
3123
3124  case X86II::MRM0m: case X86II::MRM1m:
3125  case X86II::MRM2m: case X86II::MRM3m:
3126  case X86II::MRM4m: case X86II::MRM5m:
3127  case X86II::MRM6m: case X86II::MRM7m: {
3128
3129    ++FinalSize;
3130    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3131    CurOp += X86AddrNumOperands;
3132
3133    if (CurOp != NumOps) {
3134      const MachineOperand &MO = MI.getOperand(CurOp++);
3135      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
3136      if (MO.isImm())
3137        FinalSize += sizeConstant(Size);
3138      else {
3139        bool dword = false;
3140        if (Opcode == X86::MOV64mi32)
3141          dword = true;
3142        if (MO.isGlobal()) {
3143          FinalSize += sizeGlobalAddress(dword);
3144        } else if (MO.isSymbol())
3145          FinalSize += sizeExternalSymbolAddress(dword);
3146        else if (MO.isCPI())
3147          FinalSize += sizeConstPoolAddress(dword);
3148        else if (MO.isJTI())
3149          FinalSize += sizeJumpTableAddress(dword);
3150      }
3151    }
3152    break;
3153  }
3154
3155  case X86II::MRMInitReg:
3156    ++FinalSize;
3157    // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3158    FinalSize += sizeRegModRMByte();
3159    ++CurOp;
3160    break;
3161  }
3162
3163  if (!Desc->isVariadic() && CurOp != NumOps) {
3164    cerr << "Cannot determine size: ";
3165    MI.dump();
3166    cerr << '\n';
3167    abort();
3168  }
3169
3170
3171  return FinalSize;
3172}
3173
3174
3175unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
3176  const TargetInstrDesc &Desc = MI->getDesc();
3177  bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
3178  bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
3179  unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
3180  if (Desc.getOpcode() == X86::MOVPC32r) {
3181    Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
3182  }
3183  return Size;
3184}
3185
3186/// getGlobalBaseReg - Return a virtual register initialized with the
3187/// the global base register value. Output instructions required to
3188/// initialize the register in the function entry block, if necessary.
3189///
3190unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3191  assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3192         "X86-64 PIC uses RIP relative addressing");
3193
3194  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3195  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3196  if (GlobalBaseReg != 0)
3197    return GlobalBaseReg;
3198
3199  // Insert the set of GlobalBaseReg into the first MBB of the function
3200  MachineBasicBlock &FirstMBB = MF->front();
3201  MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3202  DebugLoc DL = DebugLoc::getUnknownLoc();
3203  if (MBBI != FirstMBB.end()) DL = MBBI->getDebugLoc();
3204  MachineRegisterInfo &RegInfo = MF->getRegInfo();
3205  unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3206
3207  const TargetInstrInfo *TII = TM.getInstrInfo();
3208  // Operand of MovePCtoStack is completely ignored by asm printer. It's
3209  // only used in JIT code emission as displacement to pc.
3210  BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC)
3211    .addImm(0);
3212
3213  // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3214  // not to pc, but to _GLOBAL_ADDRESS_TABLE_ external
3215  if (TM.getRelocationModel() == Reloc::PIC_ &&
3216      TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
3217    GlobalBaseReg =
3218      RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3219    BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
3220      .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
3221  } else {
3222    GlobalBaseReg = PC;
3223  }
3224
3225  X86FI->setGlobalBaseReg(GlobalBaseReg);
3226  return GlobalBaseReg;
3227}
3228