1234353Sdim//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2193323Sed//
3353358Sdim// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4353358Sdim// See https://llvm.org/LICENSE.txt for license information.
5353358Sdim// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6193323Sed//
7193323Sed//===----------------------------------------------------------------------===//
8193323Sed//
9193323Sed// This file contains the X86 implementation of the TargetInstrInfo class.
10193323Sed//
11193323Sed//===----------------------------------------------------------------------===//
12193323Sed
13193323Sed#include "X86InstrInfo.h"
14193323Sed#include "X86.h"
15193323Sed#include "X86InstrBuilder.h"
16341825Sdim#include "X86InstrFoldTables.h"
17193323Sed#include "X86MachineFunctionInfo.h"
18193323Sed#include "X86Subtarget.h"
19193323Sed#include "X86TargetMachine.h"
20193323Sed#include "llvm/ADT/STLExtras.h"
21341825Sdim#include "llvm/ADT/Sequence.h"
22309124Sdim#include "llvm/CodeGen/LivePhysRegs.h"
23249423Sdim#include "llvm/CodeGen/LiveVariables.h"
24193323Sed#include "llvm/CodeGen/MachineConstantPool.h"
25239462Sdim#include "llvm/CodeGen/MachineDominators.h"
26193323Sed#include "llvm/CodeGen/MachineFrameInfo.h"
27193323Sed#include "llvm/CodeGen/MachineInstrBuilder.h"
28309124Sdim#include "llvm/CodeGen/MachineModuleInfo.h"
29193323Sed#include "llvm/CodeGen/MachineRegisterInfo.h"
30261991Sdim#include "llvm/CodeGen/StackMaps.h"
31249423Sdim#include "llvm/IR/DerivedTypes.h"
32280031Sdim#include "llvm/IR/Function.h"
33360784Sdim#include "llvm/IR/DebugInfoMetadata.h"
34234353Sdim#include "llvm/MC/MCAsmInfo.h"
35276479Sdim#include "llvm/MC/MCExpr.h"
36207618Srdivacky#include "llvm/MC/MCInst.h"
37193323Sed#include "llvm/Support/CommandLine.h"
38202375Srdivacky#include "llvm/Support/Debug.h"
39198090Srdivacky#include "llvm/Support/ErrorHandling.h"
40198090Srdivacky#include "llvm/Support/raw_ostream.h"
41193323Sed#include "llvm/Target/TargetOptions.h"
42199481Srdivacky
43276479Sdimusing namespace llvm;
44276479Sdim
45276479Sdim#define DEBUG_TYPE "x86-instr-info"
46276479Sdim
47261991Sdim#define GET_INSTRINFO_CTOR_DTOR
48224145Sdim#include "X86GenInstrInfo.inc"
49224145Sdim
50198090Srdivackystatic cl::opt<bool>
51327952Sdim    NoFusing("disable-spill-fusing",
52327952Sdim             cl::desc("Disable fusing of spill code into instructions"),
53327952Sdim             cl::Hidden);
54198090Srdivackystatic cl::opt<bool>
55198090SrdivackyPrintFailedFusing("print-failed-fuse-candidates",
56198090Srdivacky                  cl::desc("Print instructions that the allocator wants to"
57198090Srdivacky                           " fuse, but the X86 backend currently can't"),
58198090Srdivacky                  cl::Hidden);
59198090Srdivackystatic cl::opt<bool>
60198090SrdivackyReMatPICStubLoad("remat-pic-stub-load",
61198090Srdivacky                 cl::desc("Re-materialize load from stub in PIC mode"),
62198090Srdivacky                 cl::init(false), cl::Hidden);
63309124Sdimstatic cl::opt<unsigned>
64309124SdimPartialRegUpdateClearance("partial-reg-update-clearance",
65309124Sdim                          cl::desc("Clearance between two register writes "
66309124Sdim                                   "for inserting XOR to avoid partial "
67309124Sdim                                   "register update"),
68309124Sdim                          cl::init(64), cl::Hidden);
69309124Sdimstatic cl::opt<unsigned>
70309124SdimUndefRegClearance("undef-reg-clearance",
71309124Sdim                  cl::desc("How many idle instructions we would like before "
72309124Sdim                           "certain undef register reads"),
73314564Sdim                  cl::init(128), cl::Hidden);
74193323Sed
75226633Sdim
76261991Sdim// Pin the vtable to this file.
77261991Sdimvoid X86InstrInfo::anchor() {}
78261991Sdim
79276479SdimX86InstrInfo::X86InstrInfo(X86Subtarget &STI)
80296417Sdim    : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
81296417Sdim                                               : X86::ADJCALLSTACKDOWN32),
82296417Sdim                      (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
83296417Sdim                                               : X86::ADJCALLSTACKUP32),
84309124Sdim                      X86::CATCHRET,
85309124Sdim                      (STI.is64Bit() ? X86::RETQ : X86::RETL)),
86288943Sdim      Subtarget(STI), RI(STI.getTargetTriple()) {
87226633Sdim}
88218893Sdim
89202375Srdivackybool
90202375SrdivackyX86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
91202375Srdivacky                                    unsigned &SrcReg, unsigned &DstReg,
92202375Srdivacky                                    unsigned &SubIdx) const {
93202375Srdivacky  switch (MI.getOpcode()) {
94202375Srdivacky  default: break;
95202375Srdivacky  case X86::MOVSX16rr8:
96202375Srdivacky  case X86::MOVZX16rr8:
97202375Srdivacky  case X86::MOVSX32rr8:
98202375Srdivacky  case X86::MOVZX32rr8:
99202375Srdivacky  case X86::MOVSX64rr8:
100276479Sdim    if (!Subtarget.is64Bit())
101202375Srdivacky      // It's not always legal to reference the low 8-bit of the larger
102202375Srdivacky      // register in 32-bit mode.
103202375Srdivacky      return false;
104321369Sdim    LLVM_FALLTHROUGH;
105202375Srdivacky  case X86::MOVSX32rr16:
106202375Srdivacky  case X86::MOVZX32rr16:
107202375Srdivacky  case X86::MOVSX64rr16:
108261991Sdim  case X86::MOVSX64rr32: {
109202375Srdivacky    if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
110202375Srdivacky      // Be conservative.
111202375Srdivacky      return false;
112202375Srdivacky    SrcReg = MI.getOperand(1).getReg();
113202375Srdivacky    DstReg = MI.getOperand(0).getReg();
114202375Srdivacky    switch (MI.getOpcode()) {
115243830Sdim    default: llvm_unreachable("Unreachable!");
116202375Srdivacky    case X86::MOVSX16rr8:
117202375Srdivacky    case X86::MOVZX16rr8:
118202375Srdivacky    case X86::MOVSX32rr8:
119202375Srdivacky    case X86::MOVZX32rr8:
120202375Srdivacky    case X86::MOVSX64rr8:
121208599Srdivacky      SubIdx = X86::sub_8bit;
122202375Srdivacky      break;
123202375Srdivacky    case X86::MOVSX32rr16:
124202375Srdivacky    case X86::MOVZX32rr16:
125202375Srdivacky    case X86::MOVSX64rr16:
126208599Srdivacky      SubIdx = X86::sub_16bit;
127202375Srdivacky      break;
128202375Srdivacky    case X86::MOVSX64rr32:
129208599Srdivacky      SubIdx = X86::sub_32bit;
130202375Srdivacky      break;
131202375Srdivacky    }
132202375Srdivacky    return true;
133202375Srdivacky  }
134202375Srdivacky  }
135202375Srdivacky  return false;
136202375Srdivacky}
137202375Srdivacky
138309124Sdimint X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
139309124Sdim  const MachineFunction *MF = MI.getParent()->getParent();
140280031Sdim  const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
141280031Sdim
142321369Sdim  if (isFrameInstr(MI)) {
143280031Sdim    unsigned StackAlign = TFI->getStackAlignment();
144321369Sdim    int SPAdj = alignTo(getFrameSize(MI), StackAlign);
145321369Sdim    SPAdj -= getFrameAdjustment(MI);
146321369Sdim    if (!isFrameSetup(MI))
147321369Sdim      SPAdj = -SPAdj;
148321369Sdim    return SPAdj;
149280031Sdim  }
150288943Sdim
151288943Sdim  // To know whether a call adjusts the stack, we need information
152280031Sdim  // that is bound to the following ADJCALLSTACKUP pseudo.
153280031Sdim  // Look for the next ADJCALLSTACKUP that follows the call.
154309124Sdim  if (MI.isCall()) {
155309124Sdim    const MachineBasicBlock *MBB = MI.getParent();
156280031Sdim    auto I = ++MachineBasicBlock::const_iterator(MI);
157280031Sdim    for (auto E = MBB->end(); I != E; ++I) {
158280031Sdim      if (I->getOpcode() == getCallFrameDestroyOpcode() ||
159280031Sdim          I->isCall())
160280031Sdim        break;
161280031Sdim    }
162280031Sdim
163280031Sdim    // If we could not find a frame destroy opcode, then it has already
164280031Sdim    // been simplified, so we don't care.
165280031Sdim    if (I->getOpcode() != getCallFrameDestroyOpcode())
166280031Sdim      return 0;
167280031Sdim
168280031Sdim    return -(I->getOperand(1).getImm());
169280031Sdim  }
170280031Sdim
171280031Sdim  // Currently handle only PUSHes we can reasonably expect to see
172280031Sdim  // in call sequences
173309124Sdim  switch (MI.getOpcode()) {
174288943Sdim  default:
175280031Sdim    return 0;
176280031Sdim  case X86::PUSH32i8:
177280031Sdim  case X86::PUSH32r:
178280031Sdim  case X86::PUSH32rmm:
179280031Sdim  case X86::PUSH32rmr:
180280031Sdim  case X86::PUSHi32:
181280031Sdim    return 4;
182309124Sdim  case X86::PUSH64i8:
183309124Sdim  case X86::PUSH64r:
184309124Sdim  case X86::PUSH64rmm:
185309124Sdim  case X86::PUSH64rmr:
186309124Sdim  case X86::PUSH64i32:
187309124Sdim    return 8;
188280031Sdim  }
189280031Sdim}
190280031Sdim
191288943Sdim/// Return true and the FrameIndex if the specified
192199481Srdivacky/// operand and follow operands form a reference to the stack frame.
193309124Sdimbool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
194199481Srdivacky                                  int &FrameIndex) const {
195309124Sdim  if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
196309124Sdim      MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
197309124Sdim      MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
198309124Sdim      MI.getOperand(Op + X86::AddrDisp).isImm() &&
199309124Sdim      MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
200309124Sdim      MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
201309124Sdim      MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
202309124Sdim    FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
203199481Srdivacky    return true;
204199481Srdivacky  }
205199481Srdivacky  return false;
206199481Srdivacky}
207199481Srdivacky
208341825Sdimstatic bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
209199481Srdivacky  switch (Opcode) {
210234353Sdim  default:
211234353Sdim    return false;
212193323Sed  case X86::MOV8rm:
213341825Sdim  case X86::KMOVBkm:
214341825Sdim    MemBytes = 1;
215341825Sdim    return true;
216193323Sed  case X86::MOV16rm:
217341825Sdim  case X86::KMOVWkm:
218341825Sdim    MemBytes = 2;
219341825Sdim    return true;
220193323Sed  case X86::MOV32rm:
221341825Sdim  case X86::MOVSSrm:
222353358Sdim  case X86::MOVSSrm_alt:
223353358Sdim  case X86::VMOVSSrm:
224353358Sdim  case X86::VMOVSSrm_alt:
225341825Sdim  case X86::VMOVSSZrm:
226353358Sdim  case X86::VMOVSSZrm_alt:
227341825Sdim  case X86::KMOVDkm:
228341825Sdim    MemBytes = 4;
229341825Sdim    return true;
230193323Sed  case X86::MOV64rm:
231193323Sed  case X86::LD_Fp64m:
232193323Sed  case X86::MOVSDrm:
233353358Sdim  case X86::MOVSDrm_alt:
234341825Sdim  case X86::VMOVSDrm:
235353358Sdim  case X86::VMOVSDrm_alt:
236341825Sdim  case X86::VMOVSDZrm:
237353358Sdim  case X86::VMOVSDZrm_alt:
238341825Sdim  case X86::MMX_MOVD64rm:
239341825Sdim  case X86::MMX_MOVQ64rm:
240341825Sdim  case X86::KMOVQkm:
241341825Sdim    MemBytes = 8;
242341825Sdim    return true;
243193323Sed  case X86::MOVAPSrm:
244309124Sdim  case X86::MOVUPSrm:
245193323Sed  case X86::MOVAPDrm:
246309124Sdim  case X86::MOVUPDrm:
247193323Sed  case X86::MOVDQArm:
248309124Sdim  case X86::MOVDQUrm:
249226633Sdim  case X86::VMOVAPSrm:
250309124Sdim  case X86::VMOVUPSrm:
251226633Sdim  case X86::VMOVAPDrm:
252309124Sdim  case X86::VMOVUPDrm:
253226633Sdim  case X86::VMOVDQArm:
254309124Sdim  case X86::VMOVDQUrm:
255341825Sdim  case X86::VMOVAPSZ128rm:
256341825Sdim  case X86::VMOVUPSZ128rm:
257341825Sdim  case X86::VMOVAPSZ128rm_NOVLX:
258341825Sdim  case X86::VMOVUPSZ128rm_NOVLX:
259341825Sdim  case X86::VMOVAPDZ128rm:
260341825Sdim  case X86::VMOVUPDZ128rm:
261341825Sdim  case X86::VMOVDQU8Z128rm:
262341825Sdim  case X86::VMOVDQU16Z128rm:
263341825Sdim  case X86::VMOVDQA32Z128rm:
264341825Sdim  case X86::VMOVDQU32Z128rm:
265341825Sdim  case X86::VMOVDQA64Z128rm:
266341825Sdim  case X86::VMOVDQU64Z128rm:
267341825Sdim    MemBytes = 16;
268341825Sdim    return true;
269341825Sdim  case X86::VMOVAPSYrm:
270280031Sdim  case X86::VMOVUPSYrm:
271341825Sdim  case X86::VMOVAPDYrm:
272280031Sdim  case X86::VMOVUPDYrm:
273341825Sdim  case X86::VMOVDQAYrm:
274280031Sdim  case X86::VMOVDQUYrm:
275309124Sdim  case X86::VMOVAPSZ256rm:
276341825Sdim  case X86::VMOVUPSZ256rm:
277314564Sdim  case X86::VMOVAPSZ256rm_NOVLX:
278314564Sdim  case X86::VMOVUPSZ256rm_NOVLX:
279309124Sdim  case X86::VMOVAPDZ256rm:
280309124Sdim  case X86::VMOVUPDZ256rm:
281341825Sdim  case X86::VMOVDQU8Z256rm:
282341825Sdim  case X86::VMOVDQU16Z256rm:
283309124Sdim  case X86::VMOVDQA32Z256rm:
284309124Sdim  case X86::VMOVDQU32Z256rm:
285309124Sdim  case X86::VMOVDQA64Z256rm:
286309124Sdim  case X86::VMOVDQU64Z256rm:
287341825Sdim    MemBytes = 32;
288341825Sdim    return true;
289341825Sdim  case X86::VMOVAPSZrm:
290341825Sdim  case X86::VMOVUPSZrm:
291341825Sdim  case X86::VMOVAPDZrm:
292341825Sdim  case X86::VMOVUPDZrm:
293309124Sdim  case X86::VMOVDQU8Zrm:
294309124Sdim  case X86::VMOVDQU16Zrm:
295341825Sdim  case X86::VMOVDQA32Zrm:
296341825Sdim  case X86::VMOVDQU32Zrm:
297341825Sdim  case X86::VMOVDQA64Zrm:
298341825Sdim  case X86::VMOVDQU64Zrm:
299341825Sdim    MemBytes = 64;
300199481Srdivacky    return true;
301193323Sed  }
302193323Sed}
303193323Sed
304341825Sdimstatic bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
305199481Srdivacky  switch (Opcode) {
306341825Sdim  default:
307341825Sdim    return false;
308193323Sed  case X86::MOV8mr:
309341825Sdim  case X86::KMOVBmk:
310341825Sdim    MemBytes = 1;
311341825Sdim    return true;
312193323Sed  case X86::MOV16mr:
313341825Sdim  case X86::KMOVWmk:
314341825Sdim    MemBytes = 2;
315341825Sdim    return true;
316193323Sed  case X86::MOV32mr:
317341825Sdim  case X86::MOVSSmr:
318341825Sdim  case X86::VMOVSSmr:
319341825Sdim  case X86::VMOVSSZmr:
320341825Sdim  case X86::KMOVDmk:
321341825Sdim    MemBytes = 4;
322341825Sdim    return true;
323193323Sed  case X86::MOV64mr:
324193323Sed  case X86::ST_FpP64m:
325193323Sed  case X86::MOVSDmr:
326341825Sdim  case X86::VMOVSDmr:
327341825Sdim  case X86::VMOVSDZmr:
328341825Sdim  case X86::MMX_MOVD64mr:
329341825Sdim  case X86::MMX_MOVQ64mr:
330341825Sdim  case X86::MMX_MOVNTQmr:
331341825Sdim  case X86::KMOVQmk:
332341825Sdim    MemBytes = 8;
333341825Sdim    return true;
334193323Sed  case X86::MOVAPSmr:
335309124Sdim  case X86::MOVUPSmr:
336193323Sed  case X86::MOVAPDmr:
337309124Sdim  case X86::MOVUPDmr:
338193323Sed  case X86::MOVDQAmr:
339309124Sdim  case X86::MOVDQUmr:
340226633Sdim  case X86::VMOVAPSmr:
341309124Sdim  case X86::VMOVUPSmr:
342226633Sdim  case X86::VMOVAPDmr:
343309124Sdim  case X86::VMOVUPDmr:
344226633Sdim  case X86::VMOVDQAmr:
345309124Sdim  case X86::VMOVDQUmr:
346341825Sdim  case X86::VMOVUPSZ128mr:
347341825Sdim  case X86::VMOVAPSZ128mr:
348341825Sdim  case X86::VMOVUPSZ128mr_NOVLX:
349341825Sdim  case X86::VMOVAPSZ128mr_NOVLX:
350341825Sdim  case X86::VMOVUPDZ128mr:
351341825Sdim  case X86::VMOVAPDZ128mr:
352341825Sdim  case X86::VMOVDQA32Z128mr:
353341825Sdim  case X86::VMOVDQU32Z128mr:
354341825Sdim  case X86::VMOVDQA64Z128mr:
355341825Sdim  case X86::VMOVDQU64Z128mr:
356341825Sdim  case X86::VMOVDQU8Z128mr:
357341825Sdim  case X86::VMOVDQU16Z128mr:
358341825Sdim    MemBytes = 16;
359341825Sdim    return true;
360280031Sdim  case X86::VMOVUPSYmr:
361224145Sdim  case X86::VMOVAPSYmr:
362280031Sdim  case X86::VMOVUPDYmr:
363224145Sdim  case X86::VMOVAPDYmr:
364280031Sdim  case X86::VMOVDQUYmr:
365224145Sdim  case X86::VMOVDQAYmr:
366309124Sdim  case X86::VMOVUPSZ256mr:
367341825Sdim  case X86::VMOVAPSZ256mr:
368314564Sdim  case X86::VMOVUPSZ256mr_NOVLX:
369314564Sdim  case X86::VMOVAPSZ256mr_NOVLX:
370309124Sdim  case X86::VMOVUPDZ256mr:
371309124Sdim  case X86::VMOVAPDZ256mr:
372341825Sdim  case X86::VMOVDQU8Z256mr:
373341825Sdim  case X86::VMOVDQU16Z256mr:
374309124Sdim  case X86::VMOVDQA32Z256mr:
375309124Sdim  case X86::VMOVDQU32Z256mr:
376309124Sdim  case X86::VMOVDQA64Z256mr:
377309124Sdim  case X86::VMOVDQU64Z256mr:
378341825Sdim    MemBytes = 32;
379341825Sdim    return true;
380341825Sdim  case X86::VMOVUPSZmr:
381341825Sdim  case X86::VMOVAPSZmr:
382341825Sdim  case X86::VMOVUPDZmr:
383341825Sdim  case X86::VMOVAPDZmr:
384309124Sdim  case X86::VMOVDQU8Zmr:
385309124Sdim  case X86::VMOVDQU16Zmr:
386341825Sdim  case X86::VMOVDQA32Zmr:
387341825Sdim  case X86::VMOVDQU32Zmr:
388341825Sdim  case X86::VMOVDQA64Zmr:
389341825Sdim  case X86::VMOVDQU64Zmr:
390341825Sdim    MemBytes = 64;
391199481Srdivacky    return true;
392199481Srdivacky  }
393199481Srdivacky  return false;
394199481Srdivacky}
395199481Srdivacky
396309124Sdimunsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
397199481Srdivacky                                           int &FrameIndex) const {
398341825Sdim  unsigned Dummy;
399341825Sdim  return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
400341825Sdim}
401341825Sdim
402341825Sdimunsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
403341825Sdim                                           int &FrameIndex,
404341825Sdim                                           unsigned &MemBytes) const {
405341825Sdim  if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
406309124Sdim    if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
407309124Sdim      return MI.getOperand(0).getReg();
408199481Srdivacky  return 0;
409199481Srdivacky}
410199481Srdivacky
411309124Sdimunsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
412199481Srdivacky                                                 int &FrameIndex) const {
413341825Sdim  unsigned Dummy;
414341825Sdim  if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
415199481Srdivacky    unsigned Reg;
416199481Srdivacky    if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
417199481Srdivacky      return Reg;
418199481Srdivacky    // Check for post-frame index elimination operations
419344779Sdim    SmallVector<const MachineMemOperand *, 1> Accesses;
420344779Sdim    if (hasLoadFromStackSlot(MI, Accesses)) {
421344779Sdim      FrameIndex =
422344779Sdim          cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
423344779Sdim              ->getFrameIndex();
424344779Sdim      return 1;
425344779Sdim    }
426199481Srdivacky  }
427199481Srdivacky  return 0;
428199481Srdivacky}
429199481Srdivacky
430309124Sdimunsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
431199481Srdivacky                                          int &FrameIndex) const {
432341825Sdim  unsigned Dummy;
433341825Sdim  return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
434341825Sdim}
435341825Sdim
436341825Sdimunsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
437341825Sdim                                          int &FrameIndex,
438341825Sdim                                          unsigned &MemBytes) const {
439341825Sdim  if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
440309124Sdim    if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
441212904Sdim        isFrameOperand(MI, 0, FrameIndex))
442309124Sdim      return MI.getOperand(X86::AddrNumOperands).getReg();
443199481Srdivacky  return 0;
444199481Srdivacky}
445199481Srdivacky
446309124Sdimunsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
447199481Srdivacky                                                int &FrameIndex) const {
448341825Sdim  unsigned Dummy;
449341825Sdim  if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
450199481Srdivacky    unsigned Reg;
451199481Srdivacky    if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
452199481Srdivacky      return Reg;
453199481Srdivacky    // Check for post-frame index elimination operations
454344779Sdim    SmallVector<const MachineMemOperand *, 1> Accesses;
455344779Sdim    if (hasStoreToStackSlot(MI, Accesses)) {
456344779Sdim      FrameIndex =
457344779Sdim          cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
458344779Sdim              ->getFrameIndex();
459344779Sdim      return 1;
460344779Sdim    }
461193323Sed  }
462193323Sed  return 0;
463193323Sed}
464193323Sed
465288943Sdim/// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
466193323Sedstatic bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
467239462Sdim  // Don't waste compile time scanning use-def chains of physregs.
468360784Sdim  if (!Register::isVirtualRegister(BaseReg))
469239462Sdim    return false;
470193323Sed  bool isPICBase = false;
471276479Sdim  for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
472276479Sdim         E = MRI.def_instr_end(); I != E; ++I) {
473276479Sdim    MachineInstr *DefMI = &*I;
474193323Sed    if (DefMI->getOpcode() != X86::MOVPC32r)
475193323Sed      return false;
476193323Sed    assert(!isPICBase && "More than one PIC base?");
477193323Sed    isPICBase = true;
478193323Sed  }
479193323Sed  return isPICBase;
480193323Sed}
481193323Sed
482309124Sdimbool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
483360784Sdim                                                     AAResults *AA) const {
484309124Sdim  switch (MI.getOpcode()) {
485360784Sdim  default:
486360784Sdim    // This function should only be called for opcodes with the ReMaterializable
487360784Sdim    // flag set.
488360784Sdim    llvm_unreachable("Unknown rematerializable operation!");
489360784Sdim    break;
490360784Sdim
491360784Sdim  case X86::LOAD_STACK_GUARD:
492360784Sdim  case X86::AVX1_SETALLONES:
493360784Sdim  case X86::AVX2_SETALLONES:
494360784Sdim  case X86::AVX512_128_SET0:
495360784Sdim  case X86::AVX512_256_SET0:
496360784Sdim  case X86::AVX512_512_SET0:
497360784Sdim  case X86::AVX512_512_SETALLONES:
498360784Sdim  case X86::AVX512_FsFLD0SD:
499360784Sdim  case X86::AVX512_FsFLD0SS:
500360784Sdim  case X86::AVX512_FsFLD0F128:
501360784Sdim  case X86::AVX_SET0:
502360784Sdim  case X86::FsFLD0SD:
503360784Sdim  case X86::FsFLD0SS:
504360784Sdim  case X86::FsFLD0F128:
505360784Sdim  case X86::KSET0D:
506360784Sdim  case X86::KSET0Q:
507360784Sdim  case X86::KSET0W:
508360784Sdim  case X86::KSET1D:
509360784Sdim  case X86::KSET1Q:
510360784Sdim  case X86::KSET1W:
511360784Sdim  case X86::MMX_SET0:
512360784Sdim  case X86::MOV32ImmSExti8:
513360784Sdim  case X86::MOV32r0:
514360784Sdim  case X86::MOV32r1:
515360784Sdim  case X86::MOV32r_1:
516360784Sdim  case X86::MOV32ri64:
517360784Sdim  case X86::MOV64ImmSExti8:
518360784Sdim  case X86::V_SET0:
519360784Sdim  case X86::V_SETALLONES:
520360784Sdim  case X86::MOV16ri:
521360784Sdim  case X86::MOV32ri:
522360784Sdim  case X86::MOV64ri:
523360784Sdim  case X86::MOV64ri32:
524360784Sdim  case X86::MOV8ri:
525360784Sdim    return true;
526360784Sdim
527243830Sdim  case X86::MOV8rm:
528314564Sdim  case X86::MOV8rm_NOREX:
529243830Sdim  case X86::MOV16rm:
530243830Sdim  case X86::MOV32rm:
531243830Sdim  case X86::MOV64rm:
532243830Sdim  case X86::MOVSSrm:
533353358Sdim  case X86::MOVSSrm_alt:
534243830Sdim  case X86::MOVSDrm:
535353358Sdim  case X86::MOVSDrm_alt:
536243830Sdim  case X86::MOVAPSrm:
537243830Sdim  case X86::MOVUPSrm:
538243830Sdim  case X86::MOVAPDrm:
539314564Sdim  case X86::MOVUPDrm:
540243830Sdim  case X86::MOVDQArm:
541249423Sdim  case X86::MOVDQUrm:
542243830Sdim  case X86::VMOVSSrm:
543353358Sdim  case X86::VMOVSSrm_alt:
544243830Sdim  case X86::VMOVSDrm:
545353358Sdim  case X86::VMOVSDrm_alt:
546243830Sdim  case X86::VMOVAPSrm:
547243830Sdim  case X86::VMOVUPSrm:
548243830Sdim  case X86::VMOVAPDrm:
549314564Sdim  case X86::VMOVUPDrm:
550243830Sdim  case X86::VMOVDQArm:
551249423Sdim  case X86::VMOVDQUrm:
552243830Sdim  case X86::VMOVAPSYrm:
553243830Sdim  case X86::VMOVUPSYrm:
554243830Sdim  case X86::VMOVAPDYrm:
555314564Sdim  case X86::VMOVUPDYrm:
556243830Sdim  case X86::VMOVDQAYrm:
557249423Sdim  case X86::VMOVDQUYrm:
558243830Sdim  case X86::MMX_MOVD64rm:
559243830Sdim  case X86::MMX_MOVQ64rm:
560296417Sdim  // AVX-512
561314564Sdim  case X86::VMOVSSZrm:
562353358Sdim  case X86::VMOVSSZrm_alt:
563314564Sdim  case X86::VMOVSDZrm:
564353358Sdim  case X86::VMOVSDZrm_alt:
565296417Sdim  case X86::VMOVAPDZ128rm:
566296417Sdim  case X86::VMOVAPDZ256rm:
567296417Sdim  case X86::VMOVAPDZrm:
568296417Sdim  case X86::VMOVAPSZ128rm:
569296417Sdim  case X86::VMOVAPSZ256rm:
570314564Sdim  case X86::VMOVAPSZ128rm_NOVLX:
571314564Sdim  case X86::VMOVAPSZ256rm_NOVLX:
572296417Sdim  case X86::VMOVAPSZrm:
573296417Sdim  case X86::VMOVDQA32Z128rm:
574296417Sdim  case X86::VMOVDQA32Z256rm:
575296417Sdim  case X86::VMOVDQA32Zrm:
576296417Sdim  case X86::VMOVDQA64Z128rm:
577296417Sdim  case X86::VMOVDQA64Z256rm:
578296417Sdim  case X86::VMOVDQA64Zrm:
579296417Sdim  case X86::VMOVDQU16Z128rm:
580296417Sdim  case X86::VMOVDQU16Z256rm:
581296417Sdim  case X86::VMOVDQU16Zrm:
582296417Sdim  case X86::VMOVDQU32Z128rm:
583296417Sdim  case X86::VMOVDQU32Z256rm:
584296417Sdim  case X86::VMOVDQU32Zrm:
585296417Sdim  case X86::VMOVDQU64Z128rm:
586296417Sdim  case X86::VMOVDQU64Z256rm:
587296417Sdim  case X86::VMOVDQU64Zrm:
588296417Sdim  case X86::VMOVDQU8Z128rm:
589296417Sdim  case X86::VMOVDQU8Z256rm:
590296417Sdim  case X86::VMOVDQU8Zrm:
591314564Sdim  case X86::VMOVUPDZ128rm:
592314564Sdim  case X86::VMOVUPDZ256rm:
593314564Sdim  case X86::VMOVUPDZrm:
594296417Sdim  case X86::VMOVUPSZ128rm:
595296417Sdim  case X86::VMOVUPSZ256rm:
596314564Sdim  case X86::VMOVUPSZ128rm_NOVLX:
597314564Sdim  case X86::VMOVUPSZ256rm_NOVLX:
598296417Sdim  case X86::VMOVUPSZrm: {
599243830Sdim    // Loads from constant pools are trivially rematerializable.
600309124Sdim    if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
601309124Sdim        MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
602309124Sdim        MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
603309124Sdim        MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
604314564Sdim        MI.isDereferenceableInvariantLoad(AA)) {
605360784Sdim      Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
606243830Sdim      if (BaseReg == 0 || BaseReg == X86::RIP)
607243830Sdim        return true;
608243830Sdim      // Allow re-materialization of PIC load.
609309124Sdim      if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
610243830Sdim        return false;
611309124Sdim      const MachineFunction &MF = *MI.getParent()->getParent();
612243830Sdim      const MachineRegisterInfo &MRI = MF.getRegInfo();
613243830Sdim      return regIsPICBase(BaseReg, MRI);
614193323Sed    }
615243830Sdim    return false;
616243830Sdim  }
617218893Sdim
618243830Sdim  case X86::LEA32r:
619243830Sdim  case X86::LEA64r: {
620309124Sdim    if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
621309124Sdim        MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
622309124Sdim        MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
623309124Sdim        !MI.getOperand(1 + X86::AddrDisp).isReg()) {
624243830Sdim      // lea fi#, lea GV, etc. are all rematerializable.
625309124Sdim      if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
626243830Sdim        return true;
627360784Sdim      Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
628243830Sdim      if (BaseReg == 0)
629243830Sdim        return true;
630243830Sdim      // Allow re-materialization of lea PICBase + x.
631309124Sdim      const MachineFunction &MF = *MI.getParent()->getParent();
632243830Sdim      const MachineRegisterInfo &MRI = MF.getRegInfo();
633243830Sdim      return regIsPICBase(BaseReg, MRI);
634243830Sdim    }
635243830Sdim    return false;
636193323Sed  }
637243830Sdim  }
638193323Sed}
639193323Sed
640193323Sedvoid X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
641193323Sed                                 MachineBasicBlock::iterator I,
642198090Srdivacky                                 unsigned DestReg, unsigned SubIdx,
643309124Sdim                                 const MachineInstr &Orig,
644210299Sed                                 const TargetRegisterInfo &TRI) const {
645353358Sdim  bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
646296417Sdim  if (ClobbersEFLAGS && !isSafeToClobberEFLAGS(MBB, I)) {
647296417Sdim    // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
648296417Sdim    // effects.
649296417Sdim    int Value;
650309124Sdim    switch (Orig.getOpcode()) {
651296417Sdim    case X86::MOV32r0:  Value = 0; break;
652296417Sdim    case X86::MOV32r1:  Value = 1; break;
653296417Sdim    case X86::MOV32r_1: Value = -1; break;
654296417Sdim    default:
655296417Sdim      llvm_unreachable("Unexpected instruction!");
656296417Sdim    }
657296417Sdim
658309124Sdim    const DebugLoc &DL = Orig.getDebugLoc();
659309124Sdim    BuildMI(MBB, I, DL, get(X86::MOV32ri))
660321369Sdim        .add(Orig.getOperand(0))
661309124Sdim        .addImm(Value);
662261991Sdim  } else {
663309124Sdim    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
664193323Sed    MBB.insert(I, MI);
665193323Sed  }
666193323Sed
667309124Sdim  MachineInstr &NewMI = *std::prev(I);
668309124Sdim  NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
669193323Sed}
670193323Sed
671288943Sdim/// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
672309124Sdimbool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
673309124Sdim  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
674309124Sdim    MachineOperand &MO = MI.getOperand(i);
675193323Sed    if (MO.isReg() && MO.isDef() &&
676193323Sed        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
677193323Sed      return true;
678193323Sed    }
679193323Sed  }
680193323Sed  return false;
681193323Sed}
682193323Sed
683288943Sdim/// Check whether the shift count for a machine operand is non-zero.
684344779Sdiminline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
685261991Sdim                                              unsigned ShiftAmtOperandIdx) {
686261991Sdim  // The shift count is six bits with the REX.W prefix and five bits without.
687309124Sdim  unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
688309124Sdim  unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
689261991Sdim  return Imm & ShiftCountMask;
690261991Sdim}
691261991Sdim
692288943Sdim/// Check whether the given shift count is appropriate
693261991Sdim/// can be represented by a LEA instruction.
694261991Sdiminline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
695261991Sdim  // Left shift instructions can be transformed into load-effective-address
696261991Sdim  // instructions if we can encode them appropriately.
697296417Sdim  // A LEA instruction utilizes a SIB byte to encode its scale factor.
698261991Sdim  // The SIB.scale field is two bits wide which means that we can encode any
699261991Sdim  // shift amount less than 4.
700261991Sdim  return ShAmt < 4 && ShAmt > 0;
701261991Sdim}
702261991Sdim
703309124Sdimbool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
704360784Sdim                                  unsigned Opc, bool AllowSP, Register &NewSrc,
705344779Sdim                                  bool &isKill, MachineOperand &ImplicitOp,
706309124Sdim                                  LiveVariables *LV) const {
707309124Sdim  MachineFunction &MF = *MI.getParent()->getParent();
708261991Sdim  const TargetRegisterClass *RC;
709261991Sdim  if (AllowSP) {
710261991Sdim    RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
711261991Sdim  } else {
712261991Sdim    RC = Opc != X86::LEA32r ?
713261991Sdim      &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
714261991Sdim  }
715360784Sdim  Register SrcReg = Src.getReg();
716261991Sdim
717261991Sdim  // For both LEA64 and LEA32 the register already has essentially the right
718261991Sdim  // type (32-bit or 64-bit) we may just need to forbid SP.
719261991Sdim  if (Opc != X86::LEA64_32r) {
720261991Sdim    NewSrc = SrcReg;
721261991Sdim    isKill = Src.isKill();
722344779Sdim    assert(!Src.isUndef() && "Undef op doesn't need optimization");
723261991Sdim
724360784Sdim    if (Register::isVirtualRegister(NewSrc) &&
725261991Sdim        !MF.getRegInfo().constrainRegClass(NewSrc, RC))
726261991Sdim      return false;
727261991Sdim
728261991Sdim    return true;
729261991Sdim  }
730261991Sdim
731261991Sdim  // This is for an LEA64_32r and incoming registers are 32-bit. One way or
732261991Sdim  // another we need to add 64-bit registers to the final MI.
733360784Sdim  if (Register::isPhysicalRegister(SrcReg)) {
734261991Sdim    ImplicitOp = Src;
735261991Sdim    ImplicitOp.setImplicit();
736261991Sdim
737296417Sdim    NewSrc = getX86SubSuperRegister(Src.getReg(), 64);
738314564Sdim    isKill = Src.isKill();
739344779Sdim    assert(!Src.isUndef() && "Undef op doesn't need optimization");
740261991Sdim  } else {
741261991Sdim    // Virtual register of the wrong class, we have to create a temporary 64-bit
742261991Sdim    // vreg to feed into the LEA.
743261991Sdim    NewSrc = MF.getRegInfo().createVirtualRegister(RC);
744321369Sdim    MachineInstr *Copy =
745321369Sdim        BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
746321369Sdim            .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
747321369Sdim            .add(Src);
748261991Sdim
749261991Sdim    // Which is obviously going to be dead after we're done with it.
750261991Sdim    isKill = true;
751309124Sdim
752309124Sdim    if (LV)
753309124Sdim      LV->replaceKillInstruction(SrcReg, MI, *Copy);
754261991Sdim  }
755261991Sdim
756261991Sdim  // We've set all the parameters without issue.
757261991Sdim  return true;
758261991Sdim}
759261991Sdim
760309124SdimMachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(
761309124Sdim    unsigned MIOpc, MachineFunction::iterator &MFI, MachineInstr &MI,
762353358Sdim    LiveVariables *LV, bool Is8BitOp) const {
763344779Sdim  // We handle 8-bit adds and various 16-bit opcodes in the switch below.
764200581Srdivacky  MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
765353358Sdim  assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits(
766344779Sdim              *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
767344779Sdim         "Unexpected type for LEA transform");
768218893Sdim
769344779Sdim  // TODO: For a 32-bit target, we need to adjust the LEA variables with
770344779Sdim  // something like this:
771344779Sdim  //   Opcode = X86::LEA32r;
772344779Sdim  //   InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
773344779Sdim  //   OutRegLEA =
774344779Sdim  //       Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
775344779Sdim  //                : RegInfo.createVirtualRegister(&X86::GR32RegClass);
776344779Sdim  if (!Subtarget.is64Bit())
777344779Sdim    return nullptr;
778344779Sdim
779344779Sdim  unsigned Opcode = X86::LEA64_32r;
780360784Sdim  Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
781360784Sdim  Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
782344779Sdim
783200581Srdivacky  // Build and insert into an implicit UNDEF value. This is OK because
784344779Sdim  // we will be shifting and then extracting the lower 8/16-bits.
785200581Srdivacky  // This has the potential to cause partial register stall. e.g.
786200581Srdivacky  //   movw    (%rbp,%rcx,2), %dx
787200581Srdivacky  //   leal    -65(%rdx), %esi
788200581Srdivacky  // But testing has shown this *does* help performance in 64-bit mode (at
789200581Srdivacky  // least on modern x86 machines).
790344779Sdim  MachineBasicBlock::iterator MBBI = MI.getIterator();
791360784Sdim  Register Dest = MI.getOperand(0).getReg();
792360784Sdim  Register Src = MI.getOperand(1).getReg();
793344779Sdim  bool IsDead = MI.getOperand(0).isDead();
794344779Sdim  bool IsKill = MI.getOperand(1).isKill();
795353358Sdim  unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
796344779Sdim  assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization");
797344779Sdim  BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
798200581Srdivacky  MachineInstr *InsMI =
799309124Sdim      BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
800344779Sdim          .addReg(InRegLEA, RegState::Define, SubReg)
801344779Sdim          .addReg(Src, getKillRegState(IsKill));
802200581Srdivacky
803309124Sdim  MachineInstrBuilder MIB =
804344779Sdim      BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
805200581Srdivacky  switch (MIOpc) {
806243830Sdim  default: llvm_unreachable("Unreachable!");
807353358Sdim  case X86::SHL8ri:
808200581Srdivacky  case X86::SHL16ri: {
809309124Sdim    unsigned ShAmt = MI.getOperand(2).getImm();
810309124Sdim    MIB.addReg(0).addImm(1ULL << ShAmt)
811344779Sdim       .addReg(InRegLEA, RegState::Kill).addImm(0).addReg(0);
812200581Srdivacky    break;
813200581Srdivacky  }
814353358Sdim  case X86::INC8r:
815200581Srdivacky  case X86::INC16r:
816344779Sdim    addRegOffset(MIB, InRegLEA, true, 1);
817200581Srdivacky    break;
818353358Sdim  case X86::DEC8r:
819200581Srdivacky  case X86::DEC16r:
820344779Sdim    addRegOffset(MIB, InRegLEA, true, -1);
821200581Srdivacky    break;
822344779Sdim  case X86::ADD8ri:
823353358Sdim  case X86::ADD8ri_DB:
824200581Srdivacky  case X86::ADD16ri:
825200581Srdivacky  case X86::ADD16ri8:
826218893Sdim  case X86::ADD16ri_DB:
827218893Sdim  case X86::ADD16ri8_DB:
828344779Sdim    addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
829200581Srdivacky    break;
830344779Sdim  case X86::ADD8rr:
831353358Sdim  case X86::ADD8rr_DB:
832218893Sdim  case X86::ADD16rr:
833218893Sdim  case X86::ADD16rr_DB: {
834360784Sdim    Register Src2 = MI.getOperand(2).getReg();
835344779Sdim    bool IsKill2 = MI.getOperand(2).isKill();
836344779Sdim    assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization");
837344779Sdim    unsigned InRegLEA2 = 0;
838276479Sdim    MachineInstr *InsMI2 = nullptr;
839200581Srdivacky    if (Src == Src2) {
840344779Sdim      // ADD8rr/ADD16rr killed %reg1028, %reg1028
841200581Srdivacky      // just a single insert_subreg.
842344779Sdim      addRegReg(MIB, InRegLEA, true, InRegLEA, false);
843200581Srdivacky    } else {
844276479Sdim      if (Subtarget.is64Bit())
845344779Sdim        InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
846261991Sdim      else
847344779Sdim        InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
848200581Srdivacky      // Build and insert into an implicit UNDEF value. This is OK because
849344779Sdim      // we will be shifting and then extracting the lower 8/16-bits.
850344779Sdim      BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA2);
851309124Sdim      InsMI2 = BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
852344779Sdim                   .addReg(InRegLEA2, RegState::Define, SubReg)
853344779Sdim                   .addReg(Src2, getKillRegState(IsKill2));
854344779Sdim      addRegReg(MIB, InRegLEA, true, InRegLEA2, true);
855200581Srdivacky    }
856344779Sdim    if (LV && IsKill2 && InsMI2)
857309124Sdim      LV->replaceKillInstruction(Src2, MI, *InsMI2);
858200581Srdivacky    break;
859200581Srdivacky  }
860200581Srdivacky  }
861200581Srdivacky
862200581Srdivacky  MachineInstr *NewMI = MIB;
863200581Srdivacky  MachineInstr *ExtMI =
864309124Sdim      BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
865344779Sdim          .addReg(Dest, RegState::Define | getDeadRegState(IsDead))
866344779Sdim          .addReg(OutRegLEA, RegState::Kill, SubReg);
867200581Srdivacky
868200581Srdivacky  if (LV) {
869344779Sdim    // Update live variables.
870344779Sdim    LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
871344779Sdim    LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
872344779Sdim    if (IsKill)
873309124Sdim      LV->replaceKillInstruction(Src, MI, *InsMI);
874344779Sdim    if (IsDead)
875309124Sdim      LV->replaceKillInstruction(Dest, MI, *ExtMI);
876200581Srdivacky  }
877200581Srdivacky
878200581Srdivacky  return ExtMI;
879200581Srdivacky}
880200581Srdivacky
881288943Sdim/// This method must be implemented by targets that
882193323Sed/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
883193323Sed/// may be able to convert a two-address instruction into a true
884193323Sed/// three-address instruction on demand.  This allows the X86 target (for
885193323Sed/// example) to convert ADD and SHL instructions into LEA instructions if they
886193323Sed/// would require register copies due to two-addressness.
887193323Sed///
888193323Sed/// This method returns a null pointer if the transformation cannot be
889193323Sed/// performed, otherwise it returns the new instruction.
890193323Sed///
891193323SedMachineInstr *
892193323SedX86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
893309124Sdim                                    MachineInstr &MI, LiveVariables *LV) const {
894261991Sdim  // The following opcodes also sets the condition code register(s). Only
895261991Sdim  // convert them to equivalent lea if the condition code register def's
896261991Sdim  // are dead!
897261991Sdim  if (hasLiveCondCodeDef(MI))
898276479Sdim    return nullptr;
899261991Sdim
900309124Sdim  MachineFunction &MF = *MI.getParent()->getParent();
901193323Sed  // All instructions input are two-addr instructions.  Get the known operands.
902309124Sdim  const MachineOperand &Dest = MI.getOperand(0);
903309124Sdim  const MachineOperand &Src = MI.getOperand(1);
904193323Sed
905344779Sdim  // Ideally, operations with undef should be folded before we get here, but we
906344779Sdim  // can't guarantee it. Bail out because optimizing undefs is a waste of time.
907344779Sdim  // Without this, we have to forward undef state to new register operands to
908344779Sdim  // avoid machine verifier errors.
909344779Sdim  if (Src.isUndef())
910344779Sdim    return nullptr;
911344779Sdim  if (MI.getNumOperands() > 2)
912344779Sdim    if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
913344779Sdim      return nullptr;
914344779Sdim
915276479Sdim  MachineInstr *NewMI = nullptr;
916344779Sdim  bool Is64Bit = Subtarget.is64Bit();
917193323Sed
918353358Sdim  bool Is8BitOp = false;
919309124Sdim  unsigned MIOpc = MI.getOpcode();
920193323Sed  switch (MIOpc) {
921353358Sdim  default: llvm_unreachable("Unreachable!");
922193323Sed  case X86::SHL64ri: {
923309124Sdim    assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
924261991Sdim    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
925276479Sdim    if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
926193323Sed
927218893Sdim    // LEA can't handle RSP.
928360784Sdim    if (Register::isVirtualRegister(Src.getReg()) &&
929243830Sdim        !MF.getRegInfo().constrainRegClass(Src.getReg(),
930243830Sdim                                           &X86::GR64_NOSPRegClass))
931276479Sdim      return nullptr;
932218893Sdim
933309124Sdim    NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
934321369Sdim                .add(Dest)
935309124Sdim                .addReg(0)
936309124Sdim                .addImm(1ULL << ShAmt)
937321369Sdim                .add(Src)
938309124Sdim                .addImm(0)
939309124Sdim                .addReg(0);
940193323Sed    break;
941193323Sed  }
942193323Sed  case X86::SHL32ri: {
943309124Sdim    assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
944261991Sdim    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
945276479Sdim    if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
946193323Sed
947344779Sdim    unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
948261991Sdim
949218893Sdim    // LEA can't handle ESP.
950344779Sdim    bool isKill;
951360784Sdim    Register SrcReg;
952261991Sdim    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
953261991Sdim    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
954344779Sdim                        SrcReg, isKill, ImplicitOp, LV))
955276479Sdim      return nullptr;
956218893Sdim
957309124Sdim    MachineInstrBuilder MIB =
958309124Sdim        BuildMI(MF, MI.getDebugLoc(), get(Opc))
959321369Sdim            .add(Dest)
960309124Sdim            .addReg(0)
961309124Sdim            .addImm(1ULL << ShAmt)
962344779Sdim            .addReg(SrcReg, getKillRegState(isKill))
963309124Sdim            .addImm(0)
964309124Sdim            .addReg(0);
965261991Sdim    if (ImplicitOp.getReg() != 0)
966321369Sdim      MIB.add(ImplicitOp);
967261991Sdim    NewMI = MIB;
968261991Sdim
969193323Sed    break;
970193323Sed  }
971353358Sdim  case X86::SHL8ri:
972353358Sdim    Is8BitOp = true;
973353358Sdim    LLVM_FALLTHROUGH;
974193323Sed  case X86::SHL16ri: {
975309124Sdim    assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
976261991Sdim    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
977344779Sdim    if (!isTruncatedShiftCountForLEA(ShAmt))
978344779Sdim      return nullptr;
979353358Sdim    return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
980193323Sed  }
981280031Sdim  case X86::INC64r:
982280031Sdim  case X86::INC32r: {
983309124Sdim    assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
984344779Sdim    unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r :
985344779Sdim        (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
986344779Sdim    bool isKill;
987360784Sdim    Register SrcReg;
988280031Sdim    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
989344779Sdim    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill,
990344779Sdim                        ImplicitOp, LV))
991280031Sdim      return nullptr;
992193323Sed
993309124Sdim    MachineInstrBuilder MIB =
994309124Sdim        BuildMI(MF, MI.getDebugLoc(), get(Opc))
995321369Sdim            .add(Dest)
996344779Sdim            .addReg(SrcReg, getKillRegState(isKill));
997280031Sdim    if (ImplicitOp.getReg() != 0)
998321369Sdim      MIB.add(ImplicitOp);
999218893Sdim
1000280031Sdim    NewMI = addOffset(MIB, 1);
1001280031Sdim    break;
1002280031Sdim  }
1003280031Sdim  case X86::DEC64r:
1004280031Sdim  case X86::DEC32r: {
1005309124Sdim    assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
1006280031Sdim    unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1007344779Sdim        : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1008261991Sdim
1009344779Sdim    bool isKill;
1010360784Sdim    Register SrcReg;
1011280031Sdim    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1012344779Sdim    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill,
1013344779Sdim                        ImplicitOp, LV))
1014280031Sdim      return nullptr;
1015261991Sdim
1016309124Sdim    MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1017321369Sdim                                  .add(Dest)
1018344779Sdim                                  .addReg(SrcReg, getKillRegState(isKill));
1019280031Sdim    if (ImplicitOp.getReg() != 0)
1020321369Sdim      MIB.add(ImplicitOp);
1021218893Sdim
1022280031Sdim    NewMI = addOffset(MIB, -1);
1023261991Sdim
1024280031Sdim    break;
1025280031Sdim  }
1026353358Sdim  case X86::DEC8r:
1027353358Sdim  case X86::INC8r:
1028353358Sdim    Is8BitOp = true;
1029353358Sdim    LLVM_FALLTHROUGH;
1030280031Sdim  case X86::DEC16r:
1031353358Sdim  case X86::INC16r:
1032353358Sdim    return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1033280031Sdim  case X86::ADD64rr:
1034280031Sdim  case X86::ADD64rr_DB:
1035280031Sdim  case X86::ADD32rr:
1036280031Sdim  case X86::ADD32rr_DB: {
1037309124Sdim    assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1038280031Sdim    unsigned Opc;
1039280031Sdim    if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
1040280031Sdim      Opc = X86::LEA64r;
1041280031Sdim    else
1042344779Sdim      Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1043261991Sdim
1044344779Sdim    bool isKill;
1045360784Sdim    Register SrcReg;
1046280031Sdim    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1047280031Sdim    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1048344779Sdim                        SrcReg, isKill, ImplicitOp, LV))
1049280031Sdim      return nullptr;
1050218893Sdim
1051309124Sdim    const MachineOperand &Src2 = MI.getOperand(2);
1052344779Sdim    bool isKill2;
1053360784Sdim    Register SrcReg2;
1054280031Sdim    MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
1055280031Sdim    if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
1056344779Sdim                        SrcReg2, isKill2, ImplicitOp2, LV))
1057280031Sdim      return nullptr;
1058218893Sdim
1059321369Sdim    MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
1060280031Sdim    if (ImplicitOp.getReg() != 0)
1061321369Sdim      MIB.add(ImplicitOp);
1062280031Sdim    if (ImplicitOp2.getReg() != 0)
1063321369Sdim      MIB.add(ImplicitOp2);
1064218893Sdim
1065280031Sdim    NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
1066280031Sdim    if (LV && Src2.isKill())
1067309124Sdim      LV->replaceKillInstruction(SrcReg2, MI, *NewMI);
1068280031Sdim    break;
1069280031Sdim  }
1070344779Sdim  case X86::ADD8rr:
1071353358Sdim  case X86::ADD8rr_DB:
1072353358Sdim    Is8BitOp = true;
1073353358Sdim    LLVM_FALLTHROUGH;
1074280031Sdim  case X86::ADD16rr:
1075344779Sdim  case X86::ADD16rr_DB:
1076353358Sdim    return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1077280031Sdim  case X86::ADD64ri32:
1078280031Sdim  case X86::ADD64ri8:
1079280031Sdim  case X86::ADD64ri32_DB:
1080280031Sdim  case X86::ADD64ri8_DB:
1081309124Sdim    assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1082321369Sdim    NewMI = addOffset(
1083321369Sdim        BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
1084321369Sdim        MI.getOperand(2));
1085280031Sdim    break;
1086280031Sdim  case X86::ADD32ri:
1087280031Sdim  case X86::ADD32ri8:
1088280031Sdim  case X86::ADD32ri_DB:
1089280031Sdim  case X86::ADD32ri8_DB: {
1090309124Sdim    assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1091344779Sdim    unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1092243830Sdim
1093344779Sdim    bool isKill;
1094360784Sdim    Register SrcReg;
1095280031Sdim    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1096280031Sdim    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1097344779Sdim                        SrcReg, isKill, ImplicitOp, LV))
1098280031Sdim      return nullptr;
1099261991Sdim
1100309124Sdim    MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1101321369Sdim                                  .add(Dest)
1102344779Sdim                                  .addReg(SrcReg, getKillRegState(isKill));
1103280031Sdim    if (ImplicitOp.getReg() != 0)
1104321369Sdim      MIB.add(ImplicitOp);
1105261991Sdim
1106314564Sdim    NewMI = addOffset(MIB, MI.getOperand(2));
1107280031Sdim    break;
1108193323Sed  }
1109344779Sdim  case X86::ADD8ri:
1110353358Sdim  case X86::ADD8ri_DB:
1111353358Sdim    Is8BitOp = true;
1112353358Sdim    LLVM_FALLTHROUGH;
1113280031Sdim  case X86::ADD16ri:
1114280031Sdim  case X86::ADD16ri8:
1115280031Sdim  case X86::ADD16ri_DB:
1116280031Sdim  case X86::ADD16ri8_DB:
1117353358Sdim    return convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV, Is8BitOp);
1118353358Sdim  case X86::SUB8ri:
1119353358Sdim  case X86::SUB16ri8:
1120353358Sdim  case X86::SUB16ri:
1121353358Sdim    /// FIXME: Support these similar to ADD8ri/ADD16ri*.
1122353358Sdim    return nullptr;
1123353358Sdim  case X86::SUB32ri8:
1124353358Sdim  case X86::SUB32ri: {
1125360661Sdim    if (!MI.getOperand(2).isImm())
1126360661Sdim      return nullptr;
1127353358Sdim    int64_t Imm = MI.getOperand(2).getImm();
1128353358Sdim    if (!isInt<32>(-Imm))
1129353358Sdim      return nullptr;
1130353358Sdim
1131353358Sdim    assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1132353358Sdim    unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1133353358Sdim
1134353358Sdim    bool isKill;
1135360784Sdim    Register SrcReg;
1136353358Sdim    MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1137353358Sdim    if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1138353358Sdim                        SrcReg, isKill, ImplicitOp, LV))
1139353358Sdim      return nullptr;
1140353358Sdim
1141353358Sdim    MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1142353358Sdim                                  .add(Dest)
1143353358Sdim                                  .addReg(SrcReg, getKillRegState(isKill));
1144353358Sdim    if (ImplicitOp.getReg() != 0)
1145353358Sdim      MIB.add(ImplicitOp);
1146353358Sdim
1147353358Sdim    NewMI = addOffset(MIB, -Imm);
1148353358Sdim    break;
1149353358Sdim  }
1150353358Sdim
1151353358Sdim  case X86::SUB64ri8:
1152353358Sdim  case X86::SUB64ri32: {
1153360661Sdim    if (!MI.getOperand(2).isImm())
1154360661Sdim      return nullptr;
1155353358Sdim    int64_t Imm = MI.getOperand(2).getImm();
1156353358Sdim    if (!isInt<32>(-Imm))
1157353358Sdim      return nullptr;
1158353358Sdim
1159353358Sdim    assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!");
1160353358Sdim
1161353358Sdim    MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(),
1162353358Sdim                                      get(X86::LEA64r)).add(Dest).add(Src);
1163353358Sdim    NewMI = addOffset(MIB, -Imm);
1164353358Sdim    break;
1165353358Sdim  }
1166353358Sdim
1167321369Sdim  case X86::VMOVDQU8Z128rmk:
1168321369Sdim  case X86::VMOVDQU8Z256rmk:
1169321369Sdim  case X86::VMOVDQU8Zrmk:
1170321369Sdim  case X86::VMOVDQU16Z128rmk:
1171321369Sdim  case X86::VMOVDQU16Z256rmk:
1172321369Sdim  case X86::VMOVDQU16Zrmk:
1173321369Sdim  case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
1174321369Sdim  case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
1175321369Sdim  case X86::VMOVDQU32Zrmk:    case X86::VMOVDQA32Zrmk:
1176321369Sdim  case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
1177321369Sdim  case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
1178321369Sdim  case X86::VMOVDQU64Zrmk:    case X86::VMOVDQA64Zrmk:
1179321369Sdim  case X86::VMOVUPDZ128rmk:   case X86::VMOVAPDZ128rmk:
1180321369Sdim  case X86::VMOVUPDZ256rmk:   case X86::VMOVAPDZ256rmk:
1181321369Sdim  case X86::VMOVUPDZrmk:      case X86::VMOVAPDZrmk:
1182321369Sdim  case X86::VMOVUPSZ128rmk:   case X86::VMOVAPSZ128rmk:
1183321369Sdim  case X86::VMOVUPSZ256rmk:   case X86::VMOVAPSZ256rmk:
1184360784Sdim  case X86::VMOVUPSZrmk:      case X86::VMOVAPSZrmk:
1185360784Sdim  case X86::VBROADCASTSDZ256mk:
1186360784Sdim  case X86::VBROADCASTSDZmk:
1187360784Sdim  case X86::VBROADCASTSSZ128mk:
1188360784Sdim  case X86::VBROADCASTSSZ256mk:
1189360784Sdim  case X86::VBROADCASTSSZmk:
1190360784Sdim  case X86::VPBROADCASTDZ128mk:
1191360784Sdim  case X86::VPBROADCASTDZ256mk:
1192360784Sdim  case X86::VPBROADCASTDZmk:
1193360784Sdim  case X86::VPBROADCASTQZ128mk:
1194360784Sdim  case X86::VPBROADCASTQZ256mk:
1195360784Sdim  case X86::VPBROADCASTQZmk: {
1196321369Sdim    unsigned Opc;
1197321369Sdim    switch (MIOpc) {
1198321369Sdim    default: llvm_unreachable("Unreachable!");
1199360784Sdim    case X86::VMOVDQU8Z128rmk:    Opc = X86::VPBLENDMBZ128rmk; break;
1200360784Sdim    case X86::VMOVDQU8Z256rmk:    Opc = X86::VPBLENDMBZ256rmk; break;
1201360784Sdim    case X86::VMOVDQU8Zrmk:       Opc = X86::VPBLENDMBZrmk;    break;
1202360784Sdim    case X86::VMOVDQU16Z128rmk:   Opc = X86::VPBLENDMWZ128rmk; break;
1203360784Sdim    case X86::VMOVDQU16Z256rmk:   Opc = X86::VPBLENDMWZ256rmk; break;
1204360784Sdim    case X86::VMOVDQU16Zrmk:      Opc = X86::VPBLENDMWZrmk;    break;
1205360784Sdim    case X86::VMOVDQU32Z128rmk:   Opc = X86::VPBLENDMDZ128rmk; break;
1206360784Sdim    case X86::VMOVDQU32Z256rmk:   Opc = X86::VPBLENDMDZ256rmk; break;
1207360784Sdim    case X86::VMOVDQU32Zrmk:      Opc = X86::VPBLENDMDZrmk;    break;
1208360784Sdim    case X86::VMOVDQU64Z128rmk:   Opc = X86::VPBLENDMQZ128rmk; break;
1209360784Sdim    case X86::VMOVDQU64Z256rmk:   Opc = X86::VPBLENDMQZ256rmk; break;
1210360784Sdim    case X86::VMOVDQU64Zrmk:      Opc = X86::VPBLENDMQZrmk;    break;
1211360784Sdim    case X86::VMOVUPDZ128rmk:     Opc = X86::VBLENDMPDZ128rmk; break;
1212360784Sdim    case X86::VMOVUPDZ256rmk:     Opc = X86::VBLENDMPDZ256rmk; break;
1213360784Sdim    case X86::VMOVUPDZrmk:        Opc = X86::VBLENDMPDZrmk;    break;
1214360784Sdim    case X86::VMOVUPSZ128rmk:     Opc = X86::VBLENDMPSZ128rmk; break;
1215360784Sdim    case X86::VMOVUPSZ256rmk:     Opc = X86::VBLENDMPSZ256rmk; break;
1216360784Sdim    case X86::VMOVUPSZrmk:        Opc = X86::VBLENDMPSZrmk;    break;
1217360784Sdim    case X86::VMOVDQA32Z128rmk:   Opc = X86::VPBLENDMDZ128rmk; break;
1218360784Sdim    case X86::VMOVDQA32Z256rmk:   Opc = X86::VPBLENDMDZ256rmk; break;
1219360784Sdim    case X86::VMOVDQA32Zrmk:      Opc = X86::VPBLENDMDZrmk;    break;
1220360784Sdim    case X86::VMOVDQA64Z128rmk:   Opc = X86::VPBLENDMQZ128rmk; break;
1221360784Sdim    case X86::VMOVDQA64Z256rmk:   Opc = X86::VPBLENDMQZ256rmk; break;
1222360784Sdim    case X86::VMOVDQA64Zrmk:      Opc = X86::VPBLENDMQZrmk;    break;
1223360784Sdim    case X86::VMOVAPDZ128rmk:     Opc = X86::VBLENDMPDZ128rmk; break;
1224360784Sdim    case X86::VMOVAPDZ256rmk:     Opc = X86::VBLENDMPDZ256rmk; break;
1225360784Sdim    case X86::VMOVAPDZrmk:        Opc = X86::VBLENDMPDZrmk;    break;
1226360784Sdim    case X86::VMOVAPSZ128rmk:     Opc = X86::VBLENDMPSZ128rmk; break;
1227360784Sdim    case X86::VMOVAPSZ256rmk:     Opc = X86::VBLENDMPSZ256rmk; break;
1228360784Sdim    case X86::VMOVAPSZrmk:        Opc = X86::VBLENDMPSZrmk;    break;
1229360784Sdim    case X86::VBROADCASTSDZ256mk: Opc = X86::VBLENDMPDZ256rmbk; break;
1230360784Sdim    case X86::VBROADCASTSDZmk:    Opc = X86::VBLENDMPDZrmbk;    break;
1231360784Sdim    case X86::VBROADCASTSSZ128mk: Opc = X86::VBLENDMPSZ128rmbk; break;
1232360784Sdim    case X86::VBROADCASTSSZ256mk: Opc = X86::VBLENDMPSZ256rmbk; break;
1233360784Sdim    case X86::VBROADCASTSSZmk:    Opc = X86::VBLENDMPSZrmbk;    break;
1234360784Sdim    case X86::VPBROADCASTDZ128mk: Opc = X86::VPBLENDMDZ128rmbk; break;
1235360784Sdim    case X86::VPBROADCASTDZ256mk: Opc = X86::VPBLENDMDZ256rmbk; break;
1236360784Sdim    case X86::VPBROADCASTDZmk:    Opc = X86::VPBLENDMDZrmbk;    break;
1237360784Sdim    case X86::VPBROADCASTQZ128mk: Opc = X86::VPBLENDMQZ128rmbk; break;
1238360784Sdim    case X86::VPBROADCASTQZ256mk: Opc = X86::VPBLENDMQZ256rmbk; break;
1239360784Sdim    case X86::VPBROADCASTQZmk:    Opc = X86::VPBLENDMQZrmbk;    break;
1240321369Sdim    }
1241321369Sdim
1242321369Sdim    NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1243321369Sdim              .add(Dest)
1244321369Sdim              .add(MI.getOperand(2))
1245321369Sdim              .add(Src)
1246321369Sdim              .add(MI.getOperand(3))
1247321369Sdim              .add(MI.getOperand(4))
1248321369Sdim              .add(MI.getOperand(5))
1249321369Sdim              .add(MI.getOperand(6))
1250321369Sdim              .add(MI.getOperand(7));
1251321369Sdim    break;
1252193323Sed  }
1253360784Sdim
1254321369Sdim  case X86::VMOVDQU8Z128rrk:
1255321369Sdim  case X86::VMOVDQU8Z256rrk:
1256321369Sdim  case X86::VMOVDQU8Zrrk:
1257321369Sdim  case X86::VMOVDQU16Z128rrk:
1258321369Sdim  case X86::VMOVDQU16Z256rrk:
1259321369Sdim  case X86::VMOVDQU16Zrrk:
1260321369Sdim  case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
1261321369Sdim  case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
1262321369Sdim  case X86::VMOVDQU32Zrrk:    case X86::VMOVDQA32Zrrk:
1263321369Sdim  case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
1264321369Sdim  case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
1265321369Sdim  case X86::VMOVDQU64Zrrk:    case X86::VMOVDQA64Zrrk:
1266321369Sdim  case X86::VMOVUPDZ128rrk:   case X86::VMOVAPDZ128rrk:
1267321369Sdim  case X86::VMOVUPDZ256rrk:   case X86::VMOVAPDZ256rrk:
1268321369Sdim  case X86::VMOVUPDZrrk:      case X86::VMOVAPDZrrk:
1269321369Sdim  case X86::VMOVUPSZ128rrk:   case X86::VMOVAPSZ128rrk:
1270321369Sdim  case X86::VMOVUPSZ256rrk:   case X86::VMOVAPSZ256rrk:
1271321369Sdim  case X86::VMOVUPSZrrk:      case X86::VMOVAPSZrrk: {
1272321369Sdim    unsigned Opc;
1273321369Sdim    switch (MIOpc) {
1274321369Sdim    default: llvm_unreachable("Unreachable!");
1275321369Sdim    case X86::VMOVDQU8Z128rrk:  Opc = X86::VPBLENDMBZ128rrk; break;
1276321369Sdim    case X86::VMOVDQU8Z256rrk:  Opc = X86::VPBLENDMBZ256rrk; break;
1277321369Sdim    case X86::VMOVDQU8Zrrk:     Opc = X86::VPBLENDMBZrrk;    break;
1278321369Sdim    case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
1279321369Sdim    case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
1280321369Sdim    case X86::VMOVDQU16Zrrk:    Opc = X86::VPBLENDMWZrrk;    break;
1281321369Sdim    case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1282321369Sdim    case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1283321369Sdim    case X86::VMOVDQU32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break;
1284321369Sdim    case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1285321369Sdim    case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1286321369Sdim    case X86::VMOVDQU64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break;
1287321369Sdim    case X86::VMOVUPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break;
1288321369Sdim    case X86::VMOVUPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break;
1289321369Sdim    case X86::VMOVUPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break;
1290321369Sdim    case X86::VMOVUPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break;
1291321369Sdim    case X86::VMOVUPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break;
1292321369Sdim    case X86::VMOVUPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break;
1293321369Sdim    case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1294321369Sdim    case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1295321369Sdim    case X86::VMOVDQA32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break;
1296321369Sdim    case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1297321369Sdim    case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1298321369Sdim    case X86::VMOVDQA64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break;
1299321369Sdim    case X86::VMOVAPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break;
1300321369Sdim    case X86::VMOVAPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break;
1301321369Sdim    case X86::VMOVAPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break;
1302321369Sdim    case X86::VMOVAPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break;
1303321369Sdim    case X86::VMOVAPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break;
1304321369Sdim    case X86::VMOVAPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break;
1305321369Sdim    }
1306193323Sed
1307321369Sdim    NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1308321369Sdim              .add(Dest)
1309321369Sdim              .add(MI.getOperand(2))
1310321369Sdim              .add(Src)
1311321369Sdim              .add(MI.getOperand(3));
1312321369Sdim    break;
1313321369Sdim  }
1314321369Sdim  }
1315321369Sdim
1316276479Sdim  if (!NewMI) return nullptr;
1317193323Sed
1318193323Sed  if (LV) {  // Update live variables
1319243830Sdim    if (Src.isKill())
1320309124Sdim      LV->replaceKillInstruction(Src.getReg(), MI, *NewMI);
1321243830Sdim    if (Dest.isDead())
1322309124Sdim      LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI);
1323193323Sed  }
1324193323Sed
1325309124Sdim  MFI->insert(MI.getIterator(), NewMI); // Insert the new inst
1326193323Sed  return NewMI;
1327193323Sed}
1328193323Sed
1329314564Sdim/// This determines which of three possible cases of a three source commute
1330314564Sdim/// the source indexes correspond to taking into account any mask operands.
1331314564Sdim/// All prevents commuting a passthru operand. Returns -1 if the commute isn't
1332314564Sdim/// possible.
1333314564Sdim/// Case 0 - Possible to commute the first and second operands.
1334314564Sdim/// Case 1 - Possible to commute the first and third operands.
1335314564Sdim/// Case 2 - Possible to commute the second and third operands.
1336341825Sdimstatic unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
1337341825Sdim                                       unsigned SrcOpIdx2) {
1338314564Sdim  // Put the lowest index to SrcOpIdx1 to simplify the checks below.
1339314564Sdim  if (SrcOpIdx1 > SrcOpIdx2)
1340314564Sdim    std::swap(SrcOpIdx1, SrcOpIdx2);
1341296417Sdim
1342314564Sdim  unsigned Op1 = 1, Op2 = 2, Op3 = 3;
1343314564Sdim  if (X86II::isKMasked(TSFlags)) {
1344314564Sdim    Op2++;
1345314564Sdim    Op3++;
1346314564Sdim  }
1347296417Sdim
1348314564Sdim  if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
1349314564Sdim    return 0;
1350314564Sdim  if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
1351314564Sdim    return 1;
1352314564Sdim  if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
1353314564Sdim    return 2;
1354341825Sdim  llvm_unreachable("Unknown three src commute case.");
1355314564Sdim}
1356296417Sdim
1357314564Sdimunsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
1358314564Sdim    const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
1359314564Sdim    const X86InstrFMA3Group &FMA3Group) const {
1360296417Sdim
1361314564Sdim  unsigned Opc = MI.getOpcode();
1362296417Sdim
1363314564Sdim  // TODO: Commuting the 1st operand of FMA*_Int requires some additional
1364314564Sdim  // analysis. The commute optimization is legal only if all users of FMA*_Int
1365314564Sdim  // use only the lowest element of the FMA*_Int instruction. Such analysis are
1366314564Sdim  // not implemented yet. So, just return 0 in that case.
1367314564Sdim  // When such analysis are available this place will be the right place for
1368314564Sdim  // calling it.
1369341825Sdim  assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&
1370341825Sdim         "Intrinsic instructions can't commute operand 1");
1371296417Sdim
1372314564Sdim  // Determine which case this commute is or if it can't be done.
1373341825Sdim  unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1374341825Sdim                                         SrcOpIdx2);
1375341825Sdim  assert(Case < 3 && "Unexpected case number!");
1376296417Sdim
1377314564Sdim  // Define the FMA forms mapping array that helps to map input FMA form
1378314564Sdim  // to output FMA form to preserve the operation semantics after
1379314564Sdim  // commuting the operands.
1380314564Sdim  const unsigned Form132Index = 0;
1381314564Sdim  const unsigned Form213Index = 1;
1382314564Sdim  const unsigned Form231Index = 2;
1383314564Sdim  static const unsigned FormMapping[][3] = {
1384314564Sdim    // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
1385314564Sdim    // FMA132 A, C, b; ==> FMA231 C, A, b;
1386314564Sdim    // FMA213 B, A, c; ==> FMA213 A, B, c;
1387314564Sdim    // FMA231 C, A, b; ==> FMA132 A, C, b;
1388314564Sdim    { Form231Index, Form213Index, Form132Index },
1389314564Sdim    // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
1390314564Sdim    // FMA132 A, c, B; ==> FMA132 B, c, A;
1391314564Sdim    // FMA213 B, a, C; ==> FMA231 C, a, B;
1392314564Sdim    // FMA231 C, a, B; ==> FMA213 B, a, C;
1393314564Sdim    { Form132Index, Form231Index, Form213Index },
1394314564Sdim    // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
1395314564Sdim    // FMA132 a, C, B; ==> FMA213 a, B, C;
1396314564Sdim    // FMA213 b, A, C; ==> FMA132 b, C, A;
1397314564Sdim    // FMA231 c, A, B; ==> FMA231 c, B, A;
1398314564Sdim    { Form213Index, Form132Index, Form231Index }
1399314564Sdim  };
1400296417Sdim
1401314564Sdim  unsigned FMAForms[3];
1402341825Sdim  FMAForms[0] = FMA3Group.get132Opcode();
1403341825Sdim  FMAForms[1] = FMA3Group.get213Opcode();
1404341825Sdim  FMAForms[2] = FMA3Group.get231Opcode();
1405314564Sdim  unsigned FormIndex;
1406314564Sdim  for (FormIndex = 0; FormIndex < 3; FormIndex++)
1407314564Sdim    if (Opc == FMAForms[FormIndex])
1408314564Sdim      break;
1409296417Sdim
1410314564Sdim  // Everything is ready, just adjust the FMA opcode and return it.
1411314564Sdim  FormIndex = FormMapping[Case][FormIndex];
1412314564Sdim  return FMAForms[FormIndex];
1413314564Sdim}
1414296417Sdim
1415341825Sdimstatic void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
1416314564Sdim                             unsigned SrcOpIdx2) {
1417314564Sdim  // Determine which case this commute is or if it can't be done.
1418341825Sdim  unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1419341825Sdim                                         SrcOpIdx2);
1420341825Sdim  assert(Case < 3 && "Unexpected case value!");
1421314564Sdim
1422314564Sdim  // For each case we need to swap two pairs of bits in the final immediate.
1423314564Sdim  static const uint8_t SwapMasks[3][4] = {
1424314564Sdim    { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
1425314564Sdim    { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
1426314564Sdim    { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
1427314564Sdim  };
1428314564Sdim
1429314564Sdim  uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
1430314564Sdim  // Clear out the bits we are swapping.
1431314564Sdim  uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
1432314564Sdim                           SwapMasks[Case][2] | SwapMasks[Case][3]);
1433314564Sdim  // If the immediate had a bit of the pair set, then set the opposite bit.
1434314564Sdim  if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
1435314564Sdim  if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
1436314564Sdim  if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
1437314564Sdim  if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
1438314564Sdim  MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
1439314564Sdim}
1440314564Sdim
1441341825Sdim// Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
1442314564Sdim// commuted.
1443314564Sdimstatic bool isCommutableVPERMV3Instruction(unsigned Opcode) {
1444314564Sdim#define VPERM_CASES(Suffix) \
1445314564Sdim  case X86::VPERMI2##Suffix##128rr:    case X86::VPERMT2##Suffix##128rr:    \
1446314564Sdim  case X86::VPERMI2##Suffix##256rr:    case X86::VPERMT2##Suffix##256rr:    \
1447314564Sdim  case X86::VPERMI2##Suffix##rr:       case X86::VPERMT2##Suffix##rr:       \
1448314564Sdim  case X86::VPERMI2##Suffix##128rm:    case X86::VPERMT2##Suffix##128rm:    \
1449314564Sdim  case X86::VPERMI2##Suffix##256rm:    case X86::VPERMT2##Suffix##256rm:    \
1450314564Sdim  case X86::VPERMI2##Suffix##rm:       case X86::VPERMT2##Suffix##rm:       \
1451314564Sdim  case X86::VPERMI2##Suffix##128rrkz:  case X86::VPERMT2##Suffix##128rrkz:  \
1452314564Sdim  case X86::VPERMI2##Suffix##256rrkz:  case X86::VPERMT2##Suffix##256rrkz:  \
1453314564Sdim  case X86::VPERMI2##Suffix##rrkz:     case X86::VPERMT2##Suffix##rrkz:     \
1454314564Sdim  case X86::VPERMI2##Suffix##128rmkz:  case X86::VPERMT2##Suffix##128rmkz:  \
1455314564Sdim  case X86::VPERMI2##Suffix##256rmkz:  case X86::VPERMT2##Suffix##256rmkz:  \
1456314564Sdim  case X86::VPERMI2##Suffix##rmkz:     case X86::VPERMT2##Suffix##rmkz:
1457314564Sdim
1458314564Sdim#define VPERM_CASES_BROADCAST(Suffix) \
1459314564Sdim  VPERM_CASES(Suffix) \
1460314564Sdim  case X86::VPERMI2##Suffix##128rmb:   case X86::VPERMT2##Suffix##128rmb:   \
1461314564Sdim  case X86::VPERMI2##Suffix##256rmb:   case X86::VPERMT2##Suffix##256rmb:   \
1462314564Sdim  case X86::VPERMI2##Suffix##rmb:      case X86::VPERMT2##Suffix##rmb:      \
1463314564Sdim  case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
1464314564Sdim  case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
1465314564Sdim  case X86::VPERMI2##Suffix##rmbkz:    case X86::VPERMT2##Suffix##rmbkz:
1466314564Sdim
1467314564Sdim  switch (Opcode) {
1468314564Sdim  default: return false;
1469314564Sdim  VPERM_CASES(B)
1470314564Sdim  VPERM_CASES_BROADCAST(D)
1471314564Sdim  VPERM_CASES_BROADCAST(PD)
1472314564Sdim  VPERM_CASES_BROADCAST(PS)
1473314564Sdim  VPERM_CASES_BROADCAST(Q)
1474314564Sdim  VPERM_CASES(W)
1475314564Sdim    return true;
1476296417Sdim  }
1477314564Sdim#undef VPERM_CASES_BROADCAST
1478314564Sdim#undef VPERM_CASES
1479296417Sdim}
1480296417Sdim
1481314564Sdim// Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
1482341825Sdim// from the I opcode to the T opcode and vice versa.
1483314564Sdimstatic unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
1484314564Sdim#define VPERM_CASES(Orig, New) \
1485314564Sdim  case X86::Orig##128rr:    return X86::New##128rr;   \
1486314564Sdim  case X86::Orig##128rrkz:  return X86::New##128rrkz; \
1487314564Sdim  case X86::Orig##128rm:    return X86::New##128rm;   \
1488314564Sdim  case X86::Orig##128rmkz:  return X86::New##128rmkz; \
1489314564Sdim  case X86::Orig##256rr:    return X86::New##256rr;   \
1490314564Sdim  case X86::Orig##256rrkz:  return X86::New##256rrkz; \
1491314564Sdim  case X86::Orig##256rm:    return X86::New##256rm;   \
1492314564Sdim  case X86::Orig##256rmkz:  return X86::New##256rmkz; \
1493314564Sdim  case X86::Orig##rr:       return X86::New##rr;      \
1494314564Sdim  case X86::Orig##rrkz:     return X86::New##rrkz;    \
1495314564Sdim  case X86::Orig##rm:       return X86::New##rm;      \
1496314564Sdim  case X86::Orig##rmkz:     return X86::New##rmkz;
1497314564Sdim
1498314564Sdim#define VPERM_CASES_BROADCAST(Orig, New) \
1499314564Sdim  VPERM_CASES(Orig, New) \
1500314564Sdim  case X86::Orig##128rmb:   return X86::New##128rmb;   \
1501314564Sdim  case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
1502314564Sdim  case X86::Orig##256rmb:   return X86::New##256rmb;   \
1503314564Sdim  case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
1504314564Sdim  case X86::Orig##rmb:      return X86::New##rmb;      \
1505314564Sdim  case X86::Orig##rmbkz:    return X86::New##rmbkz;
1506314564Sdim
1507314564Sdim  switch (Opcode) {
1508314564Sdim  VPERM_CASES(VPERMI2B, VPERMT2B)
1509314564Sdim  VPERM_CASES_BROADCAST(VPERMI2D,  VPERMT2D)
1510314564Sdim  VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
1511314564Sdim  VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
1512314564Sdim  VPERM_CASES_BROADCAST(VPERMI2Q,  VPERMT2Q)
1513314564Sdim  VPERM_CASES(VPERMI2W, VPERMT2W)
1514314564Sdim  VPERM_CASES(VPERMT2B, VPERMI2B)
1515314564Sdim  VPERM_CASES_BROADCAST(VPERMT2D,  VPERMI2D)
1516314564Sdim  VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
1517314564Sdim  VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
1518314564Sdim  VPERM_CASES_BROADCAST(VPERMT2Q,  VPERMI2Q)
1519314564Sdim  VPERM_CASES(VPERMT2W, VPERMI2W)
1520314564Sdim  }
1521314564Sdim
1522314564Sdim  llvm_unreachable("Unreachable!");
1523314564Sdim#undef VPERM_CASES_BROADCAST
1524314564Sdim#undef VPERM_CASES
1525314564Sdim}
1526314564Sdim
1527309124SdimMachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
1528296417Sdim                                                   unsigned OpIdx1,
1529296417Sdim                                                   unsigned OpIdx2) const {
1530309124Sdim  auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
1531309124Sdim    if (NewMI)
1532309124Sdim      return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
1533309124Sdim    return MI;
1534309124Sdim  };
1535309124Sdim
1536309124Sdim  switch (MI.getOpcode()) {
1537193323Sed  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1538193323Sed  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1539193323Sed  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1540193323Sed  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1541193323Sed  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1542193323Sed  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1543193323Sed    unsigned Opc;
1544193323Sed    unsigned Size;
1545309124Sdim    switch (MI.getOpcode()) {
1546198090Srdivacky    default: llvm_unreachable("Unreachable!");
1547193323Sed    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1548193323Sed    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1549193323Sed    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1550193323Sed    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1551193323Sed    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1552193323Sed    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1553193323Sed    }
1554309124Sdim    unsigned Amt = MI.getOperand(3).getImm();
1555309124Sdim    auto &WorkingMI = cloneIfNew(MI);
1556309124Sdim    WorkingMI.setDesc(get(Opc));
1557309124Sdim    WorkingMI.getOperand(3).setImm(Size - Amt);
1558309124Sdim    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1559309124Sdim                                                   OpIdx1, OpIdx2);
1560193323Sed  }
1561321369Sdim  case X86::PFSUBrr:
1562321369Sdim  case X86::PFSUBRrr: {
1563321369Sdim    // PFSUB  x, y: x = x - y
1564321369Sdim    // PFSUBR x, y: x = y - x
1565321369Sdim    unsigned Opc =
1566321369Sdim        (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr);
1567321369Sdim    auto &WorkingMI = cloneIfNew(MI);
1568321369Sdim    WorkingMI.setDesc(get(Opc));
1569321369Sdim    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1570321369Sdim                                                   OpIdx1, OpIdx2);
1571321369Sdim  }
1572280031Sdim  case X86::BLENDPDrri:
1573280031Sdim  case X86::BLENDPSrri:
1574280031Sdim  case X86::VBLENDPDrri:
1575280031Sdim  case X86::VBLENDPSrri:
1576341825Sdim    // If we're optimizing for size, try to use MOVSD/MOVSS.
1577353358Sdim    if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
1578341825Sdim      unsigned Mask, Opc;
1579341825Sdim      switch (MI.getOpcode()) {
1580341825Sdim      default: llvm_unreachable("Unreachable!");
1581341825Sdim      case X86::BLENDPDrri:  Opc = X86::MOVSDrr;  Mask = 0x03; break;
1582341825Sdim      case X86::BLENDPSrri:  Opc = X86::MOVSSrr;  Mask = 0x0F; break;
1583341825Sdim      case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break;
1584341825Sdim      case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break;
1585341825Sdim      }
1586341825Sdim      if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
1587341825Sdim        auto &WorkingMI = cloneIfNew(MI);
1588341825Sdim        WorkingMI.setDesc(get(Opc));
1589341825Sdim        WorkingMI.RemoveOperand(3);
1590341825Sdim        return TargetInstrInfo::commuteInstructionImpl(WorkingMI,
1591341825Sdim                                                       /*NewMI=*/false,
1592341825Sdim                                                       OpIdx1, OpIdx2);
1593341825Sdim      }
1594341825Sdim    }
1595341825Sdim    LLVM_FALLTHROUGH;
1596341825Sdim  case X86::PBLENDWrri:
1597280031Sdim  case X86::VBLENDPDYrri:
1598280031Sdim  case X86::VBLENDPSYrri:
1599280031Sdim  case X86::VPBLENDDrri:
1600280031Sdim  case X86::VPBLENDWrri:
1601280031Sdim  case X86::VPBLENDDYrri:
1602280031Sdim  case X86::VPBLENDWYrri:{
1603353358Sdim    int8_t Mask;
1604309124Sdim    switch (MI.getOpcode()) {
1605280031Sdim    default: llvm_unreachable("Unreachable!");
1606353358Sdim    case X86::BLENDPDrri:    Mask = (int8_t)0x03; break;
1607353358Sdim    case X86::BLENDPSrri:    Mask = (int8_t)0x0F; break;
1608353358Sdim    case X86::PBLENDWrri:    Mask = (int8_t)0xFF; break;
1609353358Sdim    case X86::VBLENDPDrri:   Mask = (int8_t)0x03; break;
1610353358Sdim    case X86::VBLENDPSrri:   Mask = (int8_t)0x0F; break;
1611353358Sdim    case X86::VBLENDPDYrri:  Mask = (int8_t)0x0F; break;
1612353358Sdim    case X86::VBLENDPSYrri:  Mask = (int8_t)0xFF; break;
1613353358Sdim    case X86::VPBLENDDrri:   Mask = (int8_t)0x0F; break;
1614353358Sdim    case X86::VPBLENDWrri:   Mask = (int8_t)0xFF; break;
1615353358Sdim    case X86::VPBLENDDYrri:  Mask = (int8_t)0xFF; break;
1616353358Sdim    case X86::VPBLENDWYrri:  Mask = (int8_t)0xFF; break;
1617280031Sdim    }
1618280031Sdim    // Only the least significant bits of Imm are used.
1619353358Sdim    // Using int8_t to ensure it will be sign extended to the int64_t that
1620353358Sdim    // setImm takes in order to match isel behavior.
1621353358Sdim    int8_t Imm = MI.getOperand(3).getImm() & Mask;
1622309124Sdim    auto &WorkingMI = cloneIfNew(MI);
1623309124Sdim    WorkingMI.getOperand(3).setImm(Mask ^ Imm);
1624309124Sdim    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1625309124Sdim                                                   OpIdx1, OpIdx2);
1626280031Sdim  }
1627353358Sdim  case X86::INSERTPSrr:
1628353358Sdim  case X86::VINSERTPSrr:
1629353358Sdim  case X86::VINSERTPSZrr: {
1630353358Sdim    unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
1631353358Sdim    unsigned ZMask = Imm & 15;
1632353358Sdim    unsigned DstIdx = (Imm >> 4) & 3;
1633353358Sdim    unsigned SrcIdx = (Imm >> 6) & 3;
1634353358Sdim
1635353358Sdim    // We can commute insertps if we zero 2 of the elements, the insertion is
1636353358Sdim    // "inline" and we don't override the insertion with a zero.
1637353358Sdim    if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
1638353358Sdim        countPopulation(ZMask) == 2) {
1639353358Sdim      unsigned AltIdx = findFirstSet((ZMask | (1 << DstIdx)) ^ 15);
1640353358Sdim      assert(AltIdx < 4 && "Illegal insertion index");
1641353358Sdim      unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
1642353358Sdim      auto &WorkingMI = cloneIfNew(MI);
1643353358Sdim      WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm);
1644353358Sdim      return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1645353358Sdim                                                     OpIdx1, OpIdx2);
1646353358Sdim    }
1647353358Sdim    return nullptr;
1648353358Sdim  }
1649314564Sdim  case X86::MOVSDrr:
1650314564Sdim  case X86::MOVSSrr:
1651314564Sdim  case X86::VMOVSDrr:
1652314564Sdim  case X86::VMOVSSrr:{
1653314564Sdim    // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
1654353358Sdim    if (Subtarget.hasSSE41()) {
1655353358Sdim      unsigned Mask, Opc;
1656353358Sdim      switch (MI.getOpcode()) {
1657353358Sdim      default: llvm_unreachable("Unreachable!");
1658353358Sdim      case X86::MOVSDrr:  Opc = X86::BLENDPDrri;  Mask = 0x02; break;
1659353358Sdim      case X86::MOVSSrr:  Opc = X86::BLENDPSrri;  Mask = 0x0E; break;
1660353358Sdim      case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
1661353358Sdim      case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
1662353358Sdim      }
1663314564Sdim
1664353358Sdim      auto &WorkingMI = cloneIfNew(MI);
1665353358Sdim      WorkingMI.setDesc(get(Opc));
1666353358Sdim      WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
1667353358Sdim      return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1668353358Sdim                                                     OpIdx1, OpIdx2);
1669314564Sdim    }
1670314564Sdim
1671353358Sdim    // Convert to SHUFPD.
1672353358Sdim    assert(MI.getOpcode() == X86::MOVSDrr &&
1673353358Sdim           "Can only commute MOVSDrr without SSE4.1");
1674353358Sdim
1675314564Sdim    auto &WorkingMI = cloneIfNew(MI);
1676353358Sdim    WorkingMI.setDesc(get(X86::SHUFPDrri));
1677353358Sdim    WorkingMI.addOperand(MachineOperand::CreateImm(0x02));
1678314564Sdim    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1679314564Sdim                                                   OpIdx1, OpIdx2);
1680314564Sdim  }
1681353358Sdim  case X86::SHUFPDrri: {
1682353358Sdim    // Commute to MOVSD.
1683353358Sdim    assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
1684353358Sdim    auto &WorkingMI = cloneIfNew(MI);
1685353358Sdim    WorkingMI.setDesc(get(X86::MOVSDrr));
1686353358Sdim    WorkingMI.RemoveOperand(3);
1687353358Sdim    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1688353358Sdim                                                   OpIdx1, OpIdx2);
1689353358Sdim  }
1690288943Sdim  case X86::PCLMULQDQrr:
1691327952Sdim  case X86::VPCLMULQDQrr:
1692327952Sdim  case X86::VPCLMULQDQYrr:
1693327952Sdim  case X86::VPCLMULQDQZrr:
1694327952Sdim  case X86::VPCLMULQDQZ128rr:
1695327952Sdim  case X86::VPCLMULQDQZ256rr: {
1696288943Sdim    // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
1697288943Sdim    // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
1698309124Sdim    unsigned Imm = MI.getOperand(3).getImm();
1699288943Sdim    unsigned Src1Hi = Imm & 0x01;
1700288943Sdim    unsigned Src2Hi = Imm & 0x10;
1701309124Sdim    auto &WorkingMI = cloneIfNew(MI);
1702309124Sdim    WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
1703309124Sdim    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1704309124Sdim                                                   OpIdx1, OpIdx2);
1705288943Sdim  }
1706321369Sdim  case X86::VPCMPBZ128rri:  case X86::VPCMPUBZ128rri:
1707321369Sdim  case X86::VPCMPBZ256rri:  case X86::VPCMPUBZ256rri:
1708321369Sdim  case X86::VPCMPBZrri:     case X86::VPCMPUBZrri:
1709321369Sdim  case X86::VPCMPDZ128rri:  case X86::VPCMPUDZ128rri:
1710321369Sdim  case X86::VPCMPDZ256rri:  case X86::VPCMPUDZ256rri:
1711321369Sdim  case X86::VPCMPDZrri:     case X86::VPCMPUDZrri:
1712321369Sdim  case X86::VPCMPQZ128rri:  case X86::VPCMPUQZ128rri:
1713321369Sdim  case X86::VPCMPQZ256rri:  case X86::VPCMPUQZ256rri:
1714321369Sdim  case X86::VPCMPQZrri:     case X86::VPCMPUQZrri:
1715321369Sdim  case X86::VPCMPWZ128rri:  case X86::VPCMPUWZ128rri:
1716321369Sdim  case X86::VPCMPWZ256rri:  case X86::VPCMPUWZ256rri:
1717321369Sdim  case X86::VPCMPWZrri:     case X86::VPCMPUWZrri:
1718321369Sdim  case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik:
1719321369Sdim  case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik:
1720321369Sdim  case X86::VPCMPBZrrik:    case X86::VPCMPUBZrrik:
1721321369Sdim  case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik:
1722321369Sdim  case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik:
1723321369Sdim  case X86::VPCMPDZrrik:    case X86::VPCMPUDZrrik:
1724321369Sdim  case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik:
1725321369Sdim  case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik:
1726321369Sdim  case X86::VPCMPQZrrik:    case X86::VPCMPUQZrrik:
1727321369Sdim  case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik:
1728321369Sdim  case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik:
1729321369Sdim  case X86::VPCMPWZrrik:    case X86::VPCMPUWZrrik: {
1730314564Sdim    // Flip comparison mode immediate (if necessary).
1731321369Sdim    unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7;
1732341825Sdim    Imm = X86::getSwappedVPCMPImm(Imm);
1733314564Sdim    auto &WorkingMI = cloneIfNew(MI);
1734321369Sdim    WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm);
1735314564Sdim    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1736314564Sdim                                                   OpIdx1, OpIdx2);
1737314564Sdim  }
1738288943Sdim  case X86::VPCOMBri: case X86::VPCOMUBri:
1739288943Sdim  case X86::VPCOMDri: case X86::VPCOMUDri:
1740288943Sdim  case X86::VPCOMQri: case X86::VPCOMUQri:
1741288943Sdim  case X86::VPCOMWri: case X86::VPCOMUWri: {
1742288943Sdim    // Flip comparison mode immediate (if necessary).
1743309124Sdim    unsigned Imm = MI.getOperand(3).getImm() & 0x7;
1744341825Sdim    Imm = X86::getSwappedVPCOMImm(Imm);
1745309124Sdim    auto &WorkingMI = cloneIfNew(MI);
1746309124Sdim    WorkingMI.getOperand(3).setImm(Imm);
1747309124Sdim    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1748309124Sdim                                                   OpIdx1, OpIdx2);
1749288943Sdim  }
1750360784Sdim  case X86::VCMPSDZrr:
1751360784Sdim  case X86::VCMPSSZrr:
1752360784Sdim  case X86::VCMPPDZrri:
1753360784Sdim  case X86::VCMPPSZrri:
1754360784Sdim  case X86::VCMPPDZ128rri:
1755360784Sdim  case X86::VCMPPSZ128rri:
1756360784Sdim  case X86::VCMPPDZ256rri:
1757360784Sdim  case X86::VCMPPSZ256rri:
1758360784Sdim  case X86::VCMPPDZrrik:
1759360784Sdim  case X86::VCMPPSZrrik:
1760360784Sdim  case X86::VCMPPDZ128rrik:
1761360784Sdim  case X86::VCMPPSZ128rrik:
1762360784Sdim  case X86::VCMPPDZ256rrik:
1763360784Sdim  case X86::VCMPPSZ256rrik: {
1764360784Sdim    unsigned Imm =
1765360784Sdim                MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f;
1766360784Sdim    Imm = X86::getSwappedVCMPImm(Imm);
1767360784Sdim    auto &WorkingMI = cloneIfNew(MI);
1768360784Sdim    WorkingMI.getOperand(MI.getNumExplicitOperands() - 1).setImm(Imm);
1769360784Sdim    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1770360784Sdim                                                   OpIdx1, OpIdx2);
1771360784Sdim  }
1772309124Sdim  case X86::VPERM2F128rr:
1773309124Sdim  case X86::VPERM2I128rr: {
1774309124Sdim    // Flip permute source immediate.
1775309124Sdim    // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
1776309124Sdim    // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
1777353358Sdim    int8_t Imm = MI.getOperand(3).getImm() & 0xFF;
1778309124Sdim    auto &WorkingMI = cloneIfNew(MI);
1779309124Sdim    WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
1780309124Sdim    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1781309124Sdim                                                   OpIdx1, OpIdx2);
1782309124Sdim  }
1783314564Sdim  case X86::MOVHLPSrr:
1784341825Sdim  case X86::UNPCKHPDrr:
1785341825Sdim  case X86::VMOVHLPSrr:
1786341825Sdim  case X86::VUNPCKHPDrr:
1787341825Sdim  case X86::VMOVHLPSZrr:
1788341825Sdim  case X86::VUNPCKHPDZ128rr: {
1789341825Sdim    assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
1790314564Sdim
1791314564Sdim    unsigned Opc = MI.getOpcode();
1792314564Sdim    switch (Opc) {
1793341825Sdim    default: llvm_unreachable("Unreachable!");
1794341825Sdim    case X86::MOVHLPSrr:       Opc = X86::UNPCKHPDrr;      break;
1795341825Sdim    case X86::UNPCKHPDrr:      Opc = X86::MOVHLPSrr;       break;
1796341825Sdim    case X86::VMOVHLPSrr:      Opc = X86::VUNPCKHPDrr;     break;
1797341825Sdim    case X86::VUNPCKHPDrr:     Opc = X86::VMOVHLPSrr;      break;
1798341825Sdim    case X86::VMOVHLPSZrr:     Opc = X86::VUNPCKHPDZ128rr; break;
1799341825Sdim    case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr;     break;
1800314564Sdim    }
1801314564Sdim    auto &WorkingMI = cloneIfNew(MI);
1802314564Sdim    WorkingMI.setDesc(get(Opc));
1803314564Sdim    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1804314564Sdim                                                   OpIdx1, OpIdx2);
1805314564Sdim  }
1806353358Sdim  case X86::CMOV16rr:  case X86::CMOV32rr:  case X86::CMOV64rr: {
1807309124Sdim    auto &WorkingMI = cloneIfNew(MI);
1808353358Sdim    unsigned OpNo = MI.getDesc().getNumOperands() - 1;
1809353358Sdim    X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
1810353358Sdim    WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC));
1811309124Sdim    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1812309124Sdim                                                   OpIdx1, OpIdx2);
1813193323Sed  }
1814314564Sdim  case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi:
1815314564Sdim  case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi:
1816314564Sdim  case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi:
1817314564Sdim  case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi:
1818314564Sdim  case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi:
1819314564Sdim  case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi:
1820321369Sdim  case X86::VPTERNLOGDZrrik:
1821321369Sdim  case X86::VPTERNLOGDZ128rrik:
1822321369Sdim  case X86::VPTERNLOGDZ256rrik:
1823321369Sdim  case X86::VPTERNLOGQZrrik:
1824321369Sdim  case X86::VPTERNLOGQZ128rrik:
1825321369Sdim  case X86::VPTERNLOGQZ256rrik:
1826314564Sdim  case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz:
1827314564Sdim  case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
1828314564Sdim  case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
1829314564Sdim  case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz:
1830314564Sdim  case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
1831321369Sdim  case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
1832321369Sdim  case X86::VPTERNLOGDZ128rmbi:
1833321369Sdim  case X86::VPTERNLOGDZ256rmbi:
1834321369Sdim  case X86::VPTERNLOGDZrmbi:
1835321369Sdim  case X86::VPTERNLOGQZ128rmbi:
1836321369Sdim  case X86::VPTERNLOGQZ256rmbi:
1837321369Sdim  case X86::VPTERNLOGQZrmbi:
1838321369Sdim  case X86::VPTERNLOGDZ128rmbikz:
1839321369Sdim  case X86::VPTERNLOGDZ256rmbikz:
1840321369Sdim  case X86::VPTERNLOGDZrmbikz:
1841321369Sdim  case X86::VPTERNLOGQZ128rmbikz:
1842321369Sdim  case X86::VPTERNLOGQZ256rmbikz:
1843321369Sdim  case X86::VPTERNLOGQZrmbikz: {
1844314564Sdim    auto &WorkingMI = cloneIfNew(MI);
1845341825Sdim    commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2);
1846314564Sdim    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1847314564Sdim                                                   OpIdx1, OpIdx2);
1848314564Sdim  }
1849314564Sdim  default: {
1850314564Sdim    if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
1851314564Sdim      unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
1852314564Sdim      auto &WorkingMI = cloneIfNew(MI);
1853314564Sdim      WorkingMI.setDesc(get(Opc));
1854314564Sdim      return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1855314564Sdim                                                     OpIdx1, OpIdx2);
1856314564Sdim    }
1857314564Sdim
1858341825Sdim    const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
1859341825Sdim                                                      MI.getDesc().TSFlags);
1860314564Sdim    if (FMA3Group) {
1861314564Sdim      unsigned Opc =
1862314564Sdim        getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
1863309124Sdim      auto &WorkingMI = cloneIfNew(MI);
1864309124Sdim      WorkingMI.setDesc(get(Opc));
1865309124Sdim      return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1866309124Sdim                                                     OpIdx1, OpIdx2);
1867296417Sdim    }
1868309124Sdim
1869296417Sdim    return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
1870193323Sed  }
1871314564Sdim  }
1872193323Sed}
1873193323Sed
1874341825Sdimbool
1875341825SdimX86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
1876341825Sdim                                            unsigned &SrcOpIdx1,
1877341825Sdim                                            unsigned &SrcOpIdx2,
1878341825Sdim                                            bool IsIntrinsic) const {
1879314564Sdim  uint64_t TSFlags = MI.getDesc().TSFlags;
1880314564Sdim
1881314564Sdim  unsigned FirstCommutableVecOp = 1;
1882314564Sdim  unsigned LastCommutableVecOp = 3;
1883341825Sdim  unsigned KMaskOp = -1U;
1884314564Sdim  if (X86II::isKMasked(TSFlags)) {
1885341825Sdim    // For k-zero-masked operations it is Ok to commute the first vector
1886341825Sdim    // operand.
1887341825Sdim    // For regular k-masked operations a conservative choice is done as the
1888341825Sdim    // elements of the first vector operand, for which the corresponding bit
1889341825Sdim    // in the k-mask operand is set to 0, are copied to the result of the
1890341825Sdim    // instruction.
1891341825Sdim    // TODO/FIXME: The commute still may be legal if it is known that the
1892341825Sdim    // k-mask operand is set to either all ones or all zeroes.
1893341825Sdim    // It is also Ok to commute the 1st operand if all users of MI use only
1894341825Sdim    // the elements enabled by the k-mask operand. For example,
1895341825Sdim    //   v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
1896341825Sdim    //                                                     : v1[i];
1897341825Sdim    //   VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
1898341825Sdim    //                                  // Ok, to commute v1 in FMADD213PSZrk.
1899341825Sdim
1900314564Sdim    // The k-mask operand has index = 2 for masked and zero-masked operations.
1901314564Sdim    KMaskOp = 2;
1902314564Sdim
1903314564Sdim    // The operand with index = 1 is used as a source for those elements for
1904314564Sdim    // which the corresponding bit in the k-mask is set to 0.
1905314564Sdim    if (X86II::isKMergeMasked(TSFlags))
1906314564Sdim      FirstCommutableVecOp = 3;
1907314564Sdim
1908314564Sdim    LastCommutableVecOp++;
1909341825Sdim  } else if (IsIntrinsic) {
1910341825Sdim    // Commuting the first operand of an intrinsic instruction isn't possible
1911341825Sdim    // unless we can prove that only the lowest element of the result is used.
1912341825Sdim    FirstCommutableVecOp = 2;
1913314564Sdim  }
1914314564Sdim
1915314564Sdim  if (isMem(MI, LastCommutableVecOp))
1916314564Sdim    LastCommutableVecOp--;
1917314564Sdim
1918296417Sdim  // Only the first RegOpsNum operands are commutable.
1919296417Sdim  // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
1920296417Sdim  // that the operand is not specified/fixed.
1921296417Sdim  if (SrcOpIdx1 != CommuteAnyOperandIndex &&
1922314564Sdim      (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
1923314564Sdim       SrcOpIdx1 == KMaskOp))
1924296417Sdim    return false;
1925296417Sdim  if (SrcOpIdx2 != CommuteAnyOperandIndex &&
1926314564Sdim      (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
1927314564Sdim       SrcOpIdx2 == KMaskOp))
1928296417Sdim    return false;
1929296417Sdim
1930296417Sdim  // Look for two different register operands assumed to be commutable
1931296417Sdim  // regardless of the FMA opcode. The FMA opcode is adjusted later.
1932296417Sdim  if (SrcOpIdx1 == CommuteAnyOperandIndex ||
1933296417Sdim      SrcOpIdx2 == CommuteAnyOperandIndex) {
1934296417Sdim    unsigned CommutableOpIdx2 = SrcOpIdx2;
1935296417Sdim
1936296417Sdim    // At least one of operands to be commuted is not specified and
1937296417Sdim    // this method is free to choose appropriate commutable operands.
1938296417Sdim    if (SrcOpIdx1 == SrcOpIdx2)
1939296417Sdim      // Both of operands are not fixed. By default set one of commutable
1940296417Sdim      // operands to the last register operand of the instruction.
1941314564Sdim      CommutableOpIdx2 = LastCommutableVecOp;
1942296417Sdim    else if (SrcOpIdx2 == CommuteAnyOperandIndex)
1943296417Sdim      // Only one of operands is not fixed.
1944296417Sdim      CommutableOpIdx2 = SrcOpIdx1;
1945296417Sdim
1946296417Sdim    // CommutableOpIdx2 is well defined now. Let's choose another commutable
1947296417Sdim    // operand and assign its index to CommutableOpIdx1.
1948360784Sdim    Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
1949353358Sdim
1950353358Sdim    unsigned CommutableOpIdx1;
1951314564Sdim    for (CommutableOpIdx1 = LastCommutableVecOp;
1952314564Sdim         CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
1953314564Sdim      // Just ignore and skip the k-mask operand.
1954314564Sdim      if (CommutableOpIdx1 == KMaskOp)
1955314564Sdim        continue;
1956314564Sdim
1957296417Sdim      // The commuted operands must have different registers.
1958296417Sdim      // Otherwise, the commute transformation does not change anything and
1959296417Sdim      // is useless then.
1960309124Sdim      if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
1961296417Sdim        break;
1962296417Sdim    }
1963296417Sdim
1964296417Sdim    // No appropriate commutable operands were found.
1965314564Sdim    if (CommutableOpIdx1 < FirstCommutableVecOp)
1966296417Sdim      return false;
1967296417Sdim
1968296417Sdim    // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
1969296417Sdim    // to return those values.
1970296417Sdim    if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
1971296417Sdim                              CommutableOpIdx1, CommutableOpIdx2))
1972296417Sdim      return false;
1973296417Sdim  }
1974296417Sdim
1975314564Sdim  return true;
1976296417Sdim}
1977296417Sdim
1978360784Sdimbool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI,
1979360784Sdim                                         unsigned &SrcOpIdx1,
1980276479Sdim                                         unsigned &SrcOpIdx2) const {
1981314564Sdim  const MCInstrDesc &Desc = MI.getDesc();
1982314564Sdim  if (!Desc.isCommutable())
1983314564Sdim    return false;
1984314564Sdim
1985309124Sdim  switch (MI.getOpcode()) {
1986314564Sdim  case X86::CMPSDrr:
1987314564Sdim  case X86::CMPSSrr:
1988309124Sdim  case X86::CMPPDrri:
1989309124Sdim  case X86::CMPPSrri:
1990314564Sdim  case X86::VCMPSDrr:
1991314564Sdim  case X86::VCMPSSrr:
1992309124Sdim  case X86::VCMPPDrri:
1993309124Sdim  case X86::VCMPPSrri:
1994309124Sdim  case X86::VCMPPDYrri:
1995314564Sdim  case X86::VCMPPSYrri:
1996314564Sdim  case X86::VCMPSDZrr:
1997314564Sdim  case X86::VCMPSSZrr:
1998314564Sdim  case X86::VCMPPDZrri:
1999314564Sdim  case X86::VCMPPSZrri:
2000314564Sdim  case X86::VCMPPDZ128rri:
2001314564Sdim  case X86::VCMPPSZ128rri:
2002314564Sdim  case X86::VCMPPDZ256rri:
2003353358Sdim  case X86::VCMPPSZ256rri:
2004353358Sdim  case X86::VCMPPDZrrik:
2005353358Sdim  case X86::VCMPPSZrrik:
2006353358Sdim  case X86::VCMPPDZ128rrik:
2007353358Sdim  case X86::VCMPPSZ128rrik:
2008353358Sdim  case X86::VCMPPDZ256rrik:
2009353358Sdim  case X86::VCMPPSZ256rrik: {
2010353358Sdim    unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0;
2011353358Sdim
2012309124Sdim    // Float comparison can be safely commuted for
2013309124Sdim    // Ordered/Unordered/Equal/NotEqual tests
2014353358Sdim    unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7;
2015309124Sdim    switch (Imm) {
2016360784Sdim    default:
2017360784Sdim      // EVEX versions can be commuted.
2018360784Sdim      if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX)
2019360784Sdim        break;
2020360784Sdim      return false;
2021309124Sdim    case 0x00: // EQUAL
2022309124Sdim    case 0x03: // UNORDERED
2023309124Sdim    case 0x04: // NOT EQUAL
2024309124Sdim    case 0x07: // ORDERED
2025360784Sdim      break;
2026288943Sdim    }
2027360784Sdim
2028360784Sdim    // The indices of the commutable operands are 1 and 2 (or 2 and 3
2029360784Sdim    // when masked).
2030360784Sdim    // Assign them to the returned operand indices here.
2031360784Sdim    return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
2032360784Sdim                                2 + OpOffset);
2033276479Sdim  }
2034314564Sdim  case X86::MOVSSrr:
2035353358Sdim    // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
2036353358Sdim    // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
2037353358Sdim    // AVX implies sse4.1.
2038314564Sdim    if (Subtarget.hasSSE41())
2039314564Sdim      return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2040314564Sdim    return false;
2041353358Sdim  case X86::SHUFPDrri:
2042353358Sdim    // We can commute this to MOVSD.
2043353358Sdim    if (MI.getOperand(3).getImm() == 0x02)
2044353358Sdim      return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2045353358Sdim    return false;
2046341825Sdim  case X86::MOVHLPSrr:
2047341825Sdim  case X86::UNPCKHPDrr:
2048341825Sdim  case X86::VMOVHLPSrr:
2049341825Sdim  case X86::VUNPCKHPDrr:
2050341825Sdim  case X86::VMOVHLPSZrr:
2051341825Sdim  case X86::VUNPCKHPDZ128rr:
2052341825Sdim    if (Subtarget.hasSSE2())
2053341825Sdim      return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2054341825Sdim    return false;
2055314564Sdim  case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi:
2056314564Sdim  case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi:
2057314564Sdim  case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi:
2058314564Sdim  case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi:
2059314564Sdim  case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi:
2060314564Sdim  case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi:
2061321369Sdim  case X86::VPTERNLOGDZrrik:
2062321369Sdim  case X86::VPTERNLOGDZ128rrik:
2063321369Sdim  case X86::VPTERNLOGDZ256rrik:
2064321369Sdim  case X86::VPTERNLOGQZrrik:
2065321369Sdim  case X86::VPTERNLOGQZ128rrik:
2066321369Sdim  case X86::VPTERNLOGQZ256rrik:
2067314564Sdim  case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz:
2068314564Sdim  case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
2069314564Sdim  case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
2070314564Sdim  case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz:
2071314564Sdim  case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
2072314564Sdim  case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
2073321369Sdim  case X86::VPTERNLOGDZ128rmbi:
2074321369Sdim  case X86::VPTERNLOGDZ256rmbi:
2075321369Sdim  case X86::VPTERNLOGDZrmbi:
2076321369Sdim  case X86::VPTERNLOGQZ128rmbi:
2077321369Sdim  case X86::VPTERNLOGQZ256rmbi:
2078321369Sdim  case X86::VPTERNLOGQZrmbi:
2079321369Sdim  case X86::VPTERNLOGDZ128rmbikz:
2080321369Sdim  case X86::VPTERNLOGDZ256rmbikz:
2081321369Sdim  case X86::VPTERNLOGDZrmbikz:
2082321369Sdim  case X86::VPTERNLOGQZ128rmbikz:
2083321369Sdim  case X86::VPTERNLOGQZ256rmbikz:
2084321369Sdim  case X86::VPTERNLOGQZrmbikz:
2085314564Sdim    return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2086360784Sdim  case X86::VPDPWSSDZ128r:
2087360784Sdim  case X86::VPDPWSSDZ128rk:
2088360784Sdim  case X86::VPDPWSSDZ128rkz:
2089360784Sdim  case X86::VPDPWSSDZ256r:
2090360784Sdim  case X86::VPDPWSSDZ256rk:
2091360784Sdim  case X86::VPDPWSSDZ256rkz:
2092360784Sdim  case X86::VPDPWSSDZr:
2093360784Sdim  case X86::VPDPWSSDZrk:
2094360784Sdim  case X86::VPDPWSSDZrkz:
2095360784Sdim  case X86::VPDPWSSDSZ128r:
2096360784Sdim  case X86::VPDPWSSDSZ128rk:
2097360784Sdim  case X86::VPDPWSSDSZ128rkz:
2098360784Sdim  case X86::VPDPWSSDSZ256r:
2099360784Sdim  case X86::VPDPWSSDSZ256rk:
2100360784Sdim  case X86::VPDPWSSDSZ256rkz:
2101360784Sdim  case X86::VPDPWSSDSZr:
2102360784Sdim  case X86::VPDPWSSDSZrk:
2103360784Sdim  case X86::VPDPWSSDSZrkz:
2104327952Sdim  case X86::VPMADD52HUQZ128r:
2105327952Sdim  case X86::VPMADD52HUQZ128rk:
2106327952Sdim  case X86::VPMADD52HUQZ128rkz:
2107327952Sdim  case X86::VPMADD52HUQZ256r:
2108327952Sdim  case X86::VPMADD52HUQZ256rk:
2109327952Sdim  case X86::VPMADD52HUQZ256rkz:
2110327952Sdim  case X86::VPMADD52HUQZr:
2111327952Sdim  case X86::VPMADD52HUQZrk:
2112327952Sdim  case X86::VPMADD52HUQZrkz:
2113327952Sdim  case X86::VPMADD52LUQZ128r:
2114327952Sdim  case X86::VPMADD52LUQZ128rk:
2115327952Sdim  case X86::VPMADD52LUQZ128rkz:
2116327952Sdim  case X86::VPMADD52LUQZ256r:
2117327952Sdim  case X86::VPMADD52LUQZ256rk:
2118327952Sdim  case X86::VPMADD52LUQZ256rkz:
2119327952Sdim  case X86::VPMADD52LUQZr:
2120327952Sdim  case X86::VPMADD52LUQZrk:
2121327952Sdim  case X86::VPMADD52LUQZrkz: {
2122327952Sdim    unsigned CommutableOpIdx1 = 2;
2123327952Sdim    unsigned CommutableOpIdx2 = 3;
2124341825Sdim    if (X86II::isKMasked(Desc.TSFlags)) {
2125327952Sdim      // Skip the mask register.
2126327952Sdim      ++CommutableOpIdx1;
2127327952Sdim      ++CommutableOpIdx2;
2128327952Sdim    }
2129327952Sdim    if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2130327952Sdim                              CommutableOpIdx1, CommutableOpIdx2))
2131327952Sdim      return false;
2132327952Sdim    if (!MI.getOperand(SrcOpIdx1).isReg() ||
2133327952Sdim        !MI.getOperand(SrcOpIdx2).isReg())
2134327952Sdim      // No idea.
2135327952Sdim      return false;
2136327952Sdim    return true;
2137327952Sdim  }
2138327952Sdim
2139309124Sdim  default:
2140341825Sdim    const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2141341825Sdim                                                      MI.getDesc().TSFlags);
2142314564Sdim    if (FMA3Group)
2143341825Sdim      return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
2144341825Sdim                                           FMA3Group->isIntrinsic());
2145314564Sdim
2146314564Sdim    // Handled masked instructions since we need to skip over the mask input
2147314564Sdim    // and the preserved input.
2148341825Sdim    if (X86II::isKMasked(Desc.TSFlags)) {
2149314564Sdim      // First assume that the first input is the mask operand and skip past it.
2150314564Sdim      unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
2151314564Sdim      unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
2152314564Sdim      // Check if the first input is tied. If there isn't one then we only
2153314564Sdim      // need to skip the mask operand which we did above.
2154314564Sdim      if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
2155314564Sdim                                             MCOI::TIED_TO) != -1)) {
2156314564Sdim        // If this is zero masking instruction with a tied operand, we need to
2157314564Sdim        // move the first index back to the first input since this must
2158314564Sdim        // be a 3 input instruction and we want the first two non-mask inputs.
2159314564Sdim        // Otherwise this is a 2 input instruction with a preserved input and
2160314564Sdim        // mask, so we need to move the indices to skip one more input.
2161341825Sdim        if (X86II::isKMergeMasked(Desc.TSFlags)) {
2162314564Sdim          ++CommutableOpIdx1;
2163314564Sdim          ++CommutableOpIdx2;
2164341825Sdim        } else {
2165341825Sdim          --CommutableOpIdx1;
2166314564Sdim        }
2167314564Sdim      }
2168314564Sdim
2169314564Sdim      if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2170314564Sdim                                CommutableOpIdx1, CommutableOpIdx2))
2171314564Sdim        return false;
2172314564Sdim
2173314564Sdim      if (!MI.getOperand(SrcOpIdx1).isReg() ||
2174314564Sdim          !MI.getOperand(SrcOpIdx2).isReg())
2175314564Sdim        // No idea.
2176314564Sdim        return false;
2177314564Sdim      return true;
2178314564Sdim    }
2179314564Sdim
2180309124Sdim    return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2181309124Sdim  }
2182296417Sdim  return false;
2183276479Sdim}
2184276479Sdim
2185353358SdimX86::CondCode X86::getCondFromBranch(const MachineInstr &MI) {
2186353358Sdim  switch (MI.getOpcode()) {
2187193323Sed  default: return X86::COND_INVALID;
2188353358Sdim  case X86::JCC_1:
2189353358Sdim    return static_cast<X86::CondCode>(
2190353358Sdim        MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2191193323Sed  }
2192193323Sed}
2193193323Sed
2194353358Sdim/// Return condition code of a SETCC opcode.
2195353358SdimX86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) {
2196353358Sdim  switch (MI.getOpcode()) {
2197239462Sdim  default: return X86::COND_INVALID;
2198353358Sdim  case X86::SETCCr: case X86::SETCCm:
2199353358Sdim    return static_cast<X86::CondCode>(
2200353358Sdim        MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2201239462Sdim  }
2202239462Sdim}
2203239462Sdim
2204288943Sdim/// Return condition code of a CMov opcode.
2205353358SdimX86::CondCode X86::getCondFromCMov(const MachineInstr &MI) {
2206353358Sdim  switch (MI.getOpcode()) {
2207239462Sdim  default: return X86::COND_INVALID;
2208353358Sdim  case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr:
2209353358Sdim  case X86::CMOV16rm: case X86::CMOV32rm: case X86::CMOV64rm:
2210353358Sdim    return static_cast<X86::CondCode>(
2211353358Sdim        MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2212239462Sdim  }
2213239462Sdim}
2214239462Sdim
2215288943Sdim/// Return the inverse of the specified condition,
2216193323Sed/// e.g. turning COND_E to COND_NE.
2217193323SedX86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2218193323Sed  switch (CC) {
2219198090Srdivacky  default: llvm_unreachable("Illegal condition code!");
2220193323Sed  case X86::COND_E:  return X86::COND_NE;
2221193323Sed  case X86::COND_NE: return X86::COND_E;
2222193323Sed  case X86::COND_L:  return X86::COND_GE;
2223193323Sed  case X86::COND_LE: return X86::COND_G;
2224193323Sed  case X86::COND_G:  return X86::COND_LE;
2225193323Sed  case X86::COND_GE: return X86::COND_L;
2226193323Sed  case X86::COND_B:  return X86::COND_AE;
2227193323Sed  case X86::COND_BE: return X86::COND_A;
2228193323Sed  case X86::COND_A:  return X86::COND_BE;
2229193323Sed  case X86::COND_AE: return X86::COND_B;
2230193323Sed  case X86::COND_S:  return X86::COND_NS;
2231193323Sed  case X86::COND_NS: return X86::COND_S;
2232193323Sed  case X86::COND_P:  return X86::COND_NP;
2233193323Sed  case X86::COND_NP: return X86::COND_P;
2234193323Sed  case X86::COND_O:  return X86::COND_NO;
2235193323Sed  case X86::COND_NO: return X86::COND_O;
2236309124Sdim  case X86::COND_NE_OR_P:  return X86::COND_E_AND_NP;
2237309124Sdim  case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
2238193323Sed  }
2239193323Sed}
2240193323Sed
2241288943Sdim/// Assuming the flags are set by MI(a,b), return the condition code if we
2242288943Sdim/// modify the instructions such that flags are set by MI(b,a).
2243239462Sdimstatic X86::CondCode getSwappedCondition(X86::CondCode CC) {
2244239462Sdim  switch (CC) {
2245239462Sdim  default: return X86::COND_INVALID;
2246239462Sdim  case X86::COND_E:  return X86::COND_E;
2247239462Sdim  case X86::COND_NE: return X86::COND_NE;
2248239462Sdim  case X86::COND_L:  return X86::COND_G;
2249239462Sdim  case X86::COND_LE: return X86::COND_GE;
2250239462Sdim  case X86::COND_G:  return X86::COND_L;
2251239462Sdim  case X86::COND_GE: return X86::COND_LE;
2252239462Sdim  case X86::COND_B:  return X86::COND_A;
2253239462Sdim  case X86::COND_BE: return X86::COND_AE;
2254239462Sdim  case X86::COND_A:  return X86::COND_B;
2255239462Sdim  case X86::COND_AE: return X86::COND_BE;
2256239462Sdim  }
2257239462Sdim}
2258239462Sdim
2259321369Sdimstd::pair<X86::CondCode, bool>
2260321369SdimX86::getX86ConditionCode(CmpInst::Predicate Predicate) {
2261321369Sdim  X86::CondCode CC = X86::COND_INVALID;
2262321369Sdim  bool NeedSwap = false;
2263321369Sdim  switch (Predicate) {
2264321369Sdim  default: break;
2265321369Sdim  // Floating-point Predicates
2266321369Sdim  case CmpInst::FCMP_UEQ: CC = X86::COND_E;       break;
2267321369Sdim  case CmpInst::FCMP_OLT: NeedSwap = true;        LLVM_FALLTHROUGH;
2268321369Sdim  case CmpInst::FCMP_OGT: CC = X86::COND_A;       break;
2269321369Sdim  case CmpInst::FCMP_OLE: NeedSwap = true;        LLVM_FALLTHROUGH;
2270321369Sdim  case CmpInst::FCMP_OGE: CC = X86::COND_AE;      break;
2271321369Sdim  case CmpInst::FCMP_UGT: NeedSwap = true;        LLVM_FALLTHROUGH;
2272321369Sdim  case CmpInst::FCMP_ULT: CC = X86::COND_B;       break;
2273321369Sdim  case CmpInst::FCMP_UGE: NeedSwap = true;        LLVM_FALLTHROUGH;
2274321369Sdim  case CmpInst::FCMP_ULE: CC = X86::COND_BE;      break;
2275321369Sdim  case CmpInst::FCMP_ONE: CC = X86::COND_NE;      break;
2276321369Sdim  case CmpInst::FCMP_UNO: CC = X86::COND_P;       break;
2277321369Sdim  case CmpInst::FCMP_ORD: CC = X86::COND_NP;      break;
2278321369Sdim  case CmpInst::FCMP_OEQ:                         LLVM_FALLTHROUGH;
2279321369Sdim  case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
2280321369Sdim
2281321369Sdim  // Integer Predicates
2282321369Sdim  case CmpInst::ICMP_EQ:  CC = X86::COND_E;       break;
2283321369Sdim  case CmpInst::ICMP_NE:  CC = X86::COND_NE;      break;
2284321369Sdim  case CmpInst::ICMP_UGT: CC = X86::COND_A;       break;
2285321369Sdim  case CmpInst::ICMP_UGE: CC = X86::COND_AE;      break;
2286321369Sdim  case CmpInst::ICMP_ULT: CC = X86::COND_B;       break;
2287321369Sdim  case CmpInst::ICMP_ULE: CC = X86::COND_BE;      break;
2288321369Sdim  case CmpInst::ICMP_SGT: CC = X86::COND_G;       break;
2289321369Sdim  case CmpInst::ICMP_SGE: CC = X86::COND_GE;      break;
2290321369Sdim  case CmpInst::ICMP_SLT: CC = X86::COND_L;       break;
2291321369Sdim  case CmpInst::ICMP_SLE: CC = X86::COND_LE;      break;
2292321369Sdim  }
2293321369Sdim
2294321369Sdim  return std::make_pair(CC, NeedSwap);
2295321369Sdim}
2296321369Sdim
2297353358Sdim/// Return a setcc opcode based on whether it has memory operand.
2298353358Sdimunsigned X86::getSETOpc(bool HasMemoryOperand) {
2299353358Sdim  return HasMemoryOperand ? X86::SETCCr : X86::SETCCm;
2300239462Sdim}
2301239462Sdim
2302353358Sdim/// Return a cmov opcode for the given register size in bytes, and operand type.
2303353358Sdimunsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) {
2304239462Sdim  switch(RegBytes) {
2305239462Sdim  default: llvm_unreachable("Illegal register size!");
2306353358Sdim  case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr;
2307353358Sdim  case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr;
2308360661Sdim  case 8: return HasMemoryOperand ? X86::CMOV64rm : X86::CMOV64rr;
2309239462Sdim  }
2310239462Sdim}
2311239462Sdim
2312341825Sdim/// Get the VPCMP immediate for the given condition.
2313341825Sdimunsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
2314341825Sdim  switch (CC) {
2315341825Sdim  default: llvm_unreachable("Unexpected SETCC condition");
2316341825Sdim  case ISD::SETNE:  return 4;
2317341825Sdim  case ISD::SETEQ:  return 0;
2318341825Sdim  case ISD::SETULT:
2319341825Sdim  case ISD::SETLT: return 1;
2320341825Sdim  case ISD::SETUGT:
2321341825Sdim  case ISD::SETGT: return 6;
2322341825Sdim  case ISD::SETUGE:
2323341825Sdim  case ISD::SETGE: return 5;
2324341825Sdim  case ISD::SETULE:
2325341825Sdim  case ISD::SETLE: return 2;
2326341825Sdim  }
2327341825Sdim}
2328341825Sdim
2329360784Sdim/// Get the VPCMP immediate if the operands are swapped.
2330341825Sdimunsigned X86::getSwappedVPCMPImm(unsigned Imm) {
2331341825Sdim  switch (Imm) {
2332341825Sdim  default: llvm_unreachable("Unreachable!");
2333341825Sdim  case 0x01: Imm = 0x06; break; // LT  -> NLE
2334341825Sdim  case 0x02: Imm = 0x05; break; // LE  -> NLT
2335341825Sdim  case 0x05: Imm = 0x02; break; // NLT -> LE
2336341825Sdim  case 0x06: Imm = 0x01; break; // NLE -> LT
2337341825Sdim  case 0x00: // EQ
2338341825Sdim  case 0x03: // FALSE
2339341825Sdim  case 0x04: // NE
2340341825Sdim  case 0x07: // TRUE
2341341825Sdim    break;
2342341825Sdim  }
2343341825Sdim
2344341825Sdim  return Imm;
2345341825Sdim}
2346341825Sdim
2347360784Sdim/// Get the VPCOM immediate if the operands are swapped.
2348341825Sdimunsigned X86::getSwappedVPCOMImm(unsigned Imm) {
2349341825Sdim  switch (Imm) {
2350341825Sdim  default: llvm_unreachable("Unreachable!");
2351341825Sdim  case 0x00: Imm = 0x02; break; // LT -> GT
2352341825Sdim  case 0x01: Imm = 0x03; break; // LE -> GE
2353341825Sdim  case 0x02: Imm = 0x00; break; // GT -> LT
2354341825Sdim  case 0x03: Imm = 0x01; break; // GE -> LE
2355341825Sdim  case 0x04: // EQ
2356341825Sdim  case 0x05: // NE
2357341825Sdim  case 0x06: // FALSE
2358341825Sdim  case 0x07: // TRUE
2359341825Sdim    break;
2360341825Sdim  }
2361341825Sdim
2362341825Sdim  return Imm;
2363341825Sdim}
2364341825Sdim
2365360784Sdim/// Get the VCMP immediate if the operands are swapped.
2366360784Sdimunsigned X86::getSwappedVCMPImm(unsigned Imm) {
2367360784Sdim  // Only need the lower 2 bits to distinquish.
2368360784Sdim  switch (Imm & 0x3) {
2369360784Sdim  default: llvm_unreachable("Unreachable!");
2370360784Sdim  case 0x00: case 0x03:
2371360784Sdim    // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
2372360784Sdim    break;
2373360784Sdim  case 0x01: case 0x02:
2374360784Sdim    // Need to toggle bits 3:0. Bit 4 stays the same.
2375360784Sdim    Imm ^= 0xf;
2376360784Sdim    break;
2377360784Sdim  }
2378360784Sdim
2379360784Sdim  return Imm;
2380360784Sdim}
2381360784Sdim
2382309124Sdimbool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
2383309124Sdim  if (!MI.isTerminator()) return false;
2384218893Sdim
2385193323Sed  // Conditional branch is a special case.
2386309124Sdim  if (MI.isBranch() && !MI.isBarrier())
2387193323Sed    return true;
2388309124Sdim  if (!MI.isPredicable())
2389193323Sed    return true;
2390193323Sed  return !isPredicated(MI);
2391193323Sed}
2392193323Sed
2393321369Sdimbool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
2394321369Sdim  switch (MI.getOpcode()) {
2395321369Sdim  case X86::TCRETURNdi:
2396321369Sdim  case X86::TCRETURNri:
2397321369Sdim  case X86::TCRETURNmi:
2398321369Sdim  case X86::TCRETURNdi64:
2399321369Sdim  case X86::TCRETURNri64:
2400321369Sdim  case X86::TCRETURNmi64:
2401321369Sdim    return true;
2402321369Sdim  default:
2403321369Sdim    return false;
2404321369Sdim  }
2405321369Sdim}
2406321369Sdim
2407321369Sdimbool X86InstrInfo::canMakeTailCallConditional(
2408321369Sdim    SmallVectorImpl<MachineOperand> &BranchCond,
2409321369Sdim    const MachineInstr &TailCall) const {
2410321369Sdim  if (TailCall.getOpcode() != X86::TCRETURNdi &&
2411321369Sdim      TailCall.getOpcode() != X86::TCRETURNdi64) {
2412321369Sdim    // Only direct calls can be done with a conditional branch.
2413321369Sdim    return false;
2414321369Sdim  }
2415321369Sdim
2416321369Sdim  const MachineFunction *MF = TailCall.getParent()->getParent();
2417321369Sdim  if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
2418321369Sdim    // Conditional tail calls confuse the Win64 unwinder.
2419321369Sdim    return false;
2420321369Sdim  }
2421321369Sdim
2422321369Sdim  assert(BranchCond.size() == 1);
2423321369Sdim  if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
2424321369Sdim    // Can't make a conditional tail call with this condition.
2425321369Sdim    return false;
2426321369Sdim  }
2427321369Sdim
2428321369Sdim  const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
2429321369Sdim  if (X86FI->getTCReturnAddrDelta() != 0 ||
2430321369Sdim      TailCall.getOperand(1).getImm() != 0) {
2431321369Sdim    // A conditional tail call cannot do any stack adjustment.
2432321369Sdim    return false;
2433321369Sdim  }
2434321369Sdim
2435321369Sdim  return true;
2436321369Sdim}
2437321369Sdim
2438321369Sdimvoid X86InstrInfo::replaceBranchWithTailCall(
2439321369Sdim    MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
2440321369Sdim    const MachineInstr &TailCall) const {
2441321369Sdim  assert(canMakeTailCallConditional(BranchCond, TailCall));
2442321369Sdim
2443321369Sdim  MachineBasicBlock::iterator I = MBB.end();
2444321369Sdim  while (I != MBB.begin()) {
2445321369Sdim    --I;
2446341825Sdim    if (I->isDebugInstr())
2447321369Sdim      continue;
2448321369Sdim    if (!I->isBranch())
2449321369Sdim      assert(0 && "Can't find the branch to replace!");
2450321369Sdim
2451353358Sdim    X86::CondCode CC = X86::getCondFromBranch(*I);
2452321369Sdim    assert(BranchCond.size() == 1);
2453321369Sdim    if (CC != BranchCond[0].getImm())
2454321369Sdim      continue;
2455321369Sdim
2456321369Sdim    break;
2457321369Sdim  }
2458321369Sdim
2459321369Sdim  unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
2460321369Sdim                                                         : X86::TCRETURNdi64cc;
2461321369Sdim
2462321369Sdim  auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
2463321369Sdim  MIB->addOperand(TailCall.getOperand(0)); // Destination.
2464321369Sdim  MIB.addImm(0); // Stack offset (not used).
2465321369Sdim  MIB->addOperand(BranchCond[0]); // Condition.
2466321369Sdim  MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
2467321369Sdim
2468321369Sdim  // Add implicit uses and defs of all live regs potentially clobbered by the
2469321369Sdim  // call. This way they still appear live across the call.
2470321369Sdim  LivePhysRegs LiveRegs(getRegisterInfo());
2471321369Sdim  LiveRegs.addLiveOuts(MBB);
2472344779Sdim  SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
2473321369Sdim  LiveRegs.stepForward(*MIB, Clobbers);
2474321369Sdim  for (const auto &C : Clobbers) {
2475321369Sdim    MIB.addReg(C.first, RegState::Implicit);
2476321369Sdim    MIB.addReg(C.first, RegState::Implicit | RegState::Define);
2477321369Sdim  }
2478321369Sdim
2479321369Sdim  I->eraseFromParent();
2480321369Sdim}
2481321369Sdim
2482309124Sdim// Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
2483309124Sdim// not be a fallthrough MBB now due to layout changes). Return nullptr if the
2484309124Sdim// fallthrough MBB cannot be identified.
2485309124Sdimstatic MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
2486309124Sdim                                            MachineBasicBlock *TBB) {
2487309124Sdim  // Look for non-EHPad successors other than TBB. If we find exactly one, it
2488309124Sdim  // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
2489309124Sdim  // and fallthrough MBB. If we find more than one, we cannot identify the
2490309124Sdim  // fallthrough MBB and should return nullptr.
2491309124Sdim  MachineBasicBlock *FallthroughBB = nullptr;
2492309124Sdim  for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) {
2493309124Sdim    if ((*SI)->isEHPad() || (*SI == TBB && FallthroughBB))
2494309124Sdim      continue;
2495309124Sdim    // Return a nullptr if we found more than one fallthrough successor.
2496309124Sdim    if (FallthroughBB && FallthroughBB != TBB)
2497309124Sdim      return nullptr;
2498309124Sdim    FallthroughBB = *SI;
2499309124Sdim  }
2500309124Sdim  return FallthroughBB;
2501309124Sdim}
2502309124Sdim
2503288943Sdimbool X86InstrInfo::AnalyzeBranchImpl(
2504288943Sdim    MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
2505288943Sdim    SmallVectorImpl<MachineOperand> &Cond,
2506288943Sdim    SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
2507288943Sdim
2508193323Sed  // Start from the bottom of the block and work up, examining the
2509193323Sed  // terminator instructions.
2510193323Sed  MachineBasicBlock::iterator I = MBB.end();
2511207618Srdivacky  MachineBasicBlock::iterator UnCondBrIter = MBB.end();
2512193323Sed  while (I != MBB.begin()) {
2513193323Sed    --I;
2514341825Sdim    if (I->isDebugInstr())
2515206083Srdivacky      continue;
2516200581Srdivacky
2517200581Srdivacky    // Working from the bottom, when we see a non-terminator instruction, we're
2518200581Srdivacky    // done.
2519309124Sdim    if (!isUnpredicatedTerminator(*I))
2520193323Sed      break;
2521200581Srdivacky
2522200581Srdivacky    // A terminator that isn't a branch can't easily be handled by this
2523200581Srdivacky    // analysis.
2524234353Sdim    if (!I->isBranch())
2525193323Sed      return true;
2526200581Srdivacky
2527193323Sed    // Handle unconditional branches.
2528280031Sdim    if (I->getOpcode() == X86::JMP_1) {
2529207618Srdivacky      UnCondBrIter = I;
2530207618Srdivacky
2531193323Sed      if (!AllowModify) {
2532193323Sed        TBB = I->getOperand(0).getMBB();
2533193323Sed        continue;
2534193323Sed      }
2535193323Sed
2536193323Sed      // If the block has any instructions after a JMP, delete them.
2537276479Sdim      while (std::next(I) != MBB.end())
2538276479Sdim        std::next(I)->eraseFromParent();
2539200581Srdivacky
2540193323Sed      Cond.clear();
2541276479Sdim      FBB = nullptr;
2542200581Srdivacky
2543193323Sed      // Delete the JMP if it's equivalent to a fall-through.
2544193323Sed      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
2545276479Sdim        TBB = nullptr;
2546193323Sed        I->eraseFromParent();
2547193323Sed        I = MBB.end();
2548207618Srdivacky        UnCondBrIter = MBB.end();
2549193323Sed        continue;
2550193323Sed      }
2551200581Srdivacky
2552207618Srdivacky      // TBB is used to indicate the unconditional destination.
2553193323Sed      TBB = I->getOperand(0).getMBB();
2554193323Sed      continue;
2555193323Sed    }
2556200581Srdivacky
2557193323Sed    // Handle conditional branches.
2558353358Sdim    X86::CondCode BranchCode = X86::getCondFromBranch(*I);
2559193323Sed    if (BranchCode == X86::COND_INVALID)
2560193323Sed      return true;  // Can't handle indirect branch.
2561200581Srdivacky
2562344779Sdim    // In practice we should never have an undef eflags operand, if we do
2563344779Sdim    // abort here as we are not prepared to preserve the flag.
2564353358Sdim    if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef())
2565344779Sdim      return true;
2566344779Sdim
2567193323Sed    // Working from the bottom, handle the first conditional branch.
2568193323Sed    if (Cond.empty()) {
2569207618Srdivacky      MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
2570207618Srdivacky      if (AllowModify && UnCondBrIter != MBB.end() &&
2571207618Srdivacky          MBB.isLayoutSuccessor(TargetBB)) {
2572207618Srdivacky        // If we can modify the code and it ends in something like:
2573207618Srdivacky        //
2574207618Srdivacky        //     jCC L1
2575207618Srdivacky        //     jmp L2
2576207618Srdivacky        //   L1:
2577207618Srdivacky        //     ...
2578207618Srdivacky        //   L2:
2579207618Srdivacky        //
2580207618Srdivacky        // Then we can change this to:
2581207618Srdivacky        //
2582207618Srdivacky        //     jnCC L2
2583207618Srdivacky        //   L1:
2584207618Srdivacky        //     ...
2585207618Srdivacky        //   L2:
2586207618Srdivacky        //
2587207618Srdivacky        // Which is a bit more efficient.
2588207618Srdivacky        // We conditionally jump to the fall-through block.
2589207618Srdivacky        BranchCode = GetOppositeBranchCondition(BranchCode);
2590207618Srdivacky        MachineBasicBlock::iterator OldInst = I;
2591207618Srdivacky
2592353358Sdim        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JCC_1))
2593353358Sdim          .addMBB(UnCondBrIter->getOperand(0).getMBB())
2594353358Sdim          .addImm(BranchCode);
2595280031Sdim        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
2596207618Srdivacky          .addMBB(TargetBB);
2597207618Srdivacky
2598207618Srdivacky        OldInst->eraseFromParent();
2599207618Srdivacky        UnCondBrIter->eraseFromParent();
2600207618Srdivacky
2601207618Srdivacky        // Restart the analysis.
2602207618Srdivacky        UnCondBrIter = MBB.end();
2603207618Srdivacky        I = MBB.end();
2604207618Srdivacky        continue;
2605207618Srdivacky      }
2606207618Srdivacky
2607193323Sed      FBB = TBB;
2608193323Sed      TBB = I->getOperand(0).getMBB();
2609193323Sed      Cond.push_back(MachineOperand::CreateImm(BranchCode));
2610309124Sdim      CondBranches.push_back(&*I);
2611193323Sed      continue;
2612193323Sed    }
2613200581Srdivacky
2614200581Srdivacky    // Handle subsequent conditional branches. Only handle the case where all
2615200581Srdivacky    // conditional branches branch to the same destination and their condition
2616200581Srdivacky    // opcodes fit one of the special multi-branch idioms.
2617193323Sed    assert(Cond.size() == 1);
2618193323Sed    assert(TBB);
2619200581Srdivacky
2620200581Srdivacky    // If the conditions are the same, we can leave them alone.
2621193323Sed    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
2622309124Sdim    auto NewTBB = I->getOperand(0).getMBB();
2623309124Sdim    if (OldBranchCode == BranchCode && TBB == NewTBB)
2624193323Sed      continue;
2625200581Srdivacky
2626200581Srdivacky    // If they differ, see if they fit one of the known patterns. Theoretically,
2627200581Srdivacky    // we could handle more patterns here, but we shouldn't expect to see them
2628200581Srdivacky    // if instruction selection has done a reasonable job.
2629309124Sdim    if (TBB == NewTBB &&
2630309124Sdim               ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
2631309124Sdim                (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
2632193323Sed      BranchCode = X86::COND_NE_OR_P;
2633309124Sdim    } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
2634309124Sdim               (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
2635309124Sdim      if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
2636309124Sdim        return true;
2637309124Sdim
2638309124Sdim      // X86::COND_E_AND_NP usually has two different branch destinations.
2639309124Sdim      //
2640309124Sdim      // JP B1
2641309124Sdim      // JE B2
2642309124Sdim      // JMP B1
2643309124Sdim      // B1:
2644309124Sdim      // B2:
2645309124Sdim      //
2646309124Sdim      // Here this condition branches to B2 only if NP && E. It has another
2647309124Sdim      // equivalent form:
2648309124Sdim      //
2649309124Sdim      // JNE B1
2650309124Sdim      // JNP B2
2651309124Sdim      // JMP B1
2652309124Sdim      // B1:
2653309124Sdim      // B2:
2654309124Sdim      //
2655309124Sdim      // Similarly it branches to B2 only if E && NP. That is why this condition
2656309124Sdim      // is named with COND_E_AND_NP.
2657309124Sdim      BranchCode = X86::COND_E_AND_NP;
2658309124Sdim    } else
2659193323Sed      return true;
2660200581Srdivacky
2661193323Sed    // Update the MachineOperand.
2662193323Sed    Cond[0].setImm(BranchCode);
2663309124Sdim    CondBranches.push_back(&*I);
2664193323Sed  }
2665193323Sed
2666193323Sed  return false;
2667193323Sed}
2668193323Sed
2669309124Sdimbool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
2670288943Sdim                                 MachineBasicBlock *&TBB,
2671288943Sdim                                 MachineBasicBlock *&FBB,
2672288943Sdim                                 SmallVectorImpl<MachineOperand> &Cond,
2673288943Sdim                                 bool AllowModify) const {
2674288943Sdim  SmallVector<MachineInstr *, 4> CondBranches;
2675288943Sdim  return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
2676288943Sdim}
2677288943Sdim
2678309124Sdimbool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
2679288943Sdim                                          MachineBranchPredicate &MBP,
2680288943Sdim                                          bool AllowModify) const {
2681288943Sdim  using namespace std::placeholders;
2682288943Sdim
2683288943Sdim  SmallVector<MachineOperand, 4> Cond;
2684288943Sdim  SmallVector<MachineInstr *, 4> CondBranches;
2685288943Sdim  if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
2686288943Sdim                        AllowModify))
2687288943Sdim    return true;
2688288943Sdim
2689288943Sdim  if (Cond.size() != 1)
2690288943Sdim    return true;
2691288943Sdim
2692288943Sdim  assert(MBP.TrueDest && "expected!");
2693288943Sdim
2694288943Sdim  if (!MBP.FalseDest)
2695288943Sdim    MBP.FalseDest = MBB.getNextNode();
2696288943Sdim
2697288943Sdim  const TargetRegisterInfo *TRI = &getRegisterInfo();
2698288943Sdim
2699288943Sdim  MachineInstr *ConditionDef = nullptr;
2700288943Sdim  bool SingleUseCondition = true;
2701288943Sdim
2702288943Sdim  for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) {
2703288943Sdim    if (I->modifiesRegister(X86::EFLAGS, TRI)) {
2704288943Sdim      ConditionDef = &*I;
2705288943Sdim      break;
2706288943Sdim    }
2707288943Sdim
2708288943Sdim    if (I->readsRegister(X86::EFLAGS, TRI))
2709288943Sdim      SingleUseCondition = false;
2710288943Sdim  }
2711288943Sdim
2712288943Sdim  if (!ConditionDef)
2713288943Sdim    return true;
2714288943Sdim
2715288943Sdim  if (SingleUseCondition) {
2716288943Sdim    for (auto *Succ : MBB.successors())
2717288943Sdim      if (Succ->isLiveIn(X86::EFLAGS))
2718288943Sdim        SingleUseCondition = false;
2719288943Sdim  }
2720288943Sdim
2721288943Sdim  MBP.ConditionDef = ConditionDef;
2722288943Sdim  MBP.SingleUseCondition = SingleUseCondition;
2723288943Sdim
2724288943Sdim  // Currently we only recognize the simple pattern:
2725288943Sdim  //
2726288943Sdim  //   test %reg, %reg
2727288943Sdim  //   je %label
2728288943Sdim  //
2729288943Sdim  const unsigned TestOpcode =
2730288943Sdim      Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
2731288943Sdim
2732288943Sdim  if (ConditionDef->getOpcode() == TestOpcode &&
2733288943Sdim      ConditionDef->getNumOperands() == 3 &&
2734288943Sdim      ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
2735288943Sdim      (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
2736288943Sdim    MBP.LHS = ConditionDef->getOperand(0);
2737288943Sdim    MBP.RHS = MachineOperand::CreateImm(0);
2738288943Sdim    MBP.Predicate = Cond[0].getImm() == X86::COND_NE
2739288943Sdim                        ? MachineBranchPredicate::PRED_NE
2740288943Sdim                        : MachineBranchPredicate::PRED_EQ;
2741288943Sdim    return false;
2742288943Sdim  }
2743288943Sdim
2744288943Sdim  return true;
2745288943Sdim}
2746288943Sdim
2747314564Sdimunsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
2748314564Sdim                                    int *BytesRemoved) const {
2749314564Sdim  assert(!BytesRemoved && "code size not handled");
2750314564Sdim
2751193323Sed  MachineBasicBlock::iterator I = MBB.end();
2752193323Sed  unsigned Count = 0;
2753193323Sed
2754193323Sed  while (I != MBB.begin()) {
2755193323Sed    --I;
2756341825Sdim    if (I->isDebugInstr())
2757206083Srdivacky      continue;
2758280031Sdim    if (I->getOpcode() != X86::JMP_1 &&
2759353358Sdim        X86::getCondFromBranch(*I) == X86::COND_INVALID)
2760193323Sed      break;
2761193323Sed    // Remove the branch.
2762193323Sed    I->eraseFromParent();
2763193323Sed    I = MBB.end();
2764193323Sed    ++Count;
2765193323Sed  }
2766218893Sdim
2767193323Sed  return Count;
2768193323Sed}
2769193323Sed
2770314564Sdimunsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
2771309124Sdim                                    MachineBasicBlock *TBB,
2772309124Sdim                                    MachineBasicBlock *FBB,
2773309124Sdim                                    ArrayRef<MachineOperand> Cond,
2774314564Sdim                                    const DebugLoc &DL,
2775314564Sdim                                    int *BytesAdded) const {
2776193323Sed  // Shouldn't be a fall through.
2777314564Sdim  assert(TBB && "insertBranch must not be told to insert a fallthrough");
2778193323Sed  assert((Cond.size() == 1 || Cond.size() == 0) &&
2779193323Sed         "X86 branch conditions have one component!");
2780314564Sdim  assert(!BytesAdded && "code size not handled");
2781193323Sed
2782193323Sed  if (Cond.empty()) {
2783193323Sed    // Unconditional branch?
2784193323Sed    assert(!FBB && "Unconditional branch with multiple successors!");
2785280031Sdim    BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
2786193323Sed    return 1;
2787193323Sed  }
2788193323Sed
2789309124Sdim  // If FBB is null, it is implied to be a fall-through block.
2790309124Sdim  bool FallThru = FBB == nullptr;
2791309124Sdim
2792193323Sed  // Conditional branch.
2793193323Sed  unsigned Count = 0;
2794193323Sed  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
2795193323Sed  switch (CC) {
2796193323Sed  case X86::COND_NE_OR_P:
2797193323Sed    // Synthesize NE_OR_P with two branches.
2798353358Sdim    BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
2799193323Sed    ++Count;
2800353358Sdim    BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
2801193323Sed    ++Count;
2802193323Sed    break;
2803309124Sdim  case X86::COND_E_AND_NP:
2804309124Sdim    // Use the next block of MBB as FBB if it is null.
2805309124Sdim    if (FBB == nullptr) {
2806309124Sdim      FBB = getFallThroughMBB(&MBB, TBB);
2807309124Sdim      assert(FBB && "MBB cannot be the last block in function when the false "
2808309124Sdim                    "body is a fall-through.");
2809309124Sdim    }
2810309124Sdim    // Synthesize COND_E_AND_NP with two branches.
2811353358Sdim    BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
2812309124Sdim    ++Count;
2813353358Sdim    BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
2814309124Sdim    ++Count;
2815309124Sdim    break;
2816193323Sed  default: {
2817353358Sdim    BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
2818193323Sed    ++Count;
2819193323Sed  }
2820193323Sed  }
2821309124Sdim  if (!FallThru) {
2822193323Sed    // Two-way Conditional branch. Insert the second branch.
2823280031Sdim    BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
2824193323Sed    ++Count;
2825193323Sed  }
2826193323Sed  return Count;
2827193323Sed}
2828193323Sed
2829239462Sdimbool X86InstrInfo::
2830239462SdimcanInsertSelect(const MachineBasicBlock &MBB,
2831288943Sdim                ArrayRef<MachineOperand> Cond,
2832239462Sdim                unsigned TrueReg, unsigned FalseReg,
2833239462Sdim                int &CondCycles, int &TrueCycles, int &FalseCycles) const {
2834239462Sdim  // Not all subtargets have cmov instructions.
2835276479Sdim  if (!Subtarget.hasCMov())
2836239462Sdim    return false;
2837239462Sdim  if (Cond.size() != 1)
2838239462Sdim    return false;
2839239462Sdim  // We cannot do the composite conditions, at least not in SSA form.
2840353358Sdim  if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
2841239462Sdim    return false;
2842239462Sdim
2843239462Sdim  // Check register classes.
2844239462Sdim  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2845239462Sdim  const TargetRegisterClass *RC =
2846239462Sdim    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
2847239462Sdim  if (!RC)
2848239462Sdim    return false;
2849239462Sdim
2850239462Sdim  // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
2851239462Sdim  if (X86::GR16RegClass.hasSubClassEq(RC) ||
2852239462Sdim      X86::GR32RegClass.hasSubClassEq(RC) ||
2853239462Sdim      X86::GR64RegClass.hasSubClassEq(RC)) {
2854239462Sdim    // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
2855239462Sdim    // Bridge. Probably Ivy Bridge as well.
2856239462Sdim    CondCycles = 2;
2857239462Sdim    TrueCycles = 2;
2858239462Sdim    FalseCycles = 2;
2859239462Sdim    return true;
2860239462Sdim  }
2861239462Sdim
2862239462Sdim  // Can't do vectors.
2863239462Sdim  return false;
2864239462Sdim}
2865239462Sdim
2866239462Sdimvoid X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
2867309124Sdim                                MachineBasicBlock::iterator I,
2868309124Sdim                                const DebugLoc &DL, unsigned DstReg,
2869309124Sdim                                ArrayRef<MachineOperand> Cond, unsigned TrueReg,
2870309124Sdim                                unsigned FalseReg) const {
2871309124Sdim  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2872321369Sdim  const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
2873321369Sdim  const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
2874309124Sdim  assert(Cond.size() == 1 && "Invalid Cond array");
2875353358Sdim  unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
2876353358Sdim                                    false /*HasMemoryOperand*/);
2877353358Sdim  BuildMI(MBB, I, DL, get(Opc), DstReg)
2878353358Sdim      .addReg(FalseReg)
2879353358Sdim      .addReg(TrueReg)
2880353358Sdim      .addImm(Cond[0].getImm());
2881239462Sdim}
2882239462Sdim
2883288943Sdim/// Test if the given register is a physical h register.
2884193323Sedstatic bool isHReg(unsigned Reg) {
2885193323Sed  return X86::GR8_ABCD_HRegClass.contains(Reg);
2886193323Sed}
2887193323Sed
2888212904Sdim// Try and copy between VR128/VR64 and GR64 registers.
2889341825Sdimstatic unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
2890276479Sdim                                        const X86Subtarget &Subtarget) {
2891314564Sdim  bool HasAVX = Subtarget.hasAVX();
2892314564Sdim  bool HasAVX512 = Subtarget.hasAVX512();
2893261991Sdim
2894314564Sdim  // SrcReg(MaskReg) -> DestReg(GR64)
2895314564Sdim  // SrcReg(MaskReg) -> DestReg(GR32)
2896314564Sdim
2897314564Sdim  // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2898314564Sdim  if (X86::VK16RegClass.contains(SrcReg)) {
2899314564Sdim    if (X86::GR64RegClass.contains(DestReg)) {
2900314564Sdim      assert(Subtarget.hasBWI());
2901314564Sdim      return X86::KMOVQrk;
2902314564Sdim    }
2903314564Sdim    if (X86::GR32RegClass.contains(DestReg))
2904314564Sdim      return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
2905314564Sdim  }
2906314564Sdim
2907314564Sdim  // SrcReg(GR64) -> DestReg(MaskReg)
2908314564Sdim  // SrcReg(GR32) -> DestReg(MaskReg)
2909314564Sdim
2910314564Sdim  // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2911314564Sdim  if (X86::VK16RegClass.contains(DestReg)) {
2912314564Sdim    if (X86::GR64RegClass.contains(SrcReg)) {
2913314564Sdim      assert(Subtarget.hasBWI());
2914314564Sdim      return X86::KMOVQkr;
2915314564Sdim    }
2916314564Sdim    if (X86::GR32RegClass.contains(SrcReg))
2917314564Sdim      return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
2918314564Sdim  }
2919314564Sdim
2920314564Sdim
2921212904Sdim  // SrcReg(VR128) -> DestReg(GR64)
2922212904Sdim  // SrcReg(VR64)  -> DestReg(GR64)
2923212904Sdim  // SrcReg(GR64)  -> DestReg(VR128)
2924212904Sdim  // SrcReg(GR64)  -> DestReg(VR64)
2925212904Sdim
2926212904Sdim  if (X86::GR64RegClass.contains(DestReg)) {
2927261991Sdim    if (X86::VR128XRegClass.contains(SrcReg))
2928212904Sdim      // Copy from a VR128 register to a GR64 register.
2929309124Sdim      return HasAVX512 ? X86::VMOVPQIto64Zrr :
2930309124Sdim             HasAVX    ? X86::VMOVPQIto64rr  :
2931309124Sdim                         X86::MOVPQIto64rr;
2932243830Sdim    if (X86::VR64RegClass.contains(SrcReg))
2933212904Sdim      // Copy from a VR64 register to a GR64 register.
2934288943Sdim      return X86::MMX_MOVD64from64rr;
2935212904Sdim  } else if (X86::GR64RegClass.contains(SrcReg)) {
2936212904Sdim    // Copy from a GR64 register to a VR128 register.
2937261991Sdim    if (X86::VR128XRegClass.contains(DestReg))
2938309124Sdim      return HasAVX512 ? X86::VMOV64toPQIZrr :
2939309124Sdim             HasAVX    ? X86::VMOV64toPQIrr  :
2940309124Sdim                         X86::MOV64toPQIrr;
2941212904Sdim    // Copy from a GR64 register to a VR64 register.
2942243830Sdim    if (X86::VR64RegClass.contains(DestReg))
2943288943Sdim      return X86::MMX_MOVD64to64rr;
2944212904Sdim  }
2945212904Sdim
2946353358Sdim  // SrcReg(VR128) -> DestReg(GR32)
2947353358Sdim  // SrcReg(GR32)  -> DestReg(VR128)
2948226633Sdim
2949309124Sdim  if (X86::GR32RegClass.contains(DestReg) &&
2950353358Sdim      X86::VR128XRegClass.contains(SrcReg))
2951353358Sdim    // Copy from a VR128 register to a GR32 register.
2952353358Sdim    return HasAVX512 ? X86::VMOVPDI2DIZrr :
2953353358Sdim           HasAVX    ? X86::VMOVPDI2DIrr  :
2954353358Sdim                       X86::MOVPDI2DIrr;
2955226633Sdim
2956353358Sdim  if (X86::VR128XRegClass.contains(DestReg) &&
2957309124Sdim      X86::GR32RegClass.contains(SrcReg))
2958353358Sdim    // Copy from a VR128 register to a VR128 register.
2959353358Sdim    return HasAVX512 ? X86::VMOVDI2PDIZrr :
2960353358Sdim           HasAVX    ? X86::VMOVDI2PDIrr  :
2961353358Sdim                       X86::MOVDI2PDIrr;
2962261991Sdim  return 0;
2963261991Sdim}
2964226633Sdim
2965210299Sedvoid X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
2966309124Sdim                               MachineBasicBlock::iterator MI,
2967360784Sdim                               const DebugLoc &DL, MCRegister DestReg,
2968360784Sdim                               MCRegister SrcReg, bool KillSrc) const {
2969210299Sed  // First deal with the normal symmetric copies.
2970276479Sdim  bool HasAVX = Subtarget.hasAVX();
2971314564Sdim  bool HasVLX = Subtarget.hasVLX();
2972261991Sdim  unsigned Opc = 0;
2973210299Sed  if (X86::GR64RegClass.contains(DestReg, SrcReg))
2974210299Sed    Opc = X86::MOV64rr;
2975210299Sed  else if (X86::GR32RegClass.contains(DestReg, SrcReg))
2976210299Sed    Opc = X86::MOV32rr;
2977210299Sed  else if (X86::GR16RegClass.contains(DestReg, SrcReg))
2978210299Sed    Opc = X86::MOV16rr;
2979210299Sed  else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
2980210299Sed    // Copying to or from a physical H register on x86-64 requires a NOREX
2981210299Sed    // move.  Otherwise use a normal move.
2982210299Sed    if ((isHReg(DestReg) || isHReg(SrcReg)) &&
2983276479Sdim        Subtarget.is64Bit()) {
2984210299Sed      Opc = X86::MOV8rr_NOREX;
2985226633Sdim      // Both operands must be encodable without an REX prefix.
2986226633Sdim      assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
2987226633Sdim             "8-bit H register can not be copied outside GR8_NOREX");
2988226633Sdim    } else
2989210299Sed      Opc = X86::MOV8rr;
2990261991Sdim  }
2991261991Sdim  else if (X86::VR64RegClass.contains(DestReg, SrcReg))
2992261991Sdim    Opc = X86::MMX_MOVQ64rr;
2993314564Sdim  else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
2994314564Sdim    if (HasVLX)
2995314564Sdim      Opc = X86::VMOVAPSZ128rr;
2996314564Sdim    else if (X86::VR128RegClass.contains(DestReg, SrcReg))
2997314564Sdim      Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
2998314564Sdim    else {
2999314564Sdim      // If this an extended register and we don't have VLX we need to use a
3000314564Sdim      // 512-bit move.
3001314564Sdim      Opc = X86::VMOVAPSZrr;
3002314564Sdim      const TargetRegisterInfo *TRI = &getRegisterInfo();
3003314564Sdim      DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
3004314564Sdim                                         &X86::VR512RegClass);
3005314564Sdim      SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
3006314564Sdim                                        &X86::VR512RegClass);
3007314564Sdim    }
3008314564Sdim  } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
3009314564Sdim    if (HasVLX)
3010314564Sdim      Opc = X86::VMOVAPSZ256rr;
3011314564Sdim    else if (X86::VR256RegClass.contains(DestReg, SrcReg))
3012314564Sdim      Opc = X86::VMOVAPSYrr;
3013314564Sdim    else {
3014314564Sdim      // If this an extended register and we don't have VLX we need to use a
3015314564Sdim      // 512-bit move.
3016314564Sdim      Opc = X86::VMOVAPSZrr;
3017314564Sdim      const TargetRegisterInfo *TRI = &getRegisterInfo();
3018314564Sdim      DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
3019314564Sdim                                         &X86::VR512RegClass);
3020314564Sdim      SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
3021314564Sdim                                        &X86::VR512RegClass);
3022314564Sdim    }
3023314564Sdim  } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
3024314564Sdim    Opc = X86::VMOVAPSZrr;
3025314564Sdim  // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3026314564Sdim  else if (X86::VK16RegClass.contains(DestReg, SrcReg))
3027314564Sdim    Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
3028261991Sdim  if (!Opc)
3029276479Sdim    Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
3030193323Sed
3031210299Sed  if (Opc) {
3032210299Sed    BuildMI(MBB, MI, DL, get(Opc), DestReg)
3033210299Sed      .addReg(SrcReg, getKillRegState(KillSrc));
3034210299Sed    return;
3035193323Sed  }
3036198090Srdivacky
3037332833Sdim  if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
3038332833Sdim    // FIXME: We use a fatal error here because historically LLVM has tried
3039332833Sdim    // lower some of these physreg copies and we want to ensure we get
3040332833Sdim    // reasonable bug reports if someone encounters a case no other testing
3041332833Sdim    // found. This path should be removed after the LLVM 7 release.
3042332833Sdim    report_fatal_error("Unable to copy EFLAGS physical register!");
3043193323Sed  }
3044193323Sed
3045341825Sdim  LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
3046341825Sdim                    << RI.getName(DestReg) << '\n');
3047341825Sdim  report_fatal_error("Cannot emit physreg copy instruction");
3048193323Sed}
3049193323Sed
3050360784SdimOptional<DestSourcePair>
3051360784SdimX86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
3052360784Sdim  if (MI.isMoveReg())
3053360784Sdim    return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
3054360784Sdim  return None;
3055341825Sdim}
3056341825Sdim
3057210299Sedstatic unsigned getLoadStoreRegOpcode(unsigned Reg,
3058210299Sed                                      const TargetRegisterClass *RC,
3059210299Sed                                      bool isStackAligned,
3060276479Sdim                                      const X86Subtarget &STI,
3061210299Sed                                      bool load) {
3062314564Sdim  bool HasAVX = STI.hasAVX();
3063314564Sdim  bool HasAVX512 = STI.hasAVX512();
3064314564Sdim  bool HasVLX = STI.hasVLX();
3065261991Sdim
3066321369Sdim  switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
3067210299Sed  default:
3068223017Sdim    llvm_unreachable("Unknown spill size");
3069223017Sdim  case 1:
3070223017Sdim    assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
3071276479Sdim    if (STI.is64Bit())
3072223017Sdim      // Copying to or from a physical H register on x86-64 requires a NOREX
3073223017Sdim      // move.  Otherwise use a normal move.
3074223017Sdim      if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
3075223017Sdim        return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
3076223017Sdim    return load ? X86::MOV8rm : X86::MOV8mr;
3077223017Sdim  case 2:
3078314564Sdim    if (X86::VK16RegClass.hasSubClassEq(RC))
3079314564Sdim      return load ? X86::KMOVWkm : X86::KMOVWmk;
3080223017Sdim    assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
3081210299Sed    return load ? X86::MOV16rm : X86::MOV16mr;
3082223017Sdim  case 4:
3083223017Sdim    if (X86::GR32RegClass.hasSubClassEq(RC))
3084223017Sdim      return load ? X86::MOV32rm : X86::MOV32mr;
3085314564Sdim    if (X86::FR32XRegClass.hasSubClassEq(RC))
3086226633Sdim      return load ?
3087353358Sdim        (HasAVX512 ? X86::VMOVSSZrm_alt :
3088353358Sdim         HasAVX    ? X86::VMOVSSrm_alt :
3089353358Sdim                     X86::MOVSSrm_alt) :
3090353358Sdim        (HasAVX512 ? X86::VMOVSSZmr :
3091353358Sdim         HasAVX    ? X86::VMOVSSmr :
3092353358Sdim                     X86::MOVSSmr);
3093223017Sdim    if (X86::RFP32RegClass.hasSubClassEq(RC))
3094223017Sdim      return load ? X86::LD_Fp32m : X86::ST_Fp32m;
3095341825Sdim    if (X86::VK32RegClass.hasSubClassEq(RC)) {
3096341825Sdim      assert(STI.hasBWI() && "KMOVD requires BWI");
3097314564Sdim      return load ? X86::KMOVDkm : X86::KMOVDmk;
3098341825Sdim    }
3099353358Sdim    // All of these mask pair classes have the same spill size, the same kind
3100353358Sdim    // of kmov instructions can be used with all of them.
3101353358Sdim    if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
3102353358Sdim        X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
3103353358Sdim        X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
3104353358Sdim        X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
3105353358Sdim        X86::VK16PAIRRegClass.hasSubClassEq(RC))
3106353358Sdim      return load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
3107223017Sdim    llvm_unreachable("Unknown 4-byte regclass");
3108223017Sdim  case 8:
3109223017Sdim    if (X86::GR64RegClass.hasSubClassEq(RC))
3110223017Sdim      return load ? X86::MOV64rm : X86::MOV64mr;
3111314564Sdim    if (X86::FR64XRegClass.hasSubClassEq(RC))
3112226633Sdim      return load ?
3113353358Sdim        (HasAVX512 ? X86::VMOVSDZrm_alt :
3114353358Sdim         HasAVX    ? X86::VMOVSDrm_alt :
3115353358Sdim                     X86::MOVSDrm_alt) :
3116353358Sdim        (HasAVX512 ? X86::VMOVSDZmr :
3117353358Sdim         HasAVX    ? X86::VMOVSDmr :
3118353358Sdim                     X86::MOVSDmr);
3119223017Sdim    if (X86::VR64RegClass.hasSubClassEq(RC))
3120223017Sdim      return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
3121223017Sdim    if (X86::RFP64RegClass.hasSubClassEq(RC))
3122223017Sdim      return load ? X86::LD_Fp64m : X86::ST_Fp64m;
3123341825Sdim    if (X86::VK64RegClass.hasSubClassEq(RC)) {
3124341825Sdim      assert(STI.hasBWI() && "KMOVQ requires BWI");
3125314564Sdim      return load ? X86::KMOVQkm : X86::KMOVQmk;
3126341825Sdim    }
3127223017Sdim    llvm_unreachable("Unknown 8-byte regclass");
3128223017Sdim  case 10:
3129223017Sdim    assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
3130210299Sed    return load ? X86::LD_Fp80m : X86::ST_FpP80m;
3131226633Sdim  case 16: {
3132321369Sdim    if (X86::VR128XRegClass.hasSubClassEq(RC)) {
3133321369Sdim      // If stack is realigned we can use aligned stores.
3134321369Sdim      if (isStackAligned)
3135321369Sdim        return load ?
3136321369Sdim          (HasVLX    ? X86::VMOVAPSZ128rm :
3137321369Sdim           HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
3138321369Sdim           HasAVX    ? X86::VMOVAPSrm :
3139321369Sdim                       X86::MOVAPSrm):
3140321369Sdim          (HasVLX    ? X86::VMOVAPSZ128mr :
3141321369Sdim           HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
3142321369Sdim           HasAVX    ? X86::VMOVAPSmr :
3143321369Sdim                       X86::MOVAPSmr);
3144321369Sdim      else
3145321369Sdim        return load ?
3146321369Sdim          (HasVLX    ? X86::VMOVUPSZ128rm :
3147321369Sdim           HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
3148321369Sdim           HasAVX    ? X86::VMOVUPSrm :
3149321369Sdim                       X86::MOVUPSrm):
3150321369Sdim          (HasVLX    ? X86::VMOVUPSZ128mr :
3151321369Sdim           HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
3152321369Sdim           HasAVX    ? X86::VMOVUPSmr :
3153321369Sdim                       X86::MOVUPSmr);
3154321369Sdim    }
3155321369Sdim    if (X86::BNDRRegClass.hasSubClassEq(RC)) {
3156321369Sdim      if (STI.is64Bit())
3157341825Sdim        return load ? X86::BNDMOV64rm : X86::BNDMOV64mr;
3158321369Sdim      else
3159341825Sdim        return load ? X86::BNDMOV32rm : X86::BNDMOV32mr;
3160321369Sdim    }
3161321369Sdim    llvm_unreachable("Unknown 16-byte regclass");
3162226633Sdim  }
3163224145Sdim  case 32:
3164314564Sdim    assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
3165224145Sdim    // If stack is realigned we can use aligned stores.
3166224145Sdim    if (isStackAligned)
3167314564Sdim      return load ?
3168314564Sdim        (HasVLX    ? X86::VMOVAPSZ256rm :
3169314564Sdim         HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
3170314564Sdim                     X86::VMOVAPSYrm) :
3171314564Sdim        (HasVLX    ? X86::VMOVAPSZ256mr :
3172314564Sdim         HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
3173314564Sdim                     X86::VMOVAPSYmr);
3174224145Sdim    else
3175314564Sdim      return load ?
3176314564Sdim        (HasVLX    ? X86::VMOVUPSZ256rm :
3177314564Sdim         HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
3178314564Sdim                     X86::VMOVUPSYrm) :
3179314564Sdim        (HasVLX    ? X86::VMOVUPSZ256mr :
3180314564Sdim         HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
3181314564Sdim                     X86::VMOVUPSYmr);
3182261991Sdim  case 64:
3183261991Sdim    assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
3184314564Sdim    assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
3185261991Sdim    if (isStackAligned)
3186261991Sdim      return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3187261991Sdim    else
3188261991Sdim      return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3189193323Sed  }
3190210299Sed}
3191193323Sed
3192344779Sdimbool X86InstrInfo::getMemOperandWithOffset(
3193353358Sdim    const MachineInstr &MemOp, const MachineOperand *&BaseOp, int64_t &Offset,
3194344779Sdim    const TargetRegisterInfo *TRI) const {
3195309124Sdim  const MCInstrDesc &Desc = MemOp.getDesc();
3196309124Sdim  int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3197288943Sdim  if (MemRefBegin < 0)
3198288943Sdim    return false;
3199288943Sdim
3200288943Sdim  MemRefBegin += X86II::getOperandBias(Desc);
3201288943Sdim
3202344779Sdim  BaseOp = &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
3203344779Sdim  if (!BaseOp->isReg()) // Can be an MO_FrameIndex
3204288943Sdim    return false;
3205288943Sdim
3206309124Sdim  if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
3207309124Sdim    return false;
3208309124Sdim
3209309124Sdim  if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
3210288943Sdim      X86::NoRegister)
3211288943Sdim    return false;
3212288943Sdim
3213309124Sdim  const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
3214288943Sdim
3215288943Sdim  // Displacement can be symbolic
3216288943Sdim  if (!DispMO.isImm())
3217288943Sdim    return false;
3218288943Sdim
3219288943Sdim  Offset = DispMO.getImm();
3220288943Sdim
3221360784Sdim  if (!BaseOp->isReg())
3222360784Sdim    return false;
3223360784Sdim
3224314564Sdim  return true;
3225288943Sdim}
3226288943Sdim
3227210299Sedstatic unsigned getStoreRegOpcode(unsigned SrcReg,
3228210299Sed                                  const TargetRegisterClass *RC,
3229210299Sed                                  bool isStackAligned,
3230276479Sdim                                  const X86Subtarget &STI) {
3231276479Sdim  return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false);
3232193323Sed}
3233193323Sed
3234210299Sed
3235210299Sedstatic unsigned getLoadRegOpcode(unsigned DestReg,
3236210299Sed                                 const TargetRegisterClass *RC,
3237210299Sed                                 bool isStackAligned,
3238276479Sdim                                 const X86Subtarget &STI) {
3239276479Sdim  return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true);
3240210299Sed}
3241210299Sed
3242193323Sedvoid X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3243193323Sed                                       MachineBasicBlock::iterator MI,
3244193323Sed                                       unsigned SrcReg, bool isKill, int FrameIdx,
3245208599Srdivacky                                       const TargetRegisterClass *RC,
3246208599Srdivacky                                       const TargetRegisterInfo *TRI) const {
3247193323Sed  const MachineFunction &MF = *MBB.getParent();
3248321369Sdim  assert(MF.getFrameInfo().getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
3249212904Sdim         "Stack slot too small for store");
3250321369Sdim  unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3251288943Sdim  bool isAligned =
3252288943Sdim      (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
3253288943Sdim      RI.canRealignStack(MF);
3254276479Sdim  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3255344779Sdim  addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3256193323Sed    .addReg(SrcReg, getKillRegState(isKill));
3257193323Sed}
3258193323Sed
3259193323Sedvoid X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
3260193323Sed                                        MachineBasicBlock::iterator MI,
3261193323Sed                                        unsigned DestReg, int FrameIdx,
3262208599Srdivacky                                        const TargetRegisterClass *RC,
3263208599Srdivacky                                        const TargetRegisterInfo *TRI) const {
3264193323Sed  const MachineFunction &MF = *MBB.getParent();
3265321369Sdim  unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3266288943Sdim  bool isAligned =
3267288943Sdim      (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
3268288943Sdim      RI.canRealignStack(MF);
3269276479Sdim  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
3270344779Sdim  addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg), FrameIdx);
3271193323Sed}
3272193323Sed
3273309124Sdimbool X86InstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
3274309124Sdim                                  unsigned &SrcReg2, int &CmpMask,
3275309124Sdim                                  int &CmpValue) const {
3276309124Sdim  switch (MI.getOpcode()) {
3277239462Sdim  default: break;
3278239462Sdim  case X86::CMP64ri32:
3279239462Sdim  case X86::CMP64ri8:
3280239462Sdim  case X86::CMP32ri:
3281239462Sdim  case X86::CMP32ri8:
3282239462Sdim  case X86::CMP16ri:
3283239462Sdim  case X86::CMP16ri8:
3284239462Sdim  case X86::CMP8ri:
3285309124Sdim    SrcReg = MI.getOperand(0).getReg();
3286239462Sdim    SrcReg2 = 0;
3287321369Sdim    if (MI.getOperand(1).isImm()) {
3288321369Sdim      CmpMask = ~0;
3289321369Sdim      CmpValue = MI.getOperand(1).getImm();
3290321369Sdim    } else {
3291321369Sdim      CmpMask = CmpValue = 0;
3292321369Sdim    }
3293239462Sdim    return true;
3294239462Sdim  // A SUB can be used to perform comparison.
3295239462Sdim  case X86::SUB64rm:
3296239462Sdim  case X86::SUB32rm:
3297239462Sdim  case X86::SUB16rm:
3298239462Sdim  case X86::SUB8rm:
3299309124Sdim    SrcReg = MI.getOperand(1).getReg();
3300239462Sdim    SrcReg2 = 0;
3301321369Sdim    CmpMask = 0;
3302239462Sdim    CmpValue = 0;
3303239462Sdim    return true;
3304239462Sdim  case X86::SUB64rr:
3305239462Sdim  case X86::SUB32rr:
3306239462Sdim  case X86::SUB16rr:
3307239462Sdim  case X86::SUB8rr:
3308309124Sdim    SrcReg = MI.getOperand(1).getReg();
3309309124Sdim    SrcReg2 = MI.getOperand(2).getReg();
3310321369Sdim    CmpMask = 0;
3311239462Sdim    CmpValue = 0;
3312239462Sdim    return true;
3313239462Sdim  case X86::SUB64ri32:
3314239462Sdim  case X86::SUB64ri8:
3315239462Sdim  case X86::SUB32ri:
3316239462Sdim  case X86::SUB32ri8:
3317239462Sdim  case X86::SUB16ri:
3318239462Sdim  case X86::SUB16ri8:
3319239462Sdim  case X86::SUB8ri:
3320309124Sdim    SrcReg = MI.getOperand(1).getReg();
3321239462Sdim    SrcReg2 = 0;
3322321369Sdim    if (MI.getOperand(2).isImm()) {
3323321369Sdim      CmpMask = ~0;
3324321369Sdim      CmpValue = MI.getOperand(2).getImm();
3325321369Sdim    } else {
3326321369Sdim      CmpMask = CmpValue = 0;
3327321369Sdim    }
3328239462Sdim    return true;
3329239462Sdim  case X86::CMP64rr:
3330239462Sdim  case X86::CMP32rr:
3331239462Sdim  case X86::CMP16rr:
3332239462Sdim  case X86::CMP8rr:
3333309124Sdim    SrcReg = MI.getOperand(0).getReg();
3334309124Sdim    SrcReg2 = MI.getOperand(1).getReg();
3335321369Sdim    CmpMask = 0;
3336239462Sdim    CmpValue = 0;
3337239462Sdim    return true;
3338239462Sdim  case X86::TEST8rr:
3339239462Sdim  case X86::TEST16rr:
3340239462Sdim  case X86::TEST32rr:
3341239462Sdim  case X86::TEST64rr:
3342309124Sdim    SrcReg = MI.getOperand(0).getReg();
3343309124Sdim    if (MI.getOperand(1).getReg() != SrcReg)
3344309124Sdim      return false;
3345239462Sdim    // Compare against zero.
3346239462Sdim    SrcReg2 = 0;
3347239462Sdim    CmpMask = ~0;
3348239462Sdim    CmpValue = 0;
3349239462Sdim    return true;
3350239462Sdim  }
3351239462Sdim  return false;
3352239462Sdim}
3353239462Sdim
3354288943Sdim/// Check whether the first instruction, whose only
3355239462Sdim/// purpose is to update flags, can be made redundant.
3356239462Sdim/// CMPrr can be made redundant by SUBrr if the operands are the same.
3357239462Sdim/// This function can be extended later on.
3358239462Sdim/// SrcReg, SrcRegs: register operands for FlagI.
3359239462Sdim/// ImmValue: immediate for FlagI if it takes an immediate.
3360344779Sdiminline static bool isRedundantFlagInstr(const MachineInstr &FlagI,
3361344779Sdim                                        unsigned SrcReg, unsigned SrcReg2,
3362344779Sdim                                        int ImmMask, int ImmValue,
3363344779Sdim                                        const MachineInstr &OI) {
3364309124Sdim  if (((FlagI.getOpcode() == X86::CMP64rr && OI.getOpcode() == X86::SUB64rr) ||
3365309124Sdim       (FlagI.getOpcode() == X86::CMP32rr && OI.getOpcode() == X86::SUB32rr) ||
3366309124Sdim       (FlagI.getOpcode() == X86::CMP16rr && OI.getOpcode() == X86::SUB16rr) ||
3367309124Sdim       (FlagI.getOpcode() == X86::CMP8rr && OI.getOpcode() == X86::SUB8rr)) &&
3368309124Sdim      ((OI.getOperand(1).getReg() == SrcReg &&
3369309124Sdim        OI.getOperand(2).getReg() == SrcReg2) ||
3370309124Sdim       (OI.getOperand(1).getReg() == SrcReg2 &&
3371309124Sdim        OI.getOperand(2).getReg() == SrcReg)))
3372239462Sdim    return true;
3373239462Sdim
3374321369Sdim  if (ImmMask != 0 &&
3375321369Sdim      ((FlagI.getOpcode() == X86::CMP64ri32 &&
3376309124Sdim        OI.getOpcode() == X86::SUB64ri32) ||
3377309124Sdim       (FlagI.getOpcode() == X86::CMP64ri8 &&
3378309124Sdim        OI.getOpcode() == X86::SUB64ri8) ||
3379309124Sdim       (FlagI.getOpcode() == X86::CMP32ri && OI.getOpcode() == X86::SUB32ri) ||
3380309124Sdim       (FlagI.getOpcode() == X86::CMP32ri8 &&
3381309124Sdim        OI.getOpcode() == X86::SUB32ri8) ||
3382309124Sdim       (FlagI.getOpcode() == X86::CMP16ri && OI.getOpcode() == X86::SUB16ri) ||
3383309124Sdim       (FlagI.getOpcode() == X86::CMP16ri8 &&
3384309124Sdim        OI.getOpcode() == X86::SUB16ri8) ||
3385309124Sdim       (FlagI.getOpcode() == X86::CMP8ri && OI.getOpcode() == X86::SUB8ri)) &&
3386309124Sdim      OI.getOperand(1).getReg() == SrcReg &&
3387309124Sdim      OI.getOperand(2).getImm() == ImmValue)
3388239462Sdim    return true;
3389239462Sdim  return false;
3390239462Sdim}
3391239462Sdim
3392288943Sdim/// Check whether the definition can be converted
3393239462Sdim/// to remove a comparison against zero.
3394344779Sdiminline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag) {
3395344779Sdim  NoSignFlag = false;
3396344779Sdim
3397309124Sdim  switch (MI.getOpcode()) {
3398239462Sdim  default: return false;
3399261991Sdim
3400261991Sdim  // The shift instructions only modify ZF if their shift count is non-zero.
3401261991Sdim  // N.B.: The processor truncates the shift count depending on the encoding.
3402261991Sdim  case X86::SAR8ri:    case X86::SAR16ri:  case X86::SAR32ri:case X86::SAR64ri:
3403261991Sdim  case X86::SHR8ri:    case X86::SHR16ri:  case X86::SHR32ri:case X86::SHR64ri:
3404261991Sdim     return getTruncatedShiftCount(MI, 2) != 0;
3405261991Sdim
3406261991Sdim  // Some left shift instructions can be turned into LEA instructions but only
3407261991Sdim  // if their flags aren't used. Avoid transforming such instructions.
3408261991Sdim  case X86::SHL8ri:    case X86::SHL16ri:  case X86::SHL32ri:case X86::SHL64ri:{
3409261991Sdim    unsigned ShAmt = getTruncatedShiftCount(MI, 2);
3410261991Sdim    if (isTruncatedShiftCountForLEA(ShAmt)) return false;
3411261991Sdim    return ShAmt != 0;
3412261991Sdim  }
3413261991Sdim
3414261991Sdim  case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
3415261991Sdim  case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
3416261991Sdim     return getTruncatedShiftCount(MI, 3) != 0;
3417261991Sdim
3418239462Sdim  case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
3419239462Sdim  case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
3420239462Sdim  case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
3421239462Sdim  case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm:
3422239462Sdim  case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm:
3423249423Sdim  case X86::DEC64r:    case X86::DEC32r:   case X86::DEC16r: case X86::DEC8r:
3424239462Sdim  case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
3425239462Sdim  case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8:
3426239462Sdim  case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr:
3427239462Sdim  case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm:
3428239462Sdim  case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm:
3429249423Sdim  case X86::INC64r:    case X86::INC32r:   case X86::INC16r: case X86::INC8r:
3430239462Sdim  case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
3431239462Sdim  case X86::AND32ri8:  case X86::AND16ri:  case X86::AND16ri8:
3432239462Sdim  case X86::AND8ri:    case X86::AND64rr:  case X86::AND32rr:
3433239462Sdim  case X86::AND16rr:   case X86::AND8rr:   case X86::AND64rm:
3434239462Sdim  case X86::AND32rm:   case X86::AND16rm:  case X86::AND8rm:
3435239462Sdim  case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
3436239462Sdim  case X86::XOR32ri8:  case X86::XOR16ri:  case X86::XOR16ri8:
3437239462Sdim  case X86::XOR8ri:    case X86::XOR64rr:  case X86::XOR32rr:
3438239462Sdim  case X86::XOR16rr:   case X86::XOR8rr:   case X86::XOR64rm:
3439239462Sdim  case X86::XOR32rm:   case X86::XOR16rm:  case X86::XOR8rm:
3440239462Sdim  case X86::OR64ri32:  case X86::OR64ri8:  case X86::OR32ri:
3441239462Sdim  case X86::OR32ri8:   case X86::OR16ri:   case X86::OR16ri8:
3442239462Sdim  case X86::OR8ri:     case X86::OR64rr:   case X86::OR32rr:
3443239462Sdim  case X86::OR16rr:    case X86::OR8rr:    case X86::OR64rm:
3444239462Sdim  case X86::OR32rm:    case X86::OR16rm:   case X86::OR8rm:
3445327952Sdim  case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri:
3446327952Sdim  case X86::ADC32ri8:  case X86::ADC16ri:  case X86::ADC16ri8:
3447327952Sdim  case X86::ADC8ri:    case X86::ADC64rr:  case X86::ADC32rr:
3448327952Sdim  case X86::ADC16rr:   case X86::ADC8rr:   case X86::ADC64rm:
3449327952Sdim  case X86::ADC32rm:   case X86::ADC16rm:  case X86::ADC8rm:
3450327952Sdim  case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri:
3451327952Sdim  case X86::SBB32ri8:  case X86::SBB16ri:  case X86::SBB16ri8:
3452327952Sdim  case X86::SBB8ri:    case X86::SBB64rr:  case X86::SBB32rr:
3453327952Sdim  case X86::SBB16rr:   case X86::SBB8rr:   case X86::SBB64rm:
3454327952Sdim  case X86::SBB32rm:   case X86::SBB16rm:  case X86::SBB8rm:
3455261991Sdim  case X86::NEG8r:     case X86::NEG16r:   case X86::NEG32r: case X86::NEG64r:
3456261991Sdim  case X86::SAR8r1:    case X86::SAR16r1:  case X86::SAR32r1:case X86::SAR64r1:
3457261991Sdim  case X86::SHR8r1:    case X86::SHR16r1:  case X86::SHR32r1:case X86::SHR64r1:
3458261991Sdim  case X86::SHL8r1:    case X86::SHL16r1:  case X86::SHL32r1:case X86::SHL64r1:
3459249423Sdim  case X86::ANDN32rr:  case X86::ANDN32rm:
3460249423Sdim  case X86::ANDN64rr:  case X86::ANDN64rm:
3461261991Sdim  case X86::BLSI32rr:  case X86::BLSI32rm:
3462261991Sdim  case X86::BLSI64rr:  case X86::BLSI64rm:
3463261991Sdim  case X86::BLSMSK32rr:case X86::BLSMSK32rm:
3464261991Sdim  case X86::BLSMSK64rr:case X86::BLSMSK64rm:
3465261991Sdim  case X86::BLSR32rr:  case X86::BLSR32rm:
3466261991Sdim  case X86::BLSR64rr:  case X86::BLSR64rm:
3467261991Sdim  case X86::BZHI32rr:  case X86::BZHI32rm:
3468261991Sdim  case X86::BZHI64rr:  case X86::BZHI64rm:
3469261991Sdim  case X86::LZCNT16rr: case X86::LZCNT16rm:
3470261991Sdim  case X86::LZCNT32rr: case X86::LZCNT32rm:
3471261991Sdim  case X86::LZCNT64rr: case X86::LZCNT64rm:
3472261991Sdim  case X86::POPCNT16rr:case X86::POPCNT16rm:
3473261991Sdim  case X86::POPCNT32rr:case X86::POPCNT32rm:
3474261991Sdim  case X86::POPCNT64rr:case X86::POPCNT64rm:
3475261991Sdim  case X86::TZCNT16rr: case X86::TZCNT16rm:
3476261991Sdim  case X86::TZCNT32rr: case X86::TZCNT32rm:
3477261991Sdim  case X86::TZCNT64rr: case X86::TZCNT64rm:
3478327952Sdim  case X86::BLCFILL32rr: case X86::BLCFILL32rm:
3479327952Sdim  case X86::BLCFILL64rr: case X86::BLCFILL64rm:
3480327952Sdim  case X86::BLCI32rr:    case X86::BLCI32rm:
3481327952Sdim  case X86::BLCI64rr:    case X86::BLCI64rm:
3482327952Sdim  case X86::BLCIC32rr:   case X86::BLCIC32rm:
3483327952Sdim  case X86::BLCIC64rr:   case X86::BLCIC64rm:
3484327952Sdim  case X86::BLCMSK32rr:  case X86::BLCMSK32rm:
3485327952Sdim  case X86::BLCMSK64rr:  case X86::BLCMSK64rm:
3486327952Sdim  case X86::BLCS32rr:    case X86::BLCS32rm:
3487327952Sdim  case X86::BLCS64rr:    case X86::BLCS64rm:
3488327952Sdim  case X86::BLSFILL32rr: case X86::BLSFILL32rm:
3489327952Sdim  case X86::BLSFILL64rr: case X86::BLSFILL64rm:
3490327952Sdim  case X86::BLSIC32rr:   case X86::BLSIC32rm:
3491327952Sdim  case X86::BLSIC64rr:   case X86::BLSIC64rm:
3492344779Sdim  case X86::T1MSKC32rr:  case X86::T1MSKC32rm:
3493344779Sdim  case X86::T1MSKC64rr:  case X86::T1MSKC64rm:
3494344779Sdim  case X86::TZMSK32rr:   case X86::TZMSK32rm:
3495344779Sdim  case X86::TZMSK64rr:   case X86::TZMSK64rm:
3496239462Sdim    return true;
3497344779Sdim  case X86::BEXTR32rr:   case X86::BEXTR64rr:
3498344779Sdim  case X86::BEXTR32rm:   case X86::BEXTR64rm:
3499344779Sdim  case X86::BEXTRI32ri:  case X86::BEXTRI32mi:
3500344779Sdim  case X86::BEXTRI64ri:  case X86::BEXTRI64mi:
3501344779Sdim    // BEXTR doesn't update the sign flag so we can't use it.
3502344779Sdim    NoSignFlag = true;
3503344779Sdim    return true;
3504239462Sdim  }
3505239462Sdim}
3506239462Sdim
3507288943Sdim/// Check whether the use can be converted to remove a comparison against zero.
3508344779Sdimstatic X86::CondCode isUseDefConvertible(const MachineInstr &MI) {
3509309124Sdim  switch (MI.getOpcode()) {
3510276479Sdim  default: return X86::COND_INVALID;
3511353358Sdim  case X86::NEG8r:
3512353358Sdim  case X86::NEG16r:
3513353358Sdim  case X86::NEG32r:
3514353358Sdim  case X86::NEG64r:
3515353358Sdim    return X86::COND_AE;
3516353358Sdim  case X86::LZCNT16rr:
3517353358Sdim  case X86::LZCNT32rr:
3518353358Sdim  case X86::LZCNT64rr:
3519276479Sdim    return X86::COND_B;
3520353358Sdim  case X86::POPCNT16rr:
3521353358Sdim  case X86::POPCNT32rr:
3522353358Sdim  case X86::POPCNT64rr:
3523276479Sdim    return X86::COND_E;
3524353358Sdim  case X86::TZCNT16rr:
3525353358Sdim  case X86::TZCNT32rr:
3526353358Sdim  case X86::TZCNT64rr:
3527276479Sdim    return X86::COND_B;
3528353358Sdim  case X86::BSF16rr:
3529353358Sdim  case X86::BSF32rr:
3530353358Sdim  case X86::BSF64rr:
3531353358Sdim  case X86::BSR16rr:
3532353358Sdim  case X86::BSR32rr:
3533353358Sdim  case X86::BSR64rr:
3534341825Sdim    return X86::COND_E;
3535353358Sdim  case X86::BLSI32rr:
3536353358Sdim  case X86::BLSI64rr:
3537353358Sdim    return X86::COND_AE;
3538353358Sdim  case X86::BLSR32rr:
3539353358Sdim  case X86::BLSR64rr:
3540353358Sdim  case X86::BLSMSK32rr:
3541353358Sdim  case X86::BLSMSK64rr:
3542353358Sdim    return X86::COND_B;
3543353358Sdim  // TODO: TBM instructions.
3544276479Sdim  }
3545276479Sdim}
3546276479Sdim
3547288943Sdim/// Check if there exists an earlier instruction that
3548239462Sdim/// operates on the same source operands and sets flags in the same way as
3549239462Sdim/// Compare; remove Compare if possible.
3550309124Sdimbool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
3551309124Sdim                                        unsigned SrcReg2, int CmpMask,
3552309124Sdim                                        int CmpValue,
3553309124Sdim                                        const MachineRegisterInfo *MRI) const {
3554239462Sdim  // Check whether we can replace SUB with CMP.
3555309124Sdim  switch (CmpInstr.getOpcode()) {
3556239462Sdim  default: break;
3557239462Sdim  case X86::SUB64ri32:
3558239462Sdim  case X86::SUB64ri8:
3559239462Sdim  case X86::SUB32ri:
3560239462Sdim  case X86::SUB32ri8:
3561239462Sdim  case X86::SUB16ri:
3562239462Sdim  case X86::SUB16ri8:
3563239462Sdim  case X86::SUB8ri:
3564239462Sdim  case X86::SUB64rm:
3565239462Sdim  case X86::SUB32rm:
3566239462Sdim  case X86::SUB16rm:
3567239462Sdim  case X86::SUB8rm:
3568239462Sdim  case X86::SUB64rr:
3569239462Sdim  case X86::SUB32rr:
3570239462Sdim  case X86::SUB16rr:
3571239462Sdim  case X86::SUB8rr: {
3572309124Sdim    if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
3573239462Sdim      return false;
3574239462Sdim    // There is no use of the destination register, we can replace SUB with CMP.
3575353358Sdim    unsigned NewOpcode = 0;
3576309124Sdim    switch (CmpInstr.getOpcode()) {
3577243830Sdim    default: llvm_unreachable("Unreachable!");
3578239462Sdim    case X86::SUB64rm:   NewOpcode = X86::CMP64rm;   break;
3579239462Sdim    case X86::SUB32rm:   NewOpcode = X86::CMP32rm;   break;
3580239462Sdim    case X86::SUB16rm:   NewOpcode = X86::CMP16rm;   break;
3581239462Sdim    case X86::SUB8rm:    NewOpcode = X86::CMP8rm;    break;
3582239462Sdim    case X86::SUB64rr:   NewOpcode = X86::CMP64rr;   break;
3583239462Sdim    case X86::SUB32rr:   NewOpcode = X86::CMP32rr;   break;
3584239462Sdim    case X86::SUB16rr:   NewOpcode = X86::CMP16rr;   break;
3585239462Sdim    case X86::SUB8rr:    NewOpcode = X86::CMP8rr;    break;
3586239462Sdim    case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
3587239462Sdim    case X86::SUB64ri8:  NewOpcode = X86::CMP64ri8;  break;
3588239462Sdim    case X86::SUB32ri:   NewOpcode = X86::CMP32ri;   break;
3589239462Sdim    case X86::SUB32ri8:  NewOpcode = X86::CMP32ri8;  break;
3590239462Sdim    case X86::SUB16ri:   NewOpcode = X86::CMP16ri;   break;
3591239462Sdim    case X86::SUB16ri8:  NewOpcode = X86::CMP16ri8;  break;
3592239462Sdim    case X86::SUB8ri:    NewOpcode = X86::CMP8ri;    break;
3593239462Sdim    }
3594309124Sdim    CmpInstr.setDesc(get(NewOpcode));
3595309124Sdim    CmpInstr.RemoveOperand(0);
3596239462Sdim    // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
3597239462Sdim    if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
3598239462Sdim        NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
3599239462Sdim      return false;
3600239462Sdim  }
3601239462Sdim  }
3602239462Sdim
3603239462Sdim  // Get the unique definition of SrcReg.
3604239462Sdim  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3605239462Sdim  if (!MI) return false;
3606239462Sdim
3607239462Sdim  // CmpInstr is the first instruction of the BB.
3608239462Sdim  MachineBasicBlock::iterator I = CmpInstr, Def = MI;
3609239462Sdim
3610239462Sdim  // If we are comparing against zero, check whether we can use MI to update
3611239462Sdim  // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
3612321369Sdim  bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
3613309124Sdim  if (IsCmpZero && MI->getParent() != CmpInstr.getParent())
3614239462Sdim    return false;
3615239462Sdim
3616276479Sdim  // If we have a use of the source register between the def and our compare
3617276479Sdim  // instruction we can eliminate the compare iff the use sets EFLAGS in the
3618276479Sdim  // right way.
3619276479Sdim  bool ShouldUpdateCC = false;
3620344779Sdim  bool NoSignFlag = false;
3621276479Sdim  X86::CondCode NewCC = X86::COND_INVALID;
3622344779Sdim  if (IsCmpZero && !isDefConvertible(*MI, NoSignFlag)) {
3623276479Sdim    // Scan forward from the use until we hit the use we're looking for or the
3624276479Sdim    // compare instruction.
3625276479Sdim    for (MachineBasicBlock::iterator J = MI;; ++J) {
3626276479Sdim      // Do we have a convertible instruction?
3627309124Sdim      NewCC = isUseDefConvertible(*J);
3628276479Sdim      if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
3629276479Sdim          J->getOperand(1).getReg() == SrcReg) {
3630276479Sdim        assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
3631276479Sdim        ShouldUpdateCC = true; // Update CC later on.
3632276479Sdim        // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
3633276479Sdim        // with the new def.
3634309124Sdim        Def = J;
3635309124Sdim        MI = &*Def;
3636276479Sdim        break;
3637276479Sdim      }
3638276479Sdim
3639276479Sdim      if (J == I)
3640276479Sdim        return false;
3641276479Sdim    }
3642276479Sdim  }
3643276479Sdim
3644239462Sdim  // We are searching for an earlier instruction that can make CmpInstr
3645239462Sdim  // redundant and that instruction will be saved in Sub.
3646276479Sdim  MachineInstr *Sub = nullptr;
3647239462Sdim  const TargetRegisterInfo *TRI = &getRegisterInfo();
3648239462Sdim
3649239462Sdim  // We iterate backward, starting from the instruction before CmpInstr and
3650239462Sdim  // stop when reaching the definition of a source register or done with the BB.
3651239462Sdim  // RI points to the instruction before CmpInstr.
3652239462Sdim  // If the definition is in this basic block, RE points to the definition;
3653239462Sdim  // otherwise, RE is the rend of the basic block.
3654239462Sdim  MachineBasicBlock::reverse_iterator
3655314564Sdim      RI = ++I.getReverse(),
3656309124Sdim      RE = CmpInstr.getParent() == MI->getParent()
3657314564Sdim               ? Def.getReverse() /* points to MI */
3658309124Sdim               : CmpInstr.getParent()->rend();
3659276479Sdim  MachineInstr *Movr0Inst = nullptr;
3660239462Sdim  for (; RI != RE; ++RI) {
3661309124Sdim    MachineInstr &Instr = *RI;
3662239462Sdim    // Check whether CmpInstr can be made redundant by the current instruction.
3663321369Sdim    if (!IsCmpZero && isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask,
3664321369Sdim                                           CmpValue, Instr)) {
3665309124Sdim      Sub = &Instr;
3666239462Sdim      break;
3667239462Sdim    }
3668239462Sdim
3669309124Sdim    if (Instr.modifiesRegister(X86::EFLAGS, TRI) ||
3670309124Sdim        Instr.readsRegister(X86::EFLAGS, TRI)) {
3671239462Sdim      // This instruction modifies or uses EFLAGS.
3672239462Sdim
3673239462Sdim      // MOV32r0 etc. are implemented with xor which clobbers condition code.
3674239462Sdim      // They are safe to move up, if the definition to EFLAGS is dead and
3675239462Sdim      // earlier instructions do not read or write EFLAGS.
3676309124Sdim      if (!Movr0Inst && Instr.getOpcode() == X86::MOV32r0 &&
3677309124Sdim          Instr.registerDefIsDead(X86::EFLAGS, TRI)) {
3678309124Sdim        Movr0Inst = &Instr;
3679239462Sdim        continue;
3680239462Sdim      }
3681239462Sdim
3682239462Sdim      // We can't remove CmpInstr.
3683239462Sdim      return false;
3684239462Sdim    }
3685239462Sdim  }
3686239462Sdim
3687239462Sdim  // Return false if no candidates exist.
3688239462Sdim  if (!IsCmpZero && !Sub)
3689239462Sdim    return false;
3690239462Sdim
3691360784Sdim  bool IsSwapped =
3692360784Sdim      (SrcReg2 != 0 && Sub && Sub->getOperand(1).getReg() == SrcReg2 &&
3693360784Sdim       Sub->getOperand(2).getReg() == SrcReg);
3694239462Sdim
3695239462Sdim  // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
3696239462Sdim  // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
3697239462Sdim  // If we are done with the basic block, we need to check whether EFLAGS is
3698239462Sdim  // live-out.
3699239462Sdim  bool IsSafe = false;
3700353358Sdim  SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate;
3701309124Sdim  MachineBasicBlock::iterator E = CmpInstr.getParent()->end();
3702239462Sdim  for (++I; I != E; ++I) {
3703239462Sdim    const MachineInstr &Instr = *I;
3704239462Sdim    bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
3705239462Sdim    bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
3706239462Sdim    // We should check the usage if this instruction uses and updates EFLAGS.
3707239462Sdim    if (!UseEFLAGS && ModifyEFLAGS) {
3708239462Sdim      // It is safe to remove CmpInstr if EFLAGS is updated again.
3709239462Sdim      IsSafe = true;
3710239462Sdim      break;
3711239462Sdim    }
3712239462Sdim    if (!UseEFLAGS && !ModifyEFLAGS)
3713239462Sdim      continue;
3714239462Sdim
3715239462Sdim    // EFLAGS is used by this instruction.
3716276479Sdim    X86::CondCode OldCC = X86::COND_INVALID;
3717239462Sdim    if (IsCmpZero || IsSwapped) {
3718239462Sdim      // We decode the condition code from opcode.
3719239462Sdim      if (Instr.isBranch())
3720353358Sdim        OldCC = X86::getCondFromBranch(Instr);
3721239462Sdim      else {
3722353358Sdim        OldCC = X86::getCondFromSETCC(Instr);
3723353358Sdim        if (OldCC == X86::COND_INVALID)
3724353358Sdim          OldCC = X86::getCondFromCMov(Instr);
3725239462Sdim      }
3726239462Sdim      if (OldCC == X86::COND_INVALID) return false;
3727239462Sdim    }
3728327952Sdim    X86::CondCode ReplacementCC = X86::COND_INVALID;
3729239462Sdim    if (IsCmpZero) {
3730239462Sdim      switch (OldCC) {
3731239462Sdim      default: break;
3732239462Sdim      case X86::COND_A: case X86::COND_AE:
3733239462Sdim      case X86::COND_B: case X86::COND_BE:
3734239462Sdim      case X86::COND_G: case X86::COND_GE:
3735239462Sdim      case X86::COND_L: case X86::COND_LE:
3736239462Sdim      case X86::COND_O: case X86::COND_NO:
3737239462Sdim        // CF and OF are used, we can't perform this optimization.
3738239462Sdim        return false;
3739344779Sdim      case X86::COND_S: case X86::COND_NS:
3740344779Sdim        // If SF is used, but the instruction doesn't update the SF, then we
3741344779Sdim        // can't do the optimization.
3742344779Sdim        if (NoSignFlag)
3743344779Sdim          return false;
3744344779Sdim        break;
3745239462Sdim      }
3746276479Sdim
3747276479Sdim      // If we're updating the condition code check if we have to reverse the
3748276479Sdim      // condition.
3749276479Sdim      if (ShouldUpdateCC)
3750276479Sdim        switch (OldCC) {
3751276479Sdim        default:
3752276479Sdim          return false;
3753276479Sdim        case X86::COND_E:
3754327952Sdim          ReplacementCC = NewCC;
3755276479Sdim          break;
3756276479Sdim        case X86::COND_NE:
3757327952Sdim          ReplacementCC = GetOppositeBranchCondition(NewCC);
3758276479Sdim          break;
3759276479Sdim        }
3760239462Sdim    } else if (IsSwapped) {
3761239462Sdim      // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
3762239462Sdim      // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3763239462Sdim      // We swap the condition code and synthesize the new opcode.
3764327952Sdim      ReplacementCC = getSwappedCondition(OldCC);
3765327952Sdim      if (ReplacementCC == X86::COND_INVALID) return false;
3766276479Sdim    }
3767239462Sdim
3768327952Sdim    if ((ShouldUpdateCC || IsSwapped) && ReplacementCC != OldCC) {
3769239462Sdim      // Push the MachineInstr to OpsToUpdate.
3770239462Sdim      // If it is safe to remove CmpInstr, the condition code of these
3771239462Sdim      // instructions will be modified.
3772353358Sdim      OpsToUpdate.push_back(std::make_pair(&*I, ReplacementCC));
3773239462Sdim    }
3774239462Sdim    if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
3775239462Sdim      // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
3776239462Sdim      IsSafe = true;
3777239462Sdim      break;
3778239462Sdim    }
3779239462Sdim  }
3780239462Sdim
3781239462Sdim  // If EFLAGS is not killed nor re-defined, we should check whether it is
3782239462Sdim  // live-out. If it is live-out, do not optimize.
3783239462Sdim  if ((IsCmpZero || IsSwapped) && !IsSafe) {
3784309124Sdim    MachineBasicBlock *MBB = CmpInstr.getParent();
3785296417Sdim    for (MachineBasicBlock *Successor : MBB->successors())
3786296417Sdim      if (Successor->isLiveIn(X86::EFLAGS))
3787239462Sdim        return false;
3788239462Sdim  }
3789239462Sdim
3790239462Sdim  // The instruction to be updated is either Sub or MI.
3791239462Sdim  Sub = IsCmpZero ? MI : Sub;
3792261991Sdim  // Move Movr0Inst to the appropriate place before Sub.
3793239462Sdim  if (Movr0Inst) {
3794261991Sdim    // Look backwards until we find a def that doesn't use the current EFLAGS.
3795261991Sdim    Def = Sub;
3796314564Sdim    MachineBasicBlock::reverse_iterator InsertI = Def.getReverse(),
3797314564Sdim                                        InsertE = Sub->getParent()->rend();
3798261991Sdim    for (; InsertI != InsertE; ++InsertI) {
3799261991Sdim      MachineInstr *Instr = &*InsertI;
3800261991Sdim      if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
3801261991Sdim          Instr->modifiesRegister(X86::EFLAGS, TRI)) {
3802261991Sdim        Sub->getParent()->remove(Movr0Inst);
3803261991Sdim        Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
3804261991Sdim                                   Movr0Inst);
3805261991Sdim        break;
3806261991Sdim      }
3807261991Sdim    }
3808261991Sdim    if (InsertI == InsertE)
3809261991Sdim      return false;
3810239462Sdim  }
3811239462Sdim
3812243830Sdim  // Make sure Sub instruction defines EFLAGS and mark the def live.
3813353358Sdim  MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS);
3814353358Sdim  assert(FlagDef && "Unable to locate a def EFLAGS operand");
3815353358Sdim  FlagDef->setIsDead(false);
3816261991Sdim
3817309124Sdim  CmpInstr.eraseFromParent();
3818239462Sdim
3819239462Sdim  // Modify the condition code of instructions in OpsToUpdate.
3820353358Sdim  for (auto &Op : OpsToUpdate) {
3821353358Sdim    Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
3822353358Sdim        .setImm(Op.second);
3823353358Sdim  }
3824239462Sdim  return true;
3825239462Sdim}
3826239462Sdim
3827288943Sdim/// Try to remove the load by folding it to a register
3828239462Sdim/// operand at the use. We fold the load instructions if load defines a virtual
3829239462Sdim/// register, the virtual register is used once in the same BB, and the
3830239462Sdim/// instructions in-between do not load or store, and have no side effects.
3831309124SdimMachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
3832280031Sdim                                              const MachineRegisterInfo *MRI,
3833280031Sdim                                              unsigned &FoldAsLoadDefReg,
3834280031Sdim                                              MachineInstr *&DefMI) const {
3835239462Sdim  // Check whether we can move DefMI here.
3836239462Sdim  DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
3837239462Sdim  assert(DefMI);
3838239462Sdim  bool SawStore = false;
3839288943Sdim  if (!DefMI->isSafeToMove(nullptr, SawStore))
3840276479Sdim    return nullptr;
3841239462Sdim
3842280031Sdim  // Collect information about virtual register operands of MI.
3843314564Sdim  SmallVector<unsigned, 1> SrcOperandIds;
3844314564Sdim  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
3845309124Sdim    MachineOperand &MO = MI.getOperand(i);
3846280031Sdim    if (!MO.isReg())
3847280031Sdim      continue;
3848360784Sdim    Register Reg = MO.getReg();
3849280031Sdim    if (Reg != FoldAsLoadDefReg)
3850280031Sdim      continue;
3851314564Sdim    // Do not fold if we have a subreg use or a def.
3852314564Sdim    if (MO.getSubReg() || MO.isDef())
3853280031Sdim      return nullptr;
3854314564Sdim    SrcOperandIds.push_back(i);
3855280031Sdim  }
3856314564Sdim  if (SrcOperandIds.empty())
3857280031Sdim    return nullptr;
3858239462Sdim
3859280031Sdim  // Check whether we can fold the def into SrcOperandId.
3860314564Sdim  if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
3861280031Sdim    FoldAsLoadDefReg = 0;
3862280031Sdim    return FoldMI;
3863280031Sdim  }
3864239462Sdim
3865276479Sdim  return nullptr;
3866239462Sdim}
3867239462Sdim
3868288943Sdim/// Expand a single-def pseudo instruction to a two-addr
3869288943Sdim/// instruction with two undef reads of the register being defined.
3870288943Sdim/// This is used for mapping:
3871226633Sdim///   %xmm4 = V_SET0
3872226633Sdim/// to:
3873327952Sdim///   %xmm4 = PXORrr undef %xmm4, undef %xmm4
3874226633Sdim///
3875249423Sdimstatic bool Expand2AddrUndef(MachineInstrBuilder &MIB,
3876249423Sdim                             const MCInstrDesc &Desc) {
3877226633Sdim  assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
3878360784Sdim  Register Reg = MIB->getOperand(0).getReg();
3879249423Sdim  MIB->setDesc(Desc);
3880226633Sdim
3881226633Sdim  // MachineInstr::addOperand() will insert explicit operands before any
3882226633Sdim  // implicit operands.
3883249423Sdim  MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
3884226633Sdim  // But we don't trust that.
3885249423Sdim  assert(MIB->getOperand(1).getReg() == Reg &&
3886249423Sdim         MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
3887226633Sdim  return true;
3888226633Sdim}
3889226633Sdim
3890296417Sdim/// Expand a single-def pseudo instruction to a two-addr
3891296417Sdim/// instruction with two %k0 reads.
3892296417Sdim/// This is used for mapping:
3893296417Sdim///   %k4 = K_SET1
3894296417Sdim/// to:
3895296417Sdim///   %k4 = KXNORrr %k0, %k0
3896296417Sdimstatic bool Expand2AddrKreg(MachineInstrBuilder &MIB,
3897296417Sdim                            const MCInstrDesc &Desc, unsigned Reg) {
3898296417Sdim  assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
3899296417Sdim  MIB->setDesc(Desc);
3900296417Sdim  MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
3901296417Sdim  return true;
3902296417Sdim}
3903296417Sdim
3904296417Sdimstatic bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
3905296417Sdim                          bool MinusOne) {
3906296417Sdim  MachineBasicBlock &MBB = *MIB->getParent();
3907296417Sdim  DebugLoc DL = MIB->getDebugLoc();
3908360784Sdim  Register Reg = MIB->getOperand(0).getReg();
3909296417Sdim
3910296417Sdim  // Insert the XOR.
3911296417Sdim  BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
3912296417Sdim      .addReg(Reg, RegState::Undef)
3913296417Sdim      .addReg(Reg, RegState::Undef);
3914296417Sdim
3915296417Sdim  // Turn the pseudo into an INC or DEC.
3916296417Sdim  MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
3917296417Sdim  MIB.addReg(Reg);
3918296417Sdim
3919296417Sdim  return true;
3920296417Sdim}
3921296417Sdim
3922314564Sdimstatic bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
3923314564Sdim                               const TargetInstrInfo &TII,
3924314564Sdim                               const X86Subtarget &Subtarget) {
3925309124Sdim  MachineBasicBlock &MBB = *MIB->getParent();
3926309124Sdim  DebugLoc DL = MIB->getDebugLoc();
3927309124Sdim  int64_t Imm = MIB->getOperand(1).getImm();
3928309124Sdim  assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
3929309124Sdim  MachineBasicBlock::iterator I = MIB.getInstr();
3930309124Sdim
3931309124Sdim  int StackAdjustment;
3932309124Sdim
3933309124Sdim  if (Subtarget.is64Bit()) {
3934309124Sdim    assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
3935309124Sdim           MIB->getOpcode() == X86::MOV32ImmSExti8);
3936309124Sdim
3937309124Sdim    // Can't use push/pop lowering if the function might write to the red zone.
3938309124Sdim    X86MachineFunctionInfo *X86FI =
3939309124Sdim        MBB.getParent()->getInfo<X86MachineFunctionInfo>();
3940309124Sdim    if (X86FI->getUsesRedZone()) {
3941314564Sdim      MIB->setDesc(TII.get(MIB->getOpcode() ==
3942314564Sdim                           X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
3943309124Sdim      return true;
3944309124Sdim    }
3945309124Sdim
3946309124Sdim    // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
3947309124Sdim    // widen the register if necessary.
3948309124Sdim    StackAdjustment = 8;
3949314564Sdim    BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm);
3950314564Sdim    MIB->setDesc(TII.get(X86::POP64r));
3951309124Sdim    MIB->getOperand(0)
3952309124Sdim        .setReg(getX86SubSuperRegister(MIB->getOperand(0).getReg(), 64));
3953309124Sdim  } else {
3954309124Sdim    assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
3955309124Sdim    StackAdjustment = 4;
3956314564Sdim    BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm);
3957314564Sdim    MIB->setDesc(TII.get(X86::POP32r));
3958309124Sdim  }
3959363496Sdim  MIB->RemoveOperand(1);
3960363496Sdim  MIB->addImplicitDefUseOperands(*MBB.getParent());
3961309124Sdim
3962309124Sdim  // Build CFI if necessary.
3963309124Sdim  MachineFunction &MF = *MBB.getParent();
3964309124Sdim  const X86FrameLowering *TFL = Subtarget.getFrameLowering();
3965309124Sdim  bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
3966360784Sdim  bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
3967309124Sdim  bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
3968309124Sdim  if (EmitCFI) {
3969309124Sdim    TFL->BuildCFI(MBB, I, DL,
3970309124Sdim        MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
3971309124Sdim    TFL->BuildCFI(MBB, std::next(I), DL,
3972309124Sdim        MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
3973309124Sdim  }
3974309124Sdim
3975309124Sdim  return true;
3976309124Sdim}
3977309124Sdim
3978280031Sdim// LoadStackGuard has so far only been implemented for 64-bit MachO. Different
3979280031Sdim// code sequence is needed for other targets.
3980280031Sdimstatic void expandLoadStackGuard(MachineInstrBuilder &MIB,
3981280031Sdim                                 const TargetInstrInfo &TII) {
3982280031Sdim  MachineBasicBlock &MBB = *MIB->getParent();
3983280031Sdim  DebugLoc DL = MIB->getDebugLoc();
3984360784Sdim  Register Reg = MIB->getOperand(0).getReg();
3985280031Sdim  const GlobalValue *GV =
3986280031Sdim      cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
3987314564Sdim  auto Flags = MachineMemOperand::MOLoad |
3988314564Sdim               MachineMemOperand::MODereferenceable |
3989314564Sdim               MachineMemOperand::MOInvariant;
3990296417Sdim  MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
3991309124Sdim      MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, 8);
3992280031Sdim  MachineBasicBlock::iterator I = MIB.getInstr();
3993280031Sdim
3994280031Sdim  BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
3995280031Sdim      .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
3996280031Sdim      .addMemOperand(MMO);
3997280031Sdim  MIB->setDebugLoc(DL);
3998280031Sdim  MIB->setDesc(TII.get(X86::MOV64rm));
3999280031Sdim  MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
4000280031Sdim}
4001280031Sdim
4002327952Sdimstatic bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
4003327952Sdim  MachineBasicBlock &MBB = *MIB->getParent();
4004327952Sdim  MachineFunction &MF = *MBB.getParent();
4005327952Sdim  const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
4006327952Sdim  const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
4007327952Sdim  unsigned XorOp =
4008327952Sdim      MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
4009327952Sdim  MIB->setDesc(TII.get(XorOp));
4010327952Sdim  MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
4011327952Sdim  return true;
4012327952Sdim}
4013327952Sdim
4014314564Sdim// This is used to handle spills for 128/256-bit registers when we have AVX512,
4015314564Sdim// but not VLX. If it uses an extended register we need to use an instruction
4016314564Sdim// that loads the lower 128/256-bit, but is available with only AVX512F.
4017314564Sdimstatic bool expandNOVLXLoad(MachineInstrBuilder &MIB,
4018314564Sdim                            const TargetRegisterInfo *TRI,
4019314564Sdim                            const MCInstrDesc &LoadDesc,
4020314564Sdim                            const MCInstrDesc &BroadcastDesc,
4021314564Sdim                            unsigned SubIdx) {
4022360784Sdim  Register DestReg = MIB->getOperand(0).getReg();
4023314564Sdim  // Check if DestReg is XMM16-31 or YMM16-31.
4024314564Sdim  if (TRI->getEncodingValue(DestReg) < 16) {
4025314564Sdim    // We can use a normal VEX encoded load.
4026314564Sdim    MIB->setDesc(LoadDesc);
4027314564Sdim  } else {
4028314564Sdim    // Use a 128/256-bit VBROADCAST instruction.
4029314564Sdim    MIB->setDesc(BroadcastDesc);
4030314564Sdim    // Change the destination to a 512-bit register.
4031314564Sdim    DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
4032314564Sdim    MIB->getOperand(0).setReg(DestReg);
4033314564Sdim  }
4034314564Sdim  return true;
4035314564Sdim}
4036314564Sdim
4037314564Sdim// This is used to handle spills for 128/256-bit registers when we have AVX512,
4038314564Sdim// but not VLX. If it uses an extended register we need to use an instruction
4039314564Sdim// that stores the lower 128/256-bit, but is available with only AVX512F.
4040314564Sdimstatic bool expandNOVLXStore(MachineInstrBuilder &MIB,
4041314564Sdim                             const TargetRegisterInfo *TRI,
4042314564Sdim                             const MCInstrDesc &StoreDesc,
4043314564Sdim                             const MCInstrDesc &ExtractDesc,
4044314564Sdim                             unsigned SubIdx) {
4045360784Sdim  Register SrcReg = MIB->getOperand(X86::AddrNumOperands).getReg();
4046314564Sdim  // Check if DestReg is XMM16-31 or YMM16-31.
4047314564Sdim  if (TRI->getEncodingValue(SrcReg) < 16) {
4048314564Sdim    // We can use a normal VEX encoded store.
4049314564Sdim    MIB->setDesc(StoreDesc);
4050314564Sdim  } else {
4051314564Sdim    // Use a VEXTRACTF instruction.
4052314564Sdim    MIB->setDesc(ExtractDesc);
4053314564Sdim    // Change the destination to a 512-bit register.
4054314564Sdim    SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
4055314564Sdim    MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
4056314564Sdim    MIB.addImm(0x0); // Append immediate to extract from the lower bits.
4057314564Sdim  }
4058314564Sdim
4059314564Sdim  return true;
4060314564Sdim}
4061353358Sdim
4062353358Sdimstatic bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) {
4063353358Sdim  MIB->setDesc(Desc);
4064353358Sdim  int64_t ShiftAmt = MIB->getOperand(2).getImm();
4065353358Sdim  // Temporarily remove the immediate so we can add another source register.
4066353358Sdim  MIB->RemoveOperand(2);
4067353358Sdim  // Add the register. Don't copy the kill flag if there is one.
4068353358Sdim  MIB.addReg(MIB->getOperand(1).getReg(),
4069353358Sdim             getUndefRegState(MIB->getOperand(1).isUndef()));
4070353358Sdim  // Add back the immediate.
4071353358Sdim  MIB.addImm(ShiftAmt);
4072353358Sdim  return true;
4073353358Sdim}
4074353358Sdim
4075309124Sdimbool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
4076276479Sdim  bool HasAVX = Subtarget.hasAVX();
4077309124Sdim  MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4078309124Sdim  switch (MI.getOpcode()) {
4079276479Sdim  case X86::MOV32r0:
4080276479Sdim    return Expand2AddrUndef(MIB, get(X86::XOR32rr));
4081296417Sdim  case X86::MOV32r1:
4082296417Sdim    return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
4083296417Sdim  case X86::MOV32r_1:
4084296417Sdim    return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
4085309124Sdim  case X86::MOV32ImmSExti8:
4086309124Sdim  case X86::MOV64ImmSExti8:
4087314564Sdim    return ExpandMOVImmSExti8(MIB, *this, Subtarget);
4088243830Sdim  case X86::SETB_C8r:
4089249423Sdim    return Expand2AddrUndef(MIB, get(X86::SBB8rr));
4090243830Sdim  case X86::SETB_C16r:
4091249423Sdim    return Expand2AddrUndef(MIB, get(X86::SBB16rr));
4092243830Sdim  case X86::SETB_C32r:
4093249423Sdim    return Expand2AddrUndef(MIB, get(X86::SBB32rr));
4094243830Sdim  case X86::SETB_C64r:
4095249423Sdim    return Expand2AddrUndef(MIB, get(X86::SBB64rr));
4096341825Sdim  case X86::MMX_SET0:
4097341825Sdim    return Expand2AddrUndef(MIB, get(X86::MMX_PXORirr));
4098226633Sdim  case X86::V_SET0:
4099234353Sdim  case X86::FsFLD0SS:
4100234353Sdim  case X86::FsFLD0SD:
4101360784Sdim  case X86::FsFLD0F128:
4102249423Sdim    return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
4103327952Sdim  case X86::AVX_SET0: {
4104243830Sdim    assert(HasAVX && "AVX not supported");
4105327952Sdim    const TargetRegisterInfo *TRI = &getRegisterInfo();
4106360784Sdim    Register SrcReg = MIB->getOperand(0).getReg();
4107360784Sdim    Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4108327952Sdim    MIB->getOperand(0).setReg(XReg);
4109327952Sdim    Expand2AddrUndef(MIB, get(X86::VXORPSrr));
4110327952Sdim    MIB.addReg(SrcReg, RegState::ImplicitDefine);
4111327952Sdim    return true;
4112327952Sdim  }
4113309124Sdim  case X86::AVX512_128_SET0:
4114321369Sdim  case X86::AVX512_FsFLD0SS:
4115360784Sdim  case X86::AVX512_FsFLD0SD:
4116360784Sdim  case X86::AVX512_FsFLD0F128: {
4117321369Sdim    bool HasVLX = Subtarget.hasVLX();
4118360784Sdim    Register SrcReg = MIB->getOperand(0).getReg();
4119321369Sdim    const TargetRegisterInfo *TRI = &getRegisterInfo();
4120321369Sdim    if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
4121321369Sdim      return Expand2AddrUndef(MIB,
4122321369Sdim                              get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4123321369Sdim    // Extended register without VLX. Use a larger XOR.
4124327952Sdim    SrcReg =
4125327952Sdim        TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
4126321369Sdim    MIB->getOperand(0).setReg(SrcReg);
4127321369Sdim    return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4128321369Sdim  }
4129327952Sdim  case X86::AVX512_256_SET0:
4130327952Sdim  case X86::AVX512_512_SET0: {
4131321369Sdim    bool HasVLX = Subtarget.hasVLX();
4132360784Sdim    Register SrcReg = MIB->getOperand(0).getReg();
4133321369Sdim    const TargetRegisterInfo *TRI = &getRegisterInfo();
4134327952Sdim    if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
4135360784Sdim      Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4136327952Sdim      MIB->getOperand(0).setReg(XReg);
4137327952Sdim      Expand2AddrUndef(MIB,
4138327952Sdim                       get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4139327952Sdim      MIB.addReg(SrcReg, RegState::ImplicitDefine);
4140327952Sdim      return true;
4141327952Sdim    }
4142353358Sdim    if (MI.getOpcode() == X86::AVX512_256_SET0) {
4143353358Sdim      // No VLX so we must reference a zmm.
4144353358Sdim      unsigned ZReg =
4145353358Sdim        TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
4146353358Sdim      MIB->getOperand(0).setReg(ZReg);
4147353358Sdim    }
4148321369Sdim    return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4149321369Sdim  }
4150243830Sdim  case X86::V_SETALLONES:
4151249423Sdim    return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
4152243830Sdim  case X86::AVX2_SETALLONES:
4153249423Sdim    return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
4154321369Sdim  case X86::AVX1_SETALLONES: {
4155360784Sdim    Register Reg = MIB->getOperand(0).getReg();
4156321369Sdim    // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
4157321369Sdim    MIB->setDesc(get(X86::VCMPPSYrri));
4158321369Sdim    MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
4159321369Sdim    return true;
4160321369Sdim  }
4161309124Sdim  case X86::AVX512_512_SETALLONES: {
4162360784Sdim    Register Reg = MIB->getOperand(0).getReg();
4163309124Sdim    MIB->setDesc(get(X86::VPTERNLOGDZrri));
4164309124Sdim    // VPTERNLOGD needs 3 register inputs and an immediate.
4165309124Sdim    // 0xff will return 1s for any input.
4166309124Sdim    MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
4167309124Sdim       .addReg(Reg, RegState::Undef).addImm(0xff);
4168309124Sdim    return true;
4169309124Sdim  }
4170314564Sdim  case X86::AVX512_512_SEXT_MASK_32:
4171314564Sdim  case X86::AVX512_512_SEXT_MASK_64: {
4172360784Sdim    Register Reg = MIB->getOperand(0).getReg();
4173360784Sdim    Register MaskReg = MIB->getOperand(1).getReg();
4174314564Sdim    unsigned MaskState = getRegState(MIB->getOperand(1));
4175314564Sdim    unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ?
4176314564Sdim                   X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz;
4177314564Sdim    MI.RemoveOperand(1);
4178314564Sdim    MIB->setDesc(get(Opc));
4179314564Sdim    // VPTERNLOG needs 3 register inputs and an immediate.
4180314564Sdim    // 0xff will return 1s for any input.
4181314564Sdim    MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState)
4182314564Sdim       .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff);
4183314564Sdim    return true;
4184314564Sdim  }
4185314564Sdim  case X86::VMOVAPSZ128rm_NOVLX:
4186314564Sdim    return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
4187314564Sdim                           get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4188314564Sdim  case X86::VMOVUPSZ128rm_NOVLX:
4189314564Sdim    return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
4190314564Sdim                           get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4191314564Sdim  case X86::VMOVAPSZ256rm_NOVLX:
4192314564Sdim    return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
4193314564Sdim                           get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4194314564Sdim  case X86::VMOVUPSZ256rm_NOVLX:
4195314564Sdim    return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
4196314564Sdim                           get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4197314564Sdim  case X86::VMOVAPSZ128mr_NOVLX:
4198314564Sdim    return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
4199314564Sdim                            get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4200314564Sdim  case X86::VMOVUPSZ128mr_NOVLX:
4201314564Sdim    return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
4202314564Sdim                            get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4203314564Sdim  case X86::VMOVAPSZ256mr_NOVLX:
4204314564Sdim    return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
4205314564Sdim                            get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
4206314564Sdim  case X86::VMOVUPSZ256mr_NOVLX:
4207314564Sdim    return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
4208314564Sdim                            get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
4209344779Sdim  case X86::MOV32ri64: {
4210360784Sdim    Register Reg = MIB->getOperand(0).getReg();
4211360784Sdim    Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
4212309124Sdim    MI.setDesc(get(X86::MOV32ri));
4213344779Sdim    MIB->getOperand(0).setReg(Reg32);
4214344779Sdim    MIB.addReg(Reg, RegState::ImplicitDefine);
4215296417Sdim    return true;
4216344779Sdim  }
4217296417Sdim
4218296417Sdim  // KNL does not recognize dependency-breaking idioms for mask registers,
4219296417Sdim  // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
4220296417Sdim  // Using %k0 as the undef input register is a performance heuristic based
4221296417Sdim  // on the assumption that %k0 is used less frequently than the other mask
4222296417Sdim  // registers, since it is not usable as a write mask.
4223296417Sdim  // FIXME: A more advanced approach would be to choose the best input mask
4224296417Sdim  // register based on context.
4225296417Sdim  case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
4226296417Sdim  case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
4227296417Sdim  case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
4228296417Sdim  case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
4229296417Sdim  case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
4230296417Sdim  case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
4231280031Sdim  case TargetOpcode::LOAD_STACK_GUARD:
4232280031Sdim    expandLoadStackGuard(MIB, *this);
4233280031Sdim    return true;
4234327952Sdim  case X86::XOR64_FP:
4235327952Sdim  case X86::XOR32_FP:
4236327952Sdim    return expandXorFP(MIB, *this);
4237353358Sdim  case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8));
4238353358Sdim  case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8));
4239353358Sdim  case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8));
4240353358Sdim  case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8));
4241353358Sdim  case X86::ADD8rr_DB:    MIB->setDesc(get(X86::OR8rr));    break;
4242353358Sdim  case X86::ADD16rr_DB:   MIB->setDesc(get(X86::OR16rr));   break;
4243353358Sdim  case X86::ADD32rr_DB:   MIB->setDesc(get(X86::OR32rr));   break;
4244353358Sdim  case X86::ADD64rr_DB:   MIB->setDesc(get(X86::OR64rr));   break;
4245353358Sdim  case X86::ADD8ri_DB:    MIB->setDesc(get(X86::OR8ri));    break;
4246353358Sdim  case X86::ADD16ri_DB:   MIB->setDesc(get(X86::OR16ri));   break;
4247353358Sdim  case X86::ADD32ri_DB:   MIB->setDesc(get(X86::OR32ri));   break;
4248353358Sdim  case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break;
4249353358Sdim  case X86::ADD16ri8_DB:  MIB->setDesc(get(X86::OR16ri8));  break;
4250353358Sdim  case X86::ADD32ri8_DB:  MIB->setDesc(get(X86::OR32ri8));  break;
4251353358Sdim  case X86::ADD64ri8_DB:  MIB->setDesc(get(X86::OR64ri8));  break;
4252226633Sdim  }
4253226633Sdim  return false;
4254226633Sdim}
4255226633Sdim
4256327952Sdim/// Return true for all instructions that only update
4257327952Sdim/// the first 32 or 64-bits of the destination register and leave the rest
4258327952Sdim/// unmodified. This can be used to avoid folding loads if the instructions
4259327952Sdim/// only update part of the destination register, and the non-updated part is
4260327952Sdim/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
4261327952Sdim/// instructions breaks the partial register dependency and it can improve
4262327952Sdim/// performance. e.g.:
4263327952Sdim///
4264327952Sdim///   movss (%rdi), %xmm0
4265327952Sdim///   cvtss2sd %xmm0, %xmm0
4266327952Sdim///
4267327952Sdim/// Instead of
4268327952Sdim///   cvtss2sd (%rdi), %xmm0
4269327952Sdim///
4270327952Sdim/// FIXME: This should be turned into a TSFlags.
4271327952Sdim///
4272341825Sdimstatic bool hasPartialRegUpdate(unsigned Opcode,
4273353358Sdim                                const X86Subtarget &Subtarget,
4274353358Sdim                                bool ForLoadFold = false) {
4275327952Sdim  switch (Opcode) {
4276327952Sdim  case X86::CVTSI2SSrr:
4277327952Sdim  case X86::CVTSI2SSrm:
4278327952Sdim  case X86::CVTSI642SSrr:
4279327952Sdim  case X86::CVTSI642SSrm:
4280327952Sdim  case X86::CVTSI2SDrr:
4281327952Sdim  case X86::CVTSI2SDrm:
4282327952Sdim  case X86::CVTSI642SDrr:
4283327952Sdim  case X86::CVTSI642SDrm:
4284353358Sdim    // Load folding won't effect the undef register update since the input is
4285353358Sdim    // a GPR.
4286353358Sdim    return !ForLoadFold;
4287327952Sdim  case X86::CVTSD2SSrr:
4288327952Sdim  case X86::CVTSD2SSrm:
4289327952Sdim  case X86::CVTSS2SDrr:
4290327952Sdim  case X86::CVTSS2SDrm:
4291327952Sdim  case X86::MOVHPDrm:
4292327952Sdim  case X86::MOVHPSrm:
4293327952Sdim  case X86::MOVLPDrm:
4294327952Sdim  case X86::MOVLPSrm:
4295327952Sdim  case X86::RCPSSr:
4296327952Sdim  case X86::RCPSSm:
4297327952Sdim  case X86::RCPSSr_Int:
4298327952Sdim  case X86::RCPSSm_Int:
4299327952Sdim  case X86::ROUNDSDr:
4300327952Sdim  case X86::ROUNDSDm:
4301327952Sdim  case X86::ROUNDSSr:
4302327952Sdim  case X86::ROUNDSSm:
4303327952Sdim  case X86::RSQRTSSr:
4304327952Sdim  case X86::RSQRTSSm:
4305327952Sdim  case X86::RSQRTSSr_Int:
4306327952Sdim  case X86::RSQRTSSm_Int:
4307327952Sdim  case X86::SQRTSSr:
4308327952Sdim  case X86::SQRTSSm:
4309327952Sdim  case X86::SQRTSSr_Int:
4310327952Sdim  case X86::SQRTSSm_Int:
4311327952Sdim  case X86::SQRTSDr:
4312327952Sdim  case X86::SQRTSDm:
4313327952Sdim  case X86::SQRTSDr_Int:
4314327952Sdim  case X86::SQRTSDm_Int:
4315327952Sdim    return true;
4316341825Sdim  // GPR
4317341825Sdim  case X86::POPCNT32rm:
4318341825Sdim  case X86::POPCNT32rr:
4319341825Sdim  case X86::POPCNT64rm:
4320341825Sdim  case X86::POPCNT64rr:
4321341825Sdim    return Subtarget.hasPOPCNTFalseDeps();
4322341825Sdim  case X86::LZCNT32rm:
4323341825Sdim  case X86::LZCNT32rr:
4324341825Sdim  case X86::LZCNT64rm:
4325341825Sdim  case X86::LZCNT64rr:
4326341825Sdim  case X86::TZCNT32rm:
4327341825Sdim  case X86::TZCNT32rr:
4328341825Sdim  case X86::TZCNT64rm:
4329341825Sdim  case X86::TZCNT64rr:
4330341825Sdim    return Subtarget.hasLZCNTFalseDeps();
4331327952Sdim  }
4332327952Sdim
4333327952Sdim  return false;
4334327952Sdim}
4335327952Sdim
4336341825Sdim/// Inform the BreakFalseDeps pass how many idle
4337327952Sdim/// instructions we would like before a partial register update.
4338327952Sdimunsigned X86InstrInfo::getPartialRegUpdateClearance(
4339327952Sdim    const MachineInstr &MI, unsigned OpNum,
4340327952Sdim    const TargetRegisterInfo *TRI) const {
4341341825Sdim  if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
4342327952Sdim    return 0;
4343327952Sdim
4344327952Sdim  // If MI is marked as reading Reg, the partial register update is wanted.
4345327952Sdim  const MachineOperand &MO = MI.getOperand(0);
4346360784Sdim  Register Reg = MO.getReg();
4347360784Sdim  if (Register::isVirtualRegister(Reg)) {
4348327952Sdim    if (MO.readsReg() || MI.readsVirtualRegister(Reg))
4349327952Sdim      return 0;
4350327952Sdim  } else {
4351327952Sdim    if (MI.readsRegister(Reg, TRI))
4352327952Sdim      return 0;
4353327952Sdim  }
4354327952Sdim
4355327952Sdim  // If any instructions in the clearance range are reading Reg, insert a
4356327952Sdim  // dependency breaking instruction, which is inexpensive and is likely to
4357327952Sdim  // be hidden in other instruction's cycles.
4358327952Sdim  return PartialRegUpdateClearance;
4359327952Sdim}
4360327952Sdim
4361327952Sdim// Return true for any instruction the copies the high bits of the first source
4362327952Sdim// operand into the unused high bits of the destination operand.
4363360784Sdimstatic bool hasUndefRegUpdate(unsigned Opcode, unsigned &OpNum,
4364360784Sdim                              bool ForLoadFold = false) {
4365360784Sdim  // Set the OpNum parameter to the first source operand.
4366360784Sdim  OpNum = 1;
4367327952Sdim  switch (Opcode) {
4368327952Sdim  case X86::VCVTSI2SSrr:
4369327952Sdim  case X86::VCVTSI2SSrm:
4370327952Sdim  case X86::VCVTSI2SSrr_Int:
4371327952Sdim  case X86::VCVTSI2SSrm_Int:
4372327952Sdim  case X86::VCVTSI642SSrr:
4373327952Sdim  case X86::VCVTSI642SSrm:
4374327952Sdim  case X86::VCVTSI642SSrr_Int:
4375327952Sdim  case X86::VCVTSI642SSrm_Int:
4376327952Sdim  case X86::VCVTSI2SDrr:
4377327952Sdim  case X86::VCVTSI2SDrm:
4378327952Sdim  case X86::VCVTSI2SDrr_Int:
4379327952Sdim  case X86::VCVTSI2SDrm_Int:
4380327952Sdim  case X86::VCVTSI642SDrr:
4381327952Sdim  case X86::VCVTSI642SDrm:
4382327952Sdim  case X86::VCVTSI642SDrr_Int:
4383327952Sdim  case X86::VCVTSI642SDrm_Int:
4384327952Sdim  // AVX-512
4385327952Sdim  case X86::VCVTSI2SSZrr:
4386327952Sdim  case X86::VCVTSI2SSZrm:
4387327952Sdim  case X86::VCVTSI2SSZrr_Int:
4388327952Sdim  case X86::VCVTSI2SSZrrb_Int:
4389327952Sdim  case X86::VCVTSI2SSZrm_Int:
4390327952Sdim  case X86::VCVTSI642SSZrr:
4391327952Sdim  case X86::VCVTSI642SSZrm:
4392327952Sdim  case X86::VCVTSI642SSZrr_Int:
4393327952Sdim  case X86::VCVTSI642SSZrrb_Int:
4394327952Sdim  case X86::VCVTSI642SSZrm_Int:
4395327952Sdim  case X86::VCVTSI2SDZrr:
4396327952Sdim  case X86::VCVTSI2SDZrm:
4397327952Sdim  case X86::VCVTSI2SDZrr_Int:
4398327952Sdim  case X86::VCVTSI2SDZrm_Int:
4399327952Sdim  case X86::VCVTSI642SDZrr:
4400327952Sdim  case X86::VCVTSI642SDZrm:
4401327952Sdim  case X86::VCVTSI642SDZrr_Int:
4402327952Sdim  case X86::VCVTSI642SDZrrb_Int:
4403327952Sdim  case X86::VCVTSI642SDZrm_Int:
4404327952Sdim  case X86::VCVTUSI2SSZrr:
4405327952Sdim  case X86::VCVTUSI2SSZrm:
4406327952Sdim  case X86::VCVTUSI2SSZrr_Int:
4407327952Sdim  case X86::VCVTUSI2SSZrrb_Int:
4408327952Sdim  case X86::VCVTUSI2SSZrm_Int:
4409327952Sdim  case X86::VCVTUSI642SSZrr:
4410327952Sdim  case X86::VCVTUSI642SSZrm:
4411327952Sdim  case X86::VCVTUSI642SSZrr_Int:
4412327952Sdim  case X86::VCVTUSI642SSZrrb_Int:
4413327952Sdim  case X86::VCVTUSI642SSZrm_Int:
4414327952Sdim  case X86::VCVTUSI2SDZrr:
4415327952Sdim  case X86::VCVTUSI2SDZrm:
4416327952Sdim  case X86::VCVTUSI2SDZrr_Int:
4417327952Sdim  case X86::VCVTUSI2SDZrm_Int:
4418327952Sdim  case X86::VCVTUSI642SDZrr:
4419327952Sdim  case X86::VCVTUSI642SDZrm:
4420327952Sdim  case X86::VCVTUSI642SDZrr_Int:
4421327952Sdim  case X86::VCVTUSI642SDZrrb_Int:
4422327952Sdim  case X86::VCVTUSI642SDZrm_Int:
4423353358Sdim    // Load folding won't effect the undef register update since the input is
4424353358Sdim    // a GPR.
4425353358Sdim    return !ForLoadFold;
4426353358Sdim  case X86::VCVTSD2SSrr:
4427353358Sdim  case X86::VCVTSD2SSrm:
4428353358Sdim  case X86::VCVTSD2SSrr_Int:
4429353358Sdim  case X86::VCVTSD2SSrm_Int:
4430353358Sdim  case X86::VCVTSS2SDrr:
4431353358Sdim  case X86::VCVTSS2SDrm:
4432353358Sdim  case X86::VCVTSS2SDrr_Int:
4433353358Sdim  case X86::VCVTSS2SDrm_Int:
4434353358Sdim  case X86::VRCPSSr:
4435353358Sdim  case X86::VRCPSSr_Int:
4436353358Sdim  case X86::VRCPSSm:
4437353358Sdim  case X86::VRCPSSm_Int:
4438353358Sdim  case X86::VROUNDSDr:
4439353358Sdim  case X86::VROUNDSDm:
4440353358Sdim  case X86::VROUNDSDr_Int:
4441353358Sdim  case X86::VROUNDSDm_Int:
4442353358Sdim  case X86::VROUNDSSr:
4443353358Sdim  case X86::VROUNDSSm:
4444353358Sdim  case X86::VROUNDSSr_Int:
4445353358Sdim  case X86::VROUNDSSm_Int:
4446353358Sdim  case X86::VRSQRTSSr:
4447353358Sdim  case X86::VRSQRTSSr_Int:
4448353358Sdim  case X86::VRSQRTSSm:
4449353358Sdim  case X86::VRSQRTSSm_Int:
4450353358Sdim  case X86::VSQRTSSr:
4451353358Sdim  case X86::VSQRTSSr_Int:
4452353358Sdim  case X86::VSQRTSSm:
4453353358Sdim  case X86::VSQRTSSm_Int:
4454353358Sdim  case X86::VSQRTSDr:
4455353358Sdim  case X86::VSQRTSDr_Int:
4456353358Sdim  case X86::VSQRTSDm:
4457353358Sdim  case X86::VSQRTSDm_Int:
4458353358Sdim  // AVX-512
4459327952Sdim  case X86::VCVTSD2SSZrr:
4460327952Sdim  case X86::VCVTSD2SSZrr_Int:
4461327952Sdim  case X86::VCVTSD2SSZrrb_Int:
4462327952Sdim  case X86::VCVTSD2SSZrm:
4463327952Sdim  case X86::VCVTSD2SSZrm_Int:
4464327952Sdim  case X86::VCVTSS2SDZrr:
4465327952Sdim  case X86::VCVTSS2SDZrr_Int:
4466327952Sdim  case X86::VCVTSS2SDZrrb_Int:
4467327952Sdim  case X86::VCVTSS2SDZrm:
4468327952Sdim  case X86::VCVTSS2SDZrm_Int:
4469341825Sdim  case X86::VGETEXPSDZr:
4470341825Sdim  case X86::VGETEXPSDZrb:
4471341825Sdim  case X86::VGETEXPSDZm:
4472341825Sdim  case X86::VGETEXPSSZr:
4473341825Sdim  case X86::VGETEXPSSZrb:
4474341825Sdim  case X86::VGETEXPSSZm:
4475341825Sdim  case X86::VGETMANTSDZrri:
4476341825Sdim  case X86::VGETMANTSDZrrib:
4477341825Sdim  case X86::VGETMANTSDZrmi:
4478341825Sdim  case X86::VGETMANTSSZrri:
4479341825Sdim  case X86::VGETMANTSSZrrib:
4480341825Sdim  case X86::VGETMANTSSZrmi:
4481341825Sdim  case X86::VRNDSCALESDZr:
4482341825Sdim  case X86::VRNDSCALESDZr_Int:
4483341825Sdim  case X86::VRNDSCALESDZrb_Int:
4484341825Sdim  case X86::VRNDSCALESDZm:
4485341825Sdim  case X86::VRNDSCALESDZm_Int:
4486341825Sdim  case X86::VRNDSCALESSZr:
4487341825Sdim  case X86::VRNDSCALESSZr_Int:
4488341825Sdim  case X86::VRNDSCALESSZrb_Int:
4489341825Sdim  case X86::VRNDSCALESSZm:
4490341825Sdim  case X86::VRNDSCALESSZm_Int:
4491341825Sdim  case X86::VRCP14SDZrr:
4492341825Sdim  case X86::VRCP14SDZrm:
4493341825Sdim  case X86::VRCP14SSZrr:
4494341825Sdim  case X86::VRCP14SSZrm:
4495341825Sdim  case X86::VRCP28SDZr:
4496341825Sdim  case X86::VRCP28SDZrb:
4497341825Sdim  case X86::VRCP28SDZm:
4498341825Sdim  case X86::VRCP28SSZr:
4499341825Sdim  case X86::VRCP28SSZrb:
4500341825Sdim  case X86::VRCP28SSZm:
4501341825Sdim  case X86::VREDUCESSZrmi:
4502341825Sdim  case X86::VREDUCESSZrri:
4503341825Sdim  case X86::VREDUCESSZrrib:
4504341825Sdim  case X86::VRSQRT14SDZrr:
4505341825Sdim  case X86::VRSQRT14SDZrm:
4506341825Sdim  case X86::VRSQRT14SSZrr:
4507341825Sdim  case X86::VRSQRT14SSZrm:
4508341825Sdim  case X86::VRSQRT28SDZr:
4509341825Sdim  case X86::VRSQRT28SDZrb:
4510341825Sdim  case X86::VRSQRT28SDZm:
4511341825Sdim  case X86::VRSQRT28SSZr:
4512341825Sdim  case X86::VRSQRT28SSZrb:
4513341825Sdim  case X86::VRSQRT28SSZm:
4514327952Sdim  case X86::VSQRTSSZr:
4515327952Sdim  case X86::VSQRTSSZr_Int:
4516327952Sdim  case X86::VSQRTSSZrb_Int:
4517327952Sdim  case X86::VSQRTSSZm:
4518327952Sdim  case X86::VSQRTSSZm_Int:
4519327952Sdim  case X86::VSQRTSDZr:
4520327952Sdim  case X86::VSQRTSDZr_Int:
4521327952Sdim  case X86::VSQRTSDZrb_Int:
4522327952Sdim  case X86::VSQRTSDZm:
4523327952Sdim  case X86::VSQRTSDZm_Int:
4524327952Sdim    return true;
4525360784Sdim  case X86::VMOVSSZrrk:
4526360784Sdim  case X86::VMOVSDZrrk:
4527360784Sdim    OpNum = 3;
4528360784Sdim    return true;
4529360784Sdim  case X86::VMOVSSZrrkz:
4530360784Sdim  case X86::VMOVSDZrrkz:
4531360784Sdim    OpNum = 2;
4532360784Sdim    return true;
4533327952Sdim  }
4534327952Sdim
4535327952Sdim  return false;
4536327952Sdim}
4537327952Sdim
4538341825Sdim/// Inform the BreakFalseDeps pass how many idle instructions we would like
4539327952Sdim/// before certain undef register reads.
4540327952Sdim///
4541327952Sdim/// This catches the VCVTSI2SD family of instructions:
4542327952Sdim///
4543327952Sdim/// vcvtsi2sdq %rax, undef %xmm0, %xmm14
4544327952Sdim///
4545327952Sdim/// We should to be careful *not* to catch VXOR idioms which are presumably
4546327952Sdim/// handled specially in the pipeline:
4547327952Sdim///
4548327952Sdim/// vxorps undef %xmm1, undef %xmm1, %xmm1
4549327952Sdim///
4550327952Sdim/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
4551327952Sdim/// high bits that are passed-through are not live.
4552327952Sdimunsigned
4553327952SdimX86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
4554327952Sdim                                   const TargetRegisterInfo *TRI) const {
4555360784Sdim  if (!hasUndefRegUpdate(MI.getOpcode(), OpNum))
4556327952Sdim    return 0;
4557327952Sdim
4558327952Sdim  const MachineOperand &MO = MI.getOperand(OpNum);
4559360784Sdim  if (MO.isUndef() && Register::isPhysicalRegister(MO.getReg())) {
4560327952Sdim    return UndefRegClearance;
4561327952Sdim  }
4562327952Sdim  return 0;
4563327952Sdim}
4564327952Sdim
4565327952Sdimvoid X86InstrInfo::breakPartialRegDependency(
4566327952Sdim    MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
4567360784Sdim  Register Reg = MI.getOperand(OpNum).getReg();
4568327952Sdim  // If MI kills this register, the false dependence is already broken.
4569327952Sdim  if (MI.killsRegister(Reg, TRI))
4570327952Sdim    return;
4571327952Sdim
4572327952Sdim  if (X86::VR128RegClass.contains(Reg)) {
4573327952Sdim    // These instructions are all floating point domain, so xorps is the best
4574327952Sdim    // choice.
4575327952Sdim    unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
4576327952Sdim    BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
4577327952Sdim        .addReg(Reg, RegState::Undef)
4578327952Sdim        .addReg(Reg, RegState::Undef);
4579327952Sdim    MI.addRegisterKilled(Reg, TRI, true);
4580327952Sdim  } else if (X86::VR256RegClass.contains(Reg)) {
4581327952Sdim    // Use vxorps to clear the full ymm register.
4582327952Sdim    // It wants to read and write the xmm sub-register.
4583360784Sdim    Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
4584327952Sdim    BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
4585327952Sdim        .addReg(XReg, RegState::Undef)
4586327952Sdim        .addReg(XReg, RegState::Undef)
4587327952Sdim        .addReg(Reg, RegState::ImplicitDefine);
4588327952Sdim    MI.addRegisterKilled(Reg, TRI, true);
4589341825Sdim  } else if (X86::GR64RegClass.contains(Reg)) {
4590341825Sdim    // Using XOR32rr because it has shorter encoding and zeros up the upper bits
4591341825Sdim    // as well.
4592360784Sdim    Register XReg = TRI->getSubReg(Reg, X86::sub_32bit);
4593341825Sdim    BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
4594341825Sdim        .addReg(XReg, RegState::Undef)
4595341825Sdim        .addReg(XReg, RegState::Undef)
4596341825Sdim        .addReg(Reg, RegState::ImplicitDefine);
4597341825Sdim    MI.addRegisterKilled(Reg, TRI, true);
4598341825Sdim  } else if (X86::GR32RegClass.contains(Reg)) {
4599341825Sdim    BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
4600341825Sdim        .addReg(Reg, RegState::Undef)
4601341825Sdim        .addReg(Reg, RegState::Undef);
4602341825Sdim    MI.addRegisterKilled(Reg, TRI, true);
4603327952Sdim  }
4604327952Sdim}
4605327952Sdim
4606296417Sdimstatic void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
4607296417Sdim                        int PtrOffset = 0) {
4608288943Sdim  unsigned NumAddrOps = MOs.size();
4609296417Sdim
4610296417Sdim  if (NumAddrOps < 4) {
4611296417Sdim    // FrameIndex only - add an immediate offset (whether its zero or not).
4612296417Sdim    for (unsigned i = 0; i != NumAddrOps; ++i)
4613321369Sdim      MIB.add(MOs[i]);
4614296417Sdim    addOffset(MIB, PtrOffset);
4615296417Sdim  } else {
4616296417Sdim    // General Memory Addressing - we need to add any offset to an existing
4617296417Sdim    // offset.
4618296417Sdim    assert(MOs.size() == 5 && "Unexpected memory operand list length");
4619296417Sdim    for (unsigned i = 0; i != NumAddrOps; ++i) {
4620296417Sdim      const MachineOperand &MO = MOs[i];
4621296417Sdim      if (i == 3 && PtrOffset != 0) {
4622296417Sdim        MIB.addDisp(MO, PtrOffset);
4623296417Sdim      } else {
4624321369Sdim        MIB.add(MO);
4625296417Sdim      }
4626296417Sdim    }
4627296417Sdim  }
4628288943Sdim}
4629288943Sdim
4630341825Sdimstatic void updateOperandRegConstraints(MachineFunction &MF,
4631341825Sdim                                        MachineInstr &NewMI,
4632341825Sdim                                        const TargetInstrInfo &TII) {
4633341825Sdim  MachineRegisterInfo &MRI = MF.getRegInfo();
4634341825Sdim  const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
4635341825Sdim
4636341825Sdim  for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
4637341825Sdim    MachineOperand &MO = NewMI.getOperand(Idx);
4638341825Sdim    // We only need to update constraints on virtual register operands.
4639341825Sdim    if (!MO.isReg())
4640341825Sdim      continue;
4641360784Sdim    Register Reg = MO.getReg();
4642360784Sdim    if (!Register::isVirtualRegister(Reg))
4643341825Sdim      continue;
4644341825Sdim
4645341825Sdim    auto *NewRC = MRI.constrainRegClass(
4646341825Sdim        Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
4647341825Sdim    if (!NewRC) {
4648341825Sdim      LLVM_DEBUG(
4649341825Sdim          dbgs() << "WARNING: Unable to update register constraint for operand "
4650341825Sdim                 << Idx << " of instruction:\n";
4651341825Sdim          NewMI.dump(); dbgs() << "\n");
4652341825Sdim    }
4653341825Sdim  }
4654341825Sdim}
4655341825Sdim
4656193323Sedstatic MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
4657288943Sdim                                     ArrayRef<MachineOperand> MOs,
4658288943Sdim                                     MachineBasicBlock::iterator InsertPt,
4659309124Sdim                                     MachineInstr &MI,
4660193323Sed                                     const TargetInstrInfo &TII) {
4661193323Sed  // Create the base instruction with the memory operand as the first part.
4662249423Sdim  // Omit the implicit operands, something BuildMI can't do.
4663309124Sdim  MachineInstr *NewMI =
4664309124Sdim      MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
4665249423Sdim  MachineInstrBuilder MIB(MF, NewMI);
4666288943Sdim  addOperands(MIB, MOs);
4667218893Sdim
4668193323Sed  // Loop over the rest of the ri operands, converting them over.
4669309124Sdim  unsigned NumOps = MI.getDesc().getNumOperands() - 2;
4670193323Sed  for (unsigned i = 0; i != NumOps; ++i) {
4671309124Sdim    MachineOperand &MO = MI.getOperand(i + 2);
4672321369Sdim    MIB.add(MO);
4673193323Sed  }
4674309124Sdim  for (unsigned i = NumOps + 2, e = MI.getNumOperands(); i != e; ++i) {
4675309124Sdim    MachineOperand &MO = MI.getOperand(i);
4676321369Sdim    MIB.add(MO);
4677193323Sed  }
4678288943Sdim
4679341825Sdim  updateOperandRegConstraints(MF, *NewMI, TII);
4680341825Sdim
4681288943Sdim  MachineBasicBlock *MBB = InsertPt->getParent();
4682288943Sdim  MBB->insert(InsertPt, NewMI);
4683288943Sdim
4684193323Sed  return MIB;
4685193323Sed}
4686193323Sed
4687288943Sdimstatic MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
4688288943Sdim                              unsigned OpNo, ArrayRef<MachineOperand> MOs,
4689288943Sdim                              MachineBasicBlock::iterator InsertPt,
4690309124Sdim                              MachineInstr &MI, const TargetInstrInfo &TII,
4691296417Sdim                              int PtrOffset = 0) {
4692249423Sdim  // Omit the implicit operands, something BuildMI can't do.
4693309124Sdim  MachineInstr *NewMI =
4694309124Sdim      MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
4695249423Sdim  MachineInstrBuilder MIB(MF, NewMI);
4696218893Sdim
4697309124Sdim  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
4698309124Sdim    MachineOperand &MO = MI.getOperand(i);
4699193323Sed    if (i == OpNo) {
4700193323Sed      assert(MO.isReg() && "Expected to fold into reg operand!");
4701296417Sdim      addOperands(MIB, MOs, PtrOffset);
4702193323Sed    } else {
4703321369Sdim      MIB.add(MO);
4704193323Sed    }
4705193323Sed  }
4706288943Sdim
4707341825Sdim  updateOperandRegConstraints(MF, *NewMI, TII);
4708341825Sdim
4709360784Sdim  // Copy the NoFPExcept flag from the instruction we're fusing.
4710360784Sdim  if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
4711360784Sdim    NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept);
4712360784Sdim
4713288943Sdim  MachineBasicBlock *MBB = InsertPt->getParent();
4714288943Sdim  MBB->insert(InsertPt, NewMI);
4715288943Sdim
4716193323Sed  return MIB;
4717193323Sed}
4718193323Sed
4719193323Sedstatic MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
4720288943Sdim                                ArrayRef<MachineOperand> MOs,
4721288943Sdim                                MachineBasicBlock::iterator InsertPt,
4722309124Sdim                                MachineInstr &MI) {
4723288943Sdim  MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
4724309124Sdim                                    MI.getDebugLoc(), TII.get(Opcode));
4725288943Sdim  addOperands(MIB, MOs);
4726193323Sed  return MIB.addImm(0);
4727193323Sed}
4728193323Sed
4729296417SdimMachineInstr *X86InstrInfo::foldMemoryOperandCustom(
4730309124Sdim    MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
4731296417Sdim    ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
4732296417Sdim    unsigned Size, unsigned Align) const {
4733309124Sdim  switch (MI.getOpcode()) {
4734296417Sdim  case X86::INSERTPSrr:
4735296417Sdim  case X86::VINSERTPSrr:
4736314564Sdim  case X86::VINSERTPSZrr:
4737296417Sdim    // Attempt to convert the load of inserted vector into a fold load
4738296417Sdim    // of a single float.
4739296417Sdim    if (OpNum == 2) {
4740309124Sdim      unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
4741296417Sdim      unsigned ZMask = Imm & 15;
4742296417Sdim      unsigned DstIdx = (Imm >> 4) & 3;
4743296417Sdim      unsigned SrcIdx = (Imm >> 6) & 3;
4744296417Sdim
4745321369Sdim      const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4746321369Sdim      const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4747321369Sdim      unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4748353358Sdim      if ((Size == 0 || Size >= 16) && RCSize >= 16 && 4 <= Align) {
4749296417Sdim        int PtrOffset = SrcIdx * 4;
4750296417Sdim        unsigned NewImm = (DstIdx << 4) | ZMask;
4751296417Sdim        unsigned NewOpCode =
4752314564Sdim            (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm :
4753314564Sdim            (MI.getOpcode() == X86::VINSERTPSrr)  ? X86::VINSERTPSrm  :
4754314564Sdim                                                    X86::INSERTPSrm;
4755296417Sdim        MachineInstr *NewMI =
4756296417Sdim            FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
4757296417Sdim        NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
4758296417Sdim        return NewMI;
4759296417Sdim      }
4760296417Sdim    }
4761296417Sdim    break;
4762309124Sdim  case X86::MOVHLPSrr:
4763309124Sdim  case X86::VMOVHLPSrr:
4764314564Sdim  case X86::VMOVHLPSZrr:
4765309124Sdim    // Move the upper 64-bits of the second operand to the lower 64-bits.
4766309124Sdim    // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
4767309124Sdim    // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
4768309124Sdim    if (OpNum == 2) {
4769321369Sdim      const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4770321369Sdim      const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4771321369Sdim      unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4772353358Sdim      if ((Size == 0 || Size >= 16) && RCSize >= 16 && 8 <= Align) {
4773309124Sdim        unsigned NewOpCode =
4774314564Sdim            (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm :
4775314564Sdim            (MI.getOpcode() == X86::VMOVHLPSrr)  ? X86::VMOVLPSrm     :
4776314564Sdim                                                   X86::MOVLPSrm;
4777309124Sdim        MachineInstr *NewMI =
4778309124Sdim            FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
4779309124Sdim        return NewMI;
4780309124Sdim      }
4781309124Sdim    }
4782309124Sdim    break;
4783353358Sdim  case X86::UNPCKLPDrr:
4784353358Sdim    // If we won't be able to fold this to the memory form of UNPCKL, use
4785353358Sdim    // MOVHPD instead. Done as custom because we can't have this in the load
4786353358Sdim    // table twice.
4787353358Sdim    if (OpNum == 2) {
4788353358Sdim      const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4789353358Sdim      const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4790353358Sdim      unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4791353358Sdim      if ((Size == 0 || Size >= 16) && RCSize >= 16 && Align < 16) {
4792353358Sdim        MachineInstr *NewMI =
4793353358Sdim            FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this);
4794353358Sdim        return NewMI;
4795353358Sdim      }
4796353358Sdim    }
4797353358Sdim    break;
4798353358Sdim  }
4799296417Sdim
4800296417Sdim  return nullptr;
4801296417Sdim}
4802296417Sdim
4803353358Sdimstatic bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF,
4804353358Sdim                                               MachineInstr &MI) {
4805360784Sdim  unsigned Ignored;
4806360784Sdim  if (!hasUndefRegUpdate(MI.getOpcode(), Ignored, /*ForLoadFold*/true) ||
4807341825Sdim      !MI.getOperand(1).isReg())
4808341825Sdim    return false;
4809341825Sdim
4810341825Sdim  // The are two cases we need to handle depending on where in the pipeline
4811341825Sdim  // the folding attempt is being made.
4812341825Sdim  // -Register has the undef flag set.
4813341825Sdim  // -Register is produced by the IMPLICIT_DEF instruction.
4814341825Sdim
4815341825Sdim  if (MI.getOperand(1).isUndef())
4816341825Sdim    return true;
4817341825Sdim
4818341825Sdim  MachineRegisterInfo &RegInfo = MF.getRegInfo();
4819341825Sdim  MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
4820341825Sdim  return VRegDef && VRegDef->isImplicitDef();
4821341825Sdim}
4822341825Sdim
4823341825Sdim
4824288943SdimMachineInstr *X86InstrInfo::foldMemoryOperandImpl(
4825309124Sdim    MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
4826288943Sdim    ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
4827288943Sdim    unsigned Size, unsigned Align, bool AllowCommute) const {
4828327952Sdim  bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
4829193323Sed  bool isTwoAddrFold = false;
4830249423Sdim
4831296417Sdim  // For CPUs that favor the register form of a call or push,
4832296417Sdim  // do not fold loads into calls or pushes, unless optimizing for size
4833296417Sdim  // aggressively.
4834353358Sdim  if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
4835309124Sdim      (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
4836309124Sdim       MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
4837309124Sdim       MI.getOpcode() == X86::PUSH64r))
4838276479Sdim    return nullptr;
4839249423Sdim
4840341825Sdim  // Avoid partial and undef register update stalls unless optimizing for size.
4841353358Sdim  if (!MF.getFunction().hasOptSize() &&
4842353358Sdim      (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
4843341825Sdim       shouldPreventUndefRegUpdateMemFold(MF, MI)))
4844327952Sdim    return nullptr;
4845327952Sdim
4846309124Sdim  unsigned NumOps = MI.getDesc().getNumOperands();
4847309124Sdim  bool isTwoAddr =
4848309124Sdim      NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
4849193323Sed
4850221345Sdim  // FIXME: AsmPrinter doesn't know how to handle
4851221345Sdim  // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
4852309124Sdim  if (MI.getOpcode() == X86::ADD32ri &&
4853309124Sdim      MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
4854276479Sdim    return nullptr;
4855221345Sdim
4856341825Sdim  // GOTTPOFF relocation loads can only be folded into add instructions.
4857341825Sdim  // FIXME: Need to exclude other relocations that only support specific
4858341825Sdim  // instructions.
4859341825Sdim  if (MOs.size() == X86::AddrNumOperands &&
4860341825Sdim      MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
4861341825Sdim      MI.getOpcode() != X86::ADD64rr)
4862341825Sdim    return nullptr;
4863341825Sdim
4864276479Sdim  MachineInstr *NewMI = nullptr;
4865296417Sdim
4866296417Sdim  // Attempt to fold any custom cases we have.
4867296417Sdim  if (MachineInstr *CustomMI =
4868296417Sdim          foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt, Size, Align))
4869296417Sdim    return CustomMI;
4870296417Sdim
4871341825Sdim  const X86MemoryFoldTableEntry *I = nullptr;
4872341825Sdim
4873193323Sed  // Folding a memory location into the two-address part of a two-address
4874193323Sed  // instruction is different than folding it other places.  It requires
4875193323Sed  // replacing the *two* registers with the memory location.
4876309124Sdim  if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
4877309124Sdim      MI.getOperand(1).isReg() &&
4878309124Sdim      MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
4879341825Sdim    I = lookupTwoAddrFoldTable(MI.getOpcode());
4880193323Sed    isTwoAddrFold = true;
4881341825Sdim  } else {
4882341825Sdim    if (OpNum == 0) {
4883341825Sdim      if (MI.getOpcode() == X86::MOV32r0) {
4884341825Sdim        NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
4885341825Sdim        if (NewMI)
4886341825Sdim          return NewMI;
4887341825Sdim      }
4888243830Sdim    }
4889218893Sdim
4890341825Sdim    I = lookupFoldTable(MI.getOpcode(), OpNum);
4891193323Sed  }
4892218893Sdim
4893341825Sdim  if (I != nullptr) {
4894341825Sdim    unsigned Opcode = I->DstOp;
4895341825Sdim    unsigned MinAlign = (I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
4896360784Sdim    MinAlign = MinAlign ? 1 << (MinAlign - 1) : 0;
4897341825Sdim    if (Align < MinAlign)
4898341825Sdim      return nullptr;
4899341825Sdim    bool NarrowToMOV32rm = false;
4900341825Sdim    if (Size) {
4901341825Sdim      const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4902341825Sdim      const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum,
4903341825Sdim                                                  &RI, MF);
4904341825Sdim      unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4905341825Sdim      if (Size < RCSize) {
4906353358Sdim        // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
4907341825Sdim        // Check if it's safe to fold the load. If the size of the object is
4908341825Sdim        // narrower than the load width, then it's not.
4909341825Sdim        if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
4910341825Sdim          return nullptr;
4911341825Sdim        // If this is a 64-bit load, but the spill slot is 32, then we can do
4912341825Sdim        // a 32-bit load which is implicitly zero-extended. This likely is
4913341825Sdim        // due to live interval analysis remat'ing a load from stack slot.
4914341825Sdim        if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
4915341825Sdim          return nullptr;
4916341825Sdim        Opcode = X86::MOV32rm;
4917341825Sdim        NarrowToMOV32rm = true;
4918198090Srdivacky      }
4919341825Sdim    }
4920198090Srdivacky
4921341825Sdim    if (isTwoAddrFold)
4922341825Sdim      NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
4923341825Sdim    else
4924341825Sdim      NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
4925341825Sdim
4926341825Sdim    if (NarrowToMOV32rm) {
4927341825Sdim      // If this is the special case where we use a MOV32rm to load a 32-bit
4928341825Sdim      // value and zero-extend the top bits. Change the destination register
4929341825Sdim      // to a 32-bit one.
4930360784Sdim      Register DstReg = NewMI->getOperand(0).getReg();
4931360784Sdim      if (Register::isPhysicalRegister(DstReg))
4932341825Sdim        NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
4933193323Sed      else
4934341825Sdim        NewMI->getOperand(0).setSubReg(X86::sub_32bit);
4935193323Sed    }
4936341825Sdim    return NewMI;
4937193323Sed  }
4938218893Sdim
4939280031Sdim  // If the instruction and target operand are commutable, commute the
4940280031Sdim  // instruction and try again.
4941280031Sdim  if (AllowCommute) {
4942296417Sdim    unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
4943280031Sdim    if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
4944309124Sdim      bool HasDef = MI.getDesc().getNumDefs();
4945353358Sdim      Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
4946353358Sdim      Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
4947353358Sdim      Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
4948296417Sdim      bool Tied1 =
4949309124Sdim          0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
4950296417Sdim      bool Tied2 =
4951309124Sdim          0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
4952280031Sdim
4953280031Sdim      // If either of the commutable operands are tied to the destination
4954280031Sdim      // then we can not commute + fold.
4955296417Sdim      if ((HasDef && Reg0 == Reg1 && Tied1) ||
4956296417Sdim          (HasDef && Reg0 == Reg2 && Tied2))
4957280031Sdim        return nullptr;
4958280031Sdim
4959296417Sdim      MachineInstr *CommutedMI =
4960296417Sdim          commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
4961296417Sdim      if (!CommutedMI) {
4962296417Sdim        // Unable to commute.
4963296417Sdim        return nullptr;
4964296417Sdim      }
4965309124Sdim      if (CommutedMI != &MI) {
4966296417Sdim        // New instruction. We can't fold from this.
4967296417Sdim        CommutedMI->eraseFromParent();
4968296417Sdim        return nullptr;
4969296417Sdim      }
4970280031Sdim
4971296417Sdim      // Attempt to fold with the commuted version of the instruction.
4972296417Sdim      NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt,
4973296417Sdim                                    Size, Align, /*AllowCommute=*/false);
4974296417Sdim      if (NewMI)
4975296417Sdim        return NewMI;
4976280031Sdim
4977296417Sdim      // Folding failed again - undo the commute before returning.
4978296417Sdim      MachineInstr *UncommutedMI =
4979296417Sdim          commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
4980296417Sdim      if (!UncommutedMI) {
4981296417Sdim        // Unable to commute.
4982280031Sdim        return nullptr;
4983280031Sdim      }
4984309124Sdim      if (UncommutedMI != &MI) {
4985296417Sdim        // New instruction. It doesn't need to be kept.
4986296417Sdim        UncommutedMI->eraseFromParent();
4987296417Sdim        return nullptr;
4988296417Sdim      }
4989296417Sdim
4990296417Sdim      // Return here to prevent duplicate fuse failure report.
4991296417Sdim      return nullptr;
4992280031Sdim    }
4993280031Sdim  }
4994280031Sdim
4995218893Sdim  // No fusion
4996309124Sdim  if (PrintFailedFusing && !MI.isCopy())
4997309124Sdim    dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
4998276479Sdim  return nullptr;
4999193323Sed}
5000193323Sed
5001309124SdimMachineInstr *
5002309124SdimX86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
5003309124Sdim                                    ArrayRef<unsigned> Ops,
5004309124Sdim                                    MachineBasicBlock::iterator InsertPt,
5005353358Sdim                                    int FrameIndex, LiveIntervals *LIS,
5006353358Sdim                                    VirtRegMap *VRM) const {
5007218893Sdim  // Check switch flag
5008296417Sdim  if (NoFusing)
5009296417Sdim    return nullptr;
5010193323Sed
5011341825Sdim  // Avoid partial and undef register update stalls unless optimizing for size.
5012353358Sdim  if (!MF.getFunction().hasOptSize() &&
5013353358Sdim      (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
5014341825Sdim       shouldPreventUndefRegUpdateMemFold(MF, MI)))
5015276479Sdim    return nullptr;
5016201360Srdivacky
5017314564Sdim  // Don't fold subreg spills, or reloads that use a high subreg.
5018314564Sdim  for (auto Op : Ops) {
5019314564Sdim    MachineOperand &MO = MI.getOperand(Op);
5020314564Sdim    auto SubReg = MO.getSubReg();
5021314564Sdim    if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
5022314564Sdim      return nullptr;
5023314564Sdim  }
5024314564Sdim
5025314564Sdim  const MachineFrameInfo &MFI = MF.getFrameInfo();
5026314564Sdim  unsigned Size = MFI.getObjectSize(FrameIndex);
5027314564Sdim  unsigned Alignment = MFI.getObjectAlignment(FrameIndex);
5028256090Sdim  // If the function stack isn't realigned we don't want to fold instructions
5029256090Sdim  // that need increased alignment.
5030256090Sdim  if (!RI.needsStackRealignment(MF))
5031288943Sdim    Alignment =
5032288943Sdim        std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment());
5033193323Sed  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5034193323Sed    unsigned NewOpc = 0;
5035198090Srdivacky    unsigned RCSize = 0;
5036309124Sdim    switch (MI.getOpcode()) {
5037276479Sdim    default: return nullptr;
5038198090Srdivacky    case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
5039208599Srdivacky    case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
5040208599Srdivacky    case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
5041208599Srdivacky    case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
5042193323Sed    }
5043198090Srdivacky    // Check if it's safe to fold the load. If the size of the object is
5044198090Srdivacky    // narrower than the load width, then it's not.
5045198090Srdivacky    if (Size < RCSize)
5046276479Sdim      return nullptr;
5047193323Sed    // Change to CMPXXri r, 0 first.
5048309124Sdim    MI.setDesc(get(NewOpc));
5049309124Sdim    MI.getOperand(1).ChangeToImmediate(0);
5050193323Sed  } else if (Ops.size() != 1)
5051276479Sdim    return nullptr;
5052193323Sed
5053288943Sdim  return foldMemoryOperandImpl(MF, MI, Ops[0],
5054288943Sdim                               MachineOperand::CreateFI(FrameIndex), InsertPt,
5055280031Sdim                               Size, Alignment, /*AllowCommute=*/true);
5056193323Sed}
5057193323Sed
5058288943Sdim/// Check if \p LoadMI is a partial register load that we can't fold into \p MI
5059288943Sdim/// because the latter uses contents that wouldn't be defined in the folded
5060288943Sdim/// version.  For instance, this transformation isn't legal:
5061288943Sdim///   movss (%rdi), %xmm0
5062288943Sdim///   addps %xmm0, %xmm0
5063288943Sdim/// ->
5064288943Sdim///   addps (%rdi), %xmm0
5065288943Sdim///
5066288943Sdim/// But this one is:
5067288943Sdim///   movss (%rdi), %xmm0
5068288943Sdim///   addss %xmm0, %xmm0
5069288943Sdim/// ->
5070288943Sdim///   addss (%rdi), %xmm0
5071288943Sdim///
5072288943Sdimstatic bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
5073288943Sdim                                             const MachineInstr &UserMI,
5074288943Sdim                                             const MachineFunction &MF) {
5075280031Sdim  unsigned Opc = LoadMI.getOpcode();
5076288943Sdim  unsigned UserOpc = UserMI.getOpcode();
5077321369Sdim  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5078321369Sdim  const TargetRegisterClass *RC =
5079321369Sdim      MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
5080321369Sdim  unsigned RegSize = TRI.getRegSizeInBits(*RC);
5081280031Sdim
5082353358Sdim  if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm ||
5083353358Sdim       Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt ||
5084353358Sdim       Opc == X86::VMOVSSZrm_alt) &&
5085321369Sdim      RegSize > 32) {
5086280031Sdim    // These instructions only load 32 bits, we can't fold them if the
5087288943Sdim    // destination register is wider than 32 bits (4 bytes), and its user
5088288943Sdim    // instruction isn't scalar (SS).
5089288943Sdim    switch (UserOpc) {
5090309124Sdim    case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int:
5091327952Sdim    case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int:
5092309124Sdim    case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int:
5093314564Sdim    case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int:
5094314564Sdim    case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int:
5095309124Sdim    case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int:
5096309124Sdim    case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int:
5097321369Sdim    case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz:
5098353358Sdim    case X86::VCMPSSZrr_Intk:
5099321369Sdim    case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz:
5100321369Sdim    case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz:
5101321369Sdim    case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz:
5102321369Sdim    case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz:
5103321369Sdim    case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz:
5104314564Sdim    case X86::VFMADDSS4rr_Int:   case X86::VFNMADDSS4rr_Int:
5105314564Sdim    case X86::VFMSUBSS4rr_Int:   case X86::VFNMSUBSS4rr_Int:
5106314564Sdim    case X86::VFMADD132SSr_Int:  case X86::VFNMADD132SSr_Int:
5107314564Sdim    case X86::VFMADD213SSr_Int:  case X86::VFNMADD213SSr_Int:
5108314564Sdim    case X86::VFMADD231SSr_Int:  case X86::VFNMADD231SSr_Int:
5109314564Sdim    case X86::VFMSUB132SSr_Int:  case X86::VFNMSUB132SSr_Int:
5110314564Sdim    case X86::VFMSUB213SSr_Int:  case X86::VFNMSUB213SSr_Int:
5111314564Sdim    case X86::VFMSUB231SSr_Int:  case X86::VFNMSUB231SSr_Int:
5112314564Sdim    case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int:
5113314564Sdim    case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int:
5114314564Sdim    case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int:
5115314564Sdim    case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int:
5116314564Sdim    case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int:
5117314564Sdim    case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int:
5118321369Sdim    case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk:
5119321369Sdim    case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk:
5120321369Sdim    case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk:
5121321369Sdim    case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk:
5122321369Sdim    case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk:
5123321369Sdim    case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk:
5124321369Sdim    case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz:
5125321369Sdim    case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz:
5126321369Sdim    case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz:
5127321369Sdim    case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz:
5128321369Sdim    case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz:
5129321369Sdim    case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz:
5130288943Sdim      return false;
5131288943Sdim    default:
5132288943Sdim      return true;
5133288943Sdim    }
5134288943Sdim  }
5135280031Sdim
5136353358Sdim  if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm ||
5137353358Sdim       Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt ||
5138353358Sdim       Opc == X86::VMOVSDZrm_alt) &&
5139321369Sdim      RegSize > 64) {
5140280031Sdim    // These instructions only load 64 bits, we can't fold them if the
5141288943Sdim    // destination register is wider than 64 bits (8 bytes), and its user
5142288943Sdim    // instruction isn't scalar (SD).
5143288943Sdim    switch (UserOpc) {
5144309124Sdim    case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int:
5145327952Sdim    case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int:
5146309124Sdim    case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int:
5147314564Sdim    case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int:
5148314564Sdim    case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int:
5149309124Sdim    case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int:
5150309124Sdim    case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int:
5151321369Sdim    case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz:
5152353358Sdim    case X86::VCMPSDZrr_Intk:
5153321369Sdim    case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz:
5154321369Sdim    case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz:
5155321369Sdim    case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz:
5156321369Sdim    case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz:
5157321369Sdim    case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz:
5158314564Sdim    case X86::VFMADDSD4rr_Int:   case X86::VFNMADDSD4rr_Int:
5159314564Sdim    case X86::VFMSUBSD4rr_Int:   case X86::VFNMSUBSD4rr_Int:
5160314564Sdim    case X86::VFMADD132SDr_Int:  case X86::VFNMADD132SDr_Int:
5161314564Sdim    case X86::VFMADD213SDr_Int:  case X86::VFNMADD213SDr_Int:
5162314564Sdim    case X86::VFMADD231SDr_Int:  case X86::VFNMADD231SDr_Int:
5163314564Sdim    case X86::VFMSUB132SDr_Int:  case X86::VFNMSUB132SDr_Int:
5164314564Sdim    case X86::VFMSUB213SDr_Int:  case X86::VFNMSUB213SDr_Int:
5165314564Sdim    case X86::VFMSUB231SDr_Int:  case X86::VFNMSUB231SDr_Int:
5166314564Sdim    case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int:
5167314564Sdim    case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int:
5168314564Sdim    case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int:
5169314564Sdim    case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int:
5170314564Sdim    case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int:
5171314564Sdim    case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int:
5172321369Sdim    case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk:
5173321369Sdim    case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk:
5174321369Sdim    case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk:
5175321369Sdim    case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk:
5176321369Sdim    case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk:
5177321369Sdim    case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk:
5178321369Sdim    case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz:
5179321369Sdim    case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz:
5180321369Sdim    case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz:
5181321369Sdim    case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz:
5182321369Sdim    case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz:
5183321369Sdim    case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz:
5184288943Sdim      return false;
5185288943Sdim    default:
5186288943Sdim      return true;
5187288943Sdim    }
5188288943Sdim  }
5189280031Sdim
5190280031Sdim  return false;
5191280031Sdim}
5192280031Sdim
5193288943SdimMachineInstr *X86InstrInfo::foldMemoryOperandImpl(
5194309124Sdim    MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
5195309124Sdim    MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
5196309124Sdim    LiveIntervals *LIS) const {
5197314564Sdim
5198314564Sdim  // TODO: Support the case where LoadMI loads a wide register, but MI
5199314564Sdim  // only uses a subreg.
5200314564Sdim  for (auto Op : Ops) {
5201314564Sdim    if (MI.getOperand(Op).getSubReg())
5202314564Sdim      return nullptr;
5203314564Sdim  }
5204314564Sdim
5205261991Sdim  // If loading from a FrameIndex, fold directly from the FrameIndex.
5206309124Sdim  unsigned NumOps = LoadMI.getDesc().getNumOperands();
5207261991Sdim  int FrameIndex;
5208280031Sdim  if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
5209309124Sdim    if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
5210280031Sdim      return nullptr;
5211309124Sdim    return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
5212280031Sdim  }
5213261991Sdim
5214218893Sdim  // Check switch flag
5215276479Sdim  if (NoFusing) return nullptr;
5216193323Sed
5217341825Sdim  // Avoid partial and undef register update stalls unless optimizing for size.
5218353358Sdim  if (!MF.getFunction().hasOptSize() &&
5219353358Sdim      (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
5220341825Sdim       shouldPreventUndefRegUpdateMemFold(MF, MI)))
5221276479Sdim    return nullptr;
5222201360Srdivacky
5223193323Sed  // Determine the alignment of the load.
5224193323Sed  unsigned Alignment = 0;
5225309124Sdim  if (LoadMI.hasOneMemOperand())
5226309124Sdim    Alignment = (*LoadMI.memoperands_begin())->getAlignment();
5227198090Srdivacky  else
5228309124Sdim    switch (LoadMI.getOpcode()) {
5229309124Sdim    case X86::AVX512_512_SET0:
5230309124Sdim    case X86::AVX512_512_SETALLONES:
5231309124Sdim      Alignment = 64;
5232309124Sdim      break;
5233234353Sdim    case X86::AVX2_SETALLONES:
5234321369Sdim    case X86::AVX1_SETALLONES:
5235243830Sdim    case X86::AVX_SET0:
5236309124Sdim    case X86::AVX512_256_SET0:
5237212904Sdim      Alignment = 32;
5238212904Sdim      break;
5239226633Sdim    case X86::V_SET0:
5240198090Srdivacky    case X86::V_SETALLONES:
5241309124Sdim    case X86::AVX512_128_SET0:
5242360784Sdim    case X86::FsFLD0F128:
5243360784Sdim    case X86::AVX512_FsFLD0F128:
5244198090Srdivacky      Alignment = 16;
5245198090Srdivacky      break;
5246341825Sdim    case X86::MMX_SET0:
5247198090Srdivacky    case X86::FsFLD0SD:
5248314564Sdim    case X86::AVX512_FsFLD0SD:
5249198090Srdivacky      Alignment = 8;
5250198090Srdivacky      break;
5251198090Srdivacky    case X86::FsFLD0SS:
5252314564Sdim    case X86::AVX512_FsFLD0SS:
5253198090Srdivacky      Alignment = 4;
5254198090Srdivacky      break;
5255198090Srdivacky    default:
5256276479Sdim      return nullptr;
5257193323Sed    }
5258193323Sed  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5259193323Sed    unsigned NewOpc = 0;
5260309124Sdim    switch (MI.getOpcode()) {
5261276479Sdim    default: return nullptr;
5262193323Sed    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
5263208599Srdivacky    case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
5264208599Srdivacky    case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
5265208599Srdivacky    case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
5266193323Sed    }
5267193323Sed    // Change to CMPXXri r, 0 first.
5268309124Sdim    MI.setDesc(get(NewOpc));
5269309124Sdim    MI.getOperand(1).ChangeToImmediate(0);
5270193323Sed  } else if (Ops.size() != 1)
5271276479Sdim    return nullptr;
5272193323Sed
5273212904Sdim  // Make sure the subregisters match.
5274212904Sdim  // Otherwise we risk changing the size of the load.
5275309124Sdim  if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
5276276479Sdim    return nullptr;
5277212904Sdim
5278210299Sed  SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
5279309124Sdim  switch (LoadMI.getOpcode()) {
5280341825Sdim  case X86::MMX_SET0:
5281226633Sdim  case X86::V_SET0:
5282198090Srdivacky  case X86::V_SETALLONES:
5283234353Sdim  case X86::AVX2_SETALLONES:
5284321369Sdim  case X86::AVX1_SETALLONES:
5285243830Sdim  case X86::AVX_SET0:
5286309124Sdim  case X86::AVX512_128_SET0:
5287309124Sdim  case X86::AVX512_256_SET0:
5288309124Sdim  case X86::AVX512_512_SET0:
5289309124Sdim  case X86::AVX512_512_SETALLONES:
5290198090Srdivacky  case X86::FsFLD0SD:
5291314564Sdim  case X86::AVX512_FsFLD0SD:
5292314564Sdim  case X86::FsFLD0SS:
5293360784Sdim  case X86::AVX512_FsFLD0SS:
5294360784Sdim  case X86::FsFLD0F128:
5295360784Sdim  case X86::AVX512_FsFLD0F128: {
5296226633Sdim    // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
5297193323Sed    // Create a constant-pool entry and operands to load from it.
5298193323Sed
5299204961Srdivacky    // Medium and large mode can't fold loads this way.
5300276479Sdim    if (MF.getTarget().getCodeModel() != CodeModel::Small &&
5301276479Sdim        MF.getTarget().getCodeModel() != CodeModel::Kernel)
5302276479Sdim      return nullptr;
5303204961Srdivacky
5304193323Sed    // x86-32 PIC requires a PIC base register for constant pools.
5305193323Sed    unsigned PICBase = 0;
5306309124Sdim    if (MF.getTarget().isPositionIndependent()) {
5307276479Sdim      if (Subtarget.is64Bit())
5308198090Srdivacky        PICBase = X86::RIP;
5309198090Srdivacky      else
5310210299Sed        // FIXME: PICBase = getGlobalBaseReg(&MF);
5311198090Srdivacky        // This doesn't work for several reasons.
5312198090Srdivacky        // 1. GlobalBaseReg may have been spilled.
5313198090Srdivacky        // 2. It may not be live at MI.
5314276479Sdim        return nullptr;
5315198090Srdivacky    }
5316193323Sed
5317198090Srdivacky    // Create a constant-pool entry.
5318193323Sed    MachineConstantPool &MCP = *MF.getConstantPool();
5319226633Sdim    Type *Ty;
5320309124Sdim    unsigned Opc = LoadMI.getOpcode();
5321314564Sdim    if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
5322327952Sdim      Ty = Type::getFloatTy(MF.getFunction().getContext());
5323314564Sdim    else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
5324327952Sdim      Ty = Type::getDoubleTy(MF.getFunction().getContext());
5325360784Sdim    else if (Opc == X86::FsFLD0F128 || Opc == X86::AVX512_FsFLD0F128)
5326360784Sdim      Ty = Type::getFP128Ty(MF.getFunction().getContext());
5327309124Sdim    else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
5328327952Sdim      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),16);
5329309124Sdim    else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
5330321369Sdim             Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES)
5331327952Sdim      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 8);
5332341825Sdim    else if (Opc == X86::MMX_SET0)
5333341825Sdim      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 2);
5334198090Srdivacky    else
5335327952Sdim      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 4);
5336226633Sdim
5337309124Sdim    bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
5338321369Sdim                      Opc == X86::AVX512_512_SETALLONES ||
5339321369Sdim                      Opc == X86::AVX1_SETALLONES);
5340226633Sdim    const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
5341226633Sdim                                    Constant::getNullValue(Ty);
5342198090Srdivacky    unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
5343193323Sed
5344193323Sed    // Create operands to load from the constant pool entry.
5345193323Sed    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
5346193323Sed    MOs.push_back(MachineOperand::CreateImm(1));
5347193323Sed    MOs.push_back(MachineOperand::CreateReg(0, false));
5348193323Sed    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
5349193323Sed    MOs.push_back(MachineOperand::CreateReg(0, false));
5350198090Srdivacky    break;
5351198090Srdivacky  }
5352198090Srdivacky  default: {
5353309124Sdim    if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
5354276479Sdim      return nullptr;
5355249423Sdim
5356193323Sed    // Folding a normal load. Just copy the load's address operands.
5357309124Sdim    MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
5358309124Sdim               LoadMI.operands_begin() + NumOps);
5359198090Srdivacky    break;
5360193323Sed  }
5361198090Srdivacky  }
5362288943Sdim  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
5363280031Sdim                               /*Size=*/0, Alignment, /*AllowCommute=*/true);
5364193323Sed}
5365193323Sed
5366344779Sdimstatic SmallVector<MachineMemOperand *, 2>
5367344779SdimextractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
5368344779Sdim  SmallVector<MachineMemOperand *, 2> LoadMMOs;
5369344779Sdim
5370344779Sdim  for (MachineMemOperand *MMO : MMOs) {
5371344779Sdim    if (!MMO->isLoad())
5372344779Sdim      continue;
5373344779Sdim
5374344779Sdim    if (!MMO->isStore()) {
5375344779Sdim      // Reuse the MMO.
5376344779Sdim      LoadMMOs.push_back(MMO);
5377344779Sdim    } else {
5378344779Sdim      // Clone the MMO and unset the store flag.
5379344779Sdim      LoadMMOs.push_back(MF.getMachineMemOperand(
5380353358Sdim          MMO, MMO->getFlags() & ~MachineMemOperand::MOStore));
5381344779Sdim    }
5382344779Sdim  }
5383344779Sdim
5384344779Sdim  return LoadMMOs;
5385344779Sdim}
5386344779Sdim
5387344779Sdimstatic SmallVector<MachineMemOperand *, 2>
5388344779SdimextractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
5389344779Sdim  SmallVector<MachineMemOperand *, 2> StoreMMOs;
5390344779Sdim
5391344779Sdim  for (MachineMemOperand *MMO : MMOs) {
5392344779Sdim    if (!MMO->isStore())
5393344779Sdim      continue;
5394344779Sdim
5395344779Sdim    if (!MMO->isLoad()) {
5396344779Sdim      // Reuse the MMO.
5397344779Sdim      StoreMMOs.push_back(MMO);
5398344779Sdim    } else {
5399344779Sdim      // Clone the MMO and unset the load flag.
5400344779Sdim      StoreMMOs.push_back(MF.getMachineMemOperand(
5401353358Sdim          MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad));
5402344779Sdim    }
5403344779Sdim  }
5404344779Sdim
5405344779Sdim  return StoreMMOs;
5406344779Sdim}
5407344779Sdim
5408360784Sdimstatic unsigned getBroadcastOpcode(const X86MemoryFoldTableEntry *I,
5409360784Sdim                                   const TargetRegisterClass *RC,
5410360784Sdim                                   const X86Subtarget &STI) {
5411360784Sdim  assert(STI.hasAVX512() && "Expected at least AVX512!");
5412360784Sdim  unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC);
5413360784Sdim  assert((SpillSize == 64 || STI.hasVLX()) &&
5414360784Sdim         "Can't broadcast less than 64 bytes without AVX512VL!");
5415360784Sdim
5416360784Sdim  switch (I->Flags & TB_BCAST_MASK) {
5417360784Sdim  default: llvm_unreachable("Unexpected broadcast type!");
5418360784Sdim  case TB_BCAST_D:
5419360784Sdim    switch (SpillSize) {
5420360784Sdim    default: llvm_unreachable("Unknown spill size");
5421360784Sdim    case 16: return X86::VPBROADCASTDZ128m;
5422360784Sdim    case 32: return X86::VPBROADCASTDZ256m;
5423360784Sdim    case 64: return X86::VPBROADCASTDZm;
5424360784Sdim    }
5425360784Sdim    break;
5426360784Sdim  case TB_BCAST_Q:
5427360784Sdim    switch (SpillSize) {
5428360784Sdim    default: llvm_unreachable("Unknown spill size");
5429360784Sdim    case 16: return X86::VPBROADCASTQZ128m;
5430360784Sdim    case 32: return X86::VPBROADCASTQZ256m;
5431360784Sdim    case 64: return X86::VPBROADCASTQZm;
5432360784Sdim    }
5433360784Sdim    break;
5434360784Sdim  case TB_BCAST_SS:
5435360784Sdim    switch (SpillSize) {
5436360784Sdim    default: llvm_unreachable("Unknown spill size");
5437360784Sdim    case 16: return X86::VBROADCASTSSZ128m;
5438360784Sdim    case 32: return X86::VBROADCASTSSZ256m;
5439360784Sdim    case 64: return X86::VBROADCASTSSZm;
5440360784Sdim    }
5441360784Sdim    break;
5442360784Sdim  case TB_BCAST_SD:
5443360784Sdim    switch (SpillSize) {
5444360784Sdim    default: llvm_unreachable("Unknown spill size");
5445360784Sdim    case 16: return X86::VMOVDDUPZ128rm;
5446360784Sdim    case 32: return X86::VBROADCASTSDZ256m;
5447360784Sdim    case 64: return X86::VBROADCASTSDZm;
5448360784Sdim    }
5449360784Sdim    break;
5450360784Sdim  }
5451360784Sdim}
5452360784Sdim
5453309124Sdimbool X86InstrInfo::unfoldMemoryOperand(
5454309124Sdim    MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
5455309124Sdim    bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
5456341825Sdim  const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
5457341825Sdim  if (I == nullptr)
5458193323Sed    return false;
5459341825Sdim  unsigned Opc = I->DstOp;
5460341825Sdim  unsigned Index = I->Flags & TB_INDEX_MASK;
5461341825Sdim  bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5462341825Sdim  bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5463360784Sdim  bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
5464193323Sed  if (UnfoldLoad && !FoldedLoad)
5465193323Sed    return false;
5466193323Sed  UnfoldLoad &= FoldedLoad;
5467193323Sed  if (UnfoldStore && !FoldedStore)
5468193323Sed    return false;
5469193323Sed  UnfoldStore &= FoldedStore;
5470193323Sed
5471224145Sdim  const MCInstrDesc &MCID = get(Opc);
5472360784Sdim
5473239462Sdim  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
5474360784Sdim  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5475296417Sdim  // TODO: Check if 32-byte or greater accesses are slow too?
5476309124Sdim  if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
5477296417Sdim      Subtarget.isUnalignedMem16Slow())
5478210299Sed    // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
5479210299Sed    // conservatively assume the address is unaligned. That's bad for
5480210299Sed    // performance.
5481210299Sed    return false;
5482210299Sed  SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
5483193323Sed  SmallVector<MachineOperand,2> BeforeOps;
5484193323Sed  SmallVector<MachineOperand,2> AfterOps;
5485193323Sed  SmallVector<MachineOperand,4> ImpOps;
5486309124Sdim  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
5487309124Sdim    MachineOperand &Op = MI.getOperand(i);
5488210299Sed    if (i >= Index && i < Index + X86::AddrNumOperands)
5489193323Sed      AddrOps.push_back(Op);
5490193323Sed    else if (Op.isReg() && Op.isImplicit())
5491193323Sed      ImpOps.push_back(Op);
5492193323Sed    else if (i < Index)
5493193323Sed      BeforeOps.push_back(Op);
5494193323Sed    else if (i > Index)
5495193323Sed      AfterOps.push_back(Op);
5496193323Sed  }
5497193323Sed
5498360784Sdim  // Emit the load or broadcast instruction.
5499193323Sed  if (UnfoldLoad) {
5500344779Sdim    auto MMOs = extractLoadMMOs(MI.memoperands(), MF);
5501360784Sdim
5502360784Sdim    unsigned Opc;
5503360784Sdim    if (FoldedBCast) {
5504360784Sdim      Opc = getBroadcastOpcode(I, RC, Subtarget);
5505360784Sdim    } else {
5506360784Sdim      unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
5507360784Sdim      bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
5508360784Sdim      Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget);
5509360784Sdim    }
5510360784Sdim
5511360784Sdim    DebugLoc DL;
5512360784Sdim    MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg);
5513360784Sdim    for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
5514360784Sdim      MIB.add(AddrOps[i]);
5515360784Sdim    MIB.setMemRefs(MMOs);
5516360784Sdim    NewMIs.push_back(MIB);
5517360784Sdim
5518193323Sed    if (UnfoldStore) {
5519193323Sed      // Address operands cannot be marked isKill.
5520210299Sed      for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
5521193323Sed        MachineOperand &MO = NewMIs[0]->getOperand(i);
5522193323Sed        if (MO.isReg())
5523193323Sed          MO.setIsKill(false);
5524193323Sed      }
5525193323Sed    }
5526193323Sed  }
5527193323Sed
5528193323Sed  // Emit the data processing instruction.
5529309124Sdim  MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
5530249423Sdim  MachineInstrBuilder MIB(MF, DataMI);
5531218893Sdim
5532193323Sed  if (FoldedStore)
5533193323Sed    MIB.addReg(Reg, RegState::Define);
5534296417Sdim  for (MachineOperand &BeforeOp : BeforeOps)
5535321369Sdim    MIB.add(BeforeOp);
5536193323Sed  if (FoldedLoad)
5537193323Sed    MIB.addReg(Reg);
5538296417Sdim  for (MachineOperand &AfterOp : AfterOps)
5539321369Sdim    MIB.add(AfterOp);
5540296417Sdim  for (MachineOperand &ImpOp : ImpOps) {
5541296417Sdim    MIB.addReg(ImpOp.getReg(),
5542296417Sdim               getDefRegState(ImpOp.isDef()) |
5543193323Sed               RegState::Implicit |
5544296417Sdim               getKillRegState(ImpOp.isKill()) |
5545296417Sdim               getDeadRegState(ImpOp.isDead()) |
5546296417Sdim               getUndefRegState(ImpOp.isUndef()));
5547193323Sed  }
5548193323Sed  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5549193323Sed  switch (DataMI->getOpcode()) {
5550193323Sed  default: break;
5551193323Sed  case X86::CMP64ri32:
5552208599Srdivacky  case X86::CMP64ri8:
5553193323Sed  case X86::CMP32ri:
5554208599Srdivacky  case X86::CMP32ri8:
5555193323Sed  case X86::CMP16ri:
5556208599Srdivacky  case X86::CMP16ri8:
5557193323Sed  case X86::CMP8ri: {
5558193323Sed    MachineOperand &MO0 = DataMI->getOperand(0);
5559193323Sed    MachineOperand &MO1 = DataMI->getOperand(1);
5560193323Sed    if (MO1.getImm() == 0) {
5561243830Sdim      unsigned NewOpc;
5562193323Sed      switch (DataMI->getOpcode()) {
5563243830Sdim      default: llvm_unreachable("Unreachable!");
5564208599Srdivacky      case X86::CMP64ri8:
5565193323Sed      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
5566208599Srdivacky      case X86::CMP32ri8:
5567193323Sed      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
5568208599Srdivacky      case X86::CMP16ri8:
5569193323Sed      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
5570193323Sed      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
5571193323Sed      }
5572193323Sed      DataMI->setDesc(get(NewOpc));
5573193323Sed      MO1.ChangeToRegister(MO0.getReg(), false);
5574193323Sed    }
5575193323Sed  }
5576193323Sed  }
5577193323Sed  NewMIs.push_back(DataMI);
5578193323Sed
5579193323Sed  // Emit the store instruction.
5580193323Sed  if (UnfoldStore) {
5581239462Sdim    const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
5582344779Sdim    auto MMOs = extractStoreMMOs(MI.memoperands(), MF);
5583360784Sdim    unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16);
5584360784Sdim    bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
5585360784Sdim    unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget);
5586360784Sdim    DebugLoc DL;
5587360784Sdim    MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
5588360784Sdim    for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
5589360784Sdim      MIB.add(AddrOps[i]);
5590360784Sdim    MIB.addReg(Reg, RegState::Kill);
5591360784Sdim    MIB.setMemRefs(MMOs);
5592360784Sdim    NewMIs.push_back(MIB);
5593193323Sed  }
5594193323Sed
5595193323Sed  return true;
5596193323Sed}
5597193323Sed
5598193323Sedbool
5599193323SedX86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
5600193323Sed                                  SmallVectorImpl<SDNode*> &NewNodes) const {
5601193323Sed  if (!N->isMachineOpcode())
5602193323Sed    return false;
5603193323Sed
5604341825Sdim  const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
5605341825Sdim  if (I == nullptr)
5606193323Sed    return false;
5607341825Sdim  unsigned Opc = I->DstOp;
5608341825Sdim  unsigned Index = I->Flags & TB_INDEX_MASK;
5609341825Sdim  bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5610341825Sdim  bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5611360784Sdim  bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
5612224145Sdim  const MCInstrDesc &MCID = get(Opc);
5613239462Sdim  MachineFunction &MF = DAG.getMachineFunction();
5614321369Sdim  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5615239462Sdim  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
5616224145Sdim  unsigned NumDefs = MCID.NumDefs;
5617193323Sed  std::vector<SDValue> AddrOps;
5618193323Sed  std::vector<SDValue> BeforeOps;
5619193323Sed  std::vector<SDValue> AfterOps;
5620261991Sdim  SDLoc dl(N);
5621193323Sed  unsigned NumOps = N->getNumOperands();
5622193323Sed  for (unsigned i = 0; i != NumOps-1; ++i) {
5623193323Sed    SDValue Op = N->getOperand(i);
5624210299Sed    if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
5625193323Sed      AddrOps.push_back(Op);
5626193323Sed    else if (i < Index-NumDefs)
5627193323Sed      BeforeOps.push_back(Op);
5628193323Sed    else if (i > Index-NumDefs)
5629193323Sed      AfterOps.push_back(Op);
5630193323Sed  }
5631193323Sed  SDValue Chain = N->getOperand(NumOps-1);
5632193323Sed  AddrOps.push_back(Chain);
5633193323Sed
5634193323Sed  // Emit the load instruction.
5635276479Sdim  SDNode *Load = nullptr;
5636193323Sed  if (FoldedLoad) {
5637321369Sdim    EVT VT = *TRI.legalclasstypes_begin(*RC);
5638344779Sdim    auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
5639344779Sdim    if (MMOs.empty() && RC == &X86::VR128RegClass &&
5640296417Sdim        Subtarget.isUnalignedMem16Slow())
5641210299Sed      // Do not introduce a slow unaligned load.
5642210299Sed      return false;
5643296417Sdim    // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
5644296417Sdim    // memory access is slow above.
5645360784Sdim
5646360784Sdim    unsigned Opc;
5647360784Sdim    if (FoldedBCast) {
5648360784Sdim      Opc = getBroadcastOpcode(I, RC, Subtarget);
5649360784Sdim    } else {
5650360784Sdim      unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
5651360784Sdim      bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
5652360784Sdim      Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget);
5653360784Sdim    }
5654360784Sdim
5655360784Sdim    Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps);
5656193323Sed    NewNodes.push_back(Load);
5657198090Srdivacky
5658198090Srdivacky    // Preserve memory reference information.
5659344779Sdim    DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs);
5660193323Sed  }
5661193323Sed
5662193323Sed  // Emit the data processing instruction.
5663198090Srdivacky  std::vector<EVT> VTs;
5664276479Sdim  const TargetRegisterClass *DstRC = nullptr;
5665224145Sdim  if (MCID.getNumDefs() > 0) {
5666239462Sdim    DstRC = getRegClass(MCID, 0, &RI, MF);
5667321369Sdim    VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
5668193323Sed  }
5669193323Sed  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
5670198090Srdivacky    EVT VT = N->getValueType(i);
5671224145Sdim    if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
5672193323Sed      VTs.push_back(VT);
5673193323Sed  }
5674193323Sed  if (Load)
5675193323Sed    BeforeOps.push_back(SDValue(Load, 0));
5676288943Sdim  BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end());
5677341825Sdim  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5678341825Sdim  switch (Opc) {
5679341825Sdim    default: break;
5680341825Sdim    case X86::CMP64ri32:
5681341825Sdim    case X86::CMP64ri8:
5682341825Sdim    case X86::CMP32ri:
5683341825Sdim    case X86::CMP32ri8:
5684341825Sdim    case X86::CMP16ri:
5685341825Sdim    case X86::CMP16ri8:
5686341825Sdim    case X86::CMP8ri:
5687341825Sdim      if (isNullConstant(BeforeOps[1])) {
5688341825Sdim        switch (Opc) {
5689341825Sdim          default: llvm_unreachable("Unreachable!");
5690341825Sdim          case X86::CMP64ri8:
5691341825Sdim          case X86::CMP64ri32: Opc = X86::TEST64rr; break;
5692341825Sdim          case X86::CMP32ri8:
5693341825Sdim          case X86::CMP32ri:   Opc = X86::TEST32rr; break;
5694341825Sdim          case X86::CMP16ri8:
5695341825Sdim          case X86::CMP16ri:   Opc = X86::TEST16rr; break;
5696341825Sdim          case X86::CMP8ri:    Opc = X86::TEST8rr; break;
5697341825Sdim        }
5698341825Sdim        BeforeOps[1] = BeforeOps[0];
5699341825Sdim      }
5700341825Sdim  }
5701251662Sdim  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
5702193323Sed  NewNodes.push_back(NewNode);
5703193323Sed
5704193323Sed  // Emit the store instruction.
5705193323Sed  if (FoldedStore) {
5706193323Sed    AddrOps.pop_back();
5707193323Sed    AddrOps.push_back(SDValue(NewNode, 0));
5708193323Sed    AddrOps.push_back(Chain);
5709344779Sdim    auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
5710344779Sdim    if (MMOs.empty() && RC == &X86::VR128RegClass &&
5711296417Sdim        Subtarget.isUnalignedMem16Slow())
5712210299Sed      // Do not introduce a slow unaligned store.
5713210299Sed      return false;
5714296417Sdim    // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
5715296417Sdim    // memory access is slow above.
5716321369Sdim    unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
5717344779Sdim    bool isAligned = !MMOs.empty() && MMOs.front()->getAlignment() >= Alignment;
5718276479Sdim    SDNode *Store =
5719276479Sdim        DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
5720276479Sdim                           dl, MVT::Other, AddrOps);
5721193323Sed    NewNodes.push_back(Store);
5722198090Srdivacky
5723198090Srdivacky    // Preserve memory reference information.
5724344779Sdim    DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs);
5725193323Sed  }
5726193323Sed
5727193323Sed  return true;
5728193323Sed}
5729193323Sed
5730193323Sedunsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
5731198892Srdivacky                                      bool UnfoldLoad, bool UnfoldStore,
5732198892Srdivacky                                      unsigned *LoadRegIndex) const {
5733341825Sdim  const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc);
5734341825Sdim  if (I == nullptr)
5735193323Sed    return 0;
5736341825Sdim  bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5737341825Sdim  bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5738193323Sed  if (UnfoldLoad && !FoldedLoad)
5739193323Sed    return 0;
5740193323Sed  if (UnfoldStore && !FoldedStore)
5741193323Sed    return 0;
5742198892Srdivacky  if (LoadRegIndex)
5743341825Sdim    *LoadRegIndex = I->Flags & TB_INDEX_MASK;
5744341825Sdim  return I->DstOp;
5745193323Sed}
5746193323Sed
5747202878Srdivackybool
5748202878SrdivackyX86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
5749202878Srdivacky                                     int64_t &Offset1, int64_t &Offset2) const {
5750202878Srdivacky  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
5751202878Srdivacky    return false;
5752202878Srdivacky  unsigned Opc1 = Load1->getMachineOpcode();
5753202878Srdivacky  unsigned Opc2 = Load2->getMachineOpcode();
5754202878Srdivacky  switch (Opc1) {
5755202878Srdivacky  default: return false;
5756202878Srdivacky  case X86::MOV8rm:
5757202878Srdivacky  case X86::MOV16rm:
5758202878Srdivacky  case X86::MOV32rm:
5759202878Srdivacky  case X86::MOV64rm:
5760202878Srdivacky  case X86::LD_Fp32m:
5761202878Srdivacky  case X86::LD_Fp64m:
5762202878Srdivacky  case X86::LD_Fp80m:
5763202878Srdivacky  case X86::MOVSSrm:
5764353358Sdim  case X86::MOVSSrm_alt:
5765202878Srdivacky  case X86::MOVSDrm:
5766353358Sdim  case X86::MOVSDrm_alt:
5767202878Srdivacky  case X86::MMX_MOVD64rm:
5768202878Srdivacky  case X86::MMX_MOVQ64rm:
5769202878Srdivacky  case X86::MOVAPSrm:
5770202878Srdivacky  case X86::MOVUPSrm:
5771202878Srdivacky  case X86::MOVAPDrm:
5772309124Sdim  case X86::MOVUPDrm:
5773202878Srdivacky  case X86::MOVDQArm:
5774202878Srdivacky  case X86::MOVDQUrm:
5775226633Sdim  // AVX load instructions
5776226633Sdim  case X86::VMOVSSrm:
5777353358Sdim  case X86::VMOVSSrm_alt:
5778226633Sdim  case X86::VMOVSDrm:
5779353358Sdim  case X86::VMOVSDrm_alt:
5780226633Sdim  case X86::VMOVAPSrm:
5781226633Sdim  case X86::VMOVUPSrm:
5782226633Sdim  case X86::VMOVAPDrm:
5783309124Sdim  case X86::VMOVUPDrm:
5784226633Sdim  case X86::VMOVDQArm:
5785226633Sdim  case X86::VMOVDQUrm:
5786224145Sdim  case X86::VMOVAPSYrm:
5787224145Sdim  case X86::VMOVUPSYrm:
5788224145Sdim  case X86::VMOVAPDYrm:
5789309124Sdim  case X86::VMOVUPDYrm:
5790224145Sdim  case X86::VMOVDQAYrm:
5791224145Sdim  case X86::VMOVDQUYrm:
5792309124Sdim  // AVX512 load instructions
5793309124Sdim  case X86::VMOVSSZrm:
5794353358Sdim  case X86::VMOVSSZrm_alt:
5795309124Sdim  case X86::VMOVSDZrm:
5796353358Sdim  case X86::VMOVSDZrm_alt:
5797309124Sdim  case X86::VMOVAPSZ128rm:
5798309124Sdim  case X86::VMOVUPSZ128rm:
5799314564Sdim  case X86::VMOVAPSZ128rm_NOVLX:
5800314564Sdim  case X86::VMOVUPSZ128rm_NOVLX:
5801309124Sdim  case X86::VMOVAPDZ128rm:
5802309124Sdim  case X86::VMOVUPDZ128rm:
5803309124Sdim  case X86::VMOVDQU8Z128rm:
5804309124Sdim  case X86::VMOVDQU16Z128rm:
5805309124Sdim  case X86::VMOVDQA32Z128rm:
5806309124Sdim  case X86::VMOVDQU32Z128rm:
5807309124Sdim  case X86::VMOVDQA64Z128rm:
5808309124Sdim  case X86::VMOVDQU64Z128rm:
5809309124Sdim  case X86::VMOVAPSZ256rm:
5810309124Sdim  case X86::VMOVUPSZ256rm:
5811314564Sdim  case X86::VMOVAPSZ256rm_NOVLX:
5812314564Sdim  case X86::VMOVUPSZ256rm_NOVLX:
5813309124Sdim  case X86::VMOVAPDZ256rm:
5814309124Sdim  case X86::VMOVUPDZ256rm:
5815309124Sdim  case X86::VMOVDQU8Z256rm:
5816309124Sdim  case X86::VMOVDQU16Z256rm:
5817309124Sdim  case X86::VMOVDQA32Z256rm:
5818309124Sdim  case X86::VMOVDQU32Z256rm:
5819309124Sdim  case X86::VMOVDQA64Z256rm:
5820309124Sdim  case X86::VMOVDQU64Z256rm:
5821309124Sdim  case X86::VMOVAPSZrm:
5822309124Sdim  case X86::VMOVUPSZrm:
5823309124Sdim  case X86::VMOVAPDZrm:
5824309124Sdim  case X86::VMOVUPDZrm:
5825309124Sdim  case X86::VMOVDQU8Zrm:
5826309124Sdim  case X86::VMOVDQU16Zrm:
5827309124Sdim  case X86::VMOVDQA32Zrm:
5828309124Sdim  case X86::VMOVDQU32Zrm:
5829309124Sdim  case X86::VMOVDQA64Zrm:
5830309124Sdim  case X86::VMOVDQU64Zrm:
5831309124Sdim  case X86::KMOVBkm:
5832309124Sdim  case X86::KMOVWkm:
5833309124Sdim  case X86::KMOVDkm:
5834309124Sdim  case X86::KMOVQkm:
5835202878Srdivacky    break;
5836202878Srdivacky  }
5837202878Srdivacky  switch (Opc2) {
5838202878Srdivacky  default: return false;
5839202878Srdivacky  case X86::MOV8rm:
5840202878Srdivacky  case X86::MOV16rm:
5841202878Srdivacky  case X86::MOV32rm:
5842202878Srdivacky  case X86::MOV64rm:
5843202878Srdivacky  case X86::LD_Fp32m:
5844202878Srdivacky  case X86::LD_Fp64m:
5845202878Srdivacky  case X86::LD_Fp80m:
5846202878Srdivacky  case X86::MOVSSrm:
5847353358Sdim  case X86::MOVSSrm_alt:
5848202878Srdivacky  case X86::MOVSDrm:
5849353358Sdim  case X86::MOVSDrm_alt:
5850202878Srdivacky  case X86::MMX_MOVD64rm:
5851202878Srdivacky  case X86::MMX_MOVQ64rm:
5852202878Srdivacky  case X86::MOVAPSrm:
5853202878Srdivacky  case X86::MOVUPSrm:
5854202878Srdivacky  case X86::MOVAPDrm:
5855309124Sdim  case X86::MOVUPDrm:
5856202878Srdivacky  case X86::MOVDQArm:
5857202878Srdivacky  case X86::MOVDQUrm:
5858226633Sdim  // AVX load instructions
5859226633Sdim  case X86::VMOVSSrm:
5860353358Sdim  case X86::VMOVSSrm_alt:
5861226633Sdim  case X86::VMOVSDrm:
5862353358Sdim  case X86::VMOVSDrm_alt:
5863226633Sdim  case X86::VMOVAPSrm:
5864226633Sdim  case X86::VMOVUPSrm:
5865226633Sdim  case X86::VMOVAPDrm:
5866309124Sdim  case X86::VMOVUPDrm:
5867226633Sdim  case X86::VMOVDQArm:
5868226633Sdim  case X86::VMOVDQUrm:
5869224145Sdim  case X86::VMOVAPSYrm:
5870224145Sdim  case X86::VMOVUPSYrm:
5871224145Sdim  case X86::VMOVAPDYrm:
5872309124Sdim  case X86::VMOVUPDYrm:
5873224145Sdim  case X86::VMOVDQAYrm:
5874224145Sdim  case X86::VMOVDQUYrm:
5875309124Sdim  // AVX512 load instructions
5876309124Sdim  case X86::VMOVSSZrm:
5877353358Sdim  case X86::VMOVSSZrm_alt:
5878309124Sdim  case X86::VMOVSDZrm:
5879353358Sdim  case X86::VMOVSDZrm_alt:
5880309124Sdim  case X86::VMOVAPSZ128rm:
5881309124Sdim  case X86::VMOVUPSZ128rm:
5882314564Sdim  case X86::VMOVAPSZ128rm_NOVLX:
5883314564Sdim  case X86::VMOVUPSZ128rm_NOVLX:
5884309124Sdim  case X86::VMOVAPDZ128rm:
5885309124Sdim  case X86::VMOVUPDZ128rm:
5886309124Sdim  case X86::VMOVDQU8Z128rm:
5887309124Sdim  case X86::VMOVDQU16Z128rm:
5888309124Sdim  case X86::VMOVDQA32Z128rm:
5889309124Sdim  case X86::VMOVDQU32Z128rm:
5890309124Sdim  case X86::VMOVDQA64Z128rm:
5891309124Sdim  case X86::VMOVDQU64Z128rm:
5892309124Sdim  case X86::VMOVAPSZ256rm:
5893309124Sdim  case X86::VMOVUPSZ256rm:
5894314564Sdim  case X86::VMOVAPSZ256rm_NOVLX:
5895314564Sdim  case X86::VMOVUPSZ256rm_NOVLX:
5896309124Sdim  case X86::VMOVAPDZ256rm:
5897309124Sdim  case X86::VMOVUPDZ256rm:
5898309124Sdim  case X86::VMOVDQU8Z256rm:
5899309124Sdim  case X86::VMOVDQU16Z256rm:
5900309124Sdim  case X86::VMOVDQA32Z256rm:
5901309124Sdim  case X86::VMOVDQU32Z256rm:
5902309124Sdim  case X86::VMOVDQA64Z256rm:
5903309124Sdim  case X86::VMOVDQU64Z256rm:
5904309124Sdim  case X86::VMOVAPSZrm:
5905309124Sdim  case X86::VMOVUPSZrm:
5906309124Sdim  case X86::VMOVAPDZrm:
5907309124Sdim  case X86::VMOVUPDZrm:
5908309124Sdim  case X86::VMOVDQU8Zrm:
5909309124Sdim  case X86::VMOVDQU16Zrm:
5910309124Sdim  case X86::VMOVDQA32Zrm:
5911309124Sdim  case X86::VMOVDQU32Zrm:
5912309124Sdim  case X86::VMOVDQA64Zrm:
5913309124Sdim  case X86::VMOVDQU64Zrm:
5914309124Sdim  case X86::KMOVBkm:
5915309124Sdim  case X86::KMOVWkm:
5916309124Sdim  case X86::KMOVDkm:
5917309124Sdim  case X86::KMOVQkm:
5918202878Srdivacky    break;
5919202878Srdivacky  }
5920202878Srdivacky
5921321369Sdim  // Lambda to check if both the loads have the same value for an operand index.
5922321369Sdim  auto HasSameOp = [&](int I) {
5923321369Sdim    return Load1->getOperand(I) == Load2->getOperand(I);
5924321369Sdim  };
5925321369Sdim
5926321369Sdim  // All operands except the displacement should match.
5927321369Sdim  if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
5928321369Sdim      !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
5929202878Srdivacky    return false;
5930321369Sdim
5931321369Sdim  // Chain Operand must be the same.
5932321369Sdim  if (!HasSameOp(5))
5933202878Srdivacky    return false;
5934202878Srdivacky
5935321369Sdim  // Now let's examine if the displacements are constants.
5936321369Sdim  auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
5937321369Sdim  auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
5938321369Sdim  if (!Disp1 || !Disp2)
5939321369Sdim    return false;
5940321369Sdim
5941321369Sdim  Offset1 = Disp1->getSExtValue();
5942321369Sdim  Offset2 = Disp2->getSExtValue();
5943321369Sdim  return true;
5944202878Srdivacky}
5945202878Srdivacky
5946202878Srdivackybool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
5947202878Srdivacky                                           int64_t Offset1, int64_t Offset2,
5948202878Srdivacky                                           unsigned NumLoads) const {
5949202878Srdivacky  assert(Offset2 > Offset1);
5950202878Srdivacky  if ((Offset2 - Offset1) / 8 > 64)
5951202878Srdivacky    return false;
5952202878Srdivacky
5953202878Srdivacky  unsigned Opc1 = Load1->getMachineOpcode();
5954202878Srdivacky  unsigned Opc2 = Load2->getMachineOpcode();
5955202878Srdivacky  if (Opc1 != Opc2)
5956202878Srdivacky    return false;  // FIXME: overly conservative?
5957202878Srdivacky
5958202878Srdivacky  switch (Opc1) {
5959202878Srdivacky  default: break;
5960202878Srdivacky  case X86::LD_Fp32m:
5961202878Srdivacky  case X86::LD_Fp64m:
5962202878Srdivacky  case X86::LD_Fp80m:
5963202878Srdivacky  case X86::MMX_MOVD64rm:
5964202878Srdivacky  case X86::MMX_MOVQ64rm:
5965202878Srdivacky    return false;
5966202878Srdivacky  }
5967202878Srdivacky
5968202878Srdivacky  EVT VT = Load1->getValueType(0);
5969202878Srdivacky  switch (VT.getSimpleVT().SimpleTy) {
5970210299Sed  default:
5971202878Srdivacky    // XMM registers. In 64-bit mode we can be a bit more aggressive since we
5972202878Srdivacky    // have 16 of them to play with.
5973276479Sdim    if (Subtarget.is64Bit()) {
5974202878Srdivacky      if (NumLoads >= 3)
5975202878Srdivacky        return false;
5976210299Sed    } else if (NumLoads) {
5977202878Srdivacky      return false;
5978210299Sed    }
5979202878Srdivacky    break;
5980202878Srdivacky  case MVT::i8:
5981202878Srdivacky  case MVT::i16:
5982202878Srdivacky  case MVT::i32:
5983202878Srdivacky  case MVT::i64:
5984202878Srdivacky  case MVT::f32:
5985202878Srdivacky  case MVT::f64:
5986202878Srdivacky    if (NumLoads)
5987202878Srdivacky      return false;
5988210299Sed    break;
5989202878Srdivacky  }
5990202878Srdivacky
5991202878Srdivacky  return true;
5992202878Srdivacky}
5993202878Srdivacky
5994193323Sedbool X86InstrInfo::
5995314564SdimreverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
5996193323Sed  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
5997193323Sed  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
5998193323Sed  Cond[0].setImm(GetOppositeBranchCondition(CC));
5999193323Sed  return false;
6000193323Sed}
6001193323Sed
6002193323Sedbool X86InstrInfo::
6003193323SedisSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
6004193323Sed  // FIXME: Return false for x87 stack register classes for now. We can't
6005193323Sed  // allow any loads of these registers before FpGet_ST0_80.
6006332833Sdim  return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
6007332833Sdim           RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
6008332833Sdim           RC == &X86::RFP80RegClass);
6009193323Sed}
6010193323Sed
6011288943Sdim/// Return a virtual register initialized with the
6012193323Sed/// the global base register value. Output instructions required to
6013193323Sed/// initialize the register in the function entry block, if necessary.
6014193323Sed///
6015210299Sed/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
6016210299Sed///
6017193323Sedunsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
6018341825Sdim  assert((!Subtarget.is64Bit() ||
6019341825Sdim          MF->getTarget().getCodeModel() == CodeModel::Medium ||
6020341825Sdim          MF->getTarget().getCodeModel() == CodeModel::Large) &&
6021193323Sed         "X86-64 PIC uses RIP relative addressing");
6022193323Sed
6023193323Sed  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
6024193323Sed  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
6025193323Sed  if (GlobalBaseReg != 0)
6026193323Sed    return GlobalBaseReg;
6027193323Sed
6028210299Sed  // Create the register. The code to initialize it is inserted
6029210299Sed  // later, by the CGBR pass (below).
6030193323Sed  MachineRegisterInfo &RegInfo = MF->getRegInfo();
6031341825Sdim  GlobalBaseReg = RegInfo.createVirtualRegister(
6032341825Sdim      Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
6033193323Sed  X86FI->setGlobalBaseReg(GlobalBaseReg);
6034193323Sed  return GlobalBaseReg;
6035193323Sed}
6036206083Srdivacky
6037206083Srdivacky// These are the replaceable SSE instructions. Some of these have Int variants
6038206083Srdivacky// that we don't include here. We don't want to replace instructions selected
6039206083Srdivacky// by intrinsics.
6040234353Sdimstatic const uint16_t ReplaceableInstrs[][3] = {
6041212904Sdim  //PackedSingle     PackedDouble    PackedInt
6042206083Srdivacky  { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
6043206083Srdivacky  { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
6044206083Srdivacky  { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
6045206083Srdivacky  { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
6046206083Srdivacky  { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
6047314564Sdim  { X86::MOVLPSmr,   X86::MOVLPDmr,  X86::MOVPQI2QImr },
6048321369Sdim  { X86::MOVSDmr,    X86::MOVSDmr,   X86::MOVPQI2QImr },
6049314564Sdim  { X86::MOVSSmr,    X86::MOVSSmr,   X86::MOVPDI2DImr },
6050314564Sdim  { X86::MOVSDrm,    X86::MOVSDrm,   X86::MOVQI2PQIrm },
6051353358Sdim  { X86::MOVSDrm_alt,X86::MOVSDrm_alt,X86::MOVQI2PQIrm },
6052314564Sdim  { X86::MOVSSrm,    X86::MOVSSrm,   X86::MOVDI2PDIrm },
6053353358Sdim  { X86::MOVSSrm_alt,X86::MOVSSrm_alt,X86::MOVDI2PDIrm },
6054206083Srdivacky  { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
6055206083Srdivacky  { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
6056206083Srdivacky  { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
6057206083Srdivacky  { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
6058206083Srdivacky  { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
6059206083Srdivacky  { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
6060206083Srdivacky  { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
6061206083Srdivacky  { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
6062206083Srdivacky  { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
6063327952Sdim  { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm },
6064327952Sdim  { X86::MOVLHPSrr,  X86::UNPCKLPDrr, X86::PUNPCKLQDQrr },
6065327952Sdim  { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm },
6066327952Sdim  { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr },
6067327952Sdim  { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm },
6068327952Sdim  { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr },
6069327952Sdim  { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm },
6070327952Sdim  { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr },
6071327952Sdim  { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr },
6072327952Sdim  { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr },
6073212904Sdim  // AVX 128-bit support
6074212904Sdim  { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
6075212904Sdim  { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
6076212904Sdim  { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
6077212904Sdim  { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
6078212904Sdim  { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
6079314564Sdim  { X86::VMOVLPSmr,  X86::VMOVLPDmr,  X86::VMOVPQI2QImr },
6080321369Sdim  { X86::VMOVSDmr,   X86::VMOVSDmr,   X86::VMOVPQI2QImr },
6081314564Sdim  { X86::VMOVSSmr,   X86::VMOVSSmr,   X86::VMOVPDI2DImr },
6082314564Sdim  { X86::VMOVSDrm,   X86::VMOVSDrm,   X86::VMOVQI2PQIrm },
6083353358Sdim  { X86::VMOVSDrm_alt,X86::VMOVSDrm_alt,X86::VMOVQI2PQIrm },
6084314564Sdim  { X86::VMOVSSrm,   X86::VMOVSSrm,   X86::VMOVDI2PDIrm },
6085353358Sdim  { X86::VMOVSSrm_alt,X86::VMOVSSrm_alt,X86::VMOVDI2PDIrm },
6086212904Sdim  { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
6087212904Sdim  { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
6088212904Sdim  { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
6089212904Sdim  { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
6090212904Sdim  { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
6091212904Sdim  { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
6092212904Sdim  { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
6093212904Sdim  { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
6094212904Sdim  { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
6095327952Sdim  { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm },
6096327952Sdim  { X86::VMOVLHPSrr,  X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr },
6097327952Sdim  { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm },
6098327952Sdim  { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr },
6099327952Sdim  { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm },
6100327952Sdim  { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr },
6101327952Sdim  { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm },
6102327952Sdim  { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr },
6103327952Sdim  { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr },
6104327952Sdim  { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr },
6105224145Sdim  // AVX 256-bit support
6106224145Sdim  { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
6107224145Sdim  { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
6108224145Sdim  { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
6109224145Sdim  { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
6110224145Sdim  { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
6111314564Sdim  { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr },
6112327952Sdim  { X86::VPERMPSYrm,   X86::VPERMPSYrm,   X86::VPERMDYrm },
6113327952Sdim  { X86::VPERMPSYrr,   X86::VPERMPSYrr,   X86::VPERMDYrr },
6114327952Sdim  { X86::VPERMPDYmi,   X86::VPERMPDYmi,   X86::VPERMQYmi },
6115327952Sdim  { X86::VPERMPDYri,   X86::VPERMPDYri,   X86::VPERMQYri },
6116314564Sdim  // AVX512 support
6117314564Sdim  { X86::VMOVLPSZ128mr,  X86::VMOVLPDZ128mr,  X86::VMOVPQI2QIZmr  },
6118314564Sdim  { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
6119321369Sdim  { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr },
6120314564Sdim  { X86::VMOVNTPSZmr,    X86::VMOVNTPDZmr,    X86::VMOVNTDQZmr    },
6121314564Sdim  { X86::VMOVSDZmr,      X86::VMOVSDZmr,      X86::VMOVPQI2QIZmr  },
6122314564Sdim  { X86::VMOVSSZmr,      X86::VMOVSSZmr,      X86::VMOVPDI2DIZmr  },
6123314564Sdim  { X86::VMOVSDZrm,      X86::VMOVSDZrm,      X86::VMOVQI2PQIZrm  },
6124353358Sdim  { X86::VMOVSDZrm_alt,  X86::VMOVSDZrm_alt,  X86::VMOVQI2PQIZrm  },
6125314564Sdim  { X86::VMOVSSZrm,      X86::VMOVSSZrm,      X86::VMOVDI2PDIZrm  },
6126353358Sdim  { X86::VMOVSSZrm_alt,  X86::VMOVSSZrm_alt,  X86::VMOVDI2PDIZrm  },
6127314564Sdim  { X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128r, X86::VPBROADCASTDZ128r },
6128314564Sdim  { X86::VBROADCASTSSZ128m, X86::VBROADCASTSSZ128m, X86::VPBROADCASTDZ128m },
6129314564Sdim  { X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256r, X86::VPBROADCASTDZ256r },
6130314564Sdim  { X86::VBROADCASTSSZ256m, X86::VBROADCASTSSZ256m, X86::VPBROADCASTDZ256m },
6131314564Sdim  { X86::VBROADCASTSSZr,    X86::VBROADCASTSSZr,    X86::VPBROADCASTDZr },
6132314564Sdim  { X86::VBROADCASTSSZm,    X86::VBROADCASTSSZm,    X86::VPBROADCASTDZm },
6133353358Sdim  { X86::VMOVDDUPZ128rr,    X86::VMOVDDUPZ128rr,    X86::VPBROADCASTQZ128r },
6134353358Sdim  { X86::VMOVDDUPZ128rm,    X86::VMOVDDUPZ128rm,    X86::VPBROADCASTQZ128m },
6135314564Sdim  { X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256r, X86::VPBROADCASTQZ256r },
6136314564Sdim  { X86::VBROADCASTSDZ256m, X86::VBROADCASTSDZ256m, X86::VPBROADCASTQZ256m },
6137314564Sdim  { X86::VBROADCASTSDZr,    X86::VBROADCASTSDZr,    X86::VPBROADCASTQZr },
6138314564Sdim  { X86::VBROADCASTSDZm,    X86::VBROADCASTSDZm,    X86::VPBROADCASTQZm },
6139327952Sdim  { X86::VINSERTF32x4Zrr,   X86::VINSERTF32x4Zrr,   X86::VINSERTI32x4Zrr },
6140327952Sdim  { X86::VINSERTF32x4Zrm,   X86::VINSERTF32x4Zrm,   X86::VINSERTI32x4Zrm },
6141327952Sdim  { X86::VINSERTF32x8Zrr,   X86::VINSERTF32x8Zrr,   X86::VINSERTI32x8Zrr },
6142327952Sdim  { X86::VINSERTF32x8Zrm,   X86::VINSERTF32x8Zrm,   X86::VINSERTI32x8Zrm },
6143327952Sdim  { X86::VINSERTF64x2Zrr,   X86::VINSERTF64x2Zrr,   X86::VINSERTI64x2Zrr },
6144327952Sdim  { X86::VINSERTF64x2Zrm,   X86::VINSERTF64x2Zrm,   X86::VINSERTI64x2Zrm },
6145327952Sdim  { X86::VINSERTF64x4Zrr,   X86::VINSERTF64x4Zrr,   X86::VINSERTI64x4Zrr },
6146327952Sdim  { X86::VINSERTF64x4Zrm,   X86::VINSERTF64x4Zrm,   X86::VINSERTI64x4Zrm },
6147327952Sdim  { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr },
6148327952Sdim  { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm },
6149327952Sdim  { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr },
6150327952Sdim  { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm },
6151327952Sdim  { X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTI32x4Zrr },
6152327952Sdim  { X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTI32x4Zmr },
6153327952Sdim  { X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTI32x8Zrr },
6154327952Sdim  { X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTI32x8Zmr },
6155327952Sdim  { X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTI64x2Zrr },
6156327952Sdim  { X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTI64x2Zmr },
6157327952Sdim  { X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTI64x4Zrr },
6158327952Sdim  { X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTI64x4Zmr },
6159327952Sdim  { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr },
6160327952Sdim  { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr },
6161327952Sdim  { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr },
6162327952Sdim  { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr },
6163327952Sdim  { X86::VPERMILPSmi,        X86::VPERMILPSmi,        X86::VPSHUFDmi },
6164327952Sdim  { X86::VPERMILPSri,        X86::VPERMILPSri,        X86::VPSHUFDri },
6165327952Sdim  { X86::VPERMILPSZ128mi,    X86::VPERMILPSZ128mi,    X86::VPSHUFDZ128mi },
6166327952Sdim  { X86::VPERMILPSZ128ri,    X86::VPERMILPSZ128ri,    X86::VPSHUFDZ128ri },
6167327952Sdim  { X86::VPERMILPSZ256mi,    X86::VPERMILPSZ256mi,    X86::VPSHUFDZ256mi },
6168327952Sdim  { X86::VPERMILPSZ256ri,    X86::VPERMILPSZ256ri,    X86::VPSHUFDZ256ri },
6169327952Sdim  { X86::VPERMILPSZmi,       X86::VPERMILPSZmi,       X86::VPSHUFDZmi },
6170327952Sdim  { X86::VPERMILPSZri,       X86::VPERMILPSZri,       X86::VPSHUFDZri },
6171327952Sdim  { X86::VPERMPSZ256rm,      X86::VPERMPSZ256rm,      X86::VPERMDZ256rm },
6172327952Sdim  { X86::VPERMPSZ256rr,      X86::VPERMPSZ256rr,      X86::VPERMDZ256rr },
6173327952Sdim  { X86::VPERMPDZ256mi,      X86::VPERMPDZ256mi,      X86::VPERMQZ256mi },
6174327952Sdim  { X86::VPERMPDZ256ri,      X86::VPERMPDZ256ri,      X86::VPERMQZ256ri },
6175327952Sdim  { X86::VPERMPDZ256rm,      X86::VPERMPDZ256rm,      X86::VPERMQZ256rm },
6176327952Sdim  { X86::VPERMPDZ256rr,      X86::VPERMPDZ256rr,      X86::VPERMQZ256rr },
6177327952Sdim  { X86::VPERMPSZrm,         X86::VPERMPSZrm,         X86::VPERMDZrm },
6178327952Sdim  { X86::VPERMPSZrr,         X86::VPERMPSZrr,         X86::VPERMDZrr },
6179327952Sdim  { X86::VPERMPDZmi,         X86::VPERMPDZmi,         X86::VPERMQZmi },
6180327952Sdim  { X86::VPERMPDZri,         X86::VPERMPDZri,         X86::VPERMQZri },
6181327952Sdim  { X86::VPERMPDZrm,         X86::VPERMPDZrm,         X86::VPERMQZrm },
6182327952Sdim  { X86::VPERMPDZrr,         X86::VPERMPDZrr,         X86::VPERMQZrr },
6183327952Sdim  { X86::VUNPCKLPDZ256rm,    X86::VUNPCKLPDZ256rm,    X86::VPUNPCKLQDQZ256rm },
6184327952Sdim  { X86::VUNPCKLPDZ256rr,    X86::VUNPCKLPDZ256rr,    X86::VPUNPCKLQDQZ256rr },
6185327952Sdim  { X86::VUNPCKHPDZ256rm,    X86::VUNPCKHPDZ256rm,    X86::VPUNPCKHQDQZ256rm },
6186327952Sdim  { X86::VUNPCKHPDZ256rr,    X86::VUNPCKHPDZ256rr,    X86::VPUNPCKHQDQZ256rr },
6187327952Sdim  { X86::VUNPCKLPSZ256rm,    X86::VUNPCKLPSZ256rm,    X86::VPUNPCKLDQZ256rm },
6188327952Sdim  { X86::VUNPCKLPSZ256rr,    X86::VUNPCKLPSZ256rr,    X86::VPUNPCKLDQZ256rr },
6189327952Sdim  { X86::VUNPCKHPSZ256rm,    X86::VUNPCKHPSZ256rm,    X86::VPUNPCKHDQZ256rm },
6190327952Sdim  { X86::VUNPCKHPSZ256rr,    X86::VUNPCKHPSZ256rr,    X86::VPUNPCKHDQZ256rr },
6191327952Sdim  { X86::VUNPCKLPDZ128rm,    X86::VUNPCKLPDZ128rm,    X86::VPUNPCKLQDQZ128rm },
6192327952Sdim  { X86::VMOVLHPSZrr,        X86::VUNPCKLPDZ128rr,    X86::VPUNPCKLQDQZ128rr },
6193327952Sdim  { X86::VUNPCKHPDZ128rm,    X86::VUNPCKHPDZ128rm,    X86::VPUNPCKHQDQZ128rm },
6194327952Sdim  { X86::VUNPCKHPDZ128rr,    X86::VUNPCKHPDZ128rr,    X86::VPUNPCKHQDQZ128rr },
6195327952Sdim  { X86::VUNPCKLPSZ128rm,    X86::VUNPCKLPSZ128rm,    X86::VPUNPCKLDQZ128rm },
6196327952Sdim  { X86::VUNPCKLPSZ128rr,    X86::VUNPCKLPSZ128rr,    X86::VPUNPCKLDQZ128rr },
6197327952Sdim  { X86::VUNPCKHPSZ128rm,    X86::VUNPCKHPSZ128rm,    X86::VPUNPCKHDQZ128rm },
6198327952Sdim  { X86::VUNPCKHPSZ128rr,    X86::VUNPCKHPSZ128rr,    X86::VPUNPCKHDQZ128rr },
6199327952Sdim  { X86::VUNPCKLPDZrm,       X86::VUNPCKLPDZrm,       X86::VPUNPCKLQDQZrm },
6200327952Sdim  { X86::VUNPCKLPDZrr,       X86::VUNPCKLPDZrr,       X86::VPUNPCKLQDQZrr },
6201327952Sdim  { X86::VUNPCKHPDZrm,       X86::VUNPCKHPDZrm,       X86::VPUNPCKHQDQZrm },
6202327952Sdim  { X86::VUNPCKHPDZrr,       X86::VUNPCKHPDZrr,       X86::VPUNPCKHQDQZrr },
6203327952Sdim  { X86::VUNPCKLPSZrm,       X86::VUNPCKLPSZrm,       X86::VPUNPCKLDQZrm },
6204327952Sdim  { X86::VUNPCKLPSZrr,       X86::VUNPCKLPSZrr,       X86::VPUNPCKLDQZrr },
6205327952Sdim  { X86::VUNPCKHPSZrm,       X86::VUNPCKHPSZrm,       X86::VPUNPCKHDQZrm },
6206327952Sdim  { X86::VUNPCKHPSZrr,       X86::VUNPCKHPSZrr,       X86::VPUNPCKHDQZrr },
6207327952Sdim  { X86::VEXTRACTPSZmr,      X86::VEXTRACTPSZmr,      X86::VPEXTRDZmr },
6208327952Sdim  { X86::VEXTRACTPSZrr,      X86::VEXTRACTPSZrr,      X86::VPEXTRDZrr },
6209206083Srdivacky};
6210206083Srdivacky
6211234353Sdimstatic const uint16_t ReplaceableInstrsAVX2[][3] = {
6212234353Sdim  //PackedSingle       PackedDouble       PackedInt
6213234353Sdim  { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
6214234353Sdim  { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
6215234353Sdim  { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
6216234353Sdim  { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
6217234353Sdim  { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
6218234353Sdim  { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
6219234353Sdim  { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
6220234353Sdim  { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
6221234353Sdim  { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
6222276479Sdim  { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr },
6223276479Sdim  { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
6224276479Sdim  { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
6225353358Sdim  { X86::VMOVDDUPrm,     X86::VMOVDDUPrm,     X86::VPBROADCASTQrm},
6226353358Sdim  { X86::VMOVDDUPrr,     X86::VMOVDDUPrr,     X86::VPBROADCASTQrr},
6227276479Sdim  { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
6228276479Sdim  { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
6229276479Sdim  { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
6230314564Sdim  { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm},
6231314564Sdim  { X86::VBROADCASTF128,  X86::VBROADCASTF128,  X86::VBROADCASTI128 },
6232327952Sdim  { X86::VBLENDPSYrri,    X86::VBLENDPSYrri,    X86::VPBLENDDYrri },
6233327952Sdim  { X86::VBLENDPSYrmi,    X86::VBLENDPSYrmi,    X86::VPBLENDDYrmi },
6234327952Sdim  { X86::VPERMILPSYmi,    X86::VPERMILPSYmi,    X86::VPSHUFDYmi },
6235327952Sdim  { X86::VPERMILPSYri,    X86::VPERMILPSYri,    X86::VPSHUFDYri },
6236327952Sdim  { X86::VUNPCKLPDYrm,    X86::VUNPCKLPDYrm,    X86::VPUNPCKLQDQYrm },
6237327952Sdim  { X86::VUNPCKLPDYrr,    X86::VUNPCKLPDYrr,    X86::VPUNPCKLQDQYrr },
6238327952Sdim  { X86::VUNPCKHPDYrm,    X86::VUNPCKHPDYrm,    X86::VPUNPCKHQDQYrm },
6239327952Sdim  { X86::VUNPCKHPDYrr,    X86::VUNPCKHPDYrr,    X86::VPUNPCKHQDQYrr },
6240327952Sdim  { X86::VUNPCKLPSYrm,    X86::VUNPCKLPSYrm,    X86::VPUNPCKLDQYrm },
6241327952Sdim  { X86::VUNPCKLPSYrr,    X86::VUNPCKLPSYrr,    X86::VPUNPCKLDQYrr },
6242327952Sdim  { X86::VUNPCKHPSYrm,    X86::VUNPCKHPSYrm,    X86::VPUNPCKHDQYrm },
6243327952Sdim  { X86::VUNPCKHPSYrr,    X86::VUNPCKHPSYrr,    X86::VPUNPCKHDQYrr },
6244234353Sdim};
6245234353Sdim
6246353358Sdimstatic const uint16_t ReplaceableInstrsFP[][3] = {
6247353358Sdim  //PackedSingle         PackedDouble
6248353358Sdim  { X86::MOVLPSrm,       X86::MOVLPDrm,      X86::INSTRUCTION_LIST_END },
6249353358Sdim  { X86::MOVHPSrm,       X86::MOVHPDrm,      X86::INSTRUCTION_LIST_END },
6250353358Sdim  { X86::MOVHPSmr,       X86::MOVHPDmr,      X86::INSTRUCTION_LIST_END },
6251353358Sdim  { X86::VMOVLPSrm,      X86::VMOVLPDrm,     X86::INSTRUCTION_LIST_END },
6252353358Sdim  { X86::VMOVHPSrm,      X86::VMOVHPDrm,     X86::INSTRUCTION_LIST_END },
6253353358Sdim  { X86::VMOVHPSmr,      X86::VMOVHPDmr,     X86::INSTRUCTION_LIST_END },
6254353358Sdim  { X86::VMOVLPSZ128rm,  X86::VMOVLPDZ128rm, X86::INSTRUCTION_LIST_END },
6255353358Sdim  { X86::VMOVHPSZ128rm,  X86::VMOVHPDZ128rm, X86::INSTRUCTION_LIST_END },
6256353358Sdim  { X86::VMOVHPSZ128mr,  X86::VMOVHPDZ128mr, X86::INSTRUCTION_LIST_END },
6257353358Sdim};
6258353358Sdim
6259321369Sdimstatic const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = {
6260321369Sdim  //PackedSingle       PackedDouble       PackedInt
6261321369Sdim  { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
6262321369Sdim  { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
6263321369Sdim  { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
6264321369Sdim  { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
6265321369Sdim};
6266321369Sdim
6267314564Sdimstatic const uint16_t ReplaceableInstrsAVX512[][4] = {
6268314564Sdim  // Two integer columns for 64-bit and 32-bit elements.
6269314564Sdim  //PackedSingle        PackedDouble        PackedInt             PackedInt
6270314564Sdim  { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr  },
6271314564Sdim  { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm  },
6272314564Sdim  { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr  },
6273314564Sdim  { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr  },
6274314564Sdim  { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm  },
6275314564Sdim  { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr  },
6276314564Sdim  { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm  },
6277314564Sdim  { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr  },
6278314564Sdim  { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr  },
6279314564Sdim  { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm  },
6280314564Sdim  { X86::VMOVAPSZmr,    X86::VMOVAPDZmr,    X86::VMOVDQA64Zmr,    X86::VMOVDQA32Zmr     },
6281314564Sdim  { X86::VMOVAPSZrm,    X86::VMOVAPDZrm,    X86::VMOVDQA64Zrm,    X86::VMOVDQA32Zrm     },
6282314564Sdim  { X86::VMOVAPSZrr,    X86::VMOVAPDZrr,    X86::VMOVDQA64Zrr,    X86::VMOVDQA32Zrr     },
6283314564Sdim  { X86::VMOVUPSZmr,    X86::VMOVUPDZmr,    X86::VMOVDQU64Zmr,    X86::VMOVDQU32Zmr     },
6284314564Sdim  { X86::VMOVUPSZrm,    X86::VMOVUPDZrm,    X86::VMOVDQU64Zrm,    X86::VMOVDQU32Zrm     },
6285314564Sdim};
6286314564Sdim
6287314564Sdimstatic const uint16_t ReplaceableInstrsAVX512DQ[][4] = {
6288314564Sdim  // Two integer columns for 64-bit and 32-bit elements.
6289314564Sdim  //PackedSingle        PackedDouble        PackedInt           PackedInt
6290314564Sdim  { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
6291314564Sdim  { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
6292314564Sdim  { X86::VANDPSZ128rm,  X86::VANDPDZ128rm,  X86::VPANDQZ128rm,  X86::VPANDDZ128rm  },
6293314564Sdim  { X86::VANDPSZ128rr,  X86::VANDPDZ128rr,  X86::VPANDQZ128rr,  X86::VPANDDZ128rr  },
6294314564Sdim  { X86::VORPSZ128rm,   X86::VORPDZ128rm,   X86::VPORQZ128rm,   X86::VPORDZ128rm   },
6295314564Sdim  { X86::VORPSZ128rr,   X86::VORPDZ128rr,   X86::VPORQZ128rr,   X86::VPORDZ128rr   },
6296314564Sdim  { X86::VXORPSZ128rm,  X86::VXORPDZ128rm,  X86::VPXORQZ128rm,  X86::VPXORDZ128rm  },
6297314564Sdim  { X86::VXORPSZ128rr,  X86::VXORPDZ128rr,  X86::VPXORQZ128rr,  X86::VPXORDZ128rr  },
6298314564Sdim  { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
6299314564Sdim  { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
6300314564Sdim  { X86::VANDPSZ256rm,  X86::VANDPDZ256rm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  },
6301314564Sdim  { X86::VANDPSZ256rr,  X86::VANDPDZ256rr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  },
6302314564Sdim  { X86::VORPSZ256rm,   X86::VORPDZ256rm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   },
6303314564Sdim  { X86::VORPSZ256rr,   X86::VORPDZ256rr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   },
6304314564Sdim  { X86::VXORPSZ256rm,  X86::VXORPDZ256rm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  },
6305314564Sdim  { X86::VXORPSZ256rr,  X86::VXORPDZ256rr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  },
6306314564Sdim  { X86::VANDNPSZrm,    X86::VANDNPDZrm,    X86::VPANDNQZrm,    X86::VPANDNDZrm    },
6307314564Sdim  { X86::VANDNPSZrr,    X86::VANDNPDZrr,    X86::VPANDNQZrr,    X86::VPANDNDZrr    },
6308314564Sdim  { X86::VANDPSZrm,     X86::VANDPDZrm,     X86::VPANDQZrm,     X86::VPANDDZrm     },
6309314564Sdim  { X86::VANDPSZrr,     X86::VANDPDZrr,     X86::VPANDQZrr,     X86::VPANDDZrr     },
6310314564Sdim  { X86::VORPSZrm,      X86::VORPDZrm,      X86::VPORQZrm,      X86::VPORDZrm      },
6311314564Sdim  { X86::VORPSZrr,      X86::VORPDZrr,      X86::VPORQZrr,      X86::VPORDZrr      },
6312314564Sdim  { X86::VXORPSZrm,     X86::VXORPDZrm,     X86::VPXORQZrm,     X86::VPXORDZrm     },
6313314564Sdim  { X86::VXORPSZrr,     X86::VXORPDZrr,     X86::VPXORQZrr,     X86::VPXORDZrr     },
6314314564Sdim};
6315314564Sdim
6316314564Sdimstatic const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = {
6317314564Sdim  // Two integer columns for 64-bit and 32-bit elements.
6318314564Sdim  //PackedSingle          PackedDouble
6319314564Sdim  //PackedInt             PackedInt
6320314564Sdim  { X86::VANDNPSZ128rmk,  X86::VANDNPDZ128rmk,
6321314564Sdim    X86::VPANDNQZ128rmk,  X86::VPANDNDZ128rmk  },
6322314564Sdim  { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz,
6323314564Sdim    X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz },
6324314564Sdim  { X86::VANDNPSZ128rrk,  X86::VANDNPDZ128rrk,
6325314564Sdim    X86::VPANDNQZ128rrk,  X86::VPANDNDZ128rrk  },
6326314564Sdim  { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz,
6327314564Sdim    X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz },
6328314564Sdim  { X86::VANDPSZ128rmk,   X86::VANDPDZ128rmk,
6329314564Sdim    X86::VPANDQZ128rmk,   X86::VPANDDZ128rmk   },
6330314564Sdim  { X86::VANDPSZ128rmkz,  X86::VANDPDZ128rmkz,
6331314564Sdim    X86::VPANDQZ128rmkz,  X86::VPANDDZ128rmkz  },
6332314564Sdim  { X86::VANDPSZ128rrk,   X86::VANDPDZ128rrk,
6333314564Sdim    X86::VPANDQZ128rrk,   X86::VPANDDZ128rrk   },
6334314564Sdim  { X86::VANDPSZ128rrkz,  X86::VANDPDZ128rrkz,
6335314564Sdim    X86::VPANDQZ128rrkz,  X86::VPANDDZ128rrkz  },
6336314564Sdim  { X86::VORPSZ128rmk,    X86::VORPDZ128rmk,
6337314564Sdim    X86::VPORQZ128rmk,    X86::VPORDZ128rmk    },
6338314564Sdim  { X86::VORPSZ128rmkz,   X86::VORPDZ128rmkz,
6339314564Sdim    X86::VPORQZ128rmkz,   X86::VPORDZ128rmkz   },
6340314564Sdim  { X86::VORPSZ128rrk,    X86::VORPDZ128rrk,
6341314564Sdim    X86::VPORQZ128rrk,    X86::VPORDZ128rrk    },
6342314564Sdim  { X86::VORPSZ128rrkz,   X86::VORPDZ128rrkz,
6343314564Sdim    X86::VPORQZ128rrkz,   X86::VPORDZ128rrkz   },
6344314564Sdim  { X86::VXORPSZ128rmk,   X86::VXORPDZ128rmk,
6345314564Sdim    X86::VPXORQZ128rmk,   X86::VPXORDZ128rmk   },
6346314564Sdim  { X86::VXORPSZ128rmkz,  X86::VXORPDZ128rmkz,
6347314564Sdim    X86::VPXORQZ128rmkz,  X86::VPXORDZ128rmkz  },
6348314564Sdim  { X86::VXORPSZ128rrk,   X86::VXORPDZ128rrk,
6349314564Sdim    X86::VPXORQZ128rrk,   X86::VPXORDZ128rrk   },
6350314564Sdim  { X86::VXORPSZ128rrkz,  X86::VXORPDZ128rrkz,
6351314564Sdim    X86::VPXORQZ128rrkz,  X86::VPXORDZ128rrkz  },
6352314564Sdim  { X86::VANDNPSZ256rmk,  X86::VANDNPDZ256rmk,
6353314564Sdim    X86::VPANDNQZ256rmk,  X86::VPANDNDZ256rmk  },
6354314564Sdim  { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz,
6355314564Sdim    X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz },
6356314564Sdim  { X86::VANDNPSZ256rrk,  X86::VANDNPDZ256rrk,
6357314564Sdim    X86::VPANDNQZ256rrk,  X86::VPANDNDZ256rrk  },
6358314564Sdim  { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz,
6359314564Sdim    X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz },
6360314564Sdim  { X86::VANDPSZ256rmk,   X86::VANDPDZ256rmk,
6361314564Sdim    X86::VPANDQZ256rmk,   X86::VPANDDZ256rmk   },
6362314564Sdim  { X86::VANDPSZ256rmkz,  X86::VANDPDZ256rmkz,
6363314564Sdim    X86::VPANDQZ256rmkz,  X86::VPANDDZ256rmkz  },
6364314564Sdim  { X86::VANDPSZ256rrk,   X86::VANDPDZ256rrk,
6365314564Sdim    X86::VPANDQZ256rrk,   X86::VPANDDZ256rrk   },
6366314564Sdim  { X86::VANDPSZ256rrkz,  X86::VANDPDZ256rrkz,
6367314564Sdim    X86::VPANDQZ256rrkz,  X86::VPANDDZ256rrkz  },
6368314564Sdim  { X86::VORPSZ256rmk,    X86::VORPDZ256rmk,
6369314564Sdim    X86::VPORQZ256rmk,    X86::VPORDZ256rmk    },
6370314564Sdim  { X86::VORPSZ256rmkz,   X86::VORPDZ256rmkz,
6371314564Sdim    X86::VPORQZ256rmkz,   X86::VPORDZ256rmkz   },
6372314564Sdim  { X86::VORPSZ256rrk,    X86::VORPDZ256rrk,
6373314564Sdim    X86::VPORQZ256rrk,    X86::VPORDZ256rrk    },
6374314564Sdim  { X86::VORPSZ256rrkz,   X86::VORPDZ256rrkz,
6375314564Sdim    X86::VPORQZ256rrkz,   X86::VPORDZ256rrkz   },
6376314564Sdim  { X86::VXORPSZ256rmk,   X86::VXORPDZ256rmk,
6377314564Sdim    X86::VPXORQZ256rmk,   X86::VPXORDZ256rmk   },
6378314564Sdim  { X86::VXORPSZ256rmkz,  X86::VXORPDZ256rmkz,
6379314564Sdim    X86::VPXORQZ256rmkz,  X86::VPXORDZ256rmkz  },
6380314564Sdim  { X86::VXORPSZ256rrk,   X86::VXORPDZ256rrk,
6381314564Sdim    X86::VPXORQZ256rrk,   X86::VPXORDZ256rrk   },
6382314564Sdim  { X86::VXORPSZ256rrkz,  X86::VXORPDZ256rrkz,
6383314564Sdim    X86::VPXORQZ256rrkz,  X86::VPXORDZ256rrkz  },
6384314564Sdim  { X86::VANDNPSZrmk,     X86::VANDNPDZrmk,
6385314564Sdim    X86::VPANDNQZrmk,     X86::VPANDNDZrmk     },
6386314564Sdim  { X86::VANDNPSZrmkz,    X86::VANDNPDZrmkz,
6387314564Sdim    X86::VPANDNQZrmkz,    X86::VPANDNDZrmkz    },
6388314564Sdim  { X86::VANDNPSZrrk,     X86::VANDNPDZrrk,
6389314564Sdim    X86::VPANDNQZrrk,     X86::VPANDNDZrrk     },
6390314564Sdim  { X86::VANDNPSZrrkz,    X86::VANDNPDZrrkz,
6391314564Sdim    X86::VPANDNQZrrkz,    X86::VPANDNDZrrkz    },
6392314564Sdim  { X86::VANDPSZrmk,      X86::VANDPDZrmk,
6393314564Sdim    X86::VPANDQZrmk,      X86::VPANDDZrmk      },
6394314564Sdim  { X86::VANDPSZrmkz,     X86::VANDPDZrmkz,
6395314564Sdim    X86::VPANDQZrmkz,     X86::VPANDDZrmkz     },
6396314564Sdim  { X86::VANDPSZrrk,      X86::VANDPDZrrk,
6397314564Sdim    X86::VPANDQZrrk,      X86::VPANDDZrrk      },
6398314564Sdim  { X86::VANDPSZrrkz,     X86::VANDPDZrrkz,
6399314564Sdim    X86::VPANDQZrrkz,     X86::VPANDDZrrkz     },
6400314564Sdim  { X86::VORPSZrmk,       X86::VORPDZrmk,
6401314564Sdim    X86::VPORQZrmk,       X86::VPORDZrmk       },
6402314564Sdim  { X86::VORPSZrmkz,      X86::VORPDZrmkz,
6403314564Sdim    X86::VPORQZrmkz,      X86::VPORDZrmkz      },
6404314564Sdim  { X86::VORPSZrrk,       X86::VORPDZrrk,
6405314564Sdim    X86::VPORQZrrk,       X86::VPORDZrrk       },
6406314564Sdim  { X86::VORPSZrrkz,      X86::VORPDZrrkz,
6407314564Sdim    X86::VPORQZrrkz,      X86::VPORDZrrkz      },
6408314564Sdim  { X86::VXORPSZrmk,      X86::VXORPDZrmk,
6409314564Sdim    X86::VPXORQZrmk,      X86::VPXORDZrmk      },
6410314564Sdim  { X86::VXORPSZrmkz,     X86::VXORPDZrmkz,
6411314564Sdim    X86::VPXORQZrmkz,     X86::VPXORDZrmkz     },
6412314564Sdim  { X86::VXORPSZrrk,      X86::VXORPDZrrk,
6413314564Sdim    X86::VPXORQZrrk,      X86::VPXORDZrrk      },
6414314564Sdim  { X86::VXORPSZrrkz,     X86::VXORPDZrrkz,
6415314564Sdim    X86::VPXORQZrrkz,     X86::VPXORDZrrkz     },
6416314564Sdim  // Broadcast loads can be handled the same as masked operations to avoid
6417314564Sdim  // changing element size.
6418314564Sdim  { X86::VANDNPSZ128rmb,  X86::VANDNPDZ128rmb,
6419314564Sdim    X86::VPANDNQZ128rmb,  X86::VPANDNDZ128rmb  },
6420314564Sdim  { X86::VANDPSZ128rmb,   X86::VANDPDZ128rmb,
6421314564Sdim    X86::VPANDQZ128rmb,   X86::VPANDDZ128rmb   },
6422314564Sdim  { X86::VORPSZ128rmb,    X86::VORPDZ128rmb,
6423314564Sdim    X86::VPORQZ128rmb,    X86::VPORDZ128rmb    },
6424314564Sdim  { X86::VXORPSZ128rmb,   X86::VXORPDZ128rmb,
6425314564Sdim    X86::VPXORQZ128rmb,   X86::VPXORDZ128rmb   },
6426314564Sdim  { X86::VANDNPSZ256rmb,  X86::VANDNPDZ256rmb,
6427314564Sdim    X86::VPANDNQZ256rmb,  X86::VPANDNDZ256rmb  },
6428314564Sdim  { X86::VANDPSZ256rmb,   X86::VANDPDZ256rmb,
6429314564Sdim    X86::VPANDQZ256rmb,   X86::VPANDDZ256rmb   },
6430314564Sdim  { X86::VORPSZ256rmb,    X86::VORPDZ256rmb,
6431314564Sdim    X86::VPORQZ256rmb,    X86::VPORDZ256rmb    },
6432314564Sdim  { X86::VXORPSZ256rmb,   X86::VXORPDZ256rmb,
6433314564Sdim    X86::VPXORQZ256rmb,   X86::VPXORDZ256rmb   },
6434314564Sdim  { X86::VANDNPSZrmb,     X86::VANDNPDZrmb,
6435314564Sdim    X86::VPANDNQZrmb,     X86::VPANDNDZrmb     },
6436314564Sdim  { X86::VANDPSZrmb,      X86::VANDPDZrmb,
6437314564Sdim    X86::VPANDQZrmb,      X86::VPANDDZrmb      },
6438314564Sdim  { X86::VANDPSZrmb,      X86::VANDPDZrmb,
6439314564Sdim    X86::VPANDQZrmb,      X86::VPANDDZrmb      },
6440314564Sdim  { X86::VORPSZrmb,       X86::VORPDZrmb,
6441314564Sdim    X86::VPORQZrmb,       X86::VPORDZrmb       },
6442314564Sdim  { X86::VXORPSZrmb,      X86::VXORPDZrmb,
6443314564Sdim    X86::VPXORQZrmb,      X86::VPXORDZrmb      },
6444314564Sdim  { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk,
6445314564Sdim    X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk },
6446314564Sdim  { X86::VANDPSZ128rmbk,  X86::VANDPDZ128rmbk,
6447314564Sdim    X86::VPANDQZ128rmbk,  X86::VPANDDZ128rmbk  },
6448314564Sdim  { X86::VORPSZ128rmbk,   X86::VORPDZ128rmbk,
6449314564Sdim    X86::VPORQZ128rmbk,   X86::VPORDZ128rmbk   },
6450314564Sdim  { X86::VXORPSZ128rmbk,  X86::VXORPDZ128rmbk,
6451314564Sdim    X86::VPXORQZ128rmbk,  X86::VPXORDZ128rmbk  },
6452314564Sdim  { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk,
6453314564Sdim    X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk },
6454314564Sdim  { X86::VANDPSZ256rmbk,  X86::VANDPDZ256rmbk,
6455314564Sdim    X86::VPANDQZ256rmbk,  X86::VPANDDZ256rmbk  },
6456314564Sdim  { X86::VORPSZ256rmbk,   X86::VORPDZ256rmbk,
6457314564Sdim    X86::VPORQZ256rmbk,   X86::VPORDZ256rmbk   },
6458314564Sdim  { X86::VXORPSZ256rmbk,  X86::VXORPDZ256rmbk,
6459314564Sdim    X86::VPXORQZ256rmbk,  X86::VPXORDZ256rmbk  },
6460314564Sdim  { X86::VANDNPSZrmbk,    X86::VANDNPDZrmbk,
6461314564Sdim    X86::VPANDNQZrmbk,    X86::VPANDNDZrmbk    },
6462314564Sdim  { X86::VANDPSZrmbk,     X86::VANDPDZrmbk,
6463314564Sdim    X86::VPANDQZrmbk,     X86::VPANDDZrmbk     },
6464314564Sdim  { X86::VANDPSZrmbk,     X86::VANDPDZrmbk,
6465314564Sdim    X86::VPANDQZrmbk,     X86::VPANDDZrmbk     },
6466314564Sdim  { X86::VORPSZrmbk,      X86::VORPDZrmbk,
6467314564Sdim    X86::VPORQZrmbk,      X86::VPORDZrmbk      },
6468314564Sdim  { X86::VXORPSZrmbk,     X86::VXORPDZrmbk,
6469314564Sdim    X86::VPXORQZrmbk,     X86::VPXORDZrmbk     },
6470314564Sdim  { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz,
6471314564Sdim    X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz},
6472314564Sdim  { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz,
6473314564Sdim    X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz },
6474314564Sdim  { X86::VORPSZ128rmbkz,  X86::VORPDZ128rmbkz,
6475314564Sdim    X86::VPORQZ128rmbkz,  X86::VPORDZ128rmbkz  },
6476314564Sdim  { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz,
6477314564Sdim    X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz },
6478314564Sdim  { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz,
6479314564Sdim    X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz},
6480314564Sdim  { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz,
6481314564Sdim    X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz },
6482314564Sdim  { X86::VORPSZ256rmbkz,  X86::VORPDZ256rmbkz,
6483314564Sdim    X86::VPORQZ256rmbkz,  X86::VPORDZ256rmbkz  },
6484314564Sdim  { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz,
6485314564Sdim    X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz },
6486314564Sdim  { X86::VANDNPSZrmbkz,   X86::VANDNPDZrmbkz,
6487314564Sdim    X86::VPANDNQZrmbkz,   X86::VPANDNDZrmbkz   },
6488314564Sdim  { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz,
6489314564Sdim    X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    },
6490314564Sdim  { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz,
6491314564Sdim    X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    },
6492314564Sdim  { X86::VORPSZrmbkz,     X86::VORPDZrmbkz,
6493314564Sdim    X86::VPORQZrmbkz,     X86::VPORDZrmbkz     },
6494314564Sdim  { X86::VXORPSZrmbkz,    X86::VXORPDZrmbkz,
6495314564Sdim    X86::VPXORQZrmbkz,    X86::VPXORDZrmbkz    },
6496314564Sdim};
6497314564Sdim
6498341825Sdim// NOTE: These should only be used by the custom domain methods.
6499353358Sdimstatic const uint16_t ReplaceableBlendInstrs[][3] = {
6500341825Sdim  //PackedSingle             PackedDouble             PackedInt
6501341825Sdim  { X86::BLENDPSrmi,         X86::BLENDPDrmi,         X86::PBLENDWrmi   },
6502341825Sdim  { X86::BLENDPSrri,         X86::BLENDPDrri,         X86::PBLENDWrri   },
6503341825Sdim  { X86::VBLENDPSrmi,        X86::VBLENDPDrmi,        X86::VPBLENDWrmi  },
6504341825Sdim  { X86::VBLENDPSrri,        X86::VBLENDPDrri,        X86::VPBLENDWrri  },
6505341825Sdim  { X86::VBLENDPSYrmi,       X86::VBLENDPDYrmi,       X86::VPBLENDWYrmi },
6506341825Sdim  { X86::VBLENDPSYrri,       X86::VBLENDPDYrri,       X86::VPBLENDWYrri },
6507341825Sdim};
6508353358Sdimstatic const uint16_t ReplaceableBlendAVX2Instrs[][3] = {
6509341825Sdim  //PackedSingle             PackedDouble             PackedInt
6510341825Sdim  { X86::VBLENDPSrmi,        X86::VBLENDPDrmi,        X86::VPBLENDDrmi  },
6511341825Sdim  { X86::VBLENDPSrri,        X86::VBLENDPDrri,        X86::VPBLENDDrri  },
6512341825Sdim  { X86::VBLENDPSYrmi,       X86::VBLENDPDYrmi,       X86::VPBLENDDYrmi },
6513341825Sdim  { X86::VBLENDPSYrri,       X86::VBLENDPDYrri,       X86::VPBLENDDYrri },
6514341825Sdim};
6515341825Sdim
6516341825Sdim// Special table for changing EVEX logic instructions to VEX.
6517341825Sdim// TODO: Should we run EVEX->VEX earlier?
6518341825Sdimstatic const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = {
6519341825Sdim  // Two integer columns for 64-bit and 32-bit elements.
6520341825Sdim  //PackedSingle     PackedDouble     PackedInt           PackedInt
6521341825Sdim  { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
6522341825Sdim  { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
6523341825Sdim  { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDQZ128rm,  X86::VPANDDZ128rm  },
6524341825Sdim  { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDQZ128rr,  X86::VPANDDZ128rr  },
6525341825Sdim  { X86::VORPSrm,    X86::VORPDrm,    X86::VPORQZ128rm,   X86::VPORDZ128rm   },
6526341825Sdim  { X86::VORPSrr,    X86::VORPDrr,    X86::VPORQZ128rr,   X86::VPORDZ128rr   },
6527341825Sdim  { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORQZ128rm,  X86::VPXORDZ128rm  },
6528341825Sdim  { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORQZ128rr,  X86::VPXORDZ128rr  },
6529341825Sdim  { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
6530341825Sdim  { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
6531341825Sdim  { X86::VANDPSYrm,  X86::VANDPDYrm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  },
6532341825Sdim  { X86::VANDPSYrr,  X86::VANDPDYrr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  },
6533341825Sdim  { X86::VORPSYrm,   X86::VORPDYrm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   },
6534341825Sdim  { X86::VORPSYrr,   X86::VORPDYrr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   },
6535341825Sdim  { X86::VXORPSYrm,  X86::VXORPDYrm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  },
6536341825Sdim  { X86::VXORPSYrr,  X86::VXORPDYrr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  },
6537341825Sdim};
6538341825Sdim
6539206083Srdivacky// FIXME: Some shuffle and unpack instructions have equivalents in different
6540206083Srdivacky// domains, but they require a bit more work than just switching opcodes.
6541206083Srdivacky
6542314564Sdimstatic const uint16_t *lookup(unsigned opcode, unsigned domain,
6543314564Sdim                              ArrayRef<uint16_t[3]> Table) {
6544314564Sdim  for (const uint16_t (&Row)[3] : Table)
6545296417Sdim    if (Row[domain-1] == opcode)
6546296417Sdim      return Row;
6547276479Sdim  return nullptr;
6548206083Srdivacky}
6549206083Srdivacky
6550314564Sdimstatic const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
6551314564Sdim                                    ArrayRef<uint16_t[4]> Table) {
6552314564Sdim  // If this is the integer domain make sure to check both integer columns.
6553314564Sdim  for (const uint16_t (&Row)[4] : Table)
6554314564Sdim    if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode))
6555296417Sdim      return Row;
6556276479Sdim  return nullptr;
6557234353Sdim}
6558234353Sdim
6559341825Sdim// Helper to attempt to widen/narrow blend masks.
6560341825Sdimstatic bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
6561341825Sdim                            unsigned NewWidth, unsigned *pNewMask = nullptr) {
6562341825Sdim  assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
6563341825Sdim         "Illegal blend mask scale");
6564341825Sdim  unsigned NewMask = 0;
6565341825Sdim
6566341825Sdim  if ((OldWidth % NewWidth) == 0) {
6567341825Sdim    unsigned Scale = OldWidth / NewWidth;
6568341825Sdim    unsigned SubMask = (1u << Scale) - 1;
6569341825Sdim    for (unsigned i = 0; i != NewWidth; ++i) {
6570341825Sdim      unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
6571341825Sdim      if (Sub == SubMask)
6572341825Sdim        NewMask |= (1u << i);
6573341825Sdim      else if (Sub != 0x0)
6574341825Sdim        return false;
6575341825Sdim    }
6576341825Sdim  } else {
6577341825Sdim    unsigned Scale = NewWidth / OldWidth;
6578341825Sdim    unsigned SubMask = (1u << Scale) - 1;
6579341825Sdim    for (unsigned i = 0; i != OldWidth; ++i) {
6580341825Sdim      if (OldMask & (1 << i)) {
6581341825Sdim        NewMask |= (SubMask << (i * Scale));
6582341825Sdim      }
6583341825Sdim    }
6584341825Sdim  }
6585341825Sdim
6586341825Sdim  if (pNewMask)
6587341825Sdim    *pNewMask = NewMask;
6588341825Sdim  return true;
6589341825Sdim}
6590341825Sdim
6591341825Sdimuint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
6592341825Sdim  unsigned Opcode = MI.getOpcode();
6593341825Sdim  unsigned NumOperands = MI.getDesc().getNumOperands();
6594341825Sdim
6595341825Sdim  auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
6596341825Sdim    uint16_t validDomains = 0;
6597341825Sdim    if (MI.getOperand(NumOperands - 1).isImm()) {
6598341825Sdim      unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
6599341825Sdim      if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
6600341825Sdim        validDomains |= 0x2; // PackedSingle
6601341825Sdim      if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
6602341825Sdim        validDomains |= 0x4; // PackedDouble
6603341825Sdim      if (!Is256 || Subtarget.hasAVX2())
6604341825Sdim        validDomains |= 0x8; // PackedInt
6605341825Sdim    }
6606341825Sdim    return validDomains;
6607341825Sdim  };
6608341825Sdim
6609341825Sdim  switch (Opcode) {
6610341825Sdim  case X86::BLENDPDrmi:
6611341825Sdim  case X86::BLENDPDrri:
6612341825Sdim  case X86::VBLENDPDrmi:
6613341825Sdim  case X86::VBLENDPDrri:
6614341825Sdim    return GetBlendDomains(2, false);
6615341825Sdim  case X86::VBLENDPDYrmi:
6616341825Sdim  case X86::VBLENDPDYrri:
6617341825Sdim    return GetBlendDomains(4, true);
6618341825Sdim  case X86::BLENDPSrmi:
6619341825Sdim  case X86::BLENDPSrri:
6620341825Sdim  case X86::VBLENDPSrmi:
6621341825Sdim  case X86::VBLENDPSrri:
6622341825Sdim  case X86::VPBLENDDrmi:
6623341825Sdim  case X86::VPBLENDDrri:
6624341825Sdim    return GetBlendDomains(4, false);
6625341825Sdim  case X86::VBLENDPSYrmi:
6626341825Sdim  case X86::VBLENDPSYrri:
6627341825Sdim  case X86::VPBLENDDYrmi:
6628341825Sdim  case X86::VPBLENDDYrri:
6629341825Sdim    return GetBlendDomains(8, true);
6630341825Sdim  case X86::PBLENDWrmi:
6631341825Sdim  case X86::PBLENDWrri:
6632341825Sdim  case X86::VPBLENDWrmi:
6633341825Sdim  case X86::VPBLENDWrri:
6634341825Sdim  // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
6635341825Sdim  case X86::VPBLENDWYrmi:
6636341825Sdim  case X86::VPBLENDWYrri:
6637341825Sdim    return GetBlendDomains(8, false);
6638341825Sdim  case X86::VPANDDZ128rr:  case X86::VPANDDZ128rm:
6639341825Sdim  case X86::VPANDDZ256rr:  case X86::VPANDDZ256rm:
6640341825Sdim  case X86::VPANDQZ128rr:  case X86::VPANDQZ128rm:
6641341825Sdim  case X86::VPANDQZ256rr:  case X86::VPANDQZ256rm:
6642341825Sdim  case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
6643341825Sdim  case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
6644341825Sdim  case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
6645341825Sdim  case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
6646341825Sdim  case X86::VPORDZ128rr:   case X86::VPORDZ128rm:
6647341825Sdim  case X86::VPORDZ256rr:   case X86::VPORDZ256rm:
6648341825Sdim  case X86::VPORQZ128rr:   case X86::VPORQZ128rm:
6649341825Sdim  case X86::VPORQZ256rr:   case X86::VPORQZ256rm:
6650341825Sdim  case X86::VPXORDZ128rr:  case X86::VPXORDZ128rm:
6651341825Sdim  case X86::VPXORDZ256rr:  case X86::VPXORDZ256rm:
6652341825Sdim  case X86::VPXORQZ128rr:  case X86::VPXORQZ128rm:
6653341825Sdim  case X86::VPXORQZ256rr:  case X86::VPXORQZ256rm:
6654341825Sdim    // If we don't have DQI see if we can still switch from an EVEX integer
6655341825Sdim    // instruction to a VEX floating point instruction.
6656341825Sdim    if (Subtarget.hasDQI())
6657341825Sdim      return 0;
6658341825Sdim
6659341825Sdim    if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
6660341825Sdim      return 0;
6661341825Sdim    if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
6662341825Sdim      return 0;
6663341825Sdim    // Register forms will have 3 operands. Memory form will have more.
6664341825Sdim    if (NumOperands == 3 &&
6665341825Sdim        RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
6666341825Sdim      return 0;
6667341825Sdim
6668341825Sdim    // All domains are valid.
6669341825Sdim    return 0xe;
6670344779Sdim  case X86::MOVHLPSrr:
6671344779Sdim    // We can swap domains when both inputs are the same register.
6672344779Sdim    // FIXME: This doesn't catch all the cases we would like. If the input
6673344779Sdim    // register isn't KILLed by the instruction, the two address instruction
6674344779Sdim    // pass puts a COPY on one input. The other input uses the original
6675344779Sdim    // register. This prevents the same physical register from being used by
6676344779Sdim    // both inputs.
6677344779Sdim    if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
6678344779Sdim        MI.getOperand(0).getSubReg() == 0 &&
6679344779Sdim        MI.getOperand(1).getSubReg() == 0 &&
6680344779Sdim        MI.getOperand(2).getSubReg() == 0)
6681344779Sdim      return 0x6;
6682344779Sdim    return 0;
6683353358Sdim  case X86::SHUFPDrri:
6684353358Sdim    return 0x6;
6685341825Sdim  }
6686341825Sdim  return 0;
6687341825Sdim}
6688341825Sdim
6689341825Sdimbool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
6690341825Sdim                                            unsigned Domain) const {
6691341825Sdim  assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
6692341825Sdim  uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6693341825Sdim  assert(dom && "Not an SSE instruction");
6694341825Sdim
6695341825Sdim  unsigned Opcode = MI.getOpcode();
6696341825Sdim  unsigned NumOperands = MI.getDesc().getNumOperands();
6697341825Sdim
6698341825Sdim  auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
6699341825Sdim    if (MI.getOperand(NumOperands - 1).isImm()) {
6700341825Sdim      unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
6701341825Sdim      Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
6702341825Sdim      unsigned NewImm = Imm;
6703341825Sdim
6704353358Sdim      const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs);
6705341825Sdim      if (!table)
6706353358Sdim        table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
6707341825Sdim
6708341825Sdim      if (Domain == 1) { // PackedSingle
6709341825Sdim        AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
6710341825Sdim      } else if (Domain == 2) { // PackedDouble
6711341825Sdim        AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
6712341825Sdim      } else if (Domain == 3) { // PackedInt
6713341825Sdim        if (Subtarget.hasAVX2()) {
6714341825Sdim          // If we are already VPBLENDW use that, else use VPBLENDD.
6715341825Sdim          if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
6716353358Sdim            table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
6717341825Sdim            AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
6718341825Sdim          }
6719341825Sdim        } else {
6720341825Sdim          assert(!Is256 && "128-bit vector expected");
6721341825Sdim          AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
6722341825Sdim        }
6723341825Sdim      }
6724341825Sdim
6725341825Sdim      assert(table && table[Domain - 1] && "Unknown domain op");
6726341825Sdim      MI.setDesc(get(table[Domain - 1]));
6727341825Sdim      MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
6728341825Sdim    }
6729341825Sdim    return true;
6730341825Sdim  };
6731341825Sdim
6732341825Sdim  switch (Opcode) {
6733341825Sdim  case X86::BLENDPDrmi:
6734341825Sdim  case X86::BLENDPDrri:
6735341825Sdim  case X86::VBLENDPDrmi:
6736341825Sdim  case X86::VBLENDPDrri:
6737341825Sdim    return SetBlendDomain(2, false);
6738341825Sdim  case X86::VBLENDPDYrmi:
6739341825Sdim  case X86::VBLENDPDYrri:
6740341825Sdim    return SetBlendDomain(4, true);
6741341825Sdim  case X86::BLENDPSrmi:
6742341825Sdim  case X86::BLENDPSrri:
6743341825Sdim  case X86::VBLENDPSrmi:
6744341825Sdim  case X86::VBLENDPSrri:
6745341825Sdim  case X86::VPBLENDDrmi:
6746341825Sdim  case X86::VPBLENDDrri:
6747341825Sdim    return SetBlendDomain(4, false);
6748341825Sdim  case X86::VBLENDPSYrmi:
6749341825Sdim  case X86::VBLENDPSYrri:
6750341825Sdim  case X86::VPBLENDDYrmi:
6751341825Sdim  case X86::VPBLENDDYrri:
6752341825Sdim    return SetBlendDomain(8, true);
6753341825Sdim  case X86::PBLENDWrmi:
6754341825Sdim  case X86::PBLENDWrri:
6755341825Sdim  case X86::VPBLENDWrmi:
6756341825Sdim  case X86::VPBLENDWrri:
6757341825Sdim    return SetBlendDomain(8, false);
6758341825Sdim  case X86::VPBLENDWYrmi:
6759341825Sdim  case X86::VPBLENDWYrri:
6760341825Sdim    return SetBlendDomain(16, true);
6761341825Sdim  case X86::VPANDDZ128rr:  case X86::VPANDDZ128rm:
6762341825Sdim  case X86::VPANDDZ256rr:  case X86::VPANDDZ256rm:
6763341825Sdim  case X86::VPANDQZ128rr:  case X86::VPANDQZ128rm:
6764341825Sdim  case X86::VPANDQZ256rr:  case X86::VPANDQZ256rm:
6765341825Sdim  case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
6766341825Sdim  case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
6767341825Sdim  case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
6768341825Sdim  case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
6769341825Sdim  case X86::VPORDZ128rr:   case X86::VPORDZ128rm:
6770341825Sdim  case X86::VPORDZ256rr:   case X86::VPORDZ256rm:
6771341825Sdim  case X86::VPORQZ128rr:   case X86::VPORQZ128rm:
6772341825Sdim  case X86::VPORQZ256rr:   case X86::VPORQZ256rm:
6773341825Sdim  case X86::VPXORDZ128rr:  case X86::VPXORDZ128rm:
6774341825Sdim  case X86::VPXORDZ256rr:  case X86::VPXORDZ256rm:
6775341825Sdim  case X86::VPXORQZ128rr:  case X86::VPXORQZ128rm:
6776341825Sdim  case X86::VPXORQZ256rr:  case X86::VPXORQZ256rm: {
6777341825Sdim    // Without DQI, convert EVEX instructions to VEX instructions.
6778341825Sdim    if (Subtarget.hasDQI())
6779341825Sdim      return false;
6780341825Sdim
6781341825Sdim    const uint16_t *table = lookupAVX512(MI.getOpcode(), dom,
6782341825Sdim                                         ReplaceableCustomAVX512LogicInstrs);
6783341825Sdim    assert(table && "Instruction not found in table?");
6784341825Sdim    // Don't change integer Q instructions to D instructions and
6785341825Sdim    // use D intructions if we started with a PS instruction.
6786341825Sdim    if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6787341825Sdim      Domain = 4;
6788341825Sdim    MI.setDesc(get(table[Domain - 1]));
6789341825Sdim    return true;
6790341825Sdim  }
6791344779Sdim  case X86::UNPCKHPDrr:
6792344779Sdim  case X86::MOVHLPSrr:
6793344779Sdim    // We just need to commute the instruction which will switch the domains.
6794344779Sdim    if (Domain != dom && Domain != 3 &&
6795344779Sdim        MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
6796344779Sdim        MI.getOperand(0).getSubReg() == 0 &&
6797344779Sdim        MI.getOperand(1).getSubReg() == 0 &&
6798344779Sdim        MI.getOperand(2).getSubReg() == 0) {
6799344779Sdim      commuteInstruction(MI, false);
6800344779Sdim      return true;
6801344779Sdim    }
6802344779Sdim    // We must always return true for MOVHLPSrr.
6803344779Sdim    if (Opcode == X86::MOVHLPSrr)
6804344779Sdim      return true;
6805353358Sdim    break;
6806353358Sdim  case X86::SHUFPDrri: {
6807353358Sdim    if (Domain == 1) {
6808353358Sdim      unsigned Imm = MI.getOperand(3).getImm();
6809353358Sdim      unsigned NewImm = 0x44;
6810353358Sdim      if (Imm & 1) NewImm |= 0x0a;
6811353358Sdim      if (Imm & 2) NewImm |= 0xa0;
6812353358Sdim      MI.getOperand(3).setImm(NewImm);
6813353358Sdim      MI.setDesc(get(X86::SHUFPSrri));
6814353358Sdim    }
6815353358Sdim    return true;
6816341825Sdim  }
6817353358Sdim  }
6818341825Sdim  return false;
6819341825Sdim}
6820341825Sdim
6821206083Srdivackystd::pair<uint16_t, uint16_t>
6822309124SdimX86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
6823309124Sdim  uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6824314564Sdim  unsigned opcode = MI.getOpcode();
6825234353Sdim  uint16_t validDomains = 0;
6826314564Sdim  if (domain) {
6827341825Sdim    // Attempt to match for custom instructions.
6828341825Sdim    validDomains = getExecutionDomainCustom(MI);
6829341825Sdim    if (validDomains)
6830341825Sdim      return std::make_pair(domain, validDomains);
6831341825Sdim
6832341825Sdim    if (lookup(opcode, domain, ReplaceableInstrs)) {
6833314564Sdim      validDomains = 0xe;
6834314564Sdim    } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
6835314564Sdim      validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
6836353358Sdim    } else if (lookup(opcode, domain, ReplaceableInstrsFP)) {
6837353358Sdim      validDomains = 0x6;
6838321369Sdim    } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
6839321369Sdim      // Insert/extract instructions should only effect domain if AVX2
6840321369Sdim      // is enabled.
6841321369Sdim      if (!Subtarget.hasAVX2())
6842321369Sdim        return std::make_pair(0, 0);
6843321369Sdim      validDomains = 0xe;
6844314564Sdim    } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
6845314564Sdim      validDomains = 0xe;
6846321369Sdim    } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain,
6847321369Sdim                                                  ReplaceableInstrsAVX512DQ)) {
6848321369Sdim      validDomains = 0xe;
6849321369Sdim    } else if (Subtarget.hasDQI()) {
6850321369Sdim      if (const uint16_t *table = lookupAVX512(opcode, domain,
6851314564Sdim                                             ReplaceableInstrsAVX512DQMasked)) {
6852321369Sdim        if (domain == 1 || (domain == 3 && table[3] == opcode))
6853321369Sdim          validDomains = 0xa;
6854321369Sdim        else
6855321369Sdim          validDomains = 0xc;
6856321369Sdim      }
6857314564Sdim    }
6858314564Sdim  }
6859234353Sdim  return std::make_pair(domain, validDomains);
6860206083Srdivacky}
6861206083Srdivacky
6862309124Sdimvoid X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
6863206083Srdivacky  assert(Domain>0 && Domain<4 && "Invalid execution domain");
6864309124Sdim  uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6865206083Srdivacky  assert(dom && "Not an SSE instruction");
6866341825Sdim
6867341825Sdim  // Attempt to match for custom instructions.
6868341825Sdim  if (setExecutionDomainCustom(MI, Domain))
6869341825Sdim    return;
6870341825Sdim
6871314564Sdim  const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
6872234353Sdim  if (!table) { // try the other table
6873276479Sdim    assert((Subtarget.hasAVX2() || Domain < 3) &&
6874234353Sdim           "256-bit vector operations only available in AVX2");
6875314564Sdim    table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
6876234353Sdim  }
6877353358Sdim  if (!table) { // try the FP table
6878353358Sdim    table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP);
6879353358Sdim    assert((!table || Domain < 3) &&
6880353358Sdim           "Can only select PackedSingle or PackedDouble");
6881353358Sdim  }
6882321369Sdim  if (!table) { // try the other table
6883321369Sdim    assert(Subtarget.hasAVX2() &&
6884321369Sdim           "256-bit insert/extract only available in AVX2");
6885321369Sdim    table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
6886321369Sdim  }
6887314564Sdim  if (!table) { // try the AVX512 table
6888314564Sdim    assert(Subtarget.hasAVX512() && "Requires AVX-512");
6889314564Sdim    table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
6890314564Sdim    // Don't change integer Q instructions to D instructions.
6891314564Sdim    if (table && Domain == 3 && table[3] == MI.getOpcode())
6892314564Sdim      Domain = 4;
6893314564Sdim  }
6894314564Sdim  if (!table) { // try the AVX512DQ table
6895314564Sdim    assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
6896314564Sdim    table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
6897314564Sdim    // Don't change integer Q instructions to D instructions and
6898314564Sdim    // use D intructions if we started with a PS instruction.
6899314564Sdim    if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6900314564Sdim      Domain = 4;
6901314564Sdim  }
6902314564Sdim  if (!table) { // try the AVX512DQMasked table
6903314564Sdim    assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
6904314564Sdim    table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
6905314564Sdim    if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6906314564Sdim      Domain = 4;
6907314564Sdim  }
6908206083Srdivacky  assert(table && "Cannot change domain");
6909309124Sdim  MI.setDesc(get(table[Domain - 1]));
6910206083Srdivacky}
6911207618Srdivacky
6912288943Sdim/// Return the noop instruction to use for a noop.
6913321369Sdimvoid X86InstrInfo::getNoop(MCInst &NopInst) const {
6914207618Srdivacky  NopInst.setOpcode(X86::NOOP);
6915207618Srdivacky}
6916207618Srdivacky
6917221345Sdimbool X86InstrInfo::isHighLatencyDef(int opc) const {
6918221345Sdim  switch (opc) {
6919218893Sdim  default: return false;
6920309124Sdim  case X86::DIVPDrm:
6921309124Sdim  case X86::DIVPDrr:
6922309124Sdim  case X86::DIVPSrm:
6923309124Sdim  case X86::DIVPSrr:
6924218893Sdim  case X86::DIVSDrm:
6925218893Sdim  case X86::DIVSDrm_Int:
6926218893Sdim  case X86::DIVSDrr:
6927218893Sdim  case X86::DIVSDrr_Int:
6928218893Sdim  case X86::DIVSSrm:
6929218893Sdim  case X86::DIVSSrm_Int:
6930218893Sdim  case X86::DIVSSrr:
6931218893Sdim  case X86::DIVSSrr_Int:
6932218893Sdim  case X86::SQRTPDm:
6933218893Sdim  case X86::SQRTPDr:
6934218893Sdim  case X86::SQRTPSm:
6935218893Sdim  case X86::SQRTPSr:
6936218893Sdim  case X86::SQRTSDm:
6937218893Sdim  case X86::SQRTSDm_Int:
6938218893Sdim  case X86::SQRTSDr:
6939218893Sdim  case X86::SQRTSDr_Int:
6940218893Sdim  case X86::SQRTSSm:
6941218893Sdim  case X86::SQRTSSm_Int:
6942218893Sdim  case X86::SQRTSSr:
6943218893Sdim  case X86::SQRTSSr_Int:
6944226633Sdim  // AVX instructions with high latency
6945309124Sdim  case X86::VDIVPDrm:
6946309124Sdim  case X86::VDIVPDrr:
6947309124Sdim  case X86::VDIVPDYrm:
6948309124Sdim  case X86::VDIVPDYrr:
6949309124Sdim  case X86::VDIVPSrm:
6950309124Sdim  case X86::VDIVPSrr:
6951309124Sdim  case X86::VDIVPSYrm:
6952309124Sdim  case X86::VDIVPSYrr:
6953226633Sdim  case X86::VDIVSDrm:
6954226633Sdim  case X86::VDIVSDrm_Int:
6955226633Sdim  case X86::VDIVSDrr:
6956226633Sdim  case X86::VDIVSDrr_Int:
6957226633Sdim  case X86::VDIVSSrm:
6958226633Sdim  case X86::VDIVSSrm_Int:
6959226633Sdim  case X86::VDIVSSrr:
6960226633Sdim  case X86::VDIVSSrr_Int:
6961226633Sdim  case X86::VSQRTPDm:
6962226633Sdim  case X86::VSQRTPDr:
6963309124Sdim  case X86::VSQRTPDYm:
6964309124Sdim  case X86::VSQRTPDYr:
6965226633Sdim  case X86::VSQRTPSm:
6966226633Sdim  case X86::VSQRTPSr:
6967309124Sdim  case X86::VSQRTPSYm:
6968309124Sdim  case X86::VSQRTPSYr:
6969226633Sdim  case X86::VSQRTSDm:
6970226633Sdim  case X86::VSQRTSDm_Int:
6971226633Sdim  case X86::VSQRTSDr:
6972309124Sdim  case X86::VSQRTSDr_Int:
6973226633Sdim  case X86::VSQRTSSm:
6974226633Sdim  case X86::VSQRTSSm_Int:
6975226633Sdim  case X86::VSQRTSSr:
6976309124Sdim  case X86::VSQRTSSr_Int:
6977309124Sdim  // AVX512 instructions with high latency
6978309124Sdim  case X86::VDIVPDZ128rm:
6979309124Sdim  case X86::VDIVPDZ128rmb:
6980309124Sdim  case X86::VDIVPDZ128rmbk:
6981309124Sdim  case X86::VDIVPDZ128rmbkz:
6982309124Sdim  case X86::VDIVPDZ128rmk:
6983309124Sdim  case X86::VDIVPDZ128rmkz:
6984309124Sdim  case X86::VDIVPDZ128rr:
6985309124Sdim  case X86::VDIVPDZ128rrk:
6986309124Sdim  case X86::VDIVPDZ128rrkz:
6987309124Sdim  case X86::VDIVPDZ256rm:
6988309124Sdim  case X86::VDIVPDZ256rmb:
6989309124Sdim  case X86::VDIVPDZ256rmbk:
6990309124Sdim  case X86::VDIVPDZ256rmbkz:
6991309124Sdim  case X86::VDIVPDZ256rmk:
6992309124Sdim  case X86::VDIVPDZ256rmkz:
6993309124Sdim  case X86::VDIVPDZ256rr:
6994309124Sdim  case X86::VDIVPDZ256rrk:
6995309124Sdim  case X86::VDIVPDZ256rrkz:
6996327952Sdim  case X86::VDIVPDZrrb:
6997327952Sdim  case X86::VDIVPDZrrbk:
6998327952Sdim  case X86::VDIVPDZrrbkz:
6999309124Sdim  case X86::VDIVPDZrm:
7000309124Sdim  case X86::VDIVPDZrmb:
7001309124Sdim  case X86::VDIVPDZrmbk:
7002309124Sdim  case X86::VDIVPDZrmbkz:
7003309124Sdim  case X86::VDIVPDZrmk:
7004309124Sdim  case X86::VDIVPDZrmkz:
7005309124Sdim  case X86::VDIVPDZrr:
7006309124Sdim  case X86::VDIVPDZrrk:
7007309124Sdim  case X86::VDIVPDZrrkz:
7008309124Sdim  case X86::VDIVPSZ128rm:
7009309124Sdim  case X86::VDIVPSZ128rmb:
7010309124Sdim  case X86::VDIVPSZ128rmbk:
7011309124Sdim  case X86::VDIVPSZ128rmbkz:
7012309124Sdim  case X86::VDIVPSZ128rmk:
7013309124Sdim  case X86::VDIVPSZ128rmkz:
7014309124Sdim  case X86::VDIVPSZ128rr:
7015309124Sdim  case X86::VDIVPSZ128rrk:
7016309124Sdim  case X86::VDIVPSZ128rrkz:
7017309124Sdim  case X86::VDIVPSZ256rm:
7018309124Sdim  case X86::VDIVPSZ256rmb:
7019309124Sdim  case X86::VDIVPSZ256rmbk:
7020309124Sdim  case X86::VDIVPSZ256rmbkz:
7021309124Sdim  case X86::VDIVPSZ256rmk:
7022309124Sdim  case X86::VDIVPSZ256rmkz:
7023309124Sdim  case X86::VDIVPSZ256rr:
7024309124Sdim  case X86::VDIVPSZ256rrk:
7025309124Sdim  case X86::VDIVPSZ256rrkz:
7026327952Sdim  case X86::VDIVPSZrrb:
7027327952Sdim  case X86::VDIVPSZrrbk:
7028327952Sdim  case X86::VDIVPSZrrbkz:
7029309124Sdim  case X86::VDIVPSZrm:
7030309124Sdim  case X86::VDIVPSZrmb:
7031309124Sdim  case X86::VDIVPSZrmbk:
7032309124Sdim  case X86::VDIVPSZrmbkz:
7033309124Sdim  case X86::VDIVPSZrmk:
7034309124Sdim  case X86::VDIVPSZrmkz:
7035309124Sdim  case X86::VDIVPSZrr:
7036309124Sdim  case X86::VDIVPSZrrk:
7037309124Sdim  case X86::VDIVPSZrrkz:
7038309124Sdim  case X86::VDIVSDZrm:
7039309124Sdim  case X86::VDIVSDZrr:
7040309124Sdim  case X86::VDIVSDZrm_Int:
7041309124Sdim  case X86::VDIVSDZrm_Intk:
7042309124Sdim  case X86::VDIVSDZrm_Intkz:
7043309124Sdim  case X86::VDIVSDZrr_Int:
7044309124Sdim  case X86::VDIVSDZrr_Intk:
7045309124Sdim  case X86::VDIVSDZrr_Intkz:
7046327952Sdim  case X86::VDIVSDZrrb_Int:
7047327952Sdim  case X86::VDIVSDZrrb_Intk:
7048327952Sdim  case X86::VDIVSDZrrb_Intkz:
7049309124Sdim  case X86::VDIVSSZrm:
7050309124Sdim  case X86::VDIVSSZrr:
7051309124Sdim  case X86::VDIVSSZrm_Int:
7052309124Sdim  case X86::VDIVSSZrm_Intk:
7053309124Sdim  case X86::VDIVSSZrm_Intkz:
7054309124Sdim  case X86::VDIVSSZrr_Int:
7055309124Sdim  case X86::VDIVSSZrr_Intk:
7056309124Sdim  case X86::VDIVSSZrr_Intkz:
7057327952Sdim  case X86::VDIVSSZrrb_Int:
7058327952Sdim  case X86::VDIVSSZrrb_Intk:
7059327952Sdim  case X86::VDIVSSZrrb_Intkz:
7060309124Sdim  case X86::VSQRTPDZ128m:
7061309124Sdim  case X86::VSQRTPDZ128mb:
7062309124Sdim  case X86::VSQRTPDZ128mbk:
7063309124Sdim  case X86::VSQRTPDZ128mbkz:
7064309124Sdim  case X86::VSQRTPDZ128mk:
7065309124Sdim  case X86::VSQRTPDZ128mkz:
7066309124Sdim  case X86::VSQRTPDZ128r:
7067309124Sdim  case X86::VSQRTPDZ128rk:
7068309124Sdim  case X86::VSQRTPDZ128rkz:
7069309124Sdim  case X86::VSQRTPDZ256m:
7070309124Sdim  case X86::VSQRTPDZ256mb:
7071309124Sdim  case X86::VSQRTPDZ256mbk:
7072309124Sdim  case X86::VSQRTPDZ256mbkz:
7073309124Sdim  case X86::VSQRTPDZ256mk:
7074309124Sdim  case X86::VSQRTPDZ256mkz:
7075309124Sdim  case X86::VSQRTPDZ256r:
7076309124Sdim  case X86::VSQRTPDZ256rk:
7077309124Sdim  case X86::VSQRTPDZ256rkz:
7078280031Sdim  case X86::VSQRTPDZm:
7079309124Sdim  case X86::VSQRTPDZmb:
7080309124Sdim  case X86::VSQRTPDZmbk:
7081309124Sdim  case X86::VSQRTPDZmbkz:
7082309124Sdim  case X86::VSQRTPDZmk:
7083309124Sdim  case X86::VSQRTPDZmkz:
7084280031Sdim  case X86::VSQRTPDZr:
7085309124Sdim  case X86::VSQRTPDZrb:
7086309124Sdim  case X86::VSQRTPDZrbk:
7087309124Sdim  case X86::VSQRTPDZrbkz:
7088309124Sdim  case X86::VSQRTPDZrk:
7089309124Sdim  case X86::VSQRTPDZrkz:
7090309124Sdim  case X86::VSQRTPSZ128m:
7091309124Sdim  case X86::VSQRTPSZ128mb:
7092309124Sdim  case X86::VSQRTPSZ128mbk:
7093309124Sdim  case X86::VSQRTPSZ128mbkz:
7094309124Sdim  case X86::VSQRTPSZ128mk:
7095309124Sdim  case X86::VSQRTPSZ128mkz:
7096309124Sdim  case X86::VSQRTPSZ128r:
7097309124Sdim  case X86::VSQRTPSZ128rk:
7098309124Sdim  case X86::VSQRTPSZ128rkz:
7099309124Sdim  case X86::VSQRTPSZ256m:
7100309124Sdim  case X86::VSQRTPSZ256mb:
7101309124Sdim  case X86::VSQRTPSZ256mbk:
7102309124Sdim  case X86::VSQRTPSZ256mbkz:
7103309124Sdim  case X86::VSQRTPSZ256mk:
7104309124Sdim  case X86::VSQRTPSZ256mkz:
7105309124Sdim  case X86::VSQRTPSZ256r:
7106309124Sdim  case X86::VSQRTPSZ256rk:
7107309124Sdim  case X86::VSQRTPSZ256rkz:
7108280031Sdim  case X86::VSQRTPSZm:
7109309124Sdim  case X86::VSQRTPSZmb:
7110309124Sdim  case X86::VSQRTPSZmbk:
7111309124Sdim  case X86::VSQRTPSZmbkz:
7112309124Sdim  case X86::VSQRTPSZmk:
7113309124Sdim  case X86::VSQRTPSZmkz:
7114280031Sdim  case X86::VSQRTPSZr:
7115309124Sdim  case X86::VSQRTPSZrb:
7116309124Sdim  case X86::VSQRTPSZrbk:
7117309124Sdim  case X86::VSQRTPSZrbkz:
7118309124Sdim  case X86::VSQRTPSZrk:
7119309124Sdim  case X86::VSQRTPSZrkz:
7120261991Sdim  case X86::VSQRTSDZm:
7121261991Sdim  case X86::VSQRTSDZm_Int:
7122309124Sdim  case X86::VSQRTSDZm_Intk:
7123309124Sdim  case X86::VSQRTSDZm_Intkz:
7124261991Sdim  case X86::VSQRTSDZr:
7125309124Sdim  case X86::VSQRTSDZr_Int:
7126309124Sdim  case X86::VSQRTSDZr_Intk:
7127309124Sdim  case X86::VSQRTSDZr_Intkz:
7128309124Sdim  case X86::VSQRTSDZrb_Int:
7129309124Sdim  case X86::VSQRTSDZrb_Intk:
7130309124Sdim  case X86::VSQRTSDZrb_Intkz:
7131309124Sdim  case X86::VSQRTSSZm:
7132261991Sdim  case X86::VSQRTSSZm_Int:
7133309124Sdim  case X86::VSQRTSSZm_Intk:
7134309124Sdim  case X86::VSQRTSSZm_Intkz:
7135261991Sdim  case X86::VSQRTSSZr:
7136309124Sdim  case X86::VSQRTSSZr_Int:
7137309124Sdim  case X86::VSQRTSSZr_Intk:
7138309124Sdim  case X86::VSQRTSSZr_Intkz:
7139309124Sdim  case X86::VSQRTSSZrb_Int:
7140309124Sdim  case X86::VSQRTSSZrb_Intk:
7141309124Sdim  case X86::VSQRTSSZrb_Intkz:
7142261991Sdim
7143309124Sdim  case X86::VGATHERDPDYrm:
7144309124Sdim  case X86::VGATHERDPDZ128rm:
7145309124Sdim  case X86::VGATHERDPDZ256rm:
7146261991Sdim  case X86::VGATHERDPDZrm:
7147309124Sdim  case X86::VGATHERDPDrm:
7148309124Sdim  case X86::VGATHERDPSYrm:
7149309124Sdim  case X86::VGATHERDPSZ128rm:
7150309124Sdim  case X86::VGATHERDPSZ256rm:
7151261991Sdim  case X86::VGATHERDPSZrm:
7152309124Sdim  case X86::VGATHERDPSrm:
7153309124Sdim  case X86::VGATHERPF0DPDm:
7154309124Sdim  case X86::VGATHERPF0DPSm:
7155309124Sdim  case X86::VGATHERPF0QPDm:
7156309124Sdim  case X86::VGATHERPF0QPSm:
7157309124Sdim  case X86::VGATHERPF1DPDm:
7158309124Sdim  case X86::VGATHERPF1DPSm:
7159309124Sdim  case X86::VGATHERPF1QPDm:
7160309124Sdim  case X86::VGATHERPF1QPSm:
7161309124Sdim  case X86::VGATHERQPDYrm:
7162309124Sdim  case X86::VGATHERQPDZ128rm:
7163309124Sdim  case X86::VGATHERQPDZ256rm:
7164309124Sdim  case X86::VGATHERQPDZrm:
7165309124Sdim  case X86::VGATHERQPDrm:
7166309124Sdim  case X86::VGATHERQPSYrm:
7167309124Sdim  case X86::VGATHERQPSZ128rm:
7168309124Sdim  case X86::VGATHERQPSZ256rm:
7169309124Sdim  case X86::VGATHERQPSZrm:
7170309124Sdim  case X86::VGATHERQPSrm:
7171309124Sdim  case X86::VPGATHERDDYrm:
7172309124Sdim  case X86::VPGATHERDDZ128rm:
7173309124Sdim  case X86::VPGATHERDDZ256rm:
7174309124Sdim  case X86::VPGATHERDDZrm:
7175309124Sdim  case X86::VPGATHERDDrm:
7176309124Sdim  case X86::VPGATHERDQYrm:
7177309124Sdim  case X86::VPGATHERDQZ128rm:
7178309124Sdim  case X86::VPGATHERDQZ256rm:
7179309124Sdim  case X86::VPGATHERDQZrm:
7180309124Sdim  case X86::VPGATHERDQrm:
7181309124Sdim  case X86::VPGATHERQDYrm:
7182309124Sdim  case X86::VPGATHERQDZ128rm:
7183309124Sdim  case X86::VPGATHERQDZ256rm:
7184261991Sdim  case X86::VPGATHERQDZrm:
7185309124Sdim  case X86::VPGATHERQDrm:
7186309124Sdim  case X86::VPGATHERQQYrm:
7187309124Sdim  case X86::VPGATHERQQZ128rm:
7188309124Sdim  case X86::VPGATHERQQZ256rm:
7189261991Sdim  case X86::VPGATHERQQZrm:
7190309124Sdim  case X86::VPGATHERQQrm:
7191309124Sdim  case X86::VSCATTERDPDZ128mr:
7192309124Sdim  case X86::VSCATTERDPDZ256mr:
7193309124Sdim  case X86::VSCATTERDPDZmr:
7194309124Sdim  case X86::VSCATTERDPSZ128mr:
7195309124Sdim  case X86::VSCATTERDPSZ256mr:
7196309124Sdim  case X86::VSCATTERDPSZmr:
7197309124Sdim  case X86::VSCATTERPF0DPDm:
7198309124Sdim  case X86::VSCATTERPF0DPSm:
7199309124Sdim  case X86::VSCATTERPF0QPDm:
7200309124Sdim  case X86::VSCATTERPF0QPSm:
7201309124Sdim  case X86::VSCATTERPF1DPDm:
7202309124Sdim  case X86::VSCATTERPF1DPSm:
7203309124Sdim  case X86::VSCATTERPF1QPDm:
7204309124Sdim  case X86::VSCATTERPF1QPSm:
7205309124Sdim  case X86::VSCATTERQPDZ128mr:
7206309124Sdim  case X86::VSCATTERQPDZ256mr:
7207261991Sdim  case X86::VSCATTERQPDZmr:
7208309124Sdim  case X86::VSCATTERQPSZ128mr:
7209309124Sdim  case X86::VSCATTERQPSZ256mr:
7210261991Sdim  case X86::VSCATTERQPSZmr:
7211309124Sdim  case X86::VPSCATTERDDZ128mr:
7212309124Sdim  case X86::VPSCATTERDDZ256mr:
7213309124Sdim  case X86::VPSCATTERDDZmr:
7214309124Sdim  case X86::VPSCATTERDQZ128mr:
7215309124Sdim  case X86::VPSCATTERDQZ256mr:
7216309124Sdim  case X86::VPSCATTERDQZmr:
7217309124Sdim  case X86::VPSCATTERQDZ128mr:
7218309124Sdim  case X86::VPSCATTERQDZ256mr:
7219261991Sdim  case X86::VPSCATTERQDZmr:
7220309124Sdim  case X86::VPSCATTERQQZ128mr:
7221309124Sdim  case X86::VPSCATTERQQZ256mr:
7222261991Sdim  case X86::VPSCATTERQQZmr:
7223218893Sdim    return true;
7224218893Sdim  }
7225218893Sdim}
7226218893Sdim
7227309124Sdimbool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
7228309124Sdim                                         const MachineRegisterInfo *MRI,
7229309124Sdim                                         const MachineInstr &DefMI,
7230309124Sdim                                         unsigned DefIdx,
7231309124Sdim                                         const MachineInstr &UseMI,
7232309124Sdim                                         unsigned UseIdx) const {
7233309124Sdim  return isHighLatencyDef(DefMI.getOpcode());
7234221345Sdim}
7235221345Sdim
7236296417Sdimbool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
7237296417Sdim                                           const MachineBasicBlock *MBB) const {
7238360784Sdim  assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 &&
7239360784Sdim         Inst.getNumDefs() <= 2 && "Reassociation needs binary operators");
7240288943Sdim
7241296417Sdim  // Integer binary math/logic instructions have a third source operand:
7242296417Sdim  // the EFLAGS register. That operand must be both defined here and never
7243296417Sdim  // used; ie, it must be dead. If the EFLAGS operand is live, then we can
7244296417Sdim  // not change anything because rearranging the operands could affect other
7245296417Sdim  // instructions that depend on the exact status flags (zero, sign, etc.)
7246296417Sdim  // that are set by using these particular operands with this operation.
7247360784Sdim  const MachineOperand *FlagDef = Inst.findRegisterDefOperand(X86::EFLAGS);
7248360784Sdim  assert((Inst.getNumDefs() == 1 || FlagDef) &&
7249360784Sdim         "Implicit def isn't flags?");
7250360784Sdim  if (FlagDef && !FlagDef->isDead())
7251360784Sdim    return false;
7252288943Sdim
7253296417Sdim  return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
7254288943Sdim}
7255288943Sdim
7256288943Sdim// TODO: There are many more machine instruction opcodes to match:
7257288943Sdim//       1. Other data types (integer, vectors)
7258296417Sdim//       2. Other math / logic operations (xor, or)
7259296417Sdim//       3. Other forms of the same operation (intrinsics and other variants)
7260296417Sdimbool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
7261296417Sdim  switch (Inst.getOpcode()) {
7262296417Sdim  case X86::AND8rr:
7263296417Sdim  case X86::AND16rr:
7264296417Sdim  case X86::AND32rr:
7265296417Sdim  case X86::AND64rr:
7266296417Sdim  case X86::OR8rr:
7267296417Sdim  case X86::OR16rr:
7268296417Sdim  case X86::OR32rr:
7269296417Sdim  case X86::OR64rr:
7270296417Sdim  case X86::XOR8rr:
7271296417Sdim  case X86::XOR16rr:
7272296417Sdim  case X86::XOR32rr:
7273296417Sdim  case X86::XOR64rr:
7274296417Sdim  case X86::IMUL16rr:
7275296417Sdim  case X86::IMUL32rr:
7276296417Sdim  case X86::IMUL64rr:
7277296417Sdim  case X86::PANDrr:
7278296417Sdim  case X86::PORrr:
7279296417Sdim  case X86::PXORrr:
7280309124Sdim  case X86::ANDPDrr:
7281309124Sdim  case X86::ANDPSrr:
7282309124Sdim  case X86::ORPDrr:
7283309124Sdim  case X86::ORPSrr:
7284309124Sdim  case X86::XORPDrr:
7285309124Sdim  case X86::XORPSrr:
7286309124Sdim  case X86::PADDBrr:
7287309124Sdim  case X86::PADDWrr:
7288309124Sdim  case X86::PADDDrr:
7289309124Sdim  case X86::PADDQrr:
7290353358Sdim  case X86::PMULLWrr:
7291353358Sdim  case X86::PMULLDrr:
7292353358Sdim  case X86::PMAXSBrr:
7293353358Sdim  case X86::PMAXSDrr:
7294353358Sdim  case X86::PMAXSWrr:
7295353358Sdim  case X86::PMAXUBrr:
7296353358Sdim  case X86::PMAXUDrr:
7297353358Sdim  case X86::PMAXUWrr:
7298353358Sdim  case X86::PMINSBrr:
7299353358Sdim  case X86::PMINSDrr:
7300353358Sdim  case X86::PMINSWrr:
7301353358Sdim  case X86::PMINUBrr:
7302353358Sdim  case X86::PMINUDrr:
7303353358Sdim  case X86::PMINUWrr:
7304296417Sdim  case X86::VPANDrr:
7305296417Sdim  case X86::VPANDYrr:
7306309124Sdim  case X86::VPANDDZ128rr:
7307309124Sdim  case X86::VPANDDZ256rr:
7308309124Sdim  case X86::VPANDDZrr:
7309309124Sdim  case X86::VPANDQZ128rr:
7310309124Sdim  case X86::VPANDQZ256rr:
7311309124Sdim  case X86::VPANDQZrr:
7312296417Sdim  case X86::VPORrr:
7313296417Sdim  case X86::VPORYrr:
7314309124Sdim  case X86::VPORDZ128rr:
7315309124Sdim  case X86::VPORDZ256rr:
7316309124Sdim  case X86::VPORDZrr:
7317309124Sdim  case X86::VPORQZ128rr:
7318309124Sdim  case X86::VPORQZ256rr:
7319309124Sdim  case X86::VPORQZrr:
7320296417Sdim  case X86::VPXORrr:
7321296417Sdim  case X86::VPXORYrr:
7322309124Sdim  case X86::VPXORDZ128rr:
7323309124Sdim  case X86::VPXORDZ256rr:
7324309124Sdim  case X86::VPXORDZrr:
7325309124Sdim  case X86::VPXORQZ128rr:
7326309124Sdim  case X86::VPXORQZ256rr:
7327309124Sdim  case X86::VPXORQZrr:
7328309124Sdim  case X86::VANDPDrr:
7329309124Sdim  case X86::VANDPSrr:
7330309124Sdim  case X86::VANDPDYrr:
7331309124Sdim  case X86::VANDPSYrr:
7332309124Sdim  case X86::VANDPDZ128rr:
7333309124Sdim  case X86::VANDPSZ128rr:
7334309124Sdim  case X86::VANDPDZ256rr:
7335309124Sdim  case X86::VANDPSZ256rr:
7336309124Sdim  case X86::VANDPDZrr:
7337309124Sdim  case X86::VANDPSZrr:
7338309124Sdim  case X86::VORPDrr:
7339309124Sdim  case X86::VORPSrr:
7340309124Sdim  case X86::VORPDYrr:
7341309124Sdim  case X86::VORPSYrr:
7342309124Sdim  case X86::VORPDZ128rr:
7343309124Sdim  case X86::VORPSZ128rr:
7344309124Sdim  case X86::VORPDZ256rr:
7345309124Sdim  case X86::VORPSZ256rr:
7346309124Sdim  case X86::VORPDZrr:
7347309124Sdim  case X86::VORPSZrr:
7348309124Sdim  case X86::VXORPDrr:
7349309124Sdim  case X86::VXORPSrr:
7350309124Sdim  case X86::VXORPDYrr:
7351309124Sdim  case X86::VXORPSYrr:
7352309124Sdim  case X86::VXORPDZ128rr:
7353309124Sdim  case X86::VXORPSZ128rr:
7354309124Sdim  case X86::VXORPDZ256rr:
7355309124Sdim  case X86::VXORPSZ256rr:
7356309124Sdim  case X86::VXORPDZrr:
7357309124Sdim  case X86::VXORPSZrr:
7358309124Sdim  case X86::KADDBrr:
7359309124Sdim  case X86::KADDWrr:
7360309124Sdim  case X86::KADDDrr:
7361309124Sdim  case X86::KADDQrr:
7362309124Sdim  case X86::KANDBrr:
7363309124Sdim  case X86::KANDWrr:
7364309124Sdim  case X86::KANDDrr:
7365309124Sdim  case X86::KANDQrr:
7366309124Sdim  case X86::KORBrr:
7367309124Sdim  case X86::KORWrr:
7368309124Sdim  case X86::KORDrr:
7369309124Sdim  case X86::KORQrr:
7370309124Sdim  case X86::KXORBrr:
7371309124Sdim  case X86::KXORWrr:
7372309124Sdim  case X86::KXORDrr:
7373309124Sdim  case X86::KXORQrr:
7374309124Sdim  case X86::VPADDBrr:
7375309124Sdim  case X86::VPADDWrr:
7376309124Sdim  case X86::VPADDDrr:
7377309124Sdim  case X86::VPADDQrr:
7378309124Sdim  case X86::VPADDBYrr:
7379309124Sdim  case X86::VPADDWYrr:
7380309124Sdim  case X86::VPADDDYrr:
7381309124Sdim  case X86::VPADDQYrr:
7382309124Sdim  case X86::VPADDBZ128rr:
7383309124Sdim  case X86::VPADDWZ128rr:
7384309124Sdim  case X86::VPADDDZ128rr:
7385309124Sdim  case X86::VPADDQZ128rr:
7386309124Sdim  case X86::VPADDBZ256rr:
7387309124Sdim  case X86::VPADDWZ256rr:
7388309124Sdim  case X86::VPADDDZ256rr:
7389309124Sdim  case X86::VPADDQZ256rr:
7390309124Sdim  case X86::VPADDBZrr:
7391309124Sdim  case X86::VPADDWZrr:
7392309124Sdim  case X86::VPADDDZrr:
7393309124Sdim  case X86::VPADDQZrr:
7394309124Sdim  case X86::VPMULLWrr:
7395309124Sdim  case X86::VPMULLWYrr:
7396309124Sdim  case X86::VPMULLWZ128rr:
7397309124Sdim  case X86::VPMULLWZ256rr:
7398309124Sdim  case X86::VPMULLWZrr:
7399309124Sdim  case X86::VPMULLDrr:
7400309124Sdim  case X86::VPMULLDYrr:
7401309124Sdim  case X86::VPMULLDZ128rr:
7402309124Sdim  case X86::VPMULLDZ256rr:
7403309124Sdim  case X86::VPMULLDZrr:
7404309124Sdim  case X86::VPMULLQZ128rr:
7405309124Sdim  case X86::VPMULLQZ256rr:
7406309124Sdim  case X86::VPMULLQZrr:
7407353358Sdim  case X86::VPMAXSBrr:
7408353358Sdim  case X86::VPMAXSBYrr:
7409353358Sdim  case X86::VPMAXSBZ128rr:
7410353358Sdim  case X86::VPMAXSBZ256rr:
7411353358Sdim  case X86::VPMAXSBZrr:
7412353358Sdim  case X86::VPMAXSDrr:
7413353358Sdim  case X86::VPMAXSDYrr:
7414353358Sdim  case X86::VPMAXSDZ128rr:
7415353358Sdim  case X86::VPMAXSDZ256rr:
7416353358Sdim  case X86::VPMAXSDZrr:
7417353358Sdim  case X86::VPMAXSQZ128rr:
7418353358Sdim  case X86::VPMAXSQZ256rr:
7419353358Sdim  case X86::VPMAXSQZrr:
7420353358Sdim  case X86::VPMAXSWrr:
7421353358Sdim  case X86::VPMAXSWYrr:
7422353358Sdim  case X86::VPMAXSWZ128rr:
7423353358Sdim  case X86::VPMAXSWZ256rr:
7424353358Sdim  case X86::VPMAXSWZrr:
7425353358Sdim  case X86::VPMAXUBrr:
7426353358Sdim  case X86::VPMAXUBYrr:
7427353358Sdim  case X86::VPMAXUBZ128rr:
7428353358Sdim  case X86::VPMAXUBZ256rr:
7429353358Sdim  case X86::VPMAXUBZrr:
7430353358Sdim  case X86::VPMAXUDrr:
7431353358Sdim  case X86::VPMAXUDYrr:
7432353358Sdim  case X86::VPMAXUDZ128rr:
7433353358Sdim  case X86::VPMAXUDZ256rr:
7434353358Sdim  case X86::VPMAXUDZrr:
7435353358Sdim  case X86::VPMAXUQZ128rr:
7436353358Sdim  case X86::VPMAXUQZ256rr:
7437353358Sdim  case X86::VPMAXUQZrr:
7438353358Sdim  case X86::VPMAXUWrr:
7439353358Sdim  case X86::VPMAXUWYrr:
7440353358Sdim  case X86::VPMAXUWZ128rr:
7441353358Sdim  case X86::VPMAXUWZ256rr:
7442353358Sdim  case X86::VPMAXUWZrr:
7443353358Sdim  case X86::VPMINSBrr:
7444353358Sdim  case X86::VPMINSBYrr:
7445353358Sdim  case X86::VPMINSBZ128rr:
7446353358Sdim  case X86::VPMINSBZ256rr:
7447353358Sdim  case X86::VPMINSBZrr:
7448353358Sdim  case X86::VPMINSDrr:
7449353358Sdim  case X86::VPMINSDYrr:
7450353358Sdim  case X86::VPMINSDZ128rr:
7451353358Sdim  case X86::VPMINSDZ256rr:
7452353358Sdim  case X86::VPMINSDZrr:
7453353358Sdim  case X86::VPMINSQZ128rr:
7454353358Sdim  case X86::VPMINSQZ256rr:
7455353358Sdim  case X86::VPMINSQZrr:
7456353358Sdim  case X86::VPMINSWrr:
7457353358Sdim  case X86::VPMINSWYrr:
7458353358Sdim  case X86::VPMINSWZ128rr:
7459353358Sdim  case X86::VPMINSWZ256rr:
7460353358Sdim  case X86::VPMINSWZrr:
7461353358Sdim  case X86::VPMINUBrr:
7462353358Sdim  case X86::VPMINUBYrr:
7463353358Sdim  case X86::VPMINUBZ128rr:
7464353358Sdim  case X86::VPMINUBZ256rr:
7465353358Sdim  case X86::VPMINUBZrr:
7466353358Sdim  case X86::VPMINUDrr:
7467353358Sdim  case X86::VPMINUDYrr:
7468353358Sdim  case X86::VPMINUDZ128rr:
7469353358Sdim  case X86::VPMINUDZ256rr:
7470353358Sdim  case X86::VPMINUDZrr:
7471353358Sdim  case X86::VPMINUQZ128rr:
7472353358Sdim  case X86::VPMINUQZ256rr:
7473353358Sdim  case X86::VPMINUQZrr:
7474353358Sdim  case X86::VPMINUWrr:
7475353358Sdim  case X86::VPMINUWYrr:
7476353358Sdim  case X86::VPMINUWZ128rr:
7477353358Sdim  case X86::VPMINUWZ256rr:
7478353358Sdim  case X86::VPMINUWZrr:
7479296417Sdim  // Normal min/max instructions are not commutative because of NaN and signed
7480296417Sdim  // zero semantics, but these are. Thus, there's no need to check for global
7481296417Sdim  // relaxed math; the instructions themselves have the properties we need.
7482296417Sdim  case X86::MAXCPDrr:
7483296417Sdim  case X86::MAXCPSrr:
7484296417Sdim  case X86::MAXCSDrr:
7485296417Sdim  case X86::MAXCSSrr:
7486296417Sdim  case X86::MINCPDrr:
7487296417Sdim  case X86::MINCPSrr:
7488296417Sdim  case X86::MINCSDrr:
7489296417Sdim  case X86::MINCSSrr:
7490296417Sdim  case X86::VMAXCPDrr:
7491296417Sdim  case X86::VMAXCPSrr:
7492296417Sdim  case X86::VMAXCPDYrr:
7493296417Sdim  case X86::VMAXCPSYrr:
7494309124Sdim  case X86::VMAXCPDZ128rr:
7495309124Sdim  case X86::VMAXCPSZ128rr:
7496309124Sdim  case X86::VMAXCPDZ256rr:
7497309124Sdim  case X86::VMAXCPSZ256rr:
7498309124Sdim  case X86::VMAXCPDZrr:
7499309124Sdim  case X86::VMAXCPSZrr:
7500296417Sdim  case X86::VMAXCSDrr:
7501296417Sdim  case X86::VMAXCSSrr:
7502309124Sdim  case X86::VMAXCSDZrr:
7503309124Sdim  case X86::VMAXCSSZrr:
7504296417Sdim  case X86::VMINCPDrr:
7505296417Sdim  case X86::VMINCPSrr:
7506296417Sdim  case X86::VMINCPDYrr:
7507296417Sdim  case X86::VMINCPSYrr:
7508309124Sdim  case X86::VMINCPDZ128rr:
7509309124Sdim  case X86::VMINCPSZ128rr:
7510309124Sdim  case X86::VMINCPDZ256rr:
7511309124Sdim  case X86::VMINCPSZ256rr:
7512309124Sdim  case X86::VMINCPDZrr:
7513309124Sdim  case X86::VMINCPSZrr:
7514296417Sdim  case X86::VMINCSDrr:
7515296417Sdim  case X86::VMINCSSrr:
7516309124Sdim  case X86::VMINCSDZrr:
7517309124Sdim  case X86::VMINCSSZrr:
7518296417Sdim    return true;
7519296417Sdim  case X86::ADDPDrr:
7520296417Sdim  case X86::ADDPSrr:
7521288943Sdim  case X86::ADDSDrr:
7522288943Sdim  case X86::ADDSSrr:
7523296417Sdim  case X86::MULPDrr:
7524296417Sdim  case X86::MULPSrr:
7525296417Sdim  case X86::MULSDrr:
7526296417Sdim  case X86::MULSSrr:
7527296417Sdim  case X86::VADDPDrr:
7528296417Sdim  case X86::VADDPSrr:
7529296417Sdim  case X86::VADDPDYrr:
7530296417Sdim  case X86::VADDPSYrr:
7531309124Sdim  case X86::VADDPDZ128rr:
7532309124Sdim  case X86::VADDPSZ128rr:
7533309124Sdim  case X86::VADDPDZ256rr:
7534309124Sdim  case X86::VADDPSZ256rr:
7535309124Sdim  case X86::VADDPDZrr:
7536309124Sdim  case X86::VADDPSZrr:
7537288943Sdim  case X86::VADDSDrr:
7538288943Sdim  case X86::VADDSSrr:
7539309124Sdim  case X86::VADDSDZrr:
7540309124Sdim  case X86::VADDSSZrr:
7541296417Sdim  case X86::VMULPDrr:
7542296417Sdim  case X86::VMULPSrr:
7543296417Sdim  case X86::VMULPDYrr:
7544296417Sdim  case X86::VMULPSYrr:
7545309124Sdim  case X86::VMULPDZ128rr:
7546309124Sdim  case X86::VMULPSZ128rr:
7547309124Sdim  case X86::VMULPDZ256rr:
7548309124Sdim  case X86::VMULPSZ256rr:
7549309124Sdim  case X86::VMULPDZrr:
7550309124Sdim  case X86::VMULPSZrr:
7551288943Sdim  case X86::VMULSDrr:
7552288943Sdim  case X86::VMULSSrr:
7553309124Sdim  case X86::VMULSDZrr:
7554309124Sdim  case X86::VMULSSZrr:
7555296417Sdim    return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath;
7556288943Sdim  default:
7557288943Sdim    return false;
7558288943Sdim  }
7559288943Sdim}
7560288943Sdim
7561360784Sdim/// If \p DescribedReg overlaps with the MOVrr instruction's destination
7562360784Sdim/// register then, if possible, describe the value in terms of the source
7563360784Sdim/// register.
7564360784Sdimstatic Optional<ParamLoadedValue>
7565360784SdimdescribeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg,
7566360784Sdim                         const TargetRegisterInfo *TRI) {
7567360784Sdim  Register DestReg = MI.getOperand(0).getReg();
7568360784Sdim  Register SrcReg = MI.getOperand(1).getReg();
7569360784Sdim
7570360784Sdim  auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
7571360784Sdim
7572360784Sdim  // If the described register is the destination, just return the source.
7573360784Sdim  if (DestReg == DescribedReg)
7574360784Sdim    return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
7575360784Sdim
7576360784Sdim  // If the described register is a sub-register of the destination register,
7577360784Sdim  // then pick out the source register's corresponding sub-register.
7578360784Sdim  if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) {
7579360784Sdim    unsigned SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx);
7580360784Sdim    return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr);
7581360784Sdim  }
7582360784Sdim
7583360784Sdim  // The remaining case to consider is when the described register is a
7584360784Sdim  // super-register of the destination register. MOV8rr and MOV16rr does not
7585360784Sdim  // write to any of the other bytes in the register, meaning that we'd have to
7586360784Sdim  // describe the value using a combination of the source register and the
7587360784Sdim  // non-overlapping bits in the described register, which is not currently
7588360784Sdim  // possible.
7589360784Sdim  if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr ||
7590360784Sdim      !TRI->isSuperRegister(DestReg, DescribedReg))
7591360784Sdim    return None;
7592360784Sdim
7593360784Sdim  assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case");
7594360784Sdim  return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
7595360784Sdim}
7596360784Sdim
7597360784SdimOptional<ParamLoadedValue>
7598360784SdimX86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const {
7599360784Sdim  const MachineOperand *Op = nullptr;
7600360784Sdim  DIExpression *Expr = nullptr;
7601360784Sdim
7602360784Sdim  const TargetRegisterInfo *TRI = &getRegisterInfo();
7603360784Sdim
7604360784Sdim  switch (MI.getOpcode()) {
7605360784Sdim  case X86::LEA32r:
7606360784Sdim  case X86::LEA64r:
7607360784Sdim  case X86::LEA64_32r: {
7608360784Sdim    // We may need to describe a 64-bit parameter with a 32-bit LEA.
7609360784Sdim    if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
7610360784Sdim      return None;
7611360784Sdim
7612360784Sdim    // Operand 4 could be global address. For now we do not support
7613360784Sdim    // such situation.
7614360784Sdim    if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm())
7615360784Sdim      return None;
7616360784Sdim
7617360784Sdim    const MachineOperand &Op1 = MI.getOperand(1);
7618360784Sdim    const MachineOperand &Op2 = MI.getOperand(3);
7619360784Sdim    assert(Op2.isReg() && (Op2.getReg() == X86::NoRegister ||
7620360784Sdim                           Register::isPhysicalRegister(Op2.getReg())));
7621360784Sdim
7622360784Sdim    // Omit situations like:
7623360784Sdim    // %rsi = lea %rsi, 4, ...
7624360784Sdim    if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) ||
7625360784Sdim        Op2.getReg() == MI.getOperand(0).getReg())
7626360784Sdim      return None;
7627360784Sdim    else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister &&
7628360784Sdim              TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) ||
7629360784Sdim             (Op2.getReg() != X86::NoRegister &&
7630360784Sdim              TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg())))
7631360784Sdim      return None;
7632360784Sdim
7633360784Sdim    int64_t Coef = MI.getOperand(2).getImm();
7634360784Sdim    int64_t Offset = MI.getOperand(4).getImm();
7635360784Sdim    SmallVector<uint64_t, 8> Ops;
7636360784Sdim
7637360784Sdim    if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) {
7638360784Sdim      Op = &Op1;
7639360784Sdim    } else if (Op1.isFI())
7640360784Sdim      Op = &Op1;
7641360784Sdim
7642360784Sdim    if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) {
7643360784Sdim      Ops.push_back(dwarf::DW_OP_constu);
7644360784Sdim      Ops.push_back(Coef + 1);
7645360784Sdim      Ops.push_back(dwarf::DW_OP_mul);
7646360784Sdim    } else {
7647360784Sdim      if (Op && Op2.getReg() != X86::NoRegister) {
7648360784Sdim        int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false);
7649360784Sdim        if (dwarfReg < 0)
7650360784Sdim          return None;
7651360784Sdim        else if (dwarfReg < 32) {
7652360784Sdim          Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg);
7653360784Sdim          Ops.push_back(0);
7654360784Sdim        } else {
7655360784Sdim          Ops.push_back(dwarf::DW_OP_bregx);
7656360784Sdim          Ops.push_back(dwarfReg);
7657360784Sdim          Ops.push_back(0);
7658360784Sdim        }
7659360784Sdim      } else if (!Op) {
7660360784Sdim        assert(Op2.getReg() != X86::NoRegister);
7661360784Sdim        Op = &Op2;
7662360784Sdim      }
7663360784Sdim
7664360784Sdim      if (Coef > 1) {
7665360784Sdim        assert(Op2.getReg() != X86::NoRegister);
7666360784Sdim        Ops.push_back(dwarf::DW_OP_constu);
7667360784Sdim        Ops.push_back(Coef);
7668360784Sdim        Ops.push_back(dwarf::DW_OP_mul);
7669360784Sdim      }
7670360784Sdim
7671360784Sdim      if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) &&
7672360784Sdim          Op2.getReg() != X86::NoRegister) {
7673360784Sdim        Ops.push_back(dwarf::DW_OP_plus);
7674360784Sdim      }
7675360784Sdim    }
7676360784Sdim
7677360784Sdim    DIExpression::appendOffset(Ops, Offset);
7678360784Sdim    Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops);
7679360784Sdim
7680360784Sdim    return ParamLoadedValue(*Op, Expr);;
7681360784Sdim  }
7682360784Sdim  case X86::MOV32ri:
7683360784Sdim  case X86::MOV64ri:
7684360784Sdim  case X86::MOV64ri32:
7685360784Sdim    // MOV32ri may be used for producing zero-extended 32-bit immediates in
7686360784Sdim    // 64-bit parameters, so we need to consider super-registers.
7687360784Sdim    if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
7688360784Sdim      return None;
7689360784Sdim    return ParamLoadedValue(MI.getOperand(1), Expr);
7690360784Sdim  case X86::MOV8rr:
7691360784Sdim  case X86::MOV16rr:
7692360784Sdim  case X86::MOV32rr:
7693360784Sdim  case X86::MOV64rr:
7694360784Sdim    return describeMOVrrLoadedValue(MI, Reg, TRI);
7695360784Sdim  case X86::XOR32rr: {
7696360784Sdim    // 64-bit parameters are zero-materialized using XOR32rr, so also consider
7697360784Sdim    // super-registers.
7698360784Sdim    if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
7699360784Sdim      return None;
7700360784Sdim    if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
7701360784Sdim      return ParamLoadedValue(MachineOperand::CreateImm(0), Expr);
7702360784Sdim    return None;
7703360784Sdim  }
7704360784Sdim  case X86::MOVSX64rr32: {
7705360784Sdim    // We may need to describe the lower 32 bits of the MOVSX; for example, in
7706360784Sdim    // cases like this:
7707360784Sdim    //
7708360784Sdim    //  $ebx = [...]
7709360784Sdim    //  $rdi = MOVSX64rr32 $ebx
7710360784Sdim    //  $esi = MOV32rr $edi
7711360784Sdim    if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg))
7712360784Sdim      return None;
7713360784Sdim
7714360784Sdim    Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
7715360784Sdim
7716360784Sdim    // If the described register is the destination register we need to
7717360784Sdim    // sign-extend the source register from 32 bits. The other case we handle
7718360784Sdim    // is when the described register is the 32-bit sub-register of the
7719360784Sdim    // destination register, in case we just need to return the source
7720360784Sdim    // register.
7721360784Sdim    if (Reg == MI.getOperand(0).getReg())
7722360784Sdim      Expr = DIExpression::appendExt(Expr, 32, 64, true);
7723360784Sdim    else
7724360784Sdim      assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) &&
7725360784Sdim             "Unhandled sub-register case for MOVSX64rr32");
7726360784Sdim
7727360784Sdim    return ParamLoadedValue(MI.getOperand(1), Expr);
7728360784Sdim  }
7729360784Sdim  default:
7730360784Sdim    assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction");
7731360784Sdim    return TargetInstrInfo::describeLoadedValue(MI, Reg);
7732360784Sdim  }
7733360784Sdim}
7734360784Sdim
7735296417Sdim/// This is an architecture-specific helper function of reassociateOps.
7736296417Sdim/// Set special operand attributes for new instructions after reassociation.
7737296417Sdimvoid X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
7738296417Sdim                                         MachineInstr &OldMI2,
7739296417Sdim                                         MachineInstr &NewMI1,
7740296417Sdim                                         MachineInstr &NewMI2) const {
7741360784Sdim  // Integer instructions may define an implicit EFLAGS dest register operand.
7742360784Sdim  MachineOperand *OldFlagDef1 = OldMI1.findRegisterDefOperand(X86::EFLAGS);
7743360784Sdim  MachineOperand *OldFlagDef2 = OldMI2.findRegisterDefOperand(X86::EFLAGS);
7744288943Sdim
7745360784Sdim  assert(!OldFlagDef1 == !OldFlagDef2 &&
7746296417Sdim         "Unexpected instruction type for reassociation");
7747288943Sdim
7748360784Sdim  if (!OldFlagDef1 || !OldFlagDef2)
7749360784Sdim    return;
7750288943Sdim
7751360784Sdim  assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() &&
7752296417Sdim         "Must have dead EFLAGS operand in reassociable instruction");
7753288943Sdim
7754360784Sdim  MachineOperand *NewFlagDef1 = NewMI1.findRegisterDefOperand(X86::EFLAGS);
7755360784Sdim  MachineOperand *NewFlagDef2 = NewMI2.findRegisterDefOperand(X86::EFLAGS);
7756288943Sdim
7757360784Sdim  assert(NewFlagDef1 && NewFlagDef2 &&
7758296417Sdim         "Unexpected operand in reassociable instruction");
7759288943Sdim
7760296417Sdim  // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
7761296417Sdim  // of this pass or other passes. The EFLAGS operands must be dead in these new
7762296417Sdim  // instructions because the EFLAGS operands in the original instructions must
7763296417Sdim  // be dead in order for reassociation to occur.
7764360784Sdim  NewFlagDef1->setIsDead();
7765360784Sdim  NewFlagDef2->setIsDead();
7766288943Sdim}
7767288943Sdim
7768296417Sdimstd::pair<unsigned, unsigned>
7769296417SdimX86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
7770296417Sdim  return std::make_pair(TF, 0u);
7771288943Sdim}
7772288943Sdim
7773296417SdimArrayRef<std::pair<unsigned, const char *>>
7774296417SdimX86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
7775296417Sdim  using namespace X86II;
7776296417Sdim  static const std::pair<unsigned, const char *> TargetFlags[] = {
7777296417Sdim      {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
7778296417Sdim      {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
7779296417Sdim      {MO_GOT, "x86-got"},
7780296417Sdim      {MO_GOTOFF, "x86-gotoff"},
7781296417Sdim      {MO_GOTPCREL, "x86-gotpcrel"},
7782296417Sdim      {MO_PLT, "x86-plt"},
7783296417Sdim      {MO_TLSGD, "x86-tlsgd"},
7784296417Sdim      {MO_TLSLD, "x86-tlsld"},
7785296417Sdim      {MO_TLSLDM, "x86-tlsldm"},
7786296417Sdim      {MO_GOTTPOFF, "x86-gottpoff"},
7787296417Sdim      {MO_INDNTPOFF, "x86-indntpoff"},
7788296417Sdim      {MO_TPOFF, "x86-tpoff"},
7789296417Sdim      {MO_DTPOFF, "x86-dtpoff"},
7790296417Sdim      {MO_NTPOFF, "x86-ntpoff"},
7791296417Sdim      {MO_GOTNTPOFF, "x86-gotntpoff"},
7792296417Sdim      {MO_DLLIMPORT, "x86-dllimport"},
7793296417Sdim      {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
7794296417Sdim      {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
7795296417Sdim      {MO_TLVP, "x86-tlvp"},
7796296417Sdim      {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
7797344779Sdim      {MO_SECREL, "x86-secrel"},
7798344779Sdim      {MO_COFFSTUB, "x86-coffstub"}};
7799296417Sdim  return makeArrayRef(TargetFlags);
7800288943Sdim}
7801288943Sdim
7802210299Sednamespace {
7803288943Sdim  /// Create Global Base Reg pass. This initializes the PIC
7804210299Sed  /// global base register for x86-32.
7805210299Sed  struct CGBR : public MachineFunctionPass {
7806210299Sed    static char ID;
7807212904Sdim    CGBR() : MachineFunctionPass(ID) {}
7808210299Sed
7809276479Sdim    bool runOnMachineFunction(MachineFunction &MF) override {
7810210299Sed      const X86TargetMachine *TM =
7811210299Sed        static_cast<const X86TargetMachine *>(&MF.getTarget());
7812288943Sdim      const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
7813210299Sed
7814341825Sdim      // Don't do anything in the 64-bit small and kernel code models. They use
7815341825Sdim      // RIP-relative addressing for everything.
7816341825Sdim      if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small ||
7817341825Sdim                            TM->getCodeModel() == CodeModel::Kernel))
7818276479Sdim        return false;
7819210299Sed
7820210299Sed      // Only emit a global base reg in PIC mode.
7821309124Sdim      if (!TM->isPositionIndependent())
7822210299Sed        return false;
7823210299Sed
7824218893Sdim      X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
7825218893Sdim      unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
7826218893Sdim
7827218893Sdim      // If we didn't need a GlobalBaseReg, don't insert code.
7828218893Sdim      if (GlobalBaseReg == 0)
7829218893Sdim        return false;
7830218893Sdim
7831210299Sed      // Insert the set of GlobalBaseReg into the first MBB of the function
7832210299Sed      MachineBasicBlock &FirstMBB = MF.front();
7833210299Sed      MachineBasicBlock::iterator MBBI = FirstMBB.begin();
7834210299Sed      DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
7835210299Sed      MachineRegisterInfo &RegInfo = MF.getRegInfo();
7836288943Sdim      const X86InstrInfo *TII = STI.getInstrInfo();
7837210299Sed
7838210299Sed      unsigned PC;
7839288943Sdim      if (STI.isPICStyleGOT())
7840239462Sdim        PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
7841210299Sed      else
7842218893Sdim        PC = GlobalBaseReg;
7843218893Sdim
7844341825Sdim      if (STI.is64Bit()) {
7845341825Sdim        if (TM->getCodeModel() == CodeModel::Medium) {
7846341825Sdim          // In the medium code model, use a RIP-relative LEA to materialize the
7847341825Sdim          // GOT.
7848341825Sdim          BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
7849341825Sdim              .addReg(X86::RIP)
7850341825Sdim              .addImm(0)
7851341825Sdim              .addReg(0)
7852341825Sdim              .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
7853341825Sdim              .addReg(0);
7854341825Sdim        } else if (TM->getCodeModel() == CodeModel::Large) {
7855344779Sdim          // In the large code model, we are aiming for this code, though the
7856344779Sdim          // register allocation may vary:
7857344779Sdim          //   leaq .LN$pb(%rip), %rax
7858344779Sdim          //   movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
7859344779Sdim          //   addq %rcx, %rax
7860344779Sdim          // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
7861360784Sdim          Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
7862360784Sdim          Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
7863344779Sdim          BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
7864344779Sdim              .addReg(X86::RIP)
7865344779Sdim              .addImm(0)
7866344779Sdim              .addReg(0)
7867344779Sdim              .addSym(MF.getPICBaseSymbol())
7868344779Sdim              .addReg(0);
7869344779Sdim          std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol());
7870344779Sdim          BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
7871344779Sdim              .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
7872344779Sdim                                 X86II::MO_PIC_BASE_OFFSET);
7873344779Sdim          BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
7874344779Sdim              .addReg(PBReg, RegState::Kill)
7875344779Sdim              .addReg(GOTReg, RegState::Kill);
7876341825Sdim        } else {
7877341825Sdim          llvm_unreachable("unexpected code model");
7878341825Sdim        }
7879341825Sdim      } else {
7880341825Sdim        // Operand of MovePCtoStack is completely ignored by asm printer. It's
7881341825Sdim        // only used in JIT code emission as displacement to pc.
7882341825Sdim        BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
7883218893Sdim
7884341825Sdim        // If we're using vanilla 'GOT' PIC style, we should use relative
7885341825Sdim        // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
7886341825Sdim        if (STI.isPICStyleGOT()) {
7887341825Sdim          // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
7888341825Sdim          // %some_register
7889341825Sdim          BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
7890341825Sdim              .addReg(PC)
7891341825Sdim              .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
7892341825Sdim                                 X86II::MO_GOT_ABSOLUTE_ADDRESS);
7893341825Sdim        }
7894210299Sed      }
7895210299Sed
7896210299Sed      return true;
7897210299Sed    }
7898210299Sed
7899314564Sdim    StringRef getPassName() const override {
7900210299Sed      return "X86 PIC Global Base Reg Initialization";
7901210299Sed    }
7902210299Sed
7903276479Sdim    void getAnalysisUsage(AnalysisUsage &AU) const override {
7904210299Sed      AU.setPreservesCFG();
7905210299Sed      MachineFunctionPass::getAnalysisUsage(AU);
7906210299Sed    }
7907210299Sed  };
7908210299Sed}
7909210299Sed
7910210299Sedchar CGBR::ID = 0;
7911210299SedFunctionPass*
7912276479Sdimllvm::createX86GlobalBaseRegPass() { return new CGBR(); }
7913239462Sdim
7914239462Sdimnamespace {
7915239462Sdim  struct LDTLSCleanup : public MachineFunctionPass {
7916239462Sdim    static char ID;
7917239462Sdim    LDTLSCleanup() : MachineFunctionPass(ID) {}
7918239462Sdim
7919276479Sdim    bool runOnMachineFunction(MachineFunction &MF) override {
7920327952Sdim      if (skipFunction(MF.getFunction()))
7921309124Sdim        return false;
7922309124Sdim
7923309124Sdim      X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
7924239462Sdim      if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
7925239462Sdim        // No point folding accesses if there isn't at least two.
7926239462Sdim        return false;
7927239462Sdim      }
7928239462Sdim
7929239462Sdim      MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
7930239462Sdim      return VisitNode(DT->getRootNode(), 0);
7931239462Sdim    }
7932239462Sdim
7933239462Sdim    // Visit the dominator subtree rooted at Node in pre-order.
7934239462Sdim    // If TLSBaseAddrReg is non-null, then use that to replace any
7935239462Sdim    // TLS_base_addr instructions. Otherwise, create the register
7936239462Sdim    // when the first such instruction is seen, and then use it
7937239462Sdim    // as we encounter more instructions.
7938239462Sdim    bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
7939239462Sdim      MachineBasicBlock *BB = Node->getBlock();
7940239462Sdim      bool Changed = false;
7941239462Sdim
7942239462Sdim      // Traverse the current block.
7943239462Sdim      for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
7944239462Sdim           ++I) {
7945239462Sdim        switch (I->getOpcode()) {
7946239462Sdim          case X86::TLS_base_addr32:
7947239462Sdim          case X86::TLS_base_addr64:
7948239462Sdim            if (TLSBaseAddrReg)
7949309124Sdim              I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
7950239462Sdim            else
7951309124Sdim              I = SetRegister(*I, &TLSBaseAddrReg);
7952239462Sdim            Changed = true;
7953239462Sdim            break;
7954239462Sdim          default:
7955239462Sdim            break;
7956239462Sdim        }
7957239462Sdim      }
7958239462Sdim
7959239462Sdim      // Visit the children of this block in the dominator tree.
7960239462Sdim      for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
7961239462Sdim           I != E; ++I) {
7962239462Sdim        Changed |= VisitNode(*I, TLSBaseAddrReg);
7963239462Sdim      }
7964239462Sdim
7965239462Sdim      return Changed;
7966239462Sdim    }
7967239462Sdim
7968239462Sdim    // Replace the TLS_base_addr instruction I with a copy from
7969239462Sdim    // TLSBaseAddrReg, returning the new instruction.
7970309124Sdim    MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
7971239462Sdim                                         unsigned TLSBaseAddrReg) {
7972309124Sdim      MachineFunction *MF = I.getParent()->getParent();
7973288943Sdim      const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
7974288943Sdim      const bool is64Bit = STI.is64Bit();
7975288943Sdim      const X86InstrInfo *TII = STI.getInstrInfo();
7976239462Sdim
7977239462Sdim      // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
7978309124Sdim      MachineInstr *Copy =
7979309124Sdim          BuildMI(*I.getParent(), I, I.getDebugLoc(),
7980309124Sdim                  TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
7981309124Sdim              .addReg(TLSBaseAddrReg);
7982239462Sdim
7983239462Sdim      // Erase the TLS_base_addr instruction.
7984309124Sdim      I.eraseFromParent();
7985239462Sdim
7986239462Sdim      return Copy;
7987239462Sdim    }
7988239462Sdim
7989321369Sdim    // Create a virtual register in *TLSBaseAddrReg, and populate it by
7990239462Sdim    // inserting a copy instruction after I. Returns the new instruction.
7991309124Sdim    MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
7992309124Sdim      MachineFunction *MF = I.getParent()->getParent();
7993288943Sdim      const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
7994288943Sdim      const bool is64Bit = STI.is64Bit();
7995288943Sdim      const X86InstrInfo *TII = STI.getInstrInfo();
7996239462Sdim
7997239462Sdim      // Create a virtual register for the TLS base address.
7998239462Sdim      MachineRegisterInfo &RegInfo = MF->getRegInfo();
7999239462Sdim      *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
8000239462Sdim                                                      ? &X86::GR64RegClass
8001239462Sdim                                                      : &X86::GR32RegClass);
8002239462Sdim
8003239462Sdim      // Insert a copy from RAX/EAX to TLSBaseAddrReg.
8004309124Sdim      MachineInstr *Next = I.getNextNode();
8005309124Sdim      MachineInstr *Copy =
8006309124Sdim          BuildMI(*I.getParent(), Next, I.getDebugLoc(),
8007309124Sdim                  TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
8008309124Sdim              .addReg(is64Bit ? X86::RAX : X86::EAX);
8009239462Sdim
8010239462Sdim      return Copy;
8011239462Sdim    }
8012239462Sdim
8013314564Sdim    StringRef getPassName() const override {
8014239462Sdim      return "Local Dynamic TLS Access Clean-up";
8015239462Sdim    }
8016239462Sdim
8017276479Sdim    void getAnalysisUsage(AnalysisUsage &AU) const override {
8018239462Sdim      AU.setPreservesCFG();
8019239462Sdim      AU.addRequired<MachineDominatorTree>();
8020239462Sdim      MachineFunctionPass::getAnalysisUsage(AU);
8021239462Sdim    }
8022239462Sdim  };
8023239462Sdim}
8024239462Sdim
8025239462Sdimchar LDTLSCleanup::ID = 0;
8026239462SdimFunctionPass*
8027239462Sdimllvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
8028321369Sdim
8029327952Sdim/// Constants defining how certain sequences should be outlined.
8030327952Sdim///
8031327952Sdim/// \p MachineOutlinerDefault implies that the function is called with a call
8032327952Sdim/// instruction, and a return must be emitted for the outlined function frame.
8033327952Sdim///
8034327952Sdim/// That is,
8035327952Sdim///
8036327952Sdim/// I1                                 OUTLINED_FUNCTION:
8037327952Sdim/// I2 --> call OUTLINED_FUNCTION       I1
8038327952Sdim/// I3                                  I2
8039327952Sdim///                                     I3
8040327952Sdim///                                     ret
8041327952Sdim///
8042327952Sdim/// * Call construction overhead: 1 (call instruction)
8043327952Sdim/// * Frame construction overhead: 1 (return instruction)
8044327952Sdim///
8045327952Sdim/// \p MachineOutlinerTailCall implies that the function is being tail called.
8046327952Sdim/// A jump is emitted instead of a call, and the return is already present in
8047327952Sdim/// the outlined sequence. That is,
8048327952Sdim///
8049327952Sdim/// I1                                 OUTLINED_FUNCTION:
8050327952Sdim/// I2 --> jmp OUTLINED_FUNCTION       I1
8051327952Sdim/// ret                                I2
8052327952Sdim///                                    ret
8053327952Sdim///
8054327952Sdim/// * Call construction overhead: 1 (jump instruction)
8055327952Sdim/// * Frame construction overhead: 0 (don't need to return)
8056327952Sdim///
8057327952Sdimenum MachineOutlinerClass {
8058327952Sdim  MachineOutlinerDefault,
8059327952Sdim  MachineOutlinerTailCall
8060327952Sdim};
8061321369Sdim
8062341825Sdimoutliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo(
8063341825Sdim    std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
8064341825Sdim  unsigned SequenceSize =
8065341825Sdim      std::accumulate(RepeatedSequenceLocs[0].front(),
8066341825Sdim                      std::next(RepeatedSequenceLocs[0].back()), 0,
8067341825Sdim                      [](unsigned Sum, const MachineInstr &MI) {
8068341825Sdim                        // FIXME: x86 doesn't implement getInstSizeInBytes, so
8069341825Sdim                        // we can't tell the cost.  Just assume each instruction
8070341825Sdim                        // is one byte.
8071341825Sdim                        if (MI.isDebugInstr() || MI.isKill())
8072341825Sdim                          return Sum;
8073341825Sdim                        return Sum + 1;
8074341825Sdim                      });
8075321369Sdim
8076341825Sdim  // FIXME: Use real size in bytes for call and ret instructions.
8077341825Sdim  if (RepeatedSequenceLocs[0].back()->isTerminator()) {
8078341825Sdim    for (outliner::Candidate &C : RepeatedSequenceLocs)
8079341825Sdim      C.setCallInfo(MachineOutlinerTailCall, 1);
8080327952Sdim
8081341825Sdim    return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
8082341825Sdim                                      0, // Number of bytes to emit frame.
8083341825Sdim                                      MachineOutlinerTailCall // Type of frame.
8084341825Sdim    );
8085341825Sdim  }
8086341825Sdim
8087341825Sdim  for (outliner::Candidate &C : RepeatedSequenceLocs)
8088341825Sdim    C.setCallInfo(MachineOutlinerDefault, 1);
8089341825Sdim
8090341825Sdim  return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
8091341825Sdim                                    MachineOutlinerDefault);
8092321369Sdim}
8093321369Sdim
8094327952Sdimbool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF,
8095327952Sdim                                           bool OutlineFromLinkOnceODRs) const {
8096327952Sdim  const Function &F = MF.getFunction();
8097327952Sdim
8098327952Sdim  // Does the function use a red zone? If it does, then we can't risk messing
8099327952Sdim  // with the stack.
8100353358Sdim  if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) {
8101341825Sdim    // It could have a red zone. If it does, then we don't want to touch it.
8102341825Sdim    const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
8103341825Sdim    if (!X86FI || X86FI->getUsesRedZone())
8104327952Sdim      return false;
8105341825Sdim  }
8106327952Sdim
8107327952Sdim  // If we *don't* want to outline from things that could potentially be deduped
8108327952Sdim  // then return false.
8109327952Sdim  if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
8110327952Sdim      return false;
8111327952Sdim
8112327952Sdim  // This function is viable for outlining, so return true.
8113327952Sdim  return true;
8114321369Sdim}
8115321369Sdim
8116341825Sdimoutliner::InstrType
8117341825SdimX86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,  unsigned Flags) const {
8118341825Sdim  MachineInstr &MI = *MIT;
8119321369Sdim  // Don't allow debug values to impact outlining type.
8120341825Sdim  if (MI.isDebugInstr() || MI.isIndirectDebugValue())
8121341825Sdim    return outliner::InstrType::Invisible;
8122321369Sdim
8123341825Sdim  // At this point, KILL instructions don't really tell us much so we can go
8124341825Sdim  // ahead and skip over them.
8125341825Sdim  if (MI.isKill())
8126341825Sdim    return outliner::InstrType::Invisible;
8127341825Sdim
8128321369Sdim  // Is this a tail call? If yes, we can outline as a tail call.
8129321369Sdim  if (isTailCall(MI))
8130341825Sdim    return outliner::InstrType::Legal;
8131321369Sdim
8132321369Sdim  // Is this the terminator of a basic block?
8133321369Sdim  if (MI.isTerminator() || MI.isReturn()) {
8134321369Sdim
8135321369Sdim    // Does its parent have any successors in its MachineFunction?
8136321369Sdim    if (MI.getParent()->succ_empty())
8137341825Sdim      return outliner::InstrType::Legal;
8138321369Sdim
8139321369Sdim    // It does, so we can't tail call it.
8140341825Sdim    return outliner::InstrType::Illegal;
8141321369Sdim  }
8142321369Sdim
8143321369Sdim  // Don't outline anything that modifies or reads from the stack pointer.
8144321369Sdim  //
8145321369Sdim  // FIXME: There are instructions which are being manually built without
8146321369Sdim  // explicit uses/defs so we also have to check the MCInstrDesc. We should be
8147321369Sdim  // able to remove the extra checks once those are fixed up. For example,
8148327952Sdim  // sometimes we might get something like %rax = POP64r 1. This won't be
8149321369Sdim  // caught by modifiesRegister or readsRegister even though the instruction
8150321369Sdim  // really ought to be formed so that modifiesRegister/readsRegister would
8151321369Sdim  // catch it.
8152321369Sdim  if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
8153321369Sdim      MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
8154321369Sdim      MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
8155341825Sdim    return outliner::InstrType::Illegal;
8156321369Sdim
8157321369Sdim  // Outlined calls change the instruction pointer, so don't read from it.
8158321369Sdim  if (MI.readsRegister(X86::RIP, &RI) ||
8159321369Sdim      MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
8160321369Sdim      MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
8161341825Sdim    return outliner::InstrType::Illegal;
8162321369Sdim
8163321369Sdim  // Positions can't safely be outlined.
8164321369Sdim  if (MI.isPosition())
8165341825Sdim    return outliner::InstrType::Illegal;
8166321369Sdim
8167321369Sdim  // Make sure none of the operands of this instruction do anything tricky.
8168321369Sdim  for (const MachineOperand &MOP : MI.operands())
8169321369Sdim    if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
8170321369Sdim        MOP.isTargetIndex())
8171341825Sdim      return outliner::InstrType::Illegal;
8172321369Sdim
8173341825Sdim  return outliner::InstrType::Legal;
8174321369Sdim}
8175321369Sdim
8176341825Sdimvoid X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB,
8177321369Sdim                                          MachineFunction &MF,
8178341825Sdim                                          const outliner::OutlinedFunction &OF)
8179327952Sdim                                          const {
8180321369Sdim  // If we're a tail call, we already have a return, so don't do anything.
8181341825Sdim  if (OF.FrameConstructionID == MachineOutlinerTailCall)
8182321369Sdim    return;
8183321369Sdim
8184321369Sdim  // We're a normal call, so our sequence doesn't have a return instruction.
8185321369Sdim  // Add it in.
8186321369Sdim  MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RETQ));
8187321369Sdim  MBB.insert(MBB.end(), retq);
8188321369Sdim}
8189321369Sdim
8190321369SdimMachineBasicBlock::iterator
8191321369SdimX86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
8192321369Sdim                                 MachineBasicBlock::iterator &It,
8193321369Sdim                                 MachineFunction &MF,
8194341825Sdim                                 const outliner::Candidate &C) const {
8195321369Sdim  // Is it a tail call?
8196341825Sdim  if (C.CallConstructionID == MachineOutlinerTailCall) {
8197321369Sdim    // Yes, just insert a JMP.
8198321369Sdim    It = MBB.insert(It,
8199341825Sdim                  BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
8200321369Sdim                      .addGlobalAddress(M.getNamedValue(MF.getName())));
8201321369Sdim  } else {
8202321369Sdim    // No, insert a call.
8203321369Sdim    It = MBB.insert(It,
8204321369Sdim                  BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
8205321369Sdim                      .addGlobalAddress(M.getNamedValue(MF.getName())));
8206321369Sdim  }
8207321369Sdim
8208321369Sdim  return It;
8209321369Sdim}
8210344779Sdim
8211344779Sdim#define GET_INSTRINFO_HELPERS
8212344779Sdim#include "X86GenInstrInfo.inc"
8213